Quantum Machine Intelligence (2020) 2: 4
https://doi.org/10.1007/542484-020-00014-w

RESEARCH ARTICLE

Accuracy and minor embedding in subqubo decomposition

®

Check for
updates

with fully connected large problems: a case study about

the number partitioning problem

Luca Asproni' - Davide Caputo'? - Blanca Silva' - Giovanni Fazzi® - Marco Magagnini3

Received: 27 August 2019 / Accepted: 26 February 2020 / Published online: 19 March 2020

© The Author(s) 2020

Abstract

In this work, we investigate the capabilities of a hybrid quantum-classical procedure to explore the solution space using
the D-Wave 200007 quantum annealer device. Here, we study the ability of the quantum hardware to solve the number
partitioning problem, a well-known NP-hard optimization model that poses some challenges typical of those encountered in
real-world applications. This represents one of the most complex scenario in terms of qubits connectivity and, by increasing
the input problem size, we analyze the scaling properties of the quantum-classical workflow. We find remarkable results in
most instances of the model; for the most complex ones, we investigate further the D-Wave Hybrid suite. Specifically, we
were able to find the optimal solutions even in the worst cases by fine-tuning the parameters that schedule the annealing

time and allowing a pause in the annealing cycle.

Keywords Quantum annealing - Quantum optimization - QUBO - Partitioning model

1 Introduction

Recently, the availability for the first time of quantum
annealing devices from D-Wave Systems has captured the
attention of both researchers and technology companies
(Booth et al. 2018; Venturelli et al. 2018; Khoshaman et al.
2018; Stollenwerk et al. 2019). Besides, a growing interest
is in the experimental determination of whether or not a
quantum speedup can be achieved with this new class of
quantum devices and what kind of working applications
can be developed on such platforms (Venturelli et al. 2015;
Neukart et al. 2017; Vahdat 2017; Hamze et al. 2018).

The participation of major technology powers such as
Google, Lockheed Martin, and Los Alamos Laboratories
continues rising, together with the scientific literature and
application reports. Nevertheless, there is still a strong
limitation in the usage of this model of computation for
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solving real-world problems due to the limited number
of qubits and couplers inside the quantum processor unit
(QPU). Actually, it is well known that quantum annealers
need to have a dramatically larger number of qubits
and couplers in order to model the complexity of real-
life problems. Especially, the limited connectivity between
qubits inside the current Chimera graph architecture
represents an additional obstacle in mapping large real
problems in the QPU (Chancellor et al. 2016a; Chancellor
et al. 2016b; Pudenz et al. 2014; Ojas et al. 2016).
Furthermore, with the release of an open-source suite
spanning from the decomposing solver Qbsolv to the new
Hybrid framework, D-Wave took a significant step forward
towards gathering the attention from technology companies.
As a matter of fact, with these technologies, it is possible
to close the gap between logical qubits representation
encoded in the QUBO (Quadratic Unconstrained Binary
Optimization) matrix and the physical embedding of the
problem into the Chimera graph (Kumar et al. 2018).
Besides, it is possible to decompose large problems
into smaller subsets in such a way that they can be
integrated immediately into the QPU, by providing both
the combinatorial implementation required for the physical
embedding and the decomposition procedure for the
creation of the smaller instances. Also, the backend to
be used during the computation can be specified in order
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to solve the model by means of either a classical or a
quantum-based platform.

However, despite all the attention drawn to this crucial
tool, a systematic investigation of the efficiency related
to the optimization and decomposition performance has
not been exhaustively conducted yet. Some studies have
been developed using special techniques such as the time-
to-target metric (James et al. 2015) or applying methods
based on the matrix factorization (O’Malley et al. 2018) but
without taking into account the capabilities of scaling up
when the input size grows.

A relatively novel approach as alternative to exploiting
quantum annealers to solve optimization problems is one
that focuses on coherent Ising machines (CIM) (Yamamoto
et al. 2017). It has been empirically shown that there exists a
difference in the efficiency of such techniques, which mainly
depends on the graph density that describes the problem
under study, leading to the suggestion of using an approach
based on CIMs to solve general Ising models (Hamerly
et al. 2019). However, neither is it established that CIMs
outperform quantum annealers (McGeoch et al. 2018) nor
a thorough study has been pursued yet on the performances
of the latter machines taking into account the possibility of
scheduling the annealing process in complex scenarios.

