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Abstract

Modern atomic physics is increasingly dependent on the results of high-precision calculations
to guide experiments and applications, especially in complex atoms with dense spectra. Many
cutting-edge applications and experiments use atoms with open-shell electronic structure and
strong configuration mixing, which require extremely large numerical bases to treat with any
level of accuracy. At the same time, supercomputing clusters have seen huge increases in compu-
tational power, driven by increasingly large-scale parallelism across many distributed compute
nodes. Consequently, modern atomic structure code must be designed to fully utilise massively-
parallel computing resources if they are to keep up with the increasing demands of experimental
studies.

In this thesis, I present the results of work to optimise the ambit atomic structure software, which
implements the configuration interaction with many-body perturbation theory (CI+MBPT)
method, to take advantage of modern supercomputers. I present a detailed outline of the software
engineering processes in converting ambit from an MPI-only model of parallelism to a hybrid
MPI+OpenMP model, as well as the performance gains resulting from doing so. I show that
the increased parallelism allows us to explore numerical saturation of the CI+MBPT method in
open-shell atoms for the first time ever — an investigation would not have been possible without
the increased performance capabilities of modern supercomputers.

I have applied the new ambit to calculations of atomic systems with a variety of electronic struc-
tures. Calculations of the highly-charged ions Sn7+–Sn10+, which are of experimental interest for
their applications in extreme ultraviolet photolithography for semiconductor fabrication, show
that ambit is highly efficient for ions with open d-shells. We achieve very close agreement with
experimental spectra: CI+MBPT calculations differ from experiments by an average error of
less than 1%. Additionally, calculations for two- and three-valent Lr+ and Lr demonstrate that
CI+MBPT implemented in ambit can accurately calculate the spectra of superheavy elements
— systems in which relativistic and QED effects are significant. My calculations for Lr and Lr+

also show that our CI+MBPT implementation is competitive with other cutting-edge methods
for relativistic atomic structure calculations.

This research shows that the accuracy of the CI+MBPT method, when scaled out to numerical
saturation, is competitive with best-in-class methods for atomic structure calculations and can
continue to serve as a workhorse for next-generation atomic structure calculations. Following its
release, ambit has been used by multiple research groups for calculations of highly-charged ion
clocks and precision tests for physics beyond the standard model. Furthermore, this research
should put ambit and CI+MBPT in a strong position to scale up and capitalise on future gains
in high-performance computing technology.
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Chapter One

Introduction and motivation

This thesis details the development of high-performance parallel algorithms for relativistic many-
body atomic structure calculations. Throughout this thesis, I will outline the current state of the
art in many-electron atomic structure methods, as well as the modified CI+MBPT techniques
employed by the ambit atomic structure code, developed by the Berengut group at UNSW. I
will then present high-performance, massively-parallel implementations of these algorithms and
demonstrate their performance and scalability modern high-performance computing clusters.
Finally, I will present several calculations of challenging atomic and ionic systems via these
algorithms and demonstrate their top-of-class accuracy and performance.

1.1 Motivation

This work is motivated by the increasing need for precision calculations to support new exper-
iments in atomic physics. Due to the complicated mathematics involved in atomic structure
physics (for example, there is no analytical solution to the Dirac equation for atoms with more
than one electron), numerical calculations play an important role in supporting experiments, as
well as providing accurate predictions to guide the development of new applications. In recent
years, atomic experiments and calculations have made key contributions to disparate areas in
physics, such as:

• Astrophysics, including stellar, solar and coronal dynamics [1, 2, 3], thermal and optical
properties of kilonovae [4], and diagnostics of nebulae and stellar atmospheres [5, 6, 7].

• Precision metrology: optical atomic clocks are extremely stable, with Yb+ ion clocks [8]
and Sr lattice clocks [9] reaching fractional systematic uncertainties at the level of 10−18.
At this level of precision, atomic clocks are sensitive to the effects of physics beyond the
standard model (which is discussed in more detail below) and can serve applications in
precision quantum sensing and geodesy [10, 11].

• Photon-atom scattering and polarisabilities: quantifying the effects of environmental per-
turbations and black-body radiation shifts on atomic clocks [12, 13, 14], polarisability and
Stark shifts in the spectra of complex atoms [15, 16], and modelling Van der Waals forces
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in weakly bound molecules [17].

Many of these applications rely on atoms and ions with complex electronic structures, especially
open-shell systems (i.e. atoms or ions with partially filled valence shells) and strong configuration
mixing. These properties present serious difficulties for precision calculations, due to the large
calculation sizes required to accurately model complex configurations. Additionally, photon-atom
applications typically require treatment of the energy-levels and transition matrix elements for
both bound and continuum states, which are difficult for current-generation codes to calculate
in tandem to the desired level of accuracy.

Narrowing down, this thesis will focus on atomic structure calculations motivated by two recent
experimental breakthroughs in precision atomic spectroscopy: precision spectroscopy of highly-
charged ions and experimental spectroscopy of superheavy elements. These breakthroughs have
enabled atomic experiments with a degree of accuracy which would have been unfeasible or
outright impossible a decade ago. Both highly-charged ions and superheavy elements present
considerable theoretical and computational challenges when computing spectra to the level of
accuracy required by experiments, necessitating the development of a new generation of atomic
structure codes.

Calculations for open-shell atomic systems are also critically important for experiments aiming
to provide precision tests for physics beyond the standard model, which serve as an important
search for new physics independent of high-energy experiments particle accelerator experiments.
These three applications (highly-charged ions, superheavy elements, and precision searches for
new physics), as well as their computational challenges, are described in more detail below.

1.2 Highly-charged ions

“Clock-like” precision spectroscopy of highly-charged ions (HCI) has only recently become exper-
imentally feasible due to three chief breakthroughs:

1. Accessibility of transitions: Early studies of highly-charged ions typically focused on few-
electron systems which could be produced in accelerator-synchrotron experiments, such as
the hydrogen-like systems U91+ [18, 19, 20], C5+ [21], and O7+ [22], as well as helium-like
U90+ [20]. Hydrogen- and helium-like highly-charged ions have been used to perform pre-
cision tests of QED via electron g-factor experiments [21, 22] and lamb-shift measurements
[20], since the size of atomic QED corrections are much stronger in ions with high ionic
charge. The review article by Kozlov et al [23] provides a detailed overview of historical
HCI experiments.

The above-mentioned highly-charged ions have few electrons, so the electronic binding
energies are dominated by extremely strong nuclear charge contributions, leading to spectra
in the far UV or X-ray regions. This makes precision spectroscopy experiments difficult,
although work carried out at NIST and elsewhere [24, 25, 26] has allowed few-electron HCI
systems to be used for tests of QED with accuracy at the parts-per-million level [27, 28].

PPM accuracy is not sufficient for precision clocks, however, so we must seek out optically-

4
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accessible transitions to achieve “clock-precision” spectroscopy. Berengut et al [29] demon-
strated the existence of optical, near-degenerate transitions in many-electron highly-charged
ions. These transitions exist near so-called "level crossings" due to cancellations between
large electron-electron contributions to binding energies. The existence of optical transi-
tions not only allows for highly-precise spectroscopic experiments, but also opens the pos-
sibility of using HCI systems as optical frequency atomic clocks. The high binding energies
of HCIs result in relatively small electronic polarisabilities and thus high-stability, as well
as sensitivity to physics beyond the standard model, such as variation of the fundamental
constants [23, 30].

2. Production and trapping: the production and trapping of stationary HCIs is an important
prerequisite to precision HCI spectroscopy. Early methods of production such as accel-
erators or the even earlier beam-foil method [31, 32] produced HCIs with large average
velocities (order of mm/ns) and thus only spend extremely short amounts of time in a
given experimental apparatus. This meant that only transitions with short lifetimes could
be observed in early experiments; the transition rate of the long-lived transitions required
for optical clocks is far too low to be observed at high velocities [23].

The development of electron-beam ion traps (EBITs) were key in overcoming the problems
of earlier methods of producing highly-charged ions. An EBIT consists of a high-intensity,
magnetically focused and confined beam of electrons with currents in the mA to A range,
which interacts with a dilute sample of the target (neutral) system. The electrons simulta-
neously ionise the sample (with the maximum charge state tunable via the kinetic energy
of the electrons) and provide a confining electric potential, thus combining HCI production
and trapping into one experimental apparatus [33]. EBITs were originally developed by
the group of Levine et al to study the atomic structure of highly-charged plasmas under
controlled, stationary conditions [33]. Further work [34] showed that EBITs were highly-
effective means of studying hydrogen- and helium-like ions of heavy elements. EBITs are
now used to study HCIs across all charge states at a fractional uncertainty in frequency
measurements of < 10−6 [35, 26].

However, while EBITs opened up significant new areas of experimental applications in
highly-charged systems, the ions produced and trapped in EBITs typically have tempera-
tures of the order of 104 K. These high temperatures introduce significant thermal broad-
ening of spectral lines, requiring either extensive cooling or sophisticated experimental
techniques to compensate for thermal effects (see Refs. [36, 24] for an overview of experi-
mental developments in this area).

3. Cooling and state production: HCIs are usually produced at very high temperatures (∼
104 − 106 K) whether in an EBIT or otherwise, which, as previously discussed, makes
precision spectroscopy difficult due to large Doppler/thermal broadening in the sample.
Cooling of near-neutral ions typically relies on some combination of evaporative- and laser-
cooling techniques, the latter of which is unsuited to most highly-charged ions. Laser
cooling relies on the presence of fast-cycling optical transitions, but these are not present in
HCIs — low-lying optical transitions in HCIs are strongly forbidden and thus have lifetimes

5
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too long to be useful for laser cooling, while the dipole-allowed transitions are all in the
EUV or X-ray ranges [37]. Consequently, the last key development in the spectroscopy
of highly-charged ions is the development of cooling and trapping schemes to reduce the
temperature of an HCI sample to the mK regime, with the more recent breakthroughs
coming via sympathetic cooling.

The sympathetic cooling approach relies on embedding HCIs (produced in an EBIT) into
a sample of cold ions which have already undergone Coulomb crystallisation. The earliest
attempts at this technique built on the work of Levine [33], and were carried out for Xe44+

in Refs. [38, 39] by using a dilute Be+ buffer gas in a cryogenic Penning trap. In this
scheme, Be+ and Be2+ ions are produced by electrically ionising a metal vapour cloud,
before the Be+ ions are magnetically separated, decelerated and captured in the Penning
trap. The Be+ ions are then laser cooled to ∼ 100 mK and the cooling laser is left to
run continuously throughout the experiment. The hot Xe ions (produced from an EBIT)
are then injected into the Penning trap, where they are cooled by Coulomb interaction
with the cryogenic Be+ ions, which are continuously re-cooled via the active laser. The
combined plasma in the Penning trap tends to an equilibrium temperature of ≤ 1 K, with
the exact temperature depending on the laser cooling rate, Coulomb interaction strength
and rates of external heating (e.g. trap imperfections).

The Penning trap method is relatively simple and effective at trapping highly-charged ions
due to their large charge-to-mass ratios, and has proven to be effective at cooling systems
for which laser cooling is impossible or impractical. However, the strong magnetic fields
required by Penning traps tends to introduce field noise when used for laser spectroscopy
[37], which reduces the precision of the spectral measurements. Consequently, more recent
work such as that in Ref. [40, 41] has focused on using radio-frequency (RF) Paul traps
for precision spectroscopy. Both Penning traps and RF traps employ hyperbolic electrodes
to produce a quadrupole electric field, but where Penning traps achieve three-dimensional
confinement via a static magnetic field, an RF trap oscillates the quadrupole field to achieve
the trapping [42].

RF trapping employs a system of pre-cooling and trapping similar to that in ref [38, 39], but
using an RF trap for the spectroscopy chamber. Additionally, quantum logic spectroscopy
can be used to compensate for ions which lack suitable cooling/trapping transitions by map-
ping the target spectroscopy ion’s internal state to that of a logic ion with more favorable
characteristics via their Coulomb interactions and collective motion in the trap [43, 44].
This allows for sympathetic cooling of the spectroscopic ion to very low temperatures, as
well as noise-suppressed measurements of the target clock-frequency.

The coupled motion of the trap and clock ions also allows for precision spectroscopy of ions
like Ar13+ which lack convenient transitions for electronic state preparation and detection
via quantum logic spectroscopy [43, 45]. A schematic representation of this process for an
Al+ spectroscopy ion and Be+ logic ion is shown below (figure reproduced with permission
from Ref. [43]), and proceeds as follows:
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A The system, consisting of the spectroscopy ion (S) and the logic ion (L) are prepared
in their respective electronic ground states and in the coupled mode of the trap.
Although only the ground and first excited states of this mode are shown, it will have
a full excitation spectrum which is superimposed over the internal electronic energy
spectrum. After this step, both ions are in the electronic ground state |↓〉 and the
ground state of the coupled mode (n = 0).

B The spectroscopy ion is illuminated by a probe laser with energy near the clock transi-
tion. If the probe frequency is not equal to the clock frequency, then the spectroscopy
ion remains in the ground state and no further excitations occur. If the spectroscopy
ion does get excited to the clock state, then the system proceeds to phase C. After
this step, the spectroscopy ion is in |↑〉 , n = 0, while the logic ion remains unchanged.

C The spectroscopy ion is illuminated by a red sideband π-pulse (RSB(Al+) in the dia-
gram) to de-excite it to the electronic ground-state, while simultaneously exciting the
trap’s coupled mode. The Coulomb interaction between the two ions ensures that the
logic ion is also promoted into the coupled-mode’s excited state. After this step, both
ions are in their respective |↓〉 , n = 1 states if the spectroscopy pulse in phase B was
successful, otherwise the red sideband pulse does not affect the system.

D A red sideband pulse, this time near the logic ion’s more well-characterised transition,
is then applied to the logic ion to excite it to |↑〉 , n = 0.

The energy of this pulse is only sufficient to excite the logic ion if the spectroscopy pulse
in phase B had the correct frequency to excite the spectroscopy ion. The Coulomb
interaction between the two ions ensures that the spectroscopy ion also transfers to
the coupled-mode ground state. After this step, the spectroscopic ion will be in the
|↓〉 , n = 0 state, while the logic ion will be in the |↑〉 , n = 0 state.

The key to this process is that each successive laser pulse is only able to change the
state of the system if the previous phase of the process was successful. Consequently,
the logic ion will absorb the second red sideband pulse by transferring to its electronic
excited state in phase D if and only if the initial pulse in phase B matched the clock
frequency of the spectroscopy ion. Consequently, repeated measurement the absorption
profile (or subsequent fluorescence through de-excitation) by the logic ion while tuning the
spectroscopy pulse provides a means to measure the clock frequency with an extremely low
fractional uncertainty.
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Quantum logic spectroscopy allows for precision spectroscopy of atomic [44] or molecular
ions [45, 46] with otherwise challenging experimental characteristics, such as a lack of suit-
able cooling sidebands, and is a promising tool for precision spectroscopy of highly-charged
ions. For example, in Ref. [35], sympathetic cooling via a Be+ ion (the logic ion) cools the
Ar13+ spectroscopy ion, initially produced at megakelvin temperatures, down to the 10 mK
level. Quantum logic spectroscopy was then used to measure the 40Ar13+ 2P1/2 →2 P3/2

fine-structure transition with a fractional uncertainty of 3 × 10−15 — the first such mea-
surement to be carried out in a highly-charged ion. The experiment also measured the
excited-state lifetime of the target transition, as well as its Landé g-factor, all of which are
necessary precursors to the development of highly-charged ion clocks.

These relatively recent developments are applicable to any species of HCI and, for the first time
ever, open up the possibility of precision highly-charged ion spectroscopy.

The combination of experimental developments has allowed the experimental realisation of high-
precision HCI spectroscopy and opened-up applications such as ultra stable highly-charged ion
clocks [47, 48], precision searches for physics beyond the standard model [29, 23]. However, many
of the systems of interest have have little to no available experimental data, so high-precision
atomic structure calculations are critically important to guide experiments and applications.

Assessing the difficulty of atomic structure calculations for highly-charged ions is not completely
straightforward. Almost by definition, the electronic structure of HCIs has large contributions
from the nuclear potential, which can speed up the convergence of electronic structure calcula-
tions. However, in order to get electronic transitions in the optical regime, highly-charged ionic
systems of interest, such as highly-charged tin ions [49, 50] and Ir17+ [29, 48], have complicated,
open-shell electronic structures and large cancellations of electronic binding energies. This large
cancellation is computationally challenging regardless of choice of approximation due to the in-
troduction of large numerical instabilities and uncertainties. For example, in the case of Ir17+ it
is extremely difficult to predict even the ground-state configuration, which has so-far prevented
its experimental realisation as a precise clock to test for new physics.

1.3 Superheavy elements

As with highly-charged ions, experimental spectroscopy of superheavy elements has historically
been out of reach due to the inherent difficulties posed by their physical properties. There is no
standard definition of what counts as a “superheavy” element, but in this thesis I will use the term
to refer to elements with a nuclear charge Z > 100, also known as the transfermium elements.
Elements with Z < 100 are typically produced by neutron capture and successive beta-decay in
lighter elements, which have the dual advantages of large reaction cross-sections and fluxes, as
well as relatively simple experimental apparatuses [51]. The decay-rates due to alpha-decay and
spontaneous fission drastically increase for elements beyond fermium (Z = 100).

The “liquid-drop” model of the nucleus (a macroscopic model which treats nucleons like molecules
in a liquid drop, where the stability is solely determined by the balance of the coulomb and strong
nuclear forces) predicts that nuclei cannot exist for Z ' 100 [52], so the existence of even short-
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lived superheavy nuclei is solely due to the effects of nuclear shell structure and correlation
(the so-called “microscopic picture”). This instability prevents the use of neutron capture for
superheavy element production [51, 52] — the two-step process of neutron-capture to increase
the nuclear mass followed by beta decay to increase the atomic number Z will not have time to
complete before the nucleus decays by spontaneous fission.

As outlined in Refs. [53, 52], the only viable method for producing transfermium elements is
through the complete fusion of lighter nuclei, which allows for the inclusion of large numbers
of neutrons to stabilise the nuclei. Cold fusion is typically achieved via bombarding a thin foil
(less than 1 mg/cm2 [51]) composed of a heavy element (the “target”) with heavy ions from an
accelerator (the “projectile”) [54]. Greater stability of the product nuclei can be achieved by using
projectile and/or target nuclei with magic numbers of protons and neutrons, where stability from
nuclear shell effects is maximised [54]; in particular, the “doubly magic” 48Ca nuclei has been used
to produce superheavy elements up to Z = 118 (Oganesson) with high enough production yields
to allow the reaction pathways to be fully characterised [55, 53]. A comprehensive treatment
of the nuclear physics involved in the synthesis of superheavy elements is presented in Refs.
[53, 52, 56, 57].

Even given the recent advances outlines above, precision spectroscopy of superheavy elements
remains challenging due to their low production yields and short half-lives. Because of this, the
most successful experiments in optical spectroscopy in superheavy elements, as well as measure-
ments of their ionisation potentials, have required “atom-at-a-time” measurements. Early work
in lawrencium (Lr, Z = 103) showed that surface-ionisation measurements could be carried out
at an atom-at-a-time scale, producing accurate measurements of the first ionisation potential of
a superheavy element [58] — the measured value of 4.96−0.07+0.08eV agrees closely with the value
of 4.963(15)eV predicted by Fock-Space coupled cluster calculations. Further work in ref [59]
showed that the same experimental approach could also be applied to fermium, mendelevium and
nobelium (100 ≤ Z ≤ 102), also achieving close agreement with relativistic atomic calculations.

Additionally, high-resolution optical spectroscopy of superheavy atoms has been demonstrated in
atom-at-a-time experiments with nobelium (Z = 102): the ionisation potential [60], ground-state
1S0 →1 P1 transition [61], and measurement of the hyperfine splitting and isotope shift to probe
nuclear size and shape [62]. These experimental measurements were carried out via the SHIP
heavy ion separator located at GSI Darmstadt — the nobelium atoms and ions were embedded
and allowed to thermalise in an argon buffer gas to reduce thermal and collision broadening
to ∼ 4 GHz level [62, 63]. Further enhancements to this apparatus aim to further reduce the
collisional broadening by embedding the target atoms/ions in a supersonic gas jet, which then
reduces the temperature and pressure compared to a static buffer gas cell. It is estimated that
the next generation of heavy ion separators using supersonic buffer gas jets will reduce the line
width due to gas collisions to ∼ 100 Mhz [63].

Atomic structure calculations of superheavy elements

The aforementioned short lifetimes and low production-rates of superheavy elements, combined
with the gas-jet method of thermalisation and buffering, means that each atom is only available
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for spectroscopic analysis for short periods of time. Consequently, spectroscopic searches must
be guided by accurate calculations so to precisely target the transition lines of interest.

This requirement imposes two restrictions on atomic structure codes if they are to be useful in
the spectroscopy of superheavy atoms and ions:

1. Accuracy: often transitions of interest are quite narrow and, by the nature of superheavy
elements, strongly dependent on relativistic effects. As a rule of thumb, the accuracy of
atomic structure calculations should be ∼ 1% (which often works out to ∼ 500 cm−1) to
provide a useful guide to experiments.

2. Fast turnaround: while not as crucially important as accuracy, the challenges of design-
ing and running experiments with superheavy elements means that accurate theoretical
predictions are required well before the experiment can actually commence. Additionally,
accurate spectra of several ionisation levels of the same element are often required to guide
successive experiments. Consequently, we want electronic structure calculations to be as
fast as possible to maximise scientific throughput, so it is especially important to take
advantage of modern high-performance computing architectures.

Computationally, the largest challenges stem from the strong relativistic effects in superheavy
elements, which must be “baked in” at every level of the calculation (as opposed to being treated
perturbatively or semi-empirically after the fact). Additionally, QED corrections are much larger
in superheavy atoms than for more conventional systems, and can reach several hundred cm−1;
comparable to the level of accuracy required to guide experimental design [64, 65]. These correc-
tions must therefore be included in atomic structure calculations as well if they are to produce
useful results.

Currently, QED corrections cannot be treated rigorously in many-electron atoms, with the cur-
rent state of the art theoretical methods being limited to approximate methods such as the
radiative potential method of Ginges and Flambaum [66, 67, 68], the model Lamb shift operator
formalism of Shabaev et al [69] and the self-energy screening approximation of Lowe et al [70].
These methods are only implemented in a small number of atomic structure packages, limiting
their reach — an open-source, user-friendly atomic structure code such as ambit can thus greatly
improve access to atomic structure calculations of superheavy elements (along with other systems
with strong QED contributions).

Finally, many superheavy elements display strong correlation effects and open-shell electronic
configurations; both of which are very computationally intensive to treat accurately [64, 65].
Consequently, modern atomic structure theory and HPC techniques are increasingly important
in maximising scientific throughput when studying superheavy elements.

1.4 Differential measurements and precision tests for physics be-
yond the standard model

In addition to the aforementioned experimental motivation for high-precision calculations of
highly-charged ions and superheavy elements, there are also myriad applications for “conven-
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tional” atomic systems (i.e. non-highly-charged, pre-actinide atoms and ions) in the search for
new physics beyond the standard model. These tests rely on the extremely high-precision achiev-
able by atomic, molecular and optical (AMO) experiments as an alternative to the high-energy
frontier explored by, for example, TeV-scale particle accelerators and cosmological processes. The
lack of unambiguous detection of new physics at the energy scales probed by the Large Hadron
Collider implies that, if they exists at all, deviations from the standard model most likely occur
at energy scales much larger than is feasible to reach with particle accelerators in the near fu-
ture [71]. AMO experiments can provide an alternative since, despite the high energy scale of
potential physics beyond the standard model, the extremely high precision reachable by AMO
experiments make them potentially sensitive to signals of physics beyond the standard model,
while also being much smaller and cheaper than particle accelerators [71, 72].

Except for the simplest systems, atomic and molecular structure calculations cannot reach the
relative precision of 10−18 required to directly simulate the effects of physics beyond the standard
model, due to the fast-growing computational complexity of accurately modelling many-electron
effects (for example, the size of a full CI calculation grows exponentially with the number of
atomic electrons). However, this limitation can be worked around by exploiting differential
measurements. Rather than directly comparing theory and experiment, we can instead calculate
how observable quantities change due to the effects of new physics, which are less sensitive to
numerical limitations and uncertainties [73] .

There are a huge number of such differential measurements, including the search for variations
in the fundamental constants (such as the fine-structure constant α [74] and the electron-proton
mass ratio µ [75, 76]), atomic parity violation (APV) [77, 78], tests for symmetry-violating
neutron and electron electric dipole moments (EDMs) [77, 79, 80], precision tests of QED via
electronic or hyperfine structure spectroscopy [27, 81], and isotope shift spectroscopy [73, 82, 83,
84].

In the rest of this section, I will review a few interesting examples of atomic experiments and
tests for physics beyond the standard model, as well as some of the challenges motivating the
need for high-performance atomic structure codes. A comprehensive study of molecular, nuclear
and optical tests for new physics can be found in Refs. [72, 27, 36].

1.4.1 Variation of the fundamental constants

As previously mentioned, highly-charged ion clocks can be used as sensitive test for variation in
the fundamental physical constants, such as spatial or temporal variation in the fine structure
constant α [29, 23]. These variations in the fundamental constants are also potentially observable
by more conventional optical atomic clocks, which, despite their potentially lower sensitivity and
stability compared to HCI clocks, have the advantage of more mature technology and theoretical
predictions.

In order to detect variation in α, at least two clock transitions with different sensitivities to
α-variation must be used [29]. Mathematically, we can quantify α-sensitivity by calculating the
change the energy of a clock transition which would be induced by a change in the value of α
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[72, 85]. For a sufficiently small change α0 → α = α0 + δα (where α0 is the current value of the
fine-structure constant), the energy dependence of a level can be parameterised by the coefficient
q:

E(α) = E0 + q

[(
α

α0

)2

− 1

]
(1.1)

where E0 is the measured energy of the transition. Since q is essentially the derivative of the rate
of change of E with respect to α, it can be determined by calculating the upper and lower energy
of the clock transition for a number of different values of α, and then calculating the numerical
derivative for each level [29, 85]. This will provide two values qf and qi for the corresponding
energy levels i and f , so the q-factor for the transition is q = qf − qi [29]. The α-dependence can
also be represented in a unitless form K ≡ 2q/E0 [29, 72], so larger values of K indicate greater
sensitivity to variation in α and can be compared like-for-like between different clock candidates
(in practice both q and K are used throughout the literature).

Highly-sensitive transitions have three major characteristics [30]:

1. Small transition energy E0, which will amplify the relative sensitivityK. There is a tradeoff
between sensitivity and increased experimental and theoretical complexity, however: the
transition must be accessible to modern lasers; and nearly degenerate transitions are more
challenging to accurately calculate, since they result from large numerical cancellations in
many-body systems.

2. The transition must be highly stable to ensure the high precision required to detect small
changes in α. The current best upper-bound on α-variation is of the order of 10−17 [86],
and ionic clocks such as Yb+ can now reach fractional accuracies of ∼ 10−18 [8]; a level
where even the smallest perturbations such as gravitational effects and thermal blackbody
radiation shifts become significant [72]. Consequently, we need clock transitions with very
narrow linewidths and long lifetimes — the clock transition should be a “forbidden” tran-
sition (e.g. the E3 electric octopole transition in Yb+), the upper level should have few
decay channels, and the atom or ion itself should be insensitive to environmental perturba-
tions (e.g. a large electric polarisability will reduce the transition’s sensitivity to blackbody
radiation).

3. High ionic charge, increasing the size of relativistic corrections to the energy levels of the
system, which scales as ∼ α2 causing a large sensitivity q. Generally speaking, we can
expect large ionic charges to increase the spacing between levels, thus making the clock
transition inaccessible to modern lasers [72]. However, the fortuitous level-crossings due
to the convergence between many-body effects and nuclear potential in the HCI systems
explored in Refs. [30, 29, 48] can serve as near-optical clock transitions while maintaining
a high ionic charge.

All of the points above generally pose theoretical challenges when calculating the spectrum of
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the clock system. The most sensitive candidates, such as Yb+ [72], Ir17+ [48], and microwave
transitions between nearly-degenerate states in Dy [87], have open f -shell configurations with
strong configuration mixing, which require huge calculations to even identify the ground- and
clock-state, let alone accurately resolve the entire spectrum (to identify, for example, side-channel
transitions for cooling and trapping). The large cancellations necessary to achieve transitions
with small energies also cause slow numerical convergence, which further increases the size of
the atomic calculations needed to resolve them. Finally, the lifetimes and sensitivity to external
perturbations depend on the electromagnetic multipole transition matrix elements, which require
accurately calculated atomic wavefunctions. In particular, electric polarisabilities, required to
quantify the sensitivity to blackbody radiation shifts, need accurate wavefunctions for large
numbers of bound and continuum states, even if those states are not directly involved in the
proposed experiment (this is also true for experiments using more conventional atomic clocks
with simpler electronic structure such as Sr lattice clocks). This is currently difficult for open-
shell systems and highly-charged ions, further highlighting the need for greater utilisation of
computational resources.

1.4.2 Searches for dark matter and exotic particles

Precision atomic experiments can also be used to search for dark matter and other exotic particles
through their coupling to standard model fields. In this section, I will discuss two types of atomic
experiment which can potentially detect new particles: precision clocks and measurement of
couplings between electrons and nucleons due to interactions with new particles.

The experiments in section 1.4.1 are focused on detecting steady spatial or temporal drift in the
fundamental constants, but are in principle also sensitive to transient effects due to coupling
with dark matter. For example, transient interactions with large, localised topological defects
(TD) can appear as short time-scale variations in the fine-structure constant via frequency shifts
in atomic clocks [88, 89]. These frequency shifts would be observable in networks of atomic
clocks, such as Sr lattice clocks or the network of Cs and Rb clocks in the Global Positioning
System, which have been used in conjunction with astrophysical observations to place limits on
the density and coupling strength of TD dark matter [88, 89].

Similarly, precision atomic clocks are also sensitive to possible interactions with light dark matter
(LDM), which at high enough densities would behave more like a diffuse, oscillating field than as
particles [87, 90]. One class of LDM arises from scalar fields such as the dilaton, which arises in
certain classes of high-energy theories [72]. The dilaton field is expected to interact with atomic
clocks as an oscillation in the apparent value of the fine structure constant over long time-scales
[72], and would therefore be detectable by the experiments outlined in section 1.4.1. Refs. [87, 91]
used two near-degenerate transitions in neutral Dy, the splitting of which is strongly dependent
on α, to set bounds on the electron-dilaton coupling. These bounds could in turn be improved
by more sensitive experiments, such as those in Yb+ [8] or highly-charged ion clocks [23].

An alternative approach in the search for new particles is to probe electron-nucleon couplings
beyond those predicted by the standard model through isotope-shift spectroscopy. Many-electron
atomic structure calculations do not even get close to the 10−18 level of precision reached by the
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most stable atomic clocks; one way around this problem is to use isotope-shift experiments,
which are much less sensitive to experimental uncertainties [73]. Different isotopes of the same
element will have qualitatively similar spectra, but slightly different energies for their electronic
transitions, due to the difference between the nuclear mass (the so-called mass shift) and finite
nuclear size (the field shift) for the isotopes [92].

The chief advantage of this approach is that it relies on measurements which are less sensitive
to systematic uncertainties in electronic structure calculations due to inexact treatments of elec-
tron correlation [73]. The relatively small changes in atomic spectra due to nuclear effects (e.g.
changes in nuclear size and mass in different isotopes of the same element) are difficult to accu-
rately calculate from first principles in many-electron atoms, but the relationship between the
mass- and field-shifts (due to the nuclear mass and nuclear size, respectively) is less dependent
on numerical uncertainties [82, 73, 92].

