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Abstract

Understanding the nature of neutron stars, where matter reaches extremely high density
conditions, is one of the most fascinating questions in nuclear astrophysics. The structure,
dynamics and composition of these astrophysical objects are governed by the nuclear mat-
ter equation of state, which relates the pressure supporting the star against gravitational
collapse to the huge range of densities present in its interior. Around the densities reached
in the atomic nucleus, the nuclear matter equation of state can be investigated in laboratory
experiments targeting nuclear electromagnetic properties, such as electric dipole polariz-
abilities and isoscalar monopole resonances. These observables, connected to parameters
entering the nuclear matter equation of state, shed light also on the collective excitations of
the nucleus at low energy.

Ab initio calculations, combining nuclear forces from chiral effective field theory with
systematically improvable many-body methods, represent now the gold standard of nuclear
structure computations in increasingly large systems. In this framework, computing electro-
magnetic observables involves additional challenges, as it requires the knowledge of both
bound and continuum excited states of the nucleus. Such calculations have become possible
in medium-mass nuclei thanks to the coupled-cluster (CC) formulation of the Lorentz inte-
gral transform (LIT) technique, known as LIT-CC method, limited thus far to doubly magic
or semi-magic nuclei.

This thesis extends the reach of ab initio LIT-CC calculations of electromagnetic ob-
servables beyond closed-shell nuclei and towards the dripline. We show how the LIT-CC
approach can be reformulated for nuclei in the vicinity of closed shells, focusing on two-
particle-attached (2PA) systems, which are characterized by having two nucleons outside
a closed-shell core. For most of this thesis, we focus on the electric dipole polarizabil-
ity. We first test LIT-CC predictions on new experimental data for the closed-shell 40Ca,
serving as an additional benchmark for constraints on the nuclear matter equation of state
from chiral forces. Next, we validate the newly developed LIT-CC method for 2PA nu-
clei, computing the non-energy-weighted dipole sum rule and the dipole polarizability of
16,24O in both the closed-shell and the new frameworks, finding agreement between error
bars. We analyse the evolution of the dipole polarizability along the oxygen and calcium
isotopic chains, providing predictions for 24O and 54,56Ca, which will serve as motivation
for future experimental studies at the dripline. We then present a study of the exotic halo
nucleus 8He, where we compare our predictions for the dipole polarizability with recent
high-statistics data obtained at RIKEN, Japan by the SAMURAI collaboration. In the end,
we move our attention to isoscalar monopole resonances, and extract a preliminary estimate
of the incompressibility of symmetric nuclear matter.
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Lay Summary

At the heart of one of the most intriguing questions in physics lies the study of neutron
stars, among the densest form of matter which can be found in our Universe. These in-
credibly compact stellar remnants are born from the collapse of massive stars in supernova
explosions. Their structure, composition and dynamics is dominated by the nuclear matter
equation of state, which determines the pressure supporting the star in the extreme densi-
ties found in its interior. Through a combination of theoretical models, experimental data,
and observations, scientists are piecing together the ingredients of the nuclear equation of
state. In this thesis, we focus on a specific region within neutron stars, where matter reaches
the typical density of atomic nuclei. By employing advanced computational techniques and
mathematical tools, we study how protons and neutrons bind together in the atomic nu-
cleus, and how the nucleus behaves when immersed in electromagnetic fields, unravelling
properties of the nuclear equation of state in this regime.
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1 Introduction

How does matter behave at the most extreme densities in the Universe? This question, rank-
ing among the most exciting challenges driving nuclear physics and astrophysics today [9],
has propelled neutron stars at the center of interdisciplinary research efforts at the interface
between these fields.

With black holes, neutron stars feature the densest form of matter in the Universe. They
are compact astrophysical objects originating from the supernova explosion of stars with
total mass above 8 solar masses [10]. Typically, they have a mass of more than 1.4 times
the mass of our sun, M⊙, compressed into a sphere with a radius varying between 10 and
14 km. Neutron stars emerge from the competition between gravity and the quantum me-
chanical pressure from its constituents (mostly neutrons, with small fractions of protons and
electrons), preventing the collapse of the star into a black hole. The study of neutron stars is
then intrinsically linked to investigations of the strong interaction between nucleons, involv-
ing typical distances of the order of 1 fm. Therefore, understanding the structure of neutron
stars establishes a fascinating connection between physics domains separated by more than
15 orders of magnitude in length scale.

The first hypothesis regarding the existence of neutron stars dates back to the 1930s. At
that time, Landau put forward the idea of compact stars similar to giant atomic nuclei [11].
The first written trace of such conjecture can be found in the 1933 proceedings of the Amer-
ican Physical Society by Baade and Zwicky who claimed: With all reserve we advance the
view that supernovae represent the transition from ordinary stars into neutron stars, which
in their final stages consist of extremely closed packed neutrons [12]. Later, in 1939, us-
ing Einstein’s theory of general relativity, Tolman [13] and Oppenheimer and Volkoff [14]
derived independently the equations governing the structure of neutron stars, the so-called
Tolman-Oppenheimer-Volkoff (TOV) equations. A fundamental input of the TOV equations
is the equation of state (EOS) of neutron stars, which determines the pressure supporting the
star against gravity over the wide range of densities found in its interior. In their seminal
paper [14], assuming that neutron star matter behaves as a non-interacting gas of neutrons,
Oppenheimer and Volkoff deduced that a neutron star would collapse into a black hole once
its mass surpassed around 0.7 M⊙. However, experimental observations, starting with Joce-
lyn Bell’s pioneering work [15], have challenged this prediction, with recent data reporting
that this critical mass limit is at least 3 times higher [16]. This underlines the key role played
by the nuclear interaction in shaping the equation of state of a neutron star. Heavier stars
are in fact stabilized by the short-range repulsion between nucleons.

Different theoretical, experimental and observational techniques, in space- and Earth-
based laboratories, can be used to constrain the equation of state of neutron star matter at
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CHAPTER 1. INTRODUCTION

progressively higher density (see Ref. [17] and references therein). The synergy between
these different techniques culminated in the groundbreaking detection of the gravitational
wave GW170817 [18], which sparked the “golden era” of multimessenger astronomy [19].
Attributed to a binary neutron star merger, such event encoded properties of nuclear mat-
ter and its equation of state through the tidal deformabilities of neutron stars during inspi-
ral [20].

In this thesis, we will focus on constraining the EOS around the typical density reached
in the interior of the atomic nucleus, the so-called saturation density, n0 ≈ 0.16 fm−3. To
have a concrete reference, this corresponds to 100 trillion times the density of water. In this
regime, the EOS can be modeled as a uniform gas of nucleons, interacting solely via the
strong force. This can be a good approximation for the conditions found in the outer core of
a neutron star [17].

Around saturation density, the EOS can be probed through the study of properties of
finite nuclei, such as the neutron skin, defined as the difference between the neutron and
proton radii in the nucleus. Theoretical calculations found correlations between this ob-
servable and crucial parameters of the EOS [21], which can be exploited in the presence
of precise experimental measurements of neutron skins in neutron-rich nuclei. The latter,
however, are particularly challenging (see Ref. [22] for a recent review). As the neutron has
no electric charge, the neutron distribution has been tested in the past via hadronic probes,
which introduce systematic uncertainties in the analysis due to the modelling of the strong
interaction. At the moment, parity violating elastic electron scattering (PVES), relying on
the electroweak interaction, has emerged as the cleanest and least model-dependent tech-
nique [23]. In the last few years, it has been used to measure neutron skins in 48Ca [24] and
208Pb [25, 26]. The implications of these measurements on the EOS are still debated by the
nuclear physics and astrophysics community [27–31].

Another interesting opportunity to constrain the EOS is offered by electromagnetic ob-
servables, which characterize the behaviour of the nucleus interacting with photons. In fact,
the density dependence of the EOS can be investigated by slightly perturbing the nucleus
from its ground state, as it happens with electromagnetic probes. As a consequence, cor-
relations have been found between crucial parameters of the EOS and the electric dipole
polarizability αD [32], which measures the tendency of the nuclear charge distribution to
deform in the presence of an external electromagnetic field. Other properties of the EOS, as
the incompressibility of nuclear matter, can be constrained by systematic studies of collec-
tive excitations as isoscalar monopole resonances [33].

From the theory point of view, extensive studies of electromagnetic observables across the
nuclear chart have been carried out mainly in the framework of energy density functional
(EDF) theory, combined with the random phase approximation (RPA) and its refinements
(see e.g. Refs. [34–36] and references therein). In this thesis, we instead focus our attention
on the description of such observables within an ab initio framework.

Ref. [37] describes ab initio methods as a systematically improvable approach for quan-
titatively describing nuclei using the finest resolution scale possible while maximizing its
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predictive capabilities. At the energy scales probing the electromagnetic observables of in-
terest, the best compromise between resolution and predictive power is reached by choosing
protons and neutrons as the building blocks of the problem, and combining systematically
improvable many-body solvers with chiral effective field theory (EFT) interactions, linking
directly the nuclear force to the underlying theory of strong interactions, Quantum Chro-
modynamics. While being for a long time limited to light nuclei, ab initio methods have
experienced an exponential increase of their reach in mass number, as illustrated by Fig-
ure 1.1.

Figure 1.1: Progress in ab initio nuclear theory calculations. On the top of each bar, the
year of the first ab initio calculation for the corresponding closed-shell nucleus
is indicated. The height of each bar represents the mass number A divided by the
logarithm of the total computational capability RTOP500 (measured in flops s−1

floating-point operations per second) from the TOP500 list [38]. This quantity
would remain constant if advancements were only driven by a consistent ex-
ponential growth in computing power. However, the availability of many-body
methods that scale polynomially in A has significantly expanded the reach of
these calculations. Figure adapted from Ref. [30].

Figure 1.1 shows that ab initio nuclear theory has not only benefitted by advances in high-
performance computing, but also by the availability of many-body methods allowing one to
solve the many-body Schrödinger equation with controlled approximations, while scaling
polynomially with mass number. Examples of such methods are Coupled-Cluster (CC)
theory [39], In-Medium Similarity Renormalization Group (IMSRG) [40], Self Consistent
Green’s function (SCGF) [41] and many others (see Ref. [42] for a recent review on ab initio
techniques).
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CHAPTER 1. INTRODUCTION

Ab initio calculations of electromagnetic properties are way more difficult than for ground-
state properties as the neutron skin, as they require the knowledge of all the bound and
continuum states of the nucleus. Coupling CC theory with the Lorentz integral transform
(LIT) technique [43], ensuring a proper treatment of continuum wavefunctions, has led
to a new method, called LIT-CC [44, 45], which provided the first ab initio calculations
of electric dipole polarizabilities in medium-mass nuclei [46]. First applications of this
method focused on medium-mass nuclei as 48Ca [47, 48], and unstable neutron-rich nuclei,
as 68Ni [49]. More recently, Ref. [30] has delivered the first ab initio prediction for the
polarizability of 208Pb, based on the IMSRG approach. Good agreement is found between
available experimental data and ab initio predictions [5,30,48,49], however limited thus far
to closed-(sub)shell nuclei.

Together with these promising benchmarks with theory, the connection of electric dipole
polarizability with the EOS is motivating experimental investigations in regions of the nu-
clear chart where it has not been explored yet. Open-shell calcium and nickel isotopes are
the object of ongoing experimental campaign at iThemba Labs, South Africa and RCNP,
Japan [50]. Moreover, with a future upgrade of FRIB, USA to 400 MeV/u, measurements
of the dipole polarizability in very neutron-rich nuclei will become possible [51]. This could
lead to unique opportunities to constrain the EOS from nuclei with an extreme neutron ex-
cess. These experimental endeavours motivate the core of the work presented in this thesis,
which extends the reach of ab initio calculations of αD within the LIT-CC method beyond
closed-shell nuclei and towards the dripline.

This thesis is structured as follows. In Chapter 2, we will model the EOS of nuclear
matter around saturation density and review the role of properties of finite nuclei, such as
neutron skins, electric dipole polarizabilities and isoscalar monopole resonances, in con-
straining it. In the following Chapters, we will present the ingredients of our computations:
nuclear forces grounded in chiral EFT (Chapter 3), coupled-cluster theory (Chapter 4) and
the LIT-CC method (Chapter 5). Motivated by the experimental interest in open-shell nu-
clei, in Chapter 5 we extend the LIT-CC method to these systems. In particular, we focus on
two-particle-attached nuclei, which can be obtained adding two nucleons to a closed-shell
core. The conceptualization and implementation of this new method for open-shell nuclei
constitute the novelty of this work [7]. These approaches are then employed in Chapter 6
to obtain the results of this thesis, focusing mainly on the electric dipole polarizability. Fur-
thermore, as a proof of the potential of constraining the EOS from nuclear electromagnetic
observables, we will also present a preliminary study of the incompressibility of nuclear
matter from isoscalar monopole resonances. In Chapter 7, we conclude providing a brief
summary and outlook of the work presented.
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2 Neutron Stars and their Connection to
Low-Energy Nuclear Physics

This Chapter is dedicated to an analysis of the connection between the physics of neutron
stars and atomic nuclei, both governed by the nuclear matter EOS. After presenting the TOV
equations, which describe the structure of neutron stars in general relativity, and sketching
their internal structure, we model the nuclear matter EOS around saturation density. In the
end, we focus our attention on EOS constraints from studies of nuclear structure and elec-
tromagnetic observables, and review the main developments in this direction. This Chapter
is mostly based on Refs. [17, 35, 52].

2.1 Tolman-Oppenheimer-Volkoff equations

In general relativity, the structure of neutron stars is described by the Tolman-Oppenheimer-
Volkoff (TOV) equations

dP(r)
dr

=−Gm(r)
r2

(
1+

P(r)
ρ(r)c2

)(
1+

4πr3P(r)
m(r)c2

)(
1− 2Gm(r)

rc2

)−1

,

dm(r)
dr

= 4πr2
ρ(r),

(2.1)

which characterize the behaviour of a spherically symmetric body of isotropic material in
hydrostatic equilibrium. In Eq. (2.1), P(r) is the pressure as a function of the radial coor-
dinate r, m(r) is the mass of the object contained within a given radius r, c is the speed of
light and ρ(r) = ε(r)/c2 is defined in terms of the energy density ε(r).

As the TOV equations contain three unknown functions, P(r), ε(r) and m(r), additional
information in the form of an equation of state (EOS) P = P(ε), relating the pressure to the
density, needs to be supplied. At this point, the TOV equations are solved specifying the
boundary conditions P = Pc and m = 0 at the center of the star r = 0. The equations are then
integrated from Pc to P = 0, corresponding to the pressure at the surface of the star. Once
P(r) and m(r) are known, the radius R of the star is obtained from the condition P(R) = 0,
while the mass M of the star corresponds to M =m(R). Given the equation of state, the mass
M(Pc) and radius R(Pc) can be computed for every value of the central pressure Pc, leading
to the mass-radius relationship for neutron stars. Therefore, the TOV equations appear as
an efficient map between the equation of state P(ε) and the mass-radius relation M(R). In
this sense, they fully determine the structure of neutron stars.
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CHAPTER 2. NEUTRON STARS AND THEIR CONNECTION TO NUCLEAR PHYSICS

As a qualitative example of the TOV mapping, in Figure 2.1 we show a modern set of
representative equations of state and the corresponding mass-radius relations, taken from
Ref. [52]. By using the TOV equations, the relatively monotonic growth of the pressure

Figure 2.1: Left panel: set of representative equations of state P(ε) (colored lines) obtained
from microscopic nuclear matter calculations in Ref. [52]. Right panel: corre-
sponding mass-radius relation derived via Eq. (2.1). The grey area represents
the EOS compatible with constraints from nuclear theory and observations of
Ref. [53]. Figure adapted from Ref. [52].

with the energy density translates into a steep increase of the mass of the neutron star in
a limited range of values for radii. Lower values of the pressure at a fixed energy density
identify soft equations of state, as for instance the solid green line in Figure 2.1. The latter
yield smaller neutron star radii and support less heavier stars with respect to stiffer EOS
(e.g., the solid blue line in Figure 2.1). The right panel of Figure 2.1 shows how the degree
of softness/stiffness of the EOS determines a broad range of allowed maximum masses for
a neutron star, enlarging also the uncertainty on the neutron star radius. In this regard, joint
mass-radius measurements from the Neutron Star Interior Composition Explorer (NICER)
(see, e.g., Ref. [54, 55]), as well as the detection of the gravitational wave GW170817 [18],
associated to a binary neutron star merger, can provide an upper bound. As the TOV equa-
tions create a unique connection between the EOS and the mass-radius relation [56], they
can be used to derive M(R) based on our knowledge of the nuclear interaction and con-
versely, to infer information on the EOS, starting from astrophysical measurements [53,57].
Constraining the EOS from both nuclear theory and neutron star observations is an active
area of research (see, e.g., Refs. [28, 58–61] for recent works on the topic).
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2.2. THE STRUCTURE OF NEUTRON STARS

2.2 The structure of neutron stars

Our understanding of neutron stars relies on our ability to predict their behaviour over the
huge range of density and pressures that can be found in their interior. In this Section, we
give a brief description of the different density regions which can be found in a neutron
star. They are schematically represented in Figure 2.2. The interested reader can find more
details on the structure of neutron stars in, e.g., Ref. [17].

Figure 2.2: Schematical representation of the different layers composing the interior of a
neutron star. Figure taken from Ref. [62].

The surface of a neutron star is characterized by a thin atmosphere, mainly composed
by hydrogen and helium. Despite its relatively small thickness, the atmosphere plays a key
role in astrophysical observations, as the thermal radiation emitted from this layer allows
for measurements of chemical composition and other neutron star features [17].

In the outer crust, where the density ranges from 104 to 1011 g/cm3 [63], matter orga-
nizes itself into increasingly neutron-rich nuclei immersed in a uniform electron gas. The
boundary between outer and inner crust is represented by the neutron drip density, around
4×1011 g/cm3, where atomic nuclei become unable to bind any more neutrons. In the inner
crust region, the competition between the short-range strong interaction and the long-range
Coulomb repulsion, a phenomenon called “Coulomb frustration”, is believed to drive the
emergence of complex structures with different topologies, collectively dubbed as “nuclear
pasta” phases [64].

The crust-core boundary is located at around half of nuclear saturation density ρ0 ≈
2.8× 1014 g/cm3 (or in terms of number density n0 ≈ 0.16 fm−3), where nuclei dissolve
completely and the system is composed mostly by a uniform sea of neutrons, with small
fractions of protons, electrons and muons in chemical equilibrium. Going towards the cen-
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CHAPTER 2. NEUTRON STARS AND THEIR CONNECTION TO NUCLEAR PHYSICS

ter of the star, at densities well above 2ρ0, more exotic forms of matter as hyperons or
deconfined quarks are predicted to emerge [65].

2.3 Nuclear matter equation of state

We now focus on how to model the EOS of neutron stars at densities up to 1−2 times satu-
ration density, where constraints from nuclear physics can be obtained. As the temperature
T in this regime is much lower with respect to typical nuclear energy scales, in the following
we assume T = 0 K.

In these conditions, it is useful to work with nuclear matter. The latter represents an
idealized uniform mixture of neutrons and protons, which interact exclusively through the
strong force. Nuclear matter is characterized by an infinite mass number A and volume
V , ensuring a finite total density n = A/V . The difference between the neutron and proton
densities is given by the asymmetry parameter

α =
nn −np

n
, (2.2)

where nn is the neutron density, np the proton density and consequently n = np + nn is the
total nucleon number density. For α = 1, pure neutron matter (PNM) is obtained. In this
case, both the energy per particle and pressure are positive, implying the absence of self-
bound states for neutrons alone. In symmetric nuclear matter (SNM), instead, neutron and
proton densities coincide (α = 0). In SNM, an energy minimum emerges at the saturation
density n0. This implies the presence of a bound state, and results in vanishing pressure
at this specific density. The energy per particle E/A as a function of density for SNM and
PNM is shown in Figure 2.3.

The dependence of E(n,α) on α is usually parametrized as

E
A
(n,α) =

E
A
(n,0)+S(n)α2 +O[α4], (2.3)

where E
A (n,0) is the EOS of symmetric nuclear matter, where np = nn, and S(n) is the so-

called symmetry energy. Two comments are in order. First, odd powers of α do not occur
due to isospin invariance of the nuclear interaction. Second, according to various nuclear
many-body calculations (see Ref. [66] and references therein), retaining up to quadratic
contributions in α in Eq. (2.3) represents a reliable approximation of the α dependence of
E/A for α ∈ [0,1] and densities up to 2n0. One can then express the symmetry energy as
the difference between the energy per nucleon of PNM and SNM

S(n) =
E
A
(n,1)− E

A
(n,0). (2.4)

In this picture, the symmetry energy is a measure of how the energy of the system is affected
by replacing protons with neutrons.
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2.3. NUCLEAR MATTER EQUATION OF STATE

Figure 2.3: Equation of state of pure neutron matter (blue) and symmetric nuclear matter
(red) as a function of density. The parameters defining the EOS at saturation
density n0, corresponding to the energy per nucleon of SNM at saturation B,
incompressibility K0, symmetry energy at saturation J and slope parameter L
are also highlighted. Figure adapted from Ref. [52].

The EOS of symmetric nuclear matter can be expanded around n0, yielding

E
A
(n,0) =

E
A
(n0,0)+

1
2

K0

(
n−n0

3n0

)2

+O(n−n0)
3, (2.5)

where B= E
A (n0,0) is the energy per nucleon of SNM at saturation. Introducing the pressure

P = n2 ∂E/A
∂n , it is possible to identify

K0 = 9
∂P
∂n

∣∣∣∣
n0,α=0

= 9n2
0

∂ 2E/A
∂n2

∣∣∣∣
n0,α=0

(2.6)

with the incompressibility of SNM. As shown in Figure 2.3, K0 correspond to the curvature
of the energy per particle of SNM. It measures the response of nuclear matter to compres-
sion.
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CHAPTER 2. NEUTRON STARS AND THEIR CONNECTION TO NUCLEAR PHYSICS

Performing an expansion around n0 also for the symmetry energy, we obtain

S(n) = J+L
n−n0

3n0
+O(n−n0)

2, (2.7)

where J = S(n0) is the symmetry energy at saturation and L is the so-called slope parameter.
We point out that since in SNM the pressure vanishes at saturation, the slope parameter L is
proportional to the pressure of PNM at saturation density

L = 3n0
∂S
∂n

∣∣∣∣
n0

=
3
n0

P(n0,α = 1). (2.8)

The slope parameter plays a key role in constraining the radius of neutron stars. In fact, a
higher value of L implies a steeper PNM curve in Figure 2.3. This leads to a stiffer EOS,
which translates into larger values of neutron star radii, as shown in Figure 2.1.

