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Abstract In this paper, we delve into the thermody-
namic topology of AdS Einstein–Gauss–Bonnet black holes,
employing non-extensive entropy formulations such as Bar-
row, Rényi, and Sharma–Mittal entropy within two distinct
frameworks: bulk boundary and restricted phase space (RPS)
thermodynamics. Our findings reveal that in the bulk bound-
ary framework, the topological charges, influenced by the
free parameters and the Barrow non-extensive parameter (δ),
exhibit significant variability. Specifically, we identify three
topological charges (ω = +1,−1,+1). When the parameter
δ increases to 0.9, the classification changes, resulting in two
topological charges (ω = +1,−1). When δ is set to zero,
the equations reduce to the Bekenstein–Hawking entropy
structure, yielding consistent results with three topological
charges. Additionally, setting the non-extensive parameter λ

in Rényi entropy to zero increases the number of topological
charges, but the total topological charge remains (W = +1).
The presence of the Rényi non-extensive parameter alters the
topological behavior compared to the Bekenstein–Hawking
entropy. Sharma–Mittal entropy shows different classifica-
tions and the various numbers of topological charges influ-
enced by the non-extensive parameters α and β. When α and
β have values close to each other, three topological charges
with a total topological charge (W = +1) are observed.
Varying one parameter while keeping the other constant sig-
nificantly changes the topological classification and num-
ber of topological charges. In contrast, the RPS framework
demonstrates remarkable consistency in topological behav-
ior. Under all conditions and for all free parameters, the topo-
logical charge remains (ω = +1) with the total topologi-
cal charge (W = +1). This uniformity persists even when
reduced to Bekenstein–Hawking entropy, suggesting that the
RPS framework provides a stable environment for studying
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black hole thermodynamics across different entropy models.
These findings underscore the importance of considering var-
ious entropy formulations and frameworks to gain a compre-
hensive understanding of black hole thermodynamics.
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1 Introduction

The area theorem of black holes [1], proposed by Stephen
Hawking, states that the total horizon area of black holes
cannot decrease over time during any physical process that
adheres to the laws of classical physics. This theorem sug-
gests that black holes possess thermodynamic properties,
as they mirror the behavior of entropy in thermodynamic
systems. Jacob Bekenstein further developed this idea by
proposing that the entropy of a black hole is proportional
to the area of its event horizon. This relationship, known
as the Bekenstein–Hawking entropy, highlights a profound
connection between the geometry of black holes and ther-
modynamic entropy [2,3]. The analogy between black hole
thermodynamics and classical thermodynamics was further
solidified by Stephen Hawking’s discovery of Hawking radi-
ation. This phenomenon occurs due to quantum effects near
the event horizon, causing black holes to emit thermal radia-
tion. As a result, black holes can be assigned a temperature,
known as the Hawking temperature, which is inversely pro-
portional to their mass [4–6].

Recently introduced a groundbreaking method to examine
the topological charge of black holes. This method interprets
black hole solutions as topological defects within the ther-
modynamic parameter space. By employing the generalized
off-shell free energy, they categorized black holes based on
their topological charge, which is determined by the winding
numbers of these defects. Black holes with positive winding
numbers are considered locally stable, while those with nega-
tive winding numbers are deemed locally unstable. This inno-
vative approach offers a new perspective on the thermody-
namic stability of black holes and provides valuable insights
into phase transitions and critical phenomena in black hole
thermodynamics. It has been applied to various black holes,
including those in anti-de Sitter (AdS) spacetime, uncovering
new types of critical points and phase behaviors [7,8].

The topological method for black hole thermodynamics
has become popular due to its straightforwardness in exam-
ining thermodynamic properties. It has been utilized to inves-
tigate the Hawking-Page phase transition of Schwarzschild-
AdS black holes and their holographic counterparts, which
relate to the confinement-deconfinement transition in gauge
theories. Quantum gravity corrections, expressed through
higher-derivative terms, have been studied for black holes
in Einstein–Gauss–Bonnet and Lovelock gravity. These cor-
rections shed light on the behavior of black holes in higher-
dimensional spacetimes and the effects of quantum gravity.
Although these studies mainly focus on static black holes,
the topological approach has also been extended to rotating
black holes, offering significant insights into their thermo-
dynamic properties, stability, topological classification, and
topological photon spheres [9–42].

In this article, we aim to explore the topology of holo-
graphic thermodynamics using non-extensive entropies such
as Barrow, Rényi, and Sharma–Mittal entropy. Our objec-
tive is to identify the topological class of these black holes
and compare it with the Bekenstein–Hawking entropy. Non-
extensive entropy, often linked with Tsallis entropy, is a
generalization of the traditional Boltzmann–Gibbs entropy.
This concept was introduced by Tsallis to address systems
where the conventional assumptions of extensive entropy do
not apply. In classical thermodynamics, entropy is extensive,
meaning it scales linearly with the system’s size. However,
many physical systems exhibit non-extensive behavior due
to long-range interactions, fractal structures, or other com-
plexities [43–48]. Non-extensive entropy has been applied
to various astrophysical phenomena, including the distribu-
tion of stellar objects and the dynamics of galaxy clusters.
It aids in modeling systems where gravitational interactions
are long-range and cannot be described by extensive entropy.
Non-extensive entropy extends information theory concepts
to systems with non-standard probability distributions. It is
utilized in coding theory, data compression, and the analysis
of complex networks [43–48].