Isotope shift measurements can place tight bounds on new interactions between electrons and
nucleons, such as those arising from vector-boson LDM fields using conceptually simple atomic
spectroscopy repeated across multiple isotopes of the same element. Analysis of existing data
carried out in Ref. [73] already provided complementary constraints on potential new bosons,
and isotope shift measurements of Yb+ carried out in Ref. [83], while not sensitive enough
to detect new particles, provide a strong foundation for future searches. Furthermore, isotope
shift measurements can serve as sensitive probes of higher-order nuclear properties within the
standard model which would be difficult to directly measure, such as nuclear charge distribution
[93].

Although isotope shift measurements are not directly relevant to the work in this thesis, atomic
structure calculations are still necessary to extract the mass- and field-shift coefficients for the
target isotopes, which in the case of Yb+ is extremely computationally challenging. Consequently,
this class of precision tests for new physics will still benefit from improved atomic structure code.

1.5 Aims and outlines of this thesis

This thesis is a mixture of physics and software engineering. A large chunk of the work in this
thesis was in modernising and optimising the ambit atomic structure code, primarily through
overhauling the parallel elements of the code to take better advantage of modern supercomputing
architecture. This work greatly improved the performance of our atomic structure calculations,
as well as effectively removing limitations on memory usage (by effectively taking advantage of
the huge memory pools in distributed systems); optimisations large enough that none of the
calculations in this thesis would have been feasible without these software optimisations.

The physics component, on the other hand, consists of relativistic calculations of the electronic
structure of several highly-charged ions and superheavy elements. The bulk of this work was
directly motivated by experimental needs, and undertaken alongside regular communication with
experimentalist colleagues.

The chapters in this thesis are organised as follows:
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Chapter 2 gives an overview of computational methods for atomic structure calculations and
describes, in detail, the mathematical basis of the CI+MBPT method used throughout this
thesis. Chapter 3 discusses high-performance computing, the performance issues with the old
version of ambit which necessitated my OpenMP performance optimisations, and provides an
in-depth discussion of these optimisations and their effects on ambit’s overall performance. The
remaining chapters present the results of atomic structure calculations using the new version
of ambit, firstly to benchmark the code’s accuracy in chapter 4, and then to support ongoing
experimental studies in chapters 5, 6 and 7. Chapter 5 discusses calculations of the optical
spectra of the tin highly-charged ions Sn7+ – Sn10+, and chapters 6 and 7 present calculations of
the spectra of the superheavy element lawrencium and its ion (Lr and Lr+) and compares results
with independent calculations using other atomic structure codes.

These calculations show that ambit and the CI+MBPT method achieve top-of-class accuracy
for complex atomic systems, and serve as a powerful tool for cutting-edge atomic structure
calculations. Finally, the conclusion in chapter 8 discusses future improvements for both ambit

and the CI+MBPT method and how they may be used to guide future advances in atomic
physics.
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Chapter Two

Modelling atomic structure: CI+MBPT

2.1 Overview of methods for atomic structure

Disclaimer: The contents of this chapter are adapted from the previously published work in Ref.
[94]. I was lead author on this paper and this review is my original work.

2.1.1 Other codes

The combination of configuration interaction with many-body perturbation-theory (CI+MBPT)
is one of the workhorses of ab initio high-precision atomic structure calculations and is known
to provide highly accurate results for many-electron atoms [95, 96, 49, 97]. Initially developed
by Dzuba, Flambaum and Kozlov [95] to calculate atomic energy spectra, CI+MBPT is also
capable of providing other atomic properties such as electronic transitions data (e.g. electric-
and magnetic-multipole transition matrix elements) [98].

The accuracy of CI+MBPT calculations lies in the ability to partition atomic structure calcula-
tions and take advantage of the complementary strengths of CI and MBPT. The electrons are
partitioned into “core” electrons, which are treated as inert, and valence electrons, which display
the dynamics of interest. CI provides a highly accurate treatment of valence-valence electron
interactions (see, for example [99]), while MBPT treats the core-valence correlations in a compu-
tationally efficient manner [95, 96]. This combination of techniques allows for the treatment of
three [95], four [100, 101] and five [49, 102] valence electrons, with agreements with experimental
spectra and transition matrix elements to better than a few percent.

Despite these advantages, standard implementations, such as the CI+MBPT code of Kozlov et al
[97], still require infeasibly large computational resources for & 4 valence electrons [96]. Addi-
tionally, three-body MBPT corrections must be included to accurately treat systems with many
valence electrons in this formalism [95, 103, 102]. The number of these three-body MBPT dia-
grams grows extremely rapidly with MBPT basis size and can significantly increase computation
time [100, 102], and are not included in Kozlov et al ’s CI+MBPT [97], for example.

Alternatively, pure configuration interaction (without the introduction of MBPT) is a frequently
used approach in atomic structure software packages and is able to treat simple, few-electron
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systems. CI-only software packages include the RELCI package by S. Fritzsche et al [99] (also part
of the GRASP package), and the PATOM code of Bromley and co-workers [104]. Of these packages,
PATOM is only capable of calculating the spectra of one- and two-valence electron atoms, while
RELCI only supports restricted calculations for more than two valence electrons [99].

Another common method is multiconfigurational Dirac-Fock (MCDF), as implemented in the
GRASP series of relativistic atomic structure packages [105, 106], the MCDF code of Desclaux
[107] and the Jena Atomic Calculator (JAC) [108]. The Flexible Atomic Code (FAC) software
[109] has a similar rationale, calculating atomic spectra using Dirac-Fock and CI optimised for
each configurations, which can also be combined with MBPT corrections [110, 3]. FAC accurately
calculates continuum processes and is commonly used for modelling plasma dynamics such as
electron-impact ionization, excitation, and recombination processes.

Although pure CI and MCDF can provide a high degree of accuracy for atoms with few valence
electrons atoms, the number of many-electron configurations increases exponentially with the
number of electrons [111], making a direct solution with these techniques computationally in-
feasible for systems with & 4 valence electrons [96, 97]. The size of CI+MBPT calculations is
typically reduced by partitioning the electrons into core electrons, which are typically treated
with a self-consistent field method such as Dirac-Fock, and “valence” electrons which are directly
included in the CI or MCDF procedure. While the partitioning reduces the computational bot-
tleneck from the total number of electrons to the number of valence electrons, it is still infeasible
to treat core-valence correlations without the introduction of MBPT [96, 95]. Calculations by
Kozlov, et al [97] suggest that CI+MBPT provides approximately an order-of-magnitude greater
accuracy than pure CI due to the ability to treat core-valence interactions without dramatically
increasing the size of the CI problem.

Our atomic structure code, ambit, has several advantages over existing CI+MBPT software.
First, we implement three-body MBPT corrections, providing a significant increase in accuracy
for many-electron systems. Second, we can undertake the CI+MBPT procedure in either the
electron-only (as in most CI/CI+MBPT packages), or in the particle-hole formalism as presented
in [96]. This allows us to form open-shell (i.e. partially-filled) configurations from either all
electrons or the corresponding number of positively charged “holes” in an otherwise filled shell.
For example, the electron-only configuration 5d96s with the Fermi level below the 5d shell is
equivalent to the particle-hole configuration 5d−16s where the 5d shell is included in the core.
The electron-only and particle-hole approaches are formally equivalent at the CI level, but the
particle-hole formalism can provide significantly more accurate MBPT corrections by reducing
the contribution of so-called “subtraction diagrams” [100, 112], which can seriously degrade the
accuracy of open-shell calculations.

In addition to the standard core-valence MBPT corrections, we can also use MBPT to treat
high-lying valence-valence correlations [96]. Valence-valence MBPT can significantly reduce the
size of the CI problem, especially for systems where the core and valence electrons are separated
by a relatively large energy gap (such as highly-charged ions). Additionally, we have developed a
new addition to the standard CI+MBPT procedure, which we refer to as emu CI. This technique
allows for a significant reduction in the computational size of a CI+MBPT problem without
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significant reductions in accuracy [113] and is discussed further in section 2.2.4 and chapter 3.

2.2 CI+MBPT Theory

Our CI+MBPT calculations consist of three conceptual stages. First, we treat the relatively
inert core electrons using the Dirac-Fock (DF) method, the relativistic generalisation of the
Hartree-Fock self-consistent field method. Second, we treat the valence electrons and holes with
configuration interaction using a set of many-electron basis-functions built from single-electron
B-spline orbitals. Finally, the effects of core-valence correlations and virtual core-excitations are
included via many-body perturbation theory by modifying the matrix elements used in the CI
problem.

The full details of this process have been extensively discussed elsewhere (see, for example [95, 96,
100, 49, 114, 113]), so we will only present details relevant to our implementation of CI+MBPT.
All calculations and formulae in this section are presented in atomic units (~ = e = me = 1).

2.2.1 Single particle basis

First, we perform a Dirac-Fock calculation, typically in the V N , V N−1 or V N−M approximations,
where N is the number of electrons and M is the number of valence electrons. That is to say,
we include either all N electrons of the ion, or some subset of them in the Dirac-Fock proce-
dure. The choice of potential has significant consequences for the convergence of the calculation,
with a V N potential producing “spectroscopic” core orbitals, which are optimised for a partic-
ular configuration, while the V N−M potential (i.e. only including a subset of electrons in DF)
potentially provides a better basis for the convergence of MBPT, by avoiding large contributions
from so-called “subtraction diagrams” [112], which are discussed further below.

In either choice of potential, the resulting one-electron Dirac-Fock operator is (see, e.g. [114]):

hDF = cα · p + (β − 1)c2 − Z

r
+ V NDF (2.1)

where α and β are Dirac matrices. We write the wavefunction as

ψ(r) =
1

r

(
fnκ(r) Ωκ,m(r̂)

ignκ(r) Ω−κ,m(r̂)

)
(2.2)

where κ = (−1)j+l+1/2(j+1/2) and Ωκ,m are the usual spherical spinors. The eigenvalue equation
hDF ψi = εiψi can be written in the form of coupled ODEs:

dfi
dr

= −κ
r fi(r) + 1

c

(
εi + Z

r − V
NDF + 2c2

)
gi(r) (2.3)

dgi
dr

= −1
c

(
εi + Z

r − V
NDF

)
fi(r) + κ

r gi(r) (2.4)

for each orbital ψi. Numerical methods for solving these equations may be found in [114]. The
resulting wavefunctions are used for orbitals in the Dirac-Fock core, as well as valence orbitals
included in V NDF potential, while other basis orbitals are constructed using B-splines as described
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below.

At this stage, we may modify the Dirac-Fock operator to incorporate the effects of finite nuclear
size [103], nuclear mass-shift [100, 102], and the Breit interaction (including both Gaunt and
retardation terms in the frequency-independent limit) [114]:

Bij = − 1

2rij

(
αi ·αj + (αi · rij) (αj · rij) /r2ij

)
(2.5)

We may also include Lamb shift corrections, which are calculated via the radiative potential
method originally developed by Flambaum and Ginges [66]. The more recent formulation em-
ployed in this code includes the self-energy [67] and vacuum polarisation [68] corrections, collec-
tively referred to in this paper as the QED corrections. These corrections are propagated through
the rest of the calculation via modification of the MBPT and radial CI (Slater) integrals, or the
residual two-electron Coulomb operator in the case of the Breit interaction.

We construct the remaining valence and virtual orbitals (pseudostates) as a linear combination of
B-spline basis functions. B-splines are piecewise polynomials defined on a lattice of “knot-points”,
which accurately approximate the single-particle wavefunctions using fewer functions and with
fewer cancellation issues than some analytic approximations such as Slater- or Gaussian-type
spinors [115]. B-splines have proven to be an effective choice of basis function for the calculation of
atomic properties which are sensitive to both relativistic corrections and nuclear effects, including
parity violation [116, 117, 118], polarisability and tune-out wavelengths [119, 120], and relativistic
effects in heavy ions [121].

We expand the large and small radial components, fnκ(r) and gnκ(r) of the virtual orbitals as
linear combinations of two sets of B-splines {li} and {si}:

fnκ(r) =
∑
i

pili(r)

gnκ(r) =
∑
i

pisi(r) (2.6)

Each component of the wavefunction has the same set of expansion coefficients, which are ob-
tained variationally by solving the generalised eigenvalue problem [115, 116]:

Ap = εSp (2.7)

where Aij = 〈i|hDF |j〉 is the matrix representation of the Dirac-Fock operator in the B-spline

basis, Sij = 〈i|j〉 is the overlap matrix, |i〉 =

(
li(r)

si(r)

)
are the B-spline basis functions, and ε is

the single-particle energy of the virtual orbital.

There is some freedom when choosing the exact form of the sets {l} and {s}, as well as the
boundary conditions of the resulting B-spline basis functions. By default, ambit uses the Dual
Kinetic-Balance (DKB) splines developed in Ref. [116] due to their superior accuracy for atomic
properties at small distances from the nucleus and robustness against the effects of so-called
“spurious states”. However, alternative approaches can also be used, which in the terminology of
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ambit are called “Notre Dame” [115] and “Vanderbilt” [122] splines. The resulting basis set is
then ordered by energy and used for both CI and MBPT procedures.

2.2.2 CI Basis

The one-particle basis functions are then used to construct a set of many-particle “projections”,
which are (properly anti-symmetrised) configurations with definite angular momentum projection
mj for every electron or hole. ambit’s representation of projections is tightly coupled to their
corresponding relativistic configurations — combinations of single-particle orbitals which also
specify total angular momentum for each constituent orbital (e.g. 1s2 2s1/2 2p3/2).

projections corresponding to a particular relativistic configuration are represented as arrays of
2mj angular momentum projections (which are always integer valued) of the orbitals in the
configuration.

All projections corresponding to a relativistic configuration in the CI-space form a basis from
which to build many particle Configuration State Functions (CSFs) {|I〉}. CSFs are eigenfunc-
tions of the Ĵ2 and Ĵz operators and are formed as a linear combination of projections:

|I〉 =
∑
n

cn |projn〉 . (2.8)

We create |I〉 within the stretched state MJ = J , therefore only projections with
∑
mj = J are

included in the expansion. The coefficients {cn} are determined variationally by diagonalising
the Ĵ2 operator in the projection basis:

Ĵ2 |I〉 = J(J + 1) |I〉 (2.9)

The projections and CSF expansion coefficients for each configuration with the same number
of electrons, Jπ symmetry and projection MJ are stored to disk. This allows the initial cost
of diagonalising the Ĵ2 operator to be amortised across all calculations with the same angular
components, dramatically reducing the overall computational cost.

The CI-space of CSFs are formed by taking electron excitations from a set of “leading config-
urations” (reference configurations) that are also used to determine which three-body MBPT
diagrams to include. Leading configurations can contain any number of valence electrons and
holes – the only limit is the computational resources available when running the software. We
construct CI configurations and CSFs by taking excitations from these leading configurations
up to some maximum principal quantum number, n, and orbital angular momentum, l. These
limits are represented in the software and throughout the rest of this paper using a shorthand
representation of called a “basis string”. For example, we can specify orbitals with 0 ≤ l ≤ 3

and n ≤ 10 for each partial wave via the string 10spdf, or s- and p-orbitals with n ≤ 10 and
d-orbitals with n ≤ 7 with the string 10sp7d.

ambit can construct CSFs to use in CI calculations with an arbitrary number of electron exci-
tations, but finite computational resources usually limit the CI basis to single- (often referred
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to as CIS) or single- and double-excitations (CISD). However, important triple or quadruple
excitations should also be included. The CSFs can also include valence-holes in otherwise filled
shells, which can lie between the Fermi level of the system and some minimum n and l, the latter
of which is referred to as the “frozen core”.

The atomic level wavefunctions Ψ for a given total angular momentum and parity Jπ are then
constructed as a linear combination of CSFs |I〉:

Ψ =
∑
I∈P

CI |I〉 (2.10)

where P is the subspace of configurations included in CI and the coefficients CI are obtained
from the matrix eigenvalue problem of the CI Hamiltonian:∑

J

HIJCJ = ECI (2.11)

In the particle-hole formalism, the CI Hamiltonian is [96]:

Ĥ =
∑
i

cα · p + (β − 1)c2 +
Zei
ri
− eiV Ncore +

∑
i<j

eiej
|ri − rj |

(2.12)

where ei = −1 for valence electron states and +1 for holes. It is important to note that the one-
body potential V Ncore in the CI Hamiltonian only includes contributions from the core electrons,
since valence-valence correlations are included directly via the two-body Coulomb operator.

The Hamiltonian matrix elements depend not only on the angular (CSF) components, but also
on the two-body radial Slater-Coulomb integrals:

R(ab, cd) (where a, b, c, d are single-particle orbitals derived from either the DF or B-Spline parts
of the calculation), which is the multipole expansion of the corresponding Coulomb integral.

Each Slater integral Rk(ab, cd) (where k is the order of the multipole moment) appears in multiple
Hamiltonian matrix elements, so to remove redundant computational work, we calculate all valid
Slater integrals once at the start of the calculation and re-use their values throughout the rest
of the CI+MBPT process.

As a further optimisation, we first calculate the Hartree-Y operator (sometimes called the Hartree
screening operator) for the orbitals b and d, which is defined as:

Y k
bd(r) =

∫
rk<

rk+1
>

ψ†c(r
′)ψd(r

′)dr′ · ξ(k + Jb + Jd) ·∆(k, Jb, Jd) (2.13)

Where ξ and ∆ ensure the correct angular momentum conditions |Jb − Jd| ≤ k ≤ Jb + Jd and
ξ(n) = (1 + (−1)n)/2. The Hartree Y operator is defined such that:
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Rk(ab, cd) = 〈a|Y k
bd |c〉 (2.14)

So by calculating the Hartree-Y operator and then iterating over pairs of orbitals we only calculate
components which are shared between integrals once, further reducing redundant work.

2.2.3 CI+MBPT

The size of the CI matrix grows extremely rapidly as additional orbitals are included, so it is
computationally infeasible to include core-valence correlations or core excitations directly in the
CI procedure. Instead, we treat these interactions as a small perturbation and include their
contributions to the total energy in second-order MBPT by modifying the CI matrix elements
[95, 100]. The final matrix eigenvalue problem is then:

∑
J∈P

HIJ +
∑
M∈Q

〈I| Ĥ |M〉 〈M | Ĥ |J〉
E − EM

CJ = ECI (2.15)

where the subspace Q includes all orbitals not in the CI procedure and is complementary to P .
For computational efficiency, we do not directly modify the CI matrix elements as suggested by
equation (2.15), due to the large number of configurations in Q. Instead, we modify the radial
integrals via the Slater-Condon rules for calculating matrix elements (see ref [123] for a formal
discussion of this process).

The subspaceQ is formally infinite, but we only include corrections from a finite, truncated subset
of orbitals in MBPT. In ambit, the P and Q subspaces are divided at the level of orbitals. The
CI space P includes any configuration with all single-particle orbitals drawn from the valence
basis or holes outside the frozen core; these in turn are defined by two basis strings. Similarly,
the MBPT space Q is bounded by a separate orbital limit, also expressed as a basis string (e.g.
30spdfg for all orbitals with n ≤ 30 and l ≤ 4).

Consequently, an excitation is only included in MBPT if at least one of the orbitals involved are
not included in the CI space P . This prevents double-counting of configurations and ensures
that diagrams are independent of the number of electron- and hole-excitations in CI.

The number of terms in the MBPT corrections grows rapidly but the diagrammatic technique [95]
greatly simplifies the calculation of these terms. In this formalism, each contribution to the
MBPT expansion is represented by a Goldstone diagram, with the number of external lines
corresponding to the number of valence electrons included in the interaction [100]. Figure 2.1
shows an example of a one-body MBPT diagram describing the self-energy correction arising
from core-valence interactions (left) and a subtraction diagram involving an interaction with
an external field (right) [100]. These subtraction diagrams enter the MBPT expansions with a
negative sign and increase in magnitude with V Ncore − V NDF [112]. Explicit formulas for one-
and two-body core-valence diagrams implemented in ambit can be found in Ref. [100].

Subtraction diagrams are partially cancelled out by some two- and three-body diagrams in the

23



Modelling atomic structure: CI+MBPT

MBPT expansion [102], necessitating the systematic inclusion of all one-, two- and three-body
MBPT diagrams in the CI+MBPT procedure to ensure accurate spectra. Even given this cancel-
lation, subtraction diagrams can grow large enough to be non-perturbative in open-shell systems,
which can significantly impact the accuracy of the resulting spectra [102]. Consequently, there is
a tradeoff between the more “spectroscopic” orbitals produced by calculations in a V N potential
and potentially large subtraction diagrams when V NDF 6= V Ncore ; the optimal choice will depend
on the specifics of the target system. This is not a hard constraint though – the formulation of
MBPT used in ambit can, in principle, treat systems with any number of valence electrons or
holes subject to available computational resources.

An additional complexity is that the energy denominators of (2.15) include the energy eigenvalue
E in the Brillouin-Wigner perturbation theory formalism. In practice we approximate the energy
denominators using the valence orbital energies [100]. See Refs. [95, 123] for further discussion of
this subtle point. Finally, the diagrammatic technique allows us to eliminate terms corresponding
to unlinked diagrams, as they represent valence electron interactions not included in MBPT [95].
This greatly reduces the computational expense of including MBPT corrections.

In addition to the standard core-valence MBPT, ambit can also include MBPT corrections
to valence-valence integrals, as introduced in [96]. In this approach, the MBPT expansion in
equation (2.15) includes additional diagrams representing correlations between highly-excited
valence states (i.e. outside the upper-bounds of the CI-space P ), as shown in figure 2.2.

Valence-valence MBPT is significantly computationally cheaper than including the orbitals di-
rectly in the full CI subspace. However, as with all MBPT techniques, care must be taken
to ensure that there are no non-perturbative diagrams in the MBPT expansion. Specifically,
including orbitals which are far from spectroscopic (such as orbitals with high orbital angular
momentum) or orbitals which are close in energy to those in P can produce non-perturbative
diagrams with small energy-denominators. These diagrams can significantly reduce the accuracy
of CI+MBPT calculations and are easy to inadvertently include in the MBPT expansion, so this
approach should only be used with a carefully constructed MBPT subspace Q.

The energies for each calculated eigenstate are presented by ambit in ascending order of energy,
grouped by total angular momentum J and parity π. The solutions also contain the CI expansion
coefficients and Landé g-factors, to aid in identifying levels. It is important to note that the
absolute energies do not represent ionisation energies or any other physically meaningful quantity:
the atom is effectively in a box due to the finite extent of the basis orbitals. Rather only the
relative energies of the eigenstates (and the resulting atomic spectrum) represent physically
meaningful quantities.

Finally, the resulting CI+MBPT wavefunctions are used to calculate transition matrix elements
for electric and magnetic multipole operators, which we refer to as “external field” operators, as
well as hyperfine dipole and quadrupole operators. ambit can calculate either reduced matrix
elements T :

Tif = 〈f | Ô |i〉 (2.16)
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Figure 2.1: Some Goldstone diagrams representing a one-body core-valence correlation (left) and
one-body subtraction diagram (right). Lines running left to right represent electrons, while lines
running right to left are holes. |a〉 and |b〉 are valence orbitals, |α〉 and |β〉 are virtual, and |n〉
is a hole in the core [100].

Figure 2.2: Two-body valence-valence diagram (left) and valence-valence subtraction diagram
(right). External lines a, b, c, d correspond to valence or hole orbitals in the CI subspace P , while
the interior lines α and β are virtual electron orbitals, at least one of which must not be valence
for the intermediate state to be in Q [96].

25



Modelling atomic structure: CI+MBPT

for some operator Ô, initial state |i〉 and final state |f〉, or line-strengths:

Sif = |Tif |2 (2.17)

Transition matrix element calculations may additionally include frequency-dependent random-
phase approximation (RPA) corrections [124, 125, 126]; detailed equations implemented in ambit

are presented in Ref. [127].

2.2.4 Emu CI

The CI method outlined in section 2.2 relies on constructing and diagonalising the Hamiltonian
matrix over a set of many-electron CSFs. The number of CSFs, and consequently the size of the
CI matrix, scales exponentially with the number of electrons included in the CI problem subspace,
resulting in prohibitively large CI matrices for systems with more than three valence electrons.
Additionally, CI is slowly converging even for relatively simple systems with few valence electrons
[128], making saturation in open-shell systems infeasible with current computational methods.

ambit implements an approach that greatly reduces the computational difficulties associated
with CI, which we refer to as emu CI [113] (as the structure of the resulting CI matrix resembles
an emu’s footprint). This approach is especially well-suited to the common case where we are
only interested in calculating a few of the lowest-lying energy levels and allows for the use of
significantly larger CI basis sizes than would otherwise be possible. A schematic representation
of this approach is shown in figure 2.3.

Emu CI relies on the fact that the CI expansion (2.10) is dominated by relatively few large
contributions from off-diagonal CI matrix elements. Other CSFs contribute less strongly, and so
interactions between these may be neglected. The shaded region of the matrix shown in figure
2.3 is formed as the Cartesian product of the NCI CSFs in the CI-space P , which we refer to
as the “large side” of the matrix, and a smaller set of Nsmall < NCI CSFs, which we refer to as
the “small side” of the matrix. The small side contains a subset of the NCI CSFs that make the
largest contribution to the CI expansion. Perturbation theory estimates performed in [129] show
that the remaining off-diagonal terms, shown in white, produce a negligible contribution for the
small number of states of interest, and can be set to zero without serious loss of accuracy.

The small-side CSFs are formed by allowing electron and/or hole-excitations from a set of leading
configurations (which is not necessarily the same as used when forming the main CI-space) up
to some maximum principal quantum number n and orbital angular momentum l. This limit is
specified using the same format of basis string used when forming the main CI-space. Finally,
the small-side can include an arbitrary number of electron- and hole-excitations (which also do
not have to be the same as in the main CI-space). For example, we may want to incorporate
contributions from triple-excitation configurations by include single- and double-excitations in
Nsmall, and single- double- and triple-excitations in NCI, since including triples in the full CI
procedure would require prohibitively large matrix sizes. The specifics need to be considered on
a case-by-case basis and are provided in full for each calculation in this thesis.

We can then construct the CI matrix such that the significant off-diagonal terms are grouped
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together in a block, producing the structure shown in figure 2.3. These elements are further
sorted such that the configurations with the largest number of corresponding projections appear
first in the matrix to provide better performance when constructing and diagonalising the matrix
in parallel.

Emu CI is conceptually similar to the approach described in Ref. [129]. The key difference is that
the CIPT approach in Ref. [129] (now referred to as Fast CI or FCI [130]) treats contributions
from matrix elements with one high-lying configuration via perturbation theory, rather than
constructing the full matrix. A similar method of limiting the CI matrix to only the largest
contributions has also been implemented in the GRASP software [106], but uses preliminary, first-
order calculations to limit the final CI matrix to only include contributions from CSFs with
approximate mixing coefficients larger than a specified cutoff threshold. Emu CI differs from the
existing approaches by the structure of the matrix and the procedure used to construct it.

The dramatically reduced number of non-zero elements in the emu CI matrix compared to
standard CI significantly reduces the computational resources required to obtain accurate atomic
spectra. Recent calculations of the spectra of neutral tantalum and dubnium [113] shows that
emu CI is capable of producing highly accurate atomic spectra for five-electron systems despite
its relatively small resource usage. Spectra from these calculations were within ∼ 1 − 10% of
experimental values, and convergence tests showed that the CI expansion was close to saturation.
Similarly, applying this technique to the Cr+ calculations presented in this paper reduces the
number of non-zero elements in the effective CI by a large factor. Even larger reductions in
matrix size were used in [113]. The full matrices would be far to large to store in memory,
even on modern high-performance computing clusters. Emu CI, combined with modern parallel
programming techniques enables the use of extremely large CI bases, even for challenging open-
shell systems with strong correlations.
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Figure 2.3: Structure of the CI matrix under the emu CI approximation. The NCI × Nsmall

nonzero off-diagonal terms are shaded in light grey, diagonal terms are represented by the black
line, terms neglected in the approximation are shown in white.
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Chapter Three

High-performance computing—OpenMP

3.1 Glossary

Definitions of terms used in this chapter:

1. Cluster : a computer system consisting of multiple smaller, tightly interlinked computers,
which are capable coordinating to carry out large, computationally intensive calculations
in parallel. Often referred to as a supercomputer

2. Core: The basic unit of computational resources on clusters. Performs arithmetic, logic
and generally executes the instructions in a program. Sometimes colloquially referred to
as a processor or CPU.

3. Socket : a grouping of cores, generally sharing some kind of fast cache memory and/or
connection (bus) to main memory. Sometimes referred to as a processor, CPU or package.

4. Node: a singular, self-contained computer, many instances of which are interlinked to form
a cluster. Nodes contain one or more sockets, can only communicate with one another via
message-passing and all sockets and cores in a node draw from a common pool of resources
(memory, disk access, networking, etc.).

5. MPI : Short forMessage Passing Interface. A software library facilitating parallelism across
multiple, potentially heterogeneous computational resources such as nodes on a cluster or
cores on a socket.

6. OpenMP : software library facilitating shared-memory parallelism (e.g. within a single
server or computer) by using threads.

7. Process: basic unit of parallelism employed by MPI (and operating systems, more generally)
Processes operate as independent, persistent instances of a given program and do not share
resources.

8. Thread : basic unit of parallelism employed by OpenMP. By default, OpenMP threads
share resources such as memory address space.
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9. Mapping : scheme by which MPI processes are distributed among computational resources.
Processes can be mapped to either cores, sockets or nodes.

10. Binding : used interchangeably with mapping.

11. Affinity : scheme by which OpenMP threads are assigned to cores on a node.

12. Lock : programming construct which synchronises access to some shared resource, such as
a shared variable or file. Locks are used in OpenMP to ensure threads do not attempt
to modify a resource at the same time, which would cause undefined behaviour and bugs.
OpenMP has explicit locks, as well as the closely related critical section, which ensures a
section of code is only executed by one thread at a time.

13. Mutex : short for MUTual EXclusion, synonymous with lock.

14. Memory address space: the range of discrete memory addresses available to a process or
thread. Modern operating systems use virtual memory, which abstracts away the hardware
implementation details to give processes the illusion of a large, contiguous memory address
space.

15. API : short for Application Programming Interface. The set of conventions, abstractions
and methods specifying how multiple software applications may interact. This is commonly
used to describe the set of function calls and data types exposed by a library to allow its
use by external software programs.

3.2 Introduction

CI+MBPT is a standard workhorse of computational atomic structure physics, and, as discussed
in chapter 2 is an effective technique for complex, open-shell atomic systems. However, the com-
putational resources required by CI+MBPT grow extremely rapidly with the number of atomic
electrons, and especially valence electrons. For example, the number of possible configuration
state functions (CSFs) which can be formed from valence electrons grows exponentially with the
number of valence electrons and holes in the atomic system. This is especially problematic in
open-shell systems such as certain superheavy elements, as well as those used in precision tests
for new physics. Accurate calculations often require terabytes of memory and hundreds of CPU
hours to complete.

For example, in chapter 4 we present large-scale calculations of the spectra of Ta and Db presented
in ref [113]. These calculations were the first to saturate the CI basis for Ta (Z = 73) and Db
(Z = 105), both of which have five valence electrons, and agree with experimental values at the
level of 1-10%. In order to reach saturation of the CI basis for Ta, we required matrices up to
952112 × 20462 elements (for J = 5/2, Π = odd) and has a peak memory usage of ∼ 240GB.
This calculation is too large to fit within the memory of a single compute node on Gadi (the
National Computational Infrastructure’s high-performance computing cluster), and thus requires
parallelism that scales across multiple nodes. The calculations for Db required similar matrix
sizes.
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In order to produce a clean set of comparisons between methods of parallelism, I’ll be using a
smaller version of the Db calculation in [113] which I have tailored to fit within a single node on
Gadi. The input file for this calculation is shown in listing 1. The calculation produces the five
lowest energy solutions with odd parity and J = 5/2, using a CI basis which includes single- and
double-electron excitations up to 19spdf on the large side of the emu CI matrix, and single- and
double-excitations up to 9spd on the small side. It also calculates the Landeé g-factors and M1
transition matrix elements for all combination of atomic eigenstates.