It is clear that the parameters B, K0, J and L provide a detailed picture of the EOS around
saturation density n0. Accurate constraints for the values of n0 = 0.164(7) fm−3 itself and
B = −15.86(57) MeV have been obtained employing Skyrme energy density functionals
(EDFs) fitted to properties of nuclei and nuclear matter and including an additional sys-
tematic uncertainty for B [67]. These ranges also agree with microscopic nuclear matter
calculations [67–69] and with a very recent Bayesian mixture model analysis of multiple
EDF predictions, yielding n0 = 0.157(10) fm−3 itself and B = −15.97(40) MeV at 95%
credibility level [70]. We will then focus on the symmetry energy parameters J and L and
the incompressibility K0, which determine the density dependence of the EOS at and around
saturation density.

2.4 Constraints on the symmetry energy

The symmetry energy at saturation density J and the slope parameter L can be constrained
investigating ground- and excited-state properties of nuclear systems, linking directly nu-
clear physics to astrophysics. We will now give an overview of the main research efforts
undertaken in the recent years on both the theoretical and experimental side, focusing on
two observables: the neutron skin thickness and the electric dipole polarizability.

2.4.1 Neutron skin thickness

The neutron skin thickness is defined as the difference between the point-neutron radius and
the point-proton radius of a nucleus

Rskin = Rn −Rp. (2.9)

The formation of neutron skins can be understood by looking at nuclear density distribu-
tions. In this regard, we can distinguish three main scenarios on the basis of the ratio be-
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2.4. CONSTRAINTS ON THE SYMMETRY ENERGY

tween the number of neutrons N and the number of protons Z of the nucleus. The latter are
schematically shown in Figure 2.4.
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Figure 2.4: Schematic representation of point-proton (red) and point-neutron (blue) density
distributions in three different N/Z scenarios: symmetric nuclei, with N/Z ≃
1 [panel (a)], asymmetric nuclei (N ≫ Z) with skin structure [panel (b)] and
asymmetric nuclei with halo structure [panel (c)].

As shown in Figure 2.4 (a), if the nucleus is symmetric with respect to N and Z, the point-
proton and point-neutron densities are expected to be similar. Increasing the N/Z ratio,
instead, the excess neutrons tend to accumulate in the outer region of the nucleus, resulting
in the formation of a neutron skin (see Figure 2.4 (b)). In some extreme cases, around the
dripline, as illustrated in Figure 2.4 (c), the tail of the nuclear wavefunction is characterized
by a slow exponential fall-off, leading to the emergence of halos. In the following we will
focus on the scenario of panel (b).

The neutron skin of heavy, neutron-rich nuclei, and in particular of 208Pb, has been anal-
ysed in a variety of theoretical frameworks. Energy density functional theory has been for
a long time the only tool available to address the heavy mass region of the nuclear chart.
However, in the last few years, thanks to advances in high performance computing and in
many-body theory, ab initio calculations progressed exponentially in their reach in mass
number [42]. These efforts culminated in a recent ab initio study on the neutron skin of
208Pb [30]. In both EDF and ab initio approaches, the emergence of a strong correlation
between the neutron skin of 208Pb and the slope parameter L entering the symmetry energy
has been found, as can be seen for example in Figure 2.5.

The sensitivity of this observable to L suggests that a precise experimental determination
of the neutron skin of 208Pb can be used to infer constraints on the density dependence
of the symmetry energy. To this purpose, according to Eq. (2.9), knowledge of both the
point-proton and point-neutron distributions is required.

However, while nuclear charge (and consequently, point-proton) densities can be mea-
sured in a clean way via, e.g., electron scattering, experimental data for neutron distribu-
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Figure 2.5: Slope parameter L as a function of the neutron skin thickness of 208Pb, as ob-
tained from the ab initio calculations of Ref. [30] and the relativistic and non-
relativistic mean-field models of Ref. [21]. Figure adapted from Ref. [30], cour-
tesy of Weiguang Jiang.

tions are extremely scarce even for stable nuclei. As neutrons are characterized by zero total
electric charge, mainly strongly interacting particles (see, e.g., [71–73]) or exotic antipro-
tonic atoms [74] have been employed as probes of neutron distributions. While hadronic
probes in some cases can achieve high statistics, and therefore small experimental errors,
the analysis of these experiments is characterized by systematic uncertainties related to the
treatment of the strong interaction.

On the other hand, parity violating elastic electron scattering (PVES), by relying exclu-
sively on the electroweak interaction, minimizes the model dependence in the determination
of the skin. PVES is based on the measurement of the parity-violating asymmetry APV ,
consisting in the difference between the cross sections of right-handed and left-handed elec-
trons, which allows for the extraction of Rskin with minimal assumptions. More details can
be found, e.g., in Refs. [22,75]. However, PVES is at the moment only applicable on stable
nuclei. In the last fifteen years, the Lead (Pb) Radius EXperiment (PREX) Collaboration at
Jefferson Lab, USA has provided a first experimental determination of the neutron skin of
208Pb (PREX-I, [25]), followed by a second experiment (PREX-II, [26]) where the accuracy
was improved by approximately a factor of 2. The combination of the two measurements
(from now on indicated only with PREX) implies Rskin = 0.283± 0.071 fm2 [26]. In cal-
culations employing different families of EDFs, the neutron skin of 208Pb comes out to be
strongly correlated also with the skin of other neutron-rich nuclei, as 48Ca [76]. This has
motivated a recent PVES measurement of the neutron skin of 48Ca, the so-called Calcium
Radius EXperiment (CREX), yielding a much smaller value of Rskin in this nucleus with
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2.4. CONSTRAINTS ON THE SYMMETRY ENERGY

respect to 208Pb: 0.121±0.035 fm2 [24].
The comparison between PVES results in 48Ca and 208Pb with previous neutron skin

measurements, and their translation into symmetry energy constraints have attracted a lot
of interest in the nuclear physics and astrophysics community. In Figure 2.6, we show the
available experimental data on the neutron skin of 48Ca and 208Pb. The results of the ab
initio calculations on 48Ca from Hagen et al. [47] and Simonis et al. [77] and on 48Ca and
208Pb from Hu et al. [30], as well as those of a dispersive optical model (DOM) analysis
of bound and scattering data [78, 79], are reported for comparison. For the neutron skin
of 208Pb, we also include EDF-based constraints given by the detection of the gravitational
wave GW170817 [80] and the joint mass-radius NICER measurements [27], as well as the
value inferred by Essick et al. [28], on the basis of neutron star observations and chiral
effective field theory constraints.
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Figure 2.6: Experimental determinations of the neutron skin thickness of 208Pb (left panel)
and 48Ca (right panel) in black, in comparison to ab initio [30,47,77] and disper-
sive optical model [78,79] calculations, in red and blue respectively. Experimen-
tal data are taken from Table 4 of Ref. [81] for 208Pb and Table 5 of Ref. [81] for
48Ca. See Ref. [81] and references therein for details on the experiments. The
coherent pion photoproduction experiment of Ref. [82] is indicated with a dot-
ted line, as Ref. [83] casts doubts on the sensitivity of this probe to the neutron
distribution. For 208Pb, constraints given by the detection of the gravitational
wave GW170817 [80] and the joint mass-radius NICER measurements [27] are
also reported, together with the value inferred by Essick et al. [28].

In the case of 48Ca, the CREX measurement, on the small side with respect to the other
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experimental determinations, is in excellent agreement with ab initio calculations from
Refs. [30,47,77], while the DOM analysis overshoots the data. Passing to 208Pb, the PREX
result is more than one standard deviation larger than the average of previous 208Pb skin
measurements [81]. There exist a mild tension (at the 1.5σ level) between PREX and the ab
initio result of Ref. [30], yielding 0.139 < Rskin < 0.200 fm. Also Essick et al. [28] favour
slightly smaller values of Rskin. The DOM prediction, delivering instead high values for
the skin, is in accordance with PREX. Also the upper bounds obtained from the NICER
measurement and from GW180817 turn out to be consistent with PVES measurements.

Let us now consider the implications of these measurements on the EOS. The CREX
experiment, suggesting a small Rskin in 48Ca, favours a corresponding small value of the
slope parameter L and a softer equation of state, while the PREX determination moves in
the opposite direction, implying a stiffer EOS. In particular, when taken individually, PREX
leads to L = 106±37 MeV [27], while CREX to L =−5±40 MeV [81].

In a recent review by Lattimer [81], two different strategies to reconcile the PREX and
CREX constraints are considered. In the first case, a weighted average of all the measure-
ments of Rskin in 48Ca and 208Pb is calculated. Subsequent comparison to theoretical models
suggest a final constraint of 40±8 MeV on the slope parameter. In the second case, the anal-
ysis is instead restricted only to the PREX and CREX results, obtaining a slope parameter
of 50± 12 MeV. The two strategies considered in Ref. [81] lead also to constraints on the
value of J, amounting to 30.8± 1.5 MeV in the first case and 32± 2 MeV in the second
case.

The second strategy considered in Ref. [81] agrees with earlier microscopic nuclear mat-
ter calculations by Drischler et al. [84]. There, combining an accurate many-body frame-
work, chiral effective field theory interactions and Bayesian techniques for uncertainty quan-
tification, J and L were constrained to the 1-sigma intervals:

J = 31.70±1.11 MeV, L = 59.80±4.12 MeV. (2.10)

Later, employing Gaussian processes to constrain the EOS from observational data and
nuclear matter calculations in chiral effective field theory, Essick et al. [28] reported larger
ranges of J and L:

J = 33+2.0
−1.8 MeV, L = 53+14

−15 MeV, (2.11)

consistent with both Lattimer [81] and Drischler et al. [67]. Moreover, as shown in Fig-
ure 2.5, it is worth pointing out that ab initio predictions of the neutron skin of 48Ca and
208Pb in Hu et al. [30] are accompanied by estimates of nuclear matter parameters, obtained
consistently within the same many-body method used for finite nuclei properties. There,
Bayesian history matching was used to calibrate a new ensemble of “non-implausible” chi-
ral EFT interactions. Via nuclear matter calculations, the latter led to the 68% credible
intervals:

29.1 ≤ J ≤ 33.2 MeV, 38.3 ≤ L ≤ 68.5 MeV. (2.12)

This result agrees with both the ranges identified by Ref. [81], as well as being in accordance

14



2.4. CONSTRAINTS ON THE SYMMETRY ENERGY

with Refs. [28, 84]. In Ref. [30], it is also observed that higher values of Rskin (and conse-
quently of L), in agreement with PREX, can be obtained in their ab initio framework only
at the cost of degrading the description of nucleon-nucleon scattering data at low energy.

With the goal of removing model assumptions in the analysis of the PREX and CREX
experimental results, Refs. [29, 85] consider directly the parity-violating asymmetry APV in
48Ca and 208Pb instead of the corresponding Rskin. Within EDF theory, they showed that
the PREX and CREX APV results cannot be simultaneously reproduced within one standard
deviation by EDF models ensuring a good description of bulk properties of nuclei across
the nuclear chart [29]. In Ref. [31], new functionals, accomodating constraints coming from
PREX and CREX, are proposed. They yield stiff equations of state, which however fail to
reproduce the mass-radius constraints provided by NICER.

The debate on the PREX and CREX experiments and their implications is still ongoing.
In this regard, the planned Mainz Radius EXperiment (MREX) [75] at the Mainz Energy-
recovering Superconducting Accelerator (MESA) under construction in Mainz, Germany
will play a key role, as it is foreseen to further cut down the uncertainty budget on the PVES
measurement of the skin of 208Pb.

2.4.2 Electric dipole polarizability

One could also adopt a different strategy and look for other observables which provide
information on the symmetry energy parameters. In thermodynamics, the equation of state
of an ideal gas can be derived by investigating the behaviour of the system when performing
slow variations of macroscopic quantities, as volume, pressure and temperature.

In analogy to that case, the density dependence of the EOS of nuclear matter, determined
by J and L, can be investigated in experiments where nuclei are slightly perturbed from
their ground state, for instance, by the presence of an external electromagnetic (EM) field.
Electromagnetic probes represent a particularly convenient choice: the small value of the
electromagnetic coupling constant α ensures the applicability of perturbation theory, al-
lowing for a straightforward connection between theoretical calculations and experimental
measurements.

From a quantum-mechanical point of view, the interaction of the nucleus with the EM
field is modeled as the absorption of a real photon γ with momentum q⃗ and energy ω = |⃗q|,
producing a transition from the ground state of the system |Ψ0⟩ to a final state |Ψµ⟩. This
process is schematically shown in Figure 2.7.

The information about all the possible final states that the nucleus can reach by interacting
with γ are encoded in the so-called response function, defined as

R(ω) = ∑
µ

⟨Ψ0|Θ†|Ψµ⟩⟨Ψµ |Θ|Ψ0⟩δ (ω −Eµ +E0), (2.13)

where Θ is the electromagnetic operator and Eµ and E0 are the energies of the ground
state and final state µ , respectively. Eq. (2.13) is derived by calculating the differential cross
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Figure 2.7: Schematic representation of the interaction between the nucleus and a photon.
Figure taken from Ref. [86].

section of the process depicted in Figure 2.7, which depends on the transition matrix element
of the interaction Hamiltonian

Hint =
∫

d⃗x A⃗(x) · J⃗(x), (2.14)

involving the photon field A⃗(x) and the nuclear current J⃗(x), with x = (t, x⃗). A complete
derivation can be found in Ref. [86]. Here, we will focus on a particular class of EM
transitions, driven by the electric dipole operator

Θ = e

√
4π

3

A

∑
i=1

ri Y10(r̂i)

(
1+ τ

z
i

2

)
, (2.15)

where e is the electric charge, ri = |R⃗i − R⃗CM| is defined in terms of the difference between
the position of the i-th nucleon R⃗i and the one of the center of mass R⃗CM, Y10(r̂i) is the
spherical harmonics with rank 1 and projection 0 and τ

z
i is the isospin z-axis projection of

the i-th nucleon.

The typical behaviour of electric dipole (or E1) response functions is illustrated in Fig-
ure 2.8. Low photon energies excite the nucleus to discrete excited bound states. When
instead the energy of the photon overcomes the break-up threshold (i.e. the energy needed
to remove a nucleon from the nucleus), the system populates continuum states. Here, the
response is characterized by broad resonances: the pygmy dipole resonance, appearing in
the presence of a large neutron excess, and the giant dipole resonance at higher energies.
The latter are traditionally associated to collective excitations of the nucleus [87].

Also sum rules, defined as the energy moments of the response function distribution,
provide substantial insight into the dynamics of a quantum system. Among them, the electric
dipole polarizability αD stands out as a noteworthy example. Classically, it corresponds to
the proportionality constant characterizing the induced electric dipole moment d⃗ acquired
by a charge distribution in an external electric field E⃗: d⃗ = αDE⃗. In quantum mechanics,

16



2.4. CONSTRAINTS ON THE SYMMETRY ENERGY

Figure 2.8: Schematic representation of the electric dipole response function of a nucleus.
Figure taken from Ref. [86].

αD is defined as an inverse energy-weighted sum rule of the dipole response function

αD = 2α

∫
∞

0
dω

R(ω)

ω
. (2.16)

In the past, the dipole polarizability of stable nuclei has been extracted from measure-
ments of photoabsorption cross sections [88], focusing in the region of the giant dipole res-
onance. In the last few years, proton inelastic scattering (p, p′) at very forward angles [89]
has been established as a solid experimental technique providing access to αD with good
resolution and over a wide excitation energy range (see, e.g., Refs. [5, 48, 90, 91]). More-
over, Coulomb excitation measurements in inverse kinematics made it possible to study αD

in unstable nuclei as 68Ni [92] and 6,8He [93, 94].

The interest around the electric dipole polarizability has risen since evidences of a correla-
tion between αD and the neutron skin Rskin have been observed. As in turn Rskin is correlated
to the slope parameter L, a consequent correlation between αD and L could be envisioned.
The first steps in this direction have been made in the framework of energy density func-
tional theory. In Ref. [95], a covariance analysis based on EDF calculations found evidences
of a correlation between αD and Rskin in the case of 208Pb. The result of Ref. [95] was sub-
squently employed in Ref. [90] to infer the neutron skin of 208Pb from a new measurement
of αD via inelastic proton scattering. The experimental value of αD, equal to 20.1± 0.6
fm3, was then translated into an Rskin estimate of 0.156+0.025

−0.021 fm. It is worth noticing that
this result is almost 50% smaller than the PREX central value, but in agreement with the ab
initio calculation of Ref. [30] and the value inferred by Ref. [28]. Later, in Ref. [76], it was
pointed out that while the correlation between αD and Rskin emerges in individual families
of EDFs, the same linear dependence becomes less clean when combining a host of different
EDF models.
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A year later, on the basis of calculations of finite nuclei and EOS properties, employing
different sets of relativistic and non-relativistic EDFs, Roca-Maza et al. [32] proved the
presence of a correlation between the product of αD and the symmetry energy at saturation
J, αDJ, and Rskin for 208Pb. Via the product αDJ, also the dipole polarizability could then
be used to constrain L. The correlation between αDJ and L in 208Pb found in Ref. [32]
is represented in Figure 2.9. The latter features also more recent ab initio results from
Ref. [30], which confirm the presence of a correlation between αDJ and L.
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Figure 2.9: Correlation between the product αDJ between the electric dipole polarizability
and the symmetry energy at saturation density and the slope parameter L, as
described by the ab initio calculation of Ref. [30] and by the EDF calculations
from Ref. [32].

In Ref. [32], the correlation between αDJ and Rskin is corroborated by a reference to the
so-called droplet model [96]. The latter consists in a refinement of the liquid drop model,
from which the well-known von Weizsäcker formula describing the evolution of the binding
energy per nucleon as a function of the number of nucleons A is derived. Within the droplet
model, αD scales with A as [97]

α
DM
D ∝

A⟨R2
m⟩

48J

(
1+

5
3

9J
4Q

A−1/3
)
, (2.17)

where Rm = ⟨R2
m⟩

1/2 is the matter radius of the nucleus and Q is the surface stiffness coef-
ficient, quantifying the resistance of neutrons against being separated by protons [96]. In
Ref. [32], it is shown that Eq. (2.17) can be expressed in terms of the neutron skin thickness
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RDM
skin in the droplet model as

α
DM
D ∝

A⟨R2
m⟩

48J

(
1+

5
2

RDM
skinA

Rm(N −Z)

)
, (2.18)

which indicates that the product αDJ, instead of αD alone, correlates with Rskin, and there-
fore L. So an experimental value of αD can be exploited to get a direct relation between J
and L. In Ref. [32], combining the experimental determination of αD in 208Pb [90] with a re-
alistic value of J = 32±2 MeV [98] led to Rskin(

208Pb)= 0.165±0.043 fm3 and L= 43±26
MeV. This value of Rskin is consistent with the estimate of Refs. [28,90], as well as with the
ab initio calculations of Ref. [30], while lying below the PREX result.

In Ref. [99], Roca-Maza et al. expand their previous analysis [32] including also new
experimental data for the polarizability of 68Ni [92] and 120Sn [91]. Combining the ex-
perimental values of 208Pb, 120Sn and 68Ni with microscopic calculations using different
EDFs, they extracted the relations between J and L illustrated in Figure 2.10. The bands

Figure 2.10: Correlation between the slope parameter and the symmetry energy at saturation
density obtained from combining the experimental values of the polarizability
of 208Pb, 120Sn and 68Ni with EDF calculations. Red circles represent EDFs
reproducing the experimental value for αD for the three nuclei under consider-
ation. Figure taken from Ref. [99].

obtained by using the experimental data of 208Pb, 120Sn and 68Ni in the αDJ−L correlation
show a substantial overlap between each other. By considering only the EDFs reproducing
experiment for all the three nuclei, the following ranges of J and L are deduced:

30 ≤ J ≤ 35 MeV, 20 ≤ L ≤ 66 MeV. (2.19)

These ranges are consistent with the constraints of Essick et al. [28] (Eq. (2.11)), as well as
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with the nuclear matter calculations of Drischler et al. [84] (Eq. (2.10)), and of Hu at al. [30]
(Eq. (2.12)). Constraints coming from the polarizability are then indicating a slightly softer
EOS with respect to PREX. By incorporating PREX information into the fitting of EDFs,
Ref. [100] infers systematically higher values of αD with respect to experiment. Also here,
the debate is still open.

In parallel, in recent years, new developments in ab initio nuclear theory have made cal-
culations of observables like αD possible also in the medium-mass region of the nuclear
chart. As mentioned in Chapter 1, computing αD is far more arduous than in the case of
Rskin. In fact, as shown in Eq. (2.16), αD depends on the response function R(ω), which
depends on both the bound and continuum nuclear spectra (see Eq. (2.13)). Combining the
Lorentz Integral Transform (LIT) [43], a few-body technique allowing a correct treatment of
continuum states, with the mild computational scaling of Coupled-Cluster (CC) theory [39]
into the so-called LIT-CC method [44, 45] has enabled first ab initio calculations of αD for
medium-mass nuclei thus far closed-shell.

After testing the method on 4He, 16O and 22O, obtaining good agreement with available
data [46], LIT-CC calculations of the dipole polarizability of 48Ca, obtained employing
different chiral EFT models, accompanied the first ab initio estimate of the neutron skin
of this nucleus [47]. In Ref. [48], these predictions for αD were then compared to a new
experimental determination, based on (p, p′) measurements, and to EDF results. Later,
augmenting the accuracy of the LIT-CC method, more precise estimates of αD in 48Ca were
provided in Refs. [77, 101]. In Figure 2.11, we show the latest LIT-CC predictions of αD

for 48Ca [77,101], using different chiral forces [68,102], in comparison to the experimental
value of Ref. [48] and the ranges obtained using different EDF families in Refs. [76, 99].
The αD result of Hagen et al. [47] is also reported.