Holographic thermodynamics is a framework that applies
the principles of holography to the study of black hole ther-
modynamics. This approach often involves the AdS/CFT cor-
respondence, which posits a relationship between a gravita-
tional theory in an anti-de Sitter (AdS) space and a conformal
field theory (CFT) on its boundary. This duality allows physi-
cists to study complex gravitational systems using quantum
field theories’ simpler, well-understood properties. Thus, one
can study two spaces with features such as bulk-boundary
correspondence and restricted phase space. Bulk-boundary
correspondence is a principle that connects the properties of
a bulk system (like a black hole in AdS space) with those
of its boundary (the CFT). This correspondence is crucial in
understanding topological phases of matter and has applica-
tions in condensed matter physics and high-energy physics.
It essentially states that the behavior of a system’s boundary
can reveal information about the bulk properties [49–63].
Restricted phase space thermodynamics is a newer formal-
ism that modifies traditional black hole thermodynamics by
fixing certain parameters, such as the AdS radius, as con-
stants. This approach eliminates the need for pressure and
volume as thermodynamic variables, instead using the cen-
tral charge and chemical potential. This formalism maintains
the Euler relation equation, providing a consistent framework
for studying black hole thermodynamics [49–63].

Based on these explanations, we will organize the article
as follows:

In Sect. 2, we will delve into the concept of Nonextensive
Entropy. This section will cover some models and formulas
and their applications in various physical systems. We will
overview the Nonextensive Entropy, associated with Bar-
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row, Rényi, and Sharma–Mittal, which extends the traditional
Boltzmann–Gibbs framework to accommodate systems with
long-range interactions, fractal structures, and other com-
plexities that exhibit non-extensive behavior. Section 3 will
explain the thermodynamic topology using the generalized
Helmholtz free energy method. We will discuss how this
method allows us to classify black holes based on their topo-
logical charge, determined by the winding numbers of topo-
logical defects in the thermodynamic parameter space. This
section will also overview the implications of this classifi-
cation for understanding the stability and phase transitions
of black holes. In Sect. 4, we will provide a comprehensive
overview of the black hole model within the frameworks of
bulk-boundary correspondence and restricted phase space.
This section will include detailed calculations and discus-
sions on the thermodynamic topology of the model, with
a particular focus on non-extensive entropies such as Bar-
row, Rényi, and Sharma–Mittal entropy. We will examine
how these entropies influence the thermodynamic properties
and stability of black holes, and compare them with the tra-
ditional Bekenstein–Hawking entropy. Finally, Sect. 5 will
present our conclusions and summarize the key findings of
our study. We will reflect on the insights gained from our
exploration of non-extensive entropies and thermodynamic
topology, and discuss the broader implications of our results
for the field of black hole thermodynamics. This section will
also suggest potential directions for future research, building
on the foundations laid by our work.

2 Non-extensive entropy

Non-extensive entropy is an extension of the traditional
Boltzmann–Gibbs entropy, introduced by Constantino Tsal-
lis. This concept is particularly useful for systems that
exhibit non-linearity and a strong dependence on initial con-
ditions. Unlike Boltzmann–Gibbs entropy, which assumes
that entropy scales linearly with the size of the system, non-
extensive entropy can handle systems where this linearity
does not hold. This makes it applicable to a wide range of
fields, including theoretical physics, cosmology, and statis-
tical mechanics. It is especially relevant for systems with
long-range interactions, fractal structures, or memory effects
[64].

2.1 Rényi entropy

Rényi entropy is one form of non-extensive entropy that has
been used to study black hole thermodynamics. It is defined
by a parameter that adjusts the degree of non-extensiveness.
This parameter must fall within a specific range to ensure
the entropy function remains well-defined. When applied to
black holes, Rényi entropy provides a framework for under-

standing their thermodynamic properties in a way that gen-
eralizes the traditional Boltzmann–Gibbs statistics [65–67].

SR = 1

λ
ln(1 + λSBH ) (2.1)

The parameter (λ) in non-extensive entropy plays a crucial
role in defining the entropy function. For the entropy func-
tion to remain well-defined, (λ) must lie within the range
(−∞ < λ < 1). Values outside this range make the entropy
function convex and thus ill-defined. In the context of black
hole thermodynamics using Rényi statistics, the entropy (SR)

is properly defined when (λ) is between 0 and 1. Within this
interval, (λ) exhibits favorable thermodynamic properties, as
demonstrated in recent studies. Notably, as the Rényi param-
eter (λ) approaches zero, the generalized off-shell free energy
converges to the classical Boltzmann–Gibbs statistics.