The largest CI matrix from this example calculation has 731868×11783 elements, and (under the
current OpenMP+MPI branch of ambit) the calculation requires 125GB of memory — enough
to fit on a single Gadi compute node. Furthermore, the Db calculation requires a walltime of
approximately 30min when distributed across 48 cores with OpenMP, but has a CPU time of
25hr 04min, where CPU time is defined as TCPU = Twall ×Avg.CPU utilisation.

The CPU time can serve as a rough estimate of the length of time required to run the code on one
core (in serial); so a serial calculation of Db of the same size as in Ref. [113] would require more
than a day to complete. Run-times on the order of days are clearly undesirable when attempting
to prototype calculations or produce rapid turnaround of results, such as when collaborating on
currently active experiments.

Modern high-performance computing clusters can easily meet memory and compute requirements
demanded by open-shell calculations, but codes must be efficiently parallelised to make use of
them. The exponential increase in CPU clock frequencies which defined much of computing in the
20th century (encapsulated by the well-known Moore’s Law) stalled over a decade ago [131] and
almost all recent increases in computational power have derived from increasingly sophisticated
(and complicated) parallelism, both in individual CPUs and in computing systems more broadly.

For example, a single core on an HPC cluster such as the National Computational Infrastructure’s
(NCI’s) Gadi [132] is not much more powerful than a consumer-grade PC; rather, the power of
HPC systems lies in the ability to link hundreds or thousands of nodes (each with multiple cores)
together and distribute the computational workload by running software in parallel. Such large-
scale parallelism is difficult to achieve, and requires considerable domain-specific programming
knowledge to fully exploit modern HPC resources. Consequently, accurate simulation of the
properties of next-generation experiments and applications in atomic physics may not be feasible
without effective use of parallelism.

ambit originally employed some degree of parallelism via the Message Passing Interface (MPI)
library and runtime for multiprocessing. While MPI provides excellent inter-node scaling, it was
not sufficient to fully utilise the large numbers of compute cores present within modern compute
nodes. With that in mind, this thesis presents a description of the process and rationale for
overhauling ambit to employ a hybrid method of parallelism, consisting of MPI for inter-node
parallelism and OpenMP for intra-node parallelism.

In this chapter, I will first outline why the MPI-only method of parallelism was insufficient to
meet the computational needs of this thesis. Then, I will detail the changes and work required
to implement the hybrid MPI+OpenMP parallelism, and finish with a quantitative investigation
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1 ID=DbI
2 Z = 105
3

4 NuclearRadius =9.5
5

6 [Lattice]
7 NumPoints =1000.
8 StartPoint =1.e-6
9 EndPoint =50.

10

11 [HF]
12 N = 104
13 Configuration =’1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5

d10 6s2 6p6 5f14: 6d3 7s1’
14

15 [Basis]
16 --bspline -basis
17 ValenceBasis =19 spdf
18

19 [CI]
20 LeadingConfigurations =’6d3 7s2, 6d4 7s1, 6d3 7s1 7p1, 6d5, 6d2 7s2

7p1’
21 ElectronExcitations =2
22 OddParityTwoJ=’5’
23 NumSolutions =5
24

25 [CI/SmallSide]
26 LeadingConfigurations =’6d3 7s2, 6d4 7s1, 6d3 7s1 7p1, 6d5, 6d2 7s2

7p1’
27 ElectronExcitations =’1, 9spd , 2, 9spd ’
28

29 [MBPT]
30 Basis =30 spdfgh
31

32 [Transitions]
33 M1/AllBelow =0.0

Listing 1: AMBiT input file used to generate Db emu CI spectra while profiling with Arm Forge.
The calculation produces the five lowest energy solutions with odd parity and J = 5/2, using a
CI basis which includes single- and double-electron excitations up to 19spdf on the large side of
the emu CI matrix, and single- and double-excitations up to 9spd on the small side.
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into the performance and parallel scaling of the new version of ambit.

3.3 Why do we need OpenMP?

At the start of this project, the ambit software had been under continuous development by
Berengut et al at UNSW since 2005, and was a relatively mature codebase with some degree
of parallelism via MPI, which is a library that allows HPC code (C, C++ or Fortran) to be
run as a series of independent, loosely linked processes, which can be spread across multiple
nodes of a cluster. MPI implements the message passing model of parallelism: the program
is parallelised by distributing the workload between processes which duplicate the program’s
executable code, and explicitly communicate by sending each other chunks of data to collect and
synchronise results between processes. This communication takes place via network interconnect
for processes located on separate nodes, or through manipulating some shared memory location
for processes on the same node. However, even though multiple MPI processes may run on a
single node/machine, processes still have independent virtual address spaces and views of the
system’s resources (as opposed to the multithreading model, where all threads have access to the
same address space by default). This means that even though processes on a single node share
the same physical memory, processes running on the same node must still explicitly pass around
data to communicate, and shared data must be duplicated between all processes which require
it.

The duplication of shared resources between processes presents serious limitations on the ex-
tent of parallelism available to ambit when running with a pure-MPI approach. In a typical
CI+MBPT calculation, the CI matrix is distributed between MPI processes, with each process
only generating and operating on a few “chunks” of the matrix. However, the orbitals, one- and
two-body MBPT integrals, Slater (Coulomb) integrals, and angular momentum data are required
when generating the CI matrix elements, so must be duplicated in full between MPI processes.
This imposes significant memory overhead when running with a large numbers of MPI processes
on a single node.

These memory characteristics are problematic, as it sometimes necessitates deliberately under-
utilising a node by requesting less than its full complement of cores in order to avoid exhausting
the available memory. This results in wasted computational resources and sub-optimal run-times
for calculations.

The duplication of memory is especially pronounced on newer compute nodes, such as the nodes
on Gadi, which contain 48 cores and 190GB of memory per node. As a specific example, the input
file in listing 1 for CI+MBPT calculations of Db results in a CI matrix with 952112× 11783 =

1.1218735696× 1010 matrix elements, which, assuming 8 bytes per element for double-precision
floating point numbers, should take at least:

952112× 11783 doubles× 8 bytes/double ≈ 90GB (3.1)
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The memory estimate in equation 3.1 is a lower-bound to the true memory usage, since it only
considers the memory consumed by the CI matrix and ignores the orbitals, two-body Slater and
MBPT integrals and angular momentum data (among other objects). It does, however, demon-
strate that the CI matrix (which is approximately evenly distributed between MPI processes) is
not sufficient by itself to exhaust the 190GB of memory on the Gadi nodes. This means that
any memory exhaustion issues must come from the objects which are duplicated between MPI
processes.

This calculation barely fits in memory when using 4 MPI processes, but increasing the number of
processes beyond this exhausts the 190GB memory on the node. In fact going to the full 48 MPI
processes blows up the memory usage to ∼ 900GB, meaning that it is only possible fully utilise
the CPUs on special-purpose, large memory nodes, which are usually expensive and limited in
number.

OpenMP can provide a solution to this problem by allowing all threads within a process to share
the same memory address space. OpenMP is an API specification for shared-memory parallelism,
which consists of a set of library functions and compiler directives [133]. OpenMP is essentially
a high-level abstraction on top of standard, operating-system threading tools (such as UNIX
pthreads) to distribute parallel workloads between multiple threads of execution within a node.
In the hybrid MPI+OpenMP mode I have implemented in ambit, each MPI process spawns
multiple threads, with all threads belonging to the same process sharing a virtual memory address
space, and thus variables and data. This shared-memory behaviour is key to the performance
gains I have realised by adding OpenMP to ambit. By scheduling fewer MPI processes per
node and using multithreading to parallelise across a node’s cores, the shared components of the
calculation only need to be stored once per node (or per socket, depending on the binding), thus
significantly reducing the wasted memory.

The dubnium calculation runs to completion when using all 48 cores with OpenMP, with a max-
imum memory usage of 125GB. Clearly, overhauling the ambit to use OpenMP has dramatically
increased the size of atomic calculations we can carry out, as the OpenMP version is able to em-
ploy 12× as many cores, with a corresponding reduction in walltime. Furthermore, the memory
usage is almost independent of the number of OpenMP threads used by the calculation. This
allows for ambit calculations to efficiently utilise all the compute power available on a compute
node, while still maintaining the multi-node scalability afforded by MPI.

Good parallel algorithm design requires a detailed knowledge of the hardware on which the code
will be running. Before I describe the process of parallelising and optimising ambit, I will present
a brief overview of the hardware architecture of modern HPC systems, as relates to the work in
this thesis.

3.4 A primer on computer architecture

Rather than consisting of a single, very fast computer, modern supercomputers are almost always
organised as clusters — huge arrays of interlinked, often off-the-shelf servers which derive their
computing power from the ability to execute massively parallel workloads by splitting the work-
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load up between computational resources and having those resources communicate the results to
one another. This section will focus on the high-level, conceptual details of cluster architecture;
more technical points can be found in the footnotes, although the low-level details will differ
between individual clusters. A comprehensive treatment of computer architectures can be found
in Ref. [131].

Conceptually, the computing resources of a cluster are organised into a hierarchy of cores, sockets
and nodes, in order of increasingly coarse grain. A schematic example of this architecture is shown
in 3.1 — a simple model of a cluster which has two nodes, with two sockets per node and four
CPUs per socket. I will use this simplified cluster to illustrate different methods of parallelism
throughout the rest of this section.

At the lowest level are cores, or processors (although somewhat confusingly, this latter termi-
nology can also be used to refer to sockets), which for the purposes of this thesis are essentially
chips that can do basic arithmetic, manage branching logic, and store and retrieve values in mem-
ory. Cores are the basic unit of computing resources and are what actually executes computer
programs.

Processor architectures have become increasingly complex as a result of efforts to increase the
performance of serial software in spite of stalled growth in clock-speed and transistor density. In
order to preserve the illusion of purely serial execution (an assumption which is baked into the
design of programming languages such as C), compute cores dedicate considerable resources to
exploiting so-called instruction-level parallelism (ILP). ILP relies on the fact that independent
CPU instructions (i.e. instructions which use different parts of a core and do not depend on each
other’s result) can often be re-ordered or issued in parallel to increase instruction throughput
without changing the semantics of the program. Aggressively exploiting ILP can result in signif-
icant speedups (even for inherently sequential code), but requires special effort from application
developers to maximise performance, as the re-ordering of instructions happens at the hardware
level and is often deliberately opaque (again, to preserve the illusion that programs are executed
purely sequentially).

Another area of hidden complexity is memory accesses. Accessing the main memory of a com-
puter (often generically referred to as RAM) is extremely slow compared to CPU arithmetic and
branching operations, so modern computer architectures attempt to reduce the average latency
by caching memory accesses. Memory caching relies on the principle of locality of reference,
which takes two chief forms 1:

1. Temporal locality: if a memory address is accessed, it is likely to be accessed again in the
near future (for example, the counter variable in a loop or a frequently read array). To
optimise for temporal locality, the contents of memory locations are stored in small, fast
caches close to CPU cores when accessed, thus speeding up future accesses.

2. Spatial locality: if a memory address is accessed, the addresses “nearby” are also likely to
be required in the near future (for example, when sequentially accessing elements in an

1These details are specific to x86 architecture processors, but almost all mainstream processors have roughly
the same caching behaviour
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array). To optimise for spatial locality, memory addresses are read in contiguous blocks
or “cache lines” and stored in CPU caches to speed up future accesses to adjacent memory
locations.

Consequently, a core does not directly access main memory when it needs some data — instead,
it checks the caches (most x86 CPUs have a hierarchy of three caches of increasing size and
latency) and only accesses main memory if the desired data is not in any of the caches.

The assumption of locality of reference is a heuristic which does not apply to all codes (or even all
sections of a code), but is common enough that CPU optimisations which assume locality provide
large enough performance gains on average to have become nearly ubiquitous. Consequently, de-
sign patterns which are memory cache-friendly is extremely important for performance-sensitive
software.

The next logical level up from cores are sockets. Sockets are groups of cores which are “close” to
one another in the machine2, so communication within a socket is much faster than communica-
tion between sockets. The number of cores on a socket varies considerably between clusters and
even individual nodes on the same cluster. NCI’s Gadi cluster, which I used for the bulk of this
thesis’ work, has 24 cores per socket on its standard nodes, each of which has two sockets for a
total of 48 cores per node.

Finally, one or more sockets are grouped together into nodes: self-contained servers containing
one or more sockets, with all cores on a node sharing a common pool of memory (RAM), and
so can communicate with one another relatively quickly. Separate nodes in a cluster do not
share resources and can only communicate and coordinate over a local area network, which is
significantly slower than communication between cores on the same node.

The different characteristics of inter- vs intra-node communication necessitates the use of different
techniques in parallelising code. ambit employs two software libraries to achieve this: OpenMP
for distributing the workload among cores within a node (which may or may not cross socket
boundaries) and MPI for distributing the workload between sockets and nodes. These two
methods of parallelism can be used in isolation or combined for a hybrid approach as I have done
in this thesis.

3.5 Profiling

Generally speaking, parallelism and performance optimisation are difficult to reason about, and
there is always the danger of spending a lot of time on optimsations which end up not helping
the overall performance very much. I have only parallelised the sections of code which take up
the largest percentage of the execution time; referred to as hotspots. The easiest way to measure
and visualise code hotspots is through profiling the program’s execution, which are presented
here for two “typical” atomic calculations. While there is no obvious definition of “typical”, I
have chosen to use two calculations which stress different subsystems of ambit.

The first representative calculation is a Db CI+MBPT calculation with approximately compa-
2They share a memory bus and usually at least one cache
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Figure 3.1: Schematic of a sample cluster architecture. This sample cluster consists of two nodes
(represented by the outermost rectangles), each of which has two sockets (rounded rectangles)
with four cores (small, white rectangles) per socket for a total of eight cores per node.
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rable CI and MBPT bases, since open-shell systems tend to generate large numbers of CSFs
(and thus CI matrices) with relatively few Slater integrals. Second, I have also profiled a CI-
only calculation of singly-ionised lawrencium (Lr+, Z = 103), which has two valence electrons
above closed shells; the input file for this calculation is shown in listing 2. Systems with few
valence electrons tend to generate a lot of MBPT integrals but relatively small CI-matrices, so
Lr+ provides complementary performance tests to the CI-heavy Db calculations.

1 ID = LrII
2

3 Z = 103
4

5 NuclearRadius =7.2
6 NuclearThickness =2.3
7

8 -m
9 -s12

10

11 [Lattice]
12 NumPoints = 1000
13 StartPoint = 1.e-6
14 EndPoint = 50.
15

16 [HF]
17 N = 101
18 Configuration = ’1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6

5d10 6s2 6p6 5f14: 7s1’
19

20 // Basis properties
21 [Basis]
22 --bspline -basis
23 ValenceBasis = 10spdf
24

25 [CI]
26 LeadingConfigurations = ’7s2’
27 ElectronExcitations = 2
28 HoleExcitations = 0
29 NumSolutions = 10
30 EvenParityTwoJ = ’0’
31

32 [MBPT]
33 --use -valence
34 Basis =12 spdf

Listing 2: AMBiT input file used to generate the callgrind profiles for Lr+, with CI+MBPT.

Figures 3.2 and 3.3 show the call-graph profiles for small Db and Lr+ calculations, respectively.
These calculations were generated by the callgrind tool, as part of the Valgrind suite of profiling
and debugging tools 3. These profiles are “call-graph” style, meaning that they represent the

3Valgrind imposes a very large performance overhead, so it was only feasible to use callgrind for very small
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program hierarchy as a tree, with each branch of the tree representing a call-stack — each
subroutine is called by its parent node and so on up to the root node. The topmost three nodes
in both graphs are the subroutines required to start-up the Valgrind runtime and ambit’s main
loop, and can be ignored for the purposes of this analysis. Only subroutines taking a significant
fraction (> 1%) of the program’s run time are shown, and multiple instances of the same call path
are aggregated to show the time spent across all instances of that path, given as a percentage of
the total program runtime.

Starting with the Db profile in figure 3.2, we can see that the bulk of the runtime is spent in
three parts of the code:

1. HamiltonianMatrix::GenerateMatrix (60.79%) – Generating the Hamiltonian (CI) ma-
trix from pre-calculated radial integrals and angular data. This subroutine does not include
the actual diagonalisation of the matrix.

2. TransitionCalculator::CalculateTransitions (22.31%) – Calculating the transition
matrix elements, in this case the electric multipole elements. This is implemented via the
overload of ManyBodyOperator::GetMatrixElement() taking two LevelVector objects (an
array of eigenstates calculated by diagonalising the CI matrix element).

3. ManyBodyOperator<...<SzOperator> > GetMatrixElement() (14.79%) – Calculation of
the Sz matrix elements as part of calculating g-factors.

4. SlaterIntegrals<std::map<> >::GetTwoElectronIntegral() (11.02%) – A non-trivial
portion of the time spent generating the Hamiltonian matrix comes from simply accessing
two-body Slater (Coulomb) integrals, which are pre-calculated before the matrix is gener-
ated and are stored in C++’s std::map data structure. std::map is an associative array
which is implemented as a binary search tree, which is optimised for a wide variety of
applications and usage patterns rather than any one specific usage. Even though this is
not strictly related to OpenMP, we can still gain large performance improvements by using
data structures which are better suited to our usage patterns.

The g-factors and transition matrix elements are implemented as special cases of a more general
class called ManyBodyOperator via C++ templates — a design pattern which allows us a great
deal of flexibility when implementing quantum mechanical operators (e.g. the spin projection
Sz or electric dipole operator). Operators can use the same set of optimised subroutines, while
specialised code for each operator is automatically generated by the compiler. Consequently, par-
allelising the GetMatrixElement functions in ManyBodyOperator will both optimise the hotspots
(g-factors and transition matrix elements) in the current version of ambit and provide some
future-proofing with regards to adding operators for new physical quantities.

Next, the Lr+ profile in figure 3.3 shows one major bottleneck which is not present in the Db
benchmarks, namely the two-body MBPT integrals. This makes sense, since Lr+ is a two-electron
system and thus will have many more two-electron integrals than CSFs for most possible ways
of carrying out the calculations. In this specific case, we have 137531 two-body MBPT integrals

calculations
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Figure 3.2: Call graph with relative execution time for Db CI+MBPT MPI-only calculation,
with CI basis of 10spdf and MBPT basis of 12spdf
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Figure 3.3: Call graph with relative execution time for CI+MBPT MPI-only calculation of Lr+,
with CI basis of 10spdf and MBPT basis of 12spdf.
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but only 90 CSFs, which is very unbalanced but not unrealistic for few-electron calculations.

I have focused my efforts on the “hot spots” listed above, which are the sections of code which have
the largest potential performance gains. The rest of this chapter contains an explanation of the
performance engineering and design choices I made when parallelising the expensive subroutines,
followed by an exploration of the resulting gains in performance.

Unless otherwise stated, the profiles in the rest of this chapter were generated by profiling with
the Arm Map profiler (part of the Arm Forge suite of HPC tools [134]), using the input file shown
in listing 1. Even though this calculation requires less than the 190GB of memory available on
Gadi compute nodes, I also wanted to make sure that calculations fit within the 128GB of
memory on a single, standard compute node on the UNSW Faculty of Science’s on-premises
cluster Katana, to serve as an extra point of comparison. I have also only included solutions
for odd-parity states with J = 5/2, as these were the largest matrices in the calculations. This
chapter only analyses the OpenMP performance of ambit, and structuring the benchmarks to
not use any MPI parallelism ensures clean measurements of only the OpenMP sections.

3.6 OpenMP

The utility of OpenMP comes from its relatively simple, high-level syntax. The C++ syntax of
OpenMP is largely inherited from C and has two main components: a set of library functions for
interacting with and querying the OpenMP runtime, and a set of compiler directives to specify
which regions of code should be parallelised. These compiler directives have the form #pragma

omp <directive>, where the directive is placed before the parallel section and specifies either
a parallel execution environment or a synchronisation/thread control construct. The compiler
then uses the instructions in the pragma to generate multithreaded code without the programmer
needing to know the underlying implementation.

OpenMP follows the fork-join model, where the program executes in serial (i.e. single-threaded)
until a parallel construct is reached, at which point it forks into multiple threads of execution,
according to the compiler directive. Once all threads have completed execution, execution is then
resumed by the master thread until either another parallel section is reached, or the program
terminates. A full discussion of all OpenMP constructs and functions can be found in the
OpenMP standard [133].

Despite the relatively simple syntax, there are three chief difficulties in obtaining maximum
parallel performance from OpenMP. Firstly, shared-memory parallelism opens up the possibility
of race-conditions and non-deterministic software bugs. The order in which different OpenMP
threads execute a particular instruction is undefined, so multiple threads attempting to modify
the contents of shared-memory without explicit synchronisation constructs will cause unpre-
dictable behaviour, known as a race condition [133, 135]. This is especially true in the idiomatic
modern C++ used in ambit due to our use of standard library containers, many of which do
not guarantee thread-safety of write operations [136]. In order to ensure code correctness, it is
necessary to either make heavy use of synchronisation constructs (such as mutexes or barriers),
or refactor the parallel functions to use a lockless algorithm.
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The use of synchronisation necessarily introduces performance slowdowns: if one thread obtains
an exclusive lock on a variable to prevent multiple concurrent writes causing race conditions, then
all other threads attempting to access this variable must wait until the original thread is finished
and releases the lock. In the worst case scenario, every thread must wait for every other thread
to finish writing to the variable before execution can resume, eliminating any benefit from using
multiple threads. Consequently, I attempted to minimise the use of explicit locks throughout
the OpenMP sections of ambit, which required significant refactoring of some sections of code.

Another challenge when writing OpenMP code is that the OpenMP interface is very high-level
tends to hide implementation- and hardware-specific details from the programmer. This is by
design, and often makes OpenMP much more easier to write than corresponding code using other
threading libraries. However, there are many performance pitfalls which can arise from low-level
details like cache-coherence [131, 135] and thread-scheduling policies [137]. Furthermore, even
relatively small performance overheads can have a large effect on the parallel scaling for very
large numbers of threads, so I had to use the Linux perf tool to profile low-level performance
characteristics which Arm Map does not measure.

Finally, I have loosely followed two parallel programming “rules of thumb”, which provide useful
heuristics when choosing between competing parallel designs. Both of these rules of thumb relate
to synchronisation between units of parallelism (e.g. OpenMP critical sections or MPI barriers):

1. Whenever possible, don’t synchronise — by definition, synchronisation imposes restrictions
on parallel execution flow, which in turn impacts parallel performance. A locking construct
such as a mutex or OpenMP critical section imposes some ordering on threads attempting
to access some resource (e.g. a variable), so any threads attempting to access the resource
while it is in use must stall their execution and wait until the resource becomes available
again. During this waiting period, the threads are not doing work, thus reducing the overall
performance of the program.

Although they are more difficult to design and can often have worse serial performance, a
well-implemented lockless algorithm (i.e. one without any synchronisation) will often have
better parallel performance and can scale out to more compute resources than a comparable
algorithm which does use synchronisation.

2. If synchronisation is unavoidable, do it as infrequently as possible — very few real computa-
tional problems are amenable to a completely lockless parallel algorithm. A more realistic
constraint is to ensure that synchronisation happens as infrequently as possible throughout
parallel sections. The biggest performance trap that this rule deals with is the anti-pattern
where some synchronisation construct is embedded inside a loop, or worse, multiple nested
loops, so the overhead from locking is incurred many times in quick succession.

Throughout ambit, I have tried to ensure that synchronisation is left until the last possible
moment in each parallel subroutine. Often, this takes the form of storing thread-local
copies of intermediate calculation results which would otherwise be stored into some mutex-
protected data structure. The intermediate, thread-local copies can then be merged at the
very end of the parallel function, so the cost of synchronisation is only incurred once.
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It is worth noting that the use of temporary copies of thread-local variables is different
to the duplication of objects between MPI processes which originally motivated the move
to OpenMP in two key ways: the intermediate objects created to avoid synchronisation
are much smaller than the duplicated orbitals and integrals, and they are very short-
lived (the resources assigned to intermediate objects are always freed after the end of their
subroutine). This means they do not significantly impact the maximum, long-term memory
usage and do not affect our ability to scale out calculations to larger numbers of threads.

3.7 Parallelism and optimisation methodology

In this section, I will describe my methodology in parallelising and optimising the ambit code,
including the computational rationale behind these design decisions. Wherever possible, I have
included partial profiles and performance data, as I used a primarily data-driven approach to
optimisation, often including multiple iterations and profiles to find the highest-performing de-
signs. I will also include brief discussions on some failed attempts at optimisation, including why
their outcomes were unsatisfactory, what they demonstrate about high-performance code and
hardware, and how I rectified them in the final version of the software.

3.7.1 Two-body MBPT integrals

Prior to my OpenMP overhaul, the two-body MBPT diagrams already had node-level parallelism
via MPI: the list of valid diagrams (which correspond to tuples of valence orbitals and the
multipole moment of the integral) gets divided up evenly between MPI processes, calculated in
parallel across MPI processes, then written to disk for use in future calculations and re-read
to ensure each MPI node has all the calculated integrals in memory. I have left this level of
parallelism intact, the existing MPI workload distribution is already efficient and balanced.

As a first attempt, I parallelised the two-body diagram loops with the OpenMP reduction con-
struct. A reduction uses a binary operation (such as addition or boolean logic operations) to
collapse all elements of a collection into a single value — the operator is applied to successive
pairs in the sequence of elements, then recursively applied to the results of the previous step until
only one value remains. A reduction can be parallelised if its operator is associative (allowing
for the operations to be carried out in arbitrary order by threads), and ideally commutative
(allowing for the elements of the collection to be re-ordered for performance if necessary) [133].

Reductions in OpenMP are conceptually implemented by extensions to the standard parallel loop
construct: each thread is assigned a chunk of loop iterations (just as in a standard parallel loop)
and carries out the reduction operation on its subset of the loop domain. The partial reductions
for each thread are stored in a private variable, which are then in turn reduced into a single,
final answer once all threads have finished their work.

The sum rules used to calculate MBPT corrections in ambit, the general form of which is
shown in equation 3.2 (using the terminology of chapter 2), naturally translate into reduction
constructs since addition is both associative and commutative, so I tried to use the OpenMP
reduction construct to all two-body MBPT diagrams.
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Σ(MBPT) =
∑
M∈Q

〈I| Ĥ |M〉 〈M | Ĥ |J〉
E − EM

(3.2)

This approach has some performance limitations. Although reductions give good performance
within the loops while requiring almost no changes to the overall code structure, it incurs a
startup cost every time the execution enters an OpenMP parallel loop (i.e. once per set of
external orbitals). This means we need each parallel loop to carry out a large number of iterations,
otherwise any performance gain from parallelism will by overwhelmed by overhead from spinning
up the parallel sections. Consequently, the best performance will be achieved when each MBPT
diagram sum rule is expensive to calculate, but we need relatively few of them. Unfortunately,
this approach is rarely the case in real CI+MBPT calculations, and the overhead from spinning
up parallel regions limits the overall scalability of the code. As shown in figure 3.4a, the two-body
MBPT diagrams achieve ∼ 50% parallel utilisation, with the remaining CPU time split between
OpenMP overhead and a small amount of serial code, which is clearly non-optimal and will limit
parallel scalability.

The large overhead from using reductions means I needed to do more extensive re-factoring in
order to extract better performance. To get an idea of the required work, let’s first look at the
(serial) structure of the highest-level subroutine which we can parallelise for MBPT. In (highly
abstracted) pseudocode 4:

1 for((orb1 , orb3 , orb2 , orb4) in valence)

2 {

3 for(k) // Multipole moment. Actual range will depend on

calculation parameters

4 {

5 if(correct_parity(orbs , k))

6 {

7 // Maps orbitals and k to unsigned integer key

8 key = GetKey(k, orb1 , orb2 , orb3 , orb4)

9

10 if(key not already in two_body_integrals)

11 {

12 // Calculate core -valence and/or valence -valence diagrams

13 integral = calculate_MBPT_diagrams(k, orb1 , orb2 , orb3 ,

orb4)

14 two_body_integrals[key] = integral // Associative array

15 }

16 }

17 }

18 }

4The real code is found in the file MBPT/CoreValenceIntegrals.cpp

45



High-performance computing — OpenMP

(a) Arm Forge profile of the first attempt at
parallelising MBPT integrals via OpenMP re-
ductions.

(b) Arm Forge profile of the faster version of
MBPT integrals, via splitting the calculation
into separate serial and parallel loops.

Figure 3.4: Arm Forge profiles of the slow and fast parallel implementations of two-body MBPT
integrals. The topmost bar in each profile shows the program’s performance within the two-
body MBPT subroutines, averaged over all threads and shown as a function of time: light green
sections indicate time spent in OpenMP parallel regions, dark green represents serial code, grey
represents OpenMP overhead. The bottom four bar charts show the time spent in the four most
common types of CPU instructions in this section: floating-point and integer arithmetic, memory
accesses, and branching logic.
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The naive approach would be to parallelise the loop over orbitals since that will have a large
number of iterations, and each iteration will have a large amount of work. However, this sub-
routine has some limitations which mean that we can’t simply add an OpenMP directive and be
done with it. There’s some freedom in how we arrange/order the orbitals in a particular integral,
which we account for in the function which converts orbitals to keys. Consequently, if we don’t
have some kind of coordination between threads, then we’ll end up with a lot of duplicated work
due to threads calculating redundant diagrams. This means there must be some inherently serial
component of the MBPT integrals subroutine, which we can deal with in one of two ways:

1. Encase the conditional to check whether this integral has already been calculated, as well
as storing the integral in two_body_integrals in a critical section. This will force them
to be executed by one thread at a time, or

2. Split the serial and parallel components of the workload into two separate loops.

The first approach synchronises threads at every iteration of the loop over orbitals, which causes
a lot of time wasted due to thread-contention over the two_body_integrals map. Preliminary
tests showed that this approach does not scale well, and can give worse performance than serial
execution due to the presence of critical sections inside the tight inner loop over orbitals.

Instead, I decided to split the calculation into two loops as follows:

1. Loop over orbitals and k-values in serial, and check whether each combination satisfies
parity rules.

2. If we haven’t yet saved this orbital, make a tuple of the orbitals plus k and append it
to a vector. Next, calculate the unsigned integer key for this set of orbitals and store
that in a separate vector such that orbitals[i] and keys[i] represent the same integral.
We can’t just store the key, since the ordering of orbitals is semi-important: appropriate
permutations might correspond to the same physical quantity, but certain orderings are
more numerically stable than others. Converting to and from the numeric key does not
preserve ordering of orbitals, so we want to explicitly store the most stable tuples of orbitals.

The value of the MBPT integrals is not actually calculated at this stage, so this loop is
relatively cheap even when executed in serial.

3. Pre-allocate storage to hold the corresponding integral values. Pre-allocating storage before
entering the parallel region means that modifying elements of the vector is thread-safe, as
long as no two threads attempt to access the same element.

4. Loop over the pre-calculated orbital tuples in parallel, calculate the corresponding integrals
and store them in the pre-allocated vector. After this stage, both vectors should be full of
key-value pairs such that the key at keys[i] corresponds to the integral at values[i].

5. In serial, the root MPI process collects the key-value vectors from all processes and writes
the to disk. All processes then read the complete integrals from disk and store them in an
associative array.

