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Abstract

In this thesis, recent developments in Double Field Theory (DFT) and Exceptional Field
Theory (EFT) are presented. They are reformulation of supergravity in which duality
symmetries are made manifest before dimensional reduction. This is achieved through
the definition of an extended spacetime that ‘geometrises’ the T-duality group O(d, d) in
DFT and exceptional U-duality groups in EFT. All functions on this extended space are
subject to a covariant ‘section constraint’, whose solutions then restrict the coordinates
dependency of the fields. There exist different solutions to the section constraint that
correspond to different theories. In this sense, different theories are unified within the
formalism of extended field theories. Moreover, extended field theories possess a pow-
erful tool to study compactifications: the generalised Scherk-Schwarz ansatz. Here, we
present several examples of the effectiveness of the generalised Scherk-Schwarz ansatz.
In particular, we proved two conjectures regarding consistent truncations: the so-called
Pauli reduction of the bosonic string on group manifolds and type IIB supergravity on
AdS5xS°. Another application is presented on the embedding of generalised type IIB
within the Eg) EFT, which recently appeared in the study of integrable systems. Fi-
nally, we present the supersymmetric completion of the bosonic Egg) EFT.

This thesis is based on the following publications [T, 2, [3, 4 5]. With my supervisor
Henning Samtleben, we collaborated with Olaf Hohm on [I} 2], Christopher Pope on [3]
and Marc Magro on [5].



Résumé

Dans cette thése, nous présentons des avancements récents en Théorie des Champs Dou-
bles (TCD) et Théories des Champs Exceptionnels (TCE). Ces théories ont la particu-
larité d’étre des reformulations de supergravité dans lesquelles les symétries de dualité
sont explicites avant toute réduction dimensionnelle. Ces reformulations se basent sur
la définition d’un espace-temps étendu qui géométrise le groupe de T-dualité en TCD
et les groupes exceptionnels de U-dualité en TCE. Tous les champs de cet espace sont
soumis & une contrainte de section qui restreint leur dépendance en coordonnées. Il ex-
iste plusieurs solutions a la contrainte de section, qui correspondent donc a des théories
différentes. Dans ce sens, le formalisme des théories des champs étendues améne a une
unification de ces théories. De plus, grace a un outil spécifique aux théories des champs
étendues, I'ansatz de Scherk-Schwarz généralisé, il est possible de réécrire les ansatz com-
pliqué de type Kaluza-Klein en supergravité sous une forme élégante et compacte: un
produit matriciel en dimensions supérieures. Ici, nous présentons plusieurs exemples de
Iefficacité de 'ansatz de Scherk-Schwarz généralisé. En particulier, nous prouvons deux
conjectures concernant les troncations cohérentes: la réduction dite “de Pauli” de la corde
bosonique ainsi que la supergravité de type IIB sur AdSsx S°. La derniére application de
cet ansatz concerne la théorie de type IIB généralisée, apparue récemment dans 1’étude
des systeme intégrables, et son plongement dans la TCE Eg(g). Enfin, nous présentons la

complétion supersymétrique de la TCE Egg) bosonique.



Outline

In this thesis, we focus on recent developments in extended field theories. We start by
reviewing the basics of Double Field Theory and Exceptional Field Theory which are
covariant formulations of supergravity where dualities are now manifest symmetries. We
then introduce the main asset of extended field theories, known as generalised Scherk-
Schwarz ansatz (GSS). In this framework, one can show that a complicated reduction
ansatz in the usual framework of Kaluza-Klein supergravity takes the very efficient form
of a matrix product in higher dimensions. In this case, the consistency of the truncation
is guaranteed providing the ‘enlarged’ twist matrices satisfy a set of differential equations.

Chapter 2 is dedicated to an application of the GSS in Double Field Theory. Within
an O(d,d) covariant formulation of the NS-NS sector of supergravity, we proved the
consistency of the reduction of the n + d dimensional bosonic string to n dimensions on
any d-dimensional group manifold GG, with the isometry group G x GG as gauge group. This
is know in the literature as a Pauli reduction, whose consistency was first conjectured in
[6]. The proof relies on the construction of an explicit SO(d,d) twist matrix in terms of
the Killing vectors of the bi-invariant metric on GG that solves the consistency conditions.
From the twist matrix, it is then easy to read the full non-linear reduction ansatz for all
fields, whose consistency is guaranteed by construction.

In chapter 3, we focus on the Eg) Exceptional Field Theory. Here, we present the
IIB decomposition of all the fields of the theory by enforcing the GL(5)xSL(2) solution
of the section constraint. We then move to the type IIB side, where we perform a 5-+5
split & la Kaluza-Klein (but keeping the dependency on the internal coordinate) and the
necessary field redefinitions such that the two theories could be compared. By matching
the degrees of freedom on each side, we obtain the dictionary between the type IIB and
EFT fields (whose dependency in the internal coordinates has been constrained by the

solution of the section constraint as previously mentioned).

Two applications of the EFT /Type IIB dictionary and the generalised Scherk Schwarz
ansatz are presented in chapter 4. The first application concerns the consistent truncation
of type IIB supergravity on AdS;xS® to the maximal SO(6) gauged supergravity. After
a general analysis of the consistency conditions, we use explicit twist matrices together
with the dictionary of chapter 3 to find the full set of I1IB reduction formulas. Again,
the generalised Scherk-Schwarz origin of the reduction guarantees its consistency and the
conjecture formulated by Giinaydin, Romans and Warner in [7] is proven. The remaining
sections of this chapter regards another application of EFT to type IIB supergravity. In
section (4.4]), we present the recently found generalised type IIB field equations, in which
a one-form replaces the gradient of the dilaton and is subject to a Bianchi-like identity.
We then solve the Bianchi identities of generalised type IIB, which are deformed with
respect to the usual ones. Finally, we show how the deformations of the field strengths
can be obtained from a surprisingly simple Scherk-Schwarz ansatz upon picking a new



solution of the section constraint.

The fifth chapter of this thesis regards the supersymmetric extension of the Egg) EFT.
After a review of the bosonic EFT, we introduce the different blocks of the generalised spin
connection needed for the couplings to fermions. We establish ‘uplifted’ supersymmetry
rules and show its algebra closes. We then give the supersymmetric lagrangian, whose

full invariance under supersymmetry is proven in appendix D.



Chapter 1

Introduction

Our current understanding of fundamental physics involves four principal interactions:
strong, weak, electromagnetic and gravitational. The first three are described by the
Standard Model (SM) with an incredible precision. The key theoretical concept un-
derlying the success of the Standard Model is gauge symmetry, which is the idea that
symmetry transformations act independently at each point of spacetime rather than
globally. For example, in the case of the Standard Model, the total gauge group is
SU(3)stome x (SU(2) x U(1))electroweak By Noether’s theorem, this gauge symmetry gives
rise to conserved charges which transform as Lorentz scalar (gauge charges) or Lorentz
vector (energy-momentum from translational symmetry). It is only fair to ask if a con-
served charge could also transform as a spinor, and what kind of symmetry this would

generate 7 The answer is local Supersymmetry or Supergravity.

The history of supersymmetry starts in 1971 with Golfand and Likhtman. They in-
troduced 4 anti-commuting spinor generators in four dimensions to extend the Poincaré
symmetry [§]. At the time, it was revolutionary because, in 1967, Coleman and Man-
dula had shown in their famous No-go theorem that the most general symmetry of the
S-matrix is the direct product of Poincaré and some internal group. Otherwise, one can
show that the S-matrix becomes trivial, which means that there are no interactions [9.
However, there was a loophole in this theorem. The proof was based on an implicit
axiom: the symmetry generators were assumed to be bosonic. Since for supersymmetry
the additional generators (supercharges) are spinors, it bypasses the no-go theorem. The
consequence of these supercharges is that every particle of spin s has a superpartner or

sparticle with same mass and a spin of s £ %



Particle Spin | Sparticle Spin
quark: q % squark : ¢ 0
lepton: 1 % slepton : [ 0
photon: ~ 1 | photino : ¥ %
W boson 1 | Wino: W 3
Z boson 1 | Zino: Z 3

Table 1.1: Standard Model particles and their supersymmetric partners.

So why haven’t we seen the superpartners already 7 Indeed, if a selectron, the bosonic
version of the electron, has the same mass m,, it should be fairly easy to see it in ex-
periments ! But not all symmetries are exact: a gauge symmetry may be ‘spontaneously
broken’, which would explain the difference in masses of the superpartners. This is what
produces the unification of the weak (massive Z and W bosons) and electromagnetic
interactions (massless photon) into a SU(2); x U(1)Y electroweak interaction in the
Standard Model. The beauty of this symmetry lies in the unification of two very unalike
interactions, different in both range and strength, yet with a common origin. This means
that if supersymmetry were to exist, it must be an approximate symmetry, and must be

broken at low energies.

In 1974, Wess and Zumino wrote down the first supersymmetric field theories in 4 di-
mensions [10]. This is often seen as the actual starting point of the systematic study of
supersymmetry. At this time, they were several motivations for studying supersymmetry
in itself:

e Supersymmetry provides natural candidates for Cold Dark Matter.

e Supersymmetric theories have softer ultraviolet divergences. For example, N' = 4
super Yang-Mills, the maximal supersymmetric extension of the Yang-Mills theory
is finite. Also, in D = 4, N = 8 maximal supergravity, several expected diver-
gences are known to cancel. This led to speculations about whether this theory is
free of any UV divergences at all | [11].

To summarise, supersymmetric quantum field theories are easier to work with, and pro-
vide meaningful toy models.

We have seen that the role of gauge symmetry was preponderant in the development
of the Standard Model. What about a gauged version of supersymmetry ? Would this be
more interesting and powerful ? This was accomplished shortly after (1976) by Freedman,
Ferrara and Van Nieuwenhuizen and independently by Deser and Zumino for N' = 1

supergravity [12, [13]. The latter used the first order formalism for General Relativity
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where the vielbein and the connection are treated as independent fields and were able to
show that the sum of an Einstein term and a massless minimally coupled spin % described
by a Rarita-Schwinger action was invariant under local supersymmetry transformations.
Reciprocally, since the algebra of supersymmetry field theories closes into translations,
its gauged counterpart closes into diffeomorphisms and so is an extension of general

relativity. It is then natural to refer to these theories as supergravity.

1.1 String theory, dualities and supergravity

The Standard Model, whose might has never been stronger since the discovery of the
Higgs boson in 2012, cannot be the complete picture. On the theoretical side, the SM
fails to describe gravitational interactions and provides no candidates for Cold Dark
Matter particles (~ 80% of the mass of the Universe). These issues can be solved with

string theory, thus providing unification of all known interactions.

In string theory, fundamental particles such as photons are not point particles anymore
but can be seen as vibrational modes of open or closed strings. The size of the strings is
typically set by the Planck length (~ 10733 c¢m) so at all measurable scales they appear
as point particles but are in fact extended object and prevent the theory from having
any UV divergences.

Figure 1.1: A neutron composed of a one up quark (red) and two down quark (blue)
described by different string modes.

11



There are 5 different (and consistent) types of string theories related by dualities
[14] 15 [16], 17] which once discovered, led to think that they were different limits of a same
underlying theory called « M-theory» [I8]. These dualities are called T and S-duality,

Figure 1.2: The different string theories are related by T and S dualities, and can be seen
as different corners of the parameter space of M-theory. He, Ho respectively stands for
Es x Eg and SO(32) heterotic string theories.

which mix into U-duality. In the simplest case, a T-duality is an equivalence between
two theories with a compactified dimension, one with radius R, the other one with radius
%, where /, is the string length scale. It relates type ITA and type IIB, as well as the
two heterotic string theories. S-duality relates a theory with string coupling constant g,
with a theory with coupling constant 1/g,. It maps type IIB to itself (a particular case of
the SL(2,7Z) symmetry of the theory) and type I to the SO(32) heterotic string theory.
Since it relates a strongly interacting theory to a weakly interacting one, a regime where
one can use perturbation theory, S-duality explains how three of the five original string
theories behave at strong coupling. The remaining two exhibit an 11th dimension of size
gsls at strong coupling, a circle in the case of type IIA and a line in the heterotic case.
This the realm of M-theory, a true non-perturbative description of string theory that
would unify the 5 superstring theories. While we have yet to find a complete formulation
of M-theory, it is accurately described by the unique 11 dimensional supergravity at low
energy [19].

12



Type IT A Type II B

St gl

radius R radius R = %

A > B
wen, R R

Figure 1.3: A simple example of T-duality. w and n are respectively the winding and
momentum modes of the string in the compactified direction.

Since the discovery of 11 dimensional supergravity [20], several types of supergrav-
ity have been constructed in spacetime dimensions DD > 4, and in particular two ten-
dimensional supergravity theories called type IIA and type IIB. As their names hinted,
they appear from Type ITA/B string theories as their low energy limit. We will mainly
focus on the type IIB supergravity theory in this thesis. Recently, formulations that make
the duality symmetries of string theory manifest in field theories have been developed:

e In the case of T-duality and its group O(d,d), the duality covariant formulation
is known as Double Field Theory (DFT) [21], 22, 23], 24]. It has already produced
many interesting results [25, 20, 27] and has a fruitful interplay with generalised
geometry [25], 28] in pure mathematics. Chapter 2 is dedicated to DFT and the
proof of an old conjecture using the new tools offered by the extended formalism.

e Exceptional Field Theory (EFT) [29] 30] 311 [32], 33, [34] 35], 36] deals with the full
U-duality groups and thus unifies different supergravity theories in one framework.
In chapter 4, we will see two applications of the generalised Scherk-Schwarz ansatz
in the context of the Ege) EFT.

One can also study the supersymmetric version of the extended field theories. It has
been done in EFT in [37, [38] for the Eg(), E7(7) cases. In the last chapter of this thesis,
we will be interested in the supersymmetric extension of the Egg) EFT.

1.2 The bosonic string

Strings, as extended objects, sweep a two-dimensional worldsheet ¥ in a n-+d dimensional
spacetime. This worldsheet is therefore parametrised by two parameters £ = (7, 0), and
in the case of the closed string o ~ o + 27, is topologically a cylinder. The trajectory of

the closed string in spacetime, a Riemannian manifold (M, G) of dimension D, may be
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T

Figure 1.4: The worldsheet of a closed string

thought as the following map

>—= M

(1,0) = X¥(7,0)

In the simple case where the string propagates in a flat space-time, the simplest o-model
which can be built from this map is given by the Polyakov action

Y e

1
Sp = /dadT\/—vvaﬁaaX“agX”nW, (1.2.1)

constructed in terms of the induced worldsheet metric gog = 00 X*05X"1, (the pull-
back of the flat space-time metric to the worldsheet) and an independent dynamical
worldsheet metric 7,3. The factor of o’ in front is here for dimensional purposes, and
has dimension -2 in A = ¢ = 1 units, i.e o’ = ¢? where /, is the string length scale. It is

related to the tension of the string by

1 1
T = = . 1.2.2
2n2 2ma! ( )

Varying the action with respect to 7,4 and substituting gives

S = —T/dadﬂ/det(—gag), (1.2.3)

which is nothing else but the area sweeped by the string in the target space. In addition
to the usual Poincaré invariance and reparametrisation invariance (worldsheet diffeomor-

phisms invariance), the action (|1.2.1)) exhibits an invariance under Weyl transformations

Yap = Yap = UT,0)Vap - (1.2.4)
One can define the 2d stress energy tensor

47 65

Ta = T =< a5
’ Nakah

(1.2.5)

and due to the Weyl symmetry, it is a traceless tensor, i.e. T,57*® = 0. The Weyl

symmetry can be used to write the action in conformal gauge,

S = —g/dUdTaaX-aaX, (1.2.6)

14



where we have introduced the scalar product X - X = X*X"7,,. Varying with respect
to X gives a 2d wave equation,

08

R — af XH =  XH = 1.2.
X, = WX =00 0. (1.2.7)

where we have introduced the worldsheet light-cone coordinates
E=(r+o). (1.2.8)
The most general solution is a superposition of waves moving to the left and to the right
XU(E) = XE(ET) +XA(E) . (1.2.9)
In the case of the closed string, imposing the closed string boundary conditions
X*(1,0) = X*(r,2m), (1.2.10)

one gets the following mode decomposition [39]

1 1 o/ 1. .
X{(ET) = at 4 alpet +i(5)P Y ~ale™ (1.2.11)
n#0
1 1 o 1 L
X(€7) = gat+oap's +i()"2 ) —ale ™ (1.2.12)
n#0

with z# and p* = \/Wag the center of mass position and momentum. To keep the
X*(1,0) real, one also needs to impose o, = (a#)* and &, = (&*)*. The general
solutions still have to satisfy the constraints coming from the tracelessness of the
stress energy tensor . In light-cone gauge, the constraints are

(0_-X)*= (0, X)*=0. (1.2.13)
Expanding the constraints in terms of the Fourier modes

(0_X)*=d Z Loe™™ | (0, X)? =d Z Lpe ™" (1.2.14)
one finds
L, = Z O~ Op—m
L, = G+ iy - (1.2.15)

In the classical theory, the vanishing of the energy momentum tensor thus translates to

an infinite set of constraint

Ly=L,=0, VYneZ. (1.2.16)



After canonical quantisation,

[ak V] =[at, a2 ] = ndpemn™, [2¥,p,] =i, , (1.2.17)
the af and & commutation relations are those of the harmonic oscillator raising and
lowering operator up to normalisation. As usual, one can now start building the Fock
space of the theory by demanding the oscillator ground state of the string to be annihi-
lated by the a,,a,, for m >0

ah|0;p) = a4, l0;p) =0, m >0, (1.2.18)

for a string of center of mass momentum p*, the eigeinvalue of the momentum operator
introduced in . Of course, this is not a positive definite Fock space as can be
seen from the time components of the commutation relation. Only a subset of this space
is physical. The states belonging to this subspace must obey a quantum analog of the
constraints . Since the o and & are now operator, there is an ordering ambiguity
in the Virasoro operators . They are now defined to be normal ordered

1 1
L, = 5 Ty Qe 0 = 5053 + Z A * Ay - (1219)

m m=1

Due to the commutations relations (|1.2.17]), the normal ordering has only an importance
for Ly and Lg. Therefore, the quantum analog of the constraints (I.2.16) for a state |1)
to be physical are

(Lo—a)|¢>:07 Ln|?/1>207”>07
(Lo—a)|) =0, L) =0, n>0 (1.2.20)

where a is an undetermined constant that takes care of the normal ordering ambiguity.

Interestingly, the constraints involving Ly and Ly have a simple physical interpretation
o =2 o +oo
0 = Zp2+;an~a_n—a, 0 = Zp2+;dn-d_n—a (1.2.21)

they tell us the effective mass of the string since in Minkovski space, one has p,p* = —M?.
In the following, we will work with the so called ‘critical’ string theory with space-time
dimension D = 26 and zero-point energy of the oscillators ¢ = 1. In this case, the
spectrum is free of negative norm states, a necessary condition for a consistent causal
and unitary theory. Adding and substracting the Lo and L, constraint gives the ‘mass-

shell ” and the ‘level-matching’ conditions

2 ~
M = S(N+N-2), (1.2.22)
N = N, (1.2.23)



with the left and right moving oscillation modes of the string N = Z:{g Q, - a_, and

similarly for N. We can now look at the first excited state. In this case, N = N = 1 and
thus M = 0 and this state can be written as

) = Hu, afdl|0;p) (1.2.24)

where we have acted on the oscillator vaccuum state of a single closed string of momem-
tum p*. As we are dealing with massless particles subject to the constraints ,
we have ptH,, = 0 such that H captures only transverse fluctuations of the string.
Therefore, one decompose the polarisation H into representations of SO(D) [40]

H, = hy + bu + ¢, (1.2.25)

with the first term being symmetric traceless, the second term antisymmetric and a final
trace term. These string oscillations modes are identified to quanta of the following
massless spacetime fields : the space-time metric G, the B-field B,, and the dilaton
¢. Up to now, we have seen that the quantisation of the closed bosonic string naturally
gives the graviton and much more. Starting from the Polyakov action, it is useful to
generalise it to an action describing string propagation in curved space-time, as well as
taking into account the massless states of the closed string as part of the background.

It is well known that an electrically charged relativistic particle can be described by a
one dimensional o-model with the electromagnetic potential as background gauge field.
In a similar way, the full bosonic string theory is described by a 2d o-model with the
Kalb-Ramond B-field as a background gauge field. Demanding the additional terms to
be power-counting renormalizable and invariant under reparametrisation of the string
worldsheet greatly restricts the kind of interaction that can be added to the action. The
appropriate action is [41]

with
S¢ = 4 a//dCTdT\/—’Y'YaﬁaaXﬂaﬁXyGw<X)v
T

1

Sp = 47?0//dUdTeaﬁaaXuaﬁXuBW(X>’
1

Se = 4—/d0d7\/ 77" Rag $(X) (1.2.27)
T

The first term is the obvious generalisation of the Polyakov action to the curved spacetime
case. The second term is the pullback of the spacetime 2-form B to the string worldsheet
integrated over the string worldsheet (e*? is a tensor density). The third term is the scalar
curvature of the worldsheet multiplied by the dilaton, such that for the constant part of
the dilaton (its VEV ¢y), it gives a contribution y ¢y where x is the Euler characteristic of

17



the worldsheet and the string coupling is given by g, = e?°. While the first two terms are
classically Weyl invariant, this is not the case for the last one (unless ¢ is constant). This
may seem puzzling until one remembers that in general, the symmetries of the classical
field theory are not always exact symmetries of the quantised field theory. Since o/ play
the role of the loop-expansion parameter in the action above and as the dilaton term is
of higher order in «/, one should compare only the classical effect of the last term to the
quantum effect of the first two terms when checking for Weyl invariance. The breakdown
of the Weyl invariance at the quantum level is governed by the trace anomaly of the
stress-energy tensor [42]

1 1 1
(T%) = =5 Bu(G)170a X" 05X" + =B (B)e 0 X" 05 X" + S B(¢)RP , (1.2.28)

described in terms of the following 3 functionals

1
Bu(G) = o (RW +2V,V, 06— ZHPU#HV,M) +0(a?) (1.2.29)
1
Buw(B) = o (—évpﬂw + VP HW,,> +0(a?) (1.2.30)

1 1
Blo) = o (—gv“vm + VHoV 0 — QHW,)H“’“) +0(?) . (1.2.31)
To preserve Weyl invariance at the quantum level, one must impose 3,,(G) = B, (B) =
B(¢) = 0. The vanishing of the beta functionals have a beautiful physical interpretation.
They are the equation of motion of the so-called ‘low energy effective action’
1

S =
2%0

1
/ d®X /|Gl e (R +4G"0,00,0 — — H“””H,wp> . (1.2.32)
where we have introduced the Ricci scalar for the spacetime metric G, and the field
strength of the B-field

Hyp = 30,Bu, - (1.2.33)

As we will show later, the low energy effective action above can be rewritten in a mani-

festly O(d, d) invariant form within the formalism of Double Field Theory.

1.3 Compactification and T-duality

In section of the introduction, we have seen the importance of dualities in string
theory. In this section, we will develop further the discussion on T-duality. Since we
seem to perceive only 4 dimensions and string theory predicts 11 dimensions, we need
a mechanism to explain why we have yet to see the extra dimensions. Typically, one
assumes they are curled up. We start with a simple example: the bosonic string with
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one dimension compactified on a circle of radius R (here the 25th). Spacetime is then
R2?%1 % S, This has the following effects: in the same way that a particle moving around
this circle will have a quantised momentum in integer multiples of 1/R, the momentum
of the string in the 25" direction is

p* = %, n € 7 (1.3.1)

where the quantum number n is called the Kaluza-Klein momentum. However a string,
as extended objects, can also wrap around the circle. The condition ((1.2.10) may be
relaxed to

X*(r,0) = XH"(7,27) 4+ 2rRw, (1.3.2)

Consequently, the mode decomposition is changed to

1 1 1 1 1
XPEN = §x25 + 50/19255+ + §wR§+ + osc. = §$25 + §o/pL§+ + osc. , (1.3.3)
25 (¢— 1 25 1 1,25 ¢— 1 — — 1 25 1 / +
Xp(€) = QT o & - §wR€ +osc. = 517 + ca prET +osc. , (1.3.4)

where osc. stands for the same oscillator modes as in (|1.2.12]) and

n wR n  wR

- Lt == _ 1.3.5
PL zt o PRERT (1.3.5)
This change the mass-shell constraint ([1.2.22)) and level matching (1.2.23)) to
2
s M whl. ., 2 <
M? = EJF( a,) +J(N+N—2),
N-N = nw (1.3.6)
where we have defined M? = — 2;2:1:0 pup*. We see two new terms in the mass-shell

constraint. The first one is the contribution to the mass from the quantised momentum
(p?)?
it takes energy to stretch the string, accounted by the winding energy F,, = 2rwRT =

= n?/R?. The second one tells us that since the string has tension T' = 1/(2ra/),

wR/a’. Now, under the exchange of the winding and momentum modes
W n (1.3.7)

and the exchange of radii

R+ R=d/R, (1.3.8)

the relations ((1.3.6) are left invariant. This symmetry is called T-duality: it maps a
theory compactified on a ‘small’ circle to a theory compactified on a ‘large’ circle, which

is quite a departure from what we are used to with point particles. Under T-duality, we
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can see that pp is left invariant while pg — —pgr. More generally, one can show this is

the case for the left- and right-movers
XP - XP,  Xp-o-X7, (1.3.9)
meaning that the coordinate X?° is mapped to its dual
X¥ = X® X% (1.3.10)
with the dual coordinate satisfying
DX = €507 X725 . (1.3.11)

This can be made explicit at the level of the o-model assuming the background fields do
not depend on the circular coordinate in standard Kaluza-Klein fashion (here X% but
we will call this direction X*® for generality) [43]

'S = /d20\/—77a5(—8aX“35X”GW — 2V,08 X G e — GaaVa Vp)
+6%% (B, 0a X 05 X" + 2B, Va0s X*)
+X**%9,Vs + o' /—yRP¢ (1.3.12)

where now p = 0...24 and we have introduced the Lagrange multiplier X* whose vari-

ation gives
P9,V =0 . (1.3.13)

In the case where V, = 0,X°*, which solves the above equation, one recovers the usual
action (|1.2.26)). What is more interesting is that the T-dual action can be found from
the equations of motion of V,, and back substitution in the action (|1.2.26))

S = Se+S5+8; (1.3.14)

with the dual fields given by the Buscher rules

~ 1 ~ B. =~ Bo Bou - Go Gou
GOO = G.. ’ G‘,LL = G_.l: ’ G,UJ’ = G/“’ + : G.. £ )
- i Go 7 Go Bou - Bo Goy

Beyy = —Bu.= G./: ., B, =B, + —* o =,

(1.3.15)

provided the dilaton shifts to ¢ = ¢ — %log(G..) so to keep conformal invariance at
one-loop. The Buscher rules can be written in terms of a factorised duality matrix

g = (‘C’ Z) = (1;6' 1:) € O(D,D) (1.3.16)
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(ee is a D x D matrix, non-zero only for its ee component which is 1) acting on the

background matrix Ez; = G + Bjg, (ft = i, ) by fractional linear transformation
E=(aE+b)-(cE+d)™* (1.3.17)

with Eﬂ,} being the dual background matrix. This makes appearent the link between the
Buscher rules and the T-duality group. In the more general case where d dimensions are
compactified on the torus 7%, the mass-shell constraint and level matching condition are
most conveniently written in terms of a 2d vector N¥ = (w™ n,,), M = 1...2d,m =

1...d transforming in the fundamental representation of O(d, d,Z)

2
M? = NYHynyNY 4+

J(N+N—2),

N—-N = NMp,yNV, (1.3.18)

with M? = — Zii_odpﬂp“, the O(d,d,R) = O(d, d) invariant matrix

NMN = (g %) (1.3.19)

G- BG™'B BG!
Hun = (

and the 2d x 2d matrix

_olg ) € SO(d,d) . (1.3.20)

The matrix H parametrizes the coset Od.d) ) of dimension d?,the moduli space of d-

O(d)x0(d
dimensional toroidal compactification of the bosonic string. As H and 7 are both element

of O(d, d),the constraints (1.3.6)) are invariant under

(” ) AT (” ) . M — ATHA, (1.3.21)
Wy Wy

where A is an element of O(d,d,Z). This is known as the T-duality group.

1.4 Double Field Theory

In the previous section, we have seen that due to the extended nature of strings, the
T-duality group O(d, d, Z) emerges from a toroidal compactification of the bosonic string
on 79 The remnant of this symmetry at low energy is a global O(d,d) symmetry
(Maharana-Schwarz). Double Field Theory is a covariant reformulation of the NS-NS
sector of supergravity which makes the T-duality group manifest before dimensional

reduction. In its most common formulation, one introduces d dual coordinates

XM = <i“) . (1.4.1)



M=1...2D, py=1...d so to treat the dual modes on an equal footing. Among the D
coordinates, one could separate into n non-compact (external) coordinates and d compact
coordinates as if one were to perform a dimensional reduction (on a torus for example).
While the dual compact coordinates are related to usual winding modes of the closed
bosonic string, their non-compact counterparts do not share this physical interpretation.

This is taken care of in a O(D, D) covariant manner by the section

0 1
™MNoyoy = 0, nuny = (1 0) : (1.4.2)

with 7 the O(D, D) invariant metric which enforce that each fields or gauge parameters
only depends on a ‘physical’ subset of the doubled coordinates. The constraint finds its
origin in the level matching condition in closed string field theory, however it goes further:
when one also enforces the constraint on products of fields and gauge parameters, one
effectively reduces half of the coordinates. This is called the strong constraint and this
is the one we will enforce in this thesis.

Let us now turn to the field content of the theory. As we have seen in the Buscher
rules, T-duality mixes the metric with the B-field. Therefore, to have a manifestly duality
invariant theory, one should combine them in a generalised metric Hy;y, a symmetric
2D x 2D matrix

(1.4.3)

_ po pv
Harn(X) = (GW B,yG* By, B,,G >

—GHe B, GHv

Together with the duality invariant dilaton e 2% = ¢=2¢\/G, it captures the D? + 1
degrees of freedom of the massless state of the bosonic string. In this sense, DFT is
reminiscent of the idea of Kaluza, where the 4-dimensional metric and the photon were
unified in a higher dimensional theory. The resemblance with the original Kaluza-Klein
idea does not stop here. The NS NS action

S = 2—; / d®X /|G| e~ (R +4GH9,00,6 — % HWﬂHWp> o (144)
is invariant under diffeomorphisms
WG = LaGu
WBu = LiaBu
oap = Lag (1.4.5)
and gauge transformation of the B-field
0iBu = 20,A,. (1.4.6)

In the formalism of DF'T, both symmetries share a common geometric origin: they are

encoded in the gauge transformations of the generalised metric and the O(D, D) singlet
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dilaton with a generalised gauge parameter AM = (A, ]\u)

5AHMN = LAHMN = APaPHMN + PPMKLaKALHPN + (M < N) , (147)

ae = Lee ™ =AMy + e 0y AM = 9y (AMe ™) | (1.4.8)

where we have introduced the generalised Lie derivative I whose action on a generalised
vector of weight \y is given by

LaoVM = ANONVM —PM K 9 APVE 4 Ny 0p AT VM|
]P)MPKL = (SML(SKP - 7’]MK77PL . (149)

In the case where one enforces that no fields depend on the doubled coordinates Z,, (a
solution of the section constraint ) one recovers the usual gauge transformations
and of supergravity. In addition, the section constraint also ensures that
the gauge algebra closes i.e

[5A175A2] - 6/\12 ) (1410)

with the parameter A usually given by the Lie bracket in standard Riemannian geom-

etry. Here, it is given by the C-bracket
MY = (A Al = 28[ 0k Ay + M npo N[Ok AT (1.4.11)

which has non-vanishing Jacobiator. This unusual property has no physical consequence
since one can show that the Jacobiator takes the following form

J(Ay, Ao, A)™ = [[Ar, AoJo, As] + cp.

1
= énMPaPN(Ala A27 A3) 3 (1412)

where c.p. stands for cyclic permutations and N(Aj, Ag, A3) is a scalar known in the
litterature as the Nijenhuis operator [44]. This is exactly of the form of a trivial parameter

since for any generalised vector V, we have
L,v™=0. (1.4.13)

Using this formulation, the NS-NS action above can be rewritten into a manifestly
O(D, D) covariant form

S = / dX?Pe I R(H, d) , (1.4.14)
close in spirit to the original GR action. The generalised Ricci scalar is given by [45]

1 1
R = §HMN8M’H,PQ8N’HPQ - §HMN8M’HKL6LHKN — Oy ONHMY
HAHMN 0y Ond — AHMN OppdOnd + 403 HM N Ond (1.4.15)
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Alternatively, one could find the same result from a ground-up approach, by constructing
the action from the invariance under generalised diffeomorphisms. In the next section, we
will show it is possible to take into account not only the NS-NS sector of supergravity but
the full bosonic sector of different supergravities, using the U-duality covariant formalism
of exceptional field theories.

1.5 Exceptional Field Theory

Supergravity theories have a rather unique property: upon dimensional reduction, ex-
ceptional hidden symmetries emerge [46, 47]. When the unique 11D supergravity is
compactified on a torus 7™, n = 2...8, the hidden global symmetries of the lower di-
mensional theory span an E, ) = E,q) (R) Lie algebra. Naively, one would only expect
GL(n), a subgroup of E,), but not the whole FE,,) group. During the second super-
string revolution, the groups E,,) were interpreted as the low-energy remnant of the
U-duality groups E,,)(Z) of M-theory. However, until the construction of Exceptional
Generalised Geometry (EGG) and exceptional field theories (EFT), a complete geometric

interpretation of these groups was lacking.

The formulation of EFT is based on an extended spacetime that ‘geometrises’ the
exceptional U-duality group. There are different EFT theories: although same in spirit,
they differ in form as they are based on different exceptional groups. In the following, we
choose to introduce the Ege) EFT as we will be using it for the main part of this thesis.
In this EFT, all fields depend on 5 + 27 coordinates (z#,YM), where p,v = 0,...,4,
while lower and upper indices M, N = 1,...,27 label the (inequivalent) fundamental
representations 27 and 27 of Es(6), respectively. All functions on this extended space are
subject to a covariant ‘section constraint’ or ‘strong constraint’ that implies that locally
the fields only live on a ‘physical slice’ of the extended space. In the present case this
constraint can be written in terms of the invariant symmetric d-symbol ™% that Es(6)

admits as
dMVEONORA = 0,  dMVEONAOKB = 0, (1.5.1)

for any arbitrary functions A, B on the extended space. In particular, this constraint
holds for all fields and gauge parameters. It was shown in [33] that this constraint al-
lows for two solutions. First, breaking Eg) to SL(6) the constraint is solved by fields
depending on 6 internal coordinates, and we recover the spacetime of 11-dimensional
supergravity. Second, breaking Eg) to SL(5) x SL(2) the constraint is solved by fields
depending on 5 internal coordinates, and we recover the spacetime of type IIB supergrav-
ity. Indeed, upon picking one of these solutions one obtains a theory with the field content
and symmetries of D = 11 or type IIB supergravity, respectively, but in a non-standard
formulation. These formulations are obtained from the standard ones by splitting the
coordinates and tensor fields a la Kaluza-Klein, however, without truncating the coordi-

nate dependence, as pioneered by de Wit and Nicolai [48]. Nevertheless, in this way it is
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possible to describe both D = 11 and type IIB supergravity in one elegant framework.

As in DFT, one can obtain the action of EFT from the invariance under generalised
diffeomorphisms (together with external diffeomorphisms in this case). The first step
towards the action is therefore to define a gauge transformation with respect to an internal
diffeomorphism parameter A for a vector VM of weight Ay

SVM = TLaVM = AR VM — 6 PM N 0 A VY £ X0p AT VM (1.5.2)

with the projector onto the adjoint representation in the tensor product 27 ® 27 =
78 + - - -, which reads

1 1 5
PY N EL = (ta) M)LK = 5 SMK G SEM 3 dyppd"5 R (1.5.3)

We will refer to a tensor structure as transforming ‘covariantly’ iff its transformation
is governed by the generalised Lie derivative (of some weight) and call such objects
generalised tensors. Given the modified form of generalised Lie derivatives, as opposed
to the conventional Lie derivatives, it is no longer clear that they are consistent. In
particular, as in DFT, one should check that they satisfy an algebra, i.e., that they lead
to gauge transformations that close.