In this work, we investigate the accuracy and the capability
of the D-Wave 2000Q quantum annealer to solve problems
with a significantly large input. To perform this study, we use
one well-known NP-hard model: the number partitioning
problem (NPP) (Mertens 2006). Thanks to the simplicity of
this problem, it is easy to generate artificial instances of any
size for which the optimal solution is known. Consequently,
the measurement of the quality of the solution provided
by the quantum annealer, along with the classical imple-
mentation of the tabu-search algorithm for the problem
decomposition, will be possible even for large datasets.

2 Number partitioning problem
and quantum annealing

The number partitioning problem (NPP) is defined as the
task of discriminating if a given set S of positive integer
numbers can be divided (partitioned) into two subsets S|
and S, where the total sum of the elements in S| equals the
total sum of the elements in S>. Although the NPP is an NP-
complete problem, the optimization version is considered
NP-hard and can be formulated in the following way: given
a list of N positive integers {a, az, ..., an}, the solution
consists in finding a subset A C {aj, az, ..., ay} such that
the difference

2 4= ai
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@ Springer

is minimized. Throughout this work, we will refer to this
difference as the delta between the two subsets A and S\ A.
This problem is of both practical and theoretical importance:
possible real applications span from multiprocessor pipeline
scheduling (Kan and van Vliet 1993), where balancing
and partitioning different resources can be crucial, to
cryptography (Harpes et al. 1995) and all those problems
requiring load balancing for I/O capacities, e.g., during
databases processing (Lewis et al. 2008).

The D-Wave device implements a quantum annealing
heuristics to solve sampling, optimization, and machine
learning problems. Specifically, given a physical system
composed of qubits, it is possible to define its Hamiltonian
and initialize it in such a way that the lowest energy
state corresponds to all qubits being in a superposition
state of 0 and 1. Then, as the annealing proceeds, a new
Hamiltonian deriving from the problem’s specifications,
called the problem Hamiltonian, is introduced and gradually
takes over the initial energy landscape, up to a point where
it contains all the energy contributions. The Hamiltonian of
the system can be defined in the following way:

H(1) = H;(t) + Hp (1), @)

where Hj is the initial Hamiltonian, Hp is the problem
Hamiltonian, and their temporal evolution through the
annealing is such that H;(0) > Hp(0) and H;(ty) <
Hp(tr), being ¢ the final time of the annealing.

As the problem Hamiltonian is introduced, the energy
levels of the excited states are originated, increasing the
probability of the system to jump from the ground state to
some other excited state. In particular, there exists a critical
point, the point of minimum gap, where the ground-state
energy level is closest to the lowest energy level of one of
the excited states. In such point, the probability of escaping
the ground state is the highest, in which case the system is
driven away from the global minimum.

In practice, in order to manipulate the Hamiltonian of the
system, an external magnetic field is applied to the qubits.
In this way, the probability of qubits falling into the O or
1 state is changed. The quantity that is controlled by the
magnetic field, called bias or weight, is modeled by the
function of the problem at hand, that is the one that has to
be minimized. Moreover, it is possible to correlate qubits
by entangling them. This is obtained by setting the value of
a coupler, which represents the strength of the correlation
between qubits that are linked together.

Hence, by letting the initial system undergo the quantum
annealing process, it is possible to raise energy barriers in
such a way that the energy of the system reflects the function
to be minimized or maximized. If the quantum annealing
is slow enough, the system is able to naturally end up in
the lowest energy state, i.e., the low energy states needed
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in a sampling problem or the solution of a minimization
problem.

In its current implementation, the D-Wave’s quantum
annealer is able to solve problems expressed in the form of
an Ising glass, with a Hamiltonian written in the following
form:

N
H=Y"hiSi+) cijSiS 3)
i=1 i#]
where H is the Hamiltonian encoding the problem, S; €
{—1, 1} are the spin values, and %; and c;; are respectively
the qubits weights and the couplers coefficients of the
model.

A complete formulation of the NPP as Ising spin glass
has been provided in Ref. (Lucas 2014). The Hamiltonian
for this type of problem can be defined by assuming
an increase in the energy when the total of amplitudes
associated with positive spin states is different from that
of amplitudes with negative spins. According to this
formulation, it is possible to use the following relation:

N 2
H = (Z a; S,') “
i=1
with S; = %1 the spin values indicating the subset to which
the ith element belongs and a; the element of the set A. It
follows that if the ground state has H > 0 there is no exact
solution of the specific problem and the ground state is the
one minimizing the mismatch between the two subsets.

