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Abstract. We report on multi-loop integral computations executed on a PEZY/Exascaler large-scale
(immersion cooling) computing system. The programming model requires a host program written in C++
with a PZCL (OpenCL-like) kernel. However the kernel can be generated by the Goose compiler interface,
which allows parallelizing program loops according to compiler directives. As an advantage, the executable
derived from a program instrumented with Goose pragmas can be run on multiple devices and multiple
nodes without changes to the program. We use lattice rules and lattice copy (composite) rules on PEZY to
approximate integrals for multi-loop self-energy diagrams with and without masses. GPU results are also
given and the performnce on the different architectures is compared.

1. Introduction
Higher order corrections are required for accurate theoretical predictions of the cross-section for particle
interactions. Loop diagrams are taken into account, leading to the evaluation of loop integrals, for which
analytic integration is not generally possible. The goal is to perform accurate loop integral computations,
and to develop computer programs to evaluate multi-loop Feynman integrals numerically/directly.
Previously in [1, 2, 3], we reported precise numerical results for 2-, 3- and 4-loop Feynman integrals
using adaptive multi-dimensional integration and linear extrapolation. In [4, 5] we handled 2- and 3-
loop integrals with (transformed) lattice rules on GPUs. We further considered diagrams with massless
internal lines [6], where dimensional regularization was treated numerically with a linear extrapolation
as the dimensional regularization parameter tends to zero. Other authors evaluated shifted lattice rules
(originally proposed in [7]) on GPUs for integrals resulting from sector decomposition [8], which was
also implemented in pySecDec [9]. In the present work we use composite lattice rules for 3- and 4-loop
(finite) integrals, and focus on the parallel performance on systems with GPU or PEZY accelerators.

The L-loop integral with N internal lines can be represented by I = (4π)−νL/2F with

F = Γ(N − νL
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Figure 1. Sample 3-loop self-energy diagrams with masses [10] / massless [11]: (a) Diagram (2t/L0) with
N = 8, (b) Diagram (2u) with N = 8, (c) Diagram (2v/N0) with N = 8; 4-loop self-energy diagrams with
massless internal lines [11]: (d) Diagram M44 with N = 9, (e) Diagram M45 with N = 9.

where C and D are polynomials determined by the topology of the corresponding diagram and physical
parameters, ν is the space-time dimension (i.e., ν = 4 unless used for regularization), and % = 0
unless D vanishes in the interior of the domain. The domain CN is the N -dimensional unit cube in
the first integral of (1), and SN−1 is the (N − 1)-dimensional unit simplex in the second integral,
Sd = {x ∈ Cd |

∑d
j=1 xj ≤ 1}.

For the cases presented here, D has integrable singularities on the boundaries of the domain. The
diagrams are given in Fig 1, including three 3-loop self-energy diagrams l(2t), l(2u), l(2v) with N = 8
and considered with masses in [10] (Laporta Fig 2) and massless (L0 and N0) in [11], and two massless
4-loop diagrams, M44 and M45 with N = 9 from [11] (Baikov and Chetyrkin).

2. Integration
2.1. Lattice rules
For the integration we transform the integral over Sd of (1) to Cd for dimension d = N−1, and use rank-1
lattice rules, given by Qf = 1

n

∑n−1
j=0 f({ jnz}) (see, e.g., [12] for a comprehensive treatment). Here z is

an integer generator vector of length d with components z ∈ Zn = {1 ≤ z < n | gcd(z, n) = 1}, where
{x} denotes the vector obtained by taking the fractional part of each component of x. Classically n is
prime [13, 14] (i.e., Zn = {1, 2, . . . , n− 1}); extensions for non-prime n have been given [15, 16]. We
precompute the generators z for various numbers of points n using the component by component (CBC)
algorithm [17, 16]. The CBC algorithm runs in O(dn log(n)) time and O(n) space.