An explicit computation then shows that the generalised Lie derivatives close accord-
ing to
[LasLa] = Liagass - (1.5.4)

where we have introduced the ‘E-bracket’

The first term of the bracket has the same form as the standard Lie bracket governing
the algebra of standard diffeomorphisms. The second term explicitly involves the Eg )
structure in form of the d-symbols, in a similar fashion to the O(D, D) case. The E-
bracket in EFT is the natural exceptional extension of the C-bracket introduced in the

previous section. It also shares the non-vanishing Jacobiator property
J(Al,AQ,Ag)M = [[Al,AQ}E,Ag]]\E/[ +Cp 7é 0 (156)

but, as in DFT, the Jacobiator takes the form of a trivial parameter J™ = dMNE9yy .
Therefore, the generalised Lie derivative with respect to this parameter vanishes and we
have

([0, 5 0ns ), Ons]E + C.D- (1.5.7)

as expected. So far we have defined the generalised internal diffeomorphisms by gener-
alised Lie derivatives. Since all fields are functions of internal and external coordinates

Y™ and x*, respectively, we now need to set up a calculus that allows us to differentiate
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w.r.t. z#. Indeed, as for all fields and parameters, AM = A (z,Y) depends on the exter-
nal z# and therefore the derivative 9, of any tensor fields is not covariant in the above
sense. In order to remedy this we introduce a gauge connection AHM , of which we can
think as taking values in the ‘E-bracket algebra’, and define the covariant derivatives

D, = 9y —Ly (1.5.8)

uoe

The covariant derivative of any generalised tensor then transforms covariantly provided
the gauge vector transforms as 5AAuM = DMAM , where we treat the gauge parameter
AM as a vector of weight \ = % Next, we would like to define a field strength for A,*.
Naively, one would write the standard formula for the field strength or curvature of a

gauge connection, but with the Lie bracket replaced by the E-bracket ((1.5.5)
EM =20, A0M — [A,, A (1.5.9)

However, since the E-bracket does not satisfy the Jacobi identity the resulting object

does not transform covariantly
§EM = 2D, AyM + 10dM B dy rOx (AN ALY (1.5.10)

The failure of the covariance is due to the second term, which is of trivial form d™N 59y k.
This suggest that we can repair it by introducing a two-form B, »; with an appropriate
gauge transformation and adding the term d™"% 9B, n to the field strength. This
defines (the beginning of) the so-called tensor hierarchy, originally introduced in gauged
supergravity [49, 50]. Using we thus obtain the field strength

Fut = 20, A0M = 2 AL 0k AN +10dM M g AN Ok A"

+10d"NE 0By v - (1.5.11)
Its general variation is given by
6FuM = 2D 0A,M +10d" VO AB,, v (1.5.12)
with
ABun = 0Bun+dvir A 6A)" . (1.5.13)
One can show the field strength does transform covariantly i.e.
§FM = LyFL M, (1.5.14)
under the following gauge transformations of A and B
SAM = D,AM — 10" K0K= N

ABn = 2DyEgu + 10d"YEARFLE + O (1.5.15)
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where we included the unspecified constrained term O, 5; that vanish under the projec-

tion
d"VE9 O = 0. (1.5.16)

Next, we would like to establish a Bianchi identity, but again, due to the failure of the
E-bracket to satisfy the Jacobi identity, the naive identity does not hold, i.e., DF # 0.
This is also fixed by the presence of the 2-form in that the curl of the 2-form curvature
gives the 3-form curvature of the 2-form. Specifically, we have the Bianchi identities

3DFu ™ = 104" 0k H - (1.5.17)

The 3-form field strength H,,, s is defined by this equations, up to terms that vanish
under the projection with dMNX 9.

We close the introduction on EFT with the form of the action of the Egg EFT. We
have seen that the Eg) EFT has the following field content, with all fields depending on
the 5 + 27 coordinates (z#, Y M),

g;w ) MMN ; A;},M 3 B/.U/M . (1518)

Here g, is the external, five-dimensional metric, My is the generalised internal met-
ric, while the tensor fields A,* and By, describe off-diagonal field components that
encode, in particular, the interconnection between the external and internal generalised

geometries. The dynamics of the bosonic fields ((1.5.18)) is governed by the following

action

~ 1
S = /d5xd27Ye (R—{—ﬂeg’“’ D My D, MMN

1
_Z erquuVNMMN + e_l'ctop - V(M7g)> : (1519)

The structure of the action is simple and can be divided into five different contribution.
The first contribution resembles an Einstein-Hilbert term, the second and third terms are
the gauge invariant kinetic terms for the scalars and the gauge connection, respectively.
The fourth term is a Chern-Simons topological term. Finally, the last term is the scalar
potential. We will come back to the Eg) action in a more detailed manner in Chapter
3.

1.6 Consistent truncation in EFT

It is a notoriously difficult problem to establish the consistency of Kaluza-Klein trun-
cations. Consistency requires that any solution of the lower-dimensional theory can be
lifted to a solution of the original higher-dimensional theory [51]. While this condition is

trivially satisfied for torus compactifications, the compactification on curved manifolds
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is generically inconsistent except for very specific geometries and matter content of the
theories. Even in the case of maximally symmetric spherical geometries, consistency only
holds for a few very special cases [52] and even then the proof is often surprisingly labori-
ous. An example for a Kaluza-Klein truncation for which a complete proof of consistency
was out of reach until recently is that of type IIB supergravity on AdSs x S°, which was
believed to have a consistent truncation to the maximal SO(6) gauged supergravity in

five dimensions constructed in [53] 54} [7].

The manifestly covariant formulation of EFT described in the previous sections has
proven a rather powerful tool in order to describe consistent truncations by means of a
generalisation of the Scherk-Schwarz ansatz [55] to the exceptional space-time [56]. This
relates to gauged supergravity theories in lower dimensions (in this case to D = 5 super-
gravities), formulated in the embedding tensor formalism. Via the explicit dictionary of
EFT to D = 11 and type 1B supergravity, this ansatz then provides the full Kaluza-Klein

embedding of various consistent truncations.

The generalised Scherk-Schwarz ansatz in EFT is governed by a group-valued twist
matrix U € Eg (), depending on the internal coordinates, which rotates each fundamental

group index. For instance, for the generalised metric the ansatz reads
Myn(@,Y) = UpyE(Y)UNEY) Mgp(z) (1.6.1)

where My becomes the Ege)-valued scalar matrix of five-dimensional gauged super-
gravity. This ansatz is invariant under a global Eg) symmetry acting on the underlined
indices. Indeed, gauged supergravity in the embedding tensor formalism is covariant
w.r.t. a global duality group (Eg) in the present case), although this is not a physical
symmetry but rather relates different gauged supergravities to each other. In addition
to the group valued twist matrix, consistency requires that we also introduce a scale fac-
tor p, depending only on the internal coordinates, for fields carrying a non-zero density
weight A, for which the ansatz contains p=2*. We thus write the general reduction ansatz
for all bosonic fields of the Eg EFT (1.5.18)) as [50]

Mun(z,Y) = Un™(Y) UnH(Y) Mgr(z)
guw(@,Y) = p(Y) gu(z),
AM@Y) = pTH(V)AM @)UY,
Bum(z,Y) = p2(Y)Uu™(Y) Bun(z) - (1.6.2)

We will call the above ansatz consistent if the twist matrix U and the function p factor
out of all covariant expressions in the action, the gauge transformations or the equations
of motion. If this is established, it follows that the reduction is consistent in the strong
Kaluza-Klein sense that any solution of the lower-dimensional theory can be uplifted to
a solution of the full theory, with the uplift formulas being (1.6.2]). Let us explain the
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required consistency conditions for the gauge transformations under internal generalised
diffeomorphisms, for which the gauge parameter is subject to the same ansatz as the
one-form gauge field,

A (2, Y) = p 'YV (U HM(Y) A z) . (1.6.3)

We start with the field g,, that transforms as a scalar density of weight A\ = % Consis-
tency of the ansatz (|1.6.2)) requires that under gauge transformations we have

Srg(@.Y) = p(Y)orgu () | (1.6.4)

where the expression for 65 g, is Y-independent and can hence consistently be interpreted

as the gauge transformation for the lower-dimensional metric. The variation on the left-

hand side yields, upon insertion of ,
NG = AN@NQW + gaNANg;w
= p (UM AEOn(p?gw) + 3 On (0 (U M) AE p g (1.6.5)
=37 [3N(U_1)5N —4(U N P_laNP] Afg,, .
If we now demand that
On(U "™ =4 (U p™'Ovp = 3pUk (1.6.6)
where Vg is constant, then the ansatz (1.6.4)) is established with
ongu = 2AMVy g, . (1.6.7)

This corresponds to a gauging of the so-called trombone symmetry that rescales the
metric and the other tensor fields of the theory with specific weights. Here, ¥ is the
embedding tensor component for the trombone gauging, as introduced in [57]. An impor-
tant consistency condition is that is a covariant equation under internal generalised
diffeomorphisms. Treating the (inverse) twist matrix as a vector of weight zero, its diver-
gence Iy (U1 (recalling that the underlined index is inert) is not a scalar. Indeed,
a quick computation with using the section constraint shows that it transforms
1

as a scalar density of weight A = —3, except for the following anomalous term in the

transformation

ANONUUY) = =308 - AU Y. (1.6.8)

This contribution is precisely cancelled by the anomalous variation of the second term
in (|1.6.6)), provided p is a scalar density of weight \(p) = —%. Then both sides of 1)
are scalar densities of weight A = —% and the equation is gauge covariant.

Let us now turn to the consistency conditions required for fields with a non-trivial

tensor structure under internal generalised diffeomorphisms, as the generalised metric.
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In parallel to the above discussion we require that the twist matrices consistently factor
out, i.e.

AMuyn(2,Y) = US(Y)UNE(Y)SA Mg () . (1.6.9)

Using the explicit form of the gauge transformations given by generalised Lie deriva-
tives (|1.5.2)) one may verify by direct computation that this leads to consistent gauge

transformations
InMun(z) = 2A%(2) (OL% + 50k (t%)L%) (ta) u™ Myp(2) | (1.6.10)
provided we assume the consistency conditions

(UM (U 0k UL |4, = 2pOM*(ta)n® (1.6.11)

where the constant © ;% is the embedding tensor encoding conventional (i.e. non-trombone)
gaugings, and the left-hand side is projected onto the 351 sub-representation. Specifi-

cally, writing the derivatives of U in terms of
Xun™ = (U (U N 0kULSE = Xy (ta)n™, (1.6.12)

where we used that since U is group valued, U~10U is Lie algebra valued (in the indices
N, K), so that we can expand it in terms of generators as done in the second equality,

the projector acts as,

[ X0 g5y = (Posa)ur™™p Xn
(1.6.13)
= %(XMO‘ =6 (%) p™ (ta)a™ Xn” + 5 (1) u™ (tg) P Xn” ) :

Let us emphasize that solving the consistency equations and for U and p in
general is a rather non-trivial problem. It would be important to develop a general theory
for doing this, which plausibly may require a better understanding of large generalised
diffeomorphisms, as in [58), 59 60, 61].

The consistency conditions ((1.6.6) and ((1.6.11) can equivalently be encoded in the
structure of a ‘generalised parallelization’, see [25]. To this end, the twist matrix U and
the scale factor p are combined into a vector of weight %,

U™ = p (U HY. (1.6.14)

Both consistency conditions ([1.6.6) and (1.6.11]) can then be encoded in the single man-
ifestly covariant equation

Lo Uy' = —Xun"Ug', (1.6.15)
with X/ v constant and related to the D = 5 embedding tensor as

Xaun™ = (Ou* + 5 0L(%)u*) (ta)v™ — In"Vu (1.6.16)



as we briefly verify in the following. In particular, equation (1.6.15]) implies that

LUEP = —Vyp. (1.6.17)

It is straightforward to verify that subject to (1.6.15]), the gauge transformations
of all bosonic fields in ((1.6.2]) reduce to the correct gauge transformations in gauged
supergravity. Let us illustrate this for a vector of generic weight A, for which the Scherk-

Schwarz ansatz reads
VM@, Y) = p UMY V@) = p PO (V) V@) . (16.18)

Using (1.6.15)) and (1.6.17)), its gauge transformation then takes the form
5AVM _ LAK(}; (p73>\+1<[771)MM) 1728

_ AK ((—SA + 1) (Lt p)p P (O™ + p‘%“Lﬁ—l(ﬁ‘l)ﬂM) VE (1.6.19)

- K

_ p_3>\+1((7_1)MM ((3/\ _ 1)A519£Vﬂ _ AKX&M‘/L> ’

from which we read off, inserting (|1.6.16)),
SAVE = —AE (0™ + 29p(t™)kP) (ta) LN VE+ 3XNAE YL VA (1.6.20)

This is the expected transformation in gauged supergravity with general trombone gaug-

ing and in particular is compatible with (1.6.10) and (1.6.7) for A = 0 and X\ = 2,

respectively. As the covariant derivatives and field strengths are defined in terms of gen-
eralised Lie derivatives (or its antisymmetrisation, the E-bracket), it follows immediately

that also these objects reduce ‘covariantly’ under Scherk-Schwarz, e.g.,
Dugup(‘ra Y) = P_2 (au - AuNﬁN) gyp ) (1621)
DuMuyn(z,Y) = Un"UyNZ (@MQ — 24,5 (0L + §Ug (t%)L7) (ta)(MBMM£> :

In addition, the covariant two-form field strength reduces consistently,
Fo M@, Y) = pH (UM FL ), (1.6.22)
with the D = 5 covariant field strength F WN given by
EM = 20, A0 4+ Xl AEANE — 25X M B, v (1.6.23)

and similarly for the three-form curvature. To summarize, the reduction ansatz
describes a consistent truncation of Ege) EFT to a D = 5 maximal gauged supergravity,
provided the twist matrices satisfy the consistency conditions and . It
is intriguing, that the match with lower-dimensional gauged supergravity, does in fact
not explicitly use the section constraint (provided the initial scalar potential is writ-

ten in an appropriate form) [62, 27, 56]. Formally this allows to reproduce all D = 5
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maximal gauged supergravities, and it is intriguing to speculate about their possible
higher-dimensional embedding upon a possible relaxation of the section constraints that
would define a genuine extension of the original supergravity theories. For the moment it
is probably fair to say that our understanding of a consistent extension of the framework
is still limited. If on the other hand the twist matrices U do obey the section constraint
, the reduction ansatz translates into a consistent truncation of the original
D = 11 or type 1IB supergravity, respectively, depending on to which solution of the sec-
tion constraint the twist matrices U belong. With the explicit dictionary between EFT
and the original supergravities, given in this thesis for type IIB and in [33] for D = 11 su-
pergravity, the simple factorization ansatz then translates into a highly non-linear
ansatz for the consistent embedding of the lower-dimensional theory. This requires the
precise interplay between various identities whose validity appears somewhat miraculous
from the point of view of conventional geometry but which find a natural interpretation
within the extended geometry of exceptional field theory.
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Chapter 2

Consistent Pauli Reduction of
the bosonic string

In the last section of the previous chapter, we have introduced the generalised Scherk-
Schwarz ansatz within EFT. This is not a proprietary feature of EFT, and the same
type of ansatz holds in Double Field Theory. There has already been several interesting
results of generalised Scherk-Schwarz reduction in DFT, mainly regarding non-geometric
flux compactifications and gauged supergravity [63, 26]. In this chapter, we will show

another example of the usefulness of the generalised Scherk-Schwarz ansatz.

It was observed in [6] that in a reduction of the (n + d)-dimensional bosonic string
on a group manifold G of dimension d, the potentially dangerous trilinear coupling of a
massive spin-2 mode to bilinears built from the Yang-Mills gauge bosons of G x G was
in fact absent. On that basis, it was conjectured in [6] that there exists a consistent Pauli
reduction of the (n + d)-dimensional bosonic string on a group manifold G of dimension
d, yielding a theory in n dimensions containing the metric, the Yang-Mills gauge bosons
of G, X Gg, and d* + 1 scalar fields which parameterise R x SO(d,d)/(SO(d) x SO(d)).
Further support for the conjectured consistency was provided in [64], where it was ob-
served that the K = SO(d) x SO(d) maximal compact subgroup of the enhanced O(d, d)
global symmetry of the 7 reduction of the bosonic string is large enough to contain the

G, X G gauge group as a subgroup.

We shall present a complete and constructive proof of the consistency of the Pauli
reduction of the bosonic string on the group manifold G. Our construction makes use
of the recent developments realising non-toroidal compactifications of supergravity via
generalised Scherk-Schwarz-type reductions [55] on an extended spacetime within duality
covariant reformulations of the higher-dimensional supergravity theories [65] 63 [62] 27,
60, (67, [56], 68]. In this language, consistency of a truncation ansatz translates into a set
of differential equations to be satisfied by the group-valued Scherk-Schwarz twist matrix
U encoding all dependence on the internal coordinates. We then explicitly construct
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the SO(d,d) valued twist matrix describing the Pauli reduction of the bosonic string
on a group manifold G in terms of the Killing vectors of the group manifold. We show
that it satisfies the relevant consistency equations thereby establishing consistency of the
truncation. From the Scherk-Schwarz reduction formulas we then read off the explicit
truncation anséatze for all fields of the bosonic string. We find agreement with the lin-
earised ansatz proposed in [6] and we confirm the non-linear reduction ansatz conjectured
in [64] for the metric.

Our solution for the twist matrix straightforwardly generalises to the case when G is
a non-compact group. In this case, the construction describes the consistent reduction
of the bosonic string on an the internal manifold M, whose isometry group is given by
the maximally compact subgroup K X Kr C G, X Gg. The truncation retains not only
the gauge bosons of the isometry group, but the gauge group of the lower-dimensional
theory enhances to the full non-compact G x Ggr. At the scalar origin, the gauge group
is broken down to its compact part. This is a standard scenario in supergravity with non-
compact gauge groups: for the known sphere reductions the analogous generalisations
describe the compactification on hyperboloids HP? and lower-dimensional theories with

SO(p, q) gauge groups [69, [70, 56], [71]. We will come back to this in the next chapter.

2.1 O(d,d) covariant formulation of the (n+d)-dimensional

bosonic string

Our starting point is the (n + d)-dimensional bosonic string (or NS-NS sector of the

superstring)

A A nn 1 U
S = / dX™ /|Gl e <R—|—4G“l’8ﬂ¢8,;gzﬁ - Ehw'fpﬂw> . (2.10)

with dilaton ¢ and three-form field strength Hj;;; = 30,Cy5. As described in the
introduction of this chapter, the conjecture of [6] states this theory admits a consistent
Pauli reduction to n dimensions on a d-dimensional group manifold G retaining the full
set of G X Gr non-abelian gauge fields, according to the isometry group of the bi-
invariant metric on GG. In the following, for the explicit reduction formulas we will use

the metric in the Einstein frame
Gﬂf, = 674’6(1) éﬂ,} s (212)
with 8 = 1/(n + d — 2), and split coordinates according to

(XM — {a" y™}, w=0,....n—1, m=1,...,d. (2.1.3)

The key tool in the following construction is double field theory (DFT) [21], 24. [72], [45],

introduced in the previous chapter. Most suited for our purpose, is the reformulation
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of in which an O(d, d) subgroup of the full duality group is made manifest [73].
This is obtained by Kaluza-Klein decomposing all fields according to n external and d
internal dimensions (keeping the dependence on all (n + d) coordinates) and rearranging
the various components into O(d, d) objects. Formally, this theory lives on an extended
space of dimension (n + 2d) with coordinates {z*, Y™} with all fields subject to the
section constraint OM @ d); = 0 which effectively removes the d non-physical coordinates.
In this sense, this version of DFT, invariant under both external and generalised diffeo-
morphisms, is close in spirit to EFT. Fundamental SO(d, d) indices M, N are raised and
lowered with the SO(d, d) invariant metric ny,y. Regarding the field content, in addition
to Hyn and the dilaton @ already found in the standard form of DFT, here a symmet-
ric SO(d, d) group matrix and a scalar of weight % under generalised diffeomorphisms,
one has the external space-time metric g,,, a Kaluza-Klein vector AHM and a two-form
potential B,,. As in EFT, the vector field acts as a gauge field for the generalised
diffeomorphism

oAM= (0, —La,)A=D,A, (2.1.4)

where we have introduced the covariant derivative D, w.r.t. to generalised diffeomor-
phisms on the extended space. The naive field strength of the vector field

Fu™ =20, A0" = [Au, A (2.1.5)

here given in terms of the C-bracket ((1.4.11), is not covariant. Again, this is very similar
to the EFT case and one need to introduce a two-form B, with the appropriate gauge
transformation such that the field strength

Fu M = 20, A,M — [A,, A)Y — 0MB,, , (2.1.6)
is now covariant under
SAM = D,AM+ oM\, ,
AB,, = 6B, — AN6A N = 2D A — AN Fu N . (2.1.7)
The two form potential B, also comes with its covariant field strength
Hup = 3DBuy + 3 AN 0, A y — Apn[Av A (2.1.8)
which can be read from the modified Bianchi identity
3D Fog™ +0MH,m, = 0. (2.1.9)

With this formalism, one can show that the action (2.1.1)) can be rewritten in the form

~ 1 1
S = / dz"dY?* \/|g| e 2® <R + 48" D@D, ® — S H Hy + 2 g D, HMN D, Hyn

1 1
— 5 P M FLN L MYV 0g O + R, ’H)) .

(2.1.10)
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with the covariant derivatives explicitly given by
1
D,UCI) = 8M<I> - AMMaM(D + 5 aMAuM )
DHun = O, Hun — AMKaK'HMN —2 8(MAHKHN)K + 2 aKAM(M'HN)K ,
(2.1.11)

the improved Ricci scalar

A~

R =R+ e e FoMe Oy , (2.1.12)
and R(P,H) the scalar DFT curvature (1.4.15)).

The section constraint 0™ ® 9y, = 0 is solved by splitting the internal coordinates
according to

{(YM} = {y™, ym} | (2.1.13)

0 0"
= 2.1.14
nMN ( smo 0 ) ’ ( )

and restricting the dependence of all fields to the physical coordinates y™ by imposing
0™ = 0, thereby reducing the extended space-time in back to (n+d) dimensions.
Upon breaking the DFT field content accordingly, and rearranging of fields, the O(d, d)
covariant form then reproduces the bosonic string . The precise dictio-
nary can be straightforwardly worked out by matching the gauge and diffeomorphism
transformations of the various fields on the bosonic string side (after the split (2.1.3))
to the generalised gauge transformations on the DFT side (with 0™ = 0). In the
following, we will only give the the result of the dictionary. In the next chapter, we will

in a light-cone basis where

review in detail how to build the dictionary in the richer Eg) case. For the DF'T p-forms
and metric this yields

A" =A"=GC"Gpn, Aum=—Cum—A,"Cpn),
Bm, = ij + QA[“mCl,]m -+ A[NmAl,]nCmn + A[MmAl,]m , (2.1.15)
g = € (G — A" A Gy -
The dictionary for the DF'T scalar fields is most conveniently obtained by comparing the

transformation of the DFT vector fields under generalised external diffeomorphisms
seAM = EFM e HMN g, 00, (2.1.16)
to the transformations in the original theory and yields
H™ = o gmn Hp" = e P Gy
Hom = ¢ 2 GMCrmCin + € G

e® = 5% (det Gom) V4, (2.1.17)

36



with v = ﬁ With the dictionary (]2.1.15[), (]2.1.17[)7 and imposing 0™ = 0, the O(d, d)
covariant action (2.1.10]) reduces to the original action (2.1.1]) of the bosonic string. The

reduction ansatz on the other hand will be most compactly formulated in terms of the
O(d, d) objects.

2.2 Generalised Scherk-Schwarz ansatz and consistency

equations

An important property of the O(d, d) covariant form of the action is the fact that
particular solutions and truncations of the theory take a much simpler form in terms of
the O(d, d) objects A,M, Hn, etc., as opposed to the original fields of the bosonic
string . In particular, consistent truncations to n dimensions can be described
by a generalised Scherk-Schwarz ansatz in which the dependence on the compactified
coordinates Y™ is carried by an SO(d, d) twist matrix Up* and scalar functions u and
p (which respectively take care of the weight of the fields under the R scaling and
generalised diffeomorphisms), according to [65, 63

Hun = []MA(y)]\IAB(.CI?)[]]\]B(:(/)7 eq) = u(n_2)/2(y) 680(1‘)’
AM = u)p O M) AN@) . Bu = w(y)p (y) Bu(@) |
g = €70 =0 (y)p ()" gu(z) . (2.2.1)

Here, A, B, and g,, are the gauge vectors, two-form and space-time metric of the
reduced theory. The symmetric SO(d, d) group valued matrix Myp(z) can be thought
of as parametrizing the coset space SO(d,d)/(SO(d) x SO(d)), and together with e?(x)
carries the d? + 1 scalar fields of the reduced theory. In the following, we will choose u=p
such that no shift symmetries on the vector field remain after applying the generalised
Scherk-Schwarz ansatz A, = OMA,(z,y) = OM(u?(y)p~*(y))Au(x). In this case, the

ansatz ([2.2.1)) describes a consistent truncation of (2.1.10)), provided Uy# and p satisfy
the consistency equations

77D[A (Uﬁl)BM(Uil)c]NaMUND = fABC = const. s (222)
p_l 8Mp = - (U_l)AN(?NUMA s (223)
with the SO(d, d) invariant constant matrix n45 and v = ﬁ If Up? and p in addition

depend only on the physical coordinates on the extended space (2.1.13))

o"Uy?* = 0 = 0"p, (2.2.4)

I Since with (2.1.10) we use DFT in its split form with internal and external coordinates, the reduction
ansatz (2.2.1)) resembles the corresponding ansatz in exceptional field theory [56] for the p-forms and
metric.
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the ansatz ([2.2.1)) likewise describes a consistent truncation of the original theory ([2.1.1)).
As a consequence of this section condition, the Jacobi identity is automatically satisfied

for fapc upon using its explicit expression ([2.2.2)
[Xa, Xp] = —Xap“Xo (2.2.5)

where we have introduced the generalised structure constant X 5% = flaB DmDC. Then,
for a given solution of (2.2.2)), (2.2.3]), the explicit reduction formulas for the original
fields are obtained by combining (2.2.1)) with the dictionary (2.1.15)), (2.1.17)), as we will

work out shortly.

In order to explicitly solve the generalised Scherk-Schwarz consistency conditions

f, let us first note that with the index split , and the parametrization
Uu? = 0" {25, K™}, (UM = {Ka™ Zam} . (2.2.6)
of the SO(d, d) matrix, equation (2.2.2)) turns into
Lic,Kp™ = —Xap® Ko™,
Lx Zpm+Kp" (0mZan — 0Zamn) = —Xas” Zom . (2.2.7)

The SO(d, d) property of Uy translates into

0 &0
b

In the following, we will construct an explicit solution of , in terms of
the Killing vectors of the bi-invariant metric on a d—dimensional group manifold G. For
compact (G, the resulting reduction describes the Pauli reduction of the bosonic string
on G, for non-compact G, this describes a consistent truncation on an internal space Mjy
with isometry group given by two copies of the maximally compact subgroup K C G.
Specifically, we choose the 4 as linear combinations of the G x G Killing vectors
{L R}, in the following way

Kam = {L,"+ R, L™ — R*™} | (2.2.9)
with their algebra of Lie derivatives given by
Lr,Ly=—fuaL., Lr,Ry=0, Lr, Ry = fu R, (2.2.10)

in terms of the structure constants f,;,¢ of g = Lie GG, and with indices a, b, . . ., raised and
lowered by the associated Cartan-Killing form kg = foc? foa®. Moreover, the bi-invariant
metric on the group manifold can be expressed by

G™ = —4L,"L°" = —4R,"R™. (2.2.11)
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With (2.2.10)), the ansatz (2.2.9) solves the first equation of (2.2.7)), with structure con-

stants X 43¢ given by
Xape = fab07 Xabc = fabca )(abC = fabc, Xabc = fabc, (2212)

and all other entries vanishing. Indeed, these structure constants are of the required form
Xap® = flappn®, c.f. (2.2.5). We may define the G, x Gp invariant Cartan-Killing

form of the algebra ([2.2.5))

1 Kap O
kap = =Xac"Xpp© = ’ w | (2.2.13)
2 0 ~
such that the Killing vectors (2.2.9)) satisfy
AP = — G™, "B "Kgt = 0, (2.2.14)

and moreover k48 Nap = 0.

In order to solve the second equation of (2.2.7)), with the same structure constants

(2.2.12)), we start from the ansatzﬂ
Zam = —kaPKgm—+Ka" Co . (2.2.15)

Here, the space-time index in the first term has been lowered with the group metric
G from (4.2.12), and Coron = C’[mn] represents an antisymmetric 2-form, such that the
SO(d,d) property ([2.2.8)) is identically satisfied. With this ansatz for Z4,,, the second

equation of (2.2.7) turns into
HAC’CBTL (anICCm — 8mICCn) -3 ’CAk ’CBn 8[k6~’mn] = 2 77DE XA(EC KB)C ICD(,Z.QJG)

The right-hand side of (2.2.16|) vanishes by invariance of the Cartan-Killing form k4p.
From (2.2.14)), one derives the following identity

6[mICAn] = XACB/QCD}CBm/CDn s (2.2.17)
for the derivative of the Killing vectors. Inserting this relation in (2.2.16|) gives
3K A" 0 Crnn = 2 XaPKpmKen (2.2.18)

where we have used kK ZXpp©kPP = X,4B¢. We note that both sides of this equation
vanish under projection with n”?4K 4, as a consequence of (2.2.14)). Projecting instead
with kP4K 4,, equation (2.2.16) reduces to an equation for Coun

306Cin] = Himn = — 2XPPrp KarKpmKon - (2.2.19)
2 Let us stress that our notation is such that adjoint G indices a,b, ... are raised and lowered with
the Cartan-Killing form k., whereas fundamental SO(d, d) indices A, B, ... are raised and lowered with

the SO(d, d) invariant metric nap from (2.2.8)) and not with the G-dependent Cartan-Killing form x4p

from .
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Explicitly, the flux H tmn takes the form
ﬁkmn = —16 fabc LakmeLcn = —16 fabc Rakachna (2220>

and can be integrated since 8[k]:llmn] = 0, due to the Jacobi identity on fu,,.. We have
thus solved the second equation of (2.2.7)).

With (2.2.9)), (2.2.15)), the remaining consistency equation (2.2.3)) reduces to

(n—=2)Ks"0nlogp = 0,k = — Lo ™A™

—  p = (detGpn) 2. (2.2.21)

We have thus determined the SO(d,d) matrix Uy and the scalar function p solving
the system (12.2.2)), (2.2.3) in terms of the Killing vectors on a group manifold G, and a

two-form determined by (2.2.19)). The resulting structure constants are given by ((2.2.12])
such that the gauge group of the reduced theory is given by G x Gr.

2.3 Reduction ansatz and reduced theory

We now have all the ingredients to read off the full non-linear reduction ansatz of the
bosonic string . Combining the DFT reduction formulas with the dictionary
(2.1.15), (2.1.17), and the explicit expressions ([2.2.9), (2.2.15) for the Scherk-Schwarz
twist matrix, we obtain

ds* = A™(x,y) g (x) dz'dz”
+ Grn(2,y) (dy™ + ICAm(y)A;‘(:c)d:c“) (dy" + K" (y)AJ (z)dz") (2.3.1)
for the metric in the Einstein frame, with G,,,(x,y) given by the inverse of
GMw,y) = A (w,y) Ka™(y)Kp" (y)e PO MAP () (2.3.2)
The dilaton and the original two-forms are given by
8o — AQ’Y(JJ; Y) ehre(z)

Cmn = 5mn(y) + AQW (337 y) HADK:D m]CBpGpn (ma y) €4V¢(I)MAB (.1') )

Coum = (kaPKpm + A% (2,y) k" K A" KK P Gom (2, y) €79 ML (2)) A, (2) (2.3.3)
Chuy = B () — kp“Ka™ Kom A (2) A B ()

- AZ’Y (xa y) HC’E ICBTLICEH ICDp ICAm Gpm(xa 3/) 64’YLP(I)MCD('x) A[HA(:C)AV}B(:E) :

where we have introduced A? = det (G (y)) ! det (Gpun(z,y)). In these expressions, all

space-time indices on the Killing vectors 4™ are raised and lowered with the metric
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Gn(y) from , rather than with the full metric G,,,(z,y). For the group man-
ifold G = SU(2), the construction describes the S* reduction of the bosonic string, for
which the full reduction ansatz has been found in [52]. For general compact groups, the
reduction ansatz for the internal metric (2.3.2]) was correctly conjectured in [64]E|

In order to compare our formulas to the linearised result given in [6], we first note
that for compact GG, we may normalise the Cartan-Killing form as kap = —dap, such
that the background (at Map(x) = dap) is given by

Gon = Guny  Con = Comy 6 = 0. (2.3.4)
We then linearise the reduction formulas (2.3.1)—(2.3.3)) around the scalar origin
MAB(ZE) :5AB+mAB(as)+... , (235)

and (back in the string frame) obtain

~ ~ ~ ~ ~

Con(,9) = Conn (1) + o (2,9) + -+ Conn(39) = Conn (4) + Foan (2, 9) + - .- (2.3.6)
with
B (,y) = —map () K () KP(y) | 257
Ko (2, y) = mag (@) 5P Kpm(y) KPn(y)
as well as
¢ =)+ 1G4+ .. (2.3.8)

for the dilaton, where we have used the linearisation A(z,y) = 1+ %émnﬁmn —2dpo+. ...
Parametrizing the scalar fluctuations (2.3.5)) as

map = (“ _b) , (2.3.9)
b —a
AB

with symmetric ¢ and antisymmetric b, in accordance with the SO(d, d) property of Mg,
we finally obtain the fluctuations

}Almn + l%mn = Sab<x>Lan<y)Rbm(y) P
| (2.3.10)
6 = p(a) + 35" @)L (1) Romy)

3 The translation uses an explicit parametrization of the S O(d,d) matrix M4p in a basis where nap
is diagonal, as

i [+ PPH2 P
AB = pt (14 Ptp)l/2)

in terms of an unconstrained d x d matrix P,° .
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with S = 4 (a“b + bab). These precisely reproduces the linearised result given in [6].

After the full non-linear reduction —, the reduced theory is an n-dimensional
gravity coupled to a 2-form and 2d gauge vectors with gauge group G x Gg. The (d*+1)
scalar fields couple as an R x SO(d,d)/(SO(d) x SO(d)) coset space sigma model, and
come with a scalar potential [74] [75]

1
Viz) = = M@ Xy ¢ Xt MAP () (MPE () Mop(z) + 30565 ) | (2.3.11)

with the structure constants X,5¢ from (2.2.12). Due to the dilaton prefactor, this
potential cannot support (A)dS geometries, but only Minkowski or domain wall solutions.

Let us finally comment on adding a cosmological term e**? A in the higher-dimensional
theory (2.1.1). E.g. for the bosonic string such a term would arise as conformal anomaly
in dimension n + d # 26 . In the Einstein frame, the modified action takes the form

- 1
S = / dX™ /|G (R + 4G 06050 — 5 e 8O AP s + e4ﬁ¢A) (2.3.12)

with constant A. With the O(d,d) dictionary (2.1.17)), it follows that the effect of this
term in the O(d, d) covariant action (2.1.10]) is a similar term

L. = /|gle A, (2.3.13)

manifestly respecting O(d, d) covariance. The presence of this term thus does not interfere
with the consistency of the truncation ansatz and simply results in a term

L. = +/]gle"?A, (2.3.14)

in the reduced theory, as already argued in [0, 52].

2.4 Summary

We have in this chapter given a complete and constructive proof of the consistency of
the Pauli reduction of the low-energy effective action of the bosonic string on the group
manifold G, proving the conjecture of [6]. The construction is based on the O(d,d)
covariant reformulation of the original theory in which the consistent truncations of the
latter are rephrased as generalised Scherk-Schwarz reductions on an extended spacetime.
We have explicitly constructed the relevant SO(d, d) valued twist matrix, carrying the
dependence on the internal variables, in terms of the Killing vectors of the group manifold
G. From the twist matrix, we have further read off the full non-linear reduction ansétze
for all fields of the bosonic string. The construction is the first example of the power
of the generalised Scherk-Schwarz reductions on extended spacetime we will see in this
thesis and hints towards a more systematic understanding of the conditions under which
consistent Pauli reductions are possible.
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Chapter 3

Type 11B supergravity within the

In this chapter, we establish the precise embedding of type IIB supergravity into the Eg )
EFT. We start by a review of the Eg) EFT action and derive the field equations of the
2-form which will translate to the self-duality relations for the field strength of the 4-form
on the type IIB side. We then decompose the EFT field content under the appropriate
solution of the section constraint. This constitutes the preliminary work needed to prove
the consistency of the Kaluza-Klein reduction of type IIB supergravity on AdSs x S5,
one of the application we will see in the next chapter.

3.1 Review and type IIB decomposition of the Eggq,
EFT

3.1.1 Covariant Egg dynamics

In the introduction, we have seen that the theory is invariant under generalised diffeo-
morphisms, generated by a parameter AY = AM(z,Y). We also gave the action, which is
manifestly invariant under generalised diffeomorphisms. Let us now define the dynamics
of the Eg) EFT by giving the unique action principle on the extended space, which
decomposed into the five terms

Serr = Sgu + L + Ly + Stop V. (3.1.1)

The first term formally takes the same form as the standard Einstein-Hilbert term,

Sen = /d‘:’xdwYeﬁ = /d5xd27Yeea”eb”§W“b, (3.1.2)
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except that in the definition of the Riemann tensor all partial derivatives are replaced
by A, covariant derivatives and one adds an additional term to make it properly local
Lorentz invariant, RW“Z’ = Ruyab—i-]:u,,M ep[a(?Mepb}. The second term is the ‘scalar-kinetic’
term defined by
1
Lo = 51 € g" D, My D,LMMY (3.1.3)

The third term is the kinetic term for the gauge-vectors, written in terms of the gauge
covariant curvature (|1.5.11)),

1
‘CVT = —ZGFMVMfMVNMMN. (314)

The fourth term is a Chern-Simons-type topological term, which is only gauge invariant
up to boundary terns. It is most conveniently defined by writing it as a manifestly gauge
invariant action in one higher dimension, where it reduces to a total derivative, reducing

it to the boundary integral in one dimension lower. Using form notation it reads

Stop = / &’ d*7Y Liop

V10
= / d*Y / (dynie FYNFNANFE —40d" V5 My N OnHE)(3.1.5)
Me
Under a general variation of A and B the topological Lagrangian varies as

1 20
5£top = g v 10 ghvpor <dMNK fMVM.FpUN5ATK + ? dMNK 8N’HWPM ABO”TK) .
(3.1.6)

The final term in the action is the ‘scalar potential’ that involves only internal derivatives

Oy and reads

1 1
(3.1.7)

1 1 1
- 59718M9 ONMMN — ZMMN9718M9 g 'Ong — ZMMNaMg’"WaNgW .