In pseudocode, the new algorithm has the form:
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1 for((orb1 , orb3 , orb2 , orb4) in valence)

2 {

3 for(k) // Multipole moment. Actual range will depend on

calculation parameters

4 {

5 if(correct_parity(orbs , k))

6 {

7 key = GetKey(k, orb1 , orb2 , orb3 , orb4) // Maps orbitals and

k to

8 // unsigned integer

key

9 if(key not in two_body_integrals)

10 {

11 // Append this key to the end of the array , but don ’t

calculate the integrals

12 keys.append(key)

13 expanded_keys.append(k, orb1 , orb2 , orb3 , orb4)

14 }

15 }

16 }

17 }

18

19 values.resize(number_of_keys)

20

21 #pragma omp parallel for

22 for(i = 0 to number_of_keys)

23 {

24 // Calculate core -valence and/or valence -valence diagrams.

25 // We get the orbitals by "unpacking" the elements of

expanded_keys

26 k, orb1 , orb2 , orb3 , orb4 = expanded_keys[i]

27 integral = calculate_MBPT_diagrams(k, orb1 , orb2 , orb3 , orb4)

28 values[i] = integral

29 }

where #pragma omp parallel for indicates that OpenMP should execute the loop over i in
parallel.

This approach is somewhat more intricate than my first attempt at parallelising two-body MBPT,
but provides significantly higher performance and scalability: there is only one OpenMP parallel
region when calculating the integrals, and the parallel region contains no synchronisation or
locking constructs so should scale much better. This is borne out in the profile shown in figure
3.4b, where the MBPT calculation is faster than my first attempt using reductions by a factor
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of 2.9 (Twall = 291s for the fast MBPT subroutine, vs Twall = 837s for the initial attempt. The
profile also shows the subroutines achieve > 90% parallel utilisation.

3.7.2 Generating the Hamiltonian Matrix

Parallelising the CI matrix generation was made simpler by exploiting the way the CI matrix
is stored in memory. CI matrix is already split into so-called “chunks”, each of which which
contains a fixed number of relativistic configurations, each of which correspond to a variable
number of projections and CSFs. In the MPI-only version, these chunks are then parallelised by
distributing them between MPI processes, so each process gets a subset of chunks to iterate over
(rather than the full matrix). We can conceptually represent the process of generating the CI
matrix with the pseudocode:

19 // chunks_array contains this MPI process ’s set of chunks , so this

20 // loop will have different iterations for each process

21 for(current_chunk in chunks_array)

22 {

23 for(config_i , config_j in current_chunk)

24 {

25 for(proj_i in config_i)

26 {

27 for(proj_j in config_j)

28 {

29 if(do_three_body)

30 {

31 operatorH = H_three_body ->GetMatrixElement(proj_i , proj_j

);

32 }

33 else

34 {

35 operatorH = H_two_body ->GetMatrixElement(proj_i , proj_j);

36 }

37

38 for(CSF_i in proj_i)

39 {

40 for(CSF_j in proj_j)

41 {

42 // M is the Hamiltonian matrix

43 M[CSF_i , CSF_j] += f(CSF_i , CSF_j) * operatorH;

44 }

45 }

46 } // End of loop over projection_j

47 } // End of loop over projection_i

48 } // End of loop over configs
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49 } // End of loop over chunks

The MPI parallelism (which is implicit in the loop over each process’s subset of chunks on line
21) is already efficient, so I have kept the MPI distribution as is, and added an extra level of
intra-node parallelism via OpenMP. As a first approach, I added OpenMP parallelism by splitting
up the loop over matrix chunks between threads by using the OpenMP parallel for construct,
as shown in the pseudocode:

50 // A pragma is used to pass a special instruction to the compiler

51 // In this case , we’re telling the compiler to parallelise this

52 // loop with OpenMP

53 #pragma omp parallel for

54 for(current_chunk in chunks_array)

55 {

56 // Generate the chunk ’s matrix elements ...

57 } // End of loop over chunks

Moving away from pseudocode, the C++ implementation of the code makes chunk-level paral-
lelism relatively easy to implement. MPI processes are assigned a roughly equal number of chunks
to evaluate, the “metadata” for which is stored in a C++ std::vector. Each chunk contains the
rows corresponding to a fixed number of relativistic configurations. Different relativistic config-
urations have different numbers of CSFs, so the chunks potentially contain a different number
of CSFs (rows). The matrix elements are themselves stored in a contiguous, row-major ordered
matrix M while the diagonal elements (for emu CI calculations) are stored in a separate array
D 5. This means, individual elements of the Hamiltonian matrix are never directly manipulated
but are accessed through the abstraction of the matrix chunks; individual chunks cannot access
the matrix elements belonging to other chunks.

Since the chunks are stored in a contiguous, random-access container, the loop over chunks can
be implemented by looping over a range of integer indices in parallel, and then indexing into the
current chunk as shown below:

1 #pragma omp parallel for

2 for(unsigned int chunk_index = 0; chunk_index < chunks.size();

chunk_index ++)

3 {

4 MatrixChunk& current_chunk = chunks[chunk_index ];

5 Eigen::Matrix <double ... Eigen::RowMajor >& M = current_chunk.

chunk;

6 Eigen::Matrix <double ... Eigen::RowMajor >& D = current_chunk.

diagonal;

7 // Generate the chunk ’s matrix elements

8 } // End of loop over chunks

5Internally, the matrices are stored in memory as a contiguous, one-dimensional array of numbers, with the
Eigen library serving as a compatibility layer to allow the higher-level code to treat the data as if it were stored
in a 2D matrix
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This approach has very small overhead, since each chunk belongs to exactly one thread, so there
is very little copying or sharing of data between threads. Furthermore, all large data chunks and
matrices are accessed via C++ references, so there is very little in the way of memory allocation
or manipulation.

The biggest factor in the performance of this section of code is load-balancing. Ideally, we want
all threads to take roughly the same length of time to complete their work in a parallel region.
The program cannot proceed to solving the Hamiltonian matrix until the matrix has been fully
generated, so if the threads have drastically different amounts of work to complete, then the
threads which finish early will be sitting idle while they wait for the rest to catch up.

Additionally, it is far worse for a small number of threads to take longer to complete than it
is for that small number to finish early. As an example, if one thread completes its work 20%
quicker than all other threads, then that one core will be idle for 20% of the run-time of the
parallel section. However, if one thread takes 20% longer to complete its work than the rest of
the threads, then all N − 1 remaining threads (which can be as many as 24 or 47 on Gadi) will
be idle for 20% of the run time. Clearly the second option will result in far worse scaling and
CPU utilisation than having a single thread finish early. Consequently, improper load-balancing
schemes can drastically reduce the performance of parallel sections of code; a problem which
generating the Hamiltonian matrix is especially susceptible to due to the variable number of
projections and CSFs belonging to each matrix chunk.

The simplest way to ensure at least some kind of load-balancing among chunks is to modify the
#pragma directive of the OpenMP for-loop to use one of the OpenMP scheduling schemes, via
the scheduling clause:

1 #pragma omp parallel for schedule(<scheduling_policy >)

where <scheduling_policy> specifies the scheme by which the iterations of the loop are dis-
tributed between threads [133]. The two key schemes of interest here are static and dynamic
scheduling. Under static scheduling, each thread gets a fixed number of loop iterations to execute:
the default static scheduling will provide each thread with an approximately equal sized “chunk”
of iterations, the actual size of which is implementation-defined [133]. Alternatively, multiple
fixed-size chunks can be assigned to the threads as an extra parameter to the scheduling clause,
so the directive:

1 #pragma omp parallel for schedule(static , 10)

will divide the loop domain into chunks of 10 iterations, which are then distributed to threads
in a round-robin fashion [133]. There is very little performance overhead to static scheduling,
as the size of the chunks, as well as the threads they’re assigned to, is calculated once, either
at compile time (if the number of iterations is an integer constant expression) or upon entering
the parallel loop. However, static scheduling does not allow for more than the most rudimentary
load-balancing: the chunk size must be constant, and there is no way to specify which iterations
should belong to which chunk. As a result, static scheduling is unable to properly handle the
unbalanced loads caused by unequal numbers of projections for different chunks of configurations

51



High-performance computing — OpenMP

in the Hamiltonian matrix.

Instead, we must turn to dynamic scheduling. The dynamic scheduling scheme distributes itera-
tion chunks to threads at run time on a more flexible basis: threads execute a chunk of iterations
(the default size is one iteration per chunk, but this can be overridden in the scheduling clause),
then obtain a new chunk from the OpenMP run-time and continue executing until there are
no remaining chunks. This way, threads with large chunks are less likely to hold up execution,
as the other threads can pick up extra work while the large chunks are being generated. The
downside is that dynamic scheduling has a larger performance overhead at run-time than static
scheduling, since the blocks of chunks must be distributed between threads every time a thread
finishes its current block of iterations.

Figures 3.5a and 3.5b show profiles for the same Db CI+MBPT calculation using static and
dynamic scheduling, respectively, with a focus on the section corresponding to generating the
Hamiltonian matrix. These profiles do not contain any further optimsations beyond adding
OpenMP to the Hamiltonian matrix subroutine. The static scheduling calculation requires 6hr
58min on a single compute node, while using dynamic scheduling cuts the required walltime
to 3hr 24min — dynamic scheduling clearly provides better OpenMP performance in this case.
The performance difference between static and dynamic scheduling remains consistent across all
atomic systems presented in this thesis.

The highlighted region of the profile in both figures shows the reason for the difference in perfor-
mance between scheduling schemes. The topmost bar in figure 3.5a shows that most of the CPU
time required to generate the matrix is spent in OpenMP overhead when using static scheduling;
specifically, this is the time the threads spend waiting at the implicit barrier at the end of the
OpenMP parallel region. Furthermore, the pattern of CPU usage (shown in light green) displays
the characteristic behaviour of a workload imbalance: the CPU utilisation starts relatively high,
but falls off in a “step-like” pattern. This indicates that certain threads reach the OpenMP barrier
earlier than others, so the time spent in OpenMP overhead gradually increases (or conversely,
the CPU usage decreases) as each thread finishes and sits idle waiting for the threads with large
workloads to complete.

The profile in figure 3.5b shows much more balanced CPU usage patterns. The subroutine spends
all of its time with almost full CPU utilisation, indicating that all threads finish their work at
approximately the same time. Dynamic scheduling thus makes far more efficient utilisation of
CPU resources, leading to a much shorter absolute walltime to complete.

This kind of dynamic workload balancing has drawbacks, however. Firstly, it incurs extra over-
head in setting up the work-queue and distributing chunks between threads when compared to
static scheduling (where the workload distribution can be done at compile-time). Secondly, the
approach of dynamically sharing chunks will not be able to produce balanced workloads in the
case where a subset of chunks (N < Nthreads) takes longer to complete than the rest of the matrix
combined. If the atomic system contains a small number of configurations with e.g. high-angular
momentum, orbitals in half-full shells, then chunks containing the open-shell configs will contain
extremely large numbers of CSFs and projections. In this case, the majority of threads (and pos-
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(a) Profile of calculation with static scheduling.
The CPU utilisation (shown in light green) dis-
plays the descending “step pattern” character-
istic of a workload imbalance.

(b) Profile of calculation with dynamic schedul-
ing. The CPU utilisation (shown in light green
in the highlighted region) displays a much more
balanced usage pattern than that shown in fig-
ure 3.5a.

Figure 3.5: Profiles of subroutine to CI matrix for Db calculations, using different OpenMP
scheduling policies. The profiles were generated via Arm Map.
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sibly even the majority of MPI processes) will run through the entire work queue and be stuck
waiting at the end of the parallel region for the threads with “big chunks” to finish generating
their work, which wastes CPU resources.

OpenMP loop iterations are atomic (i.e. cannot be dynamically split into smaller tasks), so the
pathological case where the matrix contains a few extremely large chunks will result in most of
the threads sitting idle (sometimes for very long periods of time), thus wasting compute resources
and limiting parallel scalability. I have yet to find a solution for this within the framework of
OpenMP which would not require a substantial re-write of ambit (for example, shifting to a
framework where the matrix is broken into smaller, more uniform units such as projections), so
I have had to leave this problem as it is. The dynamic load-balancing only fails in very narrow
circumstances, so this is not a “show-stopper” performance bug as of yet but may need to be
fixed in the future.

As a final note, the actual process of solving the CI matrix eigenvalue problem is very easy to
parallelise. The Davidson algorithm [138] is amenable to MPI parallelism as it relies on matrix-
vector multiplication, which can be trivially split into blocks and calculated in parallel, with each
process getting an even-sized chunk of work. This MPI parallelism was already implemented
with effective scaling characteristics, so I have left it untouched. However, the individual matrix-
vector multiplications can be further parallelised via OpenMP-style multithreading without any
actual code re-factoring, as our linear algebra operations are all implemented via the Eigen C++
libraries [139]. Eigen acts as a template-based wrapper around lower-level numerical libraries
(which can be chosen at compile time), several of which support multithreading for primitive
linear algebra operations. By default, Eigen supports multithreading, with no changes to the
code, for general dense matrix multiplication, but can also be configured to use other linear
algebra engines with more efficient parallelism such as OpenBLAS and Intel’s MKL [139]. This
allows us to parallelise the Davidson eigensolver routine for effectively zero development cost.

3.7.3 Many-body matrix elements

This section of the code consists of subroutines which calculate the matrix elements for many-
body operators 〈I| Ô |J〉, where Ô is a one- two- or three-body operator, and |I〉 and |J〉 are
solutions to the CI eigenvalue problem.

There are two main expensive cases/prototypes to consider when optimising the many body
operator:

• GetMatrixElement(LevelVector&), which is used when calculating the expectation value of
an operator, most commonly the spin projection operator 〈I|Sz |I〉 as part of the g-factors.

• GetMatrixElement(LevelVector&, LevelVector&) for calculating transition matrix elements
〈I| Ô |J〉, such as for electric/magnetic multipole transitions.

LevelVector is an internal class that holds the solutions to the CI eigenproblem. Both of these
cases need parallelisation, but the g-factor calculations in particular can take a very long time
in many-electron calculations, such as the dubnium profile shown in figure 3.2.
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The standard OpenMP parallel for loop is not a perfect fit for this section of the code, as it
relies on loops over non-random access iterators. In both ManyBodyOperator subroutines in this
section, we iterate over a custom object which holds the list of relativistic configurations in each
CI solution.

When iterating over the configurations, we need to keep track the corresponding projections and
CSFs for the current configuration. CSFs are represented as a linear combination of projections,
so the code only stores the expansion coefficients, rather than the whole wavefunction — con-
ceptually, these coefficients are stored in a matrix-like structure, with each row corresponding
to a new CSF. The iterators must also keep track of which CSFs belong to the current projec-
tion involves querying the the stored angular momentum data to calculate the number of CSFs
corresponding to the current configuration and updating a separate iterator into the CSFs. This
offset will be different for each configuration and must be done every time the iterator over con-
figurations is incremented. As a result, the configuration iterators take O(n) time to advance by
n elements, which means that they cannot (by default) be used as the loop variable in OpenMP
directives.

The textbook solution to this kind of problem is to use the OpenMP task construct, which is
outlined in section 2.11 of the OpenMP 4.0 standard [133]. The tasking construct generates a
series of small workloads and places them in a priority queue. The task queue is shared between
all threads in a parallel region, and all threads can take tasks to execute if they have no other
work to do. Tasks are executed in a first-in, first-out (FIFO) manner by default, but optional
priorities can be assigned to tasks, as well as requirements that certain tasks be executed before
others can begin. The chief advantage of tasks in this particular use case is the ability to generate
tasks via an asynchronous pattern:

1. A single thread runs through the loop over configurations and generates (but doesn’t yet
execute) tasks containing the numerically expensive parts of the matrix-element calculation.

2. The remaining threads begin executing tasks from the work queue.

3. If the generator thread finishes generating tasks while there is still work in the queue, then
it begins executing tasks along with the consumer threads, until the work is finished.

On paper, tasks work well for loops with an unknown length at run-time, recursive algorithms,
and algorithms which rely on non-random access iterators (e.g. traversing the elements of a
linked-list); all algorithms which are more difficult to parallelise using standard worksharing
directives like parallel for-loops. However, despite these theoretical advantages, the actual im-
plementations of tasking have noticeable overhead which increases non-linearly with both the
number of tasks and the number of threads [137]. This overhead is especially bad for workloads
consisting of large numbers of tasks with unequal size. This means that, in practice, codes which
trigger this edge-case behaviour end up spending most of the execution time in OpenMP over-
head, even in the ideal case of using multiple threads to produce tasks outlined in Ref. [137],
as any benefit from running with multiple threads is cancelled out by the increased OpenMP
overhead.

Unfortunately, my testing showed that the tasking-based parallelisation of ManyBodyOperator

55



High-performance computing — OpenMP

subroutines suffers from this performance pathology. Profiling with Arm Map shows that only
∼ 30% of the CPU time when calculating g-factors is spent on arithmetic operations (the section
of code has very few branching instructions so this will be the majority of the productive work),
while the remaining time is spent in OpenMP overhead, which is a combination of tasks waiting
at the end of the region and the task scheduler. This is obviously sub-optimal and limits parallel
scalability.

Instead, we turn to a for-loop with an integer loop variable which runs over the size of the
configuration list, while using std::advance to manually advance the configuration list iterator
to the appropriate point. Since the iterator is not random-access, advancing it by an arbitrary
amount adds some overhead each time it is advanced. This overhead is linear in the number of
projections but, crucially, is constant in the number of threads. Furthermore, this overhead is
split between worker threads and processes, since it is incurred once per parallel loop, meaning
that its impact is not as bad as it may at first seem. While not ideal for scalability, the loop-
based approach is far better than the equivalent implementation using tasks, where the nonlinear
overhead eventually leads to anti-scaling behaviour and severely reduces performance.

This performance improvement is borne out when comparing the run time of the two methods:
using task-based parallelism for Db calculations takes 1044s to calculate the g-factors for the
J = 1/2 levels, but for-loop based parallelism takes 558s for the same g-factors. Transition
matrix elements have similar performance benefits, as will be shown in the final profiles in
section 3.8.

3.7.4 Slater Integrals

The subroutine to calculate two-body Slater (Coulomb) integrals did not appear as a hotspot in
figures 3.2 and 3.3, but I’ve included it here since it is similar to the two-body MBPT calculations,
but with a couple of extra constraints which make it more difficult to effectively parallelise:

• Thread-safety: The integrals are stored in a hash table, which is not thread-safe to write
to. Inserting new keys occasionally causes the whole map to grow in size (this is neces-
sary to maintain performance) [140], so requires synchronisation between threads to avoid
corrupting the data structure. This synchronisation is currently achieved in ambit via an
OpenMP critical section, and necessarily limits the parallel speedup.

• Work duplication: As with the two-body MBPT integrals, there’s a certain amount of
freedom in how we arrange the orbitals in a particular Slater integral which results in some
duplication of workload. Consequently, we can’t just iterate over all orbitals without some
kind of synchronisation between threads to avoid duplication.

In addition, the way we calculate the Slater integrals imposes extra restrictions on the
ordering of the calculations. For a given Slater integral Rk(ab, cd) (i.e. the k-th order
element in the multipole expansion of the corresponding Coulomb integral

〈
ab| 1
|r1−r2| |cd

〉
),

we first calculate the Hartree-Y operator (sometimes called the Hartree screening operator)
for the orbitals b and d, which is defined as:
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Y k
bd(r) =

∫
rk<

rk+1
>

ψ†c(r
′)ψd(r

′)dr′ · ξ(k + Lc + Ld) ·∆(k, Jc, Jd) (3.3)

Where ξ and ∆ ensure the correct angular momentum conditions |Lc−Ld| ≤ 2k ≤ Lc+Ld

and k + Lc + Ld = even. The Hartree Y operator is defined such that:

Rk(ac, bd) = 〈a|Y k
cd |b〉 (3.4)

By calculating the Hartree Y operator first, we can factor out the shared components for all
integrals with the same c and d, thus preventing a significant amount of duplication. The
downside is that the orbitals must be looped over in order such that all integrals with the
same c and d are grouped together. This makes parallel execution trickier to implement,
since we ideally want to be able to loop over integrals in an arbitrary order.

With these constraints in mind, I had originally used the OpenMP task construct to parallelise the
Slater integrals calculation. Using the producer-consumer model, we can have one thread iterate
over the c and d orbitals and generate tasks containing all Slater integrals which correspond to
that cd pair, thus avoiding workload duplication. The problem with this, as shown in section
3.7.3, is that OpenMP tasks incur a large overhead which grows with both the number of tasks
and nonlinearly with the number of threads. This overhead becomes large enough to cause
significant bottlenecks when calculating very large numbers of Slater integrals — a condition
which is almost always met in few-electron systems with many more Slater integrals than CSFs
in the Hamiltonian matrix.

Given these performance characteristics, I have instead used the much simpler parallel for

construct 6. Parallelising the outermost loop over orbitals results in coarser-grained parallelism
than generating tasks, but the reduced overhead makes parallel for the better performing
design.

Even without the overhead from task parallelism, there is still considerable overhead from syn-
chronising access to the two-body integrals store/map. The map is written to inside the innermost
body of five tightly nested loops (the orbitals a, b, c, d and multipole moment k), leading to high-
levels of contention when large numbers of threads are sitting idle waiting for a mutex, in turn
limiting the parallel scaling.

The most obvious optimisation would be to take a similar approach to the one I used for the
two-body MBPT integrals: split the loop into an inherently serial component where we calculate
valid sets of orbitals, and then a parallel loop where we calculate the corresponding integrals.
This approach would also require thread-safe intermediate containers to hold the orbital-integral
pairs (to eliminate the mutex), and a follow-up serial component to transfer the integrals into the

6this was only possible after changing the underlying structure of ambit’s OrbitalMap to an associative array
with random-access iterators, which I describe in section 3.7.5
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final associative array. Unfortunately, this approach is complicated somewhat by the necessity
of iterating over orbitals in a specific order. Unlike the two-body MBPT integrals where the
tuples of orbitals can be calculated in an arbitrary order (which is ideal for parallel sections),
the grouping of the Slater integrals necessary for deduplicating work calculating the Hartree Y
operator means that we can’t simply add a parallel for loop and be done with it.

OpenMP offers no way to impose ordering or grouping on parallel loop iterations 7, so the
necessary grouping will need to be achieved through the intermediate container we use to store
the sets of valid integrals to be calculated.

I attempted to ensure the orbitals were grouped appropriately by storing them in an associa-
tive array - the keys in the map are c, d orbital pairs, which map to an array containing the
corresponding (a, b, k) triples. Unfortunately, the extra overhead in constructing the map and
then accessing the elements, plus the somewhat cache-unfriendly data layout (which I tested for
all three types of maps in section 3.7.5) cancels out the benefits from increased parallelism by
splitting the loops.

Consequently, I have kept the Slater integrals subroutine as one loop, and parallelised it using the
OpenMP parallel for construct. This approach does not provide optimal scaling behaviour,
but it would likely require a prohibitively large re-factor (relative to the computational benefit)
of the way the Slater integrals are calculated to achieve optimal strong scaling. The effects of
the relatively-large serial overhead of this approach on the code’s overall performance will be
discussed further in section 3.8.

3.7.5 Choice of data structures - associative arrays

While it doesn’t strictly fall under the category of parallel programming, the choice of data
structures can have significant impacts on software performance. ambit makes heavy use of
associative arrays, making them a good candidate for optimisation by careful analysis and choice
of implementation.

An associative array (also sometimes known as a map or a dictionary) is a data structure where
elements are accessed by a key (which can be any data type) rather than an index/position as in
arrays or vectors. Logically, an associative array consists of a set of key-value pairs, where each
key appears at most once in the array, and which may or may not have some ordering imposed
on them. There are many ways to implement this abstract definition in software, but I will focus
on three implementations in this sections: binary-search trees, hash tables, and flat maps.

In all major C++ compilers (as of the time of writing this thesis), the standard template library
(STL) defines APIs for two types of associative arrays. Firstly, std::map is an associative array
with the following properties [136]:

• Keys are stored in order,

7It is possible to assign each thread a certain number of iterations in a chunk (e.g. each thread might evaluate
four loop iterations under dynamic scheduling before retrieving four more from the work queue), chunk size must
be a loop-invariant constant, which is not useful here as each pair of c, d orbitals will have a variable number of
corresponding integrals.
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• Inserting, deleting, and searching for a key must have O(log n) complexity (where n is the
number of elements in the map),

• Iterators must not be invalidated by inserting or deleting element (except if the iterator
pointed to the deleted element).

In theory, the C++ standard does not specify how a std::map should be implemented, but in
practice the above requirements limit implementations to a binary-search tree [136]. All major
C++ implementations (i.e. GCC, LLVM and Intel) use a specific kind of self-balancing binary-
search tree called a red-black tree. A full overview of red-black trees are beyond the scope of this
section (see, e.g. [141] for an in-depth discussion), but for the purposes of this section, a binary
search tree (of which red-black trees are a special case) is a tree which fulfills the following two
properties [141]:

1. Each node has at most two children, except for leaf nodes which have no children,

2. For each node, all elements in the left subtree are “less than” the element in the current
node, while elements in the right subtree are “greater than” the element in the current node
(for type-appropriate definitions of “greater than” and “less than”).

Due to this ordering of nodes, searching for an element in a binary-search tree has O(log n) aver-
age complexity, where n is the number of nodes in the tree 8. Strictly speaking, the complexity
of searching through a binary-search tree is proportional to the height of the tree — the length of
the longest path from root to leaf. In the worst case performance, the all elements in the tree are
consistently in the same subtree, in which case the tree is said to be “maximally unbalanced” and
the complexity of searching for an element reduces to O(n). Red-black trees have the additional
property that they are self-balancing, and so avoid the worst-case linear behaviour.

Internally, a red-black tree implementation consists of a series of “node” objects, where each node
contains at least the data in the node, plus a pointer to its two child nodes. The pointer-based
structure of trees makes inserting new data relatively cheap, since these operations only require
finding the appropriate position in the tree (which is O(log n)), allocating memory for the data
in the new node, and updating some pointers. The same analysis holds true for deleting a node.

However, iterating over the tree requires stepping sequentially through all nodes by following the
pointers from parent to child node — referred to as “pointer chasing” or “walking the tree”. Even
though this operation is only linearly proportional to the number of nodes in the tree (since all
nodes are visited exactly once), it tends to perform badly on modern CPU architectures due to
the effects of memory caching. Modern CPU architectures attempt to speed up memory accesses
by storing the results of recent memory requests in small, fast caches, so that subsequent accesses
to the same addresses do not need to go through the (relatively slow) main memory (RAM).
Cache memory accesses have approximately an order of magnitude lower latency than RAM, so
proper utilisation of CPU caching is critical to achieving good performance in memory-heavy
code such as ambit.

8This is conceptually identical to a binary search algorithm. Each time we step down a level in the tree, the
size of the search space reduces (on average) by half, leading to logarithmic scaling behaviour.
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The data in a tree is not guaranteed to be stored contiguously in memory (in fact, if other
operations are performed in between tree updates it is very likely to be non-contiguous), which
hinders the ability of memory caching to speed up memory accesses. Memory caching requires
spatial locality of data to be useful (since the data is transferred from RAM to cache in contiguous
blocks called cache-lines), so walking the tree will incur cache-misses and subsequent expensive
instructions to fetch the data from RAM on most steps through the tree. This is true of almost
all pointer-chasing algorithms, and can seriously limit performance on modern CPU architectures
[131].

Contrast this with another common implementation of an associative array: the hash table.
Briefly, hash tables store key-value pairs in a flat array, where the index of a particular record
is calculated by computing the “hash” of its key. A hash function maps a (potentially complex)
data type to an integer. A good hash function should be fast to compute, have few collisions
(i.e. be unlikely to map two keys to the same index) and give good locality of reference. Since
the hash of the key is converted to an index in a flat array, searching, inserting, and deleting an
element can all be done in constant (O(1)) time [141].

Hash functions usually do not preserve relative ordering of keys, so hash tables are only feasible
when the ordering of elements is not important. Additionally, hash tables do not always benefit
from memory caching, but their O(1) complexity means they will usually outperform binary
search trees for usage cases which are predominantly random-access. Finally, the performance of
hash tables is more variable than for binary search trees, particularly when it comes to inserting
data. If the hash table gets too full, then the table will need to be re-sized and the elements
re-ordered, which will have O(n) complexity 9. Consequently, if large numbers of elements are
inserted, and the final size of the table is not known ahead of time, then multiple expensive
re-size operations will be required, increasing the time taken to build the hash table. There
is therefore a trade-off between (potentially) reduced performance when constructing the hash
table and its superior speed when it comes to random accesses.

Even though they all share O(1) complexity for searching and insertion/deletion, not all hash
tables have the same overall performance: “Big-O complexity” only describes asymptotic depen-
dency of run-time on problem size, but two different data structures can have different pre-factors
to the complexity analysis or extra overhead from setting up or tearing down the data, leading
to large real-world performance differences. Hash table design is an area of ongoing research
in software engineering, but to improve compatibility across computer systems, we have set-
tled on Google’s dense_hash_map [140] as our hash table implementation. dense_hash_map

generally has better performance than the C++ standard library’s hash table implementation,
std::unordered_map (see, for example, Ref. [142]) for small, frequently accessed associative
arrays, while still being installed on many HPC systems. The wide availability and ease of in-
stallation make dense_hash_map a good fit for the requirements of ambit, even though faster
and more advanced hash table implementations exist.

9Hash table implementations such as Google’s dense_hash_map do this re-ordering before the table becomes
full to optimise lookup time
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The last associative array implementation I have used in ambit is the flat map 10, so called
because it essentially a “flattened” version of a binary search tree. A flat map consists of two
arrays: one holding the set of keys, the other holding their corresponding values. The two arrays
are sorted, with their relative order maintained, so the i-th key corresponds to the i-th value.
Since the arrays are always sorted, searching for an element can be achieved via binary-search,
which has O(log n) complexity. However, inserting an element requires all elements to the right
of its position to be shifted one position to the right, which requires O(n) memory operations.
The same logic applies to deletion, except the positions are shifted to the left. Consequently, a
flat map has the same search performance as a binary search tree, but can potentially be much
slower for insertion and deletions, especially when constructing the map.

The chief advantage of a flat map is that, once the map has been constructed, the data is stored
contiguously in memory, meaning iteration over the map is extremely fast. The improved data
locality means that memory caching provides significant performance boosts, and the predictable
memory access patterns mean that the CPU can relatively easily predict which elements will
be needed and pre-fetch them, allowing for significant performance boosts from modern CPU
hardware optimisations such as pipelining and speculative execution. A detailed explanation of
these hardware optimisations can be found in chapter 2 of Ref. [131], but I will now provide a
brief outline as they apply to ambit.

As previously stated, memory caching relies on the principle of locality of reference, which takes
two chief forms 11:

1. Temporal locality: if a memory address is accessed, it is likely to be accessed again in the
near future (for example, the counter variable in a loop or a frequently read array). To
optimise for temporal locality, the contents of memory locations are stored in small, fast
caches close to CPU cores when accessed, thus speeding up future accesses.

2. Spatial locality: if a memory address is accessed, the addresses “nearby” are also likely to
be required in the near future (for example, when sequentially accessing elements in an
array). To optimise for spatial locality, memory addresses are read in contiguous blocks
or “cache lines” and stored in CPU caches to speed up future accesses to adjacent memory
locations.

The assumption of locality of reference is a heuristic which does not apply to all codes (or even all
sections of a code), but is common enough that CPU optimisations which assume locality provide
large enough performance gains on average to have become nearly ubiquitous. Consequently,
optimising code to maximise locality can provide huge performance benefits. Spatial locality of
data is greatly improved by the use of flat maps. When iterating over a flat map (for example,
iterating over an associative array of orbitals to calculate two-electron integrals), the memory
accesses are almost entirely sequential, which allows for significantly larger speedups due to
memory caching when compared to the more scattered pointer-chasing accesses of a binary-
search tree.