Expression 4 is fundamental to write the NPP in QUBO
form as it constitutes the link between the Ising Hamiltonian
3 supported by quantum annealers and the formulation of
quadratic binary optimization models. The amplitude of
integer numbers a;, Vi = 1,---, N, in the form of biases
and couplers influence the value of spin variables, while
elevating the sum to second power guarantees that, like
the Hamiltonian of the Ising glass, this relation allows
interactions up to second order. With 4, it is straightforward
to obtain a QUBO model for the NPP.

In order to formulate the problem as a Quadratic
Unconstrained Binary Optimization model, we first have
to convert our S; = =1 into binary variables of the form
gi € {0, 1}. This can be done by using the following simple
relation:

S, +1
"':IT S

where ¢; is the ith variable and S; is the spin value. Now, the
original Ising problem can be mapped into the QUBO form:

minz Qijx,-xj (6)
ij

where x represents a binary variable and Q is the so-called

QUBO matrix containing the weights of qubits (4; in Eq. 3)

in the diagonal and the couplers coefficients (c;; in Eq. 3) in
the (i, j) elements. This matrix will be symmetric (cjc; =
cjc;), allowing a reduction in the number of variables by
selecting only i < j and setting the remaining terms to zero,
leading to an upper-triangular matrix.

Having the QUBO matrix, it is possible to submit it to the
QPU and retrieve a solution of the optimization problem.
However, the connectivity between qubits required by the
NPP is that of a complete graph, which is yet to be supported
by any modern quantum annealer that provides a fairly high
number of qubits. To overcome this and similar problems,
the D-Wave device operates a minor embedding of the
problem onto its Chimera architecture. Specifically, through
the D-Wave Hybrid tool, it is possible to decompose the
problem either by identifying which set of variables, if their
value is changed, maximally contributes to changing the
energy of the system, as we have done in this work, or by
implementing a custom decomposing heuristics. Once the
smaller problem is found, since the connectivity it requires
may not match that of the D-Wave’s Chimera graph, one
can either run the built-in tabu-search heuristics to optimally
map such problem onto the annealer’s architecture, or
choose a self-constructed minor embedding strategy. The
QPU is able to run the annealing for the subproblems and
the classical device operates a merging phase, in which the
global solution of the original problem is retrieved from
subproblems. Since we use the Hybrid tool default tabu-
search strategy and the minor embedding process is NP-hard
itself, we should stress that more sophisticated alternatives
might yield better performances in terms of solution quality.

In Fig. 1, the time required to solve the NPP on classical
hardware by using the D-Wave Qbsolv is reported as a
function of the input set size. The elaboration time increases
exponentially while a structured procedure is applied in

Residuals

.
o

0 200 400 600 800
Input size

Fig. 1 Execution time of tabu-search for increasing input size.
Classical partitioning of a set with the classical embedded tabu-search
as backend. The red line is the exponential fitting 1 = Ae™/® where
B=340 a.u. and x is the size of the input. Blue points represent
measured data. The blue line in the bottom part is the deviation of the
experimental point from the value of the fitting
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order to find the minimum: a number of subproblems
are generated, handled, and finally merged into a global
solution of the NPP. The exponential increase in the
execution time confirms the NP-hardness of the problem
when approached with classical hardware and formulations.
When the problem is submitted to the QPU, the execution
time changes and paves the way for a wide range of
investigations of the D-Wave Hybrid tool. Moreover, this
peculiar model allows us to study what happens in one of
the worst case scenarios from the perspective of the qubits
connectivity: a fully connected graph, where the number of
couplers and weights precision play a central role (Denchev
et al. 2016; Venturelli et al. 2015).

3 Results

In order to investigate the capabilities of the D-Wave
Hybrid tool, we solve multiple NPP examples of increasing
size. For each fixed problem size, we use 10 different
datasets and collect statistics of the results. For experimental
purposes, we choose the data in such a way that the ground
state of the corresponding Ising models is H = 0, i.e., there
is a single partition of the set of numbers.

For our studies, we first construct the QUBO matrix
for each problem, and then we define the tabu-search
heuristics as the algorithm that splits the original problem
into the subproblems, preparing them to be embedded on
the Chimera graph.