Its form is uniquely determined by the internal generalised diffeomorphism invariance (up
to the relative coefficient between the last two terms in the second line that is universal

for all EFTs).

The field equations of the Ege) EFT follow by varying naively w.r.t. all fields.
For now we focus on the field equations for two-form only, because they will be significant
below. The 2-form B,,,»s does not enter with a kinetic term, but appears inside the Yang-
Mills-type kinetic term, c.f. the definition , and the topological term (3.1.5)).

Therefore, its field equations are first order and read

1
dMNE 9y (e/\/lNLJ-"””L + V10 erveeT ’H,mN) = 0. (3.1.8)
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These equations take the same form as the standard duality relations in five dimensions
between vectors and two-forms. However, here they appear only under a differential
operator, which thus leads to different sets of duality relations for different solutions of
the section constraint.

In the action above (3.1.1)), all terms are independently gauge invariant. Therefore,
they could appear in the action with arbitrary relative coefficients. It was shown in [33]
that all the coefficient are fixed by demanding invariance of the action under external

diffeomorphisms, generated by a parameter &# = £#(x,Y')
5§€ua = gyDueua + D,ufyeua )
(SgMMN = g”D,u,MMN7
oAM= ¢ FM+ MMNg, 0N

AglguuM - gp 6Euypo“r fUTNMMN . (319)

1
24/10
They take the same form as standard diffeomorphisms generated by conventional Lie
derivatives, except that all partial derivatives are replaced by gauge covariant derivatives.

Moreover, in 0.4, there is an additional M-dependent term and in AB,, the naively
covariant form £”H,,, has been replaced according to the duality relation (3.1.8).

3.1.2 IIB solution of the section constraint

In [33], it was shown with extensive details that upon breaking Eg) to GL(6), according

to,
GL(6) = SL(6) x GL(1) € SL(6) x SL(2) € Egg (3.1.10)

one recovers 11-dimensional supergravity in a 5+6 split formulation. In this chapter, we
will focus the GL(5) x SL(2) invariant solution of the section condition and we will show
that it is on-shell equivalent to type IIB supergravity after a 5+5 split. We consider the
following embedding into Egg).

GL(5) x SL(2) < SL(6) x SL(2) C Eg) - (3.1.11)
In this case, the fundamental and the adjoint representation of Eg(g) break as

27 — (5,1) 14+ (5,2) 11 + (10,1)_5 + (1,2)_5 (3.1.12)

78 — (5,1) 6+ (10,2)_3+ (14 15+ 20), + (10,2)45 + (5, 1)46, (3.1.13)

with the subscripts referring to the charges under GL(1) C GL(5). An explicit solution
to the section condition ([1.5.1)) is given by restricting the Y dependence of all fields
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to the five coordinates in the (5,1),4. Explicitly, splitting the coordinates Y and the
fundamental indices according to (3.1.12)) into

" = L™ Ymar U™ Ya ) (3.1.14)

with internal indices m,n = 1,...,5 and SL(2) indices a = 1,2, the non-vanishing
components of the d-symbol are given by

1 1 1
dMNK dmna,ﬂ _ = 5::15046 : dmnka,lﬁ _ \/g z;n Eaf » dmn,kl,p — = mnklp ,
no 1 n o e 1 e 1
dMNK : dm h = \/E dm‘g g ) dmnk 16 = 5 57ljlln€ g ) dmn,kl,p = \/@ gm(fl%l;l5>

and all those related by symmetry, dMN5 = d(MNK) In particular, the GL(1) grading
guarantees that all components d™"* vanish, such that the section condition ((1.5.1)
indeed is solved by restricting the coordinate dependence of all fields according to

{0"*A=0, 0pA=0,0"A=0} <  A@" YY) — A("y").
(3.1.16)

3.1.3 Decomposition of EFT fields

In this subsection we analyse various objects of EFT, e.g., the generalised metric and the
gauge covariant curvatures, in terms of the component fields originating under the above
decomposition of Eg ), together with their gauge symmetries. This sets the stage for our
analysis in sec. 4, where we start from type II1B supergravity and perform the complete

Kaluza-Klein decomposition in order to match it to the fields and symmetries discussed

here. Thus, here we split tensor fields and indices according to (3.1.12))—(3.1.15)), assuming
the explicit solution (3.1.16|) of the section condition.

To begin, let us consider the p-form field content of the Ege) EFT under the split

(3.1.12). This yields
A,uM : {AumaAuma7AukmmA,ua} ) B/LZ/M : {Buua>BuumnaBuumaaguum(}g'l'17>

where we have defined A, ym, = %5kmnquMpq. However, the EFT Lagrangian actually

depends on the two-forms only under certain derivatives,
{0mBu® . 0uBiwmn) » OmBuw™ } (3.1.18)

introducing an additional redundancy in the two-form field content, which will be impor-
tant for the match with type IIB.

Let us now work out the general formulas of the Ege)-covariant formulation with
(3.1.15)) and imposing the explicit solution of the section condition (3.1.16)) on all fields.
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We then obtain, by inserting ((3.1.15)) into (1.5.11)), the following covariant field strengths
of the different vector fields in (3.1.17)),

Fu = 20,A," — ASTOLAT + ASTOALT
Fuvma = 2D Ao + €ap OnBu |
Fuvkmn = 2Dp Ay jn — 3V2% Ap 10 OmeAvinis + 3 0Bl mn)
Fuva = 2D0C Ay — 200415 Avja — V2 AL 00 A ma
~ V2 Aot OnA™ — €ap OB (3.1.19)
with the redefined two-forms
B.* = V10B,* —* A" Ayns .
Buvmn = V10 Buymn + Ap A konn »
Bk = VI0B," + e ALk A (3.1.20)

Here all covariant derivatives are D, = 0, — L4,, covariantized w.r.t. to the action of
the five-dimensional internal diffeomorphisms reviewed above. The corresponding vector
gauge transformations, obtained from (|1.5.15)), are given by

SAM™ = DA™,
5-’4;“7104 = DEK Ama + ﬁAAuma — Eap améuﬁ >
0Aukmn = Di" Mimn + LaAukmn — 3V2% OpAjujmia) Mnjs — 3 05 ) mn) (3-1.21)

with

[1]:

L= VI0E, — e N A s Zpmn = VI0Z4mn + A Ay g - (3.1.22)
For the vector fields A, , we observe that its gauge variation contains the contribution
0Ape = -+ +eapRZLFP (3.1.23)

This implies that it can entirely be gauged away by the tensor gauge symmetry associ-
ated with the two-forms B,,**. Consequently, it will automatically disappear from the
Lagrangian upon integrating out 9;.B,,*’. The remaining two-form field strengths in

turn come with gauge transformations

0B, = 2D[Z,% + LaB," — e Mg Fu" + O

~ ~ 1 ~
5B,uumn = ZDEK <Eumn + Egaﬁ Auma > \/_a Auna E'l/

+ EABmen - A[m\a| an]lg’uua + Amnk Jrul/k

1

V2
1 -

+ 7 e Frvma Mg + O (3.1.24)
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°
Il

) V100,,* (3.1.25)
Owmn = V10O + O (28" By + V2o 5 + V2 AynaAuns)
Finally, the associated three-form field strengths are obtained from and read

Huwp” = V1I0Huw," = 3D B, " + 3™ Fiu,"Agus , (3.1.26)
Huvprn = V10 Hyprmn

= 3D Bupmn — 3 Fu Aprmn — 3V26 ApaDyApns + 3V2 Apuma0nB, .

More precisely, this holds up to terms that are projected out from the Lagrangian under

y-derivatives. The expressions on the r.h.s. in (3.1.24)-(3.1.26)) are understood to be

projected onto the corresponding antisymmetrizations in their parameters, i.e. [mn],
(v, [uvpl, ete.

It is also instructive to give the component form of the Bianchi identities originating
from ({1.5.17). We obtain the components

4D§LK7:[ * = 65&5 f[,uunfpa]nﬂ . (3127)

vpo]

After a straightforward but somewhat tedious computation one finds

4 DE;K gupa} mn T 4\/5 A,umaan/]:[upaa = —6 ‘/T_‘[;wkfpa] kmn — 3\/5 €a6 ﬁ,uy \ma|Fpa} nf
+ 3\/§ am (5045 B,uuaaanaB> —12 am <Fuuk8pa kn)
— 6V2 0 (Aunac®Fo)f Asis) - (3.1.28)

Again, the indices m,n and u, v, p, o in here are totally antisymmetrized, which we did
not indicate explicitly in order not to clutter the notation.

Let us now move to the scalar field content of the theory. In the EFT formulation,

they parametrize the symmetric matrix M,y . We now need to choose a parametrization
of this matrix in accordance with the decomposition (3.1.13). In standard fashion [76],
we build the matrix as My = (VVT)yn from a ‘vielbein’ V € Ee(6) in triangular gauge

Y = exp [6klm"p Chimn t(+6)p] exp [bmna t(+3)Zm} Vs Vo exp [CD t(o)} . (3.1.29)

Here, t(g) is the Eg) generator associated to the GL(1) grading of , Vs, V5 denote
matrices in the SL(2) and SL(5) subgroup, respectively, parametrized by vielbeins vy,
vs. The t(,n) refer to the Eg) generators of positive grading in (3.1.13)), with non-trivial
commutator

[t(+3)gl,t(+3)gm] = €a8 ghtmnp L+6)p - (3.1.30)
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All generators are evaluated in the fundamental 27 representation (3.1.12), such that the
symmetric matrix M,y takes the block form
M M™ Mpgn MP
Mkam Mka,m,B Mkamn Mka,/a’
Mpry = m s |- (3.1.31)
Miim My Miimn Mg
Mam Ma,mﬂ Mamn Maﬁ

Explicit evaluation of (3.1.29) determines the various blocks in (4.5.3). For instance,
Myt = e2®/3 Mo MU, + 2e°%/3p, b, P Mag (3.1.32)

while the components in the last line are given byE|

Ma,B — 65<I>/3 maﬁ 7 Mamn — \/565‘1)/3 maﬁ667 bmn7 7
1 1
Ma,mﬁ — 5 e5<I>/3 ma7€75 gmklpq bklﬁbpqé . ﬂ 65@/3 maﬁ gmklpq Chipg »
a 2 5¢/3 kpgrs [y Bly, v 1 ap v
M, = 3 e Mgy € bk “bpg bys” + 3 P bk Cpgrs | (3.1.33)
with the symmetric matrix m® = (v5)%,(2)?* built from the SL(2) vielbein from

(3.1.29). We will also need the following combinations of the matrix entries of My
(that emerge after integrating out some of the fields),

Mun = Muyy — My (MM (3.1.34)
for which we find

-/\;lmn,k:l = e2<1>/3 MM

~ 1
anka - = e2<I>/3 Emm kapmqumrvbuva

/2 pq )
~ 1

an,k = —@ 2®/3 guvpar MMy (Ckpqr — beqp bkpabqrﬁ) )

MmenB = e ®/ g ef 4 9 223 ke (mmiml — 2 m™im ™) by *b,,” (3.1.35)

etc., with my,, = (V5)m®(Vs)n®-

Next, we can work out the covariant derivatives of the various ‘scalar components’ of
the generalised metric. Using ([3.1.15)) we find for the covariant derivatives of the matrix

parameters in (4.5.3))

DM(I) = DEK(I) + %lakA,uk )

DyMppn = foK Mo + gakA,/“ Monn
D,ubmna = DleK brn® — 8O[ﬁa[mftn]ﬁ,u )
Ducklmn = D/IEK Chlmn + 4\/§ a[kAlmn}u + 12 b[kla am-’4n] o (3136>

! The explicit expressions (3.1.33) and (3.1.35) for the matrix components of My and M correct

some typos in equations (5.22) and (5.24), respectively, in the published version of [33].
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where we recall that D,;“ denotes the covariant derivatives w.r.t. A,™ (that below will
be identified with the Kaluza-Klein vector A,™) without the density terms, which here
have been indicated explicitly, thereby defining the weight of all fields. The form of these
covariant derivatives implies in particular that we have the following gauge symmetries
on these fields,

60 = Ly®—20.A",
OMpn = LAMpn — gakAk Mpmn
Obyn® = Labyn® + 0
0ckimn = LaCkimn — 4V2 0N imn) — 1253 Oy - (3.1.37)

We close this section by giving some relevant formulas for the decompositions of

various terms in the action upon putting the solution of the section constraint. The

scalar kinetic term ({3.1.3) yields

2—14 D MynD*MMN = —g D,dD"® + i D, masD'm™ + i DMy DFmM™
—e? D#bmno‘D“bklﬁ mmkm"lmag
— % e2® ﬁ#cklmnﬁ“cpqrsmkpmlqmm"mm , (3.1.38)
where we defined
Duchimn = DuChimn + 12805 b®Dybmn’ . (3.1.39)

The ‘scalar potential’ (3.1.7) takes the form
Vo= 3708 a[kbmn}a(‘?lbpqﬁ mklmmpm"qmag
D
+ 5 e102/3 Xklmanqutumkqmlrmmsm”tmp" + Vo (OrP, Oxmupn) , (3.1.40)

where the last term combines all contributions with the internal derivative acting on ®

and Mm,,,, and

Xitmnp = OpCimnp) + 12 €ap bpa®Ombuy)” - (3.1.41)
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Finally, we give the topological term (3.1.5)) in this parametrization,

1 2 1
'Ctop — Z ghwpoT klmnp £ cof Fuumafpanﬁ ATpk‘l + = fuymanpgq ATklp
8 6 6

V2

1 ~
- 7 gaﬁ A,umaanAupﬁFpoq ATqu + 5 apB,uz/manoq ATqu
+ \/ﬁgaﬂ A,umaDuApnﬂ apBO'T kl — \/iAumaanBVpa ap-ém— kl
2 e » «
+ g € g A,umaanAu kBApl'yapBaT’y — & g é")/514#mcuanf41/ kﬂAplyDaATpé

\/§ 7/ @ >, » 2 ¥y >, @
+ ? amHqu AanaATklp - DuBupmnapBaTkl - g €apB HuupﬁakBa'rk

+ O(AW)) . (3.1.42)

3.1.4 External diffeomorphisms

Let us finally turn to the action of the external diffeomorphisms under the type IIB
decomposition. On scalar-densities such as e,* and & the gauge-covariant derivative of
EFT simply reduces to the Kaluza-Klein covariant derivative w.r.t. A4,™. Therefore, the
external diffeomorphisms acts on the vielbein e,* as in (3.1.9), with the EFT covariant
derivatives replaced by Kaluza-Klein covariant derivatives. For the internal generalised
metric M ;n the external diffeomorphism transformations on the various components
in are read off from (3.1.9), with the EFT covariant derivatives written out in
(3.1.36)).

Next, we consider the external diffeomorphism transformations of the vector fields,
which are more subtle due to the presence of the term involving the inverse of the gen-

eralised metric M. From (3.1.33) we determine the relevant components of the matrix

MN
MM

M — 64@/3 mmn ’
Mpa™ = 2 o12/3 Eap mnkbkmﬁ ,
2
MR — —1—\/2_ A®/3 gmnpar ks (Cogrs — 6€as bpg™brs”) (3.1.43)

This in turn determines the following gauge variations of the vector field components in

B.1.17),
0 A = &F,™ A+ M™"g,,0,8"
6£Auma = é'l/ vpumao +Mma’ng#yan€ll ; (3144)

1 v 1 n v
6§Aumnk = §6mnkpq§ ‘Fyupq_’_iemnkqupq ang ;

51



with the field strengths given in (3.1.19)). This closes the type IIB decomposition of the
EFT field content. We now move to type IIB supergravity side, where we will perform
the appropriate field redefinitions to be able to establish the dictionary between the two
theories.

3.2 Type IIB supergravity and its Kaluza-Klein de-

composition

In this section, we review ten-dimensional IIB supergravity and bring it into a convenient
form that allows for the translation of its field content into the various components of

the EFT fields identified above.

3.2.1 Type IIB supergravity

Denoting ten-dimensional curved indices by fi, 7, ..., the type IIB field content is given
by
B, mas, Cu®, Cups, =12, (3.2.1)

i.e., the zehnbein, the two SL(2)/SO(2) coset scalars parametrizing the symmetric SL(2)
matrix mgg, a doublet of 2-forms and a 4-form. The 2-forms combine RR 2-form and
the NS B-field, with the abelian field strengths given by

~ ~

Fupp® = 30,Cop” . (3.2.2)

The Chern-Simons (CS)-modified curvature of the 4-form is given in components by

. . 5 "
Foyps = 58[111 Cﬂzmﬂd Ty Eap C[ﬂlﬂz Fﬂ3ﬂ4ﬂ5]ﬁ ) (3'2'3)

such that they satisfy the Bianchi identities

. 5 . L
6 a[ﬂlFﬂ2ﬂ3ﬂ4ﬂ5ﬂ6] = _5 EaﬁF[ﬂlﬂzﬂ:s Fﬂ4ﬂ5ﬂ6]ﬁ ) (3'2'4>
and transform as
5Cu% = 20",
(3.2.5)

~ ~ 1 Car
0Chpe = 40pApe) + 5 Capn Fope)”

under tensor gauge transformations. The IIB field equations have been constructed
in [77, [78, [79]. They can be described by a pseudo-action which in our conventions is
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given by

A 1 . 1 -~ P
S = /leZL’ |G| (R + Zaﬂmaga“maﬁ — EFMﬂQﬁgaFMMMBWQB

a 3_10}% AAAAA Fﬂ1ﬂ2ﬂ3ﬂ4ﬂ5) (3.2.6)

11 f12 13 fla f15
1

- 864

A

4% eap €710 Cpy oo Foiris™ Fiasiisino”
and which after variation of the fields has to be supplemented with the standard self-

duality equations for the 5-form field strength

AAAAAA

A 1
Fuopor = 5 V|Gl €poporppanapans I (3.2.7)

with |G| = |det Gpp| = |det E;%|?. Tt is straightforward to verify that the integrability
conditions of the self-duality equations together with the Bianchi identities coin-
cide with the second-order field equations obtained by variation of (3.2.6). Our SL(2)
conventions can be translated into the SU(1,1)/U(1) conventions of [78|, by combining
the real components of the doublet I3 aop” into a complex F

F.

pvp

= Fﬂlyﬁl +7:Fﬂf,ﬁ2 y (328)

and parametrizing the symmetric SL(2) matrix m,s in terms of a complex scalar B as

_ wo1 ( 1=B)(1-=B")  i(B-DB)
Mg = (1— BBY) ( B B} (1+B)(1+B*)>' (3.2.9)

In terms of the complex combinations

Giop = f(Fusp — BE},

ufxﬁ) )

P, = f*0,B,  with f=(1-BB")""* (3.2.10)

charged under the U(1) C SU(1,1), the kinetic terms of (3.2.6) translate into those of
[78] with

Mg Py FPP0 = G ,GPP
1 , ,
7 Oimapd'm® = —2PiP". (3.2.11)

In the following, we will perform the standard 5+ 5 Kaluza-Klein redefinitions of the IIB

fields but keeping the dependence on all ten coordinates.

3.2.2 Kaluza-Klein decomposition and field redefinitions

We now split the the coordinates according to a 5 4+ 5 Kaluza-Klein decomposition into
ot = (2", y™) (3.2.12)
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and similarly for the flat indices @ = (a, @) . The u and a indices range from 0, ..., 4 and
respectively represent the curved and flat indices of what we will refer to as the external
space. Similarly, the indices m and « range from 1,...,5 and are associated with the
internal space. After partial fixation of the Lorentz gauge symmetry, the vielbein may
be brought into triangular form

a ¢_1/3 eug 14,um¢mg
B = 3.2.13
] ( 0 ¢mg ’ ( )

parametrized in terms of two 5 by 5 matrices €,% and ¢,,* with ¢ = det(¢,,%), and the
Kaluza-Klein vectors A,™. We stress again that all fields depend on all ten coordinates,
such that we are still describing the full IIB theory. We next perform an analogous
decomposition of the remaining gauge symmetries, i.e., of the ten-dimensional diffeomor-
phisms 2/ — x# — & and local Lorentz transformations parametrized by A%, acting on
the vielbein as

SEL" = €70,B,% + 0,6" By® + N By (3.2.14)
Specifically, we decompose the diffeomorphism parameter as

&= (&", A, (3.2.15)

and refer to the diffeomorphisms generated by £ as ‘external’ and those generated by
A™ as ‘internal’. Inserting (3.2.13]) into (3.2.14)) we read off the following action of the
internal diffeomorphisms,

1
deu’ = A" + 5 OnA" e,
SAA™ = 0,A™ — A0,A™ + AmD, A,

We will also use the notation £, for the conventional Lie derivative of the purely inter-
nal space, acting in the standard fashion on tensors (of weight zero). Thus, the above

transformations read

1
One,” = Lae, 4= 0nA™e," . 6pdm™ = Ladm®
3 (3.2.17)

SAA™ = 9N — Lo A" = 9,A™ + LAA,™

Note that here we employ the convention in which the density term is not part of the
Lie derivative. Analogously to the discussion in EFT, we can define derivatives and

non-abelian field strengths that are covariant under these transformations,
D, = 0, —La, — A0A™, F. = 20,A,)—[A,A)], (3.2.18)

where ) is the density weight, e.g., A = % for the external vielbein, and [, ] the conven-

tional Lie bracket. Sometimes we will use the notation D" = 8, — L, for the part of
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the covariant derivative without the density termﬂ Specifically, for (3.2.16)) we have
DKK a __ a a A m a 1 a A n a
p € = ueu — A mC€y  — g n<ip €v

DEKQSma — aMQSmOC _ Aun n¢ma _ 8mAun¢na ’ (3219)
Fu™ = 0,A" = 0,A™ — A0, A" + A0 AT

Let us now turn to the external diffeomorphisms. These are obtained from (3.2.14))
by inserting , switching on only the £* component, and adding the compensating
Lorentz transformation with parameter A\ = —¢ 93" 0,,,£" e,*, which is necessary in
order to preserve the gauge choice in (3.2.13]). For instance, on the Kaluza-Klein vectors
this yields

SeA™ = EO,A™ + 0,87 A — A0 A + ¢TGN, 008" (3.2.20)

where G"™" = ¢, ¢*". This gauge transformation can more conveniently be written
in the form of ‘improved’ or ‘covariant’ diffeomorphisms by adding an internal diffeo-

morphism (3.2.16)) with field-dependent parameter A™ = —¢YA,™. The gauge-field-
dependent terms then organize into the covariant field strength in (3.2.19)),

SeA,™ = EF,,™ + ¢ 3G g, 008" . (3.2.21)

We infer that this is of the same structural form as the external diffeomorphism transfor-
mation of the EFT gauge vector in , and we may already verify that they can be
matched precisely upon picking the type IIB solution of the section constraint. Indeed,
the external diffeomorphism variation of the EFT vector field is

5§A,u,m — é‘v uum+€4¢/3mmng#yan€y, (3222>

where we have used (3.1.43)) in (3.1.9) . We see the field strength components F,,™
reduce to the Kaluza-Klein components F),,”, see (3.1.19)) and (3.2.19)), and the metric-

dependent terms coincide upon identifying
B mmn = pT3Gmn (3.2.23)

which relates the matrix m™" € SL(5) and the scale factor ® to the metric G™" with
dynamical determinant ¢?. (This relation can be fixed, for instance, by noting with
that both sides transform in the same way under internal diffeomorphisms.)
The precise match for the remaining vector field components will be the subject of the
following section.

2We emphasize that this is introduced for purely notational convenience. In general, acting with D"
is not a covariant operation.
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Similarly, these improved external diffeomorphisms act on the internal and external
vielbein as

See,” = &Dpfe," + D ¢"e,"
0edm”™ = Dy P,

again in structural agreement with the corresponding transformations (3.1.9) in EFT.

(3.2.24)

We now move on to the Kaluza-Klein decomposition of the p-forms. We introduce in
standard Kaluza-Klein manner the projector P,” = E,%E,”. It converts 10-dimensional
curved indices into 5-dimensional ones such that the resulting fields transform covariantly
(i.e. according to the structure of their internal indices) under internal diffeomorphisms.
We denote its action by a bar on the corresponding p-form components,

C, = P’Cy,  etc., (3.2.25)

such that the IIB two- and four-form give rise to the components

Con® = Con®,

Uuma = éuma - Aupépma )

Co® = Cu® = 2ApPClp® + AP A,

Contit = Conia )

U#nkl = Aynkl — Aupépnkl 7 (3.2.26)
Coit = Chmt = 2407 Clpppit + ALPA Copga

6;“/,01 = éMVPl - 3A[upé\plvp}l + 3A[upAvqé|pqu —ALASAT qurl )

Gul/pa = élwm - 4A[upé|p\vp<f] + 6A[upAvqélpq|PU] - 4A[upAqupré’\pqual

+ALPASA A Cos

The same redefinition applies to field strengths and gauge parameters. The redefined
fields now transform covariantly under internal diffeomorphisms. Indeed, separating ten-

dimensional diffeomorphisms into £# = (£#, A™), we find together with
5T ™ = 20t + L2 T
6Cum® = DA™ — O™ + LAC ™, (3.2.27)
0Cuw™ = 2D X" + Fu N + LaC”

for the transformation behaviour of the redefined 2-forms under gauge transformations
and internal diffeomorphisms. As in the previous section, derivatives D" are covari-

antized w.r.t. the action of internal diffeomorphisms, i.e.
Di*An® = 90" — A0 " — 0 AN, ete.. (3.2.28)
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In contrast to D = 11 supergravity for which these redefinitions and covariant gauge
transformations have been explicitly worked out in [33], the presence of Chern-Simons
terms in the IIB field strengths (3.2.3)) requires a further redefinition for the components
of the 4-form in order to establish the dictionary to the fields of EFT. This is related to
the fact that tensor gauge transformations for the EFT p-forms that we have discussed
in the previous section do not mix these forms with the scalar fields of the theory. This
motivates the following and final field redefinition’|

C1klmn = éklmn )
C,u kmn = U}L kmn — g Eaﬁap [kaémn]ﬁ )
— 1 —
C,uzzmn = C,uz/mn - g 5aﬁcpuacmn5 ) (3229)
— 3 = aA B
Cuvpm = Cuvpm — ] €apCln Com”
C,uz/pcr = U,pra .

For the components of the two-form UWO‘, etc., there is no further redefinition, so for

simplicity of the notation, we will simply drop their bars in the following

Coin® = Crn® | Coum® = Com® C*=C.". (3.2.30)

Although we have not seen the 3-form and the 4-form in the tensor hierarchy of the
Ee¢) EFT, we will show later that it is possible to test their expressions by comparing
the reduced D = 10 self duality equations (3.2.7) to the first order duality equations

(3.1.8)) from EFT. The redefined 4-forms ({3.2.29)) continue to transform covariantly under
internal diffeomorphisms with their total gauge transformations given by

_ 3 _
0Cmnk = 40imAnky + 5 €agOmMCuy” + LACrnia

5C;L kmn — DEKkan - Sa[kxhﬂmn} + 'CAO,U,kmn

3 N« R
+ Zgaﬁ ()\[k 8m0|u|n]5 — 8[m)\k C’Mn]ﬁ) , (3.2.31)

50/41/ mn = 2 DKKXI/] mn + Za[mxn]uu + F,uz/kkan + £ACyumn

[

1 ay ay N o«
+ 7 €as (= 20mClun "N + F i An) = A0y G )

We see that after the redefinitions (3.2.29)), the variation of 6C), ymy and 6C, 1y no longer
carry any scalar fields C,,,* and are thus of the form to be matched with the fields and

3 Similar redefinitions have been discussed in [80] in order to recover part of the Eg(6) tensor hierarchy
structure from the IIB supersymmetry variations.
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transformations of EFT. The field strengths appearing on the r.h.s. of (3.2.31]) are the
Kaluza-Klein field strength (3.2.18]) and the modified three-form field strength

Fp,una = F,uuna - Fuukokna ;
= 2D,,Cop® + OnCi® (3.2.32)

again redefined such that the scalar contribution is split off. For completeness we also
give the remaining components of the three-form field strength

kana = kana = 38[k0mn}a s
F,umna = Fumna - D;IEKCmna - 2a[mc|u|n]a ; (3233)
Fu,® = pra = 3DE;K Cop® — 3F[Wk0p]ka ’

as well as the properly redefined components of the five-form field strength, expressed in
terms of the components (3.2.29)) according to

_ ) oS
Fmpqrs = Fmpqrs = 5a[mcpqrs] - Z €ap C[mp qus]ﬁ )
F

Hpqrs

Fupqrs
D

3 (0% 3 (07
it Cpgrs = 40pClpgrs) — 1 €a8Cla Fluprs)” + 5 €asClpa 0,Clujs”

3 N — 3 &
F;u/kmn - Z EaﬁF,uV[k Cmn]ﬁ - Fw/p(cpkmn - g Eoz,BC[km C|p\n]ﬁ)

F,uukmn

3 a
= 2DELK Cy]kmn + 3a[kC|,uu\mn] - 5 €aBC;L[k amc\z/m]ﬁ )

F,uz/pmn - Zgaﬂﬁpupacmnﬂ

F, prpmn

= ?)DE;K Cyp]mn - 28[m0|uyp|n] - 3F[/£Vk0p]kmn

3 o (e}
= 5 €as(FmClw Coin)” + Clugmi“ Do Cp”)

Fuupam F,uzzpom

= 4D Copoln + o + 6Fy o

3 (e} 3 o (7
+ 5 as Fluw*Copm " Cop” = 7 €asClun " Omi Cpo)” + €0 Cum® Fupo”

_ 15
Frvpor = 5D}, Copor) = 10" Cpgriin — i €asCluw Dy Cpr? (3.2.34)

F;WpaT

3.2.3 External diffeomorphisms

In the previous subsection we have decomposed the IIB fields according to a 545 Kaluza-
Klein split (without giving up the dependency on the 5 internal coordinates) and spelled
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out their transformations under internal diffeomorphisms and tensor gauge transforma-
tions after suitable redefinitions of the various components. Before fully establishing the
dictionary of the fields in the EFT basis, we will now compute the behaviour of the
redefined IIB fields under external diffeomorphisms £, whose parameter may in general
also depend on all 10 coordinates.

Above, we have already discussed the transformation of the KK vector fields under
external diffeomorphisms

FAM = EUF, 4 ¢S G g,,00E" (3.2.35)

c.f. (3.2.21]), which is in agreement with the EFT gauge vector transformations reduced to
this component. Let us now test the remaining vector components from the IIB p-forms.
For C,,%, as redefined in (3.2.26]), a straightforward calculation gives

5§Cuma = ‘Cfcuma - qb_%GNkCnmaguuakgy
O A Coan® — A0 Com® + O Co® . (3.2.36)

under external diffeomorphisms. The origin of the second term is the corresponding
variation of the Kaluza-Klein vector ([3.2.35)) which enters the redefined fields in (3.2.26)).
As for the Kaluza-Klein vector field, it follows that the last three terms are eliminated
by field dependent gauge transformations with parameters (parameter redefinition)

A" = _guAVm’ Xma = _Sycumaa Xua = —fycwa, (3237)

which render the action of the diffeomorphism manifestly gauge covariant. Together, the
variation takes the form

5 Cum® = € Fypm® — ¢~ 3G Crp 9,0, 0" . (3.2.38)

Note in particular that the field strength entering this formula is the one defined in
(3.2.32)) which does not carry any scalar contributions. This is the form of the variation
that we will be able to match with the corresponding variation for the fields in the EFT
basis.

Next let us consider the variation of the 4-form component C),;,,n;. After standard
Kaluza-Klein redefinition (|3.2.26|), some straightforward calculation yields

5§Cumnk = & <2D§/KUM] mnk 1 3a[m6\uu|nk}> + ‘CiuAuCumnk

+DEK (5yaumnkz) -3 8[m(£ua\yu|nk}) + Cb_%Glp Cmnkzl g;wapgy (3239)

for the variation under external diffeomorphisms in terms of the redefined fields. In the
first term we recognize the covariant field strength £, from (3.2.34) up to its bilinear
contributions. These will be completed once we consider the variation of the redefined
four form

— 3 3
6§C,umnk = 6§Cumnk - g gaﬁéfcy[macn }ﬁ - g Sagcu[maégcnk}ﬁ s (3240)
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with the second term obtained via (3.2.38]), and the third term carrying
5§Cmna = €VFumna + 2a[m<€yo\y|n]a) + £§VAVCmna . (3241)

Combining all these contributions and supplementing the variation by the gauge trans-
formations with parameters (3.2.37)), we arrive at the final form

—Z 3 (6% v
6§0V umnk  — gy Fl/umnk + ¢ gGlp (Cmnkl + g Ea,BCZ[m an}5> g,ul/apg . (3242)

In the next section, we will provide the complete dictionary between the Kaluza-Klein
redefined fields of type IIB supergravity and the fundamental fields in the Fgey EFT. In
particular, matching the EFT equations against the IIB self-duality equations ({3.2.7]), we

will explicitly reconstruct the remaining 4-form components C\ppm, Cpupo -

3.3 General embedding of type IIB into Egg EFT and

self-duality relations

In this section, we provide an explicit dictionary between the Kaluza-Klein redefined
fields of type IIB supergravity and those of the Eg) exceptional field theory after picking
solution of the section constraint. We first show that the fundamental EFT fields
can be identified among the redefined IIB fields on a pure kinematical level by comparing
the transformation behaviour under diffeomorphisms and gauge transformations. We
then show that the equivalence also holds on the dynamical level by reproducing the
I1B self-duality equations from the EFT field equations. In particular, this will
allow us to obtain explicit expressions for the remaining 4-form components C,,pm, Chupo
which do not show up among the fundamental EFT fields, but whose existence follows
from the EFT dynamics.

3.3.1 Kinematics

Before identifying the details of the IIB embedding, let us first revisit the resulting field
content of EFT after picking solution (3.1.16)) of the section constraint. With the split
(3.1.12)), (3.1.13), the full p-form field content of the Ege) Lagrangian in this basis is

given by (3.1.17))
{ApmaA,uma>Aukmn7~Aua} ) {B,uua:Buumn7B,uuma} ) (331>

where, more precisely, the Lagrangian depends on the 2-forms only under certain con-
tractions with internal derivatives, c.f. (3.1.18]). The EFT scalar sector is described by
the fields parametrizing the Eg() generalised metric My (4.5.3)

{(I)ammnamaﬁabmnaacklmn} . (332)
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Comparing the index structure of these fields to the field content of the Kaluza-Klein
decomposition of IIB supergravity given in the previous section allows to give a first
qualitative correspondence between the two formulations. With the discussion of the
previous section in mind, it appears natural to relate the field A4,™ to the IIB Kaluza-
Klein vector field A,™, and the scalars ®, m,,,, to the remaining components of the

internal IIB metric (3.2.13)).
According to their index structure, the fields {b,,,%, Ay ma, B} from (3.3.1), (3.3.2)

will relate to the different components of the SL(2) doublet of ten-dimensional two-forms.
Similarly the fields cximn, Ay kmn, Buymn Will translate into the components of the (self-
dual) IIB four-form. The remaining fields A, », B, * descend from components of the
doublet of dual six-forms. The two-form tensors B, , that complete the two-forms in
(3.3.1) into the full 27 B, as of Ege) do not figure in the Eg) covariant Lagrangian.
They represent the degrees of freedom on-shell dual to the Kaluza-Klein vector fields, i.e.
descending from the ten-dimensional dual graviton.

Recall that in the EFT formulation, all vector fields in appear with a Yang-
Mills kinetic term whereas the two-forms couple via a topological term and are on-shell
dual to the vector fields. In order to match the structure of IIB supergravity, we will thus
have to trade the Yang-Mills vector fields A, for a propagating two-form B,,*. Let us
make this more explicit. The a-component of the EFT duality equations yields

1 -
e M*P Fg = ~5 eMPIT H pyr ™ — e My Fri (3.3.3)
where we have introduced the index split
(XM — (XM Xx,}. (3.3.4)

With the two-form fields BWW entering F,,, 3 on the Lh.s. of 1' this duality equation
then allows to eliminate all Z’S’Wkﬁ from the Lagrangian. The gauge symmetry (3.1.23))
shows that in the process, the vector fields A,, also disappear from the Lagrangianﬁ
We infer from (3.3.3) that the kinetic term for the remaining vector fields changes into
the form

1 ~
6_1 Ekin,l = _4_1 .FM,,M.FMVNMMN 5 (336)

with My from (3.1.34). At the same time, the two-forms BWO‘ are promoted into
propagating fields with kinetic term
1 N .
e Lyna = —56—5‘1’/3 Mas Hyu " HPP (3.3.7)

4 Strictly speaking, equation (3.3.3) only holds up to an z-dependent ‘integration constant’ C*¥ ®(x),
since it enters under y-derivative. To fix this freedom, we have to combine the equation with the vector

field equations,
1
Dy (e My FM) = et e P F E F ks (3.3.5)
and the Bianchi identity (3.1.27)), leaving us with D,C*”* = 0. In the following we will directly set
CH e =0.
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After this dualization, the remaining field content thus is given by
{(I)a Mmn, bmnav Cklmn, Auma -A,umaa Au kmn; Bw/aa B/wmn} ) (338)

with all except for the last field representing propagating degrees of freedom. In contrast,
the two-form B,,,, ,,,», is related by a first order duality equation (3.1.8) to A, km», remnant

of the IIB self-duality equations (3.2.7). In the following, we will make the dictionary
fully explicit.