10Specifically, the flat_map implementation provided by the Boost C++ libraries as described in Ref. [143]
11These details are specific to x86 architecture processors, but almost all mainstream processors have roughly

the same caching behaviour
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Speculative execution, on the other hand, is a technique to exploit instruction-level parallelism
(ILP), where multiple independent CPU instructions (e.g. arithmetic operations which use inde-
pendent registers of a CPU) are re-ordered so they can be executed in parallel by different parts
of an individual core to increase the instruction throughput. Speculative execution extends this
model by executing instructions before it is known whether they are needed: upon encountering
a conditional statement, the CPU “guesses” which branch is most likely to be taken and executes
the program as if that guess is correct, while the actual conditional is evaluated in parallel.
Conditionals often expensive to evaluate (for example, they may depend on the values of mul-
tiple complex variables), so executing these instructions in parallel with the speculated branch
can save considerable time, especially inside tight loops. Even if the CPU’s guess is incorrect,
the speculated work is discarded and the correct branch is then executed, but this is no worse
for performance than if the conditional and work were to be executed in serial (i.e. without
speculation). A more detailed explanation of the principles and implementation of speculative
execution can be found in chapter 3 and appendix C of Ref. [131].

The simple structure of a flat map when compared to other associative arrays can expose large
performance gains from speculative execution when accessed in a predictable, contiguous man-
ner. Furthermore, modern CPUs can speculatively execute quite complex instructions, such as
dereferencing pointers and accessing fields of complex data structures [131], so flat maps of the
data types used in ambit can still provide large performance gains.

Finally, the contiguous memory layout of a flat map means that their iterators satisfy the C++
constraint of being “random access”: namely, their iterators can be incremented and decremented,
and support accessing arbitrary elements by index in constant time. This allows them to be
used efficiently with OpenMP looping constructs, such as the nested loops over orbitals when
calculating two-body Slater integrals, and allows for much cleaner parallel sections [133]. This
efficient and clean integration with OpenMP is not possible when using std::map, since it is
implemented as a red-black tree and has linear complexity when searching for a random element
by index.

Given the above characteristics, a flat map will provide superior performance to a binary-search
tree or hash table if it is sequentially read more often than it is written to. Additionally, if the
flat map is constructed once and used frequently, then the relatively expensive startup cost can
be amortised over the entire runtime of the program, thus reducing the effect of the sorting and
resizing which necessarily accompanies inserting new keys.

Concurrently with adding OpenMP parallelism to ambit, I replaced all frequently accessed in-
stances of std::map with more appropriate data structures. The features of the C++ program-
ming language provide great benefits in this area: the combination of object-oriented design and
templates for polymorphism [144] means that library authors can expose a high-level applica-
tion interface, independent of the underlying implementation. We can therefore switch between
associative array implementations with minimal or no code rewrites.

There are three associative containers in ambit which are important for performance:

1. OrbitalMap: consists of key-value pairs mapping OrbitalInfo objects (essentially metadata
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for single-particle orbitals) to Orbitals (data and radial wavefunctions for single-particle
orbitals). This structure mainly acts as the domain for (usually nested) loops over orbitals
when generating integrals (either Slater or MBPT), so is well suited to a flat map.

2. SlaterIntegralsMap: consists of key value pairs mapping tuples of orbital-multipole mo-
ments for a particular two-electron integral to the value of the two-electron integral 12.
Most of the accesses to this data structure come from either writes while calculating two-
electron integrals or reads when generating the Hamiltonian matrix. These reads and writes
occur in effectively random order (from the perspective of memory caching and speculative
execution), so is well suited to the dense_hash_map hash table.

3. Wigner 3j symbols: Wigner 3j symbols are calculated extremely frequently, and the same
combinations of angular momenta are needed multiple times throughout a given calculation.
In order to minimise unnecessary work, we cache results so that subsequent requests for
the same symbol need to only look up the result in a hash table rather than do the full
calculation. This container is a good fit for dense_hash_map, since it contains a relatively
small number of terms and is accessed frequently.

After replacing the three most expensive instances of std::map, the walltime of the Db calcu-
lation described by listing 1 reduces from 7311s to 2876s, for a speedup of 2.54. Calculations
in Lr+, Lu+ and Lu and Lr (the results of which are shown later in this thesis) show similar
speedups of magnitude ∼ 1.5 to ∼ 2. This speedup is essentially “free” from a software com-
plexity perspective, as the common API shared by the three associative array implementations
means there is almost no re-factoring of the source code when switching between data structures.

3.8 Final performance analysis

The Arm Map profile of the Db calculation given by listing 1 incorporating all of the performance
enhancements in this chapter is shown in figure 3.6.

First of all, we can see from the CPU activity panel that ambit now has 71.1% OpenMP util-
isation, 5.9% OpenMP overhead, 15% serial execution, with the remaining being non-OpenMP
overhead. The bottom-most panel below the CPU activity breakdown shows which sections of
code correspond to the individual chunks of time in the profile, which I have limited to only show
the most important functions. From earliest to latest in the calculation run-time, the functions
which dominate the CPU activity are:

1. Dirac-Fock calculation of single-particle orbitals: serial execution, accounts for < 1% of
the total program run-time.

2. Two-electron Slater integrals: accounts for 2% of the total program run-time, but only has
∼ 5% OpenMP operations, with the rest of the CPU time taken up by OpenMP overhead
from thread synchronisation.

12We incorporate MBPT corrections via modification of the Slater-Coulomb integrals, so there is only one data
structure which holds all two-body integrals. This is also true for one-body integrals, but the total time spent
accessing one-electron integrals is small enough that there is minimal benefit from optimisation
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3. One-electron MBPT integrals: serial execution, accounts for 7% of the total program run-
time.

4. Two-electron MBPT integrals: 88% OpenMP parallel operations, with the remaining CPU
time coming from various forms of overhead. Accounts for 7% of the total program run-
time.

5. Generating and solving the CI matrices: sections of ∼ 100% OpenMP utilisation while
generating the CI matrices, interspersed with striations of relatively low parallel efficiency
while solving the CI eigenvalue problem with the Davidson algorithm. The total time
spent in Davidson is very low compared to the time taken to actually generate the matrix
(even for very large matrices), so I have not optimised it beyond the original MPI-enabled
implementation. There is, however, some automatic multithreading of the matrix-vector
multiplications when ambit is configured to use Intel MKL as its linear algebra engine.

In the rare case where we need to calculate the full spectrum of a relatively large matrix,
which would result in a lot of time being spent in the Davidson algorithm, we can instead
turn to the MPI-parallelised ScaLAPACK library, which is more efficient for direct, full
diagonalisation of large matrices.

6. Transition matrix elements: close to 100% OpenMP utilisation, accounts for ∼ 5% of the
calculation’s total run-time.

Figure 3.6 also shows a breakdown of where the CPU time in a typical ambit calculation gets
spent. The four bars below the “Application Activity” timeline show a breakdown of the amount
of time spent in floating-point and integer arithmetic, memory accesses, and branching logic
operations. The green lines within the bar representing the average activity per thread for a par-
ticular operation, while the broader green regions show the per-thread minimum and maximum
activities. The percentages to the side of the bars show the total percentage of the run-time
spent in each type of activity (sampling uncertainty means the percentages sum to slightly more
than 100%, this is a limitation of the Arm tools).

We can immediately see that for most of the calculation, very little time is spent in arithmetic
operations, with floating-point and integer operations making up a combined total of 13% of the
total operations. While this is not necessarily a bad thing for performance on standard HPC
nodes, it does limit our ability to take advantage of advanced vector arithmetic operations present
in modern CPUs. This leaves a significant fraction of the performance improvements in recent
CPU design unutilised, but is especially problematic if we ever want to port ambit to work on
GPUs, where it is vital that calculations be dominated by arithmetic operations (referred to as
compute-bound programs). The bulk of our operations are memory and branching logic, which,
as mentioned in section 3.7.5, I have optimised by to use more appropriate data structures.

Finally, figure 3.7 shows the parallel speedup and scaling for one MPI process and up to 48
OpenMP threads on NCI’s newer Gadi cluster. These nodes are x86_64 architecture, and consist
of two sockets with 24 cores per socket (see, for example https://nci.org.au/our-systems/

hpc-systems); the relatively large number of cores per node provides a strong test of the parallel
scalability of my OpenMP additions.
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Figure 3.6: Final profile of AMBiT with OpenMP and new data structures, as generated via Arm
Map. The calculation used the input file in listing 1, and used a single node with 48 threads.
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I have deliberately not included MPI parallelism in this specific benchmark to ensure it only
measures the efficacy of my OpenMP modifications. The calculation displays approximately
linear scaling up to 8 threads, but the speedup drops off after ∼ 24 threads, and flattens out
as we approach a full 48 threads per node. This graph is somewhat noisy due to the effects
of running on shared-user HPC systems 13, but the overall trends in performance are clear.
The diminishing returns likely result from memory contention among large numbers of threads,
especially once they spread across socket boundaries.

To alleviate possible memory contention and performance hits from accessing memory across
socket-boundaries, we can instead allocate two MPI processes per node to ensure that each MPI
process’s threads are confined to one socket (I will refer to this as per-socket binding). The
OpenMPI installation on Gadi is configured to only allow for per-socket binding when using all
available CPUs on a socket, so this case is limited to 48 total threads. The speedup for this
per-socket binding, also shown in figure 3.7, shows increased performance when compared to
using one MPI process per node, as expected. With this in mind, I have employed the per-
socket topology of MPI+OpenMP parallelism for the calculations in the rest of the thesis. Even
though future nodes may have different quantitative scaling behaviour, the basic scaling for large
numbers of OpenMP threads will likely still hold, so running with one MPI process per socket
will still be a good default binding.

Looking at the parallel scaling as we move to multiple nodes, we see approximately linear speedup
for up to four nodes (192 cores), with diminishing returns for larger numbers of nodes, before
levelling off at a maximum speedup of 86.8 for nine nodes (432 cores). This maximum speedup
is currently more than sufficient for our needs (for the Dubnium example in this chapter, it
reduces the calculation walltime from 2.2× 105s ≈ 2 days in serial to 2.5× 103s ≈ 30 minutes),
in addition to allowing access to a pool of > 1TB of memory across 9 nodes. Furthermore, a
rough analysis via Amdahl’s law indicates that a large fraction of the code is parallelised. If we
take the speedup for 9 nodes as the asymptotic maximum S∞, then Amdahl’s law indicates that
the parallel fraction p will be at most [145]:

p = 1− 1

S∞
(3.5)

= 1− 1

86.8

= 0.98

This is obviously a rough approximation, but shows that I have achieved a relatively high level
of parallelism, even given the limitations I have previously outlined. In order to achieve larger
speedups it will be necessary to parallelise the remaining serial sections of the code, but the
parallelism in the current version still provides large performance benefits (even for much larger
calculations than those in this thesis).

13If a calculation requires less than a full node’s worth of resource then the job scheduling algorithm on Gadi will
attempt to fit multiple (potentially unrelated) jobs on a single node. This can cause unpredictable performance
impacts, resulting in a slightly noisy measurement of parallel speedup.
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Figure 3.7: Parallel speedup of CI+MBPT calculations for Db for multiple threads on a single
node on Gadi. The calculation was run with one MPI process (binding per node) and multiple
OpenMP processes. Here, we use the formula Speedup = Tserial
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The profile in figure 3.6 shows two obvious scalability bottlenecks. First, the one-body MBPT
integrals do not currently have any OpenMP parallelism. Initially, this function did not seem
to take up a large enough percentage of the execution time to warrant adding OpenMP; it was
a small enough fraction to not even appear in the profiles in figures 3.2 and 3.3. However,
the proportion of the run-time taken up by the obvious hotspots (such as two-body MBPT
integrals) decreased after they were parallelised, thus shifting the bottlenecks to these smaller,
serial sections of the code.

Secondly, the OpenMP overhead when calculating the two-body Slater integrals is quite large
within that subroutine, and can potentially become significant for systems which spend a large
proportion of their time calculating Slater integrals compared to generating the CI matrix (for
example, two-electron systems where MBPT corrections are less important, such as helium).
Even in dubnium, where the Slater integrals are a relatively small percentage of the calculation,
this overhead still limits scalability when dealing with a large number of OpenMP threads.

There is an additional limiting factor to the parallelism, which is not immediately obvious from
the profiling: duplicated work across MPI processes. By definition, any work which is not in some
way split between MPI processes will not contribute to the speedup when running across multiple
nodes, even if it is parallelised within the node via OpenMP. Currently, the subroutine to calculate
Slater integrals has no MPI parallelism, so must be calculated independently and in full by every
node. The fact that it is serial from the perspective of multi-node parallelism, combined with its
large OpenMP overhead, indicates that the Slater integrals subroutine is probably responsible
for the parallel speedup levelling off at 86 for the relatively small calculation size of nine nodes.

The rest of this thesis consists of atomic structure calculations using ambit, both to validate the
numerical accuracy and convergence of the new, parallel version of ambit, as well as calculations
carried out to assist current and future experimental projects.
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Chapter Four

Calculations: Benchmarks — Cr+ and
Db

4.1 Cr+

Disclaimer: This section is taken mostly verbatim from the Computer Physics Communications
paper on ambit [94], on which I am the primary author.

In this section, I will present results of a full CI+MBPT calculation for the spectrum of Cr+

using the MPI+OpenMP version of ambit. This calculation first appeared in Ref. [94] as an
example of the usage of ambit, but also serves as a powerful benchmark for the accuracy and
scalability of our code, since Cr+ is a five-electron system which requires a large CI basis and
both core- and valence-MBPT corrections in order to produce an accurate spectrum.

These calculations utilise emu CI and demonstrate that this technique allows for significantly
higher accuracy than the previous best calculations, using the MPI-only version of ambit [102].

Energy levels from these calculations are shown in table 4.1, along with comparison with exper-
imental spectra from [146].

4.1.1 Dirac-Fock and B-spline basis

The calculation presented in this section was undertaken using a V N Dirac-Fock potential, includ-
ing all 3d5 valence electrons in the DF potential. This choice of potential necessarily introduces
subtraction diagrams to MBPT, but these did not significantly degrade the accuracy of the cal-
culations due to the large-CI basis employed throughout. We generated a frozen core consisting
of filled 1s, 2s, 2p, 3s and 3p shells and included 3d valence orbitals above the Fermi level, as
described in chapter 2. Additionally, we generate all single-particle B-Spline orbitals up to 16spdf
for pure CI and 30spdfg for MBPT using the V N Dirac-Fock operator.

The choice of V N potential produces 3d orbitals which are spectroscopic for the 3d5 configuration,
but which are less accurate at treating the 3d4 4s configurations. Forming 3d orbitals with five
electrons results in a Dirac-Fock wavefunction which is less tightly bound to the nucleus and thus
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has higher energy than the corresponding 3d4 DF orbital. Although this means our calculations
tend to underestimate the energy of the levels with 3d4 4s configuration, we find that use of the
V N−1 potential is much more slowly convergent for the ground-state 3d5 wavefunction, resulting
in significantly reduced accuracy compared to our choice of V N potential.

4.1.2 Large-scale calculation

The large-scale calculation targets even-parity states with J = 1/2, 3/2, 5/2, 7/2, 9/2. First, we
choose the leading-configurations (from which the electrons will be excited to form the CI basis)
according to the following rules of thumb:

1. Start with all configurations of experimental/theoretical interest.

2. Add all configurations which can be reached by one-electron excitations from the reference
configurations such that ∆l = ±1 (i.e. dipole-allowed transitions) and n = 0,±1.

3. Add all configurations which can be reached by two-electron excitation from the reference
configurations such that ∆l = ±1 (i.e. dipole allowed transitions) and n = 0,±1.

This process is a rough heuristic, but nonetheless tends to ensure that the most important
configurations are included when building the CI matrix, due to the large contributions from
dipole-accessible states. However, each set of leading configurations introduced by this procedure
increases the computational cost of the CI-calculation (sometimes significantly when including
orbitals with large orbital angular momentum l), so we check the change in energy for small
CI-basis calculations after each step, and only keep the leading configurations which make large
contributions to the energy.

In the case of Cr+, we form the large-side from all single- and double- excitations from the 3d5,
3d44s and 3d44p leading configurations up to 15spdf. We shall refer to this kind of calculation as
emu CI. Including 3d44f in the leading configurations only changes the energy by a small amount
but significantly increases the size of the resulting CI matrix, so we have not included it.

We then form the small-side from all single-excitations up to 15spdf and single- and double-
excitations up to 5spdf, corresponding to all dipole-accessible transitions from the leading con-
figurations. Our tests indicate that increasing the limit on the maximum principal quantum
number n beyond 5 does not significantly improve the accuracy of the calculation.

See listing 3 for the full input file used to generate the emu CI-only spectrum.

Our approach accurately captures the important configurations in the CI expansion at the ex-
pense of significantly larger matrix sizes. The largest matrix (J = 5/2) has 374944 × 109779

non-zero elements and requires approximately 550GB of memory, which, while large, is still much
less than CI with a “full” matrix and is still within the capabilities of modern HPC clusters.

Table 4.1 shows the calculated spectra from these large-scale CI-only calculations, as well as the
effects of core-valence MBPT with a basis of 30spdfg. The CI-only calculations in table 4.1 give
excellent agreement with experiment, with average errors at the 1% level. However, somewhat
unexpectedly, the inclusion of MBPT slightly degrades the calculation’s accuracy. Further in-
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ID=CrII
Z=24

[Lattice]
NumPoints=1000
StartPoint=1.0e-6
EndPoint=60.0

[HF]
N=23
Configuration=’1s2 2s2 2p6 3s2 3p6 : 3d5’

[Basis]
--bspline-basis
ValenceBasis=15spdf
FrozenCore=3sp
BSpline/Rmax=60.0

[CI]
LeadingConfigurations=’3d5, 3d4 4s1, 3d4 4p1’
ElectronExcitations=2
HoleExcitations=0
EvenParityTwoJ=’1, 3, 5, 7, 9, 11’
NumSolutions=6

[CI/SmallSide]
LeadingConfigurations=’3d5, 3d4 4s1, 3d4 4p1’
ElectronExcitations=’1,15spdf, 2,5spdf’

Listing 3: AMBiT input file used to generate Cr+ emu CI.
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creasing the size of the MBPT basis via the MBPT/Basis does not increase the accuracy beyond
that of the CI-only calculation.

This behaviour suggests that CI+MBPT has qualitatively different convergence at regimes close
to saturation of the CI expansion for open-shell atoms, although we have not yet fully charac-
terised this phenomenon or its numerical cause. It could be the result of CI being more robust
against residual uncertainties in DF wavefunctions than the MBPT expansion, or of “large” (but
still < 1) MBPT diagrams hindering convergence, but a more detailed analysis of the conver-
gence properties will be needed to determine the cause and potential solution to this unexpected
numerical behaviour.

4.2 Db – CI+MBPT convergence

Disclaimer: This section includes some results and diagrams from Ref. [113]. I have not included
any of the written content from the paper, and new calculations using holes and triple-excitations
are entirely my own work.

Similarly to Cr+, neutral dubnium (Db, Z = 105) and tantalum (Ta, Z = 73) serve as an effective
benchmark of the computational scaling and accuracy of ambit – Db and Ta are both open-shell
systems with five valence electrons, but are neutral systems, and thus have relatively higher
contributions from electron correlation than the Cr+ ion, in addition to larger relativistic effects
due to their higher nuclear charge. Unless otherwise specified, the results in this section were
previously published in Ref. [113] - where we showed that the combination of emu CI+MBPT
with my work overhauling the parallelism in ambit allowed us to reach full saturation of the CI
basis in these complicated systems.

Figures 4.1 and 4.2 show the convergence of CI+MBPT calculations in Ta for even- and odd-
parity states, respectively. In both figures, the limit for single- and double-excitations on the
large-side of the CI-matrix, as well as single-excitations on the small-side, was raised from 11spdf
to 21spdf, while the small-side was set to include only double-excitations up to 6sp5d. The MBPT
basis was also kept constant at 30spdfgh.

For both parities, we see that the CI+MBPT energies for low-lying states monotonically converge
to the “saturated value” with the relative difference between the energies for successive matrix
sizes (e.g. moving from 19spdf to 21spdf) rapidly converging to below 1%, indicating that further
increasing the maximum PQN in the basis would not increase the accuracy of the calculations
any further. Finally, the CI-energies change by less than 1% when including the full CI matrix
(i.e. without the emu CI approximation) 1, indicating that the approach to constructing the
small-side outlined here and in the previous section effectively captures the most important
configurations in the CI-expansion.

The convergence graphs in figures 4.1 and 4.2 demonstrate that we can actually reach saturation
of the CI+MBPT expansion for single- and double-excitations without exhausting our computa-
tional resources. Reaching saturations would not have been possible without the OpenMP work

1The term "full CI" here does not imply that we have included all atomic electrons and excitations, like it
does in computational chemistry texts
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Table 4.1: Energy levels of Cr+ (in cm−1) for large-scale emu CI calculation. The “large-side” of
the matrix contains single- and double-excitations up to 16spdf, while the “small-side” contains
single-excitations up to 15spdf and single- and double-double-excitations up to 5spdf. The first
and second columns give the nonrelativistic configuration and approximate LS-coupling term for
each calculated level. The ECI and ∆CI columns give the (excitation) energies and difference from
experimental values as calculated using a CI-only approach. The EMBPT and ∆MBPT columns
show the same comparison for CI+MBPT. The experimental values [146] are shown under EExpt.

Configuration Term ECI ∆CI (%) ECI+MBPT ∆CI+MBPT (%) EExpt

3d5 6S5/2 0 – 0 – 0
3d4 4s 6D1/2 11956 0.05 11237 6.1 11962
3d4 4s 6D3/2 12072 -0.3 11341 5.7 12033
3d4 4s 6D5/2 12265 -1.0 11512 5.2 12148
3d4 4s 6D7/2 12531 -1.8 11750 4.5 12304
3d4 4s 6D9/2 12867 -3.0 12048 3.6 12496
3d4 4s 4D1/2 19441 0.4 19605 -0.4 19528
3d4 4s 4D3/2 19624 0.04 19771 -0.7 19631
3d4 4s 4D5/2 19921 -0.6 20043 -1.2 19798
3d4 4s 4D7/2 20320 1.5 20398 1.9 20024

I described in section 3: these calculations required ∼ 200GB or memory distributed across
multiple nodes using hybrid MPI+OpenMP parallelism, but would require in excess of 900GB
per node to utilise all allocated CPUs if we were to attempt this using only MPI.

The convergence and saturation of the CI basis when using single- and double-excitations does
not necessarily imply that we have perfectly characterised the system, however. The energy
levels for Ta in Ref. [113] disagree with experimentally determined spectra from Ref. [147] by an
average of -1500 cm−1 (or ∼ 14.5%) for even-parity levels and 1773 cm−1 (or ∼ 14%) for odd-
parity states. However, this is only the average accuracy — some states, notably the even-parity
levels in the fine-structure splitting of the 6s25d3 ground-state configuration, achieve accuracies
on the level of 1%. This indicates that even though the CI energy might not change appreciably
by the addition of more configurations (to either the small or large side), it’s still possible that
we have missed important contributions from, say, triple- or quadruple-excitations, or that we
may need to open up the core to hole-excitations out of the 5f shell. As I will show in the rest of
this chapter, such effects are marginal when compared to the increased cost of including them in
the calculation. My estimates of these two effects show that they are not likely to have a large
enough effect to be worth the extra cost of including, however.

Small-scale calculations where I have only included orbitals up to 11spdf indicate that the in-
clusion of triple-excitations when construction the large-side of the emu CI matrix changes the
energy by < 1% for both even and odd parity states in both Ta and Db, while blowing up the
memory usage to 480GB — more than double that of the saturated CI calculations with excita-
tions up to 21spdf. On the other hand, including triple excitations up to 9spd on the small-side
of the matrix changes the CI energy levels by an average of ∼ 1% compared to CI with singles
and doubles, but causes the memory usage to increase even further to 587GB, necessitating the
use of either specialised node types with large pools of memory or four full normal nodes on
NCI’s Gadi cluster (each normal node has 190GB of memory).
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Figure 4.1: CI+MBPT convergence behaviour of low-lying even-parity states in neutral Ta as the
CI-basis is increased from 11spdf to 21spdf. Open shapes denote the results of the largest non-
Emu CI (i.e. full-matrix) calculations. Figure originally published in Ref. [113] and reproduced
with permission.
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Figure 4.2: CI+MBPT convergence behaviour of low-lying odd-parity states in neutral Ta as the
CI-basis is increased from 11spdf to 21spdf. Open shapes denote the results of the largest non-
Emu CI (i.e. full-matrix) calculations. Figure originally published in Ref. [113] and reproduced
with permission.
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Given the large memory requirements, it was not feasible to test the accuracy of triple-excitation
calculations with larger basis sets, but given the relatively small contribution of low-lying triple-
excitations it is unlikely that including triples in a full-size calculation would significantly improve
the accuracy beyond that of the calculations in Ref. [113].

Quantifying the effect of including valence-holes on CI convergence is more difficult, as it causes
the CI matrix to rapidly reach unmanageable sizes, even with the OpenMP improvements. The
nf shell is the closest filled shell to the Fermi level and is going to have the largest contribution
to the CI energy, but will have a large number of CSFs for even single-hole excitations due to
the large number of angular momentum sub-levels in orbitals with large l.

Small single-hole CI+MBPT calculations in Db and Ta, where I allowed excitations up to 11spdf
on the large side of the matrix, change the energy by an average of ∼ 2% for even parity-states
and ∼ 5% for odd-parity states. This indicates that including core-excitations does marginally
increase the accuracy beyond the closed-core CI+MBPT, but even this relatively small hole-CI
calculation required 2.4TB of memory, so a larger calculation would be extremely challenging
to perform. Consequently, it is only worth including hole-excitations in the CI expansion if ex-
tremely high-precision is required. They were not necessary to calculate the field-shift coefficients
in Ref. [113] to a satisfactory accuracy.

However, it is worth stressing that, in principal, the MPI+OpenMP parallelism in ambit allows
these expensive hole-CI calculations to be carried out on HPC clusters. Terabytes of memory
consumption is large, but not outside the computational resources available on modern HPC
clusters. It would have been effectively impossible to carry out these triple-excitation and hole-
CI calculations under the MPI-only paradigm, as the code could not scale to the large numbers
of nodes necessary to treat the extremely large bases.

4.3 Conclusion

The benchmark calculations in this chapter show that not only does ambit scale very effectively
to large CI+MBPT calculations across multiple nodes, it can handle basis sizes large enough to
numerically saturate CI calculations in complicated, open-shell systems. Furthermore, the close
accuracy between calculations and tabulated experimental values of the spectra of Cr+ and Ta
show that we are able to treat challenging five-valent systems at the sub-10% and even sub-1%

accuracy level necessary to support experimental and industrial applications. The remaining
chapters in this thesis will detail calculations which are more directly motivated by experimental
concerns, but which still require large-scale parallel calculations.
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Chapter Five

Calculations: Tin highly-charged ions

5.1 Experimental motivation

A rapidly advancing industrial application of highly-charged ions is the use of atomic plasmas
for photolithography in computer chip fabrication. Current chip manufacturing pipelines use
the process of photolithography, where device features are etched into the chip via UV light. A
detailed description of the mechanics of photolithography can be found in Refs. [148, 149] (the
broad details of the process have not changed much since the early days of computing), but for
the purposes of this chapter the key points are as follows:

• Features on the chip are delineated by a “mask”, which selectively blocks the incident UV
light from reaching a light-sensitive chemical layered on top of the semiconductor substrate.
The photosensitive chemical can then be treated to either selectively deposits a layer of
additional material in the mask pattern, or etch the mask pattern into the chip’s material
when exposed to the UV light.

• The masking process is limited by diffraction, so the minimum size of the etched features
is proportional to the wavelength of UV light.

• Smaller features are usually desirable, as it allows more logical functions to fit in the same
area of semiconductor, which, in very broad terms, roughly corresponds to a “faster” chip.

Consequently, it is desirable to UV light with the smallest wavelength possible when etching the
chip features 1.

One successful approach to extreme ultraviolet (EUV) photolithography relies on the fact that
tin plasmas (Sn, Z = 50) have a very strong emission peak at around 13.5 nm, which in turn is the
shortest wavelength of light which can be easily focused using multilayer mirror optics [150]. This
relatively strong emission peak is the result of a fortuitous clustering of transitions with the form
4p64dm →

(
4p64dm−14f + 4p54dm+1 + 4p64dm−15p

)
[50], which results in intense unresolved

1This analysis ignores limiting factors such as energy consumption, heat dissipation, dependability and cost
of computer systems, which impose their own limits on the chip feature size beyond the fundamental optical
considerations outlined here. Further discussion of such limits can be found in chapter 1 of ref [131].
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transition arrays in the sequence of Sn8+ to Sn14+ charge states. This charge state consistency
leads to highly-efficient production of EUV light suitable for photolithography [150, 50, 151].

The Mo/Si multilayer mirrors employed in EUV setups only have significant reflectivity for a
narrow < 0.5 nm band around the 13.5 nm target [152, 153], so any light from the plasma source
outside this wavelength is effectively wasted, as it will not be focused onto the lithography setup.
Consequently, it is crucial that the plasma process be tuned to maximise the production of
light within this narrow band of wavelengths. The plasma dynamics which govern EUV light
production are extremely complicated, depending on radiation-hydrodynamics over a large range
of time-scales; characteristics which require enormous computational resources to provide useful
modeling. Leaving aside general plasma dynamics (which are well outside the scope of this
thesis), atomic structure effects play an important role in determining emission profiles (both in
and out of band), as well as the opacity of the plasma [150]. The important transitions in highly-
ionised species of tin tend to have partially-filled 4d shells, as well as valence hole transitions
in the 4p shell — both of which are computationally challenging to model with spectroscopic
accuracy.

In this chapter, I will describe work I carried out with experimentalist colleagues at the Advanced
Center for Nanolithography (ARCNL) and elsewhere which constituted the first optical spec-
troscopy of the level structure of Sn7+ to Sn10+ ions, demonstrating the power of the CI+MBPT
method for these open-shell systems, as well as its close agreement with experimental results.

5.2 Theory and Calculations

Disclaimer: This section is taken in modified form from Ref. [49]. This is a multi-author
paper in collaboration with experimental colleagues at ARCNL and other institutes, however the
calculations and comparison to experiment are my own original work so I have included those
sections here in more-or-less unmodified form.

The detailed electronic structure of Sn7+–Sn10+ was calculated using the ab initio ambit code
which combines configuration interaction and many-body perturbation theory (CI+MBPT). Full
details of this method have been presented previously [100, 102, 96], here we explain some of the
physics and details relevant to the current calculations of tin ions. A more formal discussion,
including mathematical details, may be found in [100]. Atomic units (~ = me = e = 1) are used
throughout this section.

In all cases we start with a Dirac-Fock (relativistic Hartree-Fock) calculation in the V N ap-
proximation. In this approximation all N electrons of the tin ion are included in the self-
consistency procedure, creating a Dirac-Fock potential and electron orbitals that are optimised
for the [Kr] 4dm ground-state configuration. This is particularly important for this study be-
cause between m = 4 and 7, the 4d orbitals pass through the half-filled shell (4d5), in which the
exchange contribution is maximal. We will use Sn9+ (m = 5) as a working example.

A large orbital basis is then formed by diagonalising a set of B-splines [115, 116] on the Dirac-Fock

78



E.V. Kahl

operator

ĥDF = cα · p + (β − 1)mec
2 − Z

r
+ V N (r) (5.1)

The resulting basis is ordered by energy. The lowest few valence orbitals in each wave are
close to “spectroscopic”, while the higher energy orbitals, so-called pseudostates, include large
contributions from the continuum.