2.2 Sharma–Mittal entropy

Another important form of non-extensive entropy is the
Sharma–Mittal entropy, which generalizes both Rényi and
Tsallis entropies. This entropy has been particularly insight-
ful in cosmological studies, such as describing the acceler-
ated expansion of the universe by effectively utilizing vac-
uum energy. Although non-extensive entropies have been
used to study black holes, the Sharma–Mittal entropy has
not yet been extensively applied in this context. This presents
an opportunity to explore the thermodynamic properties of
black holes using Sharma–Mittal entropy, considering them
as strongly coupled gravitational systems [69–71],

SSM = 1

α

(
(1 + βST )

α
β − 1

)
. (2.2)

In this context, ST denotes the Tsallis entropy, which is
derived from the horizon area (A = 4πr2), where r is
the radius of the black hole’s event horizon. The parame-
ters α and (β) are adjustable and need to be calibrated using
observational data. Interestingly, when α approaches zero,
the Sharma–Mittal entropy simplifies to the Rényi entropy.
Similarly, when α equals (β), it reduces to the Tsallis entropy.

2.3 Barrow entropy

Barrow entropy is another intriguing concept that arises from
quantum gravity effects. These effects can deform the surface
of a black hole, resulting in a fractal structure. This defor-
mation modifies the black hole’s entropy, leading to what is
known as Barrow entropy. The extent of these deformations
is measured by a parameter, and depending on its value, the
entropy can range from the traditional Bekenstein–Hawking

123



  435 Page 4 of 15 Eur. Phys. J. C           (2025) 85:435 

entropy (with no fractal structure) to a highly deformed, com-
plex fractal structure [72,73],

SB =
(

A

API

) 1+δ
2

(2.3)

In this context, A denotes the area of the black hole’s event
horizon, while API refers to the Planck area. The parameter
δ quantifies the degree of quantum gravity-induced defor-
mations on the event horizon, ranging from 0 to 1. When
δ is zero, the entropy reverts to the Bekenstein–Hawking
form, indicating no fractal deformation. This scenario aligns
with the conventional analysis of Reissner–Nordström AdS
black holes without any fractal modifications. On the other
hand, a δ value of one represents the maximum deformation,
resulting in a highly complex fractal structure of the event
horizon. In summary, non-extensive entropies like Rényi,
Sharma–Mittal, and Barrow entropies provide powerful tools
for exploring the thermodynamic properties of black holes.
They offer new perspectives and insights, particularly in sys-
tems where traditional thermodynamic assumptions do not
apply. These concepts continue to expand our understanding
of black holes and their role in the universe.

3 AdS Einstein–Gauss–Bonnet black holes

AdS Einstein–Gauss–Bonnet (EGB) black holes are solu-
tions in anti-de Sitter space that incorporate a higher-order
curvature correction term. These black holes emerge from
the EGB equations with a negative cosmological constant.
Depending on the mass, charge, and Gauss–Bonnet coupling
constant, these black holes can have either one or two hori-
zons. They exhibit a Hawking temperature, entropy, and elec-
trical potential, all of which comply with the first law of ther-
modynamics. A distinctive feature of AdS EGB black holes
is their phase transition behavior. They can transition from a
small black hole to a large black hole, or vice versa, when the
temperature or pressure reaches a critical value. This phase
transition is different from the liquid–gas phase transition
seen in Van der Waals fluids and is influenced by the sign and
magnitude of the Gauss–Bonnet coupling constant. The ther-
modynamics of AdS EGB black holes focuses on understand-
ing the properties and behavior of these solutions in relation
to their mass, temperature, entropy, heat capacity, and free
energy. We consider the metric for a general spherically sym-
metric, D-dimensional charged Gauss–Bonnet black hole in
AdS spacetime, expressed as [74–82],

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�2

D−2, (3.1)

where d�2
D−2 represents the metric of a unit (D − 2)-

dimensional sphere. The metric function f (r), known as the
blackening factor, is given by,

f (r) = 1 + r2

2a

⎡
⎣1 −

√
1 + 4a

(
ω

r D−1 − q2

r2D−4 − 1

L2

)⎤
⎦ ,

(3.2)

where ω and q are parameters linked to the black hole’s mass
and charge, respectively, a is the Gauss–Bonnet coupling
constant, and L is the AdS radius, which relates to the cos-
mological constant 	 through,

	 = − (D − 1)(D − 2)

2L2 .

In the Gibbons–Hawking framework for black hole thermo-
dynamics, the canonical ensemble’s partition function for a
black hole is expressed through a gravitational path integral
[74–82],

Zgrav(β) =
∫

D[g]e−IE [g],

where β represents the period of Euclidean time, correspond-
ing to the inverse temperature of the canonical ensemble. The
term D[g] denotes the measure of integration over all possi-
ble metrics, and IE [g] stands for the Euclidean gravitational
action. The gravitational partition function Zgrav(β) can be
approximated as:

Zgrav(β) ∼ e−IE [g], (3.3)

where g denotes the metric of the fluctuating Gauss–Bonnet
black hole. In the context of Einstein–Gauss–Bonnet gravity
coupled with an electromagnetic field, the Euclidean gravi-
tational action is expressed as,

IE = − 1
16π

∫
M

√
g dDx

(
R − 2	 + a

(D−3)(D−4)
LGB

−4πFμνFμν

)
, (3.4)

where R is the Ricci scalar curvature, 	 represents the cos-
mological constant, and a is the Gauss–Bonnet coupling con-
stant. The Gauss–Bonnet term LGB is defined as,

LGB = R2 − 4RμνR
μν + RμνλρR

μνλρ. (3.5)

The bulk action for the Gauss–Bonnet AdS black hole, after
subtracting the background AdS action, is expressed as [74–
82],

I = 1

16π
(D − 2)β�D−2r

D−5
h

(
r2
h + r4

h

L2 + a

)
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− 1

4

β

βH
�D−2r

D−2
h

(
1 + 2a(D − 2)

(D − 4)r2
h

)
, (3.6)

where the limit r0 → ∞ is applied. This expression can
alternatively be written as,

I = β

(
M − 1

2
Q�H

)
− β

βH
S.