3.3.2 Dictionary and match of gauge symmetries

Having established the match of degrees of freedom between 1B supergravity and EFT
upon choosing the IIB solution of the section condition, we can now make the map
more precise by inspecting the gauge and diffeomorphism transformations on both sides.
After Kaluza-Klein decomposition and redefinition of the IIB fields, as described in sec-
tion [3.2.2] the resulting components turn out to be proportional to the EFT fields in their
decomposition given in section [3.1.3] above. Specifically, comparing the variation of the
EFT vector and two-form fields (3.1.21)), (3.1.24)), to the corresponding transformations
in (3.2.27), (3.2.31), allows us to establish the dictionary

A =AM Com® = —€ Ayms Cw® = B*,

V2 V2 V2
C,ul/mn - T B,u,umn ) C,ukmn - T A,ukmn - ? Emnkpq Aupq 5 (339>

respectively. The corresponding gauge parameters translate with the same proportional-
ity factors, and also the redefined IIB field strengths (3.2.32), (3.2.34)) precisely translate
into the EFT analogues

V2

F/u/m — Fuum , Fuyma — _gaﬂfuymﬁ , FMVkmn = T'F‘uykmn (3310)

This dictionary may be further confirmed upon comparing the action of external
diffeomorphisms on both sides. Indeed, the variations calculated in (3.2.35)), (3.2.38]),
above, precisely reproduce the EFT transformation law for the vectors
A,M, provided we identify the components of the scalar matrix MY with the
I1B fields according to

1
gb_%Gmn = €4¢’/3mmn ) Cmna = _Qbmna ) Cmnkl = _Z Cmnkl - (3311)

This last identification is precisely compatible with the gauge transformation behaviour
(3.1.37) as compared to the scalar components of (3.2.27)), (3.2.31). Let us also note, that
with this dictionary the EFT covariant derivatives ((3.1.36|) for the scalar fields precisely
translate into the components of the IIB field strengths
« 1= «
D,ubmn = _5 Fumn )
Ducklmn = —4 Fuklmn , (3312)
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with ﬁucklmn from (13.1.39)). Similarly, we have the identification

4 __
a[kclmnp] + 125&[3 b[klaambnp]ﬁ = Xklmnp = _5 Fklmnp ) (3313>

with Xjpmnp from (3.1.41]).

We have thus identified the elementary EFT fields among the Kaluza-Klein compo-
nents of the IIB fields. So far, the identification has been solely based on the matching
of gauge symmetries on both sides. We will in the following show that the embedding of
IIB into EFT also holds dynamically on the level of the equations of motion.

3.3.3 Dynamics and reconstruction of 3- and 4-forms

In this section, we will show how the full IIB self-duality equations follow from the
EFT dynamics. Along the way, we will establish explicit expressions for the remaining
components of the ten-dimensional 4-form, thereby completing the explicit embedding of
the IIB theory. To begin with, it is useful to first rewrite the various components of the
IIB self-duality equations in terms of the Kaluza-Klein decomposed fields introduced in

section above. With the IIB metric (3.2.13) given in term of the EFT fields as

o - e5®/6 G + A#mAVn ¢mn e—®/2 Mo, Auk 23 14)
|20 64}/2 Mok Ayk 67<1>/2 Moy ) ( .O.
the IIB self-duality equations (3.2.7)) split into the following three components

— 1 _

F,uzlpmn - E 624)/3 vV —4g g,u,upcﬂ—gmnklp FUTqu mkqmlrmpq ) (3315>
_ 1 _

F;U/pam = _ﬂ 62(1) -9 guupa’rmmngnmpq FTklpq ) (3316)
— 1 _

F/U/PUT = EO 610<I>/3 vV —9g €uup075mnklp ank:lp . (3317)

On the r.h.s. all external indices are raised and lowered with the metric g,,, and both
g-symbols denote the numerical tensor densities. All explicit appearance of Kaluza-Klein
vectors A,™ from (3.3.14) is absorbed in the redefined F’s. We will now reproduce these

equations one by one from the EFT dynamics.

Let us start from the [mn]| component of the EFT duality equations ([3.1.8]) which can
be integrated to

1
Huupmn + Omny,l/p = 5 €€ Lvpor an,M fUTM s (3318)
where the O, 1, keeps track of the integration ambiguity and satisfies

kO] jwp = 0 — Omnwp = Om&nwp (locally) . (3.3.19)
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Eliminating F,,, on the r.h.s. of (3.3.18)) by means of 1} turns M,y into My,
such that upon using the explicit expressions (|3.1.35]), we obtain

Ombn)ywp = 1—12 23 e em,pﬁsmnklpmkqm”mps ]?"Tqrs
—~ Hywpmn — V2 Eap byn Hywp (3.3.20)
with
ﬁ,ul/k:lm = Fukim +3V2 bt ™ Fpvimla + 3V2e45 Dot Oty F ™ + % V2 Chtn Fus"

= 2V2F 0 im (3.3.21)

where the last identity is easily confirmed upon using the dictionary of field strengths

(3.2.34)), (3.3.10) and scalars (3.3.11]). Together, the relation ({3.3.20|) then gives rise to

1 — 1 —or
Fovpmn — 1 €aB Crmn” F,Wpﬁ = 35 e?®/3 ¢ EWWTemnklpmkqm”mps F s (3.3.22)

and thus precisely reproduces (3.3.15)) if we identify the 3-form component C,,,,, from
(3.2.29) as

1
C,uupm = —g\/gfm,wp. (3323)

We have thus reproduced the first of the components of the IIB self-duality equations
and along the way identified one of the missing components of the IIB four-form,
that is not among the fundamental EFT fields. It is defined by the first order differential
equations in terms of the EFT fields up to a gradient

C,uypm — C,ul/pm + 8m)\;wp ) (3324>

corresponding to a gauge transformation in the II1B theory.

Let us continue towards the other components (3.3.16)), (3.3.17), of the self-duality
relations. Consider the external curl of (3.3.18)), which reads

4Dy Hypo)mn + 4D[ Oyt = 2€8m3(up0 Dyif (Mo v FAY) - (3.3.25)
and use the Bianchi identity ((3.1.28]) to find
4O <D;K§VPU]”> - 6‘F[Wk]:w] kemn T 3v2e Fluv imal F poins
+ 4\/§ amr}:[[uupa Aa]na — €€LpoA D’I}'(K (an,N fTAN)
— 3\/5 Om <5aﬁ Z’S’[W"‘8|n|l§‘pg]5> +120,, <J—"[M,kl§pg] ]m)

+6v2 Om (Eaﬁ.A[Mna\}:,pkAg} kﬁ) , (3.3.26)
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where both, left and right hand side are supposed to be explicitly projected onto their

part antisymmetric in [mn] .

In order to simplify the second line, we make use of the equations of motion obtained
by varying the Lagrangian (3.1.1) w.r.t. the vector fields 4,”" and using the duality
equation (3.3.3)) in order to eliminate F,, ,

1 ~
0 = —ﬂ \/Ea[m <62<I)mn]k Ducpqrsfkpqrs> + Dllf(K (an,M'FVMM)

1 vpoT 7/ o 1 vpoT 7 a
—+ 6 \/58“ P a[mAW‘n]a,}{pgq— - E \/§€# P Ay [m\a|an]7—lp07'

1

+ §5;wpa7' <\/§
3

4 ? 506 »Fupmafm-nﬂ +

Together we find for (|3.3.26))

2 -
Fl/pmnppr + \/7_ Ay[m|a‘ 8n]HpgT(C?)>327>

1 ~
4 am (DEK gupa n) = _ﬂ 2 €€ uvpo 8m <62¢mnk D)\Cpqrsekpqrs)

—3v20,, (eaﬁ Buyaanépgﬁ> +120, (fW’“B,,(, ;m>
+6v2 0 (Apnac™ Fof Agis) — 4V/20,, (AM mﬁwa()a.s.zs)

again, projected onto the antisymmetric part [mn]. The entire equation thus takes the

form of an internal curl and can be integrated to

1 ~ s S N
Y 2 €€ pon €2¢mnk D)\cpqrsgkpq = 4 DF;K gupa] n 1 3\/§5a,3 B[lw alnlgﬂo]ﬁ

— 12 Fu* Bpojkn — 6v/2 Fu" Apjnat Ao is

+4V2 Ao Hopo® + Onbppo 5 (3.3.29)

up to an internal gradient 0,,,,,. Applying the dictionary (3.3.9)), (3.3.10) to translate

all fields into the IIB components, this equation becomes

1 _ _ 1
—5 € uporE IS 2P, FAWS = Flpon—On (O“,,pc, + g\/5 gwa) ,(3.3.30)

i.e. reproduces equation (3.3.16)), provided we identify the last missing component of the
4-form as

1
C,uupo = _g\/égul/po- (3331)

We have thus also reproduced the second component of the IIB self-duality equations

and along the way identified the last missing components (3.3.31) of the IIB four-form,
that is not among the fundamental EFT fields. It is defined by the first order differential
equations (3.3.29) in terms of the EFT fields up to an additive function

C;u/pa — Cm/pa + Auupa(J:) ) (3332)
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which we will fix in the following. In order to find the last component (3.3.17) of the
self-duality equations, we take the external curl of (3.3.29))

1 ~ ~
_anDELK gupaﬂ = _m \/§ €€ vpor D;(K <e2q>mnk D)\Cpqrsgkpqrs> + 2\/§‘F[NV |na|HPUT]a

+ 4T (Flporiin + Opporing ) +2V2 20500 By Hpor”

— 2V2 €0 Hipup O Bor” — 6 V2" Fu* Ay jno Forr 1

+ 6V2 2 Ayt Fop Fors = 3V2 00 (20 B DB

+ 20, (Fiun"Epor i) (3.3.33)

which after using the equations of motion for ¢, turns into a full internal gradient and
can be integrated to the equation

2 2 \/5 mn
DEZK 51/,007'] + 3\/§ €ap B[z/p DMBUT]ﬁ - Qf[,uukgpcﬂ'] k= m eg/u/pUTEkl P 610@/3 Xklmnp )

(3.3.34)

with X from (3.1.41)), up to some y-independent function. The latter can be set to zero

by properly fixing the freedom (3.3.32)). After translating (3.3.34)) into the IIB fields, we
thus find

15

5DELK Cl/pO'T] - Z €afB U[upaD;IjK 607—}5 - 1Of[pukc’pa7—] k klmnp 610¢/3 Fklmnp .

m €€ Lvpor€

(3.3.35)

Thereby we find the last missing component of the IIB self-duality equation.
We have thus shown that the full IIB self-duality equations follow from the EFT
dynamics, provided we identify by (3.3.23)), (3.3.31)) the remaining components of the IIB
4-form. Together with the dictionary established in section , this defines all the
IIB fields in terms of the fundamental fields from EFT.
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3.4 Summary

We have reviewed the Eg) exceptional field theory and established the precise embedding
of ten-dimensional type IIB supergravity upon picking the GL(5)xSL(2) solution of the
section constraint. We have done so by first matching the gauge symmetries on both sides.
On the type IIB supergravity side, this requires a number of field redefinitions, which
are largely analogous to those needed in conventional Kaluza-Klein compactifications.
On the exceptional field theory side, this requires a suitable parametrization of the Egg)
valued ‘27-bein’. We have then given the explicit dictionary from the various components
of the IIB fields to the EFT fields after solving the section constraint. We also established
the on-shell equivalence of both theories and in particular showed how the three- and
four-forms of type IIB, originating from components of the self-dual four-form in ten
dimensions, are reconstructed on-shell in exceptional field theory in which these fields
are not present from the start.
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Chapter 4

Two applications of the
EFT/Type IIB dictionary:
reduction and deformation

In this chapter, we present two applications of the dictionary we have established in the
previous chapter. The first application is the proof of the Kaluza-Klein consistency of
AdS5 x S° in type IIB. We will start by briefly laying out the material we will need on
the gauged supergravity side to make the link with the Ege) EFT after the type IIB
reduction ansatz. After analysing the twist equations in a general setting, we present
the explicit and complete reduction formulas for a class of truncations of type IIB su-
pergravity to maximal five-dimensional gauged supergravity, by working out the details
of the construction of [56]. This includes the famous reduction on AdS; x S° to the
maximal D = 5 SO(6) gauged supergravity of [7], but also reductions to non-compact
gaugings, corresponding to truncations with non-compact (hyperboloidal) internal man-
ifolds. Consistency of the latter has first been conjectured in [69] and more recently
been discussed in |70, [7I]. Within the framework of EFT, the complicated geometric
IIB reductions can very conveniently be formulated as Scherk-Schwarz reductions on an
exceptional space-time. It was shown in [56] how sphere compactifications of the original
supergravities and their non-compact cousins can be realized in EFT through generalised
Scherk-Schwarz compactifications, which are governed by Eg) valued ‘twist’” matrices.
In terms of the duality covariant fields of EFT the reduction formulas take the form
of a simple Scherk-Schwarz ansatz (1.6.2)), proving the consistency of the corresponding
Kaluza-Klein truncation. Although this settles the issue of consistency it may never-
theless be useful to have the explicit reduction formulas in terms of the conventional
supergravity fields, thus requiring the dictionary for identifying the original supergravity
fields in the EFT formulation.

The second application regards a recently found deformation of type IIB, known in
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the literature as ‘generalised type IIB’ [81], 82 [5]. In section we recall the bosonic
field equations generalised 1IB supergravity equation together with the modified Bianchi
identities. By using a simple Scherk-Schwarz ansatz together with a different solution
of the section constraint, we show in section that the deformation induced by the
factorisation ansatz match the deformation of generalised IIB.

4.1 Gauged maximal supergravity in five dimensions

The D = 5 gauged theory with gauge group SO(p, q) was originally constructed in [53]
54, [7]. For our purpose, the most convenient description is its covariant form found
in the context of general gaugings [83| to which we refer for details.E] In the covariant
formulation, the D = 5 gauged theory features 27 propagating vector fields 4, and up
to 27 topological tensor fields B, »s. The choice of gauge group and the precise number
of tensor fields involved is specified by the choice of an embedding tensor ZMN = ZIMN]
in the 351 representation of Ege). E.g. the full non-abelian vector field strengths are
given by

FuM = 20,A0M + V2 Xi ALK A —2V22MY B, v (4.1.2)

pv

with the tensor X carrying the gauge group structure constants and defined in terms
of the embedding tensor ZMV as

XMNP = dMNQZPQ + 10 dMQstRTdPQRZST . (413)

The SO(p, q) gaugings preserve the global SL(2) subgroup of the symmetry group
Eg) of the ungauged theory, more specifically the centralizer of its subgroup SL(6).
Accordingly, the vector fields in the 27 of Eg) can be split as

AM — {A® Auaat} a,b=0,....,5, a=1,2, (4.1.4)

into 15 SL(2) singlets and 6 SL(2) doublets. The 27 two-forms B, » split accordingly,
with only the 6 SL(2) doublets B,,,** entering the supergravity Lagrangian. In the basis
(4.1.4)), the only non-vanishing components of the embedding tensor ZM¥ are

1
Zaa,bﬁ = —5 5504677ab7 (415)

1 To be precise, and to facilitate the embedding of this theory into EFT, we choose the normalization
of [33] for vector and tensor fields which differs from [83] as

1
A#M[1312.0614] = EA;LM[hep—th/(MlZl’?S] s Buw mi312.0614] = _ZB/J,VJV[[hep—th/O412173} ) (4.1.1)

together with a rescaling of the associated symmetry parameters. Moreover, we have set the coupling
constant of [83] to g =1.
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where the normalization has been chosen such as to match the later expressions. With

(4.1.3), and the expression of the d-symbol of Eg) in the SL(6) x SL(2) basis given by

1 1
dMNK dabca,dﬁ = E 6?3 50&5 9 dab,Cdﬁf = _% 5ab6d€f ) (416)
we thus obtain
Xab,cdef = fab,cdef
XX { " ) o (4.1.7)
Xap™ap = —01a“Ma 05

with the SO(p, 6 — p) structure constants

favea = 201 nyq7 . (4.1.8)

The form of the field strength is the generic structure of a covariant field
strength in gauged supergravity, with non-abelian Yang-Mills part and a Stiickelberg
type coupling to the two-forms. In the present case, we can make use of the tensor
gauge symmetry which acts by shift 04, ., = =44 on the vector fields, to eliminate all
components A, ., from the Lagrangian and field equations. This is the gauge we are
going to impose in the following, which brings the theory in the form of [7]E| As a result,
the covariant object splits into components carrying the SO(p, ¢) Yang-Mills field

strength, and the two-forms B, *, respectively,

F

nZ

Fyab = 29 Ayab+\/§fceabA chVef
Mo { " ] del (4.1.10)

Fuuaoc = VvV 10 Eaplab Buubﬁ

In particular, fixing of the tensor gauge symmetry implies that the two-forms B,,,** turn
into topologically massive fields, preserving the correct counting of degrees of freedom,
[84]. The Lagrangian and field equations are still conveniently expressed in terms of the
combined object F,,. E.g. the first order duality equation between vector and tensor
fields is given by

3D}, B, ™ 2] € ppor M 5 FTTN (4.1.11)

1
24/10
which upon expanding around the scalar origin and with (4.1.10)) yields the first order
topologically massive field equation for the two-form tensors. The full bosonic Lagrangian

2 To be precise: this holds with a rescaling of p-forms according to

Auab[1312.0614] = —\/iAuabGRw ) \/EBWW[1312,0614] = B,,"“crw , (4.1.9)

and with their coupling constant set to garw = 2.
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reads

T I = 1
L = |g|R_Z |g|MMNFp,uMFMVN+ﬂ\/ |g|DuMMND“MMN

5 1
+ gtvPoT (Z_L €ap Nab Bw,aaDpBgTbB + ﬂ \/§5abcdef Auab 8VApCd ao'ATef)

1 .
36 et fania™ Au A A (05 AT + IV T AMA™)

— Vg V(M) . (4.1.12)

Here, the 42 scalar fields parameterize the coset space Egs)/USp(8) via the symmetric
Eg(6) matrix Mj;y which can be decomposed in the basis (4.1.4)) as

Mab cd ]\4’abc’Y
Myy = ! , 4.1.13
MN (Maabc M acsey ) ( )

with the SO(p,6 — p) covariant derivatives defined according to
D,X* = 9, X"+ V24, X, (4.1.14)

and similarly on the different blocks of (4.1.13)). The scalar potential V' in (4.1.12)) is
given by the following contraction of the generalised structure constants (4.1.7)) with the
scalar matrix (4.1.13))

1
V(Mun) = %MMNXMPQ (5Xng" + Xnr® MPEMgs) . (4.1.15)

For later use, let us explicitly state the vector field equations obtained from (4.1.12))
which take the form

0 = V |g| Euvpor (nc[a DTMb}d,NMNﬁd + \/§D)\ (FT)\NMN,ab>>

3
+ 5 Eabedef F[,uZ/Cdeo]ef + 60 €ap Nacllbd B[,uucaBpa]dﬁ . (4116)

We will also need part of the scalar field equations that are obtained by varying in (4.1.12])
the scalar matrix (4.1.13)) with an SL(6) generator X,°

1 1 1
0 = Zl DM(MadKDMMKbd) _ 5 My, 5 ijacFuVN + Z /1077170 €af MaaN BﬂyCﬁFMVN

4 ' 1
+ (2 Noefe + 1_5 Mde’h(aMc)j’ngdg,hj + E Mde’h(aMc)&faMda’hlg) TbeTlef

2
T (Mde’k(“MC)adngafg + Mde’h(“MC)gdaMfahg) NefMoe — [tracely® . (4.1.17)
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4.2 Analysis of the twist equations

Here, we start with a general analysis of the Scherk-Schwarz twist equations. We focus
on the four blocks of the twist matrix, given by the decomposition of the fundamental
representation of Eg) under the type IIB solution of the section constraint. By making
an ansatz on the form of one of these blocks, we are able to solve the twist equations in
terms of a set of Killing tensors for an internal metric and a four-form. Further expliciting
the tensors to the SO(6,6 —p) case, we get the analytic expression of the Killing tensors,
the metric and the four-form in terms of the allowed EFT coordinates. This gives the
explicit reduction ansatz for the EFT fields.

4.2.1 General analysis

In the introduction of this thesis, we showed that the consistency conditions of the gen-
eralised Scherk-Schwarz ansatz were given by

ONU NN —4U NN p'onp = 3pik,
(U Ha™ (U 0 ULT] = LpOn*(ta)n”, (4.2.1)

= 351

or in a manifestly covariant form

Lo, Uy' = —Xun®UZ", (4.2.2)
with X n® constant and related to the D = 5 embedding tensor and

O Yy = p (U Y. (4.2.3)

We now would like to analyse these ‘twist equations’ and decompose them w.r.t. the
subgroup appropriate for the type IIB solution of the section constraint, i.e.

E6(6) — GL(5) X SL<2) ,
27 — (5,1)®(5,2)® (10,1) s (1,2). (4.2.4)
Accordingly, the fundamental index on the generalised vector U-! decomposes as

(ﬁ_l)MM = {ICMma RMmaa Zank7 SMnl...n5a} ) (425)

in terms of GL(5) indices m,n = 1,...,5 and SL(2) indices «, § = 1,2. In order to give
the decomposition of the twist equations in terms of these objects we use the
definition of the generalised Lie derivative and the decomposition of the d-symbol
. A straightforward computation, largely analogous to those in, e.g., sec. 3.3 of
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[1], then yields

—Xun K™ = L, Kn™, (4.2.6)
XN Rima = Ly Rvma — Licy Rasma + Om (K" Rarna) (4.2.7)
—Xun" Zrimn = Ly 2N kmn — Ly 20 kmn + 305 (Kn' 21 )

+3v2 Rt mja Rl » (4.2.8)

K
_XMNisﬁnl..J%a - »CICMSﬂnl...nyl

+ 20\/§ (Zﬂ [nmznzsamRMm]a - 8[711ZMn2n3n4Rﬂn5}a)(4-2~9>

We will now successively analyze these equations. We split the index as M — {A, u},
where A, B denote the ‘gauge group directions’ and u, v the remaining ones, and assume

that the only non-vanishing entries of Xy are
Xap® = —fas”,  Xa' = (Da)"”, (4.2.10)

given in terms of structure constants and representation matrices of the underlying Lie
algebra of the gauge group, c.f. [83]. Let us emphasize that X,y is not assumed to be
antisymmetric. In particular, for this ansatz we have, e.g., X, 4V = 0. Let us also stress
that this ansatz is not the most general, but it is sufficient for the purposes of this thesis.

The first equation (4.2.6]), specialized to external indices (A, B), implies that the
vector fields K4 satisfy the Lie bracket algebra

[Ka.Kp]™ = L, K™ = fag” K™ . (4.2.11)

In view of standard Kaluza-Klein compactifications it is natural to interpret these vec-
tor fields as the Killing vectors of some internal geometry. We now define a metric
w.r.t. which the 4 are indeed Killing vectors by setting for the inverse metric

G = K"Kt nptB | (4.2.12)

with the Cartan-Killing metric nag = fac® fzp®. The internal metric G €xists pro-
vided the Cartan-Killing metric is invertible and that there are sufficiently many vector
fields K4™ to make G™" invertible. This assumption, which we will make through-
out the following discussion, is satisfied in the examples below. Since by the
KC 4 transform under themselves according to the adjoint group action, under which the
Cartan-Killing metric is invariant, it follows that the vectors are indeed Killing:

£ICAGmn = vaCAn+VnICAm - 07 (4213>

where here and in the following V,, denotes the covariant derivative w.r.t. the metric

(4.2.12)), which is used to raise and lower indices. The other non-trivial components of
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(4.2.6), with external indices (A, u), (u, A) and (u,v), imply that the remaining vector
fields IC,™ satisty

L, K" = —(Da), K™ =0, LK™ = [K,KJ]" = 0. (4.2.14)

For non-vanishing /C, the first equation can only be satisfied if the representation encoded
by the (D4)," includes the trivial (singlet) representation. In the following we will analyze
the remaining equations under the assumption that the representation does not contain
a trivial part, which then requires

K, = 0. (4.2.15)

We next consider the second equation (4.2.7), specialized to external indices (A, u)
and (u, A) to obtain

Lic,Ruma = —(Da)u’ Roma = Om (KaA"Runa) - (4.2.16)
Writing out the Lie derivative on the left-hand side we obtain in particular
Ka™ (OmRuna — OnRuma) = 0. (4.2.17)

With the above assumption that the metric (4.2.12) is invertible it follows that the curl

of R is zero. Hence we can write it in terms of a gradient,

Ruma = myua N (4.2.18)

As we still have to solve the first equation of (4.2.16)), we must demand that the function
Y transforms under the Killing vectors in the representation D 4,

ﬁlCAyua - _(DA)uvyva, (4219)

for then (4.2.16)) follows with the covariant relation (4.2.18)). Finally, specializing (4.2.7)
to external indices (A, B), we obtain

fABCRCma - LICARBma - £KBRAma + am(]CBnRAnoz) . (422())

This equation is solved by Ra.ma = 0, and the latter indeed holds for the SL(6) valued
twist matrix to be discussed below. In addition, we will find that for these twist matrices
also the components Z, and S are zero, and therefore in the following we analyze the

equations for this special case,

Rama = Zumnk = SAnl...n5a = 0. (4221)

Let us now turn to the third equation (4.2.8), which will constrain the Z tensor.
Specializing to external indices (A, B), we obtain

fa5 Zokmn = LicaZpimn — LicpZarmn + 305 (K5 Zammp) (4.2.22)
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where we used (4.2.21)). Writing out the second Lie derivative on the right-hand side,
this can be reorganized as

'CICAZB kmn — 4 ICBp a[pZA kmn] — fABC ZC kmn - (4223)

In order to solve this equation we make the following ansatz
1 -
Zakim = 1 V2K aim — 2V2 K a” Cppim (4.2.24)

in terms of a four-form C, where we chose the normalization for later convenience, and
we defined the Killing tensor

1.
ICAklm = éwklmquCquv ,CAmn = 2v[mICAn]a (4225)

with the volume form Wyppg = |G | 1/2 Ekimpg- We recall that all internal indices are raised
and lowered with G, defined in (4.2.12).

It remains to determine épklm from the above system of equations. In order to
simplify the result of inserting (4.2.24) into (4.2.23)) we can use that the Killing tensor
term transforms ‘covariantly’ under the Lie derivative,

L, Kpmmk = fas Kcmnk (4.2.26)

which follows from the corresponding property (4.2.11)) of the Killing vectors. For the
second term on the left-hand side of (4.2.23)), however, we have to compute,

K"V pKakmn = Ke"Vip( 3 Ormnig Ka') = Ki? Qigftomn Vy VK47 (42.27)
= _% ICBp (kanpl qu[ ICAq} - % ICBp ‘:)k:mnpl quqICAl .
Here we used the D = 5 Schouten identity wjgrmnVy = 0 and that the Killing tensor
written as Kamn = 2V,,K4, is automatically antisymmetric as a consequence of the
Killing equations (4.2.13). Using the latter fact again, the last expression simplifies as
follows

V, VI, = -V, VK4 = —[V,,V]Ks? = —R"Ka, . (4.2.28)

We will see momentarily that m can be solved analytically by the above ansatz
(4.2.24)) if the metric G is Einstein. We thus assume this to be the case, SO that the Ricci
tensor reads Rmn = )\Gmn, for some constant A. Using this in and inserting
back into we obtain

A
ICpr[pICAkmn} = §wkmnpl ICApICBl . (4229)

Next, insertion of the second term in (4.2.24)) into (4.2.23)) yields the contribution

LICA (ICBp CM’pkmn) +4Kp" @[p (ICAq C~1l~cmn]q) = fABCICCp Chﬂ’pkmn + 5 KAPKp? a[;uévqkmn} .
(4.2.30)
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Here we used (4.2.11)) and combined the terms from Ly, épkmn with those from the second
term on the left-hand side. Employing now (4.2.29) and (4.2.30|) we find that insertion

of (4.2.24)) into (4.2.23) yields

- 1
0 = Ka?Kp?(50pClatmn) — 1 A @pghmn) - (4.2.31)

Thus, we have determined C, up to closed terms, to be

~ 1. .
58[qukmn} = Z)\wkmnpq, (4.2.32)

which can be integrated to solve for C’klmn, since in five coordinates the integrability
condition is trivially satisfied. In total we have proved that the (A, B) component of the
third equation of the system is solved by . We also note that the remaining
components of are identically satisfied under the assumption (4.2.21)). (For the
(u,v) component this requires using that the exterior derivative of R, vanishes by
(4.2.18).) For the subsequent analysis it will be important to determine how C transforms
under the Killing vectors. To this end we recall that in the definition (4.2.24) C' is the
only ‘non-covariant’ contribution, which therefore accounts for the second term on the
left-hand side of the defining equation . From this we read off

Li,Comtt = —V20mZanm - (4.2.33)

Finally, we turn to the last equation (4.2.9), which determines S,. Under the as-
sumptions (4.2.15)), (4.2.21)), the (u,v) and (u, A) components trivialize, while the (A, u)

component implies

EICAsunl...n5a = _(DA)UU’Svnl...nsa + 20\/5 a[nlen2n3n4 R\u|n5]a . (4234)
We will now show that this equation is solved by

Sunl..ln5a - ad}nl..‘n5 yua - 20 é[nl...n4 an5]yua ; (4235>

in terms of the volume form of G,,,, the function defined in (4.2.18)) and the four-form
defined via (4.2.32)). Here, a is an arbitrary coefficient, while we set the second coefficient
to the value that is implied by the following analysis. We first note that Li,wn, n, =0,
which follows from the invariance under the Killing vectors of the metric G defining &.
Second, we recall , which states that the function ), transforms ‘covariantly’
under Ly, (i.e., w.r.t. the representation matrices D4). Thus, all terms in (4.2.35)
transform covariantly, except for the four-form C, whose ‘anomalous’ transformation
must therefore account for the second term in Lx,S, on the right-hand side of (4.2.34)).

Using the anomalous transformations of C' given in (4.2.33), it then follows that (4.2.35)
solves (4.2.34]) for arbitrary coefficient a. This concludes our general discussion of the

system of equations (4.2.6[)—(4.2.9).
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4.2.2 Explicit tensors

In [56], the twist equations (4.2.1]) were solved for the sphere and hyperboloid compacti-
fications, with gauge groups SO(p,6 — p) and CSO(p, q,6 — p — q), explicitly in terms of
SL(6) group-valued twist matrices. Specifically, with the fundamental representation of

Eg6) decomposing as
Y} — (Y Y}, (4.2.36)

into (15,1) @ (6',2) under SL(6) x SL(2), we single out one of the fundamental SL(6)
indices a — (0,1) to define the SL(6) matrix U," as

U’ = (1-0)5(1 +uK(u,v)) ,

Ul = —nip’ (1 —0) B K(u,v),
U = =y’ (1—v)
Ul = (1-v)%67, (4.2.37)
with the combinations
u = yoyy . v = yngy . (4.2.38)
Here n;; is the metric
my =diag (1,...,1,=1,...,—1), (4.2.39)
1 6
p— —-p

and we define similarly the SO(p, 6 —p) invariant metric 7., with signature (p,6—p). Note
that in (4.2.38]) we use two different metrics, one Euclidean, the other pseudo-Fuclidean.
The function K (u,v) is the solution of the differential equation

21— v) (udK +v9,K) = (T—2p)(1—v)—u)K —1, (4.2.40)

which can be solved analytically. For instance, for p = 6, i.e., for gauge group SO(6)
relevant for the S® compactification, the solution reads

p=6 : K(u) = %US (u(u —3) 4+ Vu(l — u) (3arcsiny/u + co)> ,(4.2.41)
with constant ¢y. We refer to [56] for other explicit forms. The inverse twist matrix is
given by
(U’ = (1-0)*°,
U = myy’ (1—v)'"* K(u,v)
(U_1>z'0 = nijyj (1- U)l/g )
(U = Q—v)"V/° (67 + nanp y*y' K (u,0)) . (4.2.42)
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Finally, the density factor p is given by

p = (1—v)"°. (4.2.43)

Upon embedding the SL(6) twist matrix (4.2.37) into Ege), one may verify that
it satisfies the consistency equations (4.2.1) with an embedding tensor that describes
the gauge group SO(p, q), where the physical coordinates are embedded into the EFT

coordinates via (4.2.36)) according to

gt = vyl (4.2.44)

With the above form of the generalised Scherk-Schwarz ansatz and the explicit form
of the twist matrix and the scale factor we can give an explicit form of the geometric
objects introduced in the previous section. To this end we have to split the Eg(g) indices
further in order to make contact with the twist matrices given in (4.2.37)), (4.2.42). As

it turns out, for these twist matrices the split of indices Vi; = (Va, Vi) discussed before
(4.2.10)), coincides with the split 27 = 15 + 12 of (4.2.36))
Vu = Va, Vo) = (Viay, V™), a,b = 0,...,5, apf = 12. (4.2.45)

In several explicit formulas we will have to split [ab] even further,
[ab] = ([0d], [i]) , ,j=1...,5. (4.2.46)

Similarly, we perform the same index split for the fundamental index M under Eg) —
SL(6) (and then further to GL(5) x SL(2) according to (4.2.4))), thus giving up in the
following the distinction between bare and underlined indices. Let us note that we employ
the convention

v = SVt (4.2.47)

in agreement with the summation conventions of ref. [33]. In order to read off the various
tensors from the twist matrices let us first canonically embed the SL(6) matrix U," into
Eg). Under the above index split we have

goN ( U[ab} [cd] U[ab]ca ) B ( U[ac Ub]d 0 > (4 , 48)
Uaa,[cd] Uaa’bﬁ 0 5aﬁ (U—l)ba

With this embedding, and recalling the convention (4.2.47)), we can identify the Killing
vector fields with components of the twist matrices as follows,

Ko™ = V20 )™, (4.2.49)
which yields
1
Kog™(y) = —5V20 =007, Kgp"(y) = V28 n® - (42:50)
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It is straightforward to verify that these vectors satisfy the Lie bracket algebra (4.2.11)).
Specifically,

[Icabalccd]m = _\/Efab,cdeflcefm7 fab,cdef = 25[a[enb}[06d]f]a (4251)

with the SO(p, 6 — p) metric 7,. The Killing tensors defined in (4.2.25)) are then found
to be

Kioijmnk = —V2 Emnkij ¥

1 (4.2.52)
K[ij]mnk = _\/5(1 - 'U)_E Emnkpq( 5ip 5jq -2 5[ip77j]l yqyl ) :

We can now define the metric G as in (4.2.12) w.r.t. which these vectors are Killing,

ab,cd

using the Cartan-Killing form 7®¢? = plen@®. This yields for the metric and its inverse

Gmn = Nmn + (1 - U>7177mpnnqypyq )

] (4.2.53)
Gmn — nmn . ymyn .

One may verify that this metric describes the homogeneous space SO(p, q)/SO(p — 1,q)
with
Ron = 4G, (4.2.54)

determining the constant above, A\ = 4. The associated volume form is given by
Gty = (1= 0) 72 Epmity - (4.2.55)

Next we give the function defining R in (4.2.18) w.r.t. the above index split,
Ruma = R%ma = 0mY™ . (4.2.56)

for which we read off from the twist matrix

_ a\1/2 _
Yo, = Yl with  Y'(y) = {(1 yqj) Z:S . (4.2.57)

In agreement with (4.2.19)) this transforms in the fundamental representation of the
algebra of Killing vector fields (4.2.50)). Specifically,

LY = K™ 0 = V26% Yy, (4.2.58)

where ), is obtained from )* by means of n,,. Let us also emphasize that the ), can be

viewed as ‘fundamental harmonics’; satisfying

O0y* = —5)°, (4.2.59)
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in that all higher harmonics can then be constructed from them. For instance, the Killing

vectors themselves can be written as
Kiatim = V2(0nYia) Vi - (4.2.60)

Next we compute the four-form C,,i by integrating (4.2.32). An explicit solution
can be written in terms of the function K from (4.2.40) as

~ A - r s
Compl = E (1 — U) 1/2 Emnklq (Kfsq Nrs + 5Z)y , (4.2.61)

whose exterior derivative is indeed proportional to the volume form (4.2.55)) for the metric

Gn- Together with the Killing vectors and tensors defined above, the Z tensor is now
uniquely determined according to (4.2.24]). Moreover, it is related to the twist matrix

according to

1 - 1 I _
Zlablmnk = 5 Emnkpg (U 1)[ab]tpql = —Cmmipgp (U D)E? (U )y, (4.2.62)

2
which agrees with (4.2.24]) for A = 4.