In general, we observe an excellent agreement between ab initio predictions, EDF theory
and experiment. Comparing the latest LIT-CC predictions with the corresponding result in
Hagen et al. [47], we can appreciate how increasing the precision of the many-body method
improves the overlap with experiment. These updated results also indicate a slightly smaller
αD with respect to EDF calculations. Ab initio predictions are able to reproduce well both
the neutron skin from CREX and the polarizability of 48Ca from Ref. [48], supporting the
constraints on symmetry energy parameters given by the interactions used in these works.
Via nuclear matter calculations, the nuclear force models used in Figure 2.11 suggest [47,
103]1

27 ≤ J ≤ 33 MeV, 44 ≤ L ≤ 49 MeV. (2.20)

These ranges are in agreement with the ones obtained by Essick et al. [28] (Eq. (2.11)), Hu
et al. [30] (Eq. (2.12)) and Lattimer [81]. Moreover, while the J constraint of Eq. (2.20)
overlaps with the nuclear matter prediction of Drischler et al. [84] in Eq. (2.10), L turns out
to be smaller than predicted by [84].

Later, the LIT-CC method was employed to tackle the unstable neutron-rich nucleus

1The slope parameter range has been updated with respect to Ref. [47] due to an error reported in nuclear
matter calculations with the NNLOsat interaction [103]. The corresponding J range remains unaffected.
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Figure 2.11: Experimental value of the dipole polarizability of 48Ca [48] (blue band) in
comparison with the LIT-CC predictions of Refs. [77, 101] obtained using the
family of chiral interactions of Ref. [68] and the chiral force NNLOsat [102]
(dark blue hexagons). Ranges obtained from different families of EDFs in
Refs. [76,99] (red cross marks) and the previous αD result of Hagen et al. [47]
are also included.

68Ni [49]. In that work it was observed that predictions with different chiral forces describe
a linear correlation between the dipole polarizability and the charge radius, which nicely
overlaps with the experimental values of both observables. The CC calculations of Ref. [49]
constrains the neutron skin of 68Ni in the range 0.18−0.20 fm, which is in agreement with
the EDF analysis of Roca-Maza et al. [99].

More recently, the dipole polarizability of 208Pb has been computed for the first time from
an ab initio perspective, as shown in Figure 2.9. The non-implausible chiral interactions
selected in Ref. [30] predict αD = 22.6+2.6

−1.8 fm3, which is in agreement with the experimental
value of Ref. [90]. In this case, a different ab initio approach, the IMSRG [40], has been
employed.

As mentioned in Chapter 1, together with these promising benchmarks with theory, the
connection between αD and the symmetry energy parameters is driving experimental inves-
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tigations of this observable in regions of the nuclear chart where it has not been mapped
yet [50, 51]. These experimental efforts motivate the work presented in this thesis, which
extends the reach of ab initio calculations of αD, as shown in Chapter 6.

2.5 Constraints on the incompressibility of nuclear matter
from isoscalar monopole resonances

Electromagnetic observables are key also in the study of other ingredients of the nuclear
EOS. Here, we focus on the incompressibility K0, which determines the curvature of sym-
metric nuclear matter at saturation (see Eq. (2.6)). It has been shown that this parameter
can be constrained by looking at isoscalar monopole (or E0) transitions in finite nuclei [33].
Such transitions are driven by the operator

Θ =
1
2

A

∑
i=1

r2
i , (2.21)

where we use the notation of Eq. (2.15).
First measurements of isoscalar monopole responses in the 1970s [104] have shown that

the E0 strength is typically dominated by a broad peak, known as isoscalar giant monopole
resonance (ISGMR), interpreted as a nuclear ”breathing” mode. As an example, in Fig-
ure 2.12, we show the experimental isoscalar monopole strength of nuclei with A ≃ 90 from
Ref. [105], where we see the emergence of the ISGMR between 15 and 20 MeV of excitation
energy.

Figure 2.12: Experimental data for the isoscalar monopole response of 90,92Zr and 92Mo.
The solid blue line is a Lorentzian fit for 90Zr. Figure taken from Ref. [105].

In 1980, Blaizot [33] established a relation between the mean energy of the ISGMR,
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EISGMR and the incompressibility of nuclear matter. According to Ref. [33], the incom-
pressibility of a A-body nucleus can be defined as

KA =
M
ℏ2 ⟨R

2
m⟩E2

ISGMR, (2.22)

where M is the nucleon mass and Rm is the rms matter radius of the nucleus. In analogy to
the case of the liquid drop formula for the binding energy per nucleon, we can perform a
leptodermous expansion of KA [33, 106]

KA = Kvol +Ksur f A−1/3 +KCoulZ2A−4/3 +Kτ

(N −Z)2

A2 , (2.23)

where Kvol , Ksur f , KCoul , Kτ are the volume, surface, Coulomb and isospin coefficients,
respectively. Taking the A → ∞ limit of this formula suggests that the volume term Kvol can
be interpreted as the incompressibility of nuclear matter K0. Therefore, assuming Kvol = K0,
a sufficient number of experimental data or theoretical calculations of EISGMR can be fitted
to Eq. (2.23), allowing for an extraction of K0.

Calculating the mean energy EISGMR becomes then a crucial part of the game. In this
regard, different strategies to estimate EISGMR can be adopted [107]. In fact, the mean
energy EISGMR can be calculated as

EISGMR =
m1

m0
, (2.24)

or

E(k)
ISGMR =

√
mk

mk−2
, (2.25)

where mk are energy moments of the monopole response

mk =
∫

dωω
kR(ω). (2.26)

However, if the strength of the resonance is mostly concentrated in a narrow energy region
(as in the cases that will be considered in this thesis), the different estimates of the mean
energy give similar results [107]. Therefore in our calculations we choose to focus on the
so-called constrained energy, which is defined putting k = 1 in Eq. (2.25)

E(1)
ISGMR ≡ EISGMR =

√
m1

m−1
. (2.27)

At present, large uncertainties characterize the value of K0 [35, 106]. In Shlomo et
al. [108], the available experimental data on the ISGMR were compared to EDF calcula-
tions. By selecting the EDFs able to reproduce experimental values of EISGMR, the range
240±20 MeV for the incompressibility of nuclear matter was identified. Later, Eq. (2.23)
was employed explicitly by Stone et al. [107] to extract the incompressibility parameters
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from experimental determinations of EISGMR. The latter study reproduces the constraint of
Shlomo et al. [108] applying the condition c = Ksur f /Kvol =−1, which is compatible with
most EDFs. However, if the value of c is allowed to vary, the analysis of Stone et al. [107]
delivers a much higher estimate of K0 with respect to Shlomo et al. [108], amounting to
250 < K0 < 315 MeV. In Hu et al. [30], CC nuclear matter calculations, based on a set of
non-implausible chiral interactions, predict 242 ≤ K0 ≤ 331 MeV, in agreement with both
the estimates of Refs. [107, 108].

Being derived within the liquid drop model, a very approximate description of the nu-
cleus, Eq. (2.23) is to be taken with caution. It is anyway useful, within the same interac-
tion model, to compare estimates of K0 obtained from calculations in nuclear matter and
finite nuclei [106]. Some very recent ab initio works, building on the symmetry-adapted
no-core shell model (SA-NCSM) [109] and the projected generator coordinate method
(PGCM) [110] are moving in this direction.

Motivated by the need of more precise constraints on K0 and by the recent theoretical
interest, we will focus on this problem at the end of Chapter 6.
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3 Nuclear forces in Chiral Effective
Field Theory

As shown in the previous Chapter, the study of finite nuclei and their electromagnetic prop-
erties gives rise to key scientific connections between physics phenomena at microscopic
and macroscopic scales. To analyse such connections, in this thesis we seek for system-
atic predictions of electromagnetic observables across the nuclear chart within an ab initio
framework. In an ab initio calculation, the nonrelativistic Schrödinger equation for A in-
teracting nucleons is solved, starting from two ingredients: the interaction among the con-
stituent protons and neutrons, and a suitable many-body solver. The latter provides virtually
exact solutions or it comes with controlled approximations, allowing for a reliable estimate
of theoretical uncertainties.

Here, we focus on the first ingredient of the ab initio recipe, concerning how to model
the nuclear force. In this regard, one cannot ignore that nucleons are compound objects,
made by quarks, fundamental particles with spin 1/2. Quantum Chromodynamics (QCD) is
the fundamental theory describing their strong interactions, mediated by gluons [111]. At
high energy, QCD is asymptotically free: its coupling constant approaches zero, making the
theory perturbative in this regime [112, 113]. At low energy, instead, it rapidly increases,
confining quarks into colorless objects, as mesons and baryons [114]. A direct derivation
of nuclear forces from QCD is then hindered by the large value of the coupling constant
at the low energies relevant for nuclear physics, making pertubation theory not applicable
in this regime. Direct solutions of nuclear theory problems in QCD are anyway an active
line of research. Lattice QCD calculations, for example, achieve this via a discretization
of spacetime on a four-dimensional grid [115]. However, the predictive power of such
approaches is currently restricted to single mesons, baryons and few-nucleon systems [116,
117] due to their huge computational cost.

The seminal work of Weinberg in the 1990s [118–120] suggested to employ a low-energy
effective field theory for QCD in order to tame these problems. In the presence of a sepa-
ration of scales, effective field theories give a detailed description of the low-energy/long-
range physics while high-energy/short-range modes are suppressed. Information on the
high-energy dynamics is carried by low-energy constants (LECs), which can be fitted to
experimental data or deduced from a more fundamental theory. In Ref. [121], the different
steps leading to a nuclear EFT are summarized as follows:

1. Identify the separation of scales at the basis of the EFT and the appropriate degrees of
freedom for low-energy nuclear theory.
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2. Consider the QCD Lagrangian and identify relevant symmetries of the theory.

3. Write the most general Lagrangian fulfilling those symmetries and possible symmetry
breakings.

4. Define the relative importance of each contribution in a low-momentum expansion,
applying a suitable organizational scheme (“power counting”).

5. Calculate the Feynman diagrams of the theory up to the desired precision.

This procedure led to the development of nuclear interactions based on chiral EFT [121–
123], a low-energy effective field theory for QCD, retaining the symmetries of the underly-
ing theory. Today, chiral EFT represents the foundation of the most widely adopted family
of nuclear Hamiltonians.

In this Chapter, we will mainly follow Refs. [121, 124]. As the work presented in this
thesis does not concern the development of nuclear interactions, we will only outline the
main aspects of the topic. In Section 3.1, we will elaborate on the separation of scales at
the heart of effective field theories, and its application to nuclear physics. In Section 3.2,
we will review the concept of chiral symmetry and its importance in the formulation of
chiral effective Lagrangians. In Section 3.3 we will review the construction of chiral EFT
interactions, and provide a description of the nuclear force models used to obtain the results
of this thesis in Chapter 6.

3.1 Separation of scales

Effective field theories are based on the presence of a separation of scales, represented by
an energy gap between a soft scale Q and an hard scale Λ, with Q ≪ Λ. The soft scale is
the typical energy scale of the physics phenomena that the EFT aims to describe, while the
hard scale identifies the physics regimes not explicitly resolved by the theory. Once Q and
Λ are defined, the EFT can be formulated in terms of an order-by-order expansion in Q/Λ,
where contributions proportional to (Q/Λ)ν enter at order ν .

A typical example of this approach concerns the derivation of the Coulomb potential gen-
erated by an extended charge distribution at large distances [125]. In this limit, the exact
electrostatic potential, accessible only if the charge distribution is known, can be approxi-
mated by an expansion in different multipole orders (the well-known multipole expansion).
Going to higher orders increase the precision of the expansion, which can be truncated once
the desired accuracy is reached.

Let us now consider the case of low-energy nuclear physics. The hadron spectrum clearly
shows a separation of scales between the mass of the pions, Mπ = 140 MeV, and the mass
of the next heavier mesons, ρ , with Mρ = 770 MeV, and ω , with Mω = 782 MeV. We can
then naturally identify the soft scale of the theory with Q of the order of Mπ and the hard
one with Λ ≈ Mρ . An EFT framework based on a low-momentum expansion in powers
of Q/Λ is suitable to describe most nuclear phenomena, as their typical energy is much
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smaller than the mass difference between pions and ρ mesons. In chiral EFT, nucleons and
pions are the relevant degrees of freedom. Other choices are possible, e.g., for phenomena
below Mπ scale, pionless EFT, with only nucleons as building blocks, can be considered
(see Ref. [123] and references therein). In this work, we will only focus on applications of
chiral EFT.

3.2 Chiral symmetry

Once the separation of scales and the effective degrees of freedom are identified, the sym-
metries of the underlying theory, QCD, relevant at the low energies involved in nuclear
phenomena, need to be investigated. We begin by looking at the QCD Lagrangian, which in
Einstein’s notation is given by

LQCD = q̄(iγµDµ −M )q− 1
4
G a

µνG µν
a , (3.1)

where q and q̄ correspond to the quark fields, and M to the quark mass matrix. Moreover,
we can write the covariant derivative as

Dµ = ∂µ − ig
λa

2
A a

µ , (3.2)

and the gluon field strength tensor as

G a
µν = ∂µA a

ν −∂νA a
µ +g fabcA

b
µ A c

ν . (3.3)

In the above equations g indicates the strong coupling constant and A a
µ the gluon fields. λa

are the Gell-Mann matrices and fabc the structure constants of the SU(3)color Lie algebra.
The last term of Eq. (3.3) reveals one of the most interesting properties of QCD: being a
gluon-gluon interaction vertex, it leads to gluon self-interactions in the Lagrangian.

The sum in Eq. (3.1) runs in general over all quark flavours u, d, s, c, b and t. As in the
low-energy regime of QCD only up and down quarks are relevant, we restrict the sum to u
and d in the following. Their masses, given by [126]

mu ≈ 2 MeV, md ≈ 5 MeV, (3.4)

are negligible with respect to the typical energies of hadronic phenomena, of the order of
1 GeV. Therefore, it is instructive to consider the QCD Lagrangian of Eq. (3.1) in the limit
M ≈ 0. By rewriting the quark fields in terms of right-handed and left-handed spinors

qR =
1
2
(1+ γ5)q,

qL =
1
2
(1− γ5)q,

(3.5)
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the Lagrangian becomes

L 0
QCD = ∑

j=R,L
q̄ jiγµDµq j −

1
4
G a

µνG µν
a . (3.6)

It is possible to show that L 0
QCD is invariant under a global unitary transformation of the

spinors

qR =

(
uR

dR

)
→ e−iΘR

i τi/2
(

uR

dR

)
,

qL =

(
uL

dL

)
→ e−iΘL

i τi/2
(

uL

dL

)
,

(3.7)

where τi (i = 1,2,3) are Pauli spin matrices. The fact that under the transformation of
Eq. (3.7) right- and left-handed quarks conserve their helicity and do not mix is at the core
of chiral symmetry.

In QCD, chiral symmetry is both spontaneously and explicitly broken [127]. A symmetry
is spontaneously broken if it is present in the Lagrangian but not in its ground state. An exact
chiral symmetry in QCD would imply the appearance of degenerate parity doublets, i.e.
states with identical quantum numbers and masses, but opposite parity. However, while the
1+ ρ meson has a mass of around 770 MeV, the 1− a1 pseudovector meson is characterized
by a much higher mass of around 1230 MeV, resulting from a spontaneously broken chiral
symmetry. According to Goldstone’s theorem, a spontaneously broken symmetry leads to
the emergence of massless Goldstone bosons in the theory. However, chiral symmetry is
also explicitly broken, as the mass term in Eq. (3.1) is not exactly 0. For this reason the
Goldstone bosons of the theory acquire a mass, and they can be identified with pions. Their
lighter mass with respect to the other hadrons can be traced back to the fact that pions reflect
both the spontaneous and explicit breaking of chiral symmetry in QCD.

3.3 Building chiral effective field theory interactions

Considering nucleons and pions as effective degrees of freedom, we can now write the
most general Lagrangian consistent with chiral symmetry, which represent the foundation
of chiral EFT interactions. We obtain [118, 128, 129]

Le f f = Lππ +LπN +LNN + ... , (3.8)

where the effective Lagrangian receives contributions from pion-pion (ππ), pion-nucleon
(πN) and nucleon-nucleon (NN) interactions. Higher-order terms account for interactions
between more pionic and nucleonic fields.

Although Eq. (3.8) contains an infinite number of terms, and as a consequence an infi-
nite number of Feynman diagrams should be calculated, employing an expansion of Le f f
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in terms of (Q/Λ)ν allows us to systematically organize these terms according to their im-
portance, ensuring that at each order ν a limited number of Feynman diagrams needs to be
computed. Such a power-counting scheme allows to establish a hierarchy of nuclear forces,
where the significance of each nucleon-nucleon, three-nucleon or many-nucleon contribu-
tion arising in the Q/Λ expansion can be easily identified. While the most relevant terms
appear at low orders in ν , including higher orders increases the accuracy of the theory.

To determine the order ν of a Feynman diagram, naive dimensional analysis can be
applied. In this framework, a nucleon propagator counts as Q−1, a pion propagator as
Q−2, each derivative appearing in the Lagrangian is Q and each four-momentum integra-
tion Q4 [121]. Applying some topological identities, one obtains the most frequently used
power counting, that is Weinberg’s power counting [118, 121]

ν =−2+2A−2C+2L+∑
i

∆i, (3.9)

where A is the number of nucleons, C the number of separately connected pieces and L the
number of loops of the diagram. The sum over i runs over all the vertices of the diagram,
with ∆i given by

∆i = di +
1
2

ni −2, (3.10)

where di is the number of derivatives or pion-mass insertions and ni the number of nucleons
at the i-th vertex. In this scheme the leading order is determined by ν = 0. Discussions
on the correct power counting choice for nuclear forces are ongoing, with some alternative
approaches outlined in Refs. [121, 123, 130]. In all the chiral EFT interactions used in this
thesis, Weinberg’s power counting scheme is employed.

The diagrams contributing to chiral EFT up to order ν = 5 are shown in Figure 3.1. Their
analytical expressions can be found in Ref. [121] and references therein. Looking at Fig-
ure 3.1, we observe that the diagrammatic contributions to the nuclear force are character-
ized by two types of interaction vertices: contact interactions between nucleons and vertices
denoting a pion-nucleon interaction. Contact interactions capture short-range effects in the
nuclear interaction, while pion-nucleon vertices, instead, indicate one and multiple pion-
exchange processes, which define the long- and medium-range behaviour of the nuclear
force.

At leading order (LO), characterized by ν = 0, one finds a contact term and a one-pion-
exchange term. Although this is a rough approximation to the NN force, chiral EFT at
LO is already able to capture important features of the deuteron system. For instance, the
one-pion-exchange term contains the tensor force, which is essential to give a correct de-
scription of the deuteron’s quadrupole moment. While all contributions to order ν = 1
vanish due to parity and time-reversal symmetry, at next-to-leading order (ν = 2 or NLO)
two-pion-exchange terms, enriching the long- and intermediate-range description of the NN
interaction, appear. At next-to-next-to-leading order (ν = 3, N2LO or NNLO) one finds
the first contributions to the three-nucleon (3N) force, accounting for medium-range many-
body effects. It is worth pointing out how the order-by-order expansion of chiral EFT leads
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Figure 3.1: Diagrammatic contributions to the nuclear force in ∆-less chiral EFT up to N4LO
in the chiral expansion. NN, 3N and 4N diagrams are distiguished by column.
Solid and dashed lines represent nucleons and pions, respectively. Markers (di-
amonds, squares, circles, pentagons, and hexagons) of different shape are asso-
ciated to interaction vertices of different orders. White symbols denote LECs
entering only the 2N force, while colored symbols appear also in the 3N inter-
action. Figure adapted from Ref. [124].

to a natural appearance of many-body forces in the theory. Moreover, such an expansion
reproduces in a more rigorous framework the empirically known dominance of NN forces
with respect to 3N forces. At next-to-next-to-next-to-leading order (ν = 4 or N3LO) even
four-nucleon (4N) forces start to contribute. Currently, NN potentials up to N4LO [131]
and selected N5LO terms [132] are available, while 3N forces up to N3LO have been de-
rived [124].

In Figure 3.1 white and colored markers correspond to interaction vertices appearing
in the NN or 3N force, respectively, and they are characterized by different low-energy
constants (LECs). Currently, LECs are fitted to experimental data, but in principle they
should be determined starting from the underlying microscopic theory (see, e.g., Ref. [133]
and references therein for recent work in this direction).

Chiral EFT can be reformulated considering the delta isobar ∆(1232) as an explicit degree
of freedom of the theory [134–138]. By simply looking at energy scales, this appears to be
a sensible choice. Exciting the nucleon to the delta requires m∆−mN ≈ 293 MeV, an energy
lying well below the hard scale Λ of chiral EFT. Taking explicitly the ∆ isobar into account
leads to the so-called ∆-full chiral EFT. On top of the diagrams of Figure 3.1, representing
the “∆-less” theory, additional contributions appear in ∆-full theory. They are reported in
Figure 3.2. Although the addition of the ∆ isobar does not modify the Q/Λ expansion at LO,
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Figure 3.2: Same as Figure 3.1 but for the additional diagrammatic contributions to the nu-
clear force in ∆-full chiral EFT. Virtual excitations to the ∆ isobar are represented
by double solid lines. Figure adapted from Ref. [124].

3N forces emerge already at NLO in ∆-full theory. Including the ∆ resonance as a degree of
freedom in chiral EFT also leads to a reduction in the value of some LECs. The latter are
characterized by unnaturally large values in ∆-less theory, reflecting implicit ∆ excitation
effects [121].

The inherent systematic improvability of chiral EFT, given by its order-by-order expan-
sion, offers a significant benefit: it enables the calculation of nuclear observables with a
desired level of precision, while also allowing for the estimation of uncertainties stemming
from the neglected higher orders in the chiral expansion. Also electroweak currents can be
derived order-by-order in chiral EFT, allowing for a consistent description of structure and
electroweak interactions of nuclei within this framework (see Refs. [139, 140] for reviews
on the topic).