Finally, the gravitational action is expressed as,

IE = 1

16π
(D − 2)β�D−2

(
r D−3
h + 16π

(D − 1)(D − 2)
PrD−1

h

+ar D−5
h + q2

r D−3
h

)
− 1

4
�D−2r

D−2
h

(
1 + 2a(D − 2)

(D − 4)r2
h

)
,

(3.7)

where the mass parameter ω is expressed as a function of
the black hole radius rh , and the cosmological constant has
been reintroduced as the thermodynamic pressure, given by
the relation,

P = (D − 1)(D − 2)

16πL2 .

For a canonical ensemble, the free energy is defined using
the semiclassical approximation as,

F = − 1

β
ln Zgrav(β) = IE

β
,

which simplifies to,

F = 1

16π
(D − 2)�D−2

(
r D−3
h + 16π

(D − 1)(D − 2)
Pr D−1

h

+ar D−5
h + q2

r D−3
h

)

−1

4
T�D−2r

D−2
h

(
1 + 2a(D − 2)

(D − 4)r2
h

)
.

This represents the generalized free energy of the fluctuating
Gauss–Bonnet AdS black hole, previously established using
the thermodynamic relation F = M − T S [74–82]. To clar-
ify further, we recall that the energy E and entropy S of a
canonical ensemble at a temperature T = 1/β can be derived
from the free energy as follows,

E = ∂

∂β
(βF) = 1

16π
(D − 2)�D−2

(
r D−3
h + 16π

(D − 1)(D − 2)
Pr D−1

h

+ar D−5
h + q2

r D−3
h

)
, (3.8)

S = β(E − F) = 1

4
�D−2r

D−2
h

(
1 + 2a(D − 2)

(D − 4)r2
h

)
. (3.9)

It is evident that both the energy E and entropy S are indepen-
dent of the inverse temperature β. By identifying the energy
E with the black hole mass M , the thermodynamic definition
of the generalized free energy can be expressed as,

F = M − T S = 1

16π
(D − 2)�D−2

(
r D−3
h

+ 16π

(D − 1)(D − 2)
Pr D−1

h + ar D−5
h + q2

r D−3
h

)

− 1

4
T�D−2r

D−2
h

(
1 + 2a(D − 2)

(D − 4)r2
h

)
. (3.10)

The metric function f (r) for the 4D AdS EGB black hole
is given by,

f (r) = 1 + r2

2a

⎛
⎝1 −

√
1 + 4a

(
2M

r3 − q2

r4 − 1

l2

)⎞
⎠ .

(3.11)

Here, M is the mass parameter, q is the electric charge, 	 is
the cosmological constant, and a is the Gauss–Bonnet cou-
pling constant. The temperature of the black hole is deter-
mined by,

T = f ′(rh)
4π

. (3.12)

This comprehensive framework allows for the exploration
of the thermodynamic properties of AdS EGB black holes,
providing insights into their stability, phase transitions, and
overall behavior in higher-dimensional spacetimes.

4 Thermodynamic topology

Recent advancements have introduced innovative meth-
ods for analyzing and computing critical points and phase
transitions in black hole thermodynamics. One prominent
approach is the topological method, which leverages Duan’s
topological current φ-mapping theory to adopt a topologi-
cal perspective in thermodynamics [7,8]. To investigate the
thermodynamic properties of black holes, various quantities
such as mass and temperature are used to describe the gen-
eralized free energy. Given the relationship between mass
and energy in black holes, the generalized free energy func-
tion is expressed as a standard thermodynamic function. The
Euclidean time period τ and its inverse, the temperature T ,
are key components in this formulation. The generalized free
energy is considered on-shell only when τ equals the inverse
of the Hawking temperature [7,8]. A vector φ is constructed
to facilitate this analysis, with components derived from the
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partial derivatives of the generalized free energy. The direc-
tion of this vector is significant, as it points outward at specific
angular positions, indicating the ranges for the horizon radius
and angular coordinates. Using Duan’s φ-mapping topologi-
cal current theory, a topological current can be defined, which
is conserved according to Noether’s theorem. To determine
the topological number, the topological current is reformu-
lated, incorporating the Jacobi tensor. This tensor simplifies
to the standard Jacobi form under certain conditions, and
the conservation equation reveals that the topological cur-
rent is non-zero only at specific points. Through detailed cal-
culations, the topological number or total charge W can be
expressed, involving the Hopf index and the sign of the topo-
logical current at zero points. The winding number, which is
independent of the region’s shape, directly relates to black
hole stability. A positive winding number corresponds to a
stable black hole state, while a negative winding number indi-
cates instability. This topological approach provides a robust
framework for understanding the stability and phase transi-
tions of black holes, offering new insights into their thermo-
dynamic behavior. Over the years, researchers have proposed
numerous methods to calculate the generalized Helmholtz
free energy, offering varied perspectives on this concept. In
our analysis, we focus on exploring the topological structure
of black hole thermodynamics. Based on this approach, we
present the generalized Helmholtz free energy in the follow-
ing form, [7,8]