Finally, let us turn to the tensor S, whose general form is given in (4.2.35). Under

the above index split it is convenient to write this tensor as
Suntonsp = Smsp = S%nyns %5, (4.2.63)
which is read off from the twist matrix as
S mss = Enomy (U8 = €pyomy p 0% Us® (4.2.64)

leading with (4.2.37)) to

. (1—v)™' (1 +uK) a=0
st = { S (o) 2K i (4.2.65)

One may verify that this agrees with (4.2.35)) for

a =1, X=4. (4.2.66)

4.2.3 Useful identities

In this final paragraph we collect various identities satisfied by the above Killing-type
tensors. These will be useful in the following sections when explicitly verifying the con-
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sistency of the Kaluza-Klein truncations. We find

Kl K™ = —V2 feaes K + 20, (629" Yy) (4.2.67)
K Keg™ = 26 Y%V, (4.2.68)

1
K[ab}kz[cd] kmn T K[cd]kz[ab] kmn — _g Eabedef ’C[eﬂmn ) (4269)
Kl K™ K™ = 4V26L1 YV 05", (4.2.70)
’C[cd]m’C[ab}n’C[eﬂl al]C[ab]mn = —8 Me[c yd]yf + 877f[c yd}ye , (4,2‘71)

which can be verified using the explicit tensors determined above.

4.3 The explicit IIB reduction ansatz

In terms of the Eg) EFT fields, the reduction ansatz is given by the simple factorization
(1.6.2) with the twist matrix U given by . In order to translate this into the
original IIB theory, we may first decompose the EFT fields under (4.2.4), according to
the IIB solution of the section constraint, and collect the expressions for the various
components. We do this separately for EFT vectors, two-forms, metric, and scalars, and
subsequently derive the expressions for three- and four-forms from the IIB self-duality
equations, as outlined in the general case in section 3 of this chapter.

4.3.1 Vector and two-form fields
Breaking the 27 EFT vector fields according to into

{A™ Apmas Apkmns Auat (4.3.1)
we read off the reduction ansatz from , , which in particular gives rise to

Aum(l',’y) = K[ab]m<y)AZb(x)7
Aukmn(x,y) = Z[ab]kmn(y)Azb<x> (432)

The Kaluza-Klein vector field A4, = A,™ thus reduces in the standard way with the
15 Killing vectors K™ (y) whose algebra defines the gauge group of the D = 5 theory.
Note, however, that these extend to Killing vectors of the internal space-time metric
only in case of the compact gauge group SO(6). In the general case, as discussed above,
the K™ (y) are the Killing vector fields of an auxiliary homogeneous Lorentzian metric
, compare also [69, [70, [7I]. The vector field components A, jm, are expressed
in terms of the same 15 D = 5 vector fields. Their internal coordinate dependence

is not exclusively carried by Killing vectors and tensors, but exhibits via the tensor
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Zab) kmn(y) an inhomogeneous term carrying the four-form C’mnkl according to (4.2.24)) .
This is similar to reduction formulas for the dual vector fields in the S7 reduction of

D = 11 supergravity [85], which, however, in the present case already show up among
the fundamental vectors.

For the remaining vector field components, the ansatz ((1.6.2), (4.2.5)), at first yields
the reduction formulas

Auma(x7y) = Raﬂma(y)Auaﬂ(x) = mya(y)Auaa(x)a
Aua(x>y) = Sa(y)Auaa(x> (4.3.3)

~ 1 ~
= ‘G’1/2 (yUL(y) - 6 ajklmnpcklmn 8pya(y)> A,uaa(x) 5

in terms of the 12 vector fields A, 4, in D = 5 and the tensors defined in (4.2.35)) and
(4.2.56)). However, as discussed in the previous section, for the SO(p, ¢) gauged theories,
a natural gauge fixing of the two-form tensor gauge transformations allows to eliminate
these vector fields in exchange for giving topological mass to the two-forms. As a result,

the final reduction ansatz reduces to

Apma = 0 = Ao . (4.3.4)

For the two-forms, upon breaking them into GL(5) components
{Buya,BuymnjBu,yma;B,u,Vm} ) (435)

similar reasoning via (1.6.2)) and evaluation of the twist matrix p=2 Uy~ gives the fol-
lowing ansatz for the SL(2) doublets
B (x,y) = Yaly) B (z)
B, "z, y) = 2Z,"(y)B.,"(z), (4.3.6)

in terms of the 12 topologically massive two-form fields of the D = 5 theory. Here,
Z,™(y) is the vector density, given byE|

_ - 1 _
ZzZm = |G‘1/2 <Gmnanya+6d)mklpqcklpqya> , (437)

in terms of the Lorentzian metric émn, vector field ),, and four-form Chimm- As is obvious
from their index structure, the fields B,,™* contribute to the dual six-form doublet of
the IIB theory, but not to the original IIB fields. Accordingly, for matching the EFT
Lagrangian to the IIB dynamics, these fields are integrated out from the theory [33], [1].

3 This seems to differ from the ansatz derived in [80]. The precise comparison should take into account
that the A,,, B,,, are non-gauge-invariant vector potentials. In the present discussion, the inhomogeneous
term in Z4p) kmn (y) played a crucial role in the verification of the proper algebraic relations.
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For the IIB embedding of D = 5 supergravity, we will thus only need the first line of
(14.3.6)).

For the remaining two-form fields, the reduction ansatz (1.6.2)) yields the explicit

expressions
Buum(xay) = Z[ab]m(y) Buuab<x) )
1
Buymn(z,y) = -3 \/§,C[ab1mn(y) By (), (4.3.8)

with the Killing tensor Kl*),,,, = 2 8[mIC[ab] n], and the tensor density Z [@b]  oiven by

. 1 .
Zlb, = |G| </dab]m + 35 @I Cmpq) . (4.3.9)
Here, the 15 D = 5 two-forms B, are in fact absent in the SO(p, q) supergravities,
described in the previous section. In principle, they may be introduced on-shell, employ-
ing the formulation of these theories given in [83] 50], however, subject to an additional
(three-form tensor) gauge freedom, which subsequently allows one to set them to zero.

Hence, in the following we adopt B, o () = 0, such that (4.3.8]) reduces to
Bum = 0 = By - (4.3.10)

Within EFT, consistency of this choice with the reduction ansatz (4.3.8]) can be under-
stood by the fact that the fields B, ., (related to the IIB dual graviton) do not even
enter the EFT Lagrangian, while the fields B, n, enter subject to gauge freedom

Bumn = 20mMj (4.3.11)

(descending from tensor gauge transformations of the IIB four-form potential), which
allows us to explicitly gauge the reduction ansatz (4.3.8) to zero.

Combining the reduction formulas for the EFT fields with the explicit dictionary
(13.3.9), we can use the results of this section to give the explicit expressions for the dif-
ferent components ([3.2.26)) of the type IIB form fields. This gives the following reduction
formulae

Co.(z,y) = V10Va(y) B (2) , (4.3.12)
Cmna(xay) = 0,

C,uumn(xv y) = ]C[ab]k(y)z[cd] kmn<y> A[,uab(x)Av]Cd(x) )

5 =%

O,ukmn(xa y) = T Z[ab} kmn(y) Auab(x) y (4313)

for two- and four form gauge potential in the basis after standard Kaluza-Klein decom-

position. In the next subsection, we collect the expressions for the scalar components
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Crn® and Clypmn, and in subsection we derive the reduction formulas for the last

missing components C,,,m, and C,,,, of the four-form.

Let us finally note that with the reduction formulas given in this section, also the non-
abelian EFT field strengths of the vector fields factorize canonically, as can be explicitly
verified with the identities given in (4.2.11)), (4.2.22)). Explicitly, we find

m
Fuv

20, A" — AOWAT 4+ A DAL
= K™ (v) (2 DA™ () + V2 feaef AT AS (l‘))
= K" () Fu®()

Fuvrmn = 20Au bmn — 2 A 0A ko — 3 0o Avt i + 3 Ay O Av

= Z[ab] kmn(y) F,uyab('x) ) (4314)

in terms of the non-abelian SO(p, ) field strength F,*(x) from (4.1.10).

4.3.2 EFT scalar fields and metric

Similar to the discussion of the form fields, the reduction of the EFT scalars can be read
off from ([1.6.2]) upon proper parametrization of the matrix My;n. We recall that M,y
is a real symmetric Eg(g) matrix parametrized by the 42 scalar fields

{Gmna Cmnau Oklmny me, } ) (4315)
B

where C),,® = Cipn®, and Crpmpn = Clmn) are fully antisymmetric in their internal
indices, Gy = Gmp) is the symmetric 5 x 5 matrix, representing the internal part of the
IIB metric, and mq,3 = m(qp) is the unimodular symmetric 2 X 2 matrix parametrizing the
coset space SL(2)/SO(2) carrying the IIB dilaton and axion. Decomposing the matrix
M n into blocks according to the basis

Mem  M™ My MiP
Mkam Mka,mﬁ Mkamn Mka,ﬂ
Mor — , 4.3.16
M Mipm M™ My My? ( )

Mozm Ma,mﬁ Mamn Ma,ﬁ

the scalar fields (4.3.15]) can be read off from the various components of M,;n and its
inverse MMY  We collect the final result

Gmn _ (det G)1/3 Mm,n ’ (4317)
m = (det G)>* M
Cmna - ﬂgaﬂ(det G)2/3 mpy M'ymn = - €a6<det G)1/3 G”k Mmﬁk )
1 2
Cror = = (det G)2/3 Ektmmp Mas MepB — \1/_6_ (det G)1/3gklmanqT MPET
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where G and m®® denote the inverse matrices of G,,, and Mmap from (4.3.15). The
last two lines represent examples how the C,,,* and Cj,, can be obtained in different
but equivalent ways either from components of M;n or MMY_ This of course does not
come as a surprise but is a simple consequence of the fact that the 27 x 27 matrix M, x
representing the 42-dimensional coset space Eg)/USp(8) is subject to a large number of
non-linear identities.

With (4.3.17)), the reduction formulas for the EFT scalars are immediately derived
from (1.6.2)). For the IIB metric and dilaton/axion, this gives rise to the expressions

G (x,y) = A(wy) K™ (9)Kea" (y) M ()
m®(z,y) = AY(a,y) Valy)Vsly) M (z) (4.3.18)
with the function A(z,y) defined by
Az, y) = p*(y) (det G)1/2 = (1- v)1/2 (det G)1/2 , (4.3.19)

and the 42 five-dimensional scalar fields parameterizing the symmetric Eg) matrix My;n

decomposed into an SL(6) x SL(2) basis as (4.1.13).

Similarly, the reduction formula for the internal components of the two-form C,,,“ is

read off as
Cmna(];a y) = —5“5A2/3<x7 y) Gnk:(.x, y> amyc(y) Ic[ab]k(y) Mabcﬁ(x)
= —% DAY (2, y) mgs (2, ) Voly) K (y) Man (), (4.3.20)

featuring the inverse matrices of , with the two alternative expressions corre-
sponding to using the different equivalent expressions in (4.3.17). To explicitly show
the second equality in (4.3.20]) requires rather non-trivial quadratic identities among the
components of an Eg(s matrix, together with non-trivial identities among the
Killing vectors and tensors. In contrast, this identity simply follows on general grounds
from the equivalence of the two expressions in (4.3.17)), i.e., it follows from the group
property of Mj;n and the twist matrix Uy~ Let us also stress, that throughout all in-
dices on the Killing vectors K4)™ and tensors are raised and lowered with the Lorentzian

z-independent metric G, (y) from (4.2.12), not with the space-time metric G, (x,y).
Eventually, the same reasoning gives the reduction formula for C,,

1

Oklmn<x7 y) = g 6/€l7’nnp A4/3(I7 y) Mmeas (ZE, y) ya<y> pr<y> Maoz,bﬁ<x) ) (4321>

with ZyP(y) from (4.3.7). Explicitly, this takes the form

1

Ok:lmn<m7 y) = E ‘Dklmnp A4/3<1', y) maﬁ(l‘a Z/) épq(y) aq (A_4/3 (l’, y) maﬁ<m7 y))

+ Climn (¥) - (4.3.22)
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On the other hand, using the last identity in (4.3.17) to express Ciimn, the reduction
formula is read off as

\/§ T ab,c
Cklmn(xa y) = T AQ/?) (ZL‘, y) Z[ab] [klm(y)Gn]r(xa y) K[cd} (y) M b d(x)

1
= Cmnkl (y) - g A2/3 (-737 y) K[ab}p(y> ,C[cd] [klm(y) Gn]p(xa y) Mab70d(x) ;

(4.3.23)

where we have used the explicit expression (4.2.24) for Zju) pm. Again, the equivalence
between (4.3.22)) and (4.3.23)) is far from obvious, but a consequence of the group property
of Myn and the twist matrix Uy~. For the case of the sphere S®, several of these

reduction formulas have appeared in the literature [86, 87, 88, [66, 80]. Here we find that

they naturally generalize to the case of hyperboloids, inducing the D = 5 non-compact
SO(p, q) gaugings.

Let us finally spell out the reduction ansatz for the five-dimensional metric which

follows directly from (1.6.2)) as
g (@.Y) = p(y) gu (@) . (4.3.24)

Putting this together with the parametrization of the IIB metric in terms of the EFT
fields, and the reduction (4.3.2)) of the Kaluza-Klein vector field, we arrive at the full

expression for the IIB metric
ds* = A3(x,y) g, (x) detda”
+ Gmn('r? y) (dym + K[ab]m(y>AZb(x)dxu) (dyn + ]C[cd]n(y>AIC/d(x)de) )
(4.3.25)

in standard Kaluza-Klein form [89], with G,,, given by the inverse of (4.3.18)).

4.3.3 Background geometry

It is instructive to evaluate the above formulas at the particular point where all D =5
fields vanish, i.e. in particular the scalar matrix M,y reduces to the identity matrix

This determines the background geometry around which the generalised Scherk-Schwarz
reduction ansatz captures the fluctuations. Depending on whether or not the scalar
potential of D = 5 gauged supergravity has a stationary point at the origin — which
is the case for the SO(6) and SO(3,3) gaugings [7] — this background geometry will
correspond to a solution of the IIB field equations.
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With (4.3.26)) and the vanishing of the Kaluza-Klein vector fields, the IIB metric
(4.3.25) reduces to

ds® = GppdXFdX" (4.3.27)

o 1 aftapd
(1+u—v)"?g,, () detde” + (1 +u—v)" '/ (émn + W) dy™dy"

where we have used the relations
56" Koy ()K" (v) = (1 +u—0)6™" = Dy’

[e)

A = (1+u—v)3", (4.3.28)

The internal metric of (4.3.27)) is conformally equivalent to the hyperboloid H?*~? defined
by the embedding of the surface

in R®. This is a Euclidean five-dimensional space with isometry group SO(p) x SO(6 —p),
inhomogeneous for p = 2,3, 4. Except for p = 6, this metric differs from the homogeneous
Lorentzian metric defined in with respect to which the Killing vectors and tensors
parametrizing the reduction ansatz are defined.

Using that Y,), 0% = 1+ u — v, it follows from (4.3.18)) that the IIB dilaton and
axion are constant

me? = 50 (4.3.30)

while the internal two-form (4.3.20]) vanishes due to the fact that (4.3.26)) does not break
the SL(2) . Eventually, the four-form Cjy,,, is most conveniently evaluated from (4.3.22)

as
Gt = Chamn — & Dutny O A0,
= iaklmnp Pyt (1—0) 2 (K(u,0) + (1+u—v)"") ,  (43.31)
which can also be confirmed from . In particular, its field strength is given by
504 Cimon) = podt(p=—3)(u-v) (4.3.32)

5 Eklmnp (1 — U)1/2 (1 +u— U)2 s
where we have used the differential equation (4.2.40) for the function K (u,v). Again,

it is only for p = 6, that the background four-form potential C}y,,, coincides with the
four-form éklmn that parametrizes the twist matrix U2 .

With this ansatz, the type IIB field equations reduce to the Einstein equations, which
in this normalization take the form

o o 25 o o o o o o
Ry = Topm = Ea[moklpq]a[ncml GFrGlarga (4.3.33)
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and similar for R, . With (4.3.27) and (4.3.32), the energy-momentum tensor takes a

particularly simple form for p = 6 and p = 3:

o 4G —6
Ty = ., 7 . (4.3.34)

(1+u—v)"2Gpn p=3

For the z-dependent background metric Ew(x) the most symmetric ansatz assumes an
Einstein space (dS, AdS, or Minkowski)

o

Rlglu = kg, . (4.3.35)

upon which the IIB Ricci tensor associated with (4.3.27)) turns out to be blockwise pro-
portional to the IIB metric for the same two cases p =6 and p =3

;% _ 4(0;mn p=©6
(1+U—U>_5/2Gmn p:3

R, =  FCw L PE0 (4336
~(I+u—0)2A+2-k)(1+u—0)?)Gu p=3

Together it follows that (4.3.27)), (4.3.31]), (4.3.35)) solve the IIB field equations for p =
3,k =2and p =6,k = —4, cf. [69]. The resulting backgrounds are AdS; x S° and
dSs x H*3 and the induced D = 5 theories correspond to the SO(6) and the SO(3,3)
gaugings of [7], respectively. For 3 # p # 6, the background geometry is not a solution

to the IIB field equations. Let us stress, however, that also in these cases the reduction
ansatz presented in the previous sections describes a consistent truncation of the IIB
theory to an effectively D = 5 supergravity theory, but this theory does not have a
simple ground state with all fields vanishing.

4.3.4 Reconstructing 3-form and 4-form

We have in the previous sections derived the reduction formulas for all EFT scalars,
vectors, and two-forms. Upon using the explicit dictionary into the IIB fields [33] 1], this
allows to reconstruct the major part of the original IIB fields. More precisely, among
the components of the fundamental IIB fields only C’uypm and C’WPU with three and
four external legs of the IIB four-form potential remain undetermined from the previous
analysis. These in turn can be reconstructed from the IIB self-duality equations, which
are induced by the EFT dynamics. We refer to [I] for the details of the general procedure,
which we work out in the following with the generalised Scherk-Schwarz reduction ansatz.

The starting point is the duality equation between EFT vectors and two-forms that
follows from the Lagrangian

~ 1
Ok (H“Wmmn] 3 e MmN fGTNaw,pm) = 0, (4.3.37)
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where F,,V is the non-abelian field strength associated with the vector fields A,", and
ﬁluup\mn carries the field strength of the two-forms B, .,. Taking into account the
reduction ansatz (4.3.4)), (4.3.10)), it takes the explicit form

H,uupmn = _8[y44uk-/4p] kmn — A[,ukauAp] kmn — ﬁpukAp] kmn — A[,ukfup] kmn
+ 20 (A" A Ay in) (4.3.38)

in terms of the remaining vector fields and field strengths from . Since is
of the form of a vanishing curl, the equation can be integrated in the internal coordinates
up to a curl 9, Cp)u, related to the corresponding component of the IIB four-form,
explicitly

1 1 N
OnColpp = 1_6¢§ € € pwpor Munn FTN — é\/5 Hopprom - (4.3.39)

It is a useful consistency test of the present construction, that with the reduction ansatz
described in the previous sections, the r.h.s. of this equation indeed takes the form of a
curl in the internal variables. Let us verify this explicitly. Since the reduction ansatz is
covariant, the first term reduces according to the form of its free indices [mn], c.f.

1
eMmTL,N ‘/—-UTN = _5 \/Ea[mlc[ab]n] < |g| Mab,N FUTN) , (4340)

which indeed takes the form of a curl. We recall that the D = 5 field strength F,,~
combines the 15 non-abelian field strengths F),,”* and the 12 two-forms By, 4, according

to (4.1.10). The reduction of the second term on the r.h.s. of (4.3.39)) is less obvious,
since ﬂuypmn is not a manifestly covariant object, and we have computed it explicitly

by combining its defining equation (4.3.38]) with the reduction of the vector fields (4.3.2)

and field strengths (4.3.14]). With the identity (4.2.69) among the Killing vectors and
tensors, the second term on the r.h.s. of (4.3.39) then reduces according to

1
H,uupmn - g Eabede f K[ef]mn Qabcd +2 a[m (A[,ukAulAp]n]kl) . (4341)

wvp

with the non-abelian SO(p, ¢) Chern-Simons form defined as

Qabcd — 8[MAyabAp}Cd + F[/WabAp]Cd , (4342)

pvp

in terms of the SO(p, 6—p) Yang-Mills field strength F),,**. Again, takes the form
of a curl in the internal variables, such that equation can be explicitly integrated
to

1

oy = =35 K" (2 Vel wporr Map v F7™N + V2 Eapeaes Q;i;f)

1
= V2 Kot Kiea Zreymia (A" A Ay™) (4.3.43)

This yields the full reduction ansatz for the component C,,,,,. Obviously, Cp, ) is
determined by (4.3.39) only up to a gradient 0,,A,,, in the internal variables, which

89



corresponds to a gauge transformation of the IIB four-form. Choosing the reduction
ansatz (4.3.43]), we have thus made a particular choice for this gauge freedom.

In a similar way, the last missing component C,,,, can be reconstructed by further
manipulating the equations and comparing to the IIB self-duality equations [I]. Con-
cretely, taking the external curl of and using Bianchi identities and field equations
on the r.h.s. yields a differential equation that can be integrated in the internal variable
to

1 .
=5 €Sppon e (det G) ! G D Cpgrs = 16 Dy Clpojn — 30 €ap By 0nByg)”

+ 6 V2 Fi P A A n + 40,C4,3.44)

up to an external gradient 0,,C),,,, wWhich carries the last missing component of the IIB

four-form. Here, D, denotes the Kaluza-Klein covariant derivative
D*C, = 0,0, - AL o,C, —0,A,FC,,  ete., (4.3.45)

and D,,Cpqrs is a particular combination of scalar covariant derivatives [I], which is most

compactly defined via particular components of the scalar currents as

2 .
DMy yn MYV = %(detG)l Gun €™ Dy Clyrs (4.3.46)

where D, refers to the full EF'T derivative, covariant under generalised diffeomorphisms.
Again, it is a useful consistency check of the construction that with the reduction ansatz
developed so far, equation (4.3.44]) indeed turns into a total gradient, from which we may
read off the function C,,,. For the Lh.s. this is most conveniently seen by virtue of

(4.3.46) and the reduction ansatz (1.6.2)) for My, giving rise to
—de(det Q) G €7 DHClpry = 3/|8] K% KCpea " D" Mgy MV
= 6/Jel (V2K e — 0 (V" D)) D My e M (2.3.47)

where we have used (4.2.67). The derivatives D,, on the r.h.s. now refer to the SO(p, 6—p)

covariant derivatives (4.1.14)). For the terms on the r.h.s. of (4.3.44]), we find with (4.3.2]),
(4.3.6]), and (4.2.60)

—30 Eap B[wjaaanU]ﬂ = 15 \/§€a5 B[u,,aaBpg}b’B IC[ab]n s

6 V2 Fiu" A Aoiin = —6V2 Fiuy ™ A Ay Koty Kiea Zpesim , (4:3.48)
as well as
1 cae
16 DELKCZ/PU]’H’L = 5 K[ab]m ( v |g| Epvpor D, (Mab»NFT)\N) + \/Egadeef D[“QViUJ;)

+4V2 Fi AL Aoy + 2V 2 A A F i
FV2ALEA (24,7000 Ad ki + 3 0 A" Aoy kiin — 3 A, O A ki)
= 2V2ARPA ol (A" 00 As") = V20 (A" AL A" Ag n]4-3.49)
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where we have explicitly evaluated the Kaluza-Klein covariant derivative D, on C\pm,
the latter given by . Moreover, we have arranged the A?* terms such that they
allow for a convenient evaluation of their reduction formulae. Namely, in the last two
lines we have factored out the quadratic polynomials that correspond to the A? terms in

the non-abelian field strengths (4.3.14]) and thus upon reduction factor in analogy to the
field strengths, leaving us with the A* terms

AAAA — -2 fef gh /C [ab] (Z[cd] mkllC [i5] -+ IC [cd] z] mkl) A[uabAVCdApefAU]gh
— V20 (AR A A Ag i)

1 .
= _Z \/5 fab,uvxyfef,gh” Ecdijry K[muv]A[uabAVCdApEan]gh
1 L
+ 5 fef,ghl] Ecdijau 8m (yuyb) A[,uabAVCdApean}gh

— V20, (A A A Ay ) (4.3.50)

upon using the identities (4.2.69)), (4.2.67)). While the last two terms are total gradients,

the first term cancels against the corresponding contribution from the derivative of the
Chern-Simons form Q%<4 in (|4.3.49)

uvp

3 1
” F[,uZ/Cdecr] ef Eabedef — 5 ﬁA[MCdAVEprU]gh fab,efuv Ecdghuv

D chef Eabedef 4

- %A[MCdAueprghAa]ij feder™ fonii" €abrsun - (4.3.51)
Similarly, the F.AA terms in combine with those of according to
FAA — —2V2 FW“bA CdAa]ef ’C[cd (’C jab] Zlef) mkl + ’C[ef]Z[ab mkl) (4.3.52)
= 3 fcd,z‘jgh KU B ® A Ay Eapepn — 5 \/EF[,U,VabApCdAJ] I apefen Om(V"Va) -

Again, the first term cancels against the corresponding contribution from the derivative
of the Chern-Simons form QZ?fg, given in (4.3.51)).
Collecting all the remaining terms, equation (4.3.44]) takes the final form

1 1
0 = 3 KC, /|2l € pvpor (5 V2 14a DT Moy y MYV 4 D, (Mab,NF”N))

+ ; V2K, (5ab0d6’f ki [uVCdF po] 40 €ag Nac'bd B ™ Bpo] dﬁ)

b3 Fugon Seison O (V) Ay AL AT A"

- — \/E@w,}m (V°V4) D™ My y MY — ﬁF[uVabApCdAa}ef Eavefeh Om (V" Vi)
—~ ﬁ O (AR A A A i) + 40 Clpr - (4.3.53)
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Now the first two lines of the expression precisely correspond to the vector field equations
(4.1.16) of the D = 5 theory, which confirms that on-shell this equation reduces to a
total gradient in the internal variables. Although guaranteed by the consistency of the
generalised Scherk-Schwarz ansatz and the general analysis of [I], it is gratifying that
this structure is confirmed by explicit calculation based on the D = 5 field equations and

the non-trivial identities among the Killing vectors. We are thus in position to read off

from (4.3.53]) the final expression for the 4-form as
1
O,uupa = _E yayb ( V ‘g| g,uZ/pUTDTMbc,NMN “ 42 \/§€cdefgb F[;LVCdApefAU}ga )
1 .
+ Z <\/§ ’C[ab}klc[cd]llc[ef}nz[gh] kln — yhy] Eabcegj ndf) A[,uabAVCdApean]gh
+ Ao () (4.3.54)

in terms of the D = 5 fields, up to an y-independent term A, - (), left undetermined by
equation (4.3.44)) and fixed by the last component of the IIB self-duality equations ((3.2.7)).

This equation translates into

4 DF;K CVpor] = 30¢qs B[MVQD;(K BUT]B +8 ./_"[MVkaUT] k
1
150 esw,pweklm"p (det G)_4/3Xklmnp , (4.3.55)

where Xjmnp is @ combination of internal derivatives of the scalar fields, c.f. [I], that is
most compactly given by

1 1
505 Kigrs = =55 V2 (det G) G™ My M (4.3.56)

in analogy to (4.3.46). It can be shown that equation (4.3.55) can be derived from
the external curl of equations (4.3.44)) upon using the EFT field equations and Bianchi
identities, up to a y-independent equation that defines the last missing function A, ..
For the general case this has been worked out in [I]. Alternatively, it can be confirmed by
explicit calculation with the Scherk-Schwarz reduction ansatz, that equation with
the components C\,,m and C)y ), from and , respectively, decomposes
into a y-dependent part, which vanishes due to the D = 5 scalar equations of motion, and
a y-independent part, that defines the function A, ,,. The calculation is similar (but
more lengthy) than the previous steps, requires the same non-trivial identities among
Killing vectors derived above, but also some non-trivial algebraic identities among the

components of the scalar Egg) matrix My;y. We relegate the rather lengthy details to
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appendix |[A| and simply report the final result from equation (A.20))

1
D[MAVpO'T} = _@ \/EgquUTDA (MNaCD)\Mac,N)
1

* 240

\/]g_|5WpUT FrAN <Mab,NFn)\ab — % 10 €08 Moy M*“* N Bm\bﬁ)
+ % Vgl Epupor (106767 + 2 MIEIE My, 10— Moy M) MY ey
+ 3% V2 Eapedes Flu™ Fpo® A + 1_16 Flu™A,S AT A capeaennsn
+ % V2 AL AS AT AT AT € dbeegi NapTing - (4.3.57)

Since there is no non-trivial Bianchi identity for (4.3.57]), this equation can be integrated
and yields the last missing term in the four-form potential (4.3.54)). This completes the
reduction formulae for the full set of fundamental IIB fields.

4.4 Generalised 1IB supergravity

In the previous sections, we gave the embedding of type IIB supergravity on AdSs;xS® into
the Eg) EFT using a generalised Scherk-Schwarz ansatz together with specific solution
of the section constraint. Here, we will show how one can obtain a generalised set of
equations of motion and Bianchi identities known in the literature as generalised type
[IB from EFT. This constitutes the second application of the EFT /Type IIB dictionary.
To achieve this result, we use a factorisation ansatz [90] together with a different solution
of the section constraint and work out explicitly various components of the deformed
field strengths. Using the dictionary, we compare the deformed field strengths to their
generalised type IIB analogue and find agreement for all the components tested.

In the introduction, we showed that the equations of motions of standard, bosonic

type IIB could be obtained from the corresponding non-linear o-model. This has been
SU(2,2]4)

S0(4,1)xS0(5)

by Metsaev and Tseytlin [91]. In this case, the action can be written in terms of the

generalised to the case of the superstring on AdS;xS° with coset superspace

Maurer-Cartan 1 forms as a sum of the kinetic and Weiss-Zumino term, in the same
spirit than the standard bosonic WZW action on a group manifold. The interesting
built-in property of the Metsaev-Tseytlin action is its invariance under a fermionic gauge
symmetry, x-symmetry, which halves the number of fermions and fixes the value of the
parameter in front of the WZ term. Intriguingly, this corresponds to the same value
required for the integrability of the theory. It has been shown in [92, 93] [94] that it is
possible to deform the AdSsxS® superstring while maintaining both properties of inte-
grability and invariance under a local fermionic symmetry. The deformations are known

in the literature as n-deformation [92] 03] and A-deformation [93]. In the case of the
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n-deformation, it was shown recently that the conditions for k-symmetry do not cor-
respond to standard type IIB supergravity equations [81, [82]. The resulting equations
requires the presence of a Killing vector field K. When K vanishes, one recovers the
standard type IIB supergravity equations. These are therefore known as generalised type
IIB equations.

4.4.1 generalised field equations and Bianchi identities

Let us recall the bosonic generalised IIB supergravity equations which have been derived
in [81]. Their fermionic completion has been found in [82]. The equations are expressed
in string frame. The equations for the metric G, and the B-field By, are

1 "
Rup — ~Hpps Hy"” — Tpop + Vi Xy + Vi Xy = 0, (4.4.1a)

4
1_. 1__. 1 R
5 va[“jf) + §.prﬂljf) + E fﬂﬁﬁa-qﬁprT — XpHﬂf/ﬁ — 8ﬂX1; + &;Xﬂ = 0, (4.4.1b)
1 N . R
R — = HuppH™? 4+ 4V, XP — 4X, X7 =0, (4.4.1¢)

where fi,7 = 0..9, V; denotes the space-time covariant derivative, R;; the Ricci tensor,
R the Ricci scalar and Hjpp = 3085 + the field strength of the NS-NS B-field. The
R-R fields enter via the currents Fy,..5, and contribute to the stress tensor in (4.4.1al)
via
1 1 p6 1 pord 1 . p5 7
(4.4.1d)
The equations (4.4.1a)—(4.4.1c) are based on the existence of a Killing vector field K

and an additional vector field Z with K#Z; = 0, which enter the field equations in the
combination X = K + Z. The vector field Z satisfies the Bianchi type equations

075 — 0 Zy+ K Hypy = 0. (4.4.2)
The ordinary type IIB equations are recovered in the limit where K = 0 such that Z can
be integrated to the dilaton field Z; = 0,0 .

In the R-R sector, the generalised dynamical equations for the field strengths Fj, ...,
are given by

N N 1 ... .
VEF — 2V Fj — 6 H"P Fpp =0, K'F, =0, (4.4.3a)
N N 1 ...
fof;ﬂ,j — prpﬂ,;ﬁ — 6 Hpa‘rfﬂp/j&-f- — (K A Jrl)ﬂz? = 0, (443b)
VTF’?[Lﬁﬁc% - ZT-F%[L{/[)& + % 5,2&&&%,%775\59‘]{7“”.7)\&9 — (K VAN fg)ﬂpﬁ& = 0, (443C)
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while their modified Bianchi identities can be cast into the compact form
df2n+1 —ZN ‘FQn-&-l + H3 VAN an_l = % (K VAN *f2n+3) . (444)

The Bianchi identities extend to the dual field strengths —F; = xF3 and Fy = ~F.
Furthermore, the selfduality property F5 = xF5 of the five form continues to hold in the
modified theory, relating its Bianchi identity and field equation. In the following, for
simplicity of the formulas, we will often choose coordinates such that the Killing vector
field points in a given direction K# = §%.

4.4.2 Solution of the Bianchi identities

It has been noted in [8I] that equation (4.4.2)) for the new vector Z; may be interpreted
as a modified “dilaton Bianchi identity” and locally integrated into

Zy = 00+ K"Byyy = 03¢0 — By - (4.4.5)

We will in the following stay in this picture and understand the combination d,¢ — B +
as a derivative D;¢ on the dilaton that is covariantized in a suitable sense. As a related
observation, one may straightforwardly check that the modified Bianchi identities
satisfied by the R-R field strengths allow for an explicit integration into F = e® F' with

Fﬂ == 8,;)(+ Bﬂ*+X + Bﬁ*_ = Dﬂ)( s
3 3
Fopo = 30pBpo)— + 5 Bippes Bpoy - — 5 Biple B+ + Cpoo + X Hpp
Fuopor = 504uCopor) +5 Biaer| Copor) — 15 Biao 4105 Bor -

— 15 Bjo 1+ Byl +Bo) - + 15 Bio|-10pBs) + + Cpopors+
Frpporny = TO0uCoporan)+ + 7 Blast Coporan) + + 35 Clasps Hra

= 105 Byagy 41 Bpo| — | Hesin) + Cpoporais - (4.4.6)

(34

All the terms, carrying indices ‘,‘ represent the deformations from the standard IIB
expressions. Again, in the following we will assign them a natural interpretation as
the connection terms of covariantized derivatives, non-abelian field strengths and the
Stiickelberg type couplings among p-forms. These additional couplings precisely match
the structure of general nine-dimensional gauged supergravities[95, 06] (recall that due
to the existence of a Killing vector field, we are effectively describing a nine-dimensional
theory). More precisely, equations can be viewed as resulting from a gauging
of nine-dimensional maximal supergravity in which a linear combination of the Cartan
subgroup of the SL(2);3 and the trombone symmetry which scales every field according
to its Weyl weight has been gauged. The component By, ; of the ten-dimensional NS-NS

two-form serves as a gauge ﬁeldﬁ An important consequence is the following. According

4 To be precise, also a nilpotent generator of SL(2)1p is gauged with the component By, — serving
as the associated gauge field.
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to (4.4.5)), the dilaton ¢ is charged under the new local gauge symmetry. Translation to

the Einstein frame via

t 2 ~E
Gfm = ¢ G/lz?v

(4.4.7)

thus implies that the metric in the Einstein frame is also charged. Translation of the
Einstein field equations into the Einstein frame thus induces field equations which
feature a covariantized Ricci tensor in the sense that all derivatives in its definition are
replaced by properly covariantized ones. In particular, the Riemann tensor is calculated

as curvature of the connection
n 1 .. 1
Lus? = B G™ (DpGor + DyGpi — DiGro) ,  DiGpo = 0:Gps + 5 By 4 Gpf4.4.8)

This is the generic structure of supergravities in which the trombone symmetry is gauged [57].
Upon transition to the Einstein frame, we may also regroup the field equations for NS-NS
and R-R two-form (4.4.1b)) and (4.4.3b]) into the manifestly SL(2) covariant form

Dy (FP* mag) — < FIP7 Fpoi® cap = 5, (4.4.9)

with the SL(2) doublet Fyp5+ = {Huop, Fiop — X Huop}, and the dilaton/axion matrix

mqps parametrized as
¢ _e?
Mag = ( c X ) . (4.4.10)

The current on the r.h.s. of (4.4.9) is given by the SL(2) doublet
Jy = {22 KPP 42 VIR — 2y e KIEFTY (4.4.11)

in terms of the Killing vector field K™ and the current F;, = D;x. In the following,
we will recover the non-abelian field-strengths (4.4.6)) from a particular Scherk-Schwarz
ansatz in exceptional field theory.