This thesis is not focused on the development of nuclear forces from chiral EFT, but rather
on the use of various families of chiral EFT interactions and on the analysis of the results
obtained with these Hamiltonians for light and medium-mass nuclei. In fact, a broad range
of nuclear force models from chiral EFT are currently available on the market. They differ
between each other in many respects, summarized in the following:

1. The implicit or explicit inclusion of the ∆ isobar.

2. The order at which 2N and 3N forces are considered. In this work, 4N forces, first
appearing at N3LO, are neglected as their contribution is expected to be small [141,
142].
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3. The calculation of the Feynman diagrams contributing to the nuclear force is char-
acterized by the presence of loops. The latter need to be regularized specifying a
function, called a regulator, which suppresses the nuclear interaction above a certain
momentum scale, called a cutoff [143]. Such a cutoff is usually of the order of the
hard scale of chiral EFT. Nuclear interaction models from chiral EFT differ for the
choice of regulator and cutoff value. In this work, we will use chiral EFT interactions
employing a nonlocal regulator (see Refs. [144, 145] for details).

4. Low-energy constants in the interactions can be fitted considering different sets of ex-
perimental data. Traditionally, low-energy constants have been determined restricting
the fit only to few-nucleon data (see, e.g., Ref. [121]), but recently, also information
from medium-mass nuclei [102] or nuclear matter [138] has been included.

5. Similarity Renormalization Group (SRG) transformations [146] can be used to make
the shape of the Hamiltonian more amenable to the application of many-body meth-
ods. As they are unitary, observables are kept unaltered as long as all other operator
and wavefunctions are evolved accordingly.

We now briefly sketch the main features of the chiral EFT interactions employed in this
thesis to obtain the results of Chapter 6.

• 1.8/2.0 (EM) [68]. This is a ∆-less NN+3N interaction, based on the Entem and
Machleidt (EM) NN interaction of Ref. [144], derived at N3LO and SRG-evolved up
to a scale λNN = 1.8 fm−1, and on an unevolved 3N interaction at N2LO with cutoff
Λ3N = 2.0 fm−1. The LECs appearing in the short-range terms of the 3N force are
fitted on the binding energy of 3H and the matter radius of 4He. For the LECs entering
the 3N two-pion-exchange diagram, values consistent with Ref. [144] are used. The
1.8/2.0 (EM) interaction is known for being able to reproduce quite well the ground-
state energies of nuclei up to A ≈ 100 [147, 148], while underestimating radii [138].

• 2.0/2.0 (EM) [68]. This interaction, developed in Ref. [68], is part of the same family
of the 1.8/2.0 (EM) one. The only difference with respect to 1.8/2.0 (EM) lies in the
value of the SRG-evolution scale λNN, which in this case corresponds to 2.0 fm−1.

• 2.2/2.0 (EM) [68]. This interaction differs from the previous two only for the SRG-
evolution scale, equal to λNN = 2.2 fm−1.

• 2.0/2.0 (PWA) [68]. This interaction, of the same family as the ones listed above,
differs from 2.0/2.0 (EM) for the LECs entering the 3N two-pion-exchange diagram.
In this case, the NN phase shift analysis of Ref. [149] was employed in the fit.

• NNLOsat [102] This is a ∆-less interaction including NN and 3N forces up to NNLO
in the chiral expansion, with a momentum cutoff of 450 MeV/c. In this case, the
LECs have been optimized including in the fit binding energies and charge radii of
medium-mass nuclei, as carbon and oxygen isotopes.

32



3.3. BUILDING CHIRAL EFFECTIVE FIELD THEORY INTERACTIONS

• ∆NNLOGO [138]. This is a ∆-full interaction model, developed in Ref. [138], incor-
porating NN and 3N forces up to NNLO, available with a softer cutoff of 394 MeV/c
and a harder one of 450 MeV/c. Comparing the results of these two interactions
we can appreciate the effects of the cutoff variation on many-body observables. The
LECs of this family of interactions have been fixed considering properties of A ≤ 4
nuclei and nuclear matter. This interaction model is also available at NLO with a cut-
off of 450 MeV/c, making it possible to explore the effect of truncating the chiral EFT
expansion.
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4 Coupled-cluster theory

As explained in the previous Chapter, our goal is to employ chiral EFT interactions, grounded
in QCD, to study nuclear response functions and electromagnetic observables in an ab initio
framework. To this aim, one needs to solve the quantum many-body problem

H |Ψ⟩= E |Ψ⟩ , (4.1)

with H the nuclear Hamiltonian and E the energy of state |Ψ⟩, for the nuclear ground state
and all the possible final states induced by electromagnetic operators. In this Chapter, we
will show how this can be achieved in a systematically improvable way within coupled-
cluster theory.

Originally introduced in the realm of nuclear physics by Coester and Kümmel [150, 151]
as an effective approach for addressing the strong nuclear correlations, coupled-cluster the-
ory has been widely employed in quantum chemistry to describe properties of many-electron
systems, as atoms and molecules (see [152,153] and references therein). After few sporadic
applications to nuclei [154, 155], in the last twenty years, the availability of SRG-evolved
nuclear Hamiltonians, together with significant advancements in high performance comput-
ing infrastructures, led to a reinassance of coupled-cluster theory in nuclear physics [39].
Noteworthy coupled-cluster achievements in the field include the first ab initio calculation
of the neutron skins of 48Ca [47] and 208Pb [30], mentioned in Chapter 2, and the solution
of the longstanding experiment-theory discrepancy in β -decay rates [156]. Thanks to its
polynomial computational scaling with increasing mass number A, coupled-cluster theory
stands out as an ideal tool to study nuclear systems in the medium mass region of the nuclear
chart and beyond.

After giving an overview of second quantization, we will show how coupled-cluster the-
ory can be employed in solving the many-body Schrödinger equation for ground-state and
excited-state properties of nuclei. We will also discuss the issues arising when open-shell
nuclei are considered and show how they can be addressed in coupled-cluster theory. This
Chapter is mainly based on Refs. [39, 86, 153].

4.1 Basic tools

4.1.1 Second quantization

In many-body theory, second quantization is a convenient formalism allowing for a sim-
pler representation of the states of a many-body system, using a basis where each state is
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expressed in terms of the occupation number of some single-particle states. Although this
framework is quite general, our focus will be on many-nucleon systems. Given a single-
particle basis {|φ1⟩ , |φ2⟩ , . . . , |φm⟩}, we identify with ni the number of particles occupying
a state |φi⟩. At this point, we can create a new basis of vectors |n1,n2, . . . ,nm⟩ labelled by
the occupation numbers, where ∑i ni = A, with A the total number of particles. The space
spanned by the occupation number basis takes the name of Fock space and it can be built as
a direct sum of Hilbert spaces

F = H0 ⊕H1 ⊕H2 ⊕·· ·⊕Hm, (4.2)

where |n1⟩ ∈ H1, |n1,n2⟩ ∈ H2, |n1,n2, . . . ,nm⟩ ∈ Hm and |0⟩ ∈ H0 is the physical vacuum
state, where no particles exist and all ni vanish. In this space, creation a†

i and annihilation ai

operators with respect to the vacuum state |0⟩ can be defined. One can compute every state
belonging to the Fock space applying creation operators on the vacuum, as

|n1,n2, . . . ,nm⟩=
(

a†
1

)n1
(

a†
2

)n2
. . .
(

a†
m

)nm
|0⟩ . (4.3)

Because nuclei are many-fermion systems, their wavefunction must be antisymmetric. In
the first quantization formalism the many-body wavefunction corresponds to a Slater deter-
minant, i.e. an antisymmetrized product of single-particle states

|Φ⟩= A [|φi⟩ |φ j⟩ . . . |φk⟩], (4.4)

where A is an antisymmetrizing operator. In second quantization, instead, we can rewrite
Eq. (4.4) as

|Φ⟩= |i j . . .k⟩= a†
i a†

j . . .a
†
k |0⟩ , (4.5)

where a†
i creates a particle in the single-particle state |φi⟩. Annihilation and creation opera-

tors satisfy the following anti-commutation relations

{a†
i ,a

†
j}= 0,

{ai,a j}= 0,

{a†
i ,a j}= δi j,

{a j,a
†
i }= δi j.

(4.6)

These conditions can be deduced considering that ai |0⟩ = 0 and (a†
i ai + aia

†
i ) |0⟩ = |0⟩,

while for i ̸= j it holds (a†
i a j +a ja

†
i ) |0⟩= 0.

In the second quantization formalism, it is possible to show that every operator of the
theory can be expressed as strings of creation and annihilation operators. In particular we
have that

F = ∑
pq
⟨p| f |q⟩a†

paq, (4.7)
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V =
1
2 ∑

pqrs
⟨pq|v|rs⟩a†

pa†
qasar =

1
4 ∑

pqrs
⟨pq||rs⟩a†

pa†
qasar, (4.8)

W =
1
6 ∑

pqrstu
⟨pqr|w|stu⟩a†

pa†
qa†

r asatau =
1

36 ∑
pqrstu

⟨pqr||stu⟩a†
pa†

qa†
r asatau, (4.9)

where F , V and W are one-body, two-body and three-body operators, characterized by one-
body ⟨p| f |q⟩, two-body ⟨pq|v|rs⟩ and three-body matrix elements ⟨pqr|w|stu⟩, respectively.
In the case of V , we indicated with ⟨pq||rs⟩ the antisymmetric matrix element ⟨pq||rs⟩ =
⟨pq|v|rs⟩−⟨pq|v|sr⟩. An analogous expression is used for the three-body operator W .

4.1.2 Wick’s theorem

Wick’s theorem is a fundamental tool to compute matrix elements in the formalism of sec-
ond quantization. To understand its implications, we first need to introduce the concepts of
normal product and contraction between operators.

1. The normal product N [. . . ] of a string of operators ABC . . .Z consists in reordering
these operators in such a way that annihilation operators lie at the right of creation op-
erators, with a phase that takes into account the total number of permutation required.

2. The contraction between two operators is defined as

AB = AB−N [AB]. (4.10)

According to the time-independent Wick’s theorem, a product of a string of creation and
annhilation operators is equal to their normal product plus the sum of all possible normal
product with contractions, i.e.,

ABC . . .Z = N [ABC . . .Z]+ ∑
contr

N [ABC . . .Z]. (4.11)

A proof of this theorem can be found in Ref. [153]. Let us consider an example for a string
of three operators. On the basis of Wick’s theorem, we can write

ABC = N [ABC]+N [ABC]+N [ABC]+N [ABC], (4.12)

where the normal product with contractions is given by

N [ABC . . .V Z] = (−1)PBVN [AC . . .Z], (4.13)

with P representing the number of permutation needed to move V next to B. As the vacuum
expectation value of a normal-ordered product is zero, from Eq. (4.11) we have that the vac-
uum expectation value of any string of operators vanishes unless all operators are contracted
in the last term.
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4.1.3 Particle-hole formalism and normal-ordered operators

Instead of referring every many-body state to the physical vacuum |0⟩ according to Eq. (4.3),
a more convenient choice for nuclear physics and quantum chemistry applications is to begin
with a different reference state, given by

|Φ0⟩= |i jk . . .⟩ , (4.14)

which takes the name of Fermi vacuum. The indices i, j,k, . . . define the occupied single-
particle states in the reference, identifying the so-called Fermi sea. Single-particle states
below the Fermi sea are called hole states, while the other orbitals above the Fermi sea,
labelled with the indices a,b,c . . . , are called particle states. The indices p,q,r, . . . are used
to identify particle and hole states alike. We can then build excited states by promoting
particles from the region below the Fermi sea to the one above it

|Φabc...
i jk... ⟩= a†

aa†
ba†

c . . .aka jai |Φ0⟩ . (4.15)

A schematic representation of the reference state and of some excited states is given in
Figure 4.1.

Figure 4.1: Schematic representation of the reference state and excited states in the particle-
hole formalism. Occupied orbitals below the Fermi level are represented by
blue circles, holes in the Fermi sea by white circles and excited occupied orbitals
above the Fermi level by red circles. (a) is a representation of the reference |Φ0⟩,
(b) of a one-particle one-hole (1p-1h) state, obtained applying a†

aai on |Φ0⟩, (c)
of a two-particle-two-hole (2p-2h) state, obtained applying a†

aa†
ba jai to |Φ0⟩.

Figure taken from Ref. [86].

Adopting the vacuum state of Eq. (4.14), we also need to redefine creation and annihi-
lation operators with respect to the new reference. In this framework, a†

a and ai represent
pseudo-creation operators: a†

a generates a particle in the unoccupied orbitals above the Fermi
surface, while ai creates a hole in the occupied orbitals of the reference state. Similarly, a†

i
and aa become pseudo-annihilation operators: a†

i eliminates a hole in the reference, while
aa destroys a particle above the Fermi sea. The new reference state choice of Eq. (4.14),
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equipped with a corresponding redefinition of the creation and annihilation operators, iden-
tifies the so-called particle-hole formalism.

Also the definition of normal-ordered product entering Wick’s theorem needs to be ex-
tended when |Φ0⟩ is chosen as reference and pseudo-creation and pseudo-annihilation op-
erators are introduced. In this case, a string of creation and annihilation operators is defined
to be normal-ordered if all pseudo-creation operators (a†

a and ai) are found on the left of all
pseudo-annihilation operators (a†

i and aa). With this definition, it is possible to show that
Wick’s theorem holds in the same form of Eq. (4.11), ensuring that expectation values on
the Fermi vacuum vanish.

We now employ Wick’s theorem and the anti-commutation relations of Eq. (4.6) to rewrite
the F , V and W operators of Eqs. (4.7), (4.8), (4.9) in a normal-ordered format with respect
to |Φ0⟩. Let us start from the one-body operator F

F = ∑
pq
⟨p| f |q⟩a†

paq

= ∑
pq
⟨p| f |q⟩N [a†

paq]+∑
pq
⟨p| f |q⟩a†

paq

= ∑
pq
⟨p| f |q⟩N [a†

paq]+∑
i
⟨i| f |i⟩

= FN +∑
i
⟨i| f |i⟩ ,

(4.16)

where in the second sum the only non-zero contraction appears when the indices p and q

correspond to hole states: a†
i a j = δi j. We also indicate with FN the normal-ordered part of

the operator F . The expectation value of F on the Fermi vacuum will then be

⟨Φ0|F |Φ0⟩= ⟨Φ0|FN |Φ0⟩+∑
i
⟨i| f |i⟩= ∑

i
⟨i| f |i⟩ , (4.17)

as the expectation value of normal-ordered operators vanish by construction. We can repeat
the same reasoning also for the two-body operator V , obtaining

V =
1
2 ∑

pqrs
⟨pq||rs⟩N [a†

pa†
qasar +a†

pa†
qasar +a†

pa†
qasar

+a†
pa†

qasar +a†
pa†

qasar +a†
pa†

qasar +a†
pa†

qasar]

=
1
4 ∑

pqrs
⟨pq||rs⟩N [a†

pa†
qasar]+∑

ipq
⟨pi||qi⟩N [a†

paq]+
1
2 ∑

i j
⟨i j||i j⟩

=V 2b
N +V 1b

N + ⟨Φ0|VN |Φ0⟩ .

(4.18)

Here, V 2b
N is the normal-ordered two-body part of V and V 1b

N the normal-ordered one-body
part.
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Analogously, for the three-body operator W we find:

W =
1

36 ∑
pqrstu

⟨pqr||stu⟩N [a†
pa†

qa†
r asatau]+

1
4 ∑

ipqrs
⟨ipq||irs⟩N [a†

pa†
qasar]

+
1
2 ∑

i jpq
⟨i jp||i jq⟩N [a†

paq]+
1
6 ∑

i jk
⟨i jk||i jk⟩

=W 3b
N +W 2b

N +W 1b
N + ⟨Φ0|WN |Φ0⟩ ,

(4.19)

where W 3b
N , W 2b

N and W 1b
N correspond to the normal-ordered three-body, two-body and one-

body parts of the operator W , respectively.

In nuclear physics calculations, we usually deal with three-body Hamiltonians of the form
H = F +V +W . Using Eqs. (4.16), (4.18), (4.19) and grouping the zero-, one-, two- and
three-body normal-ordered terms, we can write the Hamiltonian as

H = F +V +W

= ⟨Φ0|F +V +W |Φ0⟩+(FN +V 1b
N +W 1b

N )+(V 2b
N +W 2b

N )+W 3b
N

= H0 +H1b
N +H2b

N +H3b
N .

(4.20)

The normal-ordered Hamiltonian will then correspond to

HN = H −H0 = H1b
N +H2b

N +H3b
N . (4.21)

Using the normal-ordered Hamiltonian, the Schrödinger equation for a state |Ψµ⟩ becomes

HN |Ψµ⟩= ∆Eµ |Ψµ⟩ , (4.22)

where ∆Eµ = Eµ −H0 = Eµ − ⟨Φ0|H|Φ0⟩ is the so-called correlation energy, defined in
terms of the uncorrelated energy H0 of the reference state |Φ0⟩. In this work, the results pre-
sented in Chapter 6 have been obtained starting from the harmonic oscillator single-particle
basis and performing a Hartree-Fock calculation (see Refs. [157,158] for details). We select
the resulting Slater determinant expanded on the Hartree-Fock basis as our reference state
|Φ0⟩. Therefore, the uncorrelated energy H0 corresponds to the Hartree-Fock energy of the
nucleus under consideration. The correlation energy ∆Eµ of the state |Ψµ⟩ is then computed
employing an appropriate many-body method to solve Eq. (4.22).

Incorporating three-body forces in the nuclear Hamiltonian is essential for accurately de-
scribing nuclear observables. However, a complete treatment of three-nucleon interactions
poses significant technical challenges, as it leads to more complex equations to handle and
it requires the storage of numerous matrix elements. A cost-effective approach to partially
simplify the inclusion of three-body effects in nuclear structure calculations is the so-called
normal-ordered two-body approximation. The latter consists in omitting the pure three-body
interaction H3b

N =W 3b
N , and accounting for three-body forces by keeping the lower-rank WN

terms. While still requiring the storage of three-body matrix elements, the normal-ordered
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two-body approximation allows one to employ similar algorithms as the ones needed to han-
dle two-body forces. We adopted such approximation in obtaining all the results presented
in Chapter 6. In Refs. [159, 160], it has been shown that the effect of an explicit inclusion
of H3b

N in both light and medium-mass nuclei is safely negligible.

4.2 The exponential ansatz

Starting from Eq. (4.22), the Schrödinger equation for the ground state |Ψ0⟩ of an A-body
nucleus can be written as

HN |Ψ0⟩= ∆E0 |Ψ0⟩ . (4.23)

where ∆E0 is the ground-state correlation energy. To solve this equation, coupled-cluster
theory relies on the so-called exponential ansatz

|Ψ0⟩= eT |Φ0⟩ , (4.24)

which connects the ground-state wavefunction to the reference state |Φ0⟩ given by Eq. (4.14).
The exponentiated operator T , also known as cluster operator, introduces correlations in the
many-body ground state. It can be expanded according to the following expression

T = T1 +T2 +T3 + · · ·+TA =
A

∑
n=1

Tn. (4.25)

where Tn generates n-particle n-hole (np-nh) excitations on top of the reference |Φ0⟩

Tn =

(
1
n!

)2

∑
i j...ab...

tab...
i j... a†

aa†
b . . .a jai. (4.26)

The ground state is then fully determined once the so-called coupled-cluster amplitudes tab...
i j...

are found. Inserting Eq. (4.24) in Eq. (4.23) and multiplying by e−T on the left, we obtain

e−T HNeT |Φ0⟩ ≡ HN |Φ0⟩= ∆E0 |Φ0⟩ , (4.27)

where we introduced the similarity-transformed Hamiltonian HN = e−T HNeT . The expec-
tation value of HN on the reference state corresponds to the correlation energy

∆E0 = ⟨Φ0|HN |Φ0⟩ . (4.28)

To determine ∆E0, which depends on the similarity-transformed Hamiltonian, the coupled-
cluster amplitudes need to be known. They can be computed by solving the so-called
coupled-cluster equations, which result from projecting Eq. (4.27) on the np-nh excited
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states of the reference:

⟨Φab...
i j... |HN |Φ0⟩= ∆E0 ⟨Φab...

i j... |Φ0⟩= 0. (4.29)

It is worth pointing out that unlike the configuration interaction linear ansatz [161], the
exponential ansatz of Eq. (4.24) ensures the size extensivity of the solution [162, 163], i.e.
the correlation energy of the system exhibits a linear scaling with the number of particles
in the limit of infinite size. This property is also relevant in studying finite nuclei for two
reasons. First, it matches the saturation properties of the nuclear interaction. Second, it
implies that the accuracy of the coupled-cluster ansatz remains constant with respect to the
mass number of the system under study [164].

The similarity-transformed Hamiltonian is not Hermitian. For this reason, knowledge of
both the left and right eigenstates is required to compute coupled-cluster expectation values.
The right eigenstate coincides with the reference state, while the left one can be expressed
in the form

⟨Φ0,L|= ⟨Φ0|(1+Λ). (4.30)

In analogy to the cluster operator T , also Λ can be written as a sum of np-nh de-excitation
operators as

Λ = Λ1 +Λ2 + · · ·+ΛA =
A

∑
n=1

Λn, (4.31)

with

Λn =

(
1
n!

)2

∑
i j...ab...

λ
i j...
ab...a

†
i a†

j . . .abaa. (4.32)

The amplitudes λ
i j...
ab... of the Λ operator can be found by solving the equations

0 = ⟨Φ0|HN |Φab...
i j... ⟩+ ⟨Φ0|ΛHN |Φab...

i j... ⟩+ ∑
k<l<...c<d<...

⟨Φ0|HN |Φcd...
kl... ⟩⟨Φ

cd...
kl... |Λ|Φ

ab...
i j... ⟩ .