F = M − S

τ
, (4.1)

In this context, τ signifies the Euclidean time period, and
its inverse, T , represents the temperature of the system. The
generalized free energy is considered on-shell only when τ

matches the inverse of the Hawking temperature. To facilitate
this analysis, a vector (φ) is constructed with components
derived from the partial derivatives as follows,

φ =
(

∂F
∂rH

,− cot � csc �

)
. (4.2)

In this scenario, (φ� becomes infinite, and the vector points
outward at the angles (� = 0) and (� = π). The permissi-
ble ranges for the horizon radius (rH ) and the angle (�) are
from 0 to infinity and from 0 to (π), respectively. By apply-
ing Duan’s (φ)-mapping topological current theory, we can
define a topological current as follows:

jμ = 1

2π
εμνρεab∂νn

a∂ρn
b, μ, ν, ρ = 0, 1, 2, (4.3)

In this formulation,n is defined as (n1, n2), where (n1 = φrh

|φ| )
and (n2 = φ�

|φ| ). According to the conservation equation,

the current ( jμ) is non-zero exclusively at the points where
(φ = 0). Based on Noether’s theorem, the topological cur-
rents remain conserved, which can be written as,

∂μ jμ = 0.

The expression for jμ is given by,

jμ = δ2(φ)Jμ

(
φ

x

)
,

where,

εab Jμ

(
φ

x

)
= εμνρ∂νφ

a∂ρφb.

The Jacobi vector corresponds to a specific case of the gen-
eralized Jacobi vector, where μ = 0. The determinant of the
Jacobi matrix is defined as:

J 0
(

φ

x

)
= ∂(φ1, φ2)

∂(x1, x2)
.

After performing the necessary calculations, the topological
number or total charge W can be determined as follows:

W =
∫

�

j0d2x =
n∑

i=1

βiηi =
n∑

i=1

ωi . (4.4)

In this context, (βi ) represents the positive Hopf index, which
counts the number of loops made by the vector (φa) in the
(φ)-space when (xμ) is close to the zero point (zi ). Mean-
while, (ηi ) is defined as the sign of ( j0(φ/x)zi ), which can be
either +1 or −1. The term (ωi ) denotes the winding number
associated with the (i)th zero point of (φ) within the region
(�)

4.1 Bulk boundary thermodynamics

In this subsection, we consider the 4D AdS Einstein–Gauss–
Bonnet (EGB) black hole. The metric function for this black
hole is given by,

f (r) = 1 + r2

2a

⎛
⎝1 −

√
1 + 4a

(
2MG

r3 − q2G

r4 − 1

l2

)⎞
⎠ .

(4.5)

The radius of the anti-de Sitter (AdS) space and the entropy
for this black hole are expressed as,

l = 1

4

√
6

PGπ
, S = r2

hπ

G
+ 4 ln

(
rh√
a

)
aπ. (4.6)

The Hawking temperature of the AdS EGB black hole,
rewritten according to the relevant equation, is,
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T = 8PGπr4
h − q2G + r2

h − a

4r3
hπ + 8rhaπ

, (4.7)

The variable cosmological constant for this model is given
by,

G = − −r4
h + 5ar2

h + 2a2

8Pπr6
h + 48Pπar4

h + 3q2r2
h + 2aq2

. (4.8)

4.1.1 Thermodynamic topology within Barrow statistics

Here, we explore the thermodynamic topology within the
framework of Barrow entropy for bulk boundary thermo-
dynamics. Using Eqs. (2.3), (4.1), and (4.5), we derive the
function F .

F = 1

6

⎛
⎜⎜⎜⎜⎝

−
6

(
4πa log

(
rh√
a

)
+ πr2

h
G

) δ
2 +1

τ

+ 3a

Grh
+ 3rh

G
+ 8π Pr3

h + 3Q2

rh

⎞
⎟⎟⎟⎟⎠

.

Consequently, we can calculate φrh and φθ with respect to
Eq. (4.2) as follows,

φrh = −
τ

(
a + G

(
Q2 − 8π Pr4

h

) − r2
h

) + 2π(δ + 2)rh
(
2aG + r2

h

) (
4πa ln

(
rh√
a

)
+ πr2

h
G

)δ/2

2Gr2
hτ

(4.9)

and

φθ = −cot(θ)

sin(θ)
(4.10)

Additionally, we determine τ as follows,

τ =
2π(δ + 2)rh

(
2aG + r2

h

) (
4πa ln

(
rh√
a

)
+ πr2

h
G

)δ/2

−a + 8πGPr4
h − GQ2 + r2

h

(4.11)

In our study, we investigate the thermodynamic topology
of AdS Einstein–Gauss–Bonnet black holes using non-
extensive entropy formulations, such as Barrow, Rényi, and
Sharma–Mittal entropy, within two frameworks: bulk bound-
ary and RPS thermodynamics. We first explore the thermody-

namic topology in the bulk boundary framework. The illus-
trations are divided, with normalized field lines shown on the
right. Figures 1, 2, and 3 display the results for Barrow, Rényi,
and Sharma–Mittal entropy, respectively. Figure 1b, d, and h
reveal three zero points, indicating topological charges deter-
mined by the free parameters and the non-extensive parame-
ter δ. These charges, which correlate with the winding num-
ber, are located within the blue contour loops at coordinates
(r, θ). The sequence of these illustrations is governed by the
parameter δ.