4.5 Generalised 1IB from EFT

4.5.1 Section constraints and ITA /TIB/generalised supergravity

The section condition
dEMN 9 ONA = 0, dEMN 9 AONB = 0, (4.5.1)

that applies on any fields or gauge parameters A, B is solved by restricting the internal
coordinate dependence of all fields to properly chosen subsets of coordinates. Breaking
Eg(6) down to its subgroup SL(5) x SL(2) x GL(1)ys according to

27 — (57 1)+4 + (5/7 2)+1 + (107 1)—2 + (17 2)—5 )

Y} — W™, mas 0™, Gat m=1,...,5, a=%+, (4.5.2)
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and restricting all fields to depend only on the 5 coordinates {y™} of highest grading under
GL(1)1p solves the conditions . The EFT field equations derived from then
reproduce the IIB theory after decomposing the EFT fields (1.5.18]) according to (4.5.2)
and properly translating the various blocks into the various components of the IIB fields
[1]. In particular, the scalar matrix M,y decomposes into

Mmk Mmkﬁ Mm,kl Mmﬂ
Mmak Mmoz,k,@ Mmakl Mmoz,ﬁ
an,k ankﬂ an,kl anﬁ ’

Mozk Ma,k,b’ Makl Maﬁ

Micnt (4.5.3)

where the explicit form of the blocks is obtained by evaluating the matrix Myy =
Vi Va4 from a vielbein V)4 given by the product of matrix exponentials

VB = exp [5mnklp Crmnkl t(+4)p] exp [bmna t(+2>’23”] Vs Vs exp [q’ tHB] ) (4-5-4)

with the relevant eg) generators tig, t(yo)a"s t(+4)m and their coefficients originating
from the IIB metric, two-form and four-form, respectively. The matrices Vs, Vs represent
the SL(5) x SL(2) factor of the vielbein, related to the internal metric and the IIB
dilaton/axion matrix, respectively. Similarly, vectors and two-forms are decomposed as
(4.5.2))

{AM} — {A" Auma, A Aual
{BMV M} — {B;U/Trm B,uymaa Bw/ mn B,uua} . (455)

In contrast, the ITA theory is recovered, if the physical coordinates are identified
with the {74} in the decomposition (4.5.2)) (which explicitly breaks the SL(2) factor),
the EFT fields are decomposed accordingly and translated into the ITA fields. E.g. in
this case, the proper parametrization of the matrix My n = Vi AVy4 is obtained via a

vielbein V4

Via = exp [@ts)] exp [k tﬁ%’ﬂ exp [bmn t?ing)] exp [cm t?-lt,-l)} Vsexp [@to + P lia) |
(4.5.6)

with the coefficients originating from the ITA metric, dilaton, and p-forms, respectively.

Here, we choose yet a different solution of the section constraint. First, we impose the
existence of a Killing vector field in the IIB theory and accordingly split the coordinates
{y™} ={y",y*}, (i = 1,...,4), such that 9,® = 0 for all fields of the theory. Next, we
relax the IIB solution, by allowing fields to depend on the 5 coordinates

W Ges )y, i=1,....4, (4.5.7)

such that the section condition (4.5.1)) is still satisfied. In the following, we will eval-
uate EFT in the IIB parametrization (4.5.3)) however imposing a particular additional
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U«+-dependence according to a simple Scherk-Schwarz ansatz which will trigger the gen-
eralised IIB equations. It is important to note that the choice of coordinates is
equivalent (after rotation of the 27 coordinates) to selecting the ITA coordinates ¢,,, in
(4.5.2). Applying the same rotation to the ITA parametrization of EFT fields such as
(4.5.6)) we would simply recover the ITA theory. This is a manifestation of the fact that
the generalised IIB supergravity equations can be obtained via T-duality from a sector
of ITA supergravity. Since the framework of exceptional field theory is manifestly duality
covariant, we can simply absorb the effect of this duality into a rotation of the extended
coordinates. We will thus evaluate exceptional field theory in its IIB parametrization
however in coordinates and with a proper Scherk-Schwarz ansatz in ¢, in
order to obtain directly the generalised IIB equations.

4.5.2 Scherk-Schwarz ansatz

Following the previous discussion, and having chosen physical coordinates according to

(4.5.7) we now impose on the EFT fields (1.5.18)) a specific ,,-dependence, such that
in particular the total y,,-dependence consistently factors out from all the equations of

motion. This is achieved by a Scherk-Schwarz ansatz [50]
Mun = Un™(§) Un"(§) Mi(2",y")
G = P g (", y") |
AM = p @ AN @) (U (@)
By = p 2(5) U™ (§) Buwn (@, (4.5.8)

where the ¢,,-dependence of all fields is carried by an Eg)-valued twist matrix U N and
a scalar factor p. For simplicity of the notation, here and in the following we also use
the notation y = ¢, E|

The relevant Scherk-Schwarz ansatz for generalised 1B supergravity is based on a
twist matrix Uy, living in an

GL(1) C SL(2)aiag € SL(2) x SL(2) C SL(2) x SL(6) C Ee) , (4.5.9)
subgroup of the full duality group Ege). More precisely, upon decomposing
E6(6) — SL<2) X SL(6) s

27 — (1,15)+(2,6), {YM} — {Y“b,ffm}, (4.5.10)

5 Note that the ansatz is slightly more general than the ones studied in [56] in that the fields
multiplying the twist matrices on the r.h.s. do not only depend on the external coordinates z* but also
on part of the internal coordinates y’. In this sense, the ansatz resembles the embedding of
deformations of EFT studied in [90] (and in [97] in the context of double field theory), although here all
fields and twist matrices respect the section constraint, so we remain within the original framework.
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an (SL(2) x SL(6))-valued matrix U takes the form

U ey, 0
N a b
Un™ = ( 0 (U—l)aCUaﬁ) ’ (51

and we choose the matrix factors as

UB — U= 0 _ p(9) 0
. 0 U~ 0 @)

Uus 0 0 67 0 0
ul = 1o v o =10 p# o , (4.5.12)
0 0 U 0 0 p (¥

with scale factor given by a linear function p(y) = § + ¢. In order to check the effect
of the Scherk-Schwarz ansatz (4.5.8) with (4.5.12) on the field equations of exceptional
field theory, we consider the current

()™ = p (U " (U )N 0pUG" (4.5.13)

which encodes the combinations of the twist matrix and its derivatives that explicitly
enter the field equations. With the explicit form of (4.5.12)), this current lives in the
algebra s[(2) & sl(6) with its only non-vanishing components given by

1 0 O4xa 0 O
(A )" = (0 1) @y =10 1 0], (4.5.14)
0O 0 -1

all constant, ensuring that the y-dependence factors out from all equations of motion.ﬂ
We have thus presented a consistent Scherk-Schwarz ansatz on the EFT fields which
moreover satisfies the section condition. Upon explicitly evaluating the field equations,
the non-trivial  dependence of the twist matrix induces a deformation of the original IB

equations of motion. We shall work this out in the next section.

4.5.3 Induced deformation

In this section we will illustrate with several examples how the Scherk-Schwarz ansatz
induces a deformation of the resulting field equations which precisely coincides
with the deformation of the IIB field equations and Bianchi identities discussed in sec-
tion above. Covariant derivatives in EFT carry vector fields .ANM and internal deriva-
tives dpr . Under (SL(2) x SL(6)), the coordinates are embedded in the Y™ as

6 Strictly speaking, for consistency of the Scherk-Schwarz ansatz a weaker condition is sufficient: only
the projection of (4.5.13|) onto the 27 & 351 representation of Eg(6) appears in the field equations and is
required to be constant. With (4.5.14]) this is automatically guaranteed.
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{Y® ¥, }, c.f. (4.5.10). With the ansatz (4.5.8)), the relevant couplings then are obtained

from
A0 = pTlp ARy, A0 = plpt AL 0T (4.5.15)

Both operators give rise to additional y-independent couplings. Let us e.g. consider the
covariant derivative on the external metric (4.5.16))

2
D,ugup = augz/p - A;LMangp - g aMA'uM Gup - (4516)

With the Scherk-Schwarz ansatz (4.5.8), we obtain via (4.5.15))

o i 4 Z. 1
D,ugup = p 2(y) <8ugl/p -2 Au Oaiogup - g aOz‘fluo gup + g A,u,*-l—gup) . (4517)

The first three terms on the r.h.s. correspond to the standard EFT result and upon
translation into the IIB fields contribute to the standard IIB field equations [1]. We will
thus employ the notation

9, o 4
DMgVﬂ - p 2<y> (Dugyp+§Au*+gup) . (4518>

The last term captures the effect of the Scherk-Schwarz twist matrix and shows that
the IIB space-time metric acquires non-trivial covariant derivatives which is precisely
in accordance with our discussion above regarding the charged IIB metric (4.4.8)) after
transition to the Einstein frame.ﬂ The Riemann tensor whose contraction appears in the
Einstein field equations will thus correspond to the curvature of the modified connec-
tion as in the generalised IIB equations.

In a similar way, we can work out the EFT field strengths (3.2.18]) under the Scherk-
Schwarz ansatz (4.5.8). As a general feature of the Scherk-Schwarz ansatz with consistent
twist matrices, the y-dependence of these field strengths consistently factors out according
to

Fu(,Y) = p ' @O YN (@) Fu (2,9) , (4.5.20)
where
Ful(z,y) = Fu"™ + XppM (A KA —2d""N B, x) ,  (45.21)

describes a deformation of the standard EFT field strength .73"”,,M by non-abelian terms
carrying the generic structure of five-dimensional gauged supergravity [83] encoded in

7 To be precise, after identification A4 = By, the factor 4/3 in (4.5.18) comes via the standard
5 4+ 5 Kaluza-Klein decomposition

(detg b)’1/3gw+... A bg b
Gmn = ( ¢ gabAMbl ;aba ’ (4519)

of the IIB metric.
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an embedding tensor X,y living in the 351 + 27 representation of Eg() . Within
the Scherk-Schwarz ansatz, the embedding tensor is obtained from projecting
onto the relevant Ege) representations. Again, the form of resembles the defor-
mations of EFT studied in [90], although here it simply results from a Scherk-Schwarz
ansatz within the original EFT. Structure-wise, the new couplings resemble those
introduced in (4.4.6)) in order to account for the deformed Bianchi identities in generalised
IIB supergravity. In the rest of this section, we will make the agreement precise using
the explicit dictionary between EFT and IIB fields [I].

Working out (3.2.18)), it follows that the twist matrix (4.5.11)—(4.5.12)) induces an
embedding tensor

~ 2
Xun®™ = (Xa)n™ + 3 o ONT (4.5.22)

in (4.5.21)). Upon contraction with a gauge parameter AM it identifies the gauged gen-
erators within eg(g) @ Rizomp. The second term in refers to the gauging of the
trombone symmetry under which the EFT fields { Gyrs Murn, AM ,B,WM} scale with
weight {2,0, 1,2}, respectively, whose effect we have already observed in . The
first term in identifies the gauged generators within eg(s), combining the diagonal

generators

IALL, 0

6

- LA, 0 -
<AMXM> — (20 , (AMXM) —| 0o iA, 0 |45.23
s1(2) —A,_ —5 Aoy s1(6) 5
0 Nor  —5 Ay

within s[(2) @ sl(6) with the off-diagonal generators

(AMXM)*+,ij _ (AM XM)i—i-,j* — Aij 7
5 5 1
(AMXM)ij,of = (AM XM)Oi,jf = - 5 Exijkl Akl y (4524)

in ege)\ (s(6) @ s1(2)). The Stiickelberg-type couplings in (4.5.21)) to the two-forms
B, m are read off from (4.5.23)), (4.5.24) together with the explicit form of N7 in the
decomposition (4.5.2)), see [I]. The explicit result for the various components of the field

strengths (4.5.21]) is the following

Fuuer = Jto.uuer )
f,uum— = ﬁuym— + A[,u*—i—Au}m— - A[,u*—Au} m+ T+ \/i-éuum* )

o ~

f,u,u kmn = -F/u/ kmn + 2 A[,u*—i—AV}kmn + 2_\/5 Ekmnlx BHV ’

o

f,ul/—i- — fl“’"‘ + 2A[M*+Ay]+ 5 (4525)
with the redefined two-forms

B,uzzmn = \/ﬁBuumn + A[,ukAl/] kEmn

) 7
B = V10B,"™ 4" A" Ayp + % e ™M Aytng Ajiap - (4.5.26)
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Comparing the deformed field strengths to the field strengths solving
the Bianchi identities of generalised 1IB supergravity, we find precise agreement upon
identifying the EFT components with the IIB field strengths (the precise dictionary
between fields has been given in [I] and in particular takes care of the v/2 factors that

arise in the EFT expressions (4.5.25])).
Of course, the field strengths (4.5.25|) only represent part of the full IIB field strengths,

in which two of the ten-dimensional indices are chosen to be external. The remaining
IIB components will appear among other EFT fields. E.g. let us consider the three-
form field strength H,,,a defined by (1.5.17). Evaluating this definition with the above
Scherk-Schwarz ansatz in particular yields the components

H#Vﬁ— = 7_°[Wp_ + \/5(9qu J
3v2

Huyp *7 - 7:[“1/’)*1' + 3 A[M *J’_l-éyp] *7 + T A[U| *+|AV‘ *_‘Ap] i+ @ OMVP . (4527)

The second and third term of H,,,.; reproduce the corresponding deformation terms in
(4.4.6). The term O, in denotes the undetermined contribution in the field
strength which vanishes under the projection ¥y in (1.5.17).In the undeformed I1B
theory, this term is already present in H,,,.; . It arises as an integration constant in the
EFT field equations and is identified with a component of the IIB four-form according
to

3 3
\/5@,“,,, = CMVﬂ* + 5 B[u|*+|BVp]— - 5 B[u\*—\BVPH ) <4'5'28)

in order to reconstruct the selfdual I1B five-form field strength from EFT. In the deformed
case we are considering here, the same O,,, arises as part of H,,,_ in (4.5.27) where

it precisely acounts for the deformation of the IIB three-form field strength F,

Lwps S€e
(4.4.6). Again we thus find complete agreement.

In a similar way, the deformed scalar currents M™% D, My with the block decom-
position and parametrization can be matched to the corresponding compo-
nents of in which one of the ten-dimensional indices is chosen to be external. Thus
all the building blocks of the EFT Lagrangian exhibit precisely the deformations
of their IIB counterparts . Since equations were derived as solution of the
deformed IIB Bianchi identities, it follows that after imposing the Scherk-Schwarz ansatz
, the EFT fields satisfy the deformed IIB Bianchi identities. Moreover, most of
the generalised IIB field equations are obtained by covariantization of the standard IIB
equations, i.e. by replacing the IIB field strengths by their deformed expressions .
This is true for the Einstein field equations (upon taking into account the charged metric
in the Einstein frame, c.f. ) and the self-duality equation F5 = xF; for the five-form
field strength. Upon using the explicit dictionary between EFT fields and IIB fields [1]
these equations thus follow from the EFT dynamics after imposing the Scherk-Schwarz
ansatz. The two-form field equations in generalised IIB supergravity on the other
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hand are not only covariantized via but also acquire a source term J*”5. In EFT,
the analogous term descends from variation of the Lagrangian (3.1.1) w.r.t. the gauge
fields which upon implementing the Scherk-Schwarz ansatz gives rise to additional source
terms from the Einstein-Hilbert term and the scalar kinetic term.

4.6 Summary

After a general analysis of the twist equations in section 1, we derived in section 2
the explicit reduction formulae for the full set of IIB fields in the compactification on
the sphere S® and the inhomogeneous hyperboloids H?%~?. They were derived via the
EFT formulation of the IIB theory by evaluating the formulas of the generalised Scherk-
Schwarz reduction ansatz for the twist matrices obtained in [56]. The Scherk-
Schwarz origin also proves consistency of the truncation in the sense that all solutions
of the respective D = 5 maximal supergravities lift to solutions of the type IIB fields
equations. Upon some further computational effort we have also derived the explicit
expressions for all the components of the IIB four-form. Along the way, we explicitly
verified the IIB self-duality equations. Although their consistency is guaranteed by the
general construction, this requires the precise interplay between various identities whose
validity appears somewhat miraculous from the point of view of conventional geometry
but which find a natural interpretation within the extended geometry of exceptional field
theory.

Finally, in the last two sections of this chapter, we have shown how the equations of
generalised IIB supergravity found in [81] can naturally be obtained from exceptional field
theory upon imposing a simple Scherk-Schwarz type ansatz on all the fields that captures
their non-isometric behavior in the ITA theory. The Scherk-Schwarz ansatz satisfies the
consistency equations [56] and moreover the section constraints and induces a
deformation of the standard IIB supergravity equations. We have verified explicitly for
most of their components that the deformed EFT fields coincide with the deformed 1IB
field strengths which have been determined by solving the deformed IIB Bianchi
identities. We should stress that although exceptional field theory admits a Lagrangian
formulation this does not allow to conclude the existence of an action underlying
the generalised IIB equations, since the Scherk-Schwarz ansatz is imposed on the
level of the field equations and not on the action. The appearance of a trombone gauging
(4.5.22) in the EFT formulation is in fact a sign that the resulting field equations cannot
be obtained from an action [57].
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Chapter 5

Supersymmetry in EFT: the
peculiar case of Egg,

It is well known that ungauged maximal supergravity in n dimensions can be obtained by
dimensional reduction of the eleven dimension supergravity on a (11 — n)-torus, where n
stands for the number of external dimensions. For the n = 4 case, Cremmer and Julia first
found in [46] that the equation of motions of the theory were invariant under the global
exceptional group E7(7). In the lower dimensional case n = 3, the exceptional symmetry
can only be made apparent after dualisation of the vector fields of the theory [98|. This
includes the Kaluza-Klein vector fields, which have components of the higher dimensional
graviton as their origin. Therefore, the scalar sector of the dimensionally reduced theory
carries degrees of freedom descending from the higher dimensional ‘dual graviton’. In the
Egs) EFT, this is taken care of by the introduction of an additional constrained gauge
connection which is invisible in the dimensionally reduced theory. While this constrained
connection may seem strange at first, the appearance of constrained (n — 2) forms is
common to every known Egq) EFT with d = 11 — n. However, the gauge symmetry
associated with this constrained gauge connection is a new feature of the Eggy EFT in
the sense that for lower rank groups, it only kicks in at the higher rank p-forms. As we
will see in the next section, the additional gauge symmetry takes the form of a constrained
Eg(s) rotation in the generalised Lie derivative. Together with the section constraint, this
ensures the closure of the full symmetry algebra and a well-defined, consistent exceptional
field theory.

Up to now, we have been interested in describing the bosonic sectors of various su-
pergravity with extended field theories. EFT can be extended to describe the full higher
dimensional supergravities with fermions transforming under the maximal compact sub-
group K(Eg@)). For E7(7) and Eg() the supersymmetric completions have been worked out
in [37, 38]. In this chapter, we will construct the supersymmetric completion of the Egg)
exceptional field theory. After reviewing the bosonic Eg) exceptional field theory, we
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introduce the fermions as tensors under the generalised Lorentz group SO(1,2) x SO(16),
where SO(16) is the maximal compact subgroup of Egs). We determine a torsion-free
condition which partly solve the corresponding spin connection to the extent they are re-
quired to formulate the field equations and the supersymmetry transformation laws. We
then establish the supersymmetry transformations of the field content of the theory and
show the closure of the supersymmetry algebra. Finally, we give the full EFT lagrangian,

and prove its invariance under supersymmetry.

5.1 Review of the bosonic Egg) EFT

In this section, we review the bosonic structures of the Egg) exceptional field theory.
The theory is defined on a (3+248)-dimensional generalised spacetime. In addition to
the usual dependency in spacetime (‘external’) coordinates z#, u = 0,1, 2, all fields and
gauge parameters formally depend also on extended coordinates YM, M = 1,...,248,
transforming in the adjoint representation of Egw). As in DFT and the previous E(g
case, not all of these internal coordinates are physical. This is taken care of by the Eg)

covariant section constraints,

PNoyueoy=0, fY0u@0n=0, (Pssms)un “0c®d; = 0,(5.1.1)

where n™V and fMVK

are respectively the Cartan-Killing form and the structure con-
stants of Eg(s) (see appendix B for more details on the conventions used throughout this
thesis), and Psgrs5 is the projector onto the irreducible representation 3875 in the tensor

product of two adjoint representation
248 ® 248 = 1@ 248 © 3875 @ 27000 @ 30380 , (5.1.2)

explicitly given by

1 1 1
(Pagrs) ™™ = - (5(NM 5£)’C ~ %5 ™M e — ﬁfPN(pr[;’C) . (5.1.3)

The bosonic sector of the theory combines an external three-dimensional metric g, (or
dreibein e,%), an internal frame field V&, parametrizing the coset space Eg(s)/SO(16),
and the usual gauge connection A,™ associated with generalised internal diffeomor-
phisms. In addition to these standard fields, common to every EFT, we will see latter
that one need to introduce a constrained gauge connection B, associated with the
additional constrained Eg(s) rotations that appear in the generalised internal diffeomor-
phisms.

The local symmetries of this exceptional field theory are generalised internal diffeo-
morphisms, constrained Egg) rotations, and external diffeomorphisms with respective
parameters AM, ¥, and £*. Let us first review the generalised internal diffeomor-

phisms. The generalised Lie derivative acting on a vector W™ of weight Ay is defined
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by
Lasy WM = ARG WM — 60PM \ X Lo ACWN + Ay O AWM — 52 FEM WY (5.1.4)

Here PM /X projects onto the adjoint representation 248 and guarantees compatibility
with the Egg) structure, c.f. the explicit expression . The weight Ay of the various
fields in the theory coincides with the three-dimensional Weyl weight of the fields, i.e.
weight 2 and 0 for the external and internal metrics g,, and My, respectively, and
weights 1 and 0 for the gauge connections A, and B, v, respectively. Fermions (to be
introduced in the next section) come with half-integer weight. This is summarized for all

fields in Table 5.1l

hS

Field e, | Vi | AM AM | By, S
Weight (\) | 1 0 1 0 —

bl €

1
2

=

N | =

Table 5.1: Weights of all fields and gauge parameters under gen. diffeomorphisms.

Unlike the lower-rank E, ) cases with n < 7, the generalised Lie derivative (5.1.4))
depends on two parameters, AM and ., with the latter being subject to the section

condition (5.1.1)), i.e.
(]P)3875)MN’C£ ZIC X ZL = O = (P3875)M/\/Kﬁ EIC X 85 s etc. . (515)

This is needed together with the section constraints (5.1.1)) in order to ensure closure of
the full symmetry algebra. Schematically, we have an algebra

[5(/\1,21)7 5(1\2,22)] = 5(/\12,212) ’ (516)
with notably the gauge parameter Y5 given by
Siom = =28 mONAY + 2 AY 0N Sy — 258 Oy n + e A OmONAT |, (5.1.7)

confirming that the A transformations do not close among themselves.

Before we describe the associated gauge connections and curvatures, let us make
a small digression to discuss connections and torsion compatible with the generalised
diffeomorphisms ([5.1.4). For an algebra-valued connection

T = Tae [0, (5.1.8)

the fact that pure A-transformations do not close into an algebra implies that the naive

definition of torsion as
TAWM = TuMAMNWE = LY o WM =Ly WM, (5.1.9)
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does no longer define a tensorial object. Here, L.V refers to generalised Lie derivatives
(5.1.4) with partial derivatives replaces by covariant ones V = 0 —I'. Following [99], this
suggests to rather define torsion as the part of the Christoffel connection that transforms
covariantly under the generalised diffeomorphisms. With the transformation of

under (5.1.4) given by
Sasylen = 6% Tew + fon” 0.0pA° + 0% (5.1.10)

projection onto its irreducible Eg) representations according to ((5.1.2]) shows that only
its components in the 1@ 3875 transform as tensors under (5.1.4). The proper definition
of a torsionless connection thus corresponds to the condition

[FM,N]1@3875 = 0, (5111)

which can be made explicit with the form of the projector (B.4). Let us note that such
a torsionless connection gives rise to the identity

M M
Loasy WM = L g W™, (5.1.12)

with Sy =Sy — Ty AV .

With the r.h.s. of 1} manifestly covariant, this shows that the combination 3
behaves as a tensorial object under generalised diffeomorphisms. In this sense it may
appear more natural to parametrise generalised diffeomorphisms in terms of the param-
eters (A,Y). The disadvantage of using ¥ w.r.t. the original formulation is the fact that
the constraint which X, has to satisfy, takes a much less transparent form when
expressed in terms of X since the connection I' mn in general will not be constrained in
its first index and will not even be fully determined by covariant constraints. For the
description of generalised diffeomorphisms we thus have the choice between a descrip-
tion with covariant parameters (A, f]) and a description in terms of parameters (A, X)) in
terms of which the constraints are well defined and easily expressed. We will in
general stick with the latter but observe that the existence of the covariant combination

> gives rise to some compact reformulations of the resulting formulas

The various terms of the bosonic action are constructed as invariants under the gen-
eralised internal Lie derivatives (5.1.4). In the full theory, the gauge parameters A™M
and Y, depend not only on the internal Y™ but also on the external z* coordinates.
From the three-dimensional perspective, these symmetries are implemented as (infinite-

dimensional) gauge symmetries, such that external derivatives are covariantized with

1 The existence of the covariant combination 3 may suggest to impose ¥ = 0 in order to reduce
the number of independent gauge parameters [99] while preserving closure of the algebra. In view of the
constraints , this is only possible in case the connection I'aq s is identified with the Weitzenbdck
connection Iy Ve 2 (V1) pX farct which itself is constrained in the first index. We will in the following
keep both gauge parameters A and ¥, independent which seems important for the supersymmetric
extension.
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gauge connections A,M, B,
D, =08, —La, 5, - (5.1.13)

In accordance with (5.1.5), the connection B, r( is constrained to obey the same con-
straints as the gauge parameter ¥ ,,. The commutator of the covariant derivatives ((5.1.13))
closes into the field strengths

D,.D,)) = Lz - (5.1.14)
with
Fut = 20, A0 = 2 AN O Ag™M 4 14 (Pagrs) M e Ay Ov Ay

1 1
+7 ANoOMA v — 5 PN e AR OV ALE +

Gum = 2DyuBim — e AomonvALS + ... (5.1.15)

The ellipsis denote additional two-form terms required for the proper transformation
behavior of the field strengths, c.f. below. As required for consistency, the
section constraints ensure that all these terms drop from the commutators of
covariant derivatives where the field strengths are contracted with particular differential
operators according to . Moreover, all the two-form terms drop out from the
bosonic Lagrangian.

Under gauge transformations
SamAM = DAM, (5.1.16)
5(A,Z)Bu/\/t = DMEM — ANaMBMN + fN;CEA’CaM@NAML , (5.1.17)

(where just as the associated gauge connections, the parameters A™ and X carry weight
1 and 0 under (5.1.4)), respectively), the full field strengths (5.1.15)) transform according
to

Siasy Fu' = Lax Fu™,
5(1\72) (gp,y/\/l - FM,N ]:;J,Z/N) = L(A,E) (g/ﬂ/M - FM,N ]:p,VN) 3 (5118>

i.e. not the G,, o4 but only the combination GWM =Gum—Tmn ]-WN behaves as a
tensor under ((5.1.4). This reflects the tensorial structure (5.1.12)) of generalised diffeo-
morphisms. Pushing this structure further ahead, we are led to introduce the general

‘covariant’ variation of the connection B, r( as
AByym = 0By — Daun 04N (5.1.19)
in order to cast the gauge transformations into the more compact form
5(,\,2)14#/\4 = D#AM ,

AasyBuim = DuSavi+ AV DDy, (5.1.20)
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with 2 from (5.1.12). This will turn out to be very useful in the following.
The action of bosonic Eg(g) exceptional field theory is given byE|

Sbos - /d3I d248Y (£EH + £scalaur + ﬁtop + Epot) ’ (5121>

where each term is separately invariant under generalised internal diffeomorphisms ([5.1.4)).
The Einstein-Hilbert Lagrangian is given by the Ricci scalar obtained from contraction

of the improved Riemann tensor

Loy = —ee'e” Ru™ (5.1.22)
where e denotes the determinant of the dreibein e,*. The scalar kinetic term in (5.1.21)
is given by

1
Lycatar = 940 eDuMMNDMMMN = 'PMA'P“A. (5.1.23)

where we have used the expression
MFPD Mpe = 2 oA, (5.1.24)

of the scalar currents (with covariant derivatives from (5.1.13))) in terms of the Egs)
structure constants fMX . and the coset currents (5.2.15)) to be introduced next section.

The topological term in ([5.1.21]) carries the non-abelian Chern-Simons couplings of
the gauge connections according to

1 2

Los = D) e’ <‘FMVMBP M flCﬁNauAvKaNApL ~3 fNKﬁaMaNAuKAuMApﬁ
1

—3 Frcef<F o f s AuMaPAVQaRApS) : (5.1.25)

Its covariance becomes manifest upon spelling out its variation as

1 ~
OLos = —5 e (FWM AByaq + (gWM +2 Fan VieFu ) 5APM> (5.1.26)

with the covariant field strengths from (5.1.15)), (5.1.18) and the general covariant varia-
tion introduced in (5.1.19)). As anticipated above, we note that the two-form contributions
to the field strengths F and G (whose explicit form has been suppressed in ((5.1.15))) drop

out from this expression due to the section constraint. Moreover, the contributions to

the Christoffel connection in Vi that are left undetermined by the vanishing torsion
condition cancel in this expression against the corresponding contributions in AB, y4.

2 As usual, the integral over the 248 internal coordinates is to be taken in a formal sense since the
section constraint (5.1.1)) remains to be imposed by hand and eliminates the field dependence on most
of these coordinates.
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Finally, the last term in (5.1.21]) carries only derivatives in the internal coordinates

and is explicitly given by
Loow = —eV, (5.1.27)

with the ‘potential’ V' given in manifestly covariant form by
1
V = R-— Z/\/tMNngWngW + Vi IM | (5.1.28)

with an internal curvature scalar R to be introduced in the next section and up to
a boundary contribution I of weight A\; = —1. This close the introduction on the
bosonic structure of these EFT. In the next section, we will introduce the tools needed

to incorporate the fermions in the EFT.

5.2 g x SO(16) exceptional geometry

5.2.1 Generalised vielbein

Fermions enter the theory as spinors under the SO(1,2) x SO(16) generalised Lorentz
group and transform as weighted scalars under generalised diffeomorphisms. Specifically,
under SO(16), the gravitinos ,” and fermions xA transform in the fundamental vector
16 and spinor 128, representations, respectively. The field content of the full EFT is

{eua P VMEa A,uM 5 Bu/\/l a,@Z)uI 7XA} ) (521)

i.e. external and internal frame fields together with gauge connections AMM, B, am . The
‘dreibein’ €, defines the external metric g,, = 7 e,%,°. The ‘248-bein” V& is the
internal analogue of the dreibein and parametrises the coset space Egs)/SO(16). Under
SO(16), the collective index K splits according to the decomposition of the algebra

essy — 50(16) @ 128, , (5.2.2)
into the adjoint and the spinor of SO(16), i.e.
it = (v vut} (5.2.3)

satisfying Va7 = V!l with SO(16) vector indices I, J = 1,...,16, and spinor in-
dices A,B =1,..., 128E] In the same way the dreibein defines the external metric, the
generalised vielbein defines the internal metric My

1
Muy = VaufVnEbxe = VMAVNA+§VMIJVNIJ7 (5:24)

3 See appendix [B| for more details on the relevant group and algebra conventions.
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in terms of which the bosonic theory can be formulated. The inverse 248-bein then is
given by
VM = (WM, VM) = (MYOE MY (5.2.5)

where
V' VWMp =645, VY Mg = 261, . (5.2.6)

Finally, the 248-bein is an Eg(g) group-valued matrix, which results in the standard de-
composition of the Cartan form

|
VNV = G an® (X e+ pat (V)L (5.2.7)

where X;; and Y4 denote the compact and non-compact generators of Egs), respectively.
With the explicit expressions for the structure constants in the SO(16) basis from (B.1)),

one finds the internal currents

1 1
g’ = 6—4FIB{4VNB(3MVNA7 o’ = —HOFIB‘QVNAOMVNU, (5.2.8)

which will be our building blocks for the internal spin connection and later the Ricci

scalar. This sums up the basic properties of the generalised vielbein.

5.2.2 Spin connections

The coupling of fermions require four different blocks of the spin connection

w WM
{ Q‘; o } (5.2.9)
that ensure covariance of both external and internal derivatives under SO(1,2) and
SO(16), respectively. Via the generalised vielbein postulates
0 = Ve, = DMeV“+wMabeyb—FMV”6p“,
0 = Ve = 8MVNK—%QM”(XU)KLVNL—FMNP Vet (5.2.10)

for the external and internal frame fields, the spin connections relate to the external and

internal Christoffel connections
{T." Do } . (5.2.11)

Starting with the external sector, the SO(1,2) connection w,” is defined by the van-

ishing torsion condition of the external Christoffel connection
L = 0. (5.2.12)
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This leads to the standard expression for the spin connection in terms of the objects of
anholonomity Q. = 2 e,*'ey” D,e,., where however derivatives are covariantized accord-
ing to (5.1.13) with the dreibein transforming as a scalar of weight 1 under . The
external SO(16) connection on the other hand is defined by imposing that the external
current

()5 = (VDA QLINE, (5.2.13)
lives in the orthogonal complement of s0(16) within egs):
J. = PAYN. (5.2.14)

In analogy to (5.2.8) this yields the explicit expressions

1 1
o VgDV, PP = — 20 T VN A DV | (5.2.15)

with covariant derivatives from (5.1.13)). According to their definition, the currents P,
and Q,, satisfy Maurer-Cartan integrability conditions

1
QHJ:

2D, Pyt = —FuMpna + Vo fPVOMFun + G VM, (5.2.16)

= _FMVMQM[J + VPIJfPMNaMquN + guuMVMIJ
1
PP (5.2.17)

W.r.t. the integrability relations of D = 3 supergravity [100], these relations represent a
deformation with additional terms in field strengths due to the introduction of the gauge
fields A, and B, ». We will see in the next section how these terms take a manifestly
covariant form. In the fermionic sector, the full external covariant derivatives acting on
the SO(1,2) x SO(16) spinors of the theory are given by

1
D’ = Db’ + 7w’ + Q74

. 1 T :
Dt = D+ w™vax + 7 QTR (5-2.18)

for spinors ¢! and XA transforming in the 16 and 128, of SO(16), respectively. Under
generalised internal diffeomorphisms , the spinors ¥ and XA transform as scalars
of weight 1/2 and —1/2, respectively, and the derivatives D,, in are covariantized
accordingly.

Now, let us turn to the internal sector. Similar to (5.2.14) we derive the internal

SO(1,2) spin connection by demanding that the internal current
(Tm)® = e Dlwlme,” (5.2.19)
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lives in the orthogonal complement of so(1,2) within gl(3)
(Tm)™ = 7 (5.2.20)
Explicitly, this yields
wpm® = el e, . (5.2.21)

In order to define the internal SO(16) connection, we recall that the proper condition
of vanishing torsion in the internal sector is given by setting to zero the tensorial part
of the Christoffel connection I'y\*. Via (5.2.10) this condition determines a
large part of the SO(16) connection. More precisely, the counting goes as follows [99)]:
decomposition of into SO(16) irreducible representations

1$3875 — 13$135@ 18203 1920, , (5.2.22)

specifies the representation content of the vanishing torsion conditions. On the other
hand, the various components of the SO(16) connection (Qx()!” live in the SO(16) rep-
resentations

Qrrl’ © 1209120=131203 135 @ 1820 & 5304 @ 7020 , (5.2.23)
0.7 . 120®128, = 128, @ 1920, & 13312, . -

Comparison to exhibits which SO(16) components of (Qa)?/ are not fixed by
imposing vanishing torsion. For practical purposes, these undetermined parts 120 @
128, ® 135 ® 5304 ¢ 7020 ¢ 13312, do not pose a problem as they drop out of all
physically relevant quantities such as the supersymmetry transformations, the Lagrangian
etc., a property that all known supersymmetric exceptional field theories share.

Concretely, the four irreducible components (5.2.22)) of the torsion-free condition
(5.1.11)) take the form

1
_§F]J,IJ +I44=0,
1
Ty, — 1—651JFMN,MN =0,
(5.2.24)
1
F[IJ,KL} + ﬁrl{l«%KL FA,B =0 )

1
FixA (Crga+Tars)+ 16 (TMNT) (Cynva+Tamn)=0.

To explicitly solve these equations (5.2.24)), we use ([5.2.10)), to express the internal
Christoffel connection in terms of derivatives of the vielbein

1 1
Ty = @f/v’“’ (VPAD[Q] MV — 5Vp”D[Q] Mv,&’) : (5.2.25)
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or, more explicitly

T VVa = —paa TV = ou' —au'’ (5.2.26)

in terms of the Cartan form (5.2.8)). Then, combining these equations with ([5.2.24)
translates conditions on the Christoffel connection into conditions on the spin connection.