(4.33)
Since the intermediate state |Φcd...

kl... ⟩ represents a de-excitation with respect to the initial state
|Φab...

i j... ⟩, the indices of |Φcd...
kl... ⟩ are a subset of the indices of the initial state. A detailed

derivation of Eq. (4.33) can be found in Ref. [86].

4.2.1 Computing the similarity-transformed Hamiltonian

Eqs. (4.27) and (4.33) highlight the pivotal role that the similarity-transformed Hamilto-
nian HN plays in coupled-cluster theory. For this reason, in the following we will briefly
sketch how it can be evaluated. We begin by applying the Baker-Campbell-Hausdorff for-
mula [165], obtaining

HN = HN +[HN ,T ]+
1
2!
[[HN ,T ],T ]+

1
3!
[[[HN ,T ],T ],T ]+ . . . . (4.34)
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The similarity-transformed Hamiltonian thus corresponds to an infinite sum of nested com-
mutators involving the normal-ordered Hamiltonian and the cluster operator T . Such com-
mutators can be determined by employing the generalized Wick’s theorem [153]. The latter
focuses on a general product of creation and annihilation operators, where some of them are
already in normal-ordered product form. The theorem states that such product equals to the
overall normal product of all creation and annihilation operators plus the sum of all overall
normal products with contractions. In the latter, pair of operators within the same original
normal product are excluded. As an example, let us focus on the commutator [HN ,T ]. In
this case, the theorem leads to the following expression

[HN ,T ] = HNT −T HN = N [HNT ]+HNT −N [T HN ]−T HN , (4.35)

where in the HNT and T HN terms creation and annihilation operators are fully contracted
(otherwise vacuum expectation values would be zero). We get N [HNT ] = N [T HN ], as
both HN and T are characterized by an even number of creation and annihilation operators.
Therefore, the commutator reduces to

[HN ,T ] = HNT −T HN . (4.36)

Considering the possible combinations of contractions involving pseudo-creation and pseudo-
annihilation operators, only

a†
i a j = δi j,

aaa†
b = δab,

(4.37)

do not vanish. This has two consequences. First, as only particle creation operators a†
a,a

†
b, . . .

and hole annihilation operators ai,a j, . . . enter in T , contractions between T operators give
zero. Second, the commutator receives non-zero contribution only from contractions be-
tween HN and T where T lies on the right of HN . These remarks lead to an important
conclusion: the nested commutator expansion naturally terminates at a point determined by
the shape of the Hamiltonian. When dealing with a two-body Hamiltonian, the expansion is
truncated at fourfold nested commutators, while considering a three-body Hamiltonian, it is
truncated at the level of sixfold nested commutators. For simplicity, we show the case of a
two-body Hamiltonian, where we can rewrite Eq. (4.34) as

HN = HN +HNT +
1
2!

HN T T +
1
3!

HNT T T +
1
4!

HN T T T T = (HNeT )C, (4.38)

where the new notation (HNeT )C indicates that HN contains only connected terms, that is
terms in which each T operator is contracted with HN .
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4.2.2 Coupled-cluster approximations for ground-state calculations

If we are interested in the ground state properties of an A-body nucleus, the particle-hole
expansion of both the cluster and Λ operators entering the similarity transformation cor-
responds to the sum of A terms. However, as Ap-Ah calculations are not feasible from a
computational point of view, one resorts to truncations of Eqs. (4.26) and (4.32). The most
frequently adopted approximation is coupled-cluster singles-and-doubles (CCSD), where
we have

T = T1 +T2, Λ = Λ1 +Λ2. (4.39)

In this approximation, one needs to solve the coupled equations

⟨Φa
i |HNeT1+T2 |Φ0⟩C = 0, ⟨Φab

i j |HNeT1+T2|Φ0⟩C = 0. (4.40)

to determine the T1 and T2 amplitudes of the cluster operator, and Eq. (4.33) at the corre-
sponding order for the Λ1 and Λ2 amplitudes. The subscript C indicates that only connected
contributions enter the equations. The CCSD approximation scheme typically accounts for
the 90% of the correlation energy. Increased precision can be obtained by adding linear
triples excitations via the so-called CCSDT-1 truncation [166]. In this case, the exponential
in the similarity-transformation becomes

eT ≈ eT1+T2 +T3. (4.41)

In this approximation scheme, the T1 equation will get an additional term VNT3, while the
T2 equation will include contributions from FNT3 and VNT3. An additional equation is also
needed for the tabc

i jk amplitudes of T3, yielding

⟨Φabc
i jk |HN |Φ0⟩= 0 → 0 = FNT 3 +V NT 3 +V NT 2. (4.42)

A corresponding approximation is adopted for the Λ operator

Λ = Λ1 +Λ2 +Λ3 (4.43)

in the left eigenvalue problem of Eq. (4.33). With the inclusion of triples excitations, around
98-99% of the correlation energy can be captured [167].

4.3 The equation-of-motion coupled-cluster method for
excited states

While Eqs. (4.29) and (4.33) determine the structure of the nuclear ground state, we need an
approach to compute arbitrary excited states of the Hamiltonian via the following equation

HN |Ψµ⟩= ∆Eµ |Ψµ⟩ . (4.44)

44



4.3. THE EQUATION-OF-MOTION COUPLED-CLUSTER METHOD FOR EXCITED STATES

This can be achieved in the framework of the equation-of-motion coupled-cluster (EOM-
CC) method [168]. In the EOM-CC approach, we assume that a general target state |Ψµ⟩
can be written as

|Ψµ⟩= Rµ |Ψ0⟩= RµeT |Φ0⟩ . (4.45)

Here Rµ is an EOM excitation operator that connects the ground state of the nucleus |Ψ0⟩ to
the state |Ψµ⟩ under consideration. As HN is non-Hermitian, also for excited states we need
to differentiate between left and right eigenstates of the Hamiltonian. Therefore, a similar
ansatz holds for the corresponding bra state

⟨Ψµ |= ⟨Φ0|Lµe−T , (4.46)

where Lµ is an EOM de-excitation operator. Inserting Eq. (4.45) in Eq. (4.44) and multiply-
ing the resulting expression on the left by e−T we get

HNRµeT |Φ0⟩= ∆EµRµeT |Φ0⟩ ⇒ HNRµ |Φ0⟩= ∆EµRµ |Φ0⟩ , (4.47)

where ∆Eµ is the energy of the target state with respect to the reference |Φ0⟩. We observe
that [Rµ ,T ] = 0 as they are both excitation operators. Analogously for ⟨Ψµ | it holds that

⟨Φ0|Lµe−T HN = ⟨Φ0|Lµe−T
∆Eµ ⇒ ⟨Φ0|LµHN = ⟨Φ0|Lµ∆Eµ . (4.48)

Eqs. (4.47) and (4.48) take the name of EOM-CC equations. Left and right eigenstates are
bi-orthogonal, and as with proper normalization the following relation is valid

⟨Φ0|Lµ
′Rµ |Φ0⟩= δ

µ
′
µ
, (4.49)

the completeness relation applies in the form of

∑
µ

Rµ |Φ0⟩⟨Φ0|Lµ = 1. (4.50)

It is useful to notice that for µ = 0 Eqs. (4.47) and (4.48) provide the right and left ground
state of the system, respectively. Given Eqs. (4.24) and (4.30), we deduce that in this special
case the EOM operators reduce to R0 = 1 and L0 = (1+Λ). When considering instead
excited states of an A-body nucleus the EOM-CC operators Rµ and Lµ can be expanded as

Rµ = r0,µ +∑
ai

ra
i,µa†

aai +
1
4 ∑

abi j
rab

i j,µa†
aa†

ba jai + . . . , (4.51)

and
Lµ = l0,µ +∑

ai
li
a,µa†

i aa +
1
4 ∑

abi j
li j
ab,µa†

i a†
jabaa + . . . , (4.52)
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where rab...
i j...,µ and li j...

ab...,µ are the amplitudes of the right and left EOM-CC operators, respec-

tively. In order to determine rab...
i j...,µ and li j...

ab...,µ , we can express the EOM-CC equations in a
more convenient format. As an example, let us focus on the right Schrödinger equation, and
consider the difference between Eq. (4.47) and Eq. (4.27) multiplied by Rµ . We obtain the
following expression

[HN ,Rµ ] |Φ0⟩= ωµRµ |Φ0⟩ . (4.53)

where ωµ = ∆Eµ −∆E0 is the excitation energy with respect to the ground state. The equa-
tion above can be rewritten as

(HNRµ)C |Φ0⟩= ωµRµ |Φ0⟩ , (4.54)

as only connected terms survive in the commutator. In Eq. (4.54), we can recognise the
form of an eigenvalue problem, where the amplitudes of Rµ are the components of the
eigenstates and the excitation energies ωµ are the eigenvalues. Solving the corresponding
left eigenvalue problem allows to find the amplitudes of Lµ .

Due to computational limitations, also Rµ and Lµ need to be truncated in analogy to the
T and Λ operators. The EOM-CCSD framework is defined by keeping only singles and
doubles excitation terms in Eqs. (4.51) and (4.52). Adding also linear triples contributions
lead to the EOM-CCSDT-1 approximation [169].

4.4 Coupled-cluster theory for open-shell nuclei

Understanding the different many-body treatment required by open-shell nuclei with respect
to the case of closed-shell nuclei requires a premise on the relation between the symmetries
of the system and the choice of the single-particle basis. In our derivation, we labelled
single-particle states with the indices a,b, . . . , i, j, . . . , which collectively represent the set of
quantum numbers specifying the given orbital. For the result presented in Chapter 6, we
choose to work with an Hartree-Fock reference expanded on the single-particle harmonic
oscillator (HO) basis. The latter depends on the HO frequency parameter ℏΩ, and it is
truncated at a maximum number of major oscillator shells Nmax. Taking into account also
the spin and isospin quantum numbers, a single-particle orbital |p⟩ is identified by

|p⟩= |np,(lp,sp) jpmp⟩⊗ |τp,τ
z
p⟩ , (4.55)

where np is the radial quantum number, and lp and sp = 1/2 are the orbital angular momen-
tum and spin. The sum of lp and sp gives the total angular momentum jp with projection mp,
while τp and τz

p correspond to the isospin and its z-axis projection, respectively. Eq. (4.55)
is employed in the so-called m-scheme formulation of coupled-cluster theory, where mp is
considered explicitly in the single-particle states and in the calculation of matrix elements
as a good quantum number.

For closed (sub-)shell nuclei, characterized by Jπ = 0+, the set of quantum numbers
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characterizing |p⟩ can be simplified. In this case, in fact, the Hamiltonian and the T and
Λ operators (and as a consequence, also the similarity-transformed Hamiltonian) are scalar
under rotations. This makes it possible to adopt an angular-momentum-coupled formalism
where the dependence of |p⟩ on mp in the calculation of matrix elements can be removed
and |p⟩ reduces to

|p⟩= |np,(lp,sp) jp⟩⊗ |τp,τ
z
p⟩ . (4.56)

The angular-momentum-coupled formulation of coupled-cluster theory is known with the
name of j-scheme coupled-cluster or spherical coupled-cluster. Despite limiting the num-
ber of accessible nuclei, the j-scheme formulation, reducing the computational cost of the
method [39], has extended dramatically its reach in mass number [30, 170, 171].

In the case of open-shell nuclei, while the nuclear Hamiltonian remains invariant under
rotations, the coupled-cluster reference state breaks rotational symmetry, as it does not have
a well defined total angular momentum [172]. In this case, one has to resort to the use of the
m-scheme formulation, and once the desired state has been calculated, rotational symmetry
needs to be restored via angular momentum projection techniques [173]. Coupled-cluster
calculations of ground-state properties and rotational spectra of open-shell nuclei are now
possible starting from axially symmetric reference states [174] and including angular mo-
mentum projection, which however comes at a considerably heavier computational cost with
respect to bare m-scheme coupled-cluster [175, 176].

There is a way to tackle selected open-shell nuclei in coupled-cluster theory without
breaking rotational symmetry in the reference state, allowing us to avoid the computation-
ally demanding angular momentum projection step required by m-scheme calculations. The
EOM-CC approach, in fact, can also be applied to describe nuclei in the vicinity of closed
shells, characterized by having A±1,2 valence nucleons with respect to the doubly-magic
or semi-magic A-body neighbour [39]. Since ongoing experimental campaigns measuring
electromagnetic observables as the dipole polarizability are focusing on such nuclei, we
choose to follow this path and leave the development of a framework to calculate response
functions in m-scheme coupled-cluster to future work.

4.4.1 Equation-of-motion coupled-cluster for nuclei in the vicinity of
closed shells

In the EOM-CC approach, states of A±k nuclei are modeled as excited states of the A-body
closed-shell neighbour. The form of the wavefunction in this case is given by

|ΨA±k
µ ⟩= RA±k

µ |Ψ(A)
0 ⟩= RA±k

µ eT |Φ0⟩ , (4.57)

with an analogous expression on the bra side

⟨ΨA±k
µ |= ⟨Φ0|LA±k

µ e−T . (4.58)
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Here, RA±k
µ (LA±k

µ ) is a (de-)excitation operator which involves the net creation (annihilation)
of k nucleons, starting from the coupled-cluster wavefunction of the neighbouring closed-
shell system. In Eqs. (4.57) and (4.58) our starting point |Φ0⟩ is the reference state of the
closed-shell core calculated with a mass shift A∗ = A± k in the Hamiltonian. Here, A∗ is
the mass number of the nucleus that we want to describe and k = 1,2. This guarantees that
the correct kinetic energy of the center of mass is employed when computing properties of
A∗ = A± k nuclei.

For k = 1, the operators

RA+1
µ = ∑

a
ra

µa†
a +

1
2 ∑

abi
rab

i,µa†
aa†

bai + . . . , (4.59)

LA+1
µ = ∑

a
la,µaa +

1
2 ∑

abi
lab
i,µa†

i abaa + . . . , (4.60)

and
RA−1

µ = ∑
i

ri,µai +
1
2 ∑

i ja
ra

i j,µa†
aa jai + . . . , (4.61)

LA−1
µ = ∑

i
li
µa†

i +
1
2 ∑

i ja
li j
a,µa†

i a†
jaa + . . . , (4.62)

represent the foundation of the particle-attached equation-of-motion coupled-cluster (PA-
EOM-CC) [177] and the particle-removed equation-of-motion coupled-cluster (PR-EOM-
CC) [178] respectively. Implemented for the first time in quantum chemistry, these methods
have found applications also in nuclear physics [179].

In Ref. [180], Jansen and coauthors introduced the 2PA-EOM-CC and 2PR-EOM-CC
method for nuclei with two-particle-attached and two-particle-removed from a closed-shell
nucleus. A spherical implementation of the 2PA-EOM-CC approach is presented in Ref. [181].
For A∗ = A+2, the right and left EOM operators are given by

RA+2
µ =

1
2 ∑

ab
rab

µ a†
aa†

b +
1
6 ∑

abci
rabc

i,µ a†
aa†

ba†
cai + . . . , (4.63)

and
LA+2

µ =
1
2 ∑

ab
lab,µaaab +

1
6 ∑

abci
li
abc,µa†

i acabaa + . . . , (4.64)

while for A∗ = A−2 we get

RA−2
µ =

1
2 ∑

i j
ri j,µaia j +

1
6 ∑

i jka
ra

i jk,µa†
aaka jai + . . . , (4.65)

and
LA−2

µ =
1
2 ∑

i j
li j
µ a†

i a†
j +

1
6 ∑

i jka
li jk
a,µa†

i a†
ja

†
kaa + . . . . (4.66)
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The right EOM-CC equations

(HNRA±k
µ )C |Φ0⟩= ωµRA±k

µ |Φ0⟩ , (4.67)

and their left counterpart hold also when the EOM-CC approach is used to describe open-
shell nuclei. In this case the energy difference ωµ is given by ∆Eµ −∆E∗

0 , where ∆E∗
0 is the

CC ground-state energy of the closed-shell core with respect to the reference |Φ0⟩.
Let us focus on the 2PA-EOM-CC approach. The use of excitation operators that do

not conserve the number of particles implies a different expansion in terms of particle-hole
excitations with respect to the particle-number conserving case. While the terms of the
many-body expansion of the cluster operator and particle-number conserving EOM involve
the excitation of the same number of particles and holes, the 2PA-EOM-CC (de-)excitation
operator Rµ (Lµ ) is characterized by a 2p-0h term, a 3p-1h term and in general up to a
(A+2)p-Ah term. The results in Chapter 6 have been obtained employing two different
truncations for the 2PA-EOM-CC method. The latter can be distinguished on the basis
of the number of particle-hole excitation kept in the operator. The 2PA-EOM-CC method
in the 2p-0h approximation is given by keeping only the first term in the expansions of
Eqs. (4.63) and (4.64), while adding also the second term leads to the 3p-1h approximation.
In j-scheme formulation, the 2PA-EOM-CC approach truncated at the 3p-1h level has a
significant computational cost. Depending on the nucleus and on the state under study, the
size of the matrix in Eq. (4.67) can overcome 108 [181]. For this reason, the implementation
of the 4p-2h approximation framework [182] is beyond the scope of this work.

4.5 Diagrammatic representation

Solving the coupled-cluster equations (4.29) and the EOM-CC equations for both excited
states (4.54) and open-shell systems (4.67) requires the calculation of matrix elements of
operators on many-body states. The most convenient way to carry out this endeavour is to
adopt a diagrammatic representation of the operators and many-body states involved. This
leads to more compact results, which can be more easily implemented numerically. The
interested reader can find a detailed coverage of this subject in Ref. [153], while here we
will only sketch the main practical aspects of diagrammatic techniques.

In diagrammatic notation, we represent a generic many-body state with upward and
downward directed lines specifying the orbitals which differ from those in the reference
state |Φ0⟩. In particular, upward lines are associated to particle states and downward lines
to hole states. As an example, using this convention, ket and bra 1p-1h determinants are
graphically represented as

|Φa
i ⟩= a i and ⟨Φa

i |= a i . (4.68)
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As no excitations are present in the reference state, we conventionally represent it as empty
space. Also operators can be expressed in a diagrammatic form. For a normal-ordered
one-body operator we have

FN = ∑
ab

b

a
+ ∑

i j
i

j
+ ∑

ai
a i + ∑

ai
a i ,

(4.69)

with a dashed line ending with a cross mark representing the action of the operator. These
diagrams corresponds to the four contributions that are obtained when replacing explicit
particle a,b and hole i, j indices to the generic p,q ones in the sum of Eq. (4.16). Explicitly,
they are given by

FN = ∑
ab
⟨a| f |b⟩N [a†

aab]+∑
i j
⟨i| f | j⟩N [a†

i a j]

+∑
ai
⟨a| f |i⟩N [a†

aa j]+∑
ai
⟨i| f |a⟩N [a†

i aa].
(4.70)

A term-by-term comparison between algebraic and diagrammatic expressions shows that
creation and annihilation operators are represented as outgoing and incoming lines with
respect to the operator dashed line, respectively. In a similar way, we can picture the two-
body part of a normal-ordered two-body operator in the following way

V 2b
N =

1
4 ∑

abcd

a b

c d

+
1
4 ∑

i jkl

k l

i j

+ ∑
aib j

a

b i

j

+
1
2 ∑

abci

a

c

i b
+

1
2 ∑

i jka

j

i

k a
+

1
2 ∑

abci

a

b i c

+
1
2 ∑

i jka

k

i j a

+
1
4 ∑

abi j

i a
j b

+
1
4 ∑

i jab

i a
j b

,

(4.71)
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where there is a one-to-one correspondence with the explicit algebraic form

V 2b
N =

1
4 ∑

abcd
⟨ab||cd⟩N [a†

aa†
badac]+

1
4 ∑

i jkl
⟨i j||kl⟩N [a†

i a†
jakal]

+ ∑
i jab

⟨ai||b j⟩N [a†
aa†

i a jab]+ ∑
abci

⟨ab||ci⟩N [a†
aa†

baiac]

+
1
2 ∑

i jka
⟨ia|| jk⟩N [a†

i a†
aaka j]+

1
2 ∑

aibc
⟨ai||bc⟩N [a†

aa†
i acab]

+
1
2 ∑

i jka
⟨i j||ka⟩N [a†

i a†
jaaak]+

1
2 ∑

abi j
⟨ab||i j⟩N [a†

aa†
ba jai]

+
1
4 ∑

i jab
⟨i j||ab⟩N [a†

i a†
jaaak].

(4.72)

The presence of numerical factors in the equation above indicates how many equivalent
ways of writing each diagram (up to a phase) exist by permuting the lines leaving or entering
the left and right vertices.

To simplify the diagrammatic representation, we use the convention that each line without
an explicit letter label is summed over all particle or hole indices. Moreover, we remove
numerical factors from our graphical rendering. A set of rules reported in Appendix 1 allows
to retrieve the correct numerical factors when evaluating full diagrams. We also choose to
insert arrows only where necessary. The particle/hole nature of the lines without arrows
can be chosen arbitrarily, making sure that lines linked to the same vertex correspond to
particle/hole pairs, or it can be deduced from the context. In this simplified form we can
picture one-body and two-body operators as

FN = + + + , (4.73)

V 2b
N = + + + +

+ + + + .

(4.74)

Also the cluster operator T can be expressed in graphical form. In particular, T1, T2 and T3

51



CHAPTER 4. COUPLED-CLUSTER THEORY

can be pictured as

T1 = , T2 = , T3 = ,

(4.75)
As T includes only pseudo-creation operator strings, generating excited states of the refer-
ence, lines below the horizontal bar are absent. The contrary is valid for their de-excitation
counterparts Λ1, Λ2 and Λ3, which are denoted by:

Λ1 = , Λ2 = , Λ3 = .