The findings from these figures highlight a distinctive fea-
ture: three topological charges (ω = +1,−1,+1) and the
total topological charge W = +1, represented by the zero
points enclosed within the contour. Our analysis examines
black hole stability by evaluating the winding numbers. Pos-
itive winding numbers suggest the thermodynamic stability
of the on-shell black hole.

Additionally, as shown in Fig. 1f, when the parameter δ

increases to 0.9, the classification changes, and we observe
two topological charges (ω = +1,−1) with a total topo-
logical charge W = 0. Also, as shown in Fig. 1h, when
the parameter δ is set to zero, our equations reduce to the
Bekenstein–Hawking entropy structure, yielding the same
results as in Fig. 1b and d. Figure 1h shows three topological
charges (ω = +1,−1,+1) with a total topological charge
W = +1. The inclusion of the Gauss–Bonnet term does not
lead to any changes in the topological numbers or the classifi-
cations they represent. The fundamental characteristics, such
as topological charges and the invariants defining the topol-

ogy, remain consistent regardless of such modifications. This
demonstrates that the topology is independent of these spe-
cific adjustments and is governed by the intrinsic properties
of the spacetime manifold.

4.1.2 Thermodynamic topology within Rényi statistics

We also extend our study to include Rényi entropy within the
context of bulk boundary thermodynamics. By utilizing Eqs.
(2.1), (4.1), and (4.5), we derive the function F .

F = 3a + 8πGPr4
h + 3GQ2 + 3r2

h

6Grh

−
log

(
4πaλ log

(
rh√
a

)
+ πλr2

h
G + 1

)

λτ
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Fig. 1 The curve described by Eq. (4.11) is illustrated in a, c, e, and g. In b, d, f, and h, the zero points (ZPs) are located at coordinates (r,�) on
the circular loops, corresponding to the nonextensive parameter δ

Consequently, we can calculate φrh with respect to Eq. (4.2)
as follows,

φrh = −
a−8πGPr4

h−r2
h

G + 4πrh
(
2aG+r2

h

)

τ
(

4πaGλ ln
(

rh√
a

)
+G+πλr2

h

) + Q2

2r2
h

(4.12)

Furthermore, we determine τ as follows,

τ = −
4π

(
2aG2rh + Gr3

h

)
(
a − 8πGPr4

h + GQ2 − r2
h

) (
4πaGλ ln

(
rh√
a

)
+ G + πλr2

h

)

(4.13)

Figure 2 shows the results for Rényi entropy. As seen in
Fig. 2, by setting the parameter λ to zero,

the number of topological charges increases (ω = +1,−1,+1)

with the total topological charge W = +1. The number of
total topological charges in the Bekenstein–Hawking entropy
differs with the presence of the Rényi non-extensive parame-
ter. We encounter a single topological charge (ω = +1) with
the total topological charge W = +1, as shown in Fig. 2b,
d, and f.

4.1.3 Thermodynamic topology within Sharma–Mittal
statistics

We further extend our study to incorporate Sharma–Mittal
entropy within the framework of bulk boundary thermody-
namics. By employing Eqs. (2.2), (4.1), and (4.5), we derive
the function F .

F =
G

(
−6rh

((
4πaβ log

(
rh√
a

)
+ πβr2

h
G + 1

)α/β

− 1

)
+ 8παPr4

hτ + 3αQ2τ

)
+ 3ατ

(
a + r2

h

)

6αGrhτ
. (4.14)

Also, we can calculate φrh using Eq. (4.2) as follows,
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Fig. 2 The curve described by Eq. (4.13) is illustrated in a, c, e, and g. In b, d, f, and h, the zero points (ZPs) are located at coordinates (r,�) on
the circular loops, corresponding to the nonextensive parameter λ

φrh = −
a−8πGPr4

h−r2
h

G +
4πrh

(
2aG+r2

h

)(
4πaβ ln

(
rh√
a

)
+ πβr2

h
G +1

)α/β

τ
(

4πaβG ln
(

rh√
a

)
+G+πβr2

h

) + Q2

2r2
h

(4.15)

Here, we calculate τ as follows,

τ =
4πGrh

(
2aG + r2

h

)(
4πaβ log

(
rh√
a

)
+ πβr2

h
G + 1

)α/β

(
−a + 8πGPr4

h − GQ2 + r2
h

) (
4πaβG ln

(
rh√
a

)
+ G + πβr2

h

)

(4.16)

Figure 3 illustrates Sharma–Mittal entropy with different
classifications and the number of topological charges influ-
enced by the Sharma–Mittal entropy non-extensive param-
eters α and β. As shown in Fig. 3, when the non-extensive
parameters α and β have values close to each other, they
exhibit three topological charges (ω = +1,−1,+1) with a
total topological charge W = +1.