The solution for the SO(16) spin connection is then found to be

1
ou' = vyt aa — §VMKL Oxr', (5.2.27)
with
1
Q" = qt - 51J paaA+ — 1 5" Fﬁ]éf PA,B

1 1
4, — T pap + z PR VIVIES WVACIE Uikt ,

1 1
4" = qi" v prga— =TS prss + =T3S prrs

o6 26

3
T36a A Ll " PrLs T 50 VMBF BT + (Rissiz)a™ , (5.2.28)

c.f. [99], in terms of the Cartan forms 1' whose first indices we have ‘flattened’ with
the 248-bein V& The contributions U kr, (Rizs12)a’” in (5.2.28)) are constrained by

Unikr = Uk Urikry = 0 = Uk iy,
(313312),4[”7 = (R13312)A[ma FII4A (R13312)AIJ = 0, (5.2.29)

and not determined by the vanishing torsion condition, in accordance with .
The undetermined parts in the 120 ¢ 128; in have been expressed via the trace
TV of the Christoffel connection. The latter can be fixed by imposing as an additional
condition that the determinant of the external vielbein e = det e,* be covariantly constant

3 2
Ve = 8M6—§FNMN6 =0, = Caady = 56_18/\/16. (5.2.30)

To summarize, the full internal covariant derivative act on an Eg) x SO(16) tensor X
of weight Ay as

1
VuXn! = ouXn’ + O X! — Tan X! — 5AXP,CM’CXNI . (5.2.31)

with the connections defined by and , respectively. This covariant deriva-
tive transforms as a generalised tensor of weight A = Ax — 1 under generalised diffeomor-
phisms. In particular, for the spinor fields of the theory, the covariant internal derivatives
take the form

1 1
Vil = 0mh + Q' v, + 1 W™ Yap U — 1 T ¥y,
A il I1J plJ 1 1
Vux® = omx” + 1 Om " T BX + = wm™ yar X o T X . (5.2.32)

4 4
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We conclude this section with a collection of the different covariant derivatives we have

used and will use throughout this chapter:

Du = D[A]u )
D,u = D[Aawa Q],u ’ DM = D[wa Q]M ;
v# = V[A,w, Q7 F]M ) VM = V[w, Qu F]M ) (5233>

where A, M is the gauge field associated with generalised diffeomorphisms symmetry and
the four blocks of the spin connection wy,, Q,,, war, Qm defined in ((5.2.12)), (5.2.15)), (5.2.21)), (5.2.28),
respectively.

5.2.3 Curvatures

Having defined the various components of the spin connection , we can now dis-
cuss their curvatures which will be the building blocks for the bosonic Lagrangian and
field equations. Moreover, we will require a number of identities for the commutators
of covariant derivatives in order to prove the invariance of the full Lagrangian under

supersymmetry.

Let us start with the commutator of two external covariant derivatives on an SO(1, 2)x
SO(16) spinor €/ which is obtained straightforwardly from (5.2.18)

1 1
D, D) = —F,Moue — éﬁM}",wMe[ + Q' el + ZRWab%bef , (5.2.34)

with the field strength of the gauge field A, introduced in (5.1.15), the usual external
Riemann curvature defined by

Ruw™ = 2Dpw® + 2w, w,” (5.2.35)

(with covariant derivatives (5.1.13)), and its analogue Q,,'/ from (5.2.17)) for the SO(16)

external spin connection. As the commutator of two external covariant derivatives, the
left-hand side of (5.2.34)) is covariant whereas this is not manifest from the r.h.s.. Em-
bedding the internal derivatives on the r.h.s. into full covariant derivatives (5.2.32)), the

commutator can be rewritten as

1 —~
[D,,D,) e = —]—"WMVMEI—§VM}"WMEI+ R Yape!

o |

+ 9, + Fu MO e (5.2.36)

with the improved Riemann tensor ﬁw,“b = Rwab 4+ w Mab]:w,M. The latter is covariant
under local SO(1,2) Lorentz transformations, shows up in the gravitational field equations

and whose contraction in particular gives rise to the improved Ricci scalar
R = ete’ R, (5.2.37)
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that is part of the bosonic action. With the first line of ({5.2.36)) now manifestly covariant,
the second line can be rewritten upon using the explicit expression (5.2.17)) for Q,,,'” such
that the commutator takes the manifestly covariant form

1 1~
[D/u Dy] EI _ 5 PMAPVBF,ILX{B EJ + ZRuuab’yab 61 + VPIJfPM/\/ VMFMVN €J
~ 1
G Vs € = FuMV e — §VM.7:WM e, (5.2.38)

with the tensorial combination of field strengths é,w M from (5.1.18]). Similarly, one may

rewrite the second integrability relation ((5.2.16|) into the manifestly covariant form

2D, Pyt = WA PV L Fun 4 G ad VM (5.2.39)

We now turn to the mixed curvature, arising from the commutators of one external
and one internal covariant derivatives. We will only be interested in those projections of
this commutator, in which the undetermined part of the SO(16) connection drops out.
Fortunately, they are the projections relevant to prove the invariance of the Lagrangian
under supersymmetry. FEvaluating different projections of such a commutator on an
SO(1,2) x SO(16) spinor €, we obtain the relations

1
VALl [V Dl el = 2 VMU R e
3 1
1 VM VMPA el + 3 LIEVM Y P e

1
VMIJ [VM, Du] e/ = Z_l VMIJ RMuab ’YabﬁJ

1 1
— g VYAVMP e = TV UV MPE L (5.2.40)
where the mixed curvature tensor is defined by
RM“VP = Gayt?bp (8Mwuab - DMwMab) = (6MI‘W[”) gp]a . (5241)

One can show it constitutes a tensor under generalised diffeomorphisms ((5.1.4]), and
satisfies a Bianchi identity

’R,M[#l,p] =0. (5.2.42)
Its contraction to a ‘mixed Ricci tensor’ yields the following current
1 ~
Rt = . JP v = ete” (8Mw,,“b - D, (ep[“é?Mepb})) , (5.2.43)
which is related to the improved Ricci scalar ((5.2.37)) by variation w.r.t. the vector fields
SAR = J'p0AM + VTN +D,1! (5.2.44)
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up to a boundary currents J3, 7 of respective weights A7, = —1, Az, = —2, that do
not contribute under the integral.

Finally, for the internal curvature, we are again interested in specific projections of
two internal covariant derivative in which the undetermined part of the connection drops
out. The pertinent projection for the definition of an internal curvature scalar R in the
Egs) X SO(16) exceptional geometry is given by

(16 VM VN i + 2V MV 61y + 2T VMV ) ViV e =
= - g REI + VMK[VNJK RMNab’yabGJ . (5245)

On the Lh.s. the double derivative terms vanish by means of the section constraints

(C.2), while a straightforward computation shows that also all linear derivative terms

Ome! cancel. The curvature of the internal spin connection on the r.h.s. is defined in

analogy to ([5.2.35) and computed to be

RMNab = 2 8[Mw/\q“b + 2W[Mac (,UM cb

1
= —3 e 4T G VN G - (5.2.46)

Upon using the expressions for the SO(16) spin connection ([5.2.28)), the internal curvature
scalar R in (5.2.45)) can be calculated explicitly in terms of the Cartan forms ([5.2.8]) and
the derivative of the external vielbein determinant e as

2 4 4
R = =3 M"WeZopedye + 3 MM e opdye + 5 VMV T pu” e e

1
+VMVN T, (@MPN) + 4FBC’ aod" o ) + MMV p A pa?

1
+2VM VN g paPont — VMW e (THTRE) L o pn®

8
+ = VM AN TTE b Con® (5.2.47)
By construction it transforms as a scalar (of weight Ax = —2) under generalised diffeo-

morphisms (5.1.4). Its dependence on the external metric is such that

d(eR) = (de)R + total derivatives . (5.2.48)

The other relevant projection of two internal derivatives on a spinor is given by

(12 VMAVN]J F] i + (FIJ_K + 211[ .5JK) VMIKVNA) VMV/\/ EJ _

1 a
= STaRae + ¢ VMUVN (DE — 1467517 ) R yan € (5.2.49)

where again all double derivatives on the l.h.s. vanish due to the section constraints.

The generalised curvature R4 on the r.h.s. plays the analogue of a Ricci tensor in this
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geometry and is most conveniently defined by variation of the curvature scalar R w.r.t.

to a non-compact local eg(s) transformation of the internal frame field, i.e.

5R = SAY)RAe + VR, under 65V = VYARAY) . (5.2.50)
up to a boundary current Jg! of weight Az, = —1. It can be explicitly given in terms
of the Cartan forms ({5.2.8)) as

2 1
Ra = =3 DipV MV pome dyee™ + T TEETEE VY wp VY ppad“pa”

3
— F,{x]\érg}[)VMMNVNBpMCpN b 3 FQ%VMIMVNBPMCPN ©

23
—2TEVM ) VN cpppa® + 6 T VM vV D par®
VM VN o Cpn? 4+ 2DEVM VN cp B ©

1
+( AN VML 35, VMW — T THEN" VMo e

1 1
+5 BN VNCVMD> <3(MPN)B + ZFIB% q(M”pN)C> . (5.2.51)

This expression above is given in compact form, after simplification by various Fierz-like
identities, some of which are collected in appendix D]

5.3 Supersymmetry algebra

In this section we establish the supersymmetry transformation of the various fields and
verify that the supersymmetry algebra closes. Before discussing supersymmetry, we
briefly review the bosonic symmetries of Egg) exceptional field theory, since these are
the transformations we are going to recover in the commutator of two supersymmetry

transformations.

5.3.1 Bosonic symmetries of Egg) exceptional field theory

In section we have extensively discussed the structure of internal generalised Lie
derivatives which depend on two parameters AM and ¥, with associated gauge connec-
tions AMM and B, r. A closer analysis [35] shows that these gauge connections come
with additional shift symmetries which take the form

5514;/\/[ = G,CEM3875M’C + WMNEMN + JN\/WICE;U\/]C ;
0=Bup = OmZunN 4+ OnEuadY (5.3.1)

Here, the symmetry parameter 5“3875/\/%/ lives in the projection of the two adjoint indices
MN onto the 3875 representation, explicitly realized by (B.4). The parameter =,z
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is constrained in the same way as the fields B, o and Yy, c.f. . Similarly, the
parameter =, ;" is constrained as in its first internal index V. It is straightforward
to check that the shift symmetries leave the covariant derivatives ({5.1.13)) invariant.
More precisely, they correspond to the tensor gauge transformations associated to the
two-form gauge fields that complete the vector field strengths F,, and G, o into fully

covariant objects, but drop out from the Lagrangian of the theory.

Apart from the internal gauge symmetries, the full set of bosonic symmetries also
includes a covariantized version of the (2+1)-external diffeomorphism with the parameter
£# depending on both set of coordinates {z#, Y*}. On the bosonic fields these act asﬂ

oceyt = &"Dye," + Dy"e,”
(SgMMN = SVD,,MMN,
S AM = —2VMA (g, PP + VNG, Vg

AcBuni = —ecuy (07 D" (93T ) = € Tm) (5.3.2)

where the variation of B, p¢ is given in terms of the current Jr M introduced in ([5.2.43)
and most compactly expressed via the general covariant variation AB,, y( introduced in
. With (5.1.19), (5.2.26), and the explicit form of §¢A,M it is straightforward
to verify that the variation 6B, is uniquely determined and compatible with the
constraints this connection satifies. The external diffeomorphisms take the

expected form for the frame fields e,*, M. In contrast, for the gauge connections

A,M, By, they relate only on-shell to the standard diffeomorphism transformation of
gauge fields.

5.3.2 Closure of the supersymmetry algebra

Let us now move on to the fermionic fields and the supersymmetry algebra. In addition
to the bosonic fields introduced in section [5.2] the supersymmetric completion of the
Eg(s) exceptional field theory contains the following spinor fields: sixteen gravitinos wul
as well as 128 matter fermions XA, transforming in the vector and spinor representation
of SO(16), respectively. With respect to generalised diffeomorphisms, they transform
as scalar densities with half-integer weights given in Table 5.1 We are working in the
Majorana representation and mostly minus signature, i.e. spinors are taken to be real
and SO(1,2) gamma matrices 7, purely imaginary, c.f. [I0I] for our spinor conventions.

In particular, we use v,,, = —iec,,, .

4 W.r.t. the form of these transformations given in [35], we have expressed the current bosonic current
§PM by the coset current PPM, see below, and furthermore changed the vector transformations
by a shift transformation (5.3.1) with parameter =, py = —g,,OMm&", in order to obtain a more compact
presentation of the external diffeomorphisms. Also some signs differ from the formulas in [35] due to the
fact that in this chapter we use mostly minus signature (+ — —) for the external metric.
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In this section, we present the supersymmetry transformation rules

dee, = iyl VeV = T xAYA

St = Due' +2VM 1V u(ivue”) + 20M 159,V e’

. i R
dxt = TP = VML Ve
SAM = —aVM ey, or! M i A
ABum = =2(Vumeyy, —&@Vamh) + eeupd” Vu(einyl),  (5.3.3)

and show its algebra closes into generalised diffeomorphisms and gauge transformations.
The bosonic transformations (first and fourth line) precisely coincide with the super-
symmetry transformations of standard D=3 supergravity [100, 10I] with all fields now
living on the exceptional space-time. The fermionic transformation rules on the other
hand have been modified w.r.t. the three-dimensional theory with the addition of term
containing internal covariant derivatives V  introduced in section[5.2.2] As in higher di-
mensions, the supersymmetry transformation rules only carry specific projections of these
covariant derivatives, such that the undetermined part in the SO(16) connection Q !’
drops out. The supersymmetry variations of the gauge connection B, o¢ finally have no
analogue in the three-dimensional theory and are entirely determined from closure of the
supersymmetry algebra. Although its r.h.s. is such that not all undetermined parts of
the SO(16) connection Qu!’ drop out, these terms precisely cancel the corresponding
contributions from the Christoffel connection in the covariant variation ([5.1.19)) on the

Lh.s.. The resulting variation 0.5, is uniquely determined and compatible with the
constraints ([5.1.5)) this field has to satisfy.

As a first test, we use this ansatz to calculate the commutator of two supersymmetry

transformations on the dreibein e,* to obtain
[0c, 0] €, = eeay® (Due’ + 2VM 1V (iy,)e? + 4V M 157, Vue!) — (1 4 2)
= D, (&iv"e) —WVMuE el Ve + Vo (0 Mpesel) e,
—4VMy; (Eé YV el — Vel 4 6‘1]) eub
= D,(%,") + AMMoye, + duAMe, + Q% . (5.3.4)

The first term reproduces the action of covariantized external diffeomorphisms, the second
and third term describe the action of internal generalised diffeomorphisms on the dreibein,
and the last term is an SO(1,2) Lorentz transformation, with the respective parameters

given by
& = igyte,
AM = 4 yM e
O = —aVMy (P Ve — Vad ) - A on® . (5.35)
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Similarly, one can show closure of the supersymmetry algebra on the 248-bein. Using

(5.3.3), we find the commutator
1 _ _
VMg [6e,, 00, V™ = (—éP#CFJ eyt — 2wVl vNE{> el (Y hKE

—(1+2)
= &P,A (YL 4+ 60 VMEPY 0 LUV EV AL
—2VMp (Vyehel — eVnel) PP amVpiE (5.3.6)
with the adjoint projector from . We recognize the first term as the action of external

diffeomorphisms on the 248-bein. The second term reproduces the action of a
generalised internal diffeomorphism with parameter A* when parametrized covariantly
as in (5.1.12) (note that the transport term ANV AV KL vanishes due to the vielbein
postulate (5.2.10)). The last term thus describes the covariantized Egs) rotation from
which we read off the parameter X,

Sy = —2(Vnése] —eVyel) - (5.3.7)

As a consistency check, it is straightforward to verify that although the expression for
the parameter (5.3.7) carries the full internal SO(16) spin connection Qx"!” (including
its undetermined parts), its form is such that the constrained parameter ¥y = Sy +
[y AM which actually appears in the rotation term of is uniquely determined
(with the undetermined part from Qu’/ cancelling the undetermined part from Tp /)
and moreover satisfies the required constraints .

Also on the gauge field A, we obtain closure of the supersymmetry algebra by a
standard calculation which gives the explicit result

[561, 552] AMM = —4 VM]K Eé (DME{{ + 2 VNKJV./\/’(Z"}/H)E{ + 4VNKJ i’}/quelJ)

+2T VMg, ( eIl P8 —2 VN 1Y AvNe{> —(1+2)

2
= DA+ Vi (=160 VM VM pycesyel)

+ 8i AN VR (87, Vnve] — Viésyel)

—2i e, VM APPAEL Iy el 4 VM VN 469V pre, 0 — AVM VN Ve,
= D,AM —2VMA (eg,,, PP + VNG, VigY)

+ONEasrs M)+ PN E NS MV E N (5.3.8)

with the parameters AM and &* from and the shift parameters =, of the last line
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defined as

Eun = —205E,,
Eu3875(MN) = —16 VMIKVNKJEQIZ.'YME{) — VMIJVNIJég{i'YuE{( ;
S = —8VE (Vnebivue] — &iv,Vvel)
+L ' m (EM3875(MK) — 277M]Cfu) ; (5.3.9)

corresponding to the shift symmetries 1’ discussed above. The fact that =, 3875(MN )
lives in 3875 representations is an immediate consequence of its specific form

— . 1
Zuaers ) = 16 VM VN s s §ury = zeélwef’ 16 0rs &, (5.3.10)

with a parameter £,;; in the 135 of SO(16), combined with the fact that the tensor
product of two adjoint representations ([5.1.2)) contains only a single representation 135
of SO(16) which lives within the 3875 representation of Egs). Moreover, the last term
in (5.3.9) carrying the Christoffel connection ensures that the parameter =, N’C does not
carry any of the undetermined parts of the SO(16) connection Qx// and furthermore is
constrained in its first index, as required by the shift symmetries .

We have at this point fully determined the supersymmetry algebra

0ers0e] = 0¢ + g + 0p + 05 + 0= (5.3.11)

with parameters given in (5.3.5)), (5.3.7), (5.3.9). As a consistency check of the construc-

tion it remains to verify that the algebra closes in the same form on the constrained
connection B, »(. This computation is greatly facilitated by the notation of the covariant
variation in terms of which its supersymmetry variation takes the covariant form
(5.3.3). To lowest order in fermions, the supersymmetry algebra on B, v is given by

[0c,0e] Bumt = 26 Ay Byt + 2T mw 6, 6, A (5.3.12)

For the second term we may use the closure of the algebra on the vector fields A4,
established above. The first term after some calculation yields

25€£‘62 B,u./\/l = AA,EBMM + AéBMM
—|—2V(M§MN’)N + qu'R,MNVpAN

8V 1y ([V s VnEsivue] — einu[Voau, Vle!) , (5.3.13)

with the parameters given in (5.3.5)), (5.3.7), (5.3.9) and the covariant combination

K K 1. J J
uN©T o= =8V (V/\/EQZ”)/#El —EQZ’)/#VN€1) ,

= 2" —Twm (Eu3875(M’C) - QTZM’C@) . (5.3.14)

[1]:
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The first line of ([5.3.13)) reproduce the covariant variation of B,y under generalised
internal and external diffeomorphisms. For the supersymmetry algebra to close, the
second and third line of ([5.3.13]) must reproduce the shift symmetries

AzBym = 6=Bum — Daun0=4,M,
= 2V Euny™ + 20" E Y — Do g
(T = Tap2Tame) (Spsses™” —20V7¢)
= 2V + e R AV

A8V 1 [V, VnIEsivue] — &ivu[Var, Valel) . (5.3.15)

where we have obtained the last equality with the use of the following identity

1
(20w, = Pacela0 f59p) (VW A TR A 5U)
WY1k 20mQN"™ + 20" Q™) = 0.(5.3.16)

This is reminiscent of standard Riemannian geometry, where the curvature of the Christof-

fel symbols is the curvature of the spin connection
R, [T] = Ry® [w]es’e” (5.3.17)

albeit here, in a projected fashion.

This proves the closure of the supersymmetry algebra on B,
[561, 552] BuM = 5(A,E)BMM + 5§BMM + 5EBMM , (5.3.18)

and concludes the discussion on the consistency of the supersymmetry algebra (5.3.11)).

5.4 Supersymmetric Lagrangian

We can now present the supersymmetric completion of the bosonic action . The
fermionic field content comprises the gravitinos ¢,/ and spin 1/2 fermions XA transform-
ing in the fundamental vector 16 and spinor 128, representations of SO(16), respectively.
The full Eg) Lagrangian is given by

L = —R4g"PAPA+e  Lip—V
+2i P PPID L — 20 XA DX A — 2 ¥ty Il PA
+671 ['quartic +8 VMIJQZJ;ILV“VVMwJ —8i VMA PiArLE{;vM (VHXA)

_QVM[J FQJB 7AVMXB . (541)
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The first line is the bosonic Lagrangian ((5.1.21)). The terms in the second line are obtained
via a direct uplift (and proper covariantization) from D = 3 maximal supergravity [100),
101]: a Rarita-Schwinger term for the gravitinos wﬁ, a kinetic term for the 128 matter
fermions y#, and the Noether coupling between the coset current P,* and the fermions.
The three last terms of carrying internal covariant derivative V, have been
added to ensure invariance of the Lagrangian under supersymmetry transformations.
After proper Scherk-Schwarz reduction of the Lagrangian [56], these terms provide the
Yukawa couplings of the gauged three-dimensional supergravity. Finally, Lqartic denotes
the quartic fermion terms. We expect these to coincide with the corresponding terms of
the three-dimensional theory [100, 10T]

) 1/ o _ o
¢ Lowaric = —3 (X%FU X (O Py — PP ) + Xx iy 7’%)
1/ 1 3
+5 (@00 = 750 T Xy | (5.4.2)

but as far as this thesis is concerned we will only deal with fermions at quadratic order.

For the proof of invariance of (5.4.1) under supersymmetry (5.3.3), we first note
that all terms that do not carry internal derivatives cancel precisely as in the three-

dimensional theory. Terms carrying internal derivatives arise in the bosonic sector from
variation of the potential V' and the topological term Ly,,. In the fermionic sector, such
terms arise from the corresponding terms in the supersymmetry transformations ,
from variation of the last three terms in , as well as from the modified integrability
relations ((5.2.38)), (5.2.39).

We organise these terms according to their structure
VD, Vme, XD.Vume, UVMuVne, YVmVae (5.4.3)

and show that they cancel against the contributions from the bosonic Lagrangian. In
the rest of this section, we will only focus on the last two types of terms in (5.4.3),
which carry two internal derivatives and thus exhibit an interesting geometric structure
of the internal space. The cancellation of the remaining terms is described in detail in
appendix [E|

Let us start by collecting the terms in 1) V (Ve in the variation of the fermionic
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Lagrangian

16 Liorm 8 <8vM,Kv9{J oYM PN Aau) DAV 0, Vit €’

+ 81 <8VMIKVNKJ + FZBVMAVNB> &,5’7“ [V, V)€
+ 82 G VM VY ke (YN Ve + 297V 07, Ve’

+ Va3, Ve’ )
+ 160 VM A(TT ) ap VN 5 0] VA" Ve’

. o 1 )
+ 321 VMIKVNKJ@% (7“ VmVay + §VM7M V/\/%) el
(5.4.4)

Upon use of the section constraints and together with the identity , one
can show that all the quadratic and linear terms in derivatives of € vanish. Then, the
remaining terms cancel the first two lines of the variation of the scalar potential
under a supersymmetry transformation (up to total derivatives)

1 1
de(eV) = ¢ (9“”73 — Zg“”MMN Vg Vdpe + Vau(MNV g

+g#vagpanggVMMN> 569/.“/

i 1
el X (Rat+ TV MV Vg Vg ) . (545)

where for the cancellation we have used the following identity
1 1 1
PVMYNY + 5 VMV = 5 ViVt = 5 9" VaVa
1 ab . p 1 H vp
_Z RMJ\/' Y Yab — g Y ng ngVp (546)
The last line in (5.4.5) then cancels against the corresponding terms from the variation

of the fermionic Lagrangian

€' Lierm — AVM VN (TIET 12T 65T) YA (Vg Vi) €

xVVe

+ AVM VN L (DIET 10T 657 ) XA [V g, V] €

+ 16 VN[JVMAS(AFZA 'YMVMVN'YM e . (547)
Using the identity ([5.2.49)) and the section constraints (C.2)) one finds that all quadratic

and linear terms in € vanish while the remaining terms precisely cancel the last line of

(5.4.5). For this, the following relations are useful

Var” = 29UV, 4V, = 0, (5.4.8)
1 1
V'V = b R Yab — 1 YN 9"’V N Gup (5.4.9)
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We have thus sketched the vanishing of all terms carrying two internal derivatives in the
supersymmetry variation of ([5.4.1]). The cancellation of the remaining terms is described
in detail in appendix[E] To summarize the result, we have shown invariance of the action

(5.4.1) up to quartic fermion terms.

5.5 A comment on the additional gauge connection

In contrast to the standard formulation of supergravities, in exceptional field theory
the bosonic symmetries already uniquely determine the bosonic Lagrangian without any
reference to fermions and supersymmetry. Nevertheless, it is important to establish that
the resulting bosonic Lagrangian allows for a supersymmetric completion upon coupling
of the proper fermionic field content as we have done in this chapter. In particular,
in the context of generalised Scherk-Schwarz reductions [56] this construction provides
the consistent reduction formulas for the embedding of the fermionic sector of lower-

dimensional supergravities into higher dimensions.

A particular attribute of Eg(s) exceptional field theory is the appearance of an addi-
tional constrained gauge connection B, »( related to an additional gauge symmetry which
ensures closure of the algebra of generalised diffeomorphisms. Unlike all other fields of
Egs) exceptional field theory, this gauge connection is invisible in three-dimensional su-
pergravity. More precisely, upon a consistent truncation of exceptional field theory down

to three dimensions by means of a generalised Scherk-Schwarz reduction
M (2,Y) = Upn“(Y)Up*(Y) Mg ()
guu<xay> = p72(Y) g,ul/(x) ;

AM@Y) = o (VAN @)U M) (5.5.1)

with the Y-dependence carried by an Egi) matrix U and a scaling factor p (satisfying
their system of consistency equations), the constrained gauge connection B, s reduces
according to

Bum(z,Y) o< p ' (V) (U P (YY) OMUpE(Y) e AN () (5.5.2)

such that its fluctuations are expressed in terms of the same three-dimensional vector
fields A,V (x) that parametrize the fluctuations of the A,M(x,Y). It is thus tempting
to wonder if already in exceptional field theory, and before reduction, the constrained

gauge connection can be considered as a function of the remaining fields such as [99]
?
Bum = Tuw AN (5.5.3)

c.f. (.1.12)). However, as seen above, coupling to fermions requires a connection I' v s
other than the Weitzenbock connection, such that (5.5.3)) would obstruct compatibility
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with the constraints . Moreover, supersymmetry of the Lagrangian requires a non-
trivial transformation law for the constrained connection B, r¢. It is remarkable
that as we have shown above this additional constrained connection consistently joins
the remaining bosonic and fermionic fields into a single supermultiplet without the need
of additional fermionic matter.

The fact that all transformation laws of B, 4 are most compactly expressed in terms
of the general covariant variation ([5.1.19)) is remnant of structures that appear in a
general tensor hierarchy of non-abelian p-forms [50]. This may hint at a yet larger alge-
braic structure which in particular unifies the topological term and the generalised three-
dimensional Einstein-Hilbert term of into a single non-abelian Chern-Simons
form on an enlarged algebra. If the present construction should allow for a generalization
to the infinite-dimensional cases of Eq [102], 103], 104], E;o [105, 106], (and maybe Eq;
[107, 108, [109]), this appearance of additional bosonic representations and their interplay
with supersymmetry may play an essential role.

5.6 Summary

In this chapter we have constructed the supersymmetric completion of the bosonic Egs)
exceptional field theory. The final result is given by the action and the supersym-
metry transformation laws . In particular, we have established the supersymmetry
algebra which consistently closes into the generalised internal and external diffeomor-
phisms together with the tensor gauge transformations of the theory. The geometry of
the internal space is constrained by the section condition (5.1.1)) which admits (at least)
two inequivalent solutions for which the action reproduces the full D = 11 su-
pergravity and full type IIB supergravity, respectively. The fermions of exceptional field
theory can consistently accommodate the fermions of the type ITA and type IIB the-
ory, since the Eg)-covariant formulation does not preserve the original D = 10
Lorentz invariance. The resulting D = 10 fermion chirality thus depends on the solution

of the section constraint.
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Chapter 6

Conclusion and outlook

To conclude, we have seen that extended field theories, besides rendering hidden sym-
metries of supergravity manifest, also provide a powerful tool: the generalised Scherk-
Schwarz ansatz. In this setting, a reduction ansatz can be very conveniently spelled out
in terms of generalised twist matrices. In addition, the often difficult question of con-
sistency is solved provided the twist matrices satisfy a set of differential equations. Of
course, finding such matrices satisfying these equations is still a very challenging prob-
lem. An important outlook would be to find a systematic method to solve the consistency
equations under which consistent truncations are possible.

In most of this thesis, we focused on different applications of the generalised Scherk-
Schwarz ansatz. In chapter 2, we proved an old conjecture [6] on the consistency of
the Pauli reduction of the bosonic string in n+d dimensions on any d-dimensional group
manifold. In contrast with a DeWitt reduction, where one keeps the fields that are singlet
under GG, or G and therefore is automatically consistent, a Pauli reduction keeps the
full isometry group G x G as gauge group. In this case, there is no group theoretical
argument to tell which fields should be kept and which fields should be truncated. By
using the formalism of DFT, a T-duality covariant rewriting of the NS-NS sector of super-
gravity, this question can be answered with the generalised Scherk-Schwarz ansatz.We
constructed the SO(d,d) twist matrices on which the GSS relies on, in terms of the
Killing vectors of the bi-invariant metric on G and showed they satisfy the consistency

equations. We then deduced the full non-linear reduction ansatz for all fields.

Chapter 3 constitutes the preliminary work needed such that one could extract the
various type IIB reduction formulas shown in Chapter 4. The main topic of this chapter
was the identification of the fundamental fields of EFT with those of type IIB in a
dictionary. Having established the EFT /Type IIB dictionary, we presented two additional
examples of the usefulness of the GSS in chapter 4. The first application of the GSS in
the Eg() was the proof of the consistency Kaluza-Klein of type IIB on AdS;xS°. The
proof relies on the use of SO(p, ¢) twist matrices found in [56] satisfying the consistency
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equations. We evaluated the reduction formulas with these explicit twist matrices and
translated the EFT fields into type IIB ones with the dictionary. We thus obtained the
full type IIB reduction formulas. The last two sections of this chapter focused on the
second application of the GSS: a deformation of type IIB within EFT. This deformation
is known as ‘generalised’ type IIB supergravity. It is a set of equation resembling the
standard type IIB field equations, but with a one-form, subject to a Bianchi-like identity,
instead of the exterior derivative of the dilaton [82]. After reviewing the generalised field
equation in section , we solved the deformed Bianchi identities, thus obtaining the
explicit expression of the deformed field strengths in terms of the fundamental fields of
type IIB. Finally, we showed in section how the deformations of the field strengths
can be obtained from a surprisingly simple Scherk-Schwarz ansatz upon picking a new
solution of the section constraint. Since the gaugings generated by this ansatz contain
the trombone generator, the resulting field equations cannot be obtained from an action.

In the first four chapters of this thesis, we have restricted the construction to the
NS-NS and bosonic sectors of type IIB supergravity. EFT can be extended to describe
the full higher dimensional supergravities with fermions transforming under the maximal
compact subgroup K(E4q)). This has been done in [37, 38| for E7(7) and Eg ) respectively.
In the last chapter, we extended the supersymmetric completion of the bosonic EFT to
the Egs) case. After a review of the bosonic EFT, we developed the tools needed to in-
troduce the fermions in the theory, such as the generalised spin connection. In particular,
a large part of the internal SO(16) spin connection was determined from the torsion-free
condition on the Christoffel connection, first found in [99]. As usual in EFT, the remain-
ing undetermined parts in the spin connection always drop out of all physically relevant
quantities. With the definition of proper internal and external covariant derivatives, we
gave in section 3 the supersymmetry transformation rules and showed its algebra closes
into generalised diffeomorphisms and gauge transformations. We then gave the super-
symmetric lagrangian, whose full invariance under supersymmetry is proven in appendix
D. Finally, a comment is made regarding the simplifications arising if one choose the con-
nection to be of Weitzenbdock type, a legitimate choice in the bosonic theory. However,
coupling to fermions seems to require a different connection. Nevertheless, it is rather
interesting that the transformations laws of the additional constrained connection are
most conveniently expressed in terms of a general covariant variation where the algebra
valued torsion-free connection appear. We speculate that the general covariant variation
of the constrained (n — 2)-forms can be written in a similar way in every known Egq)
EFT (n +d = 11). For example, in the E77y EFT, further simplifications should be
achieved by rewriting the general covariant variation of the constrained 2-form as

AByu vt = 6Buni — Tii® B - (6.0.1)

Therefore, supersymmetrising the EFT action allowed us to unravel new bosonic struc-
tures and it could prove of vital importance for the generalisation of exceptional geometry
to the infinite-dimensional algebras [102], 103 104, 105], 106, 107, 108, T09].

129



Bibliography

1

2l

3]

4]

5]

6]

17l

A. Baguet, O. Hohm, and H. Samtleben, Eg¢) exceptional field theory: Review
and embedding of type IIB, in 1jth Hellenic School and Workshops on Elementary
Particle Physics and Gravity Corfu, 2014, vol. PoS (CORFU2014), p. 133, 2015.
arXiv:1506.0106.

A. Baguet, O. Hohm, and H. Samtleben, Consistent type IIB reductions to
mazimal 5D supergravity, Phys. Rev. D92 (2015) 065004, [arXiv:1506.0138|.

A. Baguet, C. N. Pope, and H. Samtleben, Consistent Pauli reduction on group
manifolds, Phys. Lett. BT52 (2016) 278-284, |arXiv:1510.0892].

A. Baguet and H. Samtleben, Eggy Exceptional Field Theory: Geometry,
Fermions and Supersymmetry, JHEP 09 (2016) 168, |arXiv:1607.0311].

A. Baguet, M. Magro, and H. Samtleben, Generalized IIB supergravity from
exceptional field theory, JHEP 03 (2017) 100, [arXiv:1612.0721].

M. Duff, B. Nilsson, N. Warner, and C. Pope, Kaluza-Klein approach to the
heterotic string. 2., Phys.Lett. B171 (1986) 170.

M. Giinaydin, L. J. Romans, and N. P. Warner, Compact and noncompact gauged
supergravity theories in five-dimensions, Nucl. Phys. B272 (1986) 598.

[8] Y. Golfand and E. Likhtman, Fztension of the Algebra of Poincare Group

19]

[10]

[11]

[12]

Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323-326.

S. R. Coleman and J. Mandula, All possible symmetries of the S matriz,
Phys.Rev. 159 (1967) 1251-1256.

J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions,
Nucl. Phys. B70 (1974) 39-50.

K. Stelle, Supergravity: Finite after all?, Nat Phys 3 (Jul, 2007) 448-450.

D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Progress Toward a Theory
of Supergravity, Phys. Rev. D13 (1976) 3214-3218.

130


http://xxx.lanl.gov/abs/1506.0106
http://xxx.lanl.gov/abs/1506.0138
http://xxx.lanl.gov/abs/1510.0892
http://xxx.lanl.gov/abs/1607.0311
http://xxx.lanl.gov/abs/1612.0721

[13] S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B62 (1976) 335.

[14] A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, Strong - weak coupling duality
and nonperturbative effects in string theory, Phys.Lett. B249 (1990) 35-43.

[15] C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B438 (1995)
109-137, [hep-th/9410167|.

[16] A. Sen, Strong - weak coupling duality in four-dimensional string theory,
Int.J.Mod.Phys. A9 (1994) 3707-3750, [hep-th/9402002|.

[17] J. H. Schwarz, Superstring dualities, Nucl. Phys.Proc.Suppl. 49 (1996) 183-190,
[hep-th/9509148].

[18] P. Horava and E. Witten, Heterotic and type I string dynamics from eleven
dimensions, Nucl. Phys. B460 (1996) 506-524, |hep-th/9510209|.

[19] P. K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett.
B350 (1995) 184-187, |hep-th/9501068].

[20] E. Cremmer, B. Julia, and J. Scherk, Supergravity Theory in Eleven-Dimensions,
Phys.Lett. B76 (1978) 409-412.

[21] W. Siegel, Superspace duality in low-energy superstrings, Phys.Rev. D48 (1993)
28262837, [hep-th/9305073|.

[22] W. Siegel, Two vierbein formalism for string inspired azionic gravity, Phys.Rev.
D47 (1993) 5453-5459, |hep-th/9302036.

[23] C. M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005)
065, [hep-th/0406102).

[24] C. Hull and B. Zwiebach, Double Field Theory, JHEP 0909 (2009) 099,
|arXiv:0904.4664].

[25] M. Grana, R. Minasian, M. Petrini, and D. Waldram, T-duality, generalized
geometry and non-geometric backgrounds, JHEP 0904 (2009) 075,
|arXiv:0807.4527|.

[26] D. Geissbiihler, D. Marqués, C. Nunez, and V. Penas, Exploring double field
theory, JHEP 1306 (2013) 101, [arXiv:1304.1472).

[27] G. Aldazabal, M. Grana, D. Marqués, and J. Rosabal, Extended geometry and
gauged mazximal supergravity, JHEP 1306 (2013) 046, |arXiv:1302.5419|.

[28] N. Hitchin, Lectures on generalized geometry, arXiv:1008.0973.