We now form a set of many-body configurations for the CI method. The CI basis includes
all configurations formed by allowing single and double excitations from the 4d5 ground-state
configuration up to 8spdf orbitals (i.e. including 5s – 8s, 5p – 8p, 4d – 8d, and 4f – 8f orbitals).
The configurations included in CI are within the subspace P ; all others are within the subspace
Q. For each configuration we generate a complete set of projections (specifying the total angular
momentum and projection of each electron in the configuration), which we diagonalise over the
Ĵ2 operator to obtain configuration state functions (CSFs). The CSFs are diagonal in total
angular momentum, projection, and relativistic configuration, and they form the CI basis which
we denote |I〉. All CSFs corresponding to configurations in the subspace P are included in CI.

We express the many-electron wavefunction ψ as a linear combination of CSFs from the subspace
P ,

ψ =
∑
I∈P

CI |I〉 .

where the CI are obtained from the matrix eigenvalue problem. The Hamiltonian for the CI
problem is

Ĥ = Ecore +
∑
i

ĥCI +
∑
i<j

1

|ri − rj |
(5.2)

where the indices i and j run over the valence electrons only. Note that the one-body operator
ĥCI is not equal to the Dirac-Fock operator: ĥCI has a potential term V Ncore due to the core
electrons only. Therefore the basis orbitals are not eigenvalues of the one-body CI operator,
which must then be included explicitly.

Because the size of the CI matrix grows rapidly with the inclusion of additional orbitals, we must
account for these configurations using many-body perturbation theory. The matrix-eigenvalue
equation for the combined CI+MBPT method in second-order of perturbation theory is

∑
J∈P

HIJ +
∑
M∈Q

〈I| Ĥ |M〉 〈M | Ĥ |J〉
E − EM

CJ = ECI (5.3)

where the CSFs |M〉 belong to configurations outside of the subspace P (they are in the subspace
Q, complementary to P ).

Because of the extremely large number of CSFs in the subspace Q, it is prohibitively expensive
computationally to modify all matrix elements HIJ directly. Instead, the CI+MBPT method
includes (5.3) by modifying the radial integrals of the one and two-body matrix elements [95].
The Slater-Condon rules for calculating matrix elements of Slater determinants ensure that this
is equivalent to (5.3), except for the energy denominator (this is a complex discussion beyond
the scope of this work, see [95, 123, 100]). Because in this work ĥDF 6= ĥCI we must include
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so-called ‘subtraction diagrams’ with terms proportional to ĥCI − ĥDF. These can become very
large when there are many valence electrons (since V Ncore−V N is large) but there is cancellation
between some of the largest subtraction diagrams and the three-body MBPT operator [102]. For
this reason it is important to include three-body operators when calculating these tin ions. An
alternative is to calculate the orbitals in the V N−m approximation (equal to V Ncore) as suggested
in [112], however in this case the orbitals are much further from spectroscopic and the CI basis
must be made much larger to correct them. In this work all one, two, and three-body second-
order diagrams are included.

Until recently, only core-valence correlations were taken into account using MBPT; these include
the effects of configurations |M〉 which include an excitation from the Ncore electrons. Recently
[96] showed that valence-valence correlations could also be included in the same manner. In
the current work we include valence-valence correlations with excited orbitals up to 30spdfg;
this includes the effect of configurations that have one or two pseudo-orbitals above 8spdf , but
which have no core excitations. In this work for the first time we include the valence-valence
subtraction diagrams presented in [96] (they vanished in that work because ĥDF was the same
as ĥCI).

Finally, Breit and Lamb shift corrections are included. The latter include the vacuum polarization
(Uehling) [68] and self-energy [67] corrections in the radiative potential formulation of Flambaum
and Ginges [66]. Because both of these effects originate near the nucleus, they have a fairly
constant ratio for all the levels we calculated.

Table 5.1: Energy levels of the Sn9+ 4d5 configuration (in cm−1) calculated by ambit CI+MBPT
code. The first column give the approximate LS-term of the calculated energy levels. The CI
values give the energy as calculated using only configuration interaction, while the Σcore, Σval,
Breit, and QED are the successive corrections to the CI energy by including core-valence MBPT,
valence-valence MBPT, Breit, and QED contributions, respectively. The total energy including
all corrections is also presented, as are the available experimentally determined values (see main
text).

Energy (cm−1)
Level CI Σcore Σval. Breit QED Total Exp

6S5/2 0 0 0 0 0 0 0
4G5/2 39469 -4203 -2141 284 -28 33381 33784
4G7/2 42840 -4593 -1833 11 -2 36421 36874
4G11/2 43706 -4676 -1756 -132 3 37145 37535
4G9/2 44212 -4606 -1734 -120 7 37759 38170
4P5/2 43692 -3649 -2067 60 -4 38032 38315
4P3/2 44398 -3174 -2316 138 -12 39035 39190
4P1/2 47021 -2711 -2281 32 -1 42060
4D7/2 51789 -4612 -2351 -98 8 44737 44915
4D5/2 55276 -3752 -2521 -106 10 48907
4D1/2 55286 -3812 -2310 -190 22 48996
4D3/2 56627 -3340 -2319 -241 25 50753
2I11/2 62330 -7093 -2270 -110 5 52863 53692
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Table 5.1: (continued)

Energy (cm−1)
Level CI Σcore Σval. Breit QED Total Exp

2I13/2 65768 -7344 -2186 -318 18 55937 56792
4F7/2 66988 -5849 -3102 60 -9 58088 58487
2D5/2 65152 -3732 -2808 -150 18 58479 58756
4F3/2 65795 -4189 -3004 -17 4 58588 58891
4F9/2 67897 -5777 -3104 -33 -2 58981 59417
4F5/2 71298 -4933 -2901 -193 20 63291 63643
2H9/2 74999 -5532 -3005 -207 17 66273 66824
2G7/2 75308 -4572 -3146 -292 27 67325 67698
2D3/2 76386 -4767 -3007 -325 34 68321
2F7/2 80012 -6786 -3048 -351 32 69859 70199
2F5/2 81165 -5771 -3713 -170 19 71529 71806
2H11/2 82714 -5812 -2746 -527 45 73674 74311
2F7/2 85363 -6347 -3651 -323 31 75073 75470
2G9/2 85188 -6283 -3135 -465 42 75347 75795
2F5/2 90363 -7289 -4328 -145 16 78616 78700
2S1/2 87288 -5338 -2910 -647 64 78457
2D3/2 99595 -6555 -4503 -149 18 88405 88649
2D5/2 102913 -6472 -4465 -373 37 91640 91927
2G9/2 111086 -8615 -4736 -273 23 97485 98217
2G7/2 112328 -8403 -4689 -341 32 98927 99649

Sn9+ has a half-filled 4d-shell, and for this ion the results are presented broken down into different
contributions (Table 5.1). The MBPT corrections are separated into core-valence contributions,
Σcore (which correspond to unfreezing of the 4sp3d core), and valence-valence contributions, Σval

(introduced in Ref. [96]), which account for configurations that include orbitals above 8spdf . The
column marked QED shows the vacuum polarization and self-energy corrections.

The Sn9+ and Sn10+ ions were treated with CI+MBPT calculations using only electron excita-
tions (the approach of Refs. [95, 100]). However, as the number of valence electrons increases, this
electron-only approach becomes inaccurate due to very large contributions from the subtraction
diagrams. To avoid this inaccuracy, the particle-hole CI+MBPT calculations are instead used
for the Sn7+ and Sn8+ ions. This approach, described in Ref. [96], places the Fermi level above
the 4d shell and treats the 4dm ground-state configuration as a corresponding number of valence
holes in an otherwise filled shell. That is, the one-body CI operator includes the potential due
to a completely filled 4d shell, V Ncore+10 .

At the CI level, the electron-only and particle-hole calculations produce identical spectra. How-
ever, the accuracy of the two approaches diverges substantially once MBPT correlations are in-
cluded. Electron-only CI+MBPT calculations are significantly less accurate for Sn8+ and Sn7+

ions due to the much larger contributions from subtraction diagrams than in the particle-hole
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calculations [96]. Consequently, all CI+MBPT results for Sn7+ and Sn8+ are calculated in the
particle-hole framework.

Table 5.2: Mean differences and standard deviation between our CI+MBPT calculations and
experiment for measured transitions in different Sn ions.

Ion ∆Eth-exp (eV)
Sn7+ −0.004± 0.014
Sn8+ −0.005± 0.023
Sn9+ −0.010± 0.026
Sn10+ −0.008± 0.034
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Figure 5.1: Grotrian diagrams for the ions Sn7+–Sn10+. Sn7+ energy levels are taken from [154],
whereas Sn8+–Sn10+ energy levels are results of this work (see Table 5.5). Red lines represent
results from ambit and blue levels represent experimentally determined levels. Some levels
were not experimentally accessible, so green levels represent levels which were obtained via the
method of orthogonal parameters (a semi-empirical fitting procedure). The arrows indicate
the transition that have been observed experimentally with optical spectroscopy. Red arrows
indicate transitions that are part of one or more Ritz combinations, which further confirm the
line identifications. [49]
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Table 5.3: Experimental vacuum wavelengths λexp and line intensities of the emissions of Sn7+

within its ground electronic configuration [Kr]4d7. The spectra were recorded at the acceleration
potential Vmax of 157V which yielded the maximum of the fluorescence. The intensities of the
experimental lines are given by the integral of the Gaussian fit, corrected for the grating efficiency.
The wavelengths λRitz are determined from the energy levels of Sn7+ given in Ref. [154], and the
transition probabilities gAij,cowan are calculated by the cowan code using the aforementioned
experimental energy levels. The wavelengths λCI+MBPT are calculated by the ambit CI+MBPT
code. The “Transition” column reports the lower and upper levels of the transitions as indicated
in Fig. 5.1. The approximate LS-terms of lower and uppers levels are given in the last column.
The numbers between brackets are used to distinguish between the different levels with the same
LSJ values. The superscript bl marks lines that are affected by blends with other transitions.

λexp Intensity λRitz gAij,cowan λCI+MBPT Transition Terms
(nm) (arb. units) (nm) (s−1) (nm) (see Fig. 5.1)
333.9bl 132 334.2 167 333.3 15-18 2F5/2-2D5/2(1)

374.5 271 374.8 375 372.9 1-11 4F7/2-2D5/2(2)

386.0 68 386.1 57 384.6 16-18 2F7/2-2D5/2(1)

441.9 142 441.8 262 444.0 0-6 4F9/2-2G9/2

454.3 12 454.2 66 455.0 1-8 4F7/2-2G7/2

492.2 69 492.2 44 495.8 2-10 4F5/2-4P3/2

536.0bl 35 535.9 32 537.5 2-8 4F5/2-2G7/2

660.9 116 661.6 170 668.3 6-13 2G9/2-2H9/2
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Table 5.4: Vacuum wavelengths and line intensities of the emission from the ions Sn8+–Sn10+,
determined at the acceleration potential Vmax that maximizes the ion fluorescence (found to
be the same for Sn8+ and Sn9+). The intensities of the experimental lines are given by the
integral of the Gaussian fit, corrected for the grating efficiency. The transition wavelengths
λorth are determined from the level energies calculated with the orthogonal parameters method
(Table 5.5). The transition probabilities gAij,cowan are determined with the cowan code using
the same level energies. The transition wavelengths λCI+MBPT are calculated by the ambit
CI+MBPT code. The “Transition” column refers to the Grotrian diagrams in Fig. 5.1, indicating
the lower and upper levels of the transition. The configuration and the approximate LS-coupling
terms of the transitions are given in the last two columns (the numbers in brackets distinguish
between different levels with the same LSJ values, supplementing a sequential index as defined
by Nielson and Koster [155]). The superscript bl indicates lines that are affected by blends with
other transitions, while the superscript D marks doubly assigned lines.

Ion Vmax λexp Intensity λorth gAij,cowan λCI+MBPT Transition Config. Term
symbol

(V) (nm) (arb. units) (nm) (s−1) (nm) (see
Fig. 5.1)

8+ 137 283.4 18 284 104 283.1 11-27 [Kr]4d6 3F4(2)-
3F4(1)

293.3 42 293 226 295.2 0-11 5D4-
3F4(2)

313.5 17 314 54 315.1 5-24 3H4-1F3

315.0 16 315 60 315.4 0-9 5D4-
3F3(2)

317.6 45 318 192 316.6 12-27 3G5-
3F4(1)

326.0 15 326 105 325.2 18-30 3D3-
3P2(1)

330.4 70 330 279 331.6 18-29 3D3-
3F3(1)

344.6 25 344 31 346.5 1-11 5D3-
3F4(2)

354.8 33 355 102 352.3 14-26 3P1(2)-
3P0(1)

360.2bl 43 360 120 363.5 17-28 3D2-
3F2(1)

374.5bl 271 374 131 374.6 1-9 5D3-
3F3(2)

381.2 36 381 65 381.3 2-10 5D2-
3F2(2)

392.1 24 392 78 392.2 18-27 3D3-
3F4(1)

404.6 60 404 239 405.7 0-5 5D4-
3H4

426.6 54 428 186 424.0 8-21 3H5-
1G4(2)

434.1 36 434 107 434.2 9-23 3F3(2)-
1D2(2)

460.9 138 461 315 454.5 1-6 5D3-
3P2(2)

505.7 38 505 107 507.3 23-30 1D2(2)-
3P2(1)

513.2bl 85 515 89 516.1 9-21 3F3(2)-
1G4(2)
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Table 5.4: (continued)

Ion Vmax λexp Intensity λorth gAij,cowan λCI+MBPT Transition Config. Term
symbol

(V) (nm) (arb. units) (nm) (s−1) (nm) (see
Fig. 5.1)

551.8 40 552 65 542.9 3-6 5D1-
3P2(2)

560.9 149 560 185 568.9 7-20 3H6-1I6
566.8 91 565 87 576.5 8-20 3H5-1I6
584.4D 118 585 62 599.1 6-18 3P2(2)-

3D3

584.4D 118 585 291 581.0 11-21 3F4(2)-
1G4(2)

9+ 137 261.0 66 261 304 262.9 0-5 [Kr]4d5 6S5/2-
4G5/2

272.0 53 272 418 273.8 3-24 4G11/2-
2H11/2

276.6 30 276 209 278.4 4-24 4G9/2-
2H11/2

296.0D 46 296 115 295.2 8-27 4D7/2-
2F5/2(1)

296.0D 46 296 149 299.6 0-1 6S5/2-
4G5/2

304.8 25 303 69 306.2 19-32 2H9/2-
2G7/2(1)

306.6bl 34 306 16 307.7 6-23 4P3/2-
2F5/2(2)

312.1 62 312 151 311.5 4-22 4G9/2-
2F7/2(1)

323.9 50 324 105 326.7 8-26 4D7/2-
2G9/2(2)

333.9bl 70 333 132 335.0 2-19 4G7/2-
2H9/2

338.7bl 219 339 222 338.2 4-20 4G9/2-
2G7/2(2)

349.1bl 271 349 297 350.7 4-19 4G9/2-
2H9/2

356.8 41 354 57 362.0 22-31 2F7/2(1)-
2G9/2(1)

395.5 64 394 131 398.1 8-22 4D7/2-
2F7/2(1)

398.3 68 398 86 396.7 1-16 4G5/2-
4F3/2

399.9 26 401 42 398.2 18-29 4F5/2-
2D3/2(2)

413.5 43 415 133 419.2 25-32 2F7/2(2)-
2G7/2(1)

438.9 46 439 155 442.7 8-20 4D7/2-
2G7/2(2)

439.7 34 441 109 446.2 25-31 2F7/2(2)-
2G9/2(1)

452.4 32 453 105 444.8 12-26 2I11/2-
2G9/2(2)
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Table 5.4: (continued)

Ion Vmax λexp Intensity λorth gAij,cowan λCI+MBPT Transition Config. Term
symbol

(V) (nm) (arb. units) (nm) (s−1) (nm) (see
Fig. 5.1)

457.0D 58 456 99 453.4 2-15 4G7/2-
2D5/2(3)

457.0D 58 456 82 458.0 3-17 4G11/2-
4F9/2

485.0bl 358 484 472 480.5 12-24 2I11/2-
2H11/2

489.2 414 489 562 489.1 5-15 4G5/2-
2D5/2(3)

492.2 107 492 69 491.9 4-14 4G9/2-
4F7/2

497.0 55 496 107 497.3 23-30 2F5/2(2)-
2D5/2(2)

501.4 167 502 339 496.6 15-27 2D5/2(3)-
2F5/2(1)

507.6 105 508 103 511.4 6-16 4P3/2-
4F3/2

570.8 76 569 151 563.8 13-24 2I13/2-
2H11/2

618.9 137 621 119 636.2 3-12 4G11/2-
2I11/2

10+ 217 283.7 13 283 278 283.0 15-27 [Kr]4d4 3F3(2)-
3F2(1)

284.7 18 285 114 286.3 3-15 5D3-
3F3(2)

286.0 33 286 163 287.4 4-16 5D4-
3D3

297.4D 15 297 110 298.8 1-10 5D1-
3F2(2)

297.4D 15 298 91 296.7 15-26 3F3(2)-
3F4(1)

300.5 15 300 73 300.2 3-13 5D3-
3P2(2)

328.1D 112 328 137 333.1 4-14 5D4-
3G4

328.1D 112 328 261 327.4 16-26 3D3-
3F4(1)

346.8 91 347 278 348.2 2-9 5D2-
3P1(2)

349.1bl 271 349 93 349.7 18-27 3D2-
3F2(1)

353.0 38 353 82 359.0 2-7 5D2-
3G3

361.9 14 361 95 363.1 19-27 3D1-
3F2(1)

367.7 145 368 227 374.6 4-12 5D4-
3F4(2)

383.7 28 384 84 378.0 5-19 3P0(2)-
3D1

392.7 68 392 124 390.6 9-22 3P1(2)-
1S0(2)
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Table 5.4: (continued)

Ion Vmax λexp Intensity λorth gAij,cowan λCI+MBPT Transition Config. Term
symbol

(V) (nm) (arb. units) (nm) (s−1) (nm) (see
Fig. 5.1)

407.4 38 408 87 402.4 8-21 3H5-
1G4(2)

421.8 26 421 139 428.3 1-5 5D1-
3P0(2)

450.5 18 450 88 444.7 21-28 1G4(2)-
3F3(1)

508.2 127 508 193 510.3 16-24 3D3-1F3

520.7 84 521 310 518.6 12-21 3F4(2)-
1G4(2)

524.2 17 525 45 516.5 21-26 1G4(2)-
3F4(1)

534.4 117 535 234 538.4 8-20 3H5-1I6
614.1D 95 614 102 643.9 4-6 5D4-

3H4

614.1D 95 616 106 616.1 16-23 3D3-
1D2(2)

628.3 69 630 116 626.8 14-21 3G4-
1G4(2)

639.9 157 642 201 642.9 11-20 3H6-1I6
689.5bl 85 690 164 697.0 15-21 3F3(2)-

1G4(2)

728.1 39 727 103 713.1 8-17 3H5-
3G5

Table 5.5: Energy levels of the Sn8+ 4d6, Sn9+ 4d5, and Sn10+ 4d4 configurations (in cm−1),
ordered according to their total energy, optimised with Kramida’s lopt algorithm [156] from
the measured magnetic dipole transitions. The levels are labeled by their approximate LS-
coupling terms; the numbers in brackets are used to differentiate between the different levels
with the same LSJ values, supplementing a sequential index as defined by Nielson and Koster
[155]. The uncertainties xj (j = 1 − 5) and y are estimated to be the root mean square of the
deviation of the orthogonal parameters fitting for the respective configuration: x1,2,3 = ±16 cm−1;
x4 = ±41 cm−1; x5 = y = ±14 cm−1. The dispersive energy uncertainty D1 is close to the
minimum uncertainty of separation from other levels, and the energy uncertainty D2 is that
relative to the ground level of the configuration (for the exact definition, see [156]). N is the
total number of lines connected to the level. Eorth values are the semi-empirical energy levels,
described further in Ref. [49]. The Eambit values are the energy levels calculated using the ambit
CI+MBPT code. The differences between the experimental energy levels and the calculated
values are presented in columns ∆Eorth (Eexp − Eorth) and ∆Eambit (Eexp − ECI+MBPT). The
energies determined from previous measurements on vacuum sparks [157] are reported in the
column Evs, along with the difference ∆Evs = Eexp − Evs. The uncertainties in the systematic
common shifts of the identified level groups zi (i = 1− 8) are quoted in [157] to be of the order
of several hundreds of cm−1 (see main text for further details). The uncertainty of the level
energies within each of the groups was estimated at 10 cm−1.

Ion Level Term Eexp D1 D2 N Eorth ∆Eorth Eambit ∆EambitEvs ∆Evs

8+
4d6

0 5D4 0 30 0 2 -5 5 0 0 0 0

1 5D3 5 075 13 30 3 5 064 11 5 011 64 5 050 25
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Table 5.5: (continued)

Ion Level Term Eexp D1 D2 N Eorth ∆Eorth Eambit ∆EambitEvs ∆Evs

2 5D2 6 634+

x2

0 0 0 6 634 0 6 626 8 6 670+

z1

-36

3 5D1 8 648 13 40 1 8 636 12 8 593 55 8 670+

z1

-22

4 5D0 9 345 9 307
5 3H4 24 716 24 24 1 24 726 10 24 651 65 24 685+

z2

31

6 3P2(2) 26 785 16 40 2 26 771 14 27 011 -226
7 3H6 27 592 13 43 1 27 604 -12 27 270 322 27 610+

z2

-18

8 3H5 27 778 22 39 1 27 781 -3 27 503 275 27 710+

z2

68

9 3F3(2) 31 740 12 30 4 31 736 4 31 709 31 31 747+

z3

-7

10 3F2(2) 32 847+

x2

28 28 1 32 847 0 32 855 -8 33 028+

z3

-181

11 3F4(2) 34 103 11 30 4 34 102 1 33 873 230 34 220+

z2

-117

12 3G5 37 908 40 59 1 37 930 -22 37 616 292 37 950+

z2

-42

13 1S0(4) 38 532 38 684
14 3P1(2) 38 694+

x1

0 0 0 38 694 0 38 903 -209

15 3G4 39 872 39 674 39 609+

z2
16 3G3 41 548 41 310
17 3D2 42 340+

x3

0 0 0 42 340 0 42 287 53 41 787+

z2

553

18 3D3 43 879 17 40 3 43 887 -8 43 704 175
19 3D1 45 061 44 847
20 1I6 45 421 13 41 1 45 399 22 45 032 389 45 440+

z2

-19

21 1G4(2) 51 219 11 30 2 51 217 2 51 085 134 50 840+

z4

379

22 3P0(2) 54 202 54 250
23 1D2(2) 54 777 13 40 2 54 795 -18 54 742 35
24 1F3 56 613 41 47 1 56 586 27 56 385 228
25 3P1(1) 65 561 65 611
26 3P0(1) 66 874+

x1

32 32 1 66 875 -1 67 067 -193

27 3F4(1) 69 394 23 40 2 69 401 -7 69 198 196 68 566+

z2

828

28 3F2(1) 70 006+

x3

31 31 1 70 006 1 69 800 206

29 3F3(1) 74 146 37 54 1 74 144 2 73 860 286 73 385+

z2

761

30 3P2(1) 74 552 14 40 2 74 548 4 74 454 98
31 1G4(1) 79 767 79 565 79 186+

z2
32 1D2(1) 101 675 101 319 99 838+

z4
33 1S0(1) 131 838 131 874 130 008+

z4
9+
4d5

0 6S5/2 0 59 0 1 -17 17 0 0 0 0

89



Calculations: Tin highly-charged ions

Table 5.5: (continued)

Ion Level Term Eexp D1 D2 N Eorth ∆Eorth Eambit ∆EambitEvs ∆Evs

1 4G5/2 33 784 61 61 1 33 748 36 33 382 402 33 582+

z5

202

2 4G7/2 36 874 21 70 2 36 834 40 36 422 452 36 610+

z5

264

3 4G11/2 37 535 10 90 2 37 576 -41 37 145 390 37 399+

z5

136

4 4G9/2 38 170 20 80 4 38 173 -3 37 759 411 37 958+

z5

212

5 4G5/2 38 315 16 59 1 38 282 33 38 031 284 38 110+

z5

205

6 4P3/2 39 190 16 68 1 39 183 7 39 035 155 39 010+

z5

180

7 4P1/2 42 159 42 061
8 4D7/2 44 915 15 80 4 44 958 -43 44 737 178 44 470+

z5

445

9 4D5/2 49 065 48 907
10 4D1/2 49 104 48 996
11 4D3/2 50 861 50 753
12 2I11/2 53 692 8 80 3 53 685 7 52 862 830 53 554+

z5

138

13 2I13/2 56 792 12 83 1 56 765 27 55 937 855 56 660+

z5

132

14 4F7/2 58 487 16 77 1 58 491 -4 58 088 399 58 300+

z5

187

15 2D5/2(3)58 756 14 60 2 58 721 35 58 479 277 58 370+

z5

386

16 4F3/2 58 891 25 66 1 58 848 43 58 589 302
17 4F9/2 59 417 28 87 1 59 469 -52 58 982 435 58 850+

z5

567

18 4F5/2 63 643+

x4

0 0 0 63 643 0 63 291 352

19 2H9/2 66 824 22 70 3 66 846 -22 66 273 551 66 427+

z5

397

20 2G7/2(2)67 698 18 80 2 67 687 11 67 326 372 66 975+

z5

723

21 2D3/2(3) 68 584 68 322
22 2F7/2(1) 70 199 18 80 3 70 228 -29 69 858 341 70 185+

z5

14

23 2F5/2(2) 71 806 43 80 1 71 837 -31 71 530 276
24 2H11/2 74 311 16 80 3 74 338 -27 73 673 638 74 195+

z5

116

25 2F7/2(2) 75 470 16 80 2 75 423 47 75 073 397 74 385+

z5

1 085

26 2G9/2(2)75 795 18 80 2 75 816 -21 75 347 448 75 345+

z5

450

27 2F5/2(1) 78 700 16 60 2 78 654 46 78 617 83
28 2S1/2 78 719 78 456
29 2D3/2(2)88 649+

x4

25 25 1 88 702 -53 88 405 244

30 2D5/2(2)91 927 16 81 1 91 976 -49 91 640 287 90 911+

z5

1 016

31 2G9/2(1)98 217 18 80 2 98 228 -11 97 484 733 96 800+

z5

1 417

32 2G7/2(1)99 649 21 80 2 99 568 81 98 926 723 98 277+

z5

1 372
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Table 5.5: (continued)

Ion Level Term Eexp D1 D2 N Eorth ∆Eorth Eambit ∆EambitEvs ∆Evs

33 2P3/2 114 830 114 351
34 2P1/2 117 607 117 122
35 2D5/2(1) 128 906 128 281
36 2D3/2(1) 130 802 130 180

10+
4d4

0 5D0 0 + y 0 0 0 0 0 0 0 0 0

1 5D1 3 043 22 0 1 3 043 0 3 141 -98 3 035 8
2 5D2 6 590+

x5

0 0 0 6 590 0 6 717 -127 6 545 45

3 5D3 10 073 49 84 1 10 054 19 10 213 -140 10 005 68
4 5D4 13 300 24 70 3 13 315 -15 13 516 -216 13 280 20
5 3P0(2) 26 752 27 23 1 26 750 2 26 490 262
6 3H4 29 584 15 75 1 29 589 -5 29 046 538 29 380+

z6

204

7 3G3 34 918+

x5

32 32 1 34 899 19 34 573 345 34 630+

z6

288

8 3H5 35 147 24 73 1 35 143 4 34 639 508 34 814+

z7

333

9 3P1(2) 35 425+

x5

33 33 1 35 429 -4 35 438 -13 35 048+

z6

377

10 3F2(2) 36 669 61 61 1 36 666 3 36 613 56 36 297+

z6

372

11 3H6 38 232 10 70 1 38 226 6 37 656 576 37 890+

z7

342

12 3F4(2) 40 490 13 70 2 40 475 15 40 208 282 40 130+

z7

360

13 3P2(2) 43 351 44 95 1 43 377 -26 43 530 -179 42 898+

z6

453

14 3G4 43 777 10 70 2 43 765 12 43 539 238 43 710+

z7

67

15 3F3(2) 45 197 8 70 2 45 196 1 45 146 51 44 766+

z7

431

16 3D3 48 279 35 80 2 48 263 16 48 310 -31 47 850+

z7

429

17 3G5 48 881 8 73 1 48 893 -12 48 663 218 48 480+

z7

401

18 3D2 51 801 30 60 1 51 808 -7 51 885 -84
19 3D1 52 814 31 35 1 52 806 8 52 945 -131
20 1I6 53 860 14 74 1 53 867 -7 53 211 649 53 475+

z7

385

21 1G4(2) 59 693 6 70 4 59 684 9 59 493 200
22 1S0(2) 60 890+

x5

26 42 1 60 870 20 61 041 -151

23 1D2(2) 64 563 15 80 1 64 549 14 64 542 21
24 1F3 67 957 16 80 1 67 958 -1 67 907 50 66 757+

z8

1 200

25 3P2(1) 75 662 75 823
26 3F4(1) 78 771 14 70 3 78 777 -6 78 854 -83
27 3F2(1) 80 446 50 47 1 80 445 1 80 484 -38
28 3F3(1) 81 891 20 71 1 81 881 10 81 982 -91 80 207+

z8

1 684

29 3P1(1) 82 941 83 107
30 3P0(1) 86 664 86 851
31 1G4(1) 89 965 89 627
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Table 5.5: (continued)

Ion Level Term Eexp D1 D2 N Eorth ∆Eorth Eambit ∆EambitEvs ∆Evs

32 1D2(1) 112 401 112 544
33 1S0(1) 144 549 145 002

5.3 Comparison with experimental results

The final results are presented in Tables 5.2, 5.3, 5.4, and 5.5, where predicted energy levels and
transition wavelengths calculated via ambit are compared to experimentally measured values
(as presented in [49]). These results are also presented graphically in figure 5.1, which contains
Grotrian diagrams for the theoretical and experimental levels of the ions Sn7+ – Sn10+. We
restricted our calculations to the fine-structure levels of the ground-state configuration for each
ions, of which there were a huge number due to the open d-shells in each ion.

Table 5.2 shows the average differences between the CI+MBPT and experimentally measured
energy levels. Calculations for all Sn ions differ by less than 1% on average, showing that we
have both correctly identified the levels and included all of the important terms in the CI and
MBPT expansions. This can be seen much more neatly in the Grotrian diagrams in figure 5.1,
where we can clearly see that our CI+MBPT calculations did not miss a single experimentally
accessible level, and we have very close agreement between theory and experiment for all levels
(not just on average).

The very good agreement between theory and experiment in this section validates the predictive
power of CI+MBPT, particularly the valence-valence MBPT method implemented in ambit.
Valence-valence MBPT provides a high level of accuracy for relatively little computational cost,
particularly in highly-charged ions important for tin plasma dynamics, where the large spacing
between atomic orbitals ensures rapid convergence of the MBPT expansion. ambit has also been
used further studies of the electronic structure of tin ions in, for example, Refs. [158, 159]
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Chapter Six

Calculations: Lr+ and Lu+

Disclaimer: This chapter was previously published in Ref. [160], as part of a collaboration to
guide experimental studies of the spectrum of lawrencium. I was lead author on the paper and
performed the CI+MBPT calculations and data analysis. The FSCC and QEDMOD calculations
were carried out by A. Borschevsky, the outline of the proposed experiment was provided by M.
Laatiaoui, and my co-authors also contributed edits and small amounts of content to the paper.
I have include it in this chapter, slightly modified for readability and consistency with the rest of
this thesis.