However, by keeping one parameter constant and varying
the other, both the number of topological charges and the
topological classification change completely. These changes
in topological charges and classification are evident in Fig.
3. This demonstrates that the classification and number of
topological charges are significantly influenced by the non-
extensive parameters α and β, highlighting the importance
of using these non-extensive entropies compared to the usual
Bekenstein–Hawking case.

4.2 RPS thermodynamics

In this section, we will rederive the equations for a 4D
AdS Einstein–Gauss–Bonnet (EGB) black hole. The entropy,
based on above equation in RPS thermodynamics, are given
by,

q = q̂√
C

, S = Cr2
hπ

l2
+4 ln

(
rh√
a

)
aπ, G = l2

C
(4.17)
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Fig. 3 The curve described by Eq. (4.16) is illustrated in a, c, e, g, and i. In b, d, f, h, and j, the zero points (ZPs) are located at coordinates (r,�)

on the circular loops, corresponding to the nonextensive parameters (α) and (β)

The temperature T is expressed as,

T = − q̂2l4

C2 + l2r2
h + 3r4

h − l2a

4(r2
h + 2a)rhl2π

. (4.18)

The parameter C is determined by,

C =
√

−(−l2r4
h + 3r6

h + 5l2ar2
h + 18ar4

h + 2a2l2)(3r2
h + 2a)l2q̂

−l2r4
h + 3r6

h + 5l2ar2
h + 18ar4

h + 2a2l2

(4.19)

4.2.1 Thermodynamic topology within Barrow statistics

Similar to the previous section, we can study the incorpora-
tion of non-extensive entropy within the framework of RPS
thermodynamics. For Barrow entropy, by employing Eqs.
(2.3), (4.1), and (4.17), we derive the function F .

F = C2
(
l2

(
a + r2

h

) + r4
h

) + l4q̂2

2Cl4rh

−

(
4πa log

(
rh√
a

)
+ πCr2

h
l2

) δ+2
2

τ

.
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Subsequently, we calculate φrh using Eq. (4.2) as follows,

φrh =
τ

(−aC2l2 + C2l2r2
h + 3C2r4

h + l4
(−q̂2

)) − 2πC(δ + 2)l2rh
(
2al2 + Cr2

h

) (
4πa ln

(
rh√
a

)
+ πCr2

h
l2

)δ/2

2Cl4r2
h τ

(4.20)

The (τ ) is obtained as follows,

τ =
2πC(δ + 2)l2rh

(
2al2 + Cr2

h

)(
4πa ln

(
rh√
a

)
+ πCr2

h
l2

)δ/2

−aC2l2 + C2l2r2
h + 3C2r4

h + l4
(−q̂2

)

(4.21)

A particularly intriguing aspect of this study is its exten-
sion to the restricted phase space (RPS). When we continue
our investigations in this space using the two mentioned
entropies, we observe that, under all conditions and for all
free parameters, the topological charge consistently remains
(ω = +1) with a total topological charge W = +1. This
consistency indicates a stable topological structure within
the RPS framework, regardless of the specific values of the
free parameters.

Additionally, when we reduce the analysis to Bekenstein–
Hawking entropy within RPS, we observe similar behavior.
This suggests that, unlike in the bulk boundary space, the RPS
framework exhibits a uniform topological behavior across
both non-extensive entropy and Hawking entropy states. This
uniformity is illustrated in Figs. 4, 5, and 6, where the topo-
logical charges and their configurations remain consistent.

4.2.2 Thermodynamic topology within Rényi statistics

For Rényi entropy, by utilizing Eqs. (2.1), (4.1), and (4.17),
we derive the function F .

F = C2
(
l2

(
a + r2

h

) + r4
h

) + l4q̂2

2Cl4rh

−
log

(
4πaλ log

(
rh√
a

)
+ πCλr2

h
l2

+ 1

)

λτ
.

Subsequently, we calculate φrh using Eq. (4.2) as follows,

φrh = −

4πrh
(
2al2+Cr2

h

)

τ
(

4πaλl2 ln
(

rh√
a

)
+πCλr2

h+l2
) + aC

l2
− Cr2

h

(
l2+3r2

h

)
l4

+ q̂2

C

2r2
h

(4.22)

Also, we have,

τ = − 4π
(
2aCl6rh + C2l4r3

h

)
(
aC2l2 − C2l2r2

h − 3C2r4
h + l4q̂2

) (
4πaλl2 ln

(
rh√
a

)
+ πCλr2

h + l2
) (4.23)

The implications of these findings are significant. They
suggest that the RPS framework provides a robust and stable
environment for studying the thermodynamic properties of
black holes, irrespective of the entropy model used. This sta-
bility is crucial for understanding the fundamental nature of
black hole thermodynamics and could provide insights into
the behavior of black holes under various theoretical models.