(4.76)
The EOM-CC operators for excited states R and L can be diagrammatically represented as T
and Λ, respectively. We can find a diagrammatic representation also for the mass-number-
changing EOM-CC operators. Focusing on the 2PA-EOM-CC case, the 2p-0h and 3p-1h
terms of the RA+2 and LA+2 operators can be graphically represented as

RA+2
2p−0h =

,

RA+2
3p−1h =

, (4.77)

LA+2
2p−0h =

,

LA+2
3p−1h =

. (4.78)
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5 Coupling the Lorentz Integral
Transform technique with
Coupled-Cluster theory

The coupled-cluster framework described in the previous Chapter allows us to handle the
quantum many-body problem for ground- and bound excited-state properties of nuclei at
closed shells and in their vicinity. However, this is not sufficient to calculate the nuclear
response function. As shown in Chapter 2, the latter is defined as

R(ω) = ∑
µ

⟨Ψ0|Θ†|Ψµ⟩⟨Ψµ |Θ|Ψ0⟩δ (ω −Eµ +E0), (5.1)

where with the index µ we label all the possible final state in the nuclear spectrum, and
Θ is a transition operator, e.g., the electric dipole operator. Calculating R(ω) requires the
solution of the so-called “continuum problem”. The sum over µ in the above equation, in
fact, corresponds to both a sum over discrete excited states and an integral over continuum
eigenstates of the Hamiltonian.

Figure 5.1: Graphical representation of the spectrum of the nucleus. Below the nucleon
emission threshold, the system can be excited to excited bound states. Above
the nucleon emission threshold, we enter the continuum spectrum. The latter is
characterized by different fragmentation channels opening up by progressively
increasing the excitation energy. Typically, the two-body break-up channel ap-
pears first, then the three-body channel and so on, up to the A-body break-up
channel. Figure taken from Ref. [86].

While the calculation of bound excited states can be easily achieved, e.g., using the EOM-
CC technique presented in Section 4.3, the description of continuum state wavefunctions
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represents a formidable task. They in fact contain information on all the possible break-
up modes of the nucleus induced by an external probe at a given energy, as well as on the
relative motion of the fragments, as graphically shown in Figure 5.1.

In this Chapter we will show how the continuum problem can be circumvented thanks
to the use of the Lorentz integral transform (LIT) technique [43]. After reviewing its main
aspects, we will illustrate how it can be merged with the coupled-cluster approach in the LIT-
CC method for electromagnetic observables of nuclei at closed shells and in their vicinity.
We will in particular focus on the extension of the LIT-CC capabilities to two-particle-
attached (2PA) systems, characterized by having two valence neutrons outside a closed
(sub)shell. This Chapter is mainly based on Refs. [7, 43–45, 86]. We point out that the
derivation and implementation of the 2PA-LIT-CC method [7] are part of the original work
of this thesis.

5.1 The Lorentz integral transform technique

Let us first show how the determination of an integral transform Φ(σ) of R(ω) implies a
remarkable reduction in the amount of calculations required to determine the nuclear con-
tinuum spectrum. While R(ω) in Eq. (5.1) depends on the ground state |Ψ0⟩ and all the
discrete and continuum excited states |Ψµ⟩, it is possible to prove that the integral transform
Φ(σ) can be written as a ground-state expectation value. Such transform is defined by

Φ(σ) =
∫

K(σ ,ω)R(ω)dω, (5.2)

where K(σ ,ω) is a smooth kernel depending on the integration variable, which coincides
with the energy ω , and on a parameter σ , in general complex. Substituting Eq. (5.2) in
Eq. (5.1) we obtain

Φ(σ) =
∫

dω K(σ ,ω)∑
µ

⟨Ψ0|Θ†|Ψµ⟩⟨Ψµ |Θ|Ψ0⟩δ (ω −Eµ +E0)

= ∑
µ

⟨Ψ0|Θ†|Ψµ⟩K(σ ,Eµ −E0)⟨Ψµ |Θ|Ψ0⟩

= ∑
µ

⟨Ψ0|Θ†|K̂(σ ,H −E0)|Ψµ⟩⟨Ψµ |Θ|Ψ0⟩

= ⟨Ψ0|Θ†K̂(σ ,H −E0)Θ|Ψ0⟩ ,

(5.3)

where we employed the completeness of the Hamiltonian eigenstates

∑
µ

|Ψµ⟩⟨Ψµ |= 1. (5.4)

Therefore, resorting to a transform of R(ω) we have reduced the continuum problem to the
calculation of a ground-state expectation value, as shown in the last step of the derivation
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of Eq. (5.3). At this point, the only missing piece is the explicit form of the kernel, for
which the Lorentzian function has been successfully used in the past. In this case, K(σ ,ω)

is defined as

K(σ ,ω) =
Im(σ)

π

1
(ω −σ)∗(ω −σ)

=
σI

π

1
(ω −σR)2 +σ2

I
, (5.5)

with σ = σR+ iσI , where σR is the centroid of the Lorentzian and σI its half width, as shown
in Figure 5.2.

R

I

Figure 5.2: Lorentzian function centered in σR, with half width at half maximum given by
σI .

Inserting Eq. (5.5) in Eq. (5.3), the so-called Lorentz integral transform (LIT) of the
response function can be written as

L(σR,σI) =
σI

π

∫
dω

R(ω)

(ω −σR)2 +σ2
I

=
σI

π
⟨Ψ0|Θ† 1

(H −E0 −σR)2 +σ2
I

Θ|Ψ0⟩

=
σI

π
⟨Ψ0|Θ† 1

(H −E0 −σR + iσI)(H −E0 −σR − iσI)
Θ|Ψ0⟩ .

(5.6)

Using the auxiliary states |Ψ̃′⟩ and |Ψ̃⟩, defined as

⟨Ψ̃′|= ⟨Ψ0|Θ† 1
(H −E0 −σR + iσI)

, (5.7)

and
|Ψ̃⟩= 1

(H −E0 −σR − iσI)
Θ |Ψ0⟩ , (5.8)
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the LIT assumes the form
L(σR,σI) =

σI

π
⟨Ψ̃′|Ψ̃⟩ . (5.9)

Therefore, the problem of calculating the sum over all the possible final states has been
translated in computing for each value of σI and σR the auxiliary states ⟨Ψ̃′| and |Ψ̃⟩, which
are solutions of the following inhomogeneous Schrödinger-like equations

⟨Ψ̃′|(H −E0 −σR + iσI) = ⟨Ψ0|Θ†, (5.10)

(H −E0 −σR − iσI) |Ψ̃⟩= Θ |Ψ0⟩ . (5.11)

Two comments are in order. First, it is worth observing that although the auxiliary states
⟨Ψ̃′| and |Ψ̃⟩ are solution of Eqs. (5.10) and (5.11), they do not correspond to physical eigen-
states of the Hamiltonian, and they have to be interpreted just as convenient mathematical
tools. Second, the source term of Eqs. (5.10) and (5.11) depends on the ground state, which
is exponentially damped at r → ∞. As a consequence, |Ψ̃′⟩ and |Ψ̃⟩ are localised functions
and the solution of Eqs. (5.10) and (5.11) can be determined using bound-state type meth-
ods. This allows us to avoid imposing complicated continuous boundary conditions on the
asymptotic behaviour of the eigenstates of H at large distances, as it should be done in the
calculation of |Ψµ⟩ in Eq. (5.1). If Θ† = Θ, the LIT corresponds to the norm of |Ψ̃⟩. Once
L(σR,σI) has been computed, R(ω) can be obtained via a numerical inversion procedure
(see Refs. [183, 184] for details).

The LIT method has been originally introduced in the few-body sector [185, 186], and
it has been benchmarked in this regime with exact continuum calculations employing Fad-
deev techniques [187, 188]. Reviews of LIT applications to few-body photoabsorption and
electron scattering problems can be found in Refs. [43, 189].

5.2 The Lorentz integral transform - coupled-cluster
method

In Refs. [44, 45], the LIT method has been combined with CC theory, leading to the so-
called LIT-CC method. Thanks to the favourable computational scaling of CC theory with
mass number, this approach has played a crucial role in extending ab initio calculations of
electromagnetic observables, as dipole polarizabilities [5,46,49,77] and lepton-nucleus scat-
tering cross sections [190,191], to the medium-mass region of the nuclear chart. Previously
limited to closed-(sub)shell nuclei, it can now also be applied to two-particle attached (2PA)
systems, characterized by having two nucleons in addition to a closed-(sub)shell core [7].
The LIT-CC method for 2PA nuclei is the main outcome of this thesis.

Here we will first show how the response function of Eq. (5.1) can be rewritten in the
CC formalism for nuclei at closed shells and in their vicinity. We will then derive the LIT
equations in both cases and illustrate how to solve them via the Lanczos algorithm.

56



5.2. THE LORENTZ INTEGRAL TRANSFORM - COUPLED-CLUSTER METHOD

5.2.1 The similarity transformed response function

Let us now rewrite the response function of Eq. (5.1) in the coupled-cluster formalism.
We first introduce the reference state |Φ0⟩ and perform normal ordering of the transition
operator Θ with respect to |Φ0⟩, obtaining ΘN = Θ−⟨Φ0|Θ|Φ0⟩. The response then takes
the form

R(ω) = ∑
µ

⟨Ψ0|Θ†
N |Ψµ⟩⟨Ψµ |ΘN |Ψ0⟩δ (ω −∆Eµ +∆E0), (5.12)

where ∆Eµ = Eµ −H0 and ∆E0 = E0 −H0 are the correlation energies with respect to the
reference energy H0 of the excited state µ and the ground state of the nucleus under study, re-
spectively. As explained in Section 4.1.3, since in CC theory we work with normal-ordered
Hamiltonians all energies are expressed as energy differences with respect to the uncorre-
lated reference.

Let us first consider the case of closed-shell nuclei. Employing the exponential ansatz
of Eq. (4.24) and the EOM-CC representation of Eqs. (4.45) and (4.46) for right and left
excited states, respectively, we get

R(ω) = ∑
µ

⟨Φ0|(1+Λ)e−T
Θ

†
NeT Rµ |Φ0⟩⟨Φ0|Lµe−T

ΘNeT |Φ0⟩δ (ω −∆Eµ +∆E0)

= ∑
µ

⟨Φ0|(1+Λ)Θ†Rµ |Φ0⟩⟨Φ0|LµΘ|Φ0⟩δ (ω −ωµ),
(5.13)

where
Θ = e−T

ΘNeT (5.14)

is the similarity-transformed transition operator, and ωµ = ∆Eµ −∆E0 is the excitation en-
ergy of the state |Ψµ⟩ with respect to the ground state.

The possibility of using the EOM-CC ansatz for open-shell nuclei suggests a straightfor-
ward way to extend the LIT-CC method to nuclei in the vicinity of closed shells, character-
ized by ±1,2 nucleons with respect to the A-body closed-shell neighbour. Here the starting
point |Φ0⟩ is the reference state of the closed-shell core calculated with a mass shift A± k
in the Hamiltonian, where k can be 1 or 2. Using the EOM-CC ansatz of Eqs. (4.57) and
(4.58) for the right and left excited states, we obtain

R(ω) = ∑
µ

⟨Φ0|LA±k
0 Θ†RA±k

µ |Φ0⟩⟨Φ0|LA±k
µ ΘRA±k

0 |Φ0⟩δ (ω −ωµ +ω0), (5.15)

where we indicate with RA±k
0 (LA±k

0 ) and the EOM excitation (de-excitation) operator asso-
ciated with the ground state of the A±k nucleus. Moreover, we denoted with ω0 and ωµ the
excitation energies of the ground state and the µ excited states with respect to ∆E∗

0 , which
is the CC ground-state energy of the A-body closed-shell reference calculated with a mass
shift A± k. In this work, we will in particular focus on the treatment of A+2 systems.

57



CHAPTER 5. COUPLING THE LIT TECHNIQUE WITH CC THEORY

5.2.2 The LIT-CC equations for closed-shell nuclei

Let us now calculate the LIT focusing on the case of closed (sub-)shell nuclei. Using
Eq. (5.13) for the similarity-transformed response in this case we get

L(σR,σI) =
σI

π

∫
dω

1
(ω −σR)2 +σ2

I
∑
µ

⟨Φ0|(1+Λ)Θ†Rµ |Φ0⟩⟨Φ0|LµΘ|Φ0⟩δ (ω −ωµ)

=
σI

π
∑
µ

⟨Φ0|(1+Λ)Θ†Rµ |Φ0⟩⟨Φ0|LµΘ|Φ0⟩
1

(∆Eµ −∆E0 −σR)2 +σ2
I

=
σI

π
∑
µ

⟨Φ0|(1+Λ)Θ†(∆Eµ −∆E0 −σR + iσI)
−1Rµ |Φ0⟩

×⟨Φ0|Lµ(∆Eµ −∆E0 −σR − iσI)
−1

Θ|Φ0⟩

=
σI

π
∑
µ

⟨Φ0|(1+Λ)Θ†(H −∆E0 −σR + iσI)
−1Rµ |Φ0⟩

×⟨Φ0|Lµ(H −∆E0 −σR − iσI)
−1

Θ|Φ0⟩

=
σI

π
⟨Φ0|(1+Λ)Θ†(H −∆E0 −σR + iσI)

−1(H −∆E0 −σR − iσI)
−1

Θ|Φ0⟩ .

(5.16)

To obtain the above result we followed a procedure similar to Eq. (5.3), where we employed
the EOM-CC equations for left and right excited states (Eqs. (4.48) and (4.47), respectively),
and Eq. (4.50) for their completeness relation. We dropped for convenience the subscript N
in HN . Defining the complex variable z = ∆E0 +σR + iσI , we can rewrite Eq. (5.16) as

L(z) =
σI

π
⟨Φ0|(1+Λ)Θ†(H − z∗)−1(H − z)−1

Θ|Φ0⟩ . (5.17)

Using the equality

1
(H − z∗)(H − z)

=− i
2σi

[
1

H − z
− 1

H − z∗

]
, (5.18)

and introducing the auxiliary states

|ΨR(z∗)⟩= (H − z∗)−1
Θ |Φ0⟩ ,

|ΨR(z)⟩= (H − z)−1
Θ |Φ0⟩ ,

(5.19)

we obtain

L(z) =− i
2π

[
⟨Φ0|(1+Λ)Θ†|ΨR(z)⟩−⟨Φ0|(1+Λ)Θ†|ΨR(z∗)⟩

]
. (5.20)

Therefore, our calculation of the LIT depends entirely on the auxiliary states |ΨR(z∗)⟩,
|ΨR(z)⟩. We can assume that the latter are determined by the action of an excitation operator
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on top of the reference state, in analogy to the EOM-CC ansatz of Section 4.3, as

|ΨR(z)⟩= R(z) |Φ0⟩ ,
|ΨR(z∗)⟩= R(z∗) |Φ0⟩ ,

(5.21)

with
R(z) = r0(z)+∑

ai
ra

i (z)a
†
aai +

1
4 ∑

abi j
rab

i j (z)a
†
aa†

ba jai + . . . , (5.22)

R(z∗) = r0(z∗)+∑
ai

ra
i (z

∗)a†
aai +

1
4 ∑

abi j
rab

i j (z
∗)a†

aa†
ba jai + . . . . (5.23)

The amplitudes of the R operators of Eq. (5.22) and (5.23) are obtained solving

(H − z)R(z) |Φ0⟩= Θ |Φ0⟩ ,
(H − z∗)R(z∗) |Φ0⟩= Θ |Φ0⟩ ,

(5.24)

which we will refer to as the LIT-CC equations for closed-shell systems. We notice that
the equations in (5.24) correspond to EOM-CC equations with a source term, and they
represents the coupled-cluster equivalent of Eqs. (5.10) and (5.11).

5.2.3 The LIT-CC equations for nuclei in the vicinity of closed shells

The calculation of the LIT for nuclei in the vicinity of closed (sub-)shells follows an anal-
ogous reasoning with respect to the previous Section. In this case, our starting point is
Eq. (5.15). Focusing on the case of 2PA nuclei, the LIT can be rewritten as

LA+2(σR,σI) =
σI

π

∫
dω

1
(ω −σR)2 +σ2

I

×∑
µ

⟨Φ0|LA+2
0 Θ†RA+2

µ |Φ0⟩⟨Φ0|LA+2
µ ΘRA+2

0 |Φ0⟩δ (ω −ωµ +ω0)

=
σI

π
∑
µ

⟨Φ0|LA+2
0 Θ†RA+2

µ |Φ0⟩⟨Φ0|LA+2
µ ΘRA+2

0 |Φ0⟩
1

(∆Eµ −∆E0 −σR)2 +σ2
I

=
σI

π
∑
µ

⟨Φ0|LA+2
0 Θ†(H −∆E0 −σR + iσI)

−1RA+2
µ |Φ0⟩

×⟨Φ0|LA+2
µ (H −∆E0 −σR − iσI)

−1
ΘRA+2

0 |Φ0⟩

=
σI

π
⟨Φ0|LA+2

0 Θ†(H −∆E0 −σR + iσI)
−1(H −∆E0 −σR − iσI)

−1
ΘRA+2

0 |Φ0⟩ .

(5.25)

Also in this case, using the completeness of the Hamiltonian eigenstates, we can express the
LIT as an expectation value on the reference state. Introducing the variable z = ∆E0 +σ +
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iσI , we can express the LIT in the form

LA+2(z) =
σI

π
⟨Φ0|LA+2

0 Θ†(H − z∗)−1(H − z)−1
ΘRA+2

0 |Φ0⟩ . (5.26)

Using Eq. (5.18) and introducing the auxiliary states

|ΨA+2
R (z∗)⟩= (H − z∗)−1

ΘRA+2
0 |Φ0⟩ ,

|ΨA+2
R (z)⟩= (H − z)−1

ΘRA+2
0 |Φ0⟩ ,

(5.27)

we obtain

LA+2(z) =− i
2π

[
⟨Φ0|LA+2

0 Θ†|ΨA+2
R (z)⟩−⟨Φ0|LA+2

0 Θ†|ΨA+2
R (z∗)⟩

]
. (5.28)

We observe that the form of |ΨA+2
R (z)⟩ and |ΨA+2

R (z∗)⟩ in Eq. (5.27) becomes more involved,
as the additional application of the RA+2

0 operator is needed to produce a 2PA state. For
closed-shell nuclei, this simply reduces to the identity.

In analogy to the closed-shell case, we can find a suitable excitation operator building the
auxiliary states of the open-shell nucleus starting from the closed-shell reference. In the 2PA
case, such an operator must involve a net creation of 2 nucleons. The ansatz then becomes

|ΨA+2
R (z)⟩= RA+2(z) |Φ0⟩=

(
1
2 ∑

ab
rab(z)a†

aa†
b +

1
6 ∑

abci
rabc

i (z)a†
aa†

ba†
cai + ...

)
|Φ0⟩ ,

|ΨA+2
R (z∗)⟩= RA+2(z∗) |Φ0⟩=

(
1
2 ∑

ab
rab(z∗)a†

aa†
b +

1
6 ∑

abci
rabc

i (z∗)a†
aa†

ba†
cai + ...

)
|Φ0⟩ .

(5.29)

The 2PA amplitudes of Eq. (5.29) are determined by solving

(H − z)RA+2(z) |Φ0⟩= ΘRA+2
0 |Φ0⟩ ,

(H − z∗)RA+2(z∗) |Φ0⟩= ΘRA+2
0 |Φ0⟩ ,

(5.30)

which take the name of 2PA-LIT-CC equations. They resemble the 2PA-EOM-CC equation
in (4.67), with the addition of a source term.

Two comments are in order. First, the two main differences between the 2PA-LIT-CC ap-
proach and the standard closed-shell technique lie in the form of the RA+2(z) and RA+2(z∗)
operators, corresponding to mass-number-changing EOM excitation operators in the 2PA
case, and in the source term, involving a product between Θ and a 2PA operator for 2PA
nuclei. Second, changing accordingly the shape of such operators, the same ansatz can be
applied to write the LIT-CC equations not only for nuclei with A∗ = A+ 2, but in general
for open-shell systems with A∗ = A± k, with k = 1,2.

The new approach developed in this thesis for 2PA nuclei takes the name of 2PA-LIT-CC
method.
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5.2.4 Non-symmetric Lanczos algorithm

To obtain the LIT, we should solve for every value of z and z∗ Eqs. (5.24) and (5.30) for
closed-shell and 2PA nuclei, respectively. This is not necessary if we rewrite the LIT in
matrix form and apply the Lanczos algorithm. Let us focus first on the closed-shell case.
Starting from Eq. (5.17), we can write

L(z) =− i
2π

⟨Φ0|(1+Λ)Θ†
(

1
H − z

− 1
H − z∗

)
Θ|Φ0⟩

=− i
2π

SL [(M− z)−1 − (M− z∗)−1]SR,

(5.31)

where the matrix elements Mα,α ′ of M and the components SR
α and SL

α of the row and column
vectors SL and SR are given by

Mα,α ′ = ⟨Φα ′|H|Φα⟩ , (5.32)

SR
α = ⟨Φα |Θ|Φ0⟩ , (5.33)

SL
α = ⟨Φ0|(1+Λ)Θ†|Φα⟩ , (5.34)

and the indices α,α ′ run over the basis of np-nh states, namely

|Φ0⟩ , |Φa
i ⟩= a†

aa†
i |Φ0⟩ , |Φab

i j ⟩= a†
aa†

ba jai |Φ0⟩ , . . . . (5.35)

We point out that the product between SL and SR corresponds to

SLSR = ⟨Φ0|(1+Λ)Θ†Θ|Φ0⟩ . (5.36)

Also in the 2PA case, starting from Eq. (5.26) we can express the LIT in matrix notation,
obtaining

LA+2(z) =− i
2π

⟨Φ0|LA+2
0 Θ†

(
1

H − z
− 1

H − z∗

)
ΘRA+2

0 |Φ0⟩

=− i
2π

SL
2PA
[
(M− z)−1 − (M− z∗)−1]SR

2PA.