6.1 Introduction

The study of the transfermium elements (Z>100) lies at the frontier of contemporary nuclear
and atomic physics research. The element synthesis itself provides a fertile terrain for studying
effective interactions and nuclear matter under extreme conditions. Experimental shell gaps and
single particle energies can be obtained from nuclear spectroscopy, which helps to improve model
predictions for next spherical shell closures in the nuclear map: the location of the island of
stability of superheavy elements.

Optical spectroscopy gives access to the atomic structure and provides insights into fundamental
physics such as relativistic, correlation, and quantum electrodynamic (QED) effects. In addition,
it can provide complementary information on single-particle and collective properties of atomic
nuclei via hyperfine structure measurements. Such studies are continuously applied to ever
heavier elements and are penetrating territories of the map that were previously inaccessible
[161]. A good example of this is the recent laser spectroscopy of the element nobelium (Z = 102)
[61], which demonstrated the technical feasibility despite a complete lack of tabulated spectral
lines and production yields from nuclear fusion reactions of about one atom per second. These
experiments have clearly shown how atomic modelling can efficiently support and guide atomic
structure investigations and, in particular, that experiments and theory have to be pursued hand
in hand. Current developments target the next heavier element, lawrencium (Z = 103), in its
neutral and singly charged states from both theory and experimental view points.

The planned experiments will attempt to optically excite Lr in a supersonic gas-jet: the Lr
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atoms are produced with high-energy from fusion reactions and are stopped and thermalised in
a buffer gas cell. The gas-jet method enables to accelerate the lawrencium-buffer gas mixture
into a low-pressure and low-temperature jet. This in turn allows to reduce collisional broadening
and thus to increase the experimental resolution [161, 162]. Previous experiments proved that
the gas mixture contains both atomic species, neutral as well as singly ionised Lr, wherein the
fraction of the ions substantially dominates the sample composition under typical experimental
conditions [163, 164]. For both species, due to the extremely low production yields, highly precise
theoretical predictions of the spectral lines are required to develop excitation schemes and to
narrow down the search window to be able to pinpoint the ground-state transitions. Moreover,
predictions of lifetimes and branching ratios are needed to quantify experimental parameters
such as required detector sensitivities and beam times.

In this work we provide high accuracy prediction of the energies and the g-factors of the low-
lying excited states of Lr+, along with transition rates and branching ratios between the different
states. The calculations are performed within two complementary state-of-the-art relativistic
approaches: the Fock space coupled cluster (FSCC) method [165, 166], and the configuration
interaction approach combined with many-body perturbation theory method (CI+MBPT) [95].
In order to estimate the accuracy of our predictions for Lr+, analogous calculations were per-
formed for its lighter homologue, Lu+, where we can compare the results of our calculations to
experimental values.

While numerous predictions were reported for neutral Lr, to the best of our knowledge, no
experimental and only three prior theoretical studies of atomic properties of Lr+ are available.
Dzuba et al [167] calculated the first to the third ionization potentials of Lr using a linearised CI +
all-order approach, while Cao and Dolg [168] calculated the first to the fourth ionization potentials
of Lr using relativistic ab initio pseudopotentials combined with the complete active space self-
consistent field method and corrected for spin-orbit effects. In a much earlier publication, Fraga
presented a Hartree-Fock investigation of this system [169]; however, in that work, the ground
state of Lr+ was misidentified as 6d2.

6.2 Methods and Computational Details

All the calculations were carried out within the framework of the projected Dirac-Coulomb-Breit
(DCB) Hamiltonian [170] (atomic units ~ = me = e = 1 are used throughout this work),

HDCB =
∑
i

hD(i) +
∑
i<j

(1/rij +Bij). (6.1)

Here, hD is the one electron Dirac Hamiltonian,

hD(i) = cαi · pi + c2(βi − 1) + Vnuc(i), (6.2)

where α and β are the four-dimensional Dirac matrices. The nuclear potential Vnuc takes into
account the finite size of the nucleus. The two-electron term includes the nonrelativistic electron
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repulsion and the frequency independent Breit operator,

Bij = − 1

2rij
[αi ·αj + (αi · rij)(αj · rij)/r2ij ], (6.3)

and is correct to second order in the fine structure constant α.

6.3 FSCC

We have calculated the transition energies of Lr+ and its lighter homologue Lu+ using the
relativistic multireference valence universal FSCC method, described in detail in Refs. [165, 166]
and implemented in TRAFS-3C [171]. This approach has demonstrated a high degree of accuracy
when treating heavy atomic systems; see, for example, Ref. [172]. Its particular advantage is
the possibility of obtaining a large number of energy levels; it is therefore very well suited for
calculating excitation spectra.

Our calculations start by solving the relativistic Hartree-Fock equations and correlating the
closed-shell reference states for Lr3+ and Lu3+, which correspond to closed shell configurations.
After the first stage of the calculation, two electrons were added, one at a time, to obtain the
singly ionised atoms. At each stage of the calculations the appropriate coupled cluster equations
were solved iteratively. To achieve optimal accuracy, large model spaces were used, going up
to 13s11p9d8f6g5h for Lu+ and 14s12p10d9f6g5h for Lr+, and the convergence of transition
energies with respect to the model space size was verified. In order to allow the use of such large
model spaces without encountering convergence difficulties in the coupled cluster iterations,
the FSCC calculations were augmented by the extrapolated intermediate Hamiltonian approach
(XIH) [173].

The uncontracted universal basis set [174] was used, consisting of even-tempered Gaussian type
orbitals, with exponents given by

ξn = γδ(n−1), γ = 106 111 395.371 615 (6.4)

δ = 0.486 752 256 286.

The basis set used for both ions consists of 37 s (n=1–37), 31 p (n=5–35), 26 d (n=9–34), 21
f (n=13–33), 16 g (n=17–32), 11 h (n=21–31), and 6 i (n=25–30) functions. The outer 60
electrons of Lu+ and 74 electrons of Lr+ were correlated, and virtual orbitals with energies over
200 a.u. were omitted. The FSCC calculations were performed using the Tel-Aviv Relativistic
Atomic Fock Space coupled cluster code (TRAFS-3C), written by E. Eliav, U. Kaldor and Y.
Ishikawa.

To account for the QED corrections to the transition energies we applied the model Lamb
shift operator (MLSO) of Shabaev et al [175] to the atomic no-virtual-pair many-body DCB
Hamiltonian as implemented into the QEDMOD program [175]. Our implementation of the
MLSO formalism into the Tel Aviv atomic computational package allows us to obtain the vacuum
polarization and self energy contributions beyond the usual mean-field level, namely at the Dirac-
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Coulomb-Breit Fock-Space Coupled Cluster with Single- and Double-excitations (DCB-FSCCSD)
level.

6.4 CI+MBPT

Our calculations of the transition lifetimes and branching ratios, as well as the Landè g-factors
for the excited states of Lr+ and Lu+ were performed using the relativistic configuration inter-
action approach augmented with many-body perturbation theory method, via the ambit atomic
structure software [94]. We also present the transition energies calculated via this approach.
The full details of this process have been extensively discussed elsewhere (see, for example Refs.
[94, 95, 96, 100, 49, 113]), so we will only present a brief outline of the method here.

We start with a Dirac-Fock calculation in the V N−1 potential [176]; that is, all but one electron
in the atom are included in the self-consistency calculations. This results in a set of Dirac-Fock
orbitals which are optimised for states with a single electron-excitation (i.e. 6snl or 7snl for Lu+

and Lr+, respectively). Small-scale CI-only and CI+MBPT calculations showed that this choice
of potential produces closer agreement to experimental and FSCC energy levels than including
all N electrons in Dirac-Fock.

We generate a large basis of one-particle orbitals by diagonalising a set of B-splines over the
one-electron Dirac-Fock operator [115, 116]. We modify the operator to incorporate Lamb shift
corrections via the radiative potential method developed by Flambaum and Ginges [66], which
includes the self-energy [67] and vacuum polarisation [68] contributions (finite nuclear-size effects
are included using a Fermi distribution for nuclear charge). These corrections are propagated
throughout the rest of the calculation by modification of the radial CI (Slater) and MBPT
integrals.

Next, we use the B-spline basis functions to construct a set of many-electron configurations for the
CI expansion. We form the many-body functions by allowing all single and double excitations
from the 6s2/7s2 ground-state up to 16spdfg (i.e. excitations with n < 16, and 0 < l < 4).
We then take the Slater determinants with a given MJ corresponding to these excitations and
diagonalise the J2 operator to form configuration state functions (CSFs), which are used to form
the CI wavefunction via the standard CI eigenvalue problem [96].

We employ the emu CI method [113, 94] to significantly reduce the size of the CI eigenprob-
lem by exploiting the fact that the CI expansion is typically dominated by contributions from
Ndominant low-lying, dominant configurations. We divide the CI Hamiltonian matrix elements
into three classes: leading diagonal elements; off-diagonal matrix elements containing at least
one dominant configuration; and off-diagonal elements with no dominant configurations. The
contributions from the high-lying off-diagonal terms to the low-energy levels are small compared
to the dominant terms, and so can be set to zero without significant loss of accuracy [113, 129].
Typically Ndominant � NCI, so emu CI can significantly reduce the size of the CI matrix and
thus computational load when compared to standard CI.

For both Lr+ and Lu+, we construct the dominant configurations from all single excitations
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up to 16spdfg and single and double excitations up to 12spdfg; further increasing Ndominant

changes the energy levels by less than 0.01%, suggesting this threshold captures all important
configurations. In both systems, increasing the basis size beyond 16spdfg changes the energy by
∼ 1%, indicating that the CI component of our calculations are well converged.

Additionally, we include corrections from core-valence correlations to second-order via the dia-
grammatic MBPT technique described in Refs. [95, 100]. We have included all one- and two-body
diagrams with orbitals up to 35spdfghi (n ≤ 35, 0 ≤ l ≤ 6). The MBPT corrections are rapidly
convergent as more partial waves are added, and adding orbitals with l ≥ 7 to the MBPT basis
changes the energy by less than ∼ 50 cm−1. Consequently, the MBPT component of our calcu-
lation is also well-converged.

The resulting CI+MBPT wavefunctions are used to calculate the Landè g-factors and transition
matrix elements. We include only the lowest-order matrix element of the complete correlated
wavefunction. Transition lifetimes and branching ratios are derived from these matrix elements.
Our use of MBPT to account for core-valence correlations means that in principle the electro-
magnetic transition operators should be modified [177, 178]. The resulting effective operators
may be approximated by including higher-order corrections such as random-phase approxima-
tion, but these effects generally affect the matrix elements at well below our estimated precision
of 30% [98].

For Lu+ the experimental transition energy was used in the expression for Einstein coefficients,
while for Lr+ we used the calculated energies (our recommended values obtained from averaging
the FSCC and the CI+MBPT results, see Section III for further details).

6.5 Results

Table 6.1 contains the calculated ionization potential and transition energies of Lu+, obtained
with both approaches, along with the experimental energies. While many states are obtained in
the calculations, here we present only the 8 lowest levels (from the 5d6s and the 6s6p config-
urations) that correspond to experimentally relevant transitions in Lr+. Generally, the results
are in good agreement with experimental values, with average differences between theory and
experiment of −263 (348) cm−1 (where the number in brackets is the standard deviation of the
difference) for the FSCC approach, and 16 (389) cm−1 for CI+MBPT. The two methods are also
in good agreement with each other (average absolute difference of 278 (496) cm−1). We expect
similar accuracy for the calculated transition energies of the heavier homologue of Lu+, Lr+,
where no experimental data is yet available. The Breit interaction effect lowers the excitation
energies by 20 – 150 cm−1, depending on the level. The QED corrections from both the MLSO
formalism (for FSCC) and radiative potential method (for CI+MBPT) contribute between 100
– 200 cm−1, also lowering the energies. Table 6.1 also contains the calculated g-factors, which are
overall in good agreement with experiment, indicating that the CI+MBPT approach successfully
reproduces the character of the electronic wavefunction. A notable exception is the g-factor of
the 3P2 state, which is predicted to be 1.5, while the experimental value is reported as 1.66 [179]
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(an assignment that may be erroneous).

Table 6.2 contains the calculated ionization potential, excitation energies, and g-factors of the
lawrencium ion. In all cases the energies are significantly higher than the corresponding levels
in Lu+ (see Grotrian energy-level diagram for both Lu+ and Lr+ in Figure 1). This is due to
the relativistic stabilisation of the valence 7s shell in the heavier ion, which makes this system
more inert. The effect of the Breit interaction is higher in Lr+ than in Lu+, but the signs remain
the same. Similarly, QED corrections in Lr+ are slightly larger than in Lu+, but remain on the
order of 300 cm−1, and are negative for all the considered states. The order of levels obtained
using CI+MBPT and FSCC is the same, and the average difference between the two methods is
−47 (747) cm−1.

Table 6.2 also contains the recommended values for the excitation energies for the Lr+ ion. The
FSCC and CI+MBPT calculations have a comparable accuracy for Lu+, often bracketing the ex-
perimental values. We use this observation to propose recommended transition energies which we
calculate as the mean of the FSCC and CI+MBPT results. A conservative uncertainty estimate
is given by either the difference between the two calculated energies or the standard deviation
of the difference between the CI+MBPT and experimental energy levels for Lu+ (389 cm−1),
whichever is larger.

Einstein A coefficients (transition probabilities) for electric-dipole allowed (E1) transitions and
branching-ratios for the transitions between the 8 lowest states in Lu+ and for a number of other
transitions where experimental results are available are shown in Table 6.3.

Our calculated A values are mostly larger than experimental values tabulated in [180] by 10%−
30%, but the relative strengths are very well reproduced, and the strongest transitions are iden-
tified correctly. The results of our CI+MBPT calculations for Lr+ transitions are shown in Table
6.4. We expect a similar accuracy for the predicted Einstein coefficients and branching ratios
to that obtained for the lighter homologue Lu+. The 7s7p configurations can decay via electric
dipole transitions, however the even-parity 6d7s states can only decay via M1 or E2 transitions
to other even-parity states, for which the Einstein A coefficients are shown in Table 6.5.

The lifetimes of the Lr+ levels, calculated via the Einstein A-coefficients, are presented in Table
6.2. BecauseM1 and E2 transitions are slow, even-parity states have significantly longer lifetimes
than states which can decay via E1 transitions. In particular, the 6d7s 3D1 state can only decay
to the ground-state via a suppressed M1 transition, and so it has a lifetime of 2.2× 106 seconds,
or ∼25 days, which is several orders of magnitude longer than any of the other levels.

6.6 Summary and conclusion

We have calculated energies, g-factors, and lifetimes of several low-lying atomic levels in Lr+.
A good agreement between the calculated FSCC and CI+MBPT energies is achieved. Similar
calculations for the lighter homologue Lu+ support the high accuracy of both approaches. In view
of the prospects opened up by the forthcoming experiments, we identified two strong ground-
state transitions in Lr+, leading to 7s7p 3P1 and 7s7p 1P1 states at 31540 cm−1 and 47295 cm−1,
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Table 6.1: Ionization potential (top row), excitation energies, and g-factors of Lu+. The
CI+MBPT and FSCC calculations include the Breit and the QED corrections, the latter of
which is shown in a separate column for comparison between the two calculations. Only levels
relevant to the proposed Lr+ experiment are presented here.

g-factor Energy (cm−1)
State Exp. CI+MBPT FSCC ∆ QED CI+MBPT ∆ QED Exp. [179]

6s2 1S0 IP – – 112696 -100 – 111970
5d6s 3D1 0.5 0.52 12354 -158 11664 -144 11796

3D2 1.16 1.14 12985 -156 12380 -143 12432
3D3 1.33 1.41 14702 -148 14267 -134 14199
1D2 1.01 1.09 17892 -157 17875 -160 17332

6s6p 3P0 – – 27091 -103 27303 -105 27264
3P1 1.47 1.51 28440 -105 28520 -106 28503
3P2 1.50 1.66 32294 -89 32603 -97 32453
1P1 1.02 0.99 38464 -155 37385 -129 38223

Figure 6.1: Grotrian diagram of experimental energy levels for Lu+ (dashed, black) and recom-
mended calculated energy levels for Lr+ (solid, red). Levels are labeled by their approximate
LS-coupling term symbol.
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Table 6.2: Ionization potential (top row) and excitation energies of Lr+. The CI+MBPT and
FSCC columns include the Breit and the QED corrections, the latter of which is shown in a
separate column for comparison between the two calculations. The recommended values are
obtained as the mean of FSCC and CI+MBPT results. Lifetimes and and g-factors derived from
CI+MBPT calculations are also included.

g-factors Energies (cm−1) Lifetime (s)
State CI+MBPT FSCC ∆QED CI+MBPT ∆QED Recommended

7s2 1S0 – 116949 -219 – – 116949 ± 389 –
6d7s 3D1 0.5 20265 -342 21426 -374 20846 ± 1161 2.23 ×106

3D2 1.15 21623 -344 22507 -373 22065 ± 884 8.26 ×10−2
3D3 1.33 26210 -326 26313 -355 26262 ± 389 2.97 ×10−2
1D2 1.02 31200 -373 30942 -397 31071 ± 389 1.53 ×10−3

7s7p 3P0 – 29487 -167 29059 -306 29273 ± 428 2.56 ×10−7
3P1 1.42 31610 -179 31470 -314 31540 ± 389 1.45 ×10−8
3P2 1.50 43513 -240 42860 -308 43186 ± 653 2.43 ×10−8
1P1 1.08 47819 -260 46771 -376 47295 ± 1048 1.11 ×10−9

Table 6.3: Einstein coefficients (ACI+MBPT) for dipole-allowed E1 transitions in Lu+, calculated
within the CI+MBPT approach using experimental transition energies, and compared to exper-
imental values (ENIST, ANIST) where available [180]. Note that levels which are not relevant
to the proposed Lr+ experiment and are not included in [180] have been omitted, so branching
ratios may not sum to 100% for all levels.

Upper level Lower level ENIST ACI+MBPT(s−1) ANIST (s−1) Branching ratio
6s6p 3P0 5s5d 3D1 – 2.19×107 – 1.00

6s6p 3P1 6s2 1S0 28503 1.62×107 1.25×107 0.41
6s6p 3P1 5d6s 3D1 – 6.84×106 – 0.17
6s6p 3P1 5d6s 3D2 16707 1.60×107 9.90×106 0.40
6s6p 3P1 5d6s 1D2 – 7.39×104 – 0.18×10−3

6s6p 3P2 5d6s 3D1 – 5.64×105 – 0.016
6s6p 3P2 5d6s 3D2 – 6.20×106 – 0.17
6s6p 3P2 5d6s 3D3 – 2.88×107 – 0.80
6s6p 3P2 5d6s 1D2 – 3.56×105 – 9.91×10−3

6s6p 1P1 6s2 1S0 38223 5.21×108 4.53×108 0.96
6s6p 1P1 6s2 3D1 – 9.60×103 – 1.77×10−5

6s6p 1P1 6s2 3D2 – 9.86×106 – 0.02
6s6p 1P1 6s2 1D2 – 1.07×107 – 0.02

5d6p 3D1 6s2 1S0 45532 4.78×107 7.14×107 0.13
5d6p 3D3 5d6s 3D3 36298 1.82×108 1.66×108 0.56
5d6p 3D3 5d6s 3D2 34534 1.09×108 9.20×107 0.33
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Table 6.4: Einstein coefficients (ACI+MBPT) for dipole-allowed E1 transitions in Lr+, calculated
within the CI+MBPT approach and using our recommended calculated energies (Ecalc). Branch-
ing ratios for each transition are also shown. We estimate the uncertainty in the A-coefficients
at 30% (see text).

Upper level Lower level Ecalc (cm−1) ACI+MBPT(s−1) Branching ratio
7s7p 3P0 7s6d 3D1 8515 5.44× 106 1.00

7s7p 3P1 7s2 1S0 31540 6.36× 107 0.900
7s7p 3P1 7s6d 3D1 10694 2.42× 106 0.034
7s7p 3P1 7s6d 3D2 9475 4.66× 106 0.066
7s7p 3P1 7s6d 1D2 608 4.54× 10−1 6.4× 10−9

7s7p 3P2 7s6d 3D1 22391 9.41× 105 0.021
7s7p 3P2 7s6d 3D2 21172 9.70× 106 0.214
7s7p 3P2 7s6d 3D3 16967 3.43× 107 0.758
7s7p 3P2 7s6d 1D2 12304 3.19× 105 0.007

7s7p 1P1 7s2 1S0 47295 8.34× 108 0.960
7s7p 1P1 7s6d 3D1 26449 1.36× 106 0.002
7s7p 1P1 7s6d 3D2 25230 1.63× 107 0.019
7s7p 1P1 7s6d 1D2 16363 1.68× 107 0.019

Table 6.5: Einstein coefficients (ACI+MBPT) for M1 and E2 transitions in Lr+, calculated within
the CI+MBPT approach and using our recommended calculated energies. We estimate the
uncertainty in the A-coefficients at 30% (see text).

Upper level Lower level Ecalc (cm−1) AM1(s
−1) AE2(s

−1)

7s6d 3D1 7s2 2S0 20846 4.48 ×10−7 –

7s6d 3D2 7s2 2S0 22065 – 10.82
7s6d 3D2 7s6d 3D1 1219 0.79 2.78 ×10−5

7s6d 3D3 7s6d 3D1 5416 – 0.0061
7s6d 3D3 7s6d 3D2 4197 33.61 0.015

7s6d 1D2 7s2 2S0 31552 – 806.55
7s6d 1D2 7s6d 3D1 10306 49.81 0.0694
7s6d 1D2 7s6d 3D2 9087 5.72 0.0623
7s6d 1D2 7s6d 3D3 4890 5.67 0.0034
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respectively, that should in principle be amenable for experimental verification. The level searches
are likely to focus on the 3P1 state, which is predicted with a relatively higher accuracy and
exhibits an experimentally more convenient transition wavelength for optical probing.
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Chapter Seven

Calculations: Neutral Lr and Lu

7.1 Introduction

The optical spectroscopy of transfermium elements (Z > 100) provides a unique test-bed for
atomic and nuclear physics. Experimental and theoretical studies of the electronic structure of
these elements can serve to probe relativistic effects, QED corrections, and configuration-mixing
effects, as well as nuclear properties via hyperfine structure measurements. Recent measurements
of the spectrum [61, 62] and ionisation potential [60] of nobelium (Z = 102) demonstrate that
precision optical spectroscopy of transfermium elements is possible even when nuclear production
rates are very low (on the order of one atom per second). The combination of state-of-the-art
atomic structure calculations with new experimental methods has opened up new regions of
the periodic table to precision optical spectroscopy. Lawrencium (Z = 103) provides a natural
extension of investigations into the electronic structure of transfermium elements, with work
already underway on optical spectroscopy of Lr and its ions [160].

These calculations were undertaken as part of a long-running collaboration with experimentalist
researchers at GSI Helmholtzzentrum für Schwerionenforschung, utilising the SHIP facility [62,
63] for optical spectroscopy of superheavy elements (the work in chapter 6 and Ref. [160] was
also part of this collaboration). The choice of energy levels, transition rates and g-factors was
directly motivated by the requirements of planned studies of neutral lawrencium at this facility.
Preliminary experiments using the RADRIS method developed for the spectroscopy of nobelium
[61] have been performed to determine optimal materials and configurations for spectroscopy of
lawrencium [181]; careful choice of filament material is important to compensate for the lower first
ionization potential of lawrencium. Current production methods for lawrencium have a reduced
cross section of a factor of ten compared to nobelium, making reliable theoretical predictions
even more important if spectroscopy is to be possible within a realistic beam time period.

Previous theoretical studies of the electronic spectrum of Lr report incomplete spectra or only
calculated a limited set of properties. Borschevsky et al [182] used the relativistic Fock space
coupled cluster approach to calculate ionisation potentials and energy levels of Lr, but that
study only reported energies for levels which can be reached by exciting a single electron from
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the ground-state (7s27p) configuration. Dzuba et al [167] report the transition energies and
the g-factors of Lr obtained using the configuration interaction method combined with the all-
order single-double coupled-cluster technique (CI+all order). Multi-configurational Dirac-Fock
(MCDF) was also employed [183] for calculations of both singly- and multiply-excited states.
However, the estimated uncertainties in those predicted excitation energies are between 1200
cm−1 and 2400 cm−1, which is too large to serve as a guide for precision spectroscopic mea-
surements. Zou and Froese Fischer also carried out MCDF calculations of the energy levels and
transition rates for Lu and Lr, but only calculated the three lowest lying states [184]. Finally,
Sato et al performed experimental measurements of the ionisation potential of Lr [58, 59], along
with corresponding coupled-cluster calculations.

In this chapter, I will present predictions of energies and Landé g-factors for low-lying states of
neutral lawrencium, which will be probed in the planned measurements, as well as transition
strengths and branching ratios for transitions between those states. I have used the configu-
ration interaction with many-body perturbation theory (CI+MBPT) approach to calculate the
g-factors and the transition rates, and to treat states that can not be handled by previous studies
using the coupled cluster approach. As there are currently no experimental data of the Lr exci-
tation spectrum, I have benchmarked the accuracy of our calculations by performing analogous
calculations for the lighter homologue Lu, for which experimental values are available.

7.2 Methods and computational Details

The calculations in this chapter were carried out within the framework of the projected Dirac-
Coulomb-Breit Hamiltonian [170] (atomic units ~ = me = e = 1 are used throughout this
chapter),

HDCB =
∑
i

hD(i) +
∑
i<j

(1/rij +Bij). (7.1)

Here, hD is the one electron Dirac Hamiltonian,

hD(i) = cαi · pi + c2(βi − 1) + Vnuc(i), (7.2)

where α and β are the four-dimensional Dirac matrices. The nuclear potential Vnuc takes into
account the finite size of the nucleus, using the Fermi two-parameter charge distribution model.
We also modify this operator to include the effects of QED corrections at this stage. The precise
choice of the finite nucleus model was shown to have negligible effect on the calculated electronic
properties [185]. The two-electron term includes the nonrelativistic electron repulsion and the
frequency independent Breit operator,

Bij = − 1

2rij
[αi ·αj + (αi · rij)(αj · rij)/r2ij ], (7.3)

and is correct to second order in the fine structure constant α.
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7.2.1 CI+MBPT

The CI+MBPT calculations for both Lu and Lr were carried out using the ambit atomic struc-
ture software [94]. The full details of this process have been extensively discussed in chapter 2
of this thesis, so I will only present a brief outline of the method here.

We start with a Dirac-Fock calculation in the V N−1 potential [176]; that is, all but one electron
in the atom are included in the self-consistency calculations. The resulting Dirac-Fock potential
corresponds to a closed-shell, ns2 configuration (where n = 6 for Lu and n = 7 for Lr), which
reduces the impact of so-called subtraction diagrams on the accuracy of MBPT — see [94] for a
discussion of the role of subtraction diagrams in CI+MBPT calculations. Small-scale CI+MBPT
calculations showed that the choice of V N−1 potential produces closer agreement to experimental
Lu energies.

We generate a large basis of one-particle orbitals by diagonalising a set of B-splines over the
one-electron Dirac-Fock operator [115, 116]. We modify the operator to incorporate Lamb shift
corrections via the radiative potential method developed by Flambaum and Ginges [66], which
includes the self-energy [67] and vacuum polarisation [68] contributions. These corrections are
propagated throughout the rest of the calculation by modification of the radial CI (Slater) and
MBPT integrals.

Next, we use the B-spline basis functions to construct a set of many-electron configurations
for the CI expansion. We form the many-body functions by allowing all single and double
excitations from the 6s25d/7s27p ground-state for Lu and Lr, respectively, up to 22spdfg (i.e.
excitations with n < 22, and 0 < l < 4). We then take the Slater determinants with a given MJ

corresponding to these excitations and diagonalise the J2 operator to form configuration state
functions (CSFs), which are used to form the CI wavefunction via the standard CI eigenvalue
problem [96].

The emu CI method [113, 94] significantly reduces the size of the CI eigenproblem by exploiting
the fact that the CI expansion is typically dominated by contributions from Nsmall low-lying,
dominant configurations. We divide the CI Hamiltonian matrix elements into three classes:
leading diagonal elements; off-diagonal matrix elements containing at least one dominant config-
uration; and off-diagonal elements with no dominant configurations. The contributions from the
high-lying off-diagonal terms to the low-energy levels are small compared to the dominant terms,
and so can be set to zero without significant loss of accuracy [113, 129]. Typically Nsmall � NCI,
so emu CI can significantly reduce the size of the CI matrix and thus computational load when
compared to standard CI.

For both Lr and Lu, the CI basis consists of all single excitations from the ground-state con-
figuration up to 22spdfg and single and double excitations up to 12spdfg; further increasing
Nsmall changes the energy levels by an average of 6 cm−1, suggesting this threshold captures all
important configurations. In both systems, increasing the basis size beyond 22spdfg changes the
energy by ∼ 1 cm−1, indicating that the CI component of our calculations are well converged.

Additionally, we include corrections from core-valence correlations to second-order via the dia-
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grammatic MBPT technique described in Refs. [95, 100]. We have included all one- and two-body
diagrams with orbitals up to 35spdfgh (n ≤ 35, 0 ≤ l ≤ 5). The MBPT corrections are rapidly
convergent as more partial waves are added, and adding orbitals with l ≥ 6 to the MBPT basis
changes the energy by an average of 108 cm−1.

The resulting CI+MBPT wavefunctions are used to calculate the Landé g-factors and transition
matrix elements, including only the lowest-order matrix element of the complete correlated wave-
function. Transition lifetimes and branching ratios are derived from these matrix elements. Our
use of MBPT to account for core-valence correlations means that in principle the electromag-
netic transition operators should be modified [177, 178]. The resulting effective operators may be
approximated by including higher-order corrections such as random-phase approximation, but
these effects generally affect the matrix elements at well below our estimated precision (derived
from comparison with experimentally derived transitions in Lu) of 40% [98]

7.3 Results

CI+MBPT results for Lu (shown in Table 7.1) agree closely with experimental values from
[179]; the average disagreement between CI+MBPT and experimental energy levels is 141(294)
cm −1 (the number in brackets is the standard deviation of the difference between theory and
experimental energies). We assume similar computational accuracy for Lr (Table 7.2) as we
obtain for the lighter homologue Lu. In the absence of experimental data to compare against, we
(conservatively) estimate the uncertainty in our CI+MBPT energy levels for Lr as the standard
deviation of the differences between theory and experimental energy levels for Lu. We also
compare our Lr results against previous calculations from Refs. [182, 167, 183, 184], which are
presented in Table 7.3. Our results are generally in good agreement, except for the 7s26d 2D3/2

level, where the CI+MBPT energy is smaller than results from previous calculations by ∼ 700

cm−1. The reason for this disagreement is unclear, but the homologous 6s25d 2D3/2 level in
Lu likely does not have the same issue: the 6s25d 2D3/2 level is the ground-state, so we should
expect to see all excitation energies to be off by a large amount if our CI+MBPT calculations
had errors of several hundred cm−1 in the ground-state energy.

We find different ground states for Lu (6s25d) and Lr (7s27p) due to the relativistic stabilisation
of the 7p orbital and anti-contraction of the 6d orbital, in agreement with earlier studies [182,
167, 183, 184]. Additionally, the 7s28s level in Lr, which is the main target state in currently
planned experiments, is lower in energy by ∼ 4000 cm−1 than the analogous 6s27s level in Lu;
again due to the relativistic contraction of the 8s orbital.