2.2. Composite/embedded lattice rules
An embedded sequence is given in [12], where each rule of the sequence applies a scaled rank-1 rule Q0

to the subregions obtained by subdividing Cd into m equal parts in each of r coordinate directions,

Qrf =
1

mrn

m−1∑
kr=0

. . .
m−1∑
k1=0

n−1∑
j=0

f ({ j
n
z +

1

m
(k1, . . . , kr, 0, . . . , 0)}), 0 ≤ r ≤ d (2)

for n and m relatively prime.The points of Qr are included (embedded) in Qr+1 for 0 ≤ r < d. Qr has
mrn points and is of rank r for 1 ≤ r ≤ d, and Qd is the md-copy rule of Q0. An error estimate for Qd
is calculated using a sequence of rules Q(i), 1 ≤ i ≤ d, of order md−1n and embedded in Qd [12].

2.3. Transformation
Lattice rules enjoy favorable convergence properties for smooth, 1-periodic functions. In view of
the singular behavior of the integrand of (1) at the boundaries of the domain, we use a sinm

transformation [18, 19] of fairly high order (m = 6) to also smoothen the singularity. For an integral
If =

∫ 1
0 f(x) dx, this is x = Ψm(t) = θm(t)/θm(1), m = 1, 2, . . . , with θm(t) =

∫ t
0 sinm(πu) du,

so that Ψ6(t) = t− (45 sin(2πt)− 9 sin(4πt) + sin(6πt))/(60π), and Ψ′6(t) = 16
5 sin6(πt).
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Table 1. (m = 1, 2) LR results for 3-loop massive self-energy diagrams on GPU

DIAGRAM N # PTS n m RESULT ABS.ERR. REL.ERR. TIME [s]
Fig 1(a) (2t) 8 400M 1 0.2796089827126 5.94 e-08 2.12 e-07 1.0

2 0.2796089232826 2.52 e-14 9.01 e-14 127.8
513 (7D) 1 0.2796089226167 6.66 e-10 2.38 e-09 3.0

2 0.2796089232824 1.63 e-13 5.83 e-13 390.1
Exact: 0.2796089232826

Fig 1(b) (2u) 8 400M 1 0.1826272683315 3.08 e-08 1.69 e-07 1.0
2 0.1826272375394 2.18 e-13 1.19 e-12 128.1

513 (7D) 1 0.1826272372834 2.56 e-10 1.40 e-09 3.1
2 0.1826272375391 1.46 e-13 7.99 e-13 391.0

Exact: 0.1826272375392
Fig 1(c) (2v) 8 400M 1 0.1480133458323 4.19 e-08 2.83 e-07 1.6

2 0.1480133039588 2.37 e-13 1.60 e-12 199.4
513 (7D) 1 0.1480133033037 6.55 e-10 4.43 e-09 4.8

2 0.1480133039581 3.46 e-13 2.34 e-12 608.1
513 (15→7D) 1 0.1480133034035 5.55 e-10 3.75 e-09 4.8

2 0.1480133039583 8.97 e-14 6.06 e-13 608.6
Exact: 0.1480133039584

Table 2. (m = 1, 2) LR results for 4-loop massless self-energy diagrams on GPU

DIAGRAM N # PTS n m RESULT ABS.ERR. REL.ERR. TIME [s]

Fig 1(d) (M44) 9 100M 1 55.657754 7.25 e-02 1.30 e-03 0.4
2 55.586092 8.38 e-04 1.51 e-05 113.4

400M 1 55.600351 1.51 e-02 2.72 e-03 1.8
2 55.585416 1.62 e-04 2.91 e-06 452.9

513 (15→8D) 1 55.577700 7.55 e-03 1.36 e-04 5.4
2 55.585135 1.19 e-04 2.14 e-06 1382

Exact: 55.585254
Fig 1(e) (M45) 9 100M 1 52.058688 4.08 e-02 7.84 e-04 0.5

2 52.018436 5.67 e-04 1.09 e-05 114.9
400M 1 52.014437 3.43 e-03 6.59 e-05 1.8

2 52.017790 7.92 e-05 1.52 e-06 459.4
513 (15→8D) 1 52.012072 5.80 e-03 1.11 e-04 5.5

2 52.017807 6.17 e-05 1.19 e-06 1402
Exact: 52.017869

3. GPU results
For the GPU results, the program is implemented in CUDA C and executed on the thor cluster of the
Center for High Performance Computing and Big Data at WMU. The host process runs on a node with
Intel Xeon E5-2670, 2.6 GHz dual CPU, and the lattice rule is evaluated on a Kepler-20m GPU, using
64 blocks and 512 or 1024 threads per block on the GPU. The GPU has 2496 CUDA cores and 4800
MBytes of global memory. The lattice generator vector z is precomputed and communicated (as a one-
dimensional array of length d) from the main program to the CUDA kernel.