Figure 2 a shows the QUBO matrix defining the
connectivity of qubits required by the specific NPP instance
and with regular patterns related to the number amplitudes
in the dataset. With the problem being formulated as an
Ising model, all variables are coupled in pairs, resulting in

a dense (upper-triangular) QUBO matrix. Such connectivity
is the most complex to handle and can thus be an issue
for current quantum hardwares, making it interesting to
investigate the quantum annealer performance.

The distribution of partition deltas for each different
problem size is summarized in Fig. 2b. We produced 10
different datasets to be partitioned for every problem size,
and we computed the value of delta for all these instances.
For each problem size, we have built a boxplot of deltas
coming from the solution of the NPP.

The combination of quantum annealing with the classical
minor embedding heuristics is able to find the optimal
solution in most cases. This is achieved especially when
the problem is very small (and, as a consequence,
computationally easy) or when its size is significantly
higher. In fact, for our smallest problem and for those with
input size greater than 450 binary variables, we are able
to optimally solve the 10 different NPP instances. On the
other hand, for middle-sized problems, not all distributions
of data allow qubits to reach the ground state. As a result, we
obtain the optimal solutions only for a subset of the given
problems.

From the point of view of the computational time, we do
not record an outperformance of classical approaches. The
reason lies in the hybridity of the algorithm: while on one
hand quantum annealing takes place in only a few dozens of
microseconds, on the other hand the complexity and size of
our problems require decomposition and minor embedding
phases to be solved by the D-Wave 2000Q, which are
computationally expensive. The latter, in particular, is itself
a NP-hard problem that is handled by a classical device and
thus leads to a significant increase in computational time.

Figure 2 ¢ and d report the density distribution of each of
the 10 datasets used for 2 different problem sizes (200 and
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Fig.2 QUBO matrix and delta distributions over multiple datasets. a
QUBO matrix of one instance of data with problem size equal to 100.
The entries are scaled and the intensity of colors is used as a means to
summarize the main characteristics of the plot: the diagonal is made up
of negative values, the lower triangular part is 0 and the upper one has
no null entries. b Boxplots of deltas for different input problem sizes
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computed over 10 datasets for each size with dots representing the val-
ues of the delta in each instance. These values were saturated to 50;
therefore, such numerical value is to be interpreted as the result of a
bad solution. c—d Kernel density estimation of the distribution of input
data for problems with, respectively, 200 and 500 variables, showing
the data from all 10 instances in each plot
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500 variables). As explained above, the quality of the results
on the bigger model exceeds the one on intermediate sizes.
Comparing both density distributions, we can conclude that
this behavior is fundamentally related to the fact that a shift
of the distribution curve to lower values leads to a dataset
containing more solution degeneracy for lower energy states
and consequently simpler to solve even when the problem is
bigger.

An effective method to enhance the exploration of the
solution space is the direct manipulation of the annealing
schedule (Ottaviani and Amendola 2018; Marshall et al.
2019). This distinctive technique can be used to improve the
quality of the solution in the cases described before in which
we could not reach the ground state. Indeed, in contrast to
what we did with the first approach, where the annealing
has been used without interfering with the spontaneous
process, we exploit now the capability of the D-Wave solver
API to manipulate directly the scheduling of the cycle. To
accomplish this, we define the time instant at which the
cycle has to be stopped and resumed, as well as the value
of the persistent current powering the adiabatic relaxation.
This entire procedure is referred to as annealing pause.

The top panel of Fig. 3 is a sketch of the evolution over
time of the initial and problem Hamiltonians, as the time-
scheduled moves forward, compared with their theoretical
state if no pause is scheduled. In both cases, the problem
Hamiltonian grows while the initial one decreases, but
in the time-schedule case we find an instant (determined
by the user) when the annealing is paused and, as a
consequence, the two terms of the system Hamiltonian
remain constant. Once the pause is finished, the normal
scheduling is resumed and continues its cycle. At the end of
the process, the initial Hamiltonian vanishes and the energy
of the system is determined by the problem alone.

The idea behind a possible improvement of solution
quality with an annealing pause is that, by letting the system
evolve under constant Hamiltonian terms for a while, the
probability of following the minimum energy adiabatic
pathway, and thus finding the ground state, increases
(Marshall et al. 2019). For this reason, the choice of pause
duration and time instant at which it should start and end
play a fundamental role. Bad choices for these parameters
may leave the solution quality unaffected or even worsened.