Figures 7.1 – 7.3 show the effects of relativistic corrections on the radial wavefunctions of the 7s
and 8s, 7p, and 6d orbitals in lawrencium. These orbitals are taken from the Dirac-Fock step
of our CI+MBPT calculations; the relativistic orbitals are the ones we have used throughout
the full CI+MBPT calculations, while the non-relativistic orbitals were obtained by setting the
fine structure constant α → 0 (it was not possible within the structure of the ambit code to
do a formally non-relativistic calculation, so the non-relativistic orbitals presented here are an
approximation). We can clearly see the relativistic contraction of the 7s, 8s and 7p orbitals,
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Figure 7.1: Comparison between relativistic and non-relativistic one-electron particle density
|Ψ|2 for the 7s and 8s orbital in Lr
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Figure 7.2: Comparison between relativistic and non-relativistic one-electron particle density
|Ψ|2 for the 7p orbital in Lr
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Figure 7.3: Comparison between relativistic and non-relativistic one-electron particle density
|Ψ|2 for the 6d orbital in Lr
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which in turn result in the different ordering of configurations we observe between Lu and Lr.
The effect of relativity on the 6d orbital is less pronounced than in the other orbitals shown here.

As a result of the relativistic corrections to the orbitals in lawrencium, the 7s28s level has fewer
decay channels and thus a longer lifetime of 1.46×10−8s than the 6s27s level in Lu, which has a
lifetime of 2.42×10−17s. The lifetimes of all Lr levels we have calculated are shown in Table 7.2.
We included the contributions of the forbidden M1 and E2 transitions in the lifetimes of each
state, but these have a negligible effect on the total lifetimes, with the exception of the 7s26d
2D5/2 level. This level can only decay via the “forbidden” M1 transition to the 7s26d 2D3/2 level,
resulting a significantly longer lifetime of 0.25s compared to all other levels in Table 7.2.

Table 7.4 shows the Einstein A-coefficients (transition probabilities) for the lowest-lying electric
dipole (E1) transitions in lutetium. We used the CI+MBPT wavefunctions in conjunction with
the experimentally tabulated energy levels when calculating the transition rates, as this provides
a more direct test of the uncertainty in our E1 transition matrix elements compared to using
CI+MBPT energies. The spectra of both Lu and Lr are relatively dense, so to reduce the
size of the tables we have only included Lu transitions which fulfill two criteria: they must
have experimentally derived A-coefficients tabulated in Ref. [146], and at least one state in
the transition must be analogous to the target states in Lr. Our A-coefficients are mostly larger
than the experimentally derived values and differ from experimental results by an average of 40%,
although transitions involving states with J ≥ 2.5 tend to have worse accuracy. The relative
strengths of the different transitions are reproduced and we can reliably identify the strongest
transitions.

We present electric-dipole transition energies and A-coefficients between low-lying and target
levels of lawrencium in table 7.5, where we expect similar accuracy to the E1 transitions in Lu.
As in table 7.4, we have only included results for the levels which are of experimental interest,
as well as states lower in energy than the experimental targets. The forbidden M1 and E2
transitions contribute a negligible amount compared to the dominant E1 transitions (except for
the aforementioned 7s26d 2D5/2 level, which can only decay via M1 transition), so we have not
included them in the tables.

7.4 Summary of results

In this chapter, I have have calculated energies, g-factors, and lifetimes of several low-lying atomic
levels in Lr. CI+MBPT energies are in good agreement with previously published computational
studies, while similar calculations for the lighter homologue Lu are in good agreement with
experimentally measured spectra, and support the accuracy the CI+MBPT approach. The
transition rates for Lu agree with experimentally tabulated results at the level of ∼ 40%, and Lr
calculations should have similar accuracy.

I have identified three transitions from the atomic ground state with a suitable transition
strengths above 107 s−1: the 7s2 8s 2S1/2 level at 20 485 cm−1, the 7s 7p2 4P1/2 level at 25 381 cm−1

and the 7s2 7d 2D3/2 level at 28 580 cm−1. The combination of dipole-allowed transition and large
transition rate is required to ensure an efficient transfer of the population, making them attrac-
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Table 7.1: Energy levels of lutetium. The CI+MBPT column gives the energy in cm−1 and
includes the Breit and QED corrections, the latter of which is also presented separately in the
∆QED column. Experimental values are from results tabulated in [179].

Configuration Term J g-factor g-factor (expt.) CI+MBPT (a.u.) ∆QED (cm−1) expt.(cm−1)
6s25d 2D 3/2 0.80 0.79 0 – 0

5/2 1.20 1.20 2174 11 1994

6s26p 2P o 1/2 0.66 0.66 4361 50 4136
3/2 1.33 1.33 7734 56 7476

5d6s6p 4F o 3/2 0.45 0.5 17577 -70 17427
5/2 1.06 1.07 18695 -69 18505
7/2 1.24 1.22 20754 -61 20433
9/2 1.33 1.3 23016 -55 22609

6s5d2 4F 3/2 0.41 – 18324 -98 18851
5/2 1.03 1.04 18943 -95 19403
7/2 1.24 – 19884 -91 20247
9/2 1.33 – 21002 -85 21242

5d6s6p 4Do 1/2 0.04 0.00 20783 -72 20762
3/2 1.16 1.19 21254 -72 21195
5/2 1.38 1.39 22359 -65 22222
7/2 1.42 1.41 23720 -63 23524

5d6s6p 2Do 5/2 1.21 1.23 21663 -72 21462
3/2 0.86 0.87 22368 -67 22124

6s5d2 4P 1/2 2.60 – 21621 -68 21472
3/2 1.68 1.73 22618 -73 22467
5/2 1.43 – 22842 -81 22802

5d6s6p 4P o 1/2 2.61 – 24218 -66 24108
3/2 1.64 1.67 24469 -65 24308
5/2 1.51 1.53 25501 -60 25191

6s27s 2S 1/2 2.02 2.05 24396 79 24126

6s5d2 2D 3/2 0.85 – 24549 -83 24518
5/2 1.13 – 24764 -98 24711

6s5d2 2F 5/2 1.09 1.6 25999 -92 25861
7/2 1.06 – 26691 -106 26570
9/2 1.11 – 27822 -90 26671

5d6s6p 2F o 5/2 0.89 0.88 28194 -83 28020
7/2 1.14 – 29897 -79 29487
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Table 7.2: Energy levels of lawrencium. The CI+MBPT column gives the calculated energy in
cm−1 and includes the Breit and QED corrections, the latter of which is also presented separately
in the ∆QED column.

Configuration Term J g-factor CI+MBPT (cm−1) ∆QED (cm−1) Lifetime (s)
7s27p 2P o 1/2 0.67 0 – –

3/2 1.33 8606 8 1.79 ×10−6

7s26d 2D 3/2 0.80 712 -77 3.69 ×10−4

5/2 1.20 5252 -54 0.25

7s28s 2S 1/2 2.00 20485 40 1.456×10−8

7s7p6d 4F o 3/2 0.48 20985 -189 1.10 ×10−7

5/2 1.07 23289 -188 5.89 ×10−8

7/2 1.25 28574 -174 2.07 ×10−7

9/2 1.33 34758 -169

7s7p6d Odd (Ambiguous) 1/2 0.44 25887 -2 3.94 ×10−8

7s7p6d 4Do 3/2 1.29 26808 -76 4.89 ×10−8

5/2 1.37 28708 -181 6.86 ×10−8

7/2 1.35 33549 -161 2.87 ×10−7

7s7p2 4P 1/2 2.45 25381 -131 3.47 ×10−8

7s6d2 4F 3/2 0.43 24742 -151 9.27 ×10−7

5/2 1.04 26165 -49 1.02 ×10−5

7/2 1.23 28290 -222 5.2 ×10−4

9/2 1.31 30754 -212 1.36 ×10−3

7s27d 2D 3/2 0.80 28580 31 1.34 ×10−8

5/2 1.20 28725 -88 1.81 ×10−8

7s28p 2P o 1/2 0.39 26996 -161 1.26 ×10−7

3/2 1.30 28307 -82 6.19 ×10−8

7s29s 2S 1/2 2.00 30621 47 4.47 ×10−8

7s29p 2P o 1/2 0.86 32307 -132 7.46 ×10−8

3/2 1.33 33473 -167 1.12 ×10−7

7s26f 2F o 5/2 0.86 31755 -167 5.78 ×10−8

7/2 1.15 32560 21 5.69 ×10−8

112



E.V. Kahl

Table 7.3: Comparison of Lr energy levels with previous calculations. All energies are given in
cm−1; energy levels not present in a particular source are left blank.

Configuration Term J g-factor CI+MBPT FSCC[182] CI + all order [167] MCDF [183] MCDF[184]
7s27p 2P o 1/2 2.01 0 0 0 0 0

3/2 0.80 8606 8413 8495 8138 7807

7s26d 2D 3/2 0.80 712 1436 1555 1331 1127
5/2 1.20 5251 5106 5423 4187

7s28s 2S 1/2 2.01 20484 20118 20253 20405

7s7p6d Odd 1/2 2.44 25886 27904

7s7p6d 4F o 3/2 0.43 20985 21288 20886
5/2 1.20 23289 23530 23155
7/2 1.23 28574 28320 27276
9/2 1.31 34757 34212 32775

7s7p6d 4Do 3/2 0.83 26808
5/2 1.04 28707
7/2 0.88 33549

7s7p2 4P 1/2 2.44 25380

7s6d2 4F 3/2 0.43 24742 25409
5/2 1.04 26165 27397
7/2 1.23 28290
9/2 1.31 30754 34807

7s27d 2D 3/2 0.83 28580 28118
5/2 1.22 28725 28385

7s28p 2P o 1/2 2.00 26995 26111 25912 25246
3/2 1.61 28306 27508 27079 26902

7s29s 2S 1/2 2.00 30620 30119

7s29p 2P o 1/2 2.21 32306 32295
3/2 0.80 33473 32840

7s26f 2F o 5/2 1.37 31754 32949
7/2 0.92 32560 32950

113



Calculations: Neutral Lr and Lu

Figure 7.4: Diagram of the energy level scheme of Lr, as calculated by the CI+MBPT method
and including Breit and QED corrections.
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tive first targets for level searches. There are also three low-lying states which are very close in
energy and have similar lifetimes: the 7s7d6d 4F ◦7/2 level at 28 574 cm−1, the 7s28p 2P ◦3/2 level
at 28 307 cm−1 and the 7s6d2 4F ◦7/2 level at 29 290 cm−1. The lifetimes of these levels are all
extremely short (< 10−4), so it will be difficult to distinguish the levels by successive, delayed
excitation or ionization. A similar difficulty was observed during the spectroscopy of nobelium in
Refs. [61, 186] for similarly small level spacings, so future experiments will need to compensate
for this degeneracy to achieve the desired level of accuracy.

These comprehensive results will serve as a useful guide for planned, future experimental studies
of the spectrum of Lr, following on the work on its ion Lr+ in chapter 6 and Ref. [160].

Table 7.4: Einstein A-coefficients for electric-dipole (E1) transitions in lutetium, as calculated by
using CI+MBPT wavefunctions and experimental transition energies. We compare our calculated
values with experimentally derived A-coefficients (ANIST) tabulated in Ref. [146].

Upper level lower level E (cm−1) ACI+MBPT(s−1) ANIST (s−1)
5d6s6p 4F o3/2 6s2 5d 2D3/2 17427 2.54×106 1.73×106

5d6s6p 4F o3/2 6s2 5d 2D5/2 15433 9.07×104 7.2×104

5d6s6p 4F o5/2 6s2 5d 2D3/2 18505 1.81×106 1.20×106

5d6s6p 4F o5/2 6s2 5d 2D5/2 16511 1.49×106 9.2×105

5d6s6p 4Do
1/2 6s2 5d 2D3/2 20762 1.06×106 9.0×105

5d6s6p 4Do
3/2 6s2 5d 2D3/2 21195 5.58×104 1.13×105

5d6s6p 4Do
3/2 6s2 5d 2D5/2 19201 2.57×105 2.5×105

5d6s6p 2Do
5/2 6s2 5d 2D3/2 21462 4.01×106 3.15×106

5d6s6p 2Do
5/2 6s2 5d 2D5/2 19468 1.15×107 9.1×106

5d6s6p 2Do
3/2 6s2 5d 2D3/2 22125 3.22×107 2.26×107

5d6s6p 2Do
3/2 6s2 5d 2D5/2 20131 7.35×104 3.3×104

5d6s6p 4Do
5/2 6s2 5d 2D3/2 22222 3.37×105 1.28×105

5d6s6p 4Do
5/2 6s2 5d 2D5/2 20228 2.21×106 9.7×105

6s27s 2S1/2 6s2 6p 2P o1/2 19990 2.78×107 3.20×107

6s27s 2S1/2 6s2 6p 2P o3/2 16650 4.86×107 4.9×107

5d6s6p 4P o3/2 6s2 5d 2D3/2 24308 1.07×106 4.3×105

5d6s6p 4P o3/2 6s2 5d 2D5/2 22314 9.13×104 8.8×104

5d6s6p 4P o5/2 6s2 5d 2D3/2 25192 3.98×106 2.21×106

5d6s6p 4P o5/2 6s2 5d 2D5/2 23198 1.22×106 6.6×105

5d6s6p 2F o5/2 6s2 5d 2D3/2 28020 1.05×108 6.9×107

5d6s6p 2F o5/2 6s2 5d 2D5/2 26026 3.52×107 2.65×107

5d6s6p 2F o7/2 6s2 5d 2D5/2 27493 1.18×107 6.4×106

5d6s6p 2F o5/2 6s2 5d 2D3/2 30184 1.31×108 1.85×108

6s26d 2D3/2 6s2 6p 2P o3/2 24066 1.70×107 1.68×107

6s26d 2D5/2 6s2 6p 2P o3/2 24237 9.08×107 8.9×107

5d6s6p 2F o7/2 6s2 5d 2D5/2 29757 2.77×108 2.44×108

Continued next page. . .
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Upper level Lower level E (cm−1) ACI+MBPT(s−1) ANIST (s−1)

6s25f 2F o5/2 6s2 5d 2D3/2 36633 1.87×107 2.32×107

6s25f 2F o7/2 6s2 5d 2D5/2 34650 2.52×107 2.31×107

Table 7.5: Einstein A-coefficients for electric-dipole (E1) transitions in lawrencium, as calculated
within the CI+MBPT framework. States in a transition are identified by the same labels as in
table 7.2. Branching ratios for each transition are also shown. We estimate the uncertainty in
the coefficients as 40% (see text).

Upper level Lower level E (cm−1) A(s−1) Branching ratio

7s26d 2D3/2 7s27p 2P o
1/2 712 1.26×103 1

7s28s 2S1/2 7s27p 2P o
3/2 11878 3.57×107 0.52

7s28s 2S1/2 7s27p 2P o
1/2 20485 3.31×107 0.48

7s 6d2 4F3/2 7s7p6d 4F o
5/2 1453 3.59×103 2.92×10−3

7s 6d2 4F3/2 7s7p6d 4F o
3/2 3757 2.58×105 0.24

7s 6d2 4F3/2 7s27p 2P o
3/2 16136 6.73×103 0.01

7s 6d2 4F3/2 7s27p 2P o
1/2 24742 7.96×105 0.75

7s 7p2 4P1/2 7s7p6d 4F o
3/2 4396 2.27×103 8.06×10−5

7s 7p2 4P1/2 7s27p 2P o
3/2 16775 3.22×106 0.11

7s 7p2 4P1/2 7s27p 2P o
1/2 25381 2.51×107 0.89

7s 6d2 4F5/2 7s7p6d 4F o
5/2 2876 9.60×104 0.85

7s 6d2 4F5/2 7s7p6d 4F o
3/2 5180 1.36×104 0.12

7s 6d2 4F5/2 7s27p 2P o
3/2 17559 3.00×103 0.03

7s27d 2D3/2 7s28p 2P o
3/2 273 2.51×102 3.38×10−6

7s27d 2D3/2 7s28p 2P o
1/2 1585 1.73×105 1.39×10−3

7s27d 2D3/2 7s7p6d 4Do
3/2 1772 2.43×104 3.26×10−4

7s27d 2D3/2 7s7p6d Odd (J = 1/2) 2693 7.09×105 0.01
7s27d 2D3/2 7s7p6d 4F o

5/2 5291 3.30×103 4.44×10−5

7s27d 2D3/2 7s7p6d 4F o
3/2 7585 2.52×102 3.40×10−6

7s27d 2D3/2 7s27p 2P o
3/2 19974 1.21×107 0.16

7s27d 2D3/2 7s27p 2P o
1/2 28580 6.14×107 0.83

7s27d 2D5/2 7s7p6d 4Do
5/2 18 1.72×10−3 3.18×10−11

7s27d 2D5/2 7s7p6d 4F o
7/2 151 5.44×10−1 1.01×10−8

7s27d 2D5/2 7s28p 2P o
3/2 419 5.47×103 1.01×10−4

7s27d 2D5/2 7s7p6d 4Do
3/2 1917 1.97×105 3.66×10−3

7s27d 2D5/2 7s7p6d 4F o
5/2 5436 3.97×103 7.32×10−5

7s27d 2D5/2 7s7p6d 4F o
3/2 7740 4.18×103 7.73×10−5

7s27d 2D5/2 7s27p 2P o
3/2 20119 5.39×107 0.99

Continued next page. . .
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Upper level Lower level E (cm−1) A(s−1) Branching ratio

7s27p 2P o
3/2 7s26d 2D5/2 3355 3.13×105 0.49

7s27p 2P o
3/2 7s26d 2D3/2 7894 3.01×105 0.51

7s7p6d 4F o
3/2 7s28s 2S1/2 501 1.53×10−1 5.74×10−8

7s7p6d 4F o
3/2 7s26d 2D5/2 15734 1.56×105 0.02

7s7p6d 4F o
3/2 7s26d 2D3/2 20273 8.80×106 0.98

7s7p6d 4F o
5/2 7s26d 2D5/2 18038 3.26×106 0.19

7s7p6d 4F o
5/2 7s26d 2D3/2 22577 1.35×107 0.81

7s7p6d Odd (J = 1/2) 7s7p2 4P1/2 506 5.39×102 2.11×10−5

7s7p6d Odd (J = 1/2) 7s6d2 4F3/2 987 1.20×104 4.70×10−4

7s7p6d Odd (J = 1/2) 7s28s 2S1/2 5402 3.58×106 0.14
7s7p6d Odd (J = 1/2) 7s26d 2D3/2 25175 2.21×107 0.86

7s7p6d 4Do
3/2 7s6d2 4F5/2 643 2.41×103 1.19×10−4

7s7p6d 4Do
3/2 7s7p2 4P1/2 1427 7.41×103 3.66×10−4

7s7p6d 4Do
3/2 7s6d2 4F3/2 2066 9.36×103 4.62×10−4

7s7p6d 4Do
3/2 7s28s 2S1/2 6324 3.22×106 0.16

7s7p6d 4Do
3/2 7s26d 2D5/2 21557 2.59×106 0.13

7s7p6d 4Do
3/2 7s26d 2D3/2 26283 1.44×107 0.71

7s28p 2P o
1/2 7s7p2 4P1/2 1615 5.95×102 8.43×10−5

7s28p 2P o
1/2 7s6d2 4F3/2 2253 5.27×104 0.007

7s28p 2P o
1/2 7s28s 2S1/2 6511 6.42×106 0.91

7s28p 2P o
1/2 7s26d 2D3/2 26283 5.95×105 0.08

7s28p 2P o
3/2 7s6d2 4F5/2 2141 8.12×103 5.30×10−4

7s28p 2P o
3/2 7s7p2 4P1/2 2926 2.73×104 1.79×10−3

7s28p 2P o
3/2 7s6d2 4F3/2 3564 1.35×104 8.82×10−4

7s28p 2P o
3/2 7s28s 2S1/2 7822 1.14×107 0.75

7s28p 2P o
3/2 7s26d 2D5/2 23055 6.14×104 3.80×10−3

7s28p 2P o
3/2 7s26d 2D3/2 27595 3.76×106 0.24

7s7p6d 4F o
7/2 7s6d2 4F7/2 284 1.135×102 2.39×10−5

7s7p6d 4F o
7/2 7s6d2 4F5/2 2409 1.17×104 2.00×10−3

7s7p6d 4F o
7/2 7s26d 2D5/2 23323 4.74×106 0.998

7s7p6d 4Do
5/2 7s6d2 4F7/2 417 1.07×102 3.48×10−6

7s7p6d 4Do
5/2 7s27d 2D3/2 127 5.53×10−3 5.79×10−11

7s7p6d 4Do
5/2 7s6d2 4F5/2 2542 1.14×104 3.69×10−4

7s7p6d 4Do
5/2 7s6d2 4F3/2 3965 4.99×103 1.62×10−4

7s7p6d 4Do
5/2 7s26d 2D5/2 23456 2.03×107 0.66

7s7p6d 4Do
5/2 7s26d 2D3/2 27966 1.05×107 0.34
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Chapter Eight

Conclusion

In this thesis, I have presented highly-parallel implementations of the CI+MBPT method for
atomic structure calculations. Starting with the ambit codebase, I have described, in detail,
the process of converting existing MPI-enabled scientific code to use a hybrid MPI+OpenMP
model. I have also overhauled key data structures in the ambit code base to take advantage of
performance improvements in modern CPU hardware due to memory caching and instruction-
level parallelism. These changes have allowed us to scale our atomic calculations up to hundreds
of processors, which in turn allowed us to reach numerical saturation in CI+MBPT calculations
for the first time.

I have applied ambit to both benchmark systems, like Db and Cr+, as well as systems relevant to
cutting-edge experimental applications (Lr, Lr+ and tin highly-charged ions). These calculations
consistently reached the 1% or sub-1% level of accuracy, even for challenging open-shell systems,
which simply would not have been possible without the work I performed to overhaul the ambit’s
parallelism. This further proves ambit’s utility in guiding experimental searches and applications
in complex atoms and ions — a role in which ambit is at the cutting-edge of available techniques.

8.1 Perspectives for the future

8.1.1 Computational improvements – GPU computing

The biggest, most obvious software engineering which may be considered is to overhaul ambit

to take advantage of GPU computing.

As high-performance computing moves into the exaflop scale 1, supercomputing clusters are in-
creasingly moving towards heterogeneous architectures including application-specific accelerators
[187]. For most of the 20th century, gains in computational power had come from the trend of
exponential increase in clock frequency of individual CPU cores, which in turn depended on
Dennard scaling (the trend that the power density of transistors stays constant as their size
decreases) [131], so CPUs could be expected to double in power every 18 months — the famous
Moore’s law. However, Dennard scaling ended in approximately 2004 as CPU manufacturers

11 EFLOP of computing power corresponds to 1018 floating point operations per second
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could no longer reduce transistor operating voltages, and smaller processor features became vul-
nerable to current leakages [187]. Consequently, subsequent increases in computational power
came largely from more aggressively exploiting parallelism (e.g. increasingly large multicore pro-
cessors) rather than raw clock speed. More recently, power consumption issues in traditional
general-purpose CPUs have forced HPC architects to focus on manycore architecture consisting
of large numbers of relatively slow and “unsophisticated” processing units, of which the GPU is
the most well-established example.

Programming for a GPU is fundamentally different to programming for traditional CPU archi-
tectures. As previously stated, a GPU can exploit massive levels of parallelism, with a typical
GPU unit containing thousands of arithmetic units, and can thus reach extremely high levels
of numerical performance (as of the time of writing, cutting-edge GPUs offer theoretical peak
performances of several teraflops).

The tradeoff is that typical constructs in CPU computing such as extensive branching logic or
non-consecutive memory accesses (including common pointer-chasing algorithms) are extremely
slow when naively transferred to a GPU, which often requires extensive code re-factoring in order
to even run (let alone reach peak performance). Additionally, GPU applications must be much
more deliberate with memory access patterns, for two reasons: first, device memory (located on
the GPU) is limited to a few GB, so any data which doesn’t fit in memory must be shuffled
back and forth between the host (main node) and device (the GPU), which is extremely slow.
Additionally, GPU compute capacity (in FLOPS) vastly exceeds their memory bandwidth (even
for device memory), so GPU code must be strongly compute-bound in order to keep the device
arithmetic units fully utilised. For the interested reader, a more detailed breakdown of GPU
computing can be found in, e.g. Refs. [188, 189].

So where does this leave ambit? I believe that the underlying CI+MBPT algorithm could
be adapted to GPU computing, and would result in large performance improvements over the
current MPI+OpenMP implementation, but this would require substantial re-writing of the
codebase. Firstly, as we saw in the OpenMP profiles in chapter 3, the most expensive part of
a typical calculation with ambit is generating the CI matrix, which is strongly memory bound
— for Db ∼ 70% of the run time is spent in memory accesses, and a further ∼ 25% is spent
in branching logic. This behaviour is partially because we front-load the calculation of the one-
and two-electron integrals, but is also because generating the individual matrix elements in the
CSF/J2 representation requires some degree of fiddling with angular momentum data (which we
also pre-calculate) in both memory accesses and branching logic. Neither of these properties is
ideal for GPU performance.

I believe that the best way forward would be to refactor ambit so that integrals and matrix
elements are calculated only when needed and then thrown away, which I’ll refer to as “on-the-
fly” generation. The approach would probably look similar to that employed by the BIGSTICK CI
code [190, 191] or earlier work by Olsen et al [192] — the CI matrix elements are calculated during
the matrix-vector products in the Davidson algorithm, and only persist inside the loop iteration
for that particular matrix vector product. At first glance, this may seem like an inefficient
approach, as it duplicates the numerical work of calculating the matrix elements (although
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BIGSTICK somewhat gets around it by requiring the Coulomb integrals to be pre-calculated by
an external program and supplied in a file, reducing the components which need to be calculated
at runtime), but it has several potential advantages when it comes to GPU computing. First, the
complete CI matrix is never stored in memory, which means that the limited device memory of
most GPUs would no-longer be an issue (no need to shuffle data back and forth between device
and host). The second is that on-the-fly calculation of the CI-matrix shifts the performance from
being memory-bound to being compute bound, which is vastly preferable for GPU performance.
Shan et al showed that this approach provides very good scaling on the (now-discontinued)
Intel Xeon Phi co-processor [191], which is conceptually somewhere between a CPU and a GPU
in architecture and performance characteristics, so the kinds of programming patterns which
perform well on the Phi (compute-bound algorithms, heavy use of vector operations, minimal
branching logic) transfer to the GPU as well [193, 194].

Overhauling ambit for GPU computing is a much bigger endeavour than adding OpenMP sup-
port was, and is too large of a project for this thesis. The entire subprocess of generating and
diagonalising the CI matrix needs to be replaced with one which essentially merges the Davidson
algorithm with the code to generate the matrix elements (along with the necessary GPU specific
code). Additionally, the current CSF basis of the matrix is likely too dependent on branching
logic to achieve good GPU performance (although this would need to be properly profiled), and
so it may be necessary to shift to representing the CI matrix in terms of projections (the so-called
M-basis representation, since projections are Slater determinants with a well-defined angular mo-
mentum projectionM); in turn posing problems from degeneracy and isolating desired solutions,
which are not present in the CSF basis. It is also not clear if it is feasible to include MBPT
integrals on-the-fly, or if they must be pre-calculated (thus increasing the complexity of data-
movement and GPU offloading) due to the very large number of MBPT diagrams needed for
each integral.

All of this probably amounts to several years’ worth of work to get to the point where the new
version is production ready. It would, however, allow us to tackle significantly more complex
systems in much less time than even current MPI+OpenMP calculations, so would ultimately
be a worthwhile investment.

8.1.2 CI+MBPT implementation improvements

There are also some potential improvements to our implementation of CI+MBPT which would
improve the accuracy and the range of applications ambit could support.

Firstly, even though B-Splines are fast and highly accurate for the calculations in this thesis,
they are not the only possible choice of basis functions and have some shortcomings. B-Spline
basis functions give approximately spectroscopic wavefunctions for low-lying, bound states and
incorporate relativistic effects in a mathematically elegant way, but they do not give as good of
a representation of continuum wavefunctions. This limitation has not been a problem for the
work in this thesis, but there are a number of photon-atom interactions, such as photon-atom
scattering, atomic polarisability and nonlinear optics, which require an accurate treatment of
the continuum to calculate. For example, consider the atomic dipole polarisability α, which
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determines the second-order shift to atomic energy levels due to an external electric field. For
the ground-state of atomic hydrogen, ∼ 20% of the polarisability is due to contributions from
the continuum, while for heavier systems the continuum typically contributes ∼ 1% to the
polarisability [195]. Consequently, if CI+MBPT is to be useful for these calculations, or related
calculations such as photon-atom scattering cross-sections, it will be necessary to implement new
types of basis functions to capture continuum dynamics.

One approach which would work well with the structure of ambit is to use Laguerre spinors
(L-spinors) [196, 104] and/or the closely related Coulomb Sturmian basis functions [197], as the
one-particle basis functions. L-spinors have a similar functional form to the eigenfunctions of the
hydrogen atom, but have a tunable exponential parameter which allows for the spectrum to be
“tuned” to give a discretised representation of both the bound and continuum states. The discre-
tised continuum wavefunctions are known as pseudostates, which are not individually physically
meaningful, but can be summed over to give a good approximation of the total contribution
from the whole continuum [198]. Jiang et al used L-spinors as the basis for a large relativistic CI
calculation of the spectrum and polarisability of Sr+ [104] and Ca+ [199], giving results which
agree to within 1% of more sophisticated perturbation theory methods. Thus far their imple-
mentation is limited to systems with a single valence electron above closed shells, so it will take
some work to extend the L-spinor formalism to many-electron CI+MBPT calculations. However,
it represents a promising way forwards for applying CI+MBPT to photon-atom calculations.

Another possible target for improvement is the accuracy of our transition matrix element calcu-
lations. Strictly speaking, we should modify the electric and magnetic multipole operators when
using MBPT to account for the modified effective Hamiltonian in the CI+MBPT equations [177].
ambit does implement the random-phase approximation (RPA) equations to account for this ef-
fect (full details of the equations are provided in Ref. [127]), and there are input file options to
control their use in transition matrix element calculations. Unfortunately, my experiences with
the calculations in this thesis have shown that these equations (or at least their implementation
in ambit) are not unconditionally stable and can sometimes rapidly and unpredictably diverge
for many-electron systems. Consequently, it would be necessary to properly investigate the con-
vergence properties of RPA and potentially re-cast the equations in ambit into a more stable
form (for example, an implicit, matrix-based formulation) if we want to use ambit to carry out
precision photon-atom and transition calculations.

Finally, there are still some numerical convergence issues in our Dirac-Fock (DF) implementation,
which is based on the algorithm in Ref. [114]. This is less of a pressing concern than the other
improvements in this section, as it is usually possible to “twiddle” the parameters of the DF
calculation until it converges, but the fact that we cannot always guarantee that the DF basis will
be well-behaved for all calculations does impact the code’s usability. One possible route forward is
to take cues from efforts to develop unconditionally stable Hartree-Fock algorithms for molecular
structure calculations [200, 201]. Molecular structure calculations have different requirements
to atomic structure, however: for example, most codes for large molecules are strictly non-
relativistic, and typically focus on closed-shell configurations and light atoms. We therefore
wouldn’t be able to plug in these approaches without some modifications to the numerics, but
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it at least presents a possible starting point for overhauling ambit’s DF subroutines to be more
reliable.

8.2 Summing up

This perspective on future work should not be taken to mean that ambit is prohibitively slow
or resource intensive in its current state — there are limitations and anomalies in all methods
for atomic structure theory, and AMBiT fulfils an important niche in precision, many-electron
calculations. Furthermore, ambit is still scalable to large numbers of conventional CPUs and
will remain performant on future supercomputers even if no additional software engineering is
done.

In this thesis, I have shown that ambit can deliver highly accurate calculations of open-shell
systems, including highly-charged ions superheavy elements, transition metals and lanthanides.
The calculations in this thesis cover a wide-range of typical electronic structures and performance
requirements, so ambit can easily be applied in future to problems in astrophysics, atomic clocks,
precision searches for new physics or industrial applications. I am confident that ambit will
remain a scalable, cutting-edge tool for relativistic atomic structure calculations, competitive
with any other publicly available atomic code, and can continue to guide theory and experiment
for years to come.
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