Table 1 shows results for lattice rules (m = 1) with n = 100M (million), 400M and 513 points, and
for their composite versions with m = 2. Two rules were generated (using Lattice Builder [20]) with 513

points, one (7D) for dimension d = 7 (which is the dimension of the 2t, 2u and 2v integrals) and one
(15→ 7D) for dimension 15, which is projected to d = 7. The methods yield high accuracy for these
problems, and further provide a significant improvement from the m = 1 to the m = 2 applications,
which comes with a price to pay in the number of function evaluations and hence the execution times.
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Table 3. (m = 2) 400M results for 3-loop massive self-energy diagram (2u) on Suiren2; Abs. err. = 4.28e-11;
Loop blocks of size 128× 32; [Compare to GPU: 128.1 s]

DIAGRAM N #PTS. n TIMES [S] [ON SUIREN2], NXTY: X NODES, Y TASKS

1 node 2 nodes 4 nodes 8 nodes

Fig 1(b) (2u) 8 400M n1t1: 140.8
n1t2: 71.6 n2t1: 73.7
n1t4: 36.7 n2t2: 37.0 n4t1: 36.6
n1t8: 19.2 n2t4: 19.0 n4t2: 18.9 n8t1: 18.8

n2t8: 10.0 n4t4: 9.9 n8t2: 9.8
n4t8: 5.7 n8t4: 5.5

n8t8: 3.5

Notwithstanding the much more complicated integrals, Table 2 reveals similar trends for the 4-loop
massless diagrams. The 513-point rule (15→8D) is projected from dimension 15 to d = 8.

4. PEZY results
The PEZY results are obtained on the Suiren2 system based on the MIMD manycore PEZY-SC2
accelerator [21] at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. The
system is manufactured by PEZY Computing/Exascaler Inc. [22] and uses direct liquid immersion
cooling for power efficiency. Power consumption is listed as 47.40 kW, and power efficiency is 16.759
GFlops/Watts. The machine at KEK is a smaller configuration of the Shoubu system B, a ZettaScaler-2.2
supercomputer at the Advanced Center for Computing and Communication, RIKEN, Japan, which ranks
first on the Nov. 2018 list of the Green 500. Suiren2 ranked second after Shoubu in Nov. 2017.

The configuration at KEK has 6 tanks, two bricks (high density server boards) per tank, four Xeon D-
1571 16C 1.3GHz nodes per brick, 8 PEZY-SC2 boards per node. This makes for a total of 6×2×4 = 48
nodes and 48× 6 = 384 PEZY-SC2 boards. The node interconnect is Infiniband EDR. Each PEZY-SC2
board has 64 GB of memory associated with it. Half of the nodes further have 64 GB, the other half 32 GB
of memory, so that the total amount of memory is (384×64 + 24×32 + 24×64) GB = 26, 880 GB.
With 1984 cores per board and 16 cores per Xeon D-1571 host processor, the total number of cores is
(16 + 8×1984) × 48 = 762, 624. For the Linpack performance of Suiren2, Rmax is 798 TFlop/s with
Nmax of 1,238,016, and the theoretical peak (Rpeak) is 1,082.6 TFlop/s (see [23]).

The programming model for PEZY-SC2 requires a kernel in PZCL, an OpenCL-like language, and
a host program in C++. However, we generated the kernels via the Goose compiler interface [24, 25],
which takes a program instrumented with Goose compiler directives to parallelize the code. A pragma
for the composite rule computation with m = 2 is illustrated below, where n is the number of points
in the lattice rule, dim is the dimension (d), p dim= 2d and the outer loop runs over loop blocks of
size 2d × 32. The precision labeled double-double was overridden by the Goose compiler option
–dd-double that indicates the calculation within the section is done in double precision.

const int dim = 8;
const int p dim = 1 << dim;
long long int nj = p dim*32;
long long int ni = p dim*(long long int)n/nj;
#pragma goose parallel for loopcounter(i,j) precision("double-double")
for (i = 0; i < ni; i++) {

...
for(j = 0; j < nj; j++) {
...