The middle and bottom panels of Fig. 3 show the results
of the analysis on two problems, one of size 200 and the
other of size 300, for which the uncontrolled annealing
performed worst. For each problem, we have paused the
annealing after 10 ps, let the system rest for 10, 40, 60, 100,
and 120 ps respectively halfway through the flow of current
and finally let the annealing end. This whole process was
repeated 5 times for each problem.

The best energy configuration in terms of distance from
the ground state for the two problems analyzed here were
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Fig. 3 Annealing cycle and boxplots of deltas with pause. a Sketch
representation of the terms contributing to the system Hamiltonian
as a function of the time. The solid red, dashed orange, solid green,
and dashed blue lines represent respectively the problem Hamiltonian
with and without pause and the initial Hamiltonian with and without
pause. b—c Boxplots of deltas found over multiple runs of the annealing
with the same pause starting point, same value of persistent current
but different pause duration times. The dots represent the values of
(eventually saturated) deltas for every run. b shows boxplots for one of
the problems with 300 variables yielding a very bad solution, while ¢
shows the same for one of the problem with 200 variables

not achieved with the same parameters settings. In fact,
every instance requires different values of the pause starting
point, duration, and persistent current. Nevertheless, all
of our choices greatly improved the results previously
obtained with the uncontrolled annealing, even though not
all of them led to the optimal solution. We were able to
record considerable results multiple times, proving that the
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introduction of the pause can increase the accuracy of the
annealing.

This improvement in the quality of the results is due to
the effect of the pause on the search region of the solution
space: by pausing the flow of the persistent current, and
hence the annealing, we are able to widen the exploitation of
the energy landscape and, as a consequence, the probability
of finding the global minimum.

The parameters must be tuned wisely: too long pauses
could make the system escape from energy points near the
ground state, while too short pauses could not be effective
at all. At the same time, if we schedule a pause after the
system has overcome the minimum gap between the energy
levels, i.e, it has already been in some equilibrium state,
we get no benefit from this whole procedure; likewise, a
pause scheduled too early has no effect on the probability
of obtaining the global minimum because the chances of
escaping the ground state would still be high.

It has been shown empirically that finding the appropriate
time to start the pause and its duration is a technique that
is likely to increase the computation performance of the
quantum annealing, yielding much better solutions at the
cost of only little more QPU computational time (Ottaviani
and Amendola 2018).

The possibility of scheduling annealing cycles proves
to be of crucial importance for complex tasks. The
improvement in solution quality recorded in this work
contributes to confirming quantum annealing as a valid
approach to solve computationally heavy problems that are
typical of a number of areas, such as artificial intelligence.
Indeed, the possibility to find a very accurate global
minimum is fundamental in different contexts, spanning
from the reinforcement learning penalty models to the
weights optimization behind the functioning of neural
networks (McKiernan et al. 2019; Sun et al. 2018). In
such field, the overwhelming difficulty of tasks, due both
to problem size and model complexity, puts to the center
of the attention the trade-off between solution quality
and computational time required to solve problems. We
have here empirically shown that quantum annealing, when
thoroughly tuned, can be very efficient in terms of optimal
solution finding and, as the hardware keeps being improved
and the classical part of the algorithm becomes less
expensive, is expected to reduce time issues as well.

4 Conclusions

In this work, we studied the capabilities of the D-Wave
quantum annealer and the D-Wave Hybrid framework to
approach problems in complex scenarios. For our analysis,
we selected a fully connected model: the NPP, which poses
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an enormous challenge to the currently available QPUs and
the architecture they are based on.

Two different analyses were done: accuracy of the
outcome when the input size scales up and the impact of the
annealing pause on the solution quality.

For the first part, we conducted our analysis on a number
of small-to-large size problems to investigate the behavior
of the quantum annealer on a level of complexity which
is potentially that of real-life problems. One interesting
result was found: a discontinuous accuracy with the
problem size. While high-quality results were found at
small problems, there is a counter-intuitive behavior as the
problem dimension increases: a dip in the accuracy for
medium-sized problems and a recovery as size increases.
This effect was explained by the value distribution within
the dataset: lower values in the input allow higher accuracy
of the result, even when the size of the problem is rising.

The medium-sized problems were studied in more
detail by applying pauses during the annealing cycle,
allowing the system to explore the solution space with a
modified equilibrium. Our results prove that with the correct
parameter tuning it is possible to improve dramatically the
accuracy of the solution, obtaining optimal results in cases
that had proven to be troublesome in a non-altered context.
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