131


http://xxx.lanl.gov/abs/hep-th/9410167
http://xxx.lanl.gov/abs/hep-th/9402002
http://xxx.lanl.gov/abs/hep-th/9509148
http://xxx.lanl.gov/abs/hep-th/9510209
http://xxx.lanl.gov/abs/hep-th/9501068
http://xxx.lanl.gov/abs/hep-th/9305073
http://xxx.lanl.gov/abs/hep-th/9302036
http://xxx.lanl.gov/abs/hep-th/0406102
http://xxx.lanl.gov/abs/0904.4664
http://xxx.lanl.gov/abs/0807.4527
http://xxx.lanl.gov/abs/1304.1472
http://xxx.lanl.gov/abs/1302.5419
http://xxx.lanl.gov/abs/1008.0973

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

D. S. Berman and M. J. Perry, Generalized geometry and M theory, JHEP 1106
(2011) 074, [arXiv:1008.1763).

D. S. Berman, H. Godazgar, and M. J. Perry, SO(5,5) duality in M-theory and
generalized geometry, Phys.Lett. BT00 (2011) 6567, |[arXiv:1103.5733].

M. Cederwall, J. Edlund, and A. Karlsson, Fxceptional geometry and tensor
fields, JHEP 1307 (2013) 028, [arXiv:1302.6736].

M. Cederwall, Non-gravitational exceptional supermultiplets, larXiv:1302.6737.

O. Hohm and H. Samtleben, Exceptional Field Theory I: Ege)y covariant Form of
M-Theory and Type IIB, Phys.Rev. D89 (2014) 066016, [arXiv:1312.0614|.

O. Hohm and H. Samtleben, Exceptional Field Theory II: Eq¢y, Phys.Rev. D89
(2014) 066017, |[arXiv:1312.4542).

O. Hohm and H. Samtleben, Exceptional field theory I11: Egsy, Phys.Rev. D90
(2014) 066002, |arXiv:1406.3348|.

D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable, and D. Waldram,
Exceptional generalised geometry for massive IIA and consistent reductions,
JHEP 08 (2016) 074, |arXiv:1605.0056|.

H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and H. Samtleben,
Supersymmetric 7y exceptional field theory, JHEP 1409 (2014) 044,
|arXiv:1406.3235].

E. Musaev and H. Samtleben, Fermions and supersymmetry in Ege) exceptional
field theory, JHEP 1503 (2015) 027, |arXiv:1412.7286].

D. Tong, “Lectures on string theory.”
M. Grana and H. Triendl, String Theory Compactifications. Springer, 2017.

M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory. Vol. 1:
Introduction. Cambridge University Press, 1987. (page 288).

D. Friedan, E. J. Martinec, and S. H. Shenker, Conformal Invariance,
Supersymmetry and String Theory, Nucl. Phys. B271 (1986) 93-165.

M. Becker, K. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern
Introduction. Cambridge University Press, 2006.

D. S. Berman and D. C. Thompson, Duality symmetric string and M-theory,
Phys.Rept. 566 (2014) 1-60, |arXiv:1306.2643|.

132


http://xxx.lanl.gov/abs/1008.1763
http://xxx.lanl.gov/abs/1103.5733
http://xxx.lanl.gov/abs/1302.6736
http://xxx.lanl.gov/abs/1302.6737
http://xxx.lanl.gov/abs/1312.0614
http://xxx.lanl.gov/abs/1312.4542
http://xxx.lanl.gov/abs/1406.3348
http://xxx.lanl.gov/abs/1605.0056
http://xxx.lanl.gov/abs/1406.3235
http://xxx.lanl.gov/abs/1412.7286
http://xxx.lanl.gov/abs/1306.2643

[45] O. Hohm, C. Hull, and B. Zwiebach, Generalized metric formulation of double
field theory, JHEP 1008 (2010) 008, [arXiv:1006.4823|.

[46] E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B159 (1979) 141.
[47] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B208 (1982) 323.

[48] B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance,
Nucl. Phys. B274 (1986) 363.

[49] B. de Wit and H. Samtleben, Gauged mazimal supergravities and hierarchies of
nonabelian vector-tensor systems, Fortschr. Phys. 53 (2005) 442-449,
[hep-th/0501243.

[50] B. de Wit, H. Nicolai, and H. Samtleben, Gauged supergravities, tensor
hierarchies, and M-theory, JHEP 0802 (2008) 044, [0801.1294].

[51] M. Duff, B. Nilsson, C. Pope, and N. Warner, On the consistency of the
Kaluza-Klein ansatz, Phys.Lett. B149 (1984) 90.

[52] M. Cvetic, H. Lu, and C. N. Pope, Consistent Kaluza-Klein sphere reductions,
Phys. Rev. D62 (2000) 064028, [hep-th/0003286].

[53] M. Gunaydin, L. J. Romans, and N. P. Warner, Gauged N=8 Supergravity in
Five-Dimensions, Phys. Lett. B154 (1985) 268-274.

[54] M. Pernici, K. Pilch, and P. van Nieuwenhuizen, Gauged N = 8D =5
supergravity, Nucl. Phys. B259 (1985) 460.

[55] J. Scherk and J. H. Schwarz, How to get masses from extra dimensions, Nucl.
Phys. B153 (1979) 61-88.

[56] O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional
field theory, JHEP 1501 (2015) 131, [arXiv:1410.8145].

[57] A. Le Diffon and H. Samtleben, Supergravities without an action: Gauging the
trombone, Nucl. Phys. B811 (2009) 1-35, |arXiv:0809.5180|.

[58] O. Hohm and B. Zwiebach, Large gauge transformations in double field theory,
JHEP 1302 (2013) 075, |[arXiv:1207.4198|.

[59] O. Hohm, D. Liist, and B. Zwiebach, The spacetime of double field theory: Review,
remarks, and outlook, Fortsch.Phys. 61 (2013) 926-966, |arXiv:1309.2977|.

[60] D. S. Berman, M. Cederwall, and M. J. Perry, Global aspects of double geometry,
JHEP 1409 (2014) 066, |[arXiv:1401.1311].

133


http://xxx.lanl.gov/abs/1006.4823
http://xxx.lanl.gov/abs/hep-th/0501243
http://xxx.lanl.gov/abs/0801.1294
http://xxx.lanl.gov/abs/hep-th/0003286
http://xxx.lanl.gov/abs/1410.8145
http://xxx.lanl.gov/abs/0809.5180
http://xxx.lanl.gov/abs/1207.4198
http://xxx.lanl.gov/abs/1309.2977
http://xxx.lanl.gov/abs/1401.1311

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68

[69]

[70]

[71]

[72]

73]

[74]

[75]

U. Naseer, A note on large gauge transformations in double field theory, JHEP 06
(2015) 002, [arXiv:1504.0591].

D. S. Berman, E. T. Musaev, and D. C. Thompson, Duality invariant M-theory:
Gauged supergravities and Scherk-Schwarz reductions, JHEP 1210 (2012) 174,
|arXiv:1208.0020].

D. Geissbiihler, Double field theory and N = 4 gauged supergravity, JHEP 1111
(2011) 116, [arXiv:1109.4280].

M. Cvetic, G. Gibbons, H. Lu, and C. Pope, Consistent group and coset reductions
of the bosonic string, Class.Quant.Grav. 20 (2003) 5161-5194, |hep-th/0306043|.

G. Aldazabal, W. Baron, D. Marqués, and C. Nunez, The effective action of
double field theory, JHEP 1111 (2011) 052, |arXiv:1109.0290|.

K. Lee, C. Strickland-Constable, and D. Waldram, Spheres, generalised

parallelisability and consistent truncations, larXiv:1401.3360.

F. Hassler and D. Liist, Consistent compactification of double field theory on
non-geometric flux backgrounds, JHEP 1405 (2014) 085, [arXiv:1401.5068|.

W. Cho, J. J. Ferndndez-Melgarejo, 1. Jeon, and J.-H. Park, Supersymmetric
gauged double field theory: systematic derivation by virtue of twist, JHEP 08
(2015) 084, |arXiv:1505.0130|.

C. M. Hull and N. P. Warner, Noncompact gaugings from higher dimensions,
Class. Quant. Grav. 5 (1988) 1517.

M. Cvetic, G. Gibbons, and C. Pope, Ghost free de Sitter supergravities as
consistent reductions of string and M theory, Nucl. Phys. B708 (2005) 381-410,
[hep-th/0401151].

W. H. Baron and G. Dall’Agata, Uplifting non-compact gauged supergravities,
JHEP 1502 (2015) 003, |[arXiv:1410.8823|.

O. Hohm, C. Hull, and B. Zwiebach, Background independent action for double
field theory, JHEP 1007 (2010) 016, [arXiv:1003.5027].

O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes,
Phys.Rev. D88 (2013) 085005, |[arXiv:1307.0039).

N. Kaloper and R. C. Myers, The O(dd) story of massive supergravity, JHEP 05
(1999) 010, |hep-th/9901045|.

J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034,
[hep-th/0602024].

134


http://xxx.lanl.gov/abs/1504.0591
http://xxx.lanl.gov/abs/1208.0020
http://xxx.lanl.gov/abs/1109.4280
http://xxx.lanl.gov/abs/hep-th/0306043
http://xxx.lanl.gov/abs/1109.0290
http://xxx.lanl.gov/abs/1401.3360
http://xxx.lanl.gov/abs/1401.5068
http://xxx.lanl.gov/abs/1505.0130
http://xxx.lanl.gov/abs/hep-th/0401151
http://xxx.lanl.gov/abs/1410.8823
http://xxx.lanl.gov/abs/1003.5027
http://xxx.lanl.gov/abs/1307.0039
http://xxx.lanl.gov/abs/hep-th/9901045
http://xxx.lanl.gov/abs/hep-th/0602024

[76] E. Cremmer, B. Julia, H. Lu, and C. N. Pope, Dualisation of dualities. I, Nucl.
Phys. B523 (1998) 73-144, |hep-th/9710119].

[77] J. H. Schwarz and P. C. West, Symmetries and transformations of chiral N = 2
D = 10 supergravity, Phys. Lett. B126 (1983) 301.

[78] J. H. Schwarz, Covariant field equations of chiral N =2, D = 10 supergravity,
Nucl. Phys. B226 (1983) 269.

[79] P. S. Howe and P. C. West, The complete N =2, D = 10 supergravity, Nucl.
Phys. B238 (1984) 181.

[80] F. Ciceri, B. de Wit, and O. Varela, IIB supergravity and the Ege) covariant
vector-tensor hierarchy, JHEP 1504 (2015) 094, |[arXiv:1412.8297].

[81] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban, and A. A. Tseytlin, Scale
invariance of the n-deformed AdSs x S° superstring, T-duality and modified type
II equations, Nucl. Phys. B903 (2016) 262-303, [arXiv:1511.0579|.

[82] L. Wulff and A. A. Tseytlin, Kappa-symmetry of superstring sigma model and
generalized 10d supergravity equations, JHEP 06 (2016) 174, |arXiv:1605.0488|.

[83] B. de Wit, H. Samtleben, and M. Trigiante, The mazimal D = 5 supergravities,
Nucl. Phys. B716 (2005) 215-247, |hep-th/0412173|.

[84] P. K. Townsend, K. Pilch, and P. van Nieuwenhuizen, Selfduality in odd
dimensions, Phys. Lett. 136B (1984) 38.

[85] H. Godazgar, M. Godazgar, and H. Nicolai, Nonlinear Kaluza-Klein theory for
dual fields, Phys.Rev. D88 (2013) 125002, [arXiv:1309.0266|.

[86] A. Khavaev, K. Pilch, and N. P. Warner, New vacua of gauged N = 8 supergravity
in five-dimensions, Phys.Lett. B487 (2000) 14-21, [hep-th/9812035].

[87] H. Nastase and D. Vaman, On the nonlinear KK reductions on spheres of
supergravity theories, Nucl. Phys. B583 (2000) 211-236, |hep-th/0002028|.

[88] K. Pilch and N. P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton,
Nucl. Phys. B594 (2001) 209228, |hep-th/0004063|.

[89] M. Duff, B. Nilsson, and C. Pope, Kaluza-Klein supergravity, Phys.Rept. 130
(1986) 1-142.

[90] F. Ciceri, A. Guarino, and G. Inverso, The exceptional story of massive 11A
supergravity, JHEP 08 (2016) 154, |arXiv:1604.0860].

[91] R. R. Metsaev and A. A. Tseytlin, Type IIB superstring action in AdSs x S°
background, Nucl. Phys. B533 (1998) 109-126, |hep-th/9805028|.

135


http://xxx.lanl.gov/abs/hep-th/9710119
http://xxx.lanl.gov/abs/1412.8297
http://xxx.lanl.gov/abs/1511.0579
http://xxx.lanl.gov/abs/1605.0488
http://xxx.lanl.gov/abs/hep-th/0412173
http://xxx.lanl.gov/abs/1309.0266
http://xxx.lanl.gov/abs/hep-th/9812035
http://xxx.lanl.gov/abs/hep-th/0002028
http://xxx.lanl.gov/abs/hep-th/0004063
http://xxx.lanl.gov/abs/1604.0860
http://xxx.lanl.gov/abs/hep-th/9805028

[92]

(93]

[94]

[95]

196]

197]

98]

[99]

[100]

[101]

[102]

103

[104]

[105]

F. Delduc, M. Magro, and B. Vicedo, An integrable deformation of the AdSs x S°
superstring action, Phys. Rev. Lett. 112 (2014), no. 5 051601, [arXiv:1309.5850|.

[. Kawaguchi, T. Matsumoto, and K. Yoshida, Jordanian deformations of the
AdS5xS® superstring, JHEP 04 (2014) 153, |[arXiv:1401.4855].

T. J. Hollowood, J. L. Miramontes, and D. M. Schmidtt, An integrable
deformation of the adss x s° superstring, J. Phys. A47 (2014), no. 49 495402,
[arXiv: 1409.1538].

E. Bergshoeff, T. de Wit, U. Gran, R. Linares, and D. Roest, (Non-)Abelian
gauged supergravities in nine dimensions, JHEP 10 (2002) 061,
[hep-th/0209205).

J. J. Fernandez-Melgarejo, T. Ortin, and E. Torrente-Lujan, The general gaugings
of mazimal d =9 supergravity, JHEP 10 (2011) 068, |arXiv:1106.1760|.

M. Grana and D. Marqués, Gauged double field theory, JHEP 1204 (2012) 020,
[arXiv:1201.2924].

B. Julia, APPLICATION OF SUPERGRAVITY TO GRAVITATION THEORY,
in International School of Cosmology and Gravitation: Sth Course: Unified Field

Theories of More than Four Dimensions, Including Fxact Solutions Erice, Italy,
May 20-June 1, 1982, pp. 215-235, 1982.

M. Cederwall and J. A. Rosabal, Eg geometry, JHEP 07 (2015) 007,
|arXiv:1504.0484|.

N. Marcus and J. H. Schwarz, Three-dimensional supergravity theories, Nucl.
Phys. B228 (1983) 145.

H. Nicolai and H. Samtleben, Compact and noncompact gauged mazximal
supergravities in three-dimensions, JHEP 04 (2001) 022, |hep-th/0103032].

B. Julia, Infinite Lie algebras in physics, in Johns Hopkins Workshop on Current
Problems in Particle Theory, 1981.

B. Julia, Kac-Moody symmetry of gravitation and supergravity theories, in
Lectures in Applied Mathematics AMS-SIAM, Vol. 21, p. 335, 1985.

H. Nicolai and N. Warner, The structure of N = 16 supergravity in two
dimensions, Commun.Math.Phys. 125 (1989) 369.

T. Damour, M. Henneaux, and H. Nicolai, Eyy and a ‘small tension expansion’ of
M theory, Phys. Rev. Lett. 89 (2002) 221601, [hep-th/0207267|.

136


http://xxx.lanl.gov/abs/1309.5850
http://xxx.lanl.gov/abs/1401.4855
http://xxx.lanl.gov/abs/1409.1538
http://xxx.lanl.gov/abs/hep-th/0209205
http://xxx.lanl.gov/abs/1106.1760
http://xxx.lanl.gov/abs/1201.2924
http://xxx.lanl.gov/abs/1504.0484
http://xxx.lanl.gov/abs/hep-th/0103032
http://xxx.lanl.gov/abs/hep-th/0207267

[106] T. Damour, A. Kleinschmidt, and H. Nicolai, K(Fyg), supergravity and fermions,
JHEP 0608 (2006) 046, |hep-th/0606105|.

[107] P. C. West, Eyy and M theory, Class. Quant. Grav. 18 (2001) 4443-4460,
[hep-th/0104081].

[108] P. C. West, Fy1, SL(32) and central charges, Phys.Lett. B575 (2003) 333-342,
[hep-th/0307098].

[109] G. Bossard, A. Kleinschmidt, J. Palmkvist, C. N. Pope, and E. Sezgin, Beyond
E11, arXiv:1703.0130.

[110] K. Peeters, A field-theory motivated approach to symbolic computer algebra,
Comput. Phys. Commun. 176 (2007) 550-558, |[cs/0608005|.

[111] K. Peeters, Introducing Cadabra: A symbolic computer algebra system for field
theory problems, hep-th/0701238.

[112] Wolfram Research, Inc., Mathematica. Champaign, Illinois, version 8.0 ed., 2010.

[113] K. Koepsell, H. Nicolai, and H. Samtleben, On the Yangian Y (¢s) quantum
symmetry of maximal supergravity in two dimensions, JHEP 04 (1999) 023,
[hep-th/9903111].

[114] K. Koepsell, H. Nicolai, and H. Samtleben, An exceptional geometry for D = 11
supergravity?, Class. Quant.Grav. 17 (2000) 3689-3702, [hep-th/0006034|.

Appendices

A Finding A,

In order to find the last missing contribution A,,,, in the expression (4.3.54) for the
four-form component C),,,, let us study the reduction of the different terms of equation
(4.3.55))

1
m €€Hl,pg.r€klmnp (det G>74/3Xklmnp = 30 Eap B[W,QDEK BUT]B + 8 ﬁukapJT] k

—4 DE;K Copor] - (A1)

By construction, after imposing the generalised Scherk-Schwarz ansatz this equation
should split into a y-dependent part proportional to the D = 5 scalar field equations
(4.1.17), and a y-independent part which determines the function A, ..

The first term on the r.h.s. simply reduces according to the reduction ansatz (4.3.6)

3005 By Dp Bor)” = 3005 VoV By *D,Bon” . (A.2)
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Note that the Kaluza-Klein covariant derivative turns into the SO(p,6 — p) covariant

derivative by virtue of (4.2.58]). With (4.3.43]) and the identity (4.2.68)), we find for the
second term on the r.h.s. of (A.1)

1 i e
8 f[uukopaﬂ k= _5 ybya ﬂuucz} <2 |g| EporrA Mac,NFHAN + \/_sz'i 5acefgh>
+2V2 Fo A, Ag A Kiay ™ Kiea* Kiepy' Zigh) mi - (A.3)

Next, we have to work out the covariant curl of C},, .- with the explicit expression (4.3.54)).
To this end, we first note that for all terms with y-dependence proportional to Y?)°, the
Kaluza-Klein covariant derivative reduces to

DES (V"Y' X)) = V'V DX, (A4)
in view of the property (4.2.58) of the harmonics J*. We thus find
1
—4 DKKC vpor| 2_0 yayb V ’g’ 5,uz/poTD/\ (MNca D)\Mbc,N) —4 D[p,AupUﬂ
1 .
+ 5 \/Eybya Eacdefg D[u (FVpCdAoefA'r]bg + \/EAquApehAUf]AT]bg nhj)
— V2D (Kiat* Kiea Kie)" Zign sin A A, AT A" (A.5)

In order to evaluate the last term it is important to note that unlike in (A.4]), the
Kaluza-Klein covariant derivative here cannot just be pulled through the (non-covariant)
y-dependent functions but has to be evaluated explicitly leading to

3
V2D (ASAS AT A ) = =5 V2 Fu ™ A A A Ky Kiea' Ko™ Zigntan
1
i) V2 Fu A Ar T A Kiea* Kieg) Kign™ Zja kin

3
+ E \/§A[“rsAuuvApCdAJEfAT]ghfcd,rsabsabuvgeyfyh ;

after some manipulation of the functions Ky, Z4). Putting everything together and
again using once more the identity (4.2.69)), the full r.h.s. of equation (A.1)) is given by

r.h.s = 5A yayb V |g 6/.1,1/[)0’7’ (MNCQ DAMbc,N) —4 D[,uAupaT]
+ 5 \/éyayb Ebedefg D[u <prchUefAT]ag + ﬁAVCdApehAafjAT]ag nhj)
1
+ 5 8dfghcej)ajjb F[,ul/depaCAO'beAT]gh +30 €ap yayb B[,uuaaDpBaT]bﬁ

3
+z \/5 Ecsuvge yayb Ndr A[HTSAVuvApchUaeAT] by

poT]

-3 ybya Four™ (2 /18] €porior Mae ™ + V2 QI ceegn) - (A6)
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Some calculation and use of the Schouten identity shows that all terms carrying explicit
gauge fields add up precisely such that their y-dependence drops out due to Y,Y* = 1.
Specifically, we find

1 a c e
ED.,,, = 5 V2 corons FunEpArf
1
r.h.s FAAA = 4_1 [/u/abApCdAgefAT}gh EabedehTfh
1 a ¢ e @
r.h.s AAAAA = E \/514[“ bAz/ dAp onghAT] J 8abcegi NdfMng - (A7>

In addition, we use the D = 5 duality equation (4.1.11]) in order to rewrite the BDB
term of (A.l) and arrive at

1
A'lr,h,s = _% yayb V |g| E/UJpO'TD)\ (MNaC DAMbc,N) - 4D[,LLA1/pch]

1 1
+1_O yayb V |g| Euvpor FH)\N (Mbc,NFH)\aC - 5 10 Eap Ndb MdaN Bnkaﬂ>

1 1
+ g \/§ Eabedef F[;wabFPUCdAT] °f + z_l F[#VabAPCdAUBfAT]gh EabcdehT]fh

1 g
+ E ﬂA[uabAVCdApeonghAr]U Eabeegi Ndf Mhj - (A8>
Structurewise, the r.h.s. of equation (A.1]) is thus of the form
1
BT, = (Su0lo) - ) Eraale) + Exlo). (A9)

Consistency of the reduction ansatz then implies that also the L.h.s. of organizes into
the same structure. The coefficients multiplying the y-dependent factor (Va(y)Vo(y) — & Nas)
must combine into a D = 5 field equation in order to reduce to an y-independent
equation which then provides the defining equation for A, ..

In order to see this explicitly, we recall, that the l.h.s. of is defined by ,
which together with the reduction ansatz for M;n may be used to read off the
form of this term after reduction. After some manipulation of the Killing vectors and
tensors and use of the identities collected in section [£.2.3] we obtain

1
120

e (det G) 3 Xty = —% V2 /18] Y XD (U)K o™ O Uy
- g V18| Vady 1ea M (A.10)

in terms of the SL(6) twist matrix (4.2.37)), and the combination

Xlaede  —  ylabede — 9 ppiesloyOhedyy g slayOhedyp ea (A 17)

of matrix components of (4.1.13)). At first view, the structure of this expression in no way
ressembles the form of (A.9), with a far more complicated y-dependence in its first term.
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This seemingly jeopardizes the consistency of the reduction of equation (A.1)), which after
all should be guaranteed by consistency of the ansatz. What comes to the rescue is some
additional properties of the twist matrix together with some highly non-trivial non-linear
identities among the components of an Eg) matrix. Namely the last factor in the first
term of drastically reduces upon certain index projections

(U0 Kpp " 0mUy" + (U1 Kpag " OmUy* = =27 ,
(U_l)aqK[bc]mﬁqud + (U_l)qu[ca]mﬁqud + (U‘l)cqlC[ab]maqud = 0, (A.12)

as may be verified by explicit computation. Moreover, the tensor X (ebede ¢ defined in
(A.11]) is of quite restricted nature and satisfies
X(ab)cd,ef _ X(a,b)[cd e 5 [c (ab)d]g, e . 5 [c (ab)d]e,g + 5 cx (ab)cd g (A 13)
implying in particular that
X(ab)e[c,d]e _1 X(ab)cd,ee ] <A14>
6

The identity is far from obvious and hinges on the group properties of the ma-
trix . It can be verified by choosing an explicit parametrization of this matrix
(e.g. as given in [1]), at least with the help of some computer algebra [110] 1TT] 1T2].
Combining this identity with the properties of the twist matrix, we conclude that
the first term on the r.h.s. of simplifies according to

2
D (U A" Oly] = 2 XD (U)K "D,

1
= ¢ V2 xlabsde p (A.15)

such that its y-dependence reduces to the harmonics ), ).

As a consequence, together with (A.12)), we conclude that the penultimate term in
(A.10) reduces to

1
_E \/_ \% |g yayb ab che ( - )qu[cd}laquf = 1/|g yayb ‘lb )gc, dg ncd<A 16)

Together with (A.8), equation (A.1]) then eventually reduces to

1
D[;LAVpo'T} = _% yayb V |g|5uupUTD)\ (MNac DAMbc,N)
1 1
+ E V' VI8l €wpor FN (Mbc,NFnAac —3 10 €0 Map My Bmaﬁ)

+ 100 \/]g | Epvpor VaI (10 MoST 4 xlebleed Y iy s

1 1
32 \/5 Eabedef F[,u,l/ F UCdAT]Ef + E F[;wabApCdAoefAT]gh Eabedeh T fh

+ 20 \/‘ AR A AT A A e beegi NapTng (A.17)
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such that the y-dependence of the entire equation organizes into the form . Now the
x-dependent coefficient of the traceless combination (yayb - %nab> precisely reproduces
the D = 5 scalar equations of motion (4.1.17)). In particular, the third line of
coincides with the SL(6) variation of the scalar potential (4.1.15]). This match requires
additional non-trivial relations among the components of an Eg) matrix (4.1.13)

nefMdah(aMb)c,derach _ nefMgaderc,g(aMb)acd : (Alg)
nefMde’c(aMb)%faMda,C'y - 9 Ne Mde,c(aMb)h,ngdg7ch + nefMdah(aMb)c,derach ,

which can be proven similar to (A.13]). From these it is straightforward to deduce that

4 1
lefeed, = o MMM gy ey — 5 1 MM Mg

2 2
+ g 77de]\4cd,g(a]\4l)cvcfngaef + g nefMde,c(aMb)hdaMfach : <A19>

thus matching the expression obtained from variation of the scalar potential in (4.1.17]).
As a consequence, the y-dependent part of equation (|A.17]) vanishes on-shell, such that
the equation reduces to

1 / ac
D[,uAlzpo'T} = _@ ’g| guupa‘rD/\ (MN D)\Mac,N)
1 1 —
+ % \V/ |g| Euvpor FHAN <Mab,NFfi/\ab - 5 10 €apB MNab MaaN BH}\bﬁ)

1 ac. aj)ec
- 600 ¥ [ (10 Mot 4 xteh) 7d6) Ned'laf
1 1
+ 32 V2 Eabedes Fiuw™ Fpo™ An + 16 Fiy™ Ap™ AT Ay ™ apeaentipn

1 g
+ E \/5 A[uabAVCdApEanghAﬂU Eabcegi NdfMhj - (AZO)

This equation can be integrated to yield the function A,,,,. This yields the last missing
part in the reduction ansatz of the IIB four form (4.3.54) and establishes the full type
I1B self-duality equation.

B Eg) conventions

The Egs) generators M split into 120 compact ones X!’/ = —X7! and 128 non-compact
ones Y4, with SO(16) vector indices I,.J,--- € 16, spinor indices A, € 128, and the
collective label M = ([IJ],A). The conjugate SO(16) spinors are labeled by dotted
indices A, B, . ... In this SO(16) basis the totally antisymmetric FEy(s) structure constants
fMNK possess the non-vanishing components:

1

fIJ,KL,MN - _38 51[1{ 5]@JN 7 fIJ,A,B _ _511%3 ) (B.l)



Ey(s) indices are raised and lowered by means of the Cartan-Killing metric

1 1
MN MN M NKL
= —Trt"7t" = — B.2
Ul o cof e (B.2)
with components n? = §48 and n*/ 5F = —26L/. . When summing over antisymmetrized

index pairs [I.J], an extra factor of £ is always understood.

We will also need the projector onto the adjoint representation

1
PMy L = @fMNPfP’C[,
1 M SIC 7 MK 1 MK 1 MK P
= 30 5(/\/50 + 30 (P3s75)nc ~ 910 NN e+ 120 [P ne (B3)

in terms of the Cartan-Killing form and structure constants of Egg) and the projector

(P3grs ) a1 explicitly given by
1 1 1
<P3875)M’CN£ =z 5(/)\4/ 55) T 56 7" e — 14 fPN(M fm’c) : (B.4)

We refer to [113] 114] for other useful Eg) identities.

C Eg) section constraints under SO(16) decomposition

Since the section constraints ([5.1.1]) play a central role in the construction of the excep-
tional field theory, for the coupling of fermions it will be useful to spell out the decom-
position of these constraints under the subgroup SO(16) according to (5.2.2)). With the

es(s) representations of (5.1.1)) decomposing as

19248 ® 3875 — 1@ 1203 128,135 ® 1820 ¢ 1920, , (C.1)
the section constraints take the explicit form

MYV oy @dy = 2VMVN 400 @ Oy,
1

yMEIYNIIR gy @ 0y = — TEV MV p o @ Oy
VM VM o @0 = 0
YMEUTYNINE § @y = —1—166”vMKLVN KL OM ® Ox
YMITYINIKLL ) @ 0y = —irgg@ VMV p oM ® O
FixAV(MIJVN)A M@0y = —1% YD) A VMV O @0y, (C2)

which we will use in the following. Following the above discussion, the same algebraic
constraints hold for derivatives O replaced by the gauge connection B, ¢ or its gauge
parameter g .
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Let us recall from [35] that these section constraints allow for (at least) two inequiva-
lent solutions which break Egg) to GL(8) or GL(7) x SL(2), and in which all fields depend
on only eight or seven among the 248 internal coordinates Y™, respectively. The result-
ing theory then coincides with the bosonic sector of D = 11 and type IIB supergravity,
respectively.

D SO(16) Gamma matrix identities

In this appendix, we give some of the SO(16) gamma matrices identities we have used to
rewrite the curvature R4 in a more compact form. We started with 14 terms quadratic
in the Cartan forms, where a simple counting gives only 12 independent terms. Then
using an explicit representation of the SO(16) gamma matrices together with the section
constraints , we were able to write R4 with 7 independent terms quadratic in the
Cartan forms.

The main identities behind this simplification are the following
VM VM (TR pppaa i = 0, (D.1)
LEal D "V eV s on® = —ADHELAD YV an VN 5o “pa”
STV M VN epmPpn®
~TEVM VN o tpn©

—TIIVM VN 5o (D.2)

E Supersymmetry of the full Egg) Lagrangian

In this appendix, we give the remaining details for the invariance of the Lagrangian
(5.4.1)) under the supersymmetry transformations (/5.3.3)).
E.1 Cancellation of the terms carrying field strengths

We start with a simple check: all terms in F,,™ and G, »( from the supersymmetric vari-
ation of the fermionic terms in the Lagrangian should cancel against the corresponding
contributions from variation of the kinetic and topological terms. The relevant contribu-
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tion on the fermionic side are

4] (—2 €XA7H7V@/’ZL FIIM Pf) — 2 e;’(Av“”eI FII4A D, P}
= —z’e“”p)zAvpeI IR 2t (gul//\/l - fMLKV/c}_WE)
§ (2e"Ppl DY) — 2Py [D,, D, €
— 42 ghvp VMIJ (GV;UJM - fM[KVIC.Fw/£> &éﬁj

+ " Fu M (Ve =9IV e’ (E.1)

where we have used the commutator of two external covariant derivative ((5.2.38). On
the bosonic side, all terms with field strength come from the variation of kinetic and
topological terms

5L — €W AM 4 g DMAR,,
1~ 1 ) _ i
— 8“”’)(—5 QW,M + 5 fMN’CV)CfW,N)(—Zl Vijgll/)pJ + 2 FIIL‘AVMAEI’}/#XA)
Euypf,uuM (nglwpI - EIVM’I/}[)I) + f,uVM gUHvM (EIZ.WVQ/}UI) ’ (E2>

with the exception of an extra contribution from the improved Einstein-Hilbert term

) (—eea“eb”fwM wM“b) — —eea“eb”}"#,,M Swn®

- —eea“eb”}"“,,M (56p[“VM6pb] + ep[aVM(Sepb})
= —eea“eb”}"w,m (e"[aeTb] V m (667(5600))
— —@'eg“"fvaM (Elyl’wf,) ) (E.3)

that cancels the last term of (E.2)). Together, all terms with field strengths vanish.

E.2 Cancellation of the VD, xe terms

From the variation of the vector fields in the bosonic Lagrangian (we have now dropped
all terms with field strengths), we have the following contribution

6L — +ef"M AB,pm — e faun ViV 6AM — e Jiy 0 A,M

—  +4ie fMNKV;C(VNBP“B) VMAFIIL‘AXA’YHEI + 2ie j“/\/l VMAFQA)ZA’YMEI

= —je VMKLVM'P”A F(IL‘I;L)_(A’)/”EI — 2ie VM]JVMPMA FQA)_(A’)/HEJ

+ 2ie T VM AT e (E.4)
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On the fermionic side, the relevant contributions to this sector are
) (—2 e)?Av“y”@Di F;A Pf) — —41 G)ZA’}/’U“’)/VVM (%EJ) FIIM Plf‘VMU
F4i ey IV e TL L PAYM, L (B5)
) (—22’ e )ZAV“DNXA> — 8ie )’(A'y“DuVMeIVMAFiA
—2ie XA'YMVMEIP;?VMJKFQ{AK
—4ie )ZAW”VMEJP;?VMUF;A ; (E.6)
5 (—8 e VML 35,1V (fy“XA)> — 8ie VMU VD,

= =BieVM I X'V uD,e (E.7)

6 (2 VMRV ANT) =20 e VM T A (e T P
= 2e VMIJFZXKXAVM (PYMEKP;‘)
— 4ie VM T XAV MO P L (BS)

Using the commutator

1
VMU [VaeDa e = VML R e

3 1
-0 YNV uPAE + 3 TIEVM Y P e (E.9)

all of the above terms simply reduce to
— 44 e)‘(Afy“fy”VM (vu)e” Fﬁm PAVM; —die VMIJFQAXAVM (’Y“)ejpf
— 2ie VM5 (Vg™ )P FQA)_(A’}/MEJ
—2ie VMAFQA RMH“b )‘(A’y“fyabel + 2ie j“M VMAFQA)ZAWEI
= 4 eVMAFiA (RMVW + % j“M) )ZA')/MEI
= 0, (E.10)

where we have used ([5.2.43) in the last equality.
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E.3 Cancellation of the VD, e terms
Similarly, we collect the vector field contributions in the bosonic Lagrangian

5L — +ej"MAB,pm — e frunViit N 6AM — e T 5AM
—  2ePHAPM (—41/_1“IVM61 + 2V (v, eh) + eeu,,pg””VM(Elz’fy”wgl))
—8e VN VM S Ve PrAYT e — 4€j“MVM1J1;£€J
= BeVMAPHAYIV el — 4V MUV (g P e + 26V (P, iy e
+2ePM DAY v(gan ), iy el
—4e TE VMUV PHEPLeT — de i\ WM ple’ (E.11)

together with the relevant contributions from the fermionic Lagragian

0(2iey"*pIDyby)  — Biey" PVM I Dy (V m(ivwe”) + i, Ve
—dier"™ P YI P AT VM 5 (Vg (ive”) + 17,V )
= —16eVM i D,V pe” + 8et iV e P AT VM g
+8iec VM i D, (V ar(7,)€”)
—4iec" PPN jype’ P T VM B | (E.12)
d(— 26X v 7V¢£F{4A N — 4 VM AT PPV e 7H7V¢I
= —4eVMA(TT) 4P 2"V e
+4eVM (LT g PHPYLV e’ (E.13)
5(8eVM b, YV i, ] — —=8iee"PVM 10, N\, Dye”
+16eVM 50, "y V jDye”
= —8iec™" VM1, Dy (Vary,pe’)
+8ie€“””VM1J@EuIDu(VM’Yp)EJ
+16eVM 0, "V uDye” (E.14)
5(—81'67,EM]VM(’7MXA)FII4AVMA) — 46VMA(FIF‘])AB&ﬁVM(v“v”E‘]PVB)
= AeVMU(T'T) gl Vi (49")e’ PP
+4eVM 4 (T'T7) 40" V e’ PP
+4eVMA(D'T7) Apl V pqe”’ PHP

+4eVM 4 (T'T) aplin " €’V P, " (E.15)



Upon using the commutator
1
VMIJ [VM, Du] e/ = 1 VMIJ RMuab ’YabEJ

1 1
-3 VM VP e — 1 MLV AV P e (E16)

this reduces to
— —SeVMJﬂZ{L‘fJ(RMuW + %j“/vl)
—|—8iee€”p"VM1J@,€70€JRMunpgnﬂ
—8iec”? VM 1 Y, €T R o g7

—82’66"”’0VM1J1%([DW Vol )e’
- 0, (E.17)

where we have used the Schouten identity

5Vpggnu<7zi7u€JRMpna - 1;5’)/“6]72/\4%0 + &i’YpEJRMww) = 5Vpg¢£7p€JRMonuglw )

= 0. (E.18)

This completes the results obtained in section 4 and proves the invariance of the extended

Lagrangian ([5.4.1)) under supersymmetry.
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