}
...

}
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Table 4. (m = 2) 400M results for 3-loop massless self-energy diagram L0 on Suiren2; Abs. err. = 8.98e-07,
Rel. err. = 4.33e-08; Loop blocks of size 128× 32; [Compare to GPU: 128.0 s]

DIAGRAM N #PTS. n TIMES [S] ON SUIREN2 NXTY: X NODES, Y TASKS

1 node 2 nodes 4 nodes 8 nodes

Fig 1(a) (L0) 8 400M n1t1: 143.0
n1t2: 71.5 n2t1: 71.5
n1t4: 36.7 n2t2: 36.6 n4t1: 36.6
n1t8: 19.0 n2t4: 18.9 n4t2: 18.9 n8t1: 18.7

n2t8: 10.1 n4t4: 9.9 n8t2: 9.8
n4t8: 5.7 n8t4: 5.5

n8t8: 3.5

Table 5. (m = 2) 513 pts. (7D) results for 3-loop massless self-energy diagram L0 on Suiren2; Abs. err. =
1.71e-07, Rel. err. = 8.22e-09; Loop blocks of size 128× 32; [Compare to GPU: 390.6 s]

DIAGRAM N #PTS. n TIMES [S] ON SUIREN2, NXTY: X NODES, Y TASKS

1 node 2 nodes 4 nodes 8 nodes

Fig 1(a) (L0) 8 513 n1t1: 432.7
n1t2: 217.8 n2t1: 217.7
n1t4: 111.7 n2t2: 111.4 n4t1: 112.0
n1t8: 58.3 n2t4: 57.6 n4t2: 56.6 n8t1: 56.2

n2t8: 30.7 n4t4: 29.7 n8t2: 29.0
n4t8: 16.7 n8t4: 15.9

n8t8: 9.9

Tables 3-6 display Suiren2 timings for some of the diagrams of interest. The times are labeled as
nXtY indicating the number of nodes (X) and number of tasks per node (Y) used. Table 3 handles the
l(2u)-diagram using the composite (m = 2) lattice of the 400M-point rule. Results for the massless
3-loop diagram L0 are included in Tables 4 and 5 for 400M and 513 points, repectively.

Table 6. (m = 2) results for 4-loop massless self-energy diagram M45 on Suiren2; Loop blocks of size 128×32;
400M pts.: Abs. err. = 2.57e-05, Rel. err. = 4.94e-07, [Compare to 400M pts. GPU time: 459.5 s]; 513 pts.:
Abs. err. = 1.02e-06, Rel. err. = 1.95e-08, [Compare to 513 pts. GPU time: 1402 s]

DIAGRAM N #PTS. n TIMES [S] ON SUIREN2, NXTY: X NODES, Y TASKS

1 node 2 nodes 4 nodes 8 nodes

Fig 1(e) (M45) 9 400M n1t1: 332.5
n1t8: 43.3

n2t8: 22.4
n4t8: 11.9

n8t8: 6.7
Fig 1(e) (M45) 9 513

n2t8: 68.6
n4t8: 35.8

n8t8: 19.5

Table 6 gives timings for the 4-loop massless diagram M45 for 400M and 513 points. Note the
comparisons of the Suiren2 with the GPU times (listed in the Table captions). The Suiren2 times are
significantly lower, e.g., for n8t8 (6.7s vs. 459.5s for 400M points, and 19.5s vs. 1402s for 513 points).
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5. Conclusions
A parallel composite/embedded lattice rule method is presented for the calculation of Feynman loop
integrals, using a periodizing transformation that deals with singularities at the boundaries of the
integration domain. The algorithm is implemented in CUDA C for GPUs, and in C++ with Goose
compiler directives for the PEZY-SC2 Exascaler accelerator. Test results are given for classes of 3-
and 4-loop self-energy loop diagrams, with or without masses, and using simple (m = 1) and composite
(m = 2) lattice rules. The accuracy improves considerably from (m = 1) to (m = 2) and supersedes that
of adaptive parallel integration with the ParInt package [26] for these problems. The execution times are
decreased considerably on the Exascalar system, using multiple PEZY accelerators per node and multiple
nodes. The programs incorporate Goose and MPI, and run unchanged on different configurations.
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