(5.37)

In the above equation, the matrix M as well as the vectors SR
2PA and SL

2PA are expanded on
the set of states involving a net creation of two nucleons on top of the closed-shell reference

|Φab⟩= a†
aa†

b |Φ0⟩ , |Φabc
i ⟩= a†

aa†
ba†

cai |Φ0⟩ , . . . . (5.38)

It is worth recalling here that the reference state used in 2PA calculations includes a mass
shift A∗ = A+ 2 in the Hamiltonian. Using the indices α,α ′ to design the set of states in
Eq. (5.38), we obtain

Mα,α ′ = ⟨Φα ′|H|Φα⟩ , (5.39)
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SR
2PA,α = ⟨Φα |ΘRA+2

0 |Φ0⟩ , (5.40)

SL
2PA,α = ⟨Φ0|LA+2

0 Θ†|Φα⟩ . (5.41)

Since the similarity-transformed Hamiltonian is non-Hermitian, we employ the complex-
symmetric variant of the Lanczos algorithm [192]. Given a n×n non-symmetric matrix A,
the latter allows to define a right and left set of orthonormal states, known as the left and
right Lanczos bases, in which A assumes a tridiagonal form, i.e., it can be represented as

A =



a0 b1 0 0 0 ... 0
b1 a1 b2 0 0 ... 0
0 b2 a2 b3 0 ... 0
0 0 b3 a3 b4 ... 0
... ... ... ... ... ... 0
... ... ... ... ... ... bm−1

0 0 0 0 0 ... am


, (5.42)

where m < n. To achieve this, as a first step, two pivot vectors w0 and v0 are chosen, such
that w0v0 = 1. We also set w−1 = v−1 = 0 and b0 = 0. Then for each i = 0, . . . ,m ≤ n−1,
we can calculate the matrix elements of the triadiagonal matrix corresponding to A via

ai = wiAvi, (5.43)

pi = Avi −aivi −bivi−1, (5.44)

si = wiA−aiwi −biwi−1, (5.45)

bi+1 =
√

sipi, (5.46)

vi+1 =
pi

bi+1
, wi+1 =

si

bi+1
. (5.47)

Despite being relatively straightforward, the Lanczos algorithm is often affected by numer-
ical instability. In fact increasing the number of iterations a loss of orthogonality in the
Lanczos vectors wi and vi could occur. For this reason, our implementation is accompanied
by an additional two-sided Gram-Schmidt orthogonalization step.

In the closed-shell LIT-CC approach, we define the right and left Lanczos pivots as

v0 = SR/
√

SLSR, (5.48)

w0 = SL/
√

SLSR, (5.49)

while in the 2PA-LIT-CC framework, they are given by

v2PA
0 = SR

2PA/
√

SL
2PASR

2PA, (5.50)

w2PA
0 = SL

2PA/
√

SL
2PASR

2PA. (5.51)
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As the introduction of the 2PA-LIT-CC method represents the novelty of this thesis, we
will now focus how the Lanczos algorithm simplifies the calculation of the LIT in the 2PA
case. A detailed treatment of the application of the Lanczos algorithm in the closed-shell
LIT-CC approach can be found in Refs. [45, 86].

Applying the complex-symmetric Lanczos algorithm outlined above, the matrix (M− z)
can be expressed in the following form

(M− z) =



a0 − z b1 0 0 0 ... 0
b1 a1 − z b2 0 0 ... 0
0 b2 a2 − z b3 0 ... 0
0 0 b3 a3 − z b4 ... 0
... ... ... ... ... ... 0
... ... ... ... ... ... bm−1

0 0 0 0 0 ... am − z


(5.52)

with z = ∆E0 +σR + iσI . An analogous expression can be obtained for (M− z∗). Using
Eqs. (5.50), (5.51) and the tridiagonal representation of (M−z) and (M−z∗), we can rewrite
Eq. (5.37) as

LA+2(z) =− i
2π

(
SL

2PASR
2PA
)

w2PA
0
[
(M− z)−1 − (M− z∗)−1]v2PA

0 , (5.53)

with
SL

2PASR
2PA = ⟨Φ0|LA+2

0 Θ†ΘRA+2
0 |Φ0⟩ . (5.54)

From the definition of the identity, we obtain:

(M− z)(M− z)−1 = 1 → ∑
k
(M− z)ik{(M− z∗)−1}k j = δi j,

(M− z∗)(M− z∗)−1 = 1 → ∑
k
(M− z∗)ik{(M− z∗)−1}k j = δi j.

(5.55)

Setting j = 0 and introducing the vectors

xk(z) = {(M− z)−1}k0, xk(z∗) = {(M− z∗)−1}k0, (5.56)

we can rewrite the equalities in (5.55) in the form of two linear systems

∑
k
(M− z)ikxk(z) = δi0,

∑
k
(M− z∗)ikxk(z∗) = δi0.

(5.57)

Observing that x0(z) corresponds to w2PA
0 (M−z)−1v2PA

0 and x0(z∗) to w2PA
0 (M−z∗)−1v2PA

0 ,
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Eq. (5.53) becomes

LA+2(z) =− i
2π

(
SL

2PASR
2PA
)
[x0(z)− x0(z∗)] . (5.58)

The evaluation of the LIT then reduces to computing x0(z) and x0(z∗). The latter correspond
to the solution of the linear systems in (5.57), and they can be found by applying Cramer’s
rule. Given a linear system Ax = b, the components of the vector x are determined by

xi =
det [(A)i]

det [A]
, (5.59)

where (A)i is the matrix obtained by replacing the i-th column of A with the column vector
b. In our case, focusing on x0(z), this translates to

x0(z) =
det [(M− z)0]

det [(M− z)]
=

det [P]
(a0 − z)det [P]−b1det [P0]

=
1

(a0 − z)−b1
det[P0]
det[P]

, (5.60)

where

P =


a1 − z b2 0 ...

b2 a2 − z b3 ...

0 b3 a3 − z ...

... ... ... ...

 , P0 =


b1 b2 0 ...

0 a2 − z b3 ...

0 b3 a3 − z ...

... ... ... ...

 . (5.61)

In turn, we obtain

det [P0]

det [P]
=

b1det [Q]

(a1 − z)det [Q]−b2det [Q0]
=

b1

(a1 − z)−b2
det[Q0]
det[Q]

, (5.62)

where

Q =


a2 − z b3 0 ...

b3 a3 − z b4 ...

0 b4 a4 − z ...

... ... ... ...

 , Q0 =


b2 b3 0 ...

0 a3 − z b4 ...

0 b4 a4 − z ...

... ... ... ...

 . (5.63)

Eqs. (5.60) and (5.62) show that each determinant ratio occurring in x0(z) is characterized
by the same structure. Generalizing this to the full size n of (M− z), we get

x0(z) =
1

(a0 − z)− b2
1

(a1−z)−
b2
1

(a2−z)−
b2
3

(a3−z)−...

, (5.64)
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and analogously for x0(z∗)

x0(z∗) =
1

(a0 − z∗)− b2
1

(a1−z∗)−
b2
1

(a2−z∗)−
b2
3

(a3−z∗)−...

. (5.65)

Therefore, the LIT of Eq. (5.58) correspond to a difference of continued fractions of Lanczos
coefficients

LA+2(z) =− i
2π

(
SL

2PASR
2PA
)
 1

a0 − z+ b2
1

a1−z+
b2
2

a2−z+b2
3...

− 1

a0 − z∗+ b2
1

a1−z∗+
b2
2

a2−z∗+b2
3...

 .
(5.66)

The use of the Lanczos algorithm makes the calculation of the LIT very efficient. In fact, the
LIT for different values of σR and σI can be computed by performing the tridiagonalization
of the M matrices only once. The knowledge of the Lanczos coefficients allows to vary
the LIT parameters trivially, while calculating the LIT via Eq. (5.28) requires to solve the
LIT-CC equations as many times as all the possible combinations of σR and σI values.

5.3 Moments of the response function

Starting from the LIT, one can easily obtain an estimate of the electromagnetic sum rules,
i.e., the moments of the response function interpreted as a distribution function. Knowing
all the moments is equivalent to knowing the distribution itself. However, it is sometimes
easier to compute just a few moments of a distribution rather than the full distribution, and
yet obtain substantial insights into the dynamics of a quantum system.

As mentioned in Chapter 2, the moments (or sum rules) of the response function are
defined as1

mn =
∫

dω ω
nR(ω), (5.67)

where n is an integer. Because in the limit σI → 0 the Lorentzian kernel becomes a delta
function, we have that

L(σR,σI → 0) =
∫

dω R(ω)δ (ω −σR) = R(σR), (5.68)

i.e., the moments can be computed from the LIT as

mn = lim
σI→0

∫
dσR σ

n
RL(σR,σI). (5.69)

1For moments of the response, the integration range in excitation energy corresponds to [0,∞] unless
otherwise specified.
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In this limit, the LIT takes the form of a discretized response function, given by smeared
δ -peaks. While the latter does not properly account for the continuum, the use of Eq. (5.69)
has been proved to be equivalent to the integration of R(ω) obtained from the inversion [46].
This gives us the advantage of avoiding this additional step, which can contribute substan-
tially to the numerical uncertainty budget.

Let us consider here specific sum rules which will be analysed in the rest of this work.

• Non-energy-weighted sum rule. The non-energy-weighted sum rule or m0 sum rule,
defined as

m0 =
∫

dω R(ω) = lim
σI→0

∫
dσR L(σR,σI), (5.70)

correspond to the total strength of the response function. This quantity can also be
calculated as a ground-state expectation value. In fact, it corresponds to the product
SLSR of Eq. (5.36) in closed-shell LIT-CC and to SL

2PASR
2PA, defined in Eq. (5.54), in

the 2PA framework. Comparing such products with the corresponding result for m0

from Eq. (5.70) represents a good consistency check. In Chapter 6, we will use m0 as a
benchmark observable for our numerical implementation of the 2PA-LIT-CC method.

• Inverse energy-weighted sum rule. The inverse energy-weighted sum rule or m−1

is particularly sensitive to the low-energy states in the response function. Focusing
on electric dipole transitions, the electric dipole polarizability is related to the inverse
energy-weighted dipole sum rule by

αD = 2αm−1 = 2α lim
σI→0

∫
dσR

L(σR,σI)

σR
. (5.71)

Calculations of αD for closed-shell and 2PA nuclei will represent the main core of
Chapter 6.

• Energy-weighted sum rule. The energy-weighted sum rule or m1 is defined as

m1 =
∫

dω ω R(ω) = lim
σI→0

∫
dσR σR L(σR,σI). (5.72)

The energy-weighted sum rule can be used to estimate the position of giant reso-
nances. In particular, as mentioned in Chapter 2, the mean energy EISGMR of the
isoscalar giant monopole resonance (ISGMR) can be evaluated as the ratio

EISGMR =

√
m1

m−1
(5.73)

between the energy-weighted and inverse energy-weighted isoscalar monopole sum
rules. In Chapter 6, we will use this to estimate the incompressibility KA of a A-body
nucleus. Considering instead electric dipole excitations, the m1 dipole sum rule can
be connected to the photoabsoption cross section σγ(ω). In the so-called unretarded
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dipole approximation, valid at low energy, σγ(ω) can be written solely in terms of the
dipole response function as

σγ(ω) = 4π
2
αωR(ω). (5.74)

An extensive proof of Eq. (5.74) can be found in Ref. [86]. Combining Eq. (5.74)
with Eq. (5.72), we get that m1 is proportional to the integral of the photoabsorption
cross section

m1 =
1

4π2α

∫
dω σγ(ω). (5.75)

In Chapter 6, we will calculate the energy-weighted dipole sum rule m1 in selected
cases to analyse the high-energy part of the dipole-excited spectrum, in comparison
to αD, which is instead more sensitive to low-lying states.

A comment on the integration range employed in Eqs. (5.70), (5.71) and (5.72) is in
order. We point out that the integral in Eq. (5.69) runs over the excitation energy of the
nucleus with respect to its ground state. While in the closed-shell case, the ground-state
energy of the nucleus is by construction the EOM-CC reference energy, in the 2PA-EOM-
CC framework the latter corresponds to the CC ground-state energy ∆E∗

0 of the closed-shell
core. This means that in the 2PA case the LIT in Eq. (5.69) needs to be calculated starting
from ω0 = ∆E0 −∆E∗

0 . In this way, the integration variable correctly corresponds to the
excitation energy with respect to the ground state of the 2PA nucleus.

5.4 Coupled-cluster diagrams for the 2PA-LIT-CC method

In this Section we will analyse the different stages of a 2PA-LIT-CC calculation and de-
rive the corresponding diagrammatic contributions. Evaluating the LIT for a 2PA nucleus
requires three preliminary steps:

(i) Hartree-Fock computation of the reference state |Φ0⟩. For 2PA systems, |Φ0⟩ is the
reference state of the A-body closed-shell neighbour, calculated with a A+ 2 mass
shift in the Hamiltonian.

(ii) Determination of the coupled-cluster ground state of the closed-shell reference, fixing
the mass number to A+2, as in the previous step. To this aim, in this work we adopt
the CCSD approximation.

(iii) Calculation of the left and right ground state of the 2PA nucleus, employing the 2PA-
EOM-CC method. We choose to truncate the many-body expansion of the RA+2 and
LA+2 operators of Eqs. (4.63) and (4.64) at the 3p-1h level.

At this point, to compute the LIT with Eq. (5.66), two ingredients are needed, which are
listed below.
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1. The Lanczos pivots S2PA
R and S2PA

L . This entails the evaluation of matrix elements
of the product between the similarity-transformed operator and the 2PA-EOM-CC
ground state operators RA+2

0 and LA+2
0 , respectively.

2. The Lanczos coefficients obtained from the tridiagonalization of the matrix (M− z)
of Eq. (5.37) via the complex-symmetric Lanczos algorithm. As (M− z) and the
similarity transformed Hamiltonian differ only by a diagonal term, this is equivalent
to consider the tridiagonalization of H. The core of the Lanczos algorithm is then
the repeated matrix-vector product between H and the right and left Lanczos vectors,
expanded on the 2PA basis.

In the following, we provide the derivation of the diagrammatic contributions to the matrix
elements involved in Step 1 and 2. We employ the 3p-1h approximation scheme in eval-
uating both the Lanczos pivots and the matrix elements contributing to the matrix-vector
product.

5.4.1 Right and left Lanczos pivots

Here we focus on the treatment of the right and left Lanczos pivots. For convenience, we
recall here the expression of their components

SR
2PA,α = ⟨Φα |ΘRA+2

0 |Φ0⟩ , SL
2PA,α = ⟨Φ0|LA+2

0 Θ†|Φα⟩ , (5.76)

expanded on the set of states of Eq. (5.38).
In this work, we will consider applications of the 2PA-LIT-CC method to electric dipole

transitions. For the bare dipole operator, defined in Eq. (2.15), we have Θ = Θ†. In dia-
grammatic notation, its normal-ordered form can be represented as

ΘN = + + + , (5.77)

where the action of Θ is represented by a dashed line ended by a cross. Consistently with
the closed-shell CCSD ground state, we consider only up to doubles contributions to the
similarity transformed operator. This is equivalent to calculate the connected product

Θ = (ΘNeT1+T2)C =

[
ΘN

(
1+T1 +T2 +

1
2

T 2
1 +T1T2

)]
C
. (5.78)

Powers of T exceeding 2 are dropped, since we can connect at most two excitation operators
with a one-body operator as the dipole. Moreover, we do not consider the term ∝ T 2

2 ,
as a triple contribution would be obtained when contracting it with ΘN . The diagrams
contributing to Θ at the CCSD level have been derived in Ref. [86]. Using the graphical
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notation for ΘN and T , they correspond to

Θ = + + + +

+ + + +

+ + +

(5.79)

+ + +

+ .

To reduce the complexity of the calculation it is useful to group the diagrams in Eq. (5.79)
into “effective diagrams”. The action of the effective operator is represented by a curly line
ended by a cross. The latter are reported below alongside with their algebraic expressions,
derived using the rules in Appendix 1.

= + = ⟨a|Θ|b⟩−∑
i
⟨a|t1|i⟩⟨i|Θ|b⟩, (5.80)

= + = ⟨ j|Θ|i⟩+∑
a
⟨a|t1|i⟩⟨ j|Θ|a⟩, (5.81)

= = ⟨i|Θ|a⟩, (5.82)
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= + +

+ +

= ⟨a|Θ|i⟩+∑
b
⟨b|t1|i⟩⟨a|Θ|b⟩−∑

j
⟨a|t1| j⟩⟨ j|Θ|i⟩

+ ∑
jb
⟨ab|t2|i j⟩⟨ j|Θ|b⟩−∑

jb
⟨a|t1| j⟩⟨b|t1|i⟩⟨ j|Θ|b⟩,

= +

+ +

=−P(i j)∑
kc
⟨c|t1|i⟩⟨ab|t2|k j⟩⟨k|Θ|c⟩+P(ab)∑

c
⟨ac|t2|i j⟩⟨b|Θ|c⟩

−P(ab)∑
kc
⟨a|t1|k⟩⟨cb|t2|i j⟩⟨k|Θ|c⟩−P(i j)∑

k
⟨ab|t2|ik⟩⟨k|Θ| j⟩, (5.83)

= = −∑
j
⟨ab|t2|i j⟩⟨ j|Θ|c⟩, (5.84)

= = ∑
b
⟨ab|t2|i j⟩⟨k|Θ|b⟩. (5.85)

In the equations above, the bra-ket notation for the T amplitudes was employed as

ta
i = ⟨a|t1|i⟩, tab

i j = ⟨ab|t2|i j⟩. (5.86)

Moreover, some diagrams need to be supplemented with a permutation operator

P(ab) = 1−Pa,b, (5.87)

which is needed to obtain antisymmetric amplitudes. It is worth to point out that the sim-
ilarity transformation has led from a bare one-body operator to a transformed two-body
operator. In fact, two-body vertices appear in the effective diagrams of Eqs. (5.83), (5.84)
and (5.85).
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At this point, we can identify the diagrammatic contributions to SR
2PA and SL

2PA combining
the effective diagrams of Θ with the ones representing the amplitudes of RA+2

0 and LA+2
0 , re-

spectively. Also in this case, the algebraic expression associated with the diagrams presented
is obtained using the rules of Appendix 1. The derivation and numerical implementation of
the SR

2PA and SL
2PA diagrams constitutes original work of this thesis.

Let us start from SR
2PA. Recalling the representation of the 2p-0h and 3p-1h terms of the

2PA excitation operator from Eq. (4.77)

RA+2
2p−0h =

,

RA+2
3p−1h =

, (5.88)

the right Lanczos pivot in the 3p-1h approximation scheme is determined by

× = P(ab)∑
e
⟨b|Θ|e⟩⟨ae|RA+2|0⟩ , (5.89)

× = ∑
n
⟨n|Θ|e⟩⟨abe|RA+2|n⟩ , (5.90)

× = P(ab,c)⟨c|Θ|e⟩⟨abe|RA+2|i⟩ , (5.91)

× = −∑
n
⟨n|Θ|i⟩⟨abc|RA+2|n⟩ , (5.92)

= P(a,bc)∑
e
⟨bc|Θ|ei⟩⟨ae|RA+2|0⟩ , (5.93)

×
= P(ab,c)⟨c|Θ|i⟩⟨ab|RA+2|0⟩ . (5.94)

We obtain in total six diagrams, of which two contribute at the 2p-0h level, and four at
the 3p-1h level. The bra-ket notation for the amplitudes of the 2PA excitation operator is
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employed as
rab = ⟨ab|RA+2|0⟩ , rabc

i = ⟨abc|RA+2|i⟩ . (5.95)

Moreover, in some of the above diagrams a three-body permutation operator appears. Its
explicit form is P(ab,c) = 1−Pa,c −Pb,c.

Let us continue with SL
2PA. Given the graphical notation for the left 2PA amplitudes

LA+2
2p−0h =

,

LA+2
3p−1h =

, (5.96)

the diagrams contributing to the left Lanczos pivots at the 3p-1h level are

× = P(ab)∑
e
⟨e|Θ†|b⟩⟨0|LA+2|ae⟩ , (5.97)

× = ∑
en
⟨e|Θ†|n⟩⟨n|LA+2|abe⟩ , (5.98)

× = P(ab,c)∑
e
⟨e|Θ†|c⟩⟨i|LA+2|abe⟩ , (5.99)

× = −∑
n
⟨i|Θ†|n⟩⟨n|LA+2|abc⟩ , (5.100)

=
1
2

P(ab)∑
e f n

⟨e f |Θ†|bn⟩⟨n|LA+2|ae f ⟩ , (5.101)

= P(ab,c)⟨i|Θ†|c⟩⟨0|LA+2|ab⟩ . (5.102)

Also in this case, we used the bra-ket notation for the amplitudes of the left 2PA operator as

lab = ⟨0|LA+2|ab⟩ , li
abc = ⟨i|LA+2|abc⟩ . (5.103)

Similarly to the right Lanczos pivot, also the left pivot is determined by six diagrams. How-
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ever, as a difference with respect to the right pivot, we get three contributions at both the
2p-0h and 3p-1h level. In fact, in both S2PA

R and S2PA
L , there is only one diagram which

comes from combining the amplitudes of the EOM operators with the two-body part of Θ.
Such diagram contributes at the 3p-1h level in S2PA

R and at the 2p-0h level in S2PA
L .

Moreover, we observe that the only two-body diagram of Θ entering in S2PA
R and S2PA

L
is given by Eq. (5.84). The two-body diagram of Eq. (5.83), which as shown in Ref. [86]
completely determines the right Lanczos pivot of Eq. (5.48) in the closed-shell case, starts
to contribute at 4p-2h level in the 2PA expansion.

5.4.2 Right and left matrix-vector product

Once the Lanczos pivots are determined, we can apply the Lanczos algorithm to H to obtain
the Lanczos coefficients in Eq. (5.66). Here, we focus on the diagrammatic contributions
to the matrix-vector products of Eqs. (5.44) and (5.45) between H and the right and left
Lanczos vectors, respectively. We start by expanding the Lanczos vectors wi and vi on the
set of states of Eq. (5.38) including up to 3p-1h excitations. The matrix-vector product is
then obtained calculating matrix elements of the form

⟨Φab|(HRA+2)C|Φ0⟩ , (5.104)

⟨Φabc
i |(HRA+2)C|Φ0⟩ , (5.105)

and their left counterparts. In analogy to the case of the Lanczos pivots, the diagrammatic
contributions to the matrix-vector product can be obtained by combining the diagrams of H
with the ones of the RA+2 and LA+2 amplitudes.