4.2.3 Thermodynamic topology within Sharma–Mittal
statistics

Here, with respect to Eqs. (2.2), (4.1), and (4.2), the φrh is cal-
culated for Sharma–Mittal entropy in RPS thermodynamics
as follows,
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Fig. 4 The curve described by Eq. (4.21) is illustrated in a, c, and e. In b, d, and f, the zero points (ZPs) are located at coordinates (r,�) on the
circular loops, corresponding to the nonextensive parameter δ

Fig. 5 The curve described by Eq. (4.23) is illustrated in a, c, and e. In b, d, and f, the zero points (ZPs) are located at coordinates (r,�) on the
circular loops, corresponding to the nonextensive parameter (λ)

F = C2
(
l2

(
a + r2

h

) + r4
h

) + l4q̂2

2Cl4rh

−

(
4πaβ log

(
rh√
a

)
+ πβCr2

h
l2

+ 1

)α/β

− 1

ατ
.

and

φrh = −
C2

(
l2

(
a+r2

h

)+r4
h

)+l4q̂2

Cr2
h

+
4πl2

(
2al2+Cr2

h

)(
4πaβ ln

(
rh√
a

)
+ πβCr2

h
l2

+1

) α
β

−1

rhτ
− 2C

(
l2 + 2r2

h

)

2l4
(4.24)

Then we can calculate the τ ,

τ =
4πCl4rh

(
2al2 + Cr2

h

) (
4πaβ ln

(
rh√
a

)
+ πβCr2

h
l2

+ 1

)α/β

(−aC2l2 + C2l2r2
h + 3C2r4

h + l4
(−q̂2

)) (
4πaβl2 ln

(
rh√
a

)
+ πβCr2

h + l2
) (4.25)

Moreover, the consistency in topological charges within
RPS, as opposed to the variability observed in the bulk bound-
ary space, highlights the potential advantages of using RPS
for such studies. It underscores the importance of considering
different frameworks and entropy models to gain a compre-
hensive understanding of black hole thermodynamics.

In summary, the extension of our study to the restricted
phase space reveals a stable and consistent topological struc-
ture across different entropy models, providing valuable
insights into the thermodynamic behavior of black holes.
This consistency, illustrated in the figures, emphasizes the
robustness of the RPS framework in capturing the essential
features of black hole thermodynamics.

5 Conclusion

In this paper, we explore the thermodynamic topology of AdS
Einstein–Gauss–Bonnet black holes using non-extensive
entropy formulations, including Barrow, Rényi, and Sharma–
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Fig. 6 The curve described by Eq. (4.25) is illustrated in a, c, and e. In b, d, and f, the zero points (ZPs) are located at coordinates (r,�) on the
circular loops, corresponding to the nonextensive parameters (α) and (β)

Mittal entropy, within two distinct frameworks: bulk bound-
ary and restricted phase space (RPS) thermodynamics.

Our findings in the bulk boundary framework reveal
significant variability in topological charges influenced by
the free parameters and the Barrow non-extensive parame-
ter (δ). Specifically, we identify three topological charges
(ω = +1,−1,+1). When the parameter (δ) increases to
0.9, the classification changes, resulting in two topological
charges (ω = +1,−1). When (δ) is set to zero, the equa-
tions reduce to the Bekenstein–Hawking entropy structure,
yielding consistent results with three topological charges.

Additionally, setting the non-extensive parameter (λ) in
Rényi entropy to zero increases the number of topological
charges, but the total topological charge remains (W = +1).
The presence of the Rényi non-extensive parameter alters the
topological behavior compared to the Bekenstein–Hawking
entropy. Sharma–Mittal entropy shows different classifica-
tions and various numbers of topological charges influenced
by the non-extensive parameters (α) and (β). When (α) and
(β) have values close to each other, three topological charges
with a total topological charge (W = +1) are observed.
Varying one parameter while keeping the other constant sig-
nificantly changes the topological classification and number
of topological charges.

In contrast, the RPS framework demonstrates remarkable
consistency in topological behavior. Under all conditions
and for all free parameters, the topological charge remains
(ω = +1) with a total topological charge (W = +1).
This uniformity persists even when reduced to Bekenstein–
Hawking entropy, suggesting that the RPS framework pro-
vides a stable environment for studying black hole thermo-
dynamics across different entropy models.

These findings underscore the importance of consider-
ing various entropy formulations and frameworks to gain a
comprehensive understanding of black hole thermodynam-
ics. The variability observed in the bulk boundary framework
highlights the dynamic nature of topological charges influ-
enced by different parameters, while the consistency in the
RPS framework emphasizes its robustness and stability. This
dual approach provides valuable insights into the fundamen-
tal nature of black hole thermodynamics and the stability of

black holes under different theoretical models. By exploring
these diverse entropy formulations, we can better understand
the intricate behaviors and properties of black holes, paving
the way for future research in this fascinating field. We face
some questions that highlight potential avenues for future
research, aiming to deepen our understanding of black hole
thermodynamics and the role of nonextensive entropy in this
fascinating area of study.

1. How do different values of the nonextensive parameters
(λ), (α), and (β) affect the stability and phase transitions
of black holes in other types of spacetimes?

2. How is behavior the analysis of the thermodynamic topol-
ogy in higher-dimensional spacetimes with nonextensive
entropy?

3. What influences our understanding of black hole entropy
in the context of quantum gravity theories?

4. Is there a critical value of the nonextensive parame-
ters beyond which the thermodynamic behavior of black
holes significantly deviates from the predictions of clas-
sical thermodynamics?

5. How can the consistency of topological charges in
restricted phase space be leveraged to develop new mod-
els for black hole thermodynamics?

6. What experimental or observational evidence could be
used to validate the theoretical predictions made using
nonextensive entropy frameworks in black hole thermo-
dynamics?
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