Let us start from the graphical representation of H. Also in this case, we can define
effective diagrams, in analogy to the case of Θ. Pointing to Ref. [153] for a complete
derivation, we get:

H = + + + +

+ + + + +

+ + + . (5.106)

where the action of the Hamiltonian is pictured with a wiggly line and a star. At this point,
contracting the diagrams of Eq. (5.106) with the ones of the right 2PA amplitudes, shown in
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Eq. (4.77), we obtain the graphical contributions to the right matrix-vector product

= P(ab)∑
e
⟨b|H|e⟩⟨ae|RA+2|0⟩ , (5.107)

=
1
2 ∑

e f
⟨ab|H|e f ⟩⟨e f |RA+2|0⟩ , (5.108)

= ∑
ne
⟨n|H|e⟩⟨abe|RA+2|n⟩ , (5.109)

=
1
2

P(ab)∑
e f n

⟨bn|H|e f ⟩⟨ae f |RA+2|n⟩ , (5.110)

= P(a,bc)∑
e
⟨bc|H|ei⟩⟨ae|RA+2|0⟩ , (5.111)

= P(ab,c)∑
e
⟨c|H|e⟩⟨abe|RA+2|i⟩ , (5.112)

= −∑
n
⟨n|H|i⟩⟨abc|RA+2|n⟩ , (5.113)

=
1
2

P(ab,c)∑
e f

⟨ab|H|e f ⟩⟨e f c|RA+2|i⟩ , (5.114)

= P(ab,c)∑
ne
⟨nc|H|ei⟩⟨abe|RA+2|n⟩ . (5.115)
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Similarly, the diagrammatic contributions to the left matrix-vector product are given by

= P(ab)∑
e
⟨e|H|b⟩⟨0|LA+2|ae⟩ , (5.116)

=
1
2 ∑

e f
⟨e f |H|ab⟩⟨0|LA+2|e f ⟩ , (5.117)

=
1
2

P(ab)∑
e f n

⟨e f |H|bn⟩⟨n|LA+2|ae f ⟩ , (5.118)

= P(a,bc)∑
e
⟨ei|H|bc⟩⟨0|LA+2|ae⟩ , (5.119)

= P(ab,c)∑
e
⟨e|H|c⟩⟨i|LA+2|abe⟩ , (5.120)

= −∑
n
⟨i|H|n⟩⟨i|LA+2|abc⟩ , (5.121)

=
1
2

P(ab,c)∑
e f

⟨e f |H|ab⟩⟨i|LA+2|e f c⟩ , (5.122)

= P(ab,c)∑
en
⟨ei|H|nc⟩⟨n|LA+2|abe⟩ , (5.123)

= P(ab,c)⟨i|H|c⟩⟨0|LA+2|ab⟩ . (5.124)

The algebraic expressions presented here are derived employing the diagrammatic rules of
Appendix 1.
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We observe that the diagrams contributing to the left and right matrix vector product are
the upside-down version of one another, except for two cases. In the left matrix-vector
product, the flipped version of the right diagram of Eq. (5.109) is not present, while a dis-
connected diagram (Eq. (5.124)), absent in the right matrix-vector product, appears in the
left one. The reason for this lies the fact that the following contribution to H vanishes as it
is the diagrammatic representation of the CCSD T1 equations

= ⟨Φa
i |H|Φ0⟩ = 0. (5.125)

In this derivation, we neglect the three-body terms induced by the similarity transforma-
tion in H, which produce two diagrammatic contributions to the matrix-vector produce at
3p-1h level. A detailed derivation of such terms can be found in Refs. [180,181]. According
to our calculations, their effect is less than 1%.

We point out that the matrix-vector product diagrams illustrated above are the same dia-
grams solving the 2PA-EOM-CC eigenvalue problem of Eq. (4.67) and its left companion,
and they have been derived in Refs. [180, 181]. We have reported them here to give a com-
plete overview of the 2PA-LIT-CC method.

As explained in Section 4.4, the advantage of using EOM-based approaches to calculate
properties of nuclei in the vicinity of closed shells is given by the possibility of working in a
j-scheme formulation [180, 181]. The latter drastically reduces memory requirements with
respect to its m-scheme counterpart, without the need of resorting to symmetry restoration
procedures. As the algebraic expressions reported in this Section for Θ, the Lanczos pivots
and the matrix-vector product are written in a m-scheme basis, it is necessary to perform
angular momentum coupling in order to obtain the corresponding formulas in a j-scheme
basis. The details of this procedure, based on the use of the Wigner-Eckart theorem [193],
are illustrated in Appendix 2.

Developing a spherical formulation of the 2PA-LIT-CC method has represented an impor-
tant part of the work presented in this thesis. In the case of the diagrams contributing to the
matrix-vector product, the j-scheme expressions have been published in Refs. [180, 181].
As a learning tool, they have been re-derived prior to numerical implementation. The use of
a different convention in the Wigner-Eckart theorem with respect to Ref. [86] has required a
new calculation of the j-scheme contributions to Θ. The j-scheme expressions correspond-
ing to the left and right Lanczos pivot diagrams have been derived for the first time during
the work of this thesis, and they are reported in Appendix 3.

After all the j-scheme expressions have been obtained, the next step of the work of this
thesis has been to implement and test all the diagrams shown in this Section (the contri-
butions to Θ, the Lanczos pivots and the matrix-vector product) as well as the complex-
symmetric Lanczos algorithm in the framework of the Nuclear Tensor Contraction Library
(NTCL) [194], authored by Gustav R. Jansen, staff scientist at Oak Ridge National Lab-
oratory, USA. This library provides a unique tensor contraction interface compatible with
multiple hardware architectures, and it allows us to use more efficiently the computational
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resources of ORNL’s top-tier supercomputers. With the use of NTCL, the 2PA-LIT-CC code
was developed from scratch during the work of this thesis, in a completely independent way
with respect to the closed-shell LIT-CC and 2PA-EOM-CC programs. The 2PA-LIT-CC
code is an original outcome of the work of this thesis.
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6 Results

In the previous Chapters, we built the computational framework allowing us to explore
electromagnetic observables which strongly correlate with parameters entering the nuclear
matter EOS, as electric dipole polarizabilities and isoscalar monopole resonances. Our goal
is to analyse the connection between microscopic and macroscopic physics scales on the
basis of ab initio calculations in finite nuclei, employing chiral EFT interactions rooted in
QCD. Such an analysis cannot be separated from the necessity to deliver reliable theoretical
uncertainties for our predictions. In this regard, the systematic improvability of ab initio
methods constitutes an inherent advantage. Therefore, we begin this Chapter by discussing
our strategy for uncertainty quantification, based on Refs. [2, 77].

We continue with an overview of the results of this thesis, focusing first on the electric
dipole polarizability αD. Following Ref. [5], we show a comparison between our LIT-CC
predictions, experimental data and energy density functional theory for the electric dipole
polarizability of 40Ca. Next, leveraging the computational achievement of Ref. [7], we
illustrate how the development of the 2PA-LIT-CC method extended the reach of our αD

calculations to open-shell nuclei. We then push our αD calculations to the most exotic
nucleus on Earth, 8He [1,2,6]. In the end, we move our attention to the analysis of isoscalar
monopole resonances in medium-mass nuclei, with the goal of extracting constraints on the
incompressibility of symmetric nuclear matter [8].

6.1 Uncertainty quantification

We can distinguish two main contributions to the theoretical uncertainty σ2
th associated with

ab initio predictions
σ

2
th = σ

2
method +σ

2
model, (6.1)

where σ2
method accounts for the uncertainties coming from approximations introduced in the

various stages of a many-body calculation, and σ2
model encodes the uncertainty associated

with the choice of the input Hamiltonian.
Let us now consider the treatment of the method error in LIT-CC calculations. In this case,

the latter is determined by two sources: the residual dependence on model space parameters
σconv and the effect of the truncations applied to the coupled-cluster expansions σmany−body.

Our coupled-cluster calculations start from an Hartree-Fock reference state (see Refs. [157,
158] for details), expanded on single-particle HO eigenstates, characterized by specific val-
ues of radial quantum number n, orbital angular momentum l and HO frequency ℏΩ. Con-
vergence is controlled by the number of major HO shells included in the calculation. In
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closed-shell LIT-CC calculations, we are able to reach up to 15 major HO shells, corre-
sponding to a maximum model space size Nmax = 2n+ l = 14, with l ≤ 10. In the current
implementation of the 2PA-LIT-CC method, a maximum model space size of Nmax = 12 for
the Hartree-Fock basis is available. For both LIT-CC approaches, the uncertainty related to
convergence σconv is estimated by considering the residual dependence on ℏΩ at the largest
Nmax under study.

We point out that 3N forces matrix elements come with an additional energy cut of
E3,max = 16 (in units of ℏΩ), where E3,max = εp + εq + εr corresponds to the energy of
the three-body state |pqr⟩. For the light and medium-mass nuclei under study in this thesis,
fixing E3,max = 16 is sufficient to obtain converged results [86, 195].

Let us now analyse the effect of the many-body truncation. To this aim, we need to
consider the different approximation schemes characterizing the closed-shell and 2PA-LIT-
CC methods. In the case of the closed-shell LIT-CC approach, approximations enter in the
T and Λ operators involved in the ground-state calculation and in the Rµ and Lµ operators
of Eqs. (4.51) and (4.52) involved in the EOM calculation. For both the ground state and the
excited states, a specific truncation has to be chosen, either CCSD or CCSDT-1 (in short,
D or T-1, which is the notation we will adopt in the following). Therefore, two expansion
schemes need to be indicated. The resulting CC approximations are listed in Table 6.1.

Table 6.1: List of labels used to identify the CC truncation for the ground state (left of ’/’)
and the excited states (right of ’/’) in the closed-shell LIT-CC approach.

Ground state Excited states Truncation scheme
D D D/D
T-1 D T-1/D
T-1 T-1 T-1/T-1

For light nuclei as 8He, it is possible to perform calculations in the T-1/T-1 scheme, including
triples in both the ground-state and EOM calculation. However, as the inclusion of triples
in the EOM calculation is computationally demanding, for nuclei with A > 10 we adopt the
T-1/D approximation, where triples are added only in the ground-state. Triples are anyway
expected to give a small contribution at the EOM level in the medium-mass region [101].
An empirical way of estimating the contribution of many-body errors to an observable O is
given by [2, 77]

σmany−body =
|OD/D −OT−1/D|

2
, (6.2)

which is the strategy applied throughout this Chapter. If the T-1/T-1 result is available, half
of the difference between the D/D and T-1/T-1 values is used.

Let us now discuss our strategy to estimate σmany−body for the 2PA-LIT-CC approach. In
this case, we first have to solve for the CC ground state of the closed-shell reference. To this
aim, in this thesis we retain up to doubles correlations in the cluster operator, leaving a study
of the effect of triples at this stage to future work. Then, in order to study properties of 2PA

80



6.1. UNCERTAINTY QUANTIFICATION

nuclei, we have to resort to truncations of the RA+2
µ and LA+2

µ operators of Eqs. (4.63) and
(4.64) in both the ground-state and excited-state calculations. Keeping only the first term
in the sum of Eqs. (4.63) and (4.64) leads to the 2p-0h approximation, while adding also
the second term defines the 3p-1h approximation. The latter is expected to be accurate for
states with a dominant 2PA structure [181]. States of more complex structure would require
the inclusion of 4p-2h or higher order correlations. The approximation schemes used in the
2PA-LIT-CC calculations of this thesis are summarized in Table 6.2.

Table 6.2: List of labels used to identify the CC truncation for the ground state (left of ’/’)
and the excited states (right of ’/’) in the 2PA-LIT-CC approach.

Ground state Excited states Truncation scheme
2p-0h 3p-1h 2p-0h/3p-1h
3p-1h 3p-1h 3p-1h/3p-1h

As in this work we are interested in observables such as the dipole polarizability, we
choose to retain at least 3p-1h correlations in the excited-state 2PA operators. We will then
estimate the many-body truncation uncertainty as half of the difference between the two
approximation schemes of Table 6.2, in analogy to the closed-shell case, as

σmany−body =
|O3p−1h/3p−1h −O2p−0h/3p−1h|

2
. (6.3)

It is worth pointing out that in both the closed-shell and 2PA cases, the calculation of
the similarity transformed operator Θ involve an additional truncation. In all the results
presented in this Chapter, Θ is truncated at the D level, as shown in Eq. (5.78). In Ref. [101],
it has been proved that the inclusion of triples in Θ has negligible effects.

When results for ground-state properties are shown, only the truncation of the T and
Λ (RA+2 and LA+2) operators counts towards σmany−body for closed-shell (2PA) nuclei. In
analogy to the previous case, we estimate it taking half of the difference between the T-1
(3p-1h) and D (2p-0h) outcomes for closed-shell (2PA) nuclei.

Once σconv and σmany−body are determined, we can compute the overall method error by
summing them in quadrature as

σ
2
method = σ

2
conv +σ

2
many−body. (6.4)

We point out that the method error cannot be interpreted statistically, because it is systematic
in nature.

Let us now consider the model error σ2
model. Throughout this work, we use interactions

from chiral EFT, introduced in Chapter 3, including both NN and 3N forces. The different
chiral forces available on the market can be distinguished mainly on the basis of the chosen
degrees of freedom, the fitting procedure and the orders included in the chiral expansion.
Variations in results obtained with different Hamiltonians allow us to assess these effects on
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the observables under study. This is the strategy mostly adopted in this thesis to estimate
σ2

model. In selected cases, we also analyse the chiral EFT truncation uncertainty by focus-
ing on a specific chiral force and performing calculations at different orders. We observe
that a more refined estimate for the chiral EFT truncation uncertainty can be obtained by
employing modern Bayesian statistical tools [196, 197], which also allow for a statistical
interpretation of the model error. We leave a Bayesian analysis of our results for future
work.

6.2 Electric dipole polarizability of 40Ca

As shown in Section 2.4.2, the correlation of the electric dipole polarizability with the sym-
metry energy parameters of the nuclear EOS has made it the object of intense experimental
investigation. Experimental determinations of αD for 48Ca [48] and 68Ni [49] and their
comparison with theory led to an improved understanding of the neutron and proton distri-
butions in nuclei, as well as their difference encoded in the neutron skin thickness. Here,
we consider a comparison between closed-shell LIT-CC predictions, experimental data and
energy density functional (EDF) theory results for 40Ca, published in Ref. [5]. This compar-
ison serves as a further test of the LIT-CC and EDF approaches as well as of the constraints
on the nuclear EOS imposed by the chiral EFT interactions and energy density functionals
employed in this work.

The inelastic proton scattering cross section on 40Ca at very forward angles has been mea-
sured with an incident proton energy of 295 MeV at RCNP, Japan. Starting from 40Ca(p, p′)
data, the photoabsorption cross section has been extracted for excitation energies ranging
between 10 and 25 MeV. The new data have been matched with old photoabsorption data
from Ref. [88,198], allowing for a description of the photoabsorption cross section up to 60
MeV of excitation energy. Figure 6.1 shows the experimental result for the photoabsorption
cross section, together with the running sum of the dipole polarizability.

The photoabsorption cross section, presented in the upper panel of Figure 6.1, is domi-
nated by the giant dipole resonance peak at around 20 MeV. As shown in the lower panel of
Figure 6.1, integrating the photoabsorption cross section up to 25 MeV, experimentalists ob-
tained αD = 1.60(14) fm3. Considering the data at higher excitation energy up to 60 MeV,
where the polarizability saturates, they were able to provide a final experimental value of
1.92(17) fm3. We observe that the low-energy data up to 25 MeV, which include the con-
tribution of the giant dipole resonance, determine more than 80% of the final experimental
result for αD.

In the lower panel of Figure 6.1, the experimental αD is compared to coupled-cluster pre-
dictions obtained with the NNLOsat interaction [102]. We observe an excellent agreement
between theory and experiment. Both D/D and T-1/D results, corresponding to the open
and full black circles respectively, are reported. Their error bars account for the method un-
certainty σmethod, stemming from the residual dependence on convergence parameters and
the many-body truncation, according to the strategy illustrated in Section 6.1. To analyse
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Figure 6.1: Upper panel: photoabsorption cross section derived at a scattering angle of
0.40◦. Lower panel: electric dipole polarizability αD derived from the photoab-
sorption cross sections. The blue curve shows the new data of Ref. [5], while
the orange and green curves show the extrapolation to higher energies using the
data of Refs. [88, 198]. The open (full) black circles are the CC results for the
NNLOsat interaction including up to doubles (triples) contributions in the CC
expansion for the ground state. Figure taken from Ref. [5].

the convergence of our results we varied the oscillator frequency in the range ℏΩ = 12−16
MeV at the maximum model space size employed (Nmax = 14). As for the many-body trun-
cation, a reduction of 20% in the central value is observed when including triples in the
ground state. This effect was already observed in similar studies focusing on 48Ca [48] and
68Ni [49].

To assess the uncertainty associated with the Hamiltonian model, we also performed CC
calculations with the family of interactions of Ref. [68], including SRG-evolved NN forces
up to N3LO and 3N forces at NNLO. More details on this family of interactions were given
in Section 3.3. In the upper panel of Figure 6.2, we explore the correlation between the
electric dipole polarizability in 40Ca and 48Ca as given by theory. The experimental value
for 48Ca is taken from Ref. [48], while the corresponding theoretical predictions can be
found in Ref. [77].

The upper panel of Figure 6.2 shows the CC results including triples contributions. The
theoretical uncertainties for the different Hamiltonians account for σmethod, calculated as
detailed in Section 6.1. Also for the family of interactions of Ref. [68], we find that the
inclusion of triples reduces the value of αD by an amount varying between 10%–20% for
the different force models. While the EM and PWA interactions are not simultaneously
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Figure 6.2: Comparison of the experimental dipole polarizabilites of 40Ca and 48Ca [48]
shown as blue bands with CC calculations with different interactions, including
triples contributions (upper panel) and EDF calculations with different energy
density functionals (lower panel). Figure taken from Ref. [5].

compatible with both 40Ca and 48Ca experimental data, the set of employed interactions
shows an approximately linear dependence between the two quantities, overlapping with
both experimental results. The NNLOsat interaction is able to reproduce simultaneosly the
experimental value of αD for both 40Ca and 48Ca.

The lower panel of Figure 6.2 shows EDF results obtained with different energy density
functionals. The functionals denoted with “*-alpha” include the dipole polarizability of
208Pb in the fit. Further details on the employed EDFs can be found in Ref. [5]. We observe
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that the addition of αD(208Pb) improves the agreement with experiment for both 40,48Ca. It
is remarkable to observe a similar linear correlation between the polarizabilities of 40,48Ca
emerging from both ab initio and EDF theoretical approaches. Similar correlations between
the polarizabilities of heavier nuclei (208Pb, 120Sn and 68Ni) were observed in the context of
the EDF calculations of Ref. [99].

On the basis of the general accordance between the experimental data on 40,48Ca, EDF
and ab initio results, we can analyse the constraints on the symmetry energy parameters J
and L obtained from the chiral EFT interactions and EDFs employed in Ref. [5].

In Figure 6.3, constraints on J and L derived from chiral EFT interactions1 and EDFs of
this work are compared with some of the works we presented in Chapter 2: the results of
the nuclear matter calculations of Drischler et al. [84] and Hu et al. [30], the values inferred
by Essick et al. [28] and the ranges from the global analysis of Ref. [81] by Lattimer. As for
the latter result, two ranges (1 and 2) of J and L are obtained. As explained in Section 2.4.1,
range 1 is based on a weighted average of neutron skin measurements in 48Ca and 208Pb,
including CREX and PREX, while range 2 considers only PREX and CREX in the analysis.

28 31 34 37 40 43
J [MeV]

20 40 60 80 100
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EDFs not fitted on D(208Pb) EDFs fitted on D(208Pb) Chiral forces of this work

Range 1, Lattimer (2023)
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Essick et al. (2021)

Hu et al. (2022)
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Figure 6.3: Constraints on the symmetry energy J (left panel) and slope parameter L (right
panel) obtained starting from the chiral forces and EDFs employed in this
work [5], compared with the two ranges of the global analysis of Lattimer [81],
the values inferred by Essick et al. [28] and the nuclear matter calculations of
Drischler et al. [84] and Hu et al. [30]. See text for details.

Let us start from analysing the constraints the symmetry energy at saturation density
J. We observe a nice overlap between the predictions of the chiral forces and EDFs of
our work, the nuclear matter calculations of Drischler et al. [67] and Hu et al. [30], and

1With respect to the ranges reported in Ref. [5], taken from [47], the constraints on L have been updated
due an error reported in nuclear matter calculations with the NNLOsat interaction [103]. Constraints on J
remain unaffected.
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the constraint of Essick et al. [28] combining nuclear matter calculations with neutron star
observations. A good agreement is also obtained with the global analysis of Lattimer [81].
Figure 6.3 suggests that J is well constrained at around 32 MeV. As shown in Figure 2.9, αD

is correlated to L via the product αDJ. Therefore, a well defined range of J, as it emerges
from Figure 6.3, would allow for a safer extraction of a corresponding range of L via the
dipole polarizability.

Let us now consider the constraints on L. We observe a good agreement between the
ranges of Lattimer [81] and the constraints obtained from chiral EFT interactions, also in
the case of NNLOsat, which provides a good description of αD for both 40,48Ca and gives
L = 45 MeV. In the case of EDF theory, the range of values of L predicted by the functionals
employed in Ref. [5] narrows considerably when considering the EDFs fitted to the polariz-
ability of 208Pb. The L constraints from Essick et al. [28] and Hu et al. [30] encompass both
the EFT and EDF ranges, while Drischler et al. [84] favour slightly higher values of L.

Our work [5] supports on the one hand the robustness of current theoretical approaches
in the description of the dipole polarizability for 40,48Ca and on the other hand, it corrobo-
rates the constraints on J and L provided by the chiral EFT interactions and energy density
functionals employed.

6.3 Extending the reach of our calculations to open-shell
nuclei: 2PA-LIT-CC results

As shown in Ref. [5], the systematic comparison of coupled-cluster predictions of the dipole
polarizability with experiment has identified the LIT-CC method as a successful tool to
describe this observable in closed-(sub)shell systems.

Motivated by the recent experimental interest towards open-shell nuclei, in this thesis
we move the first steps towards the ambitious goal of extending the LIT-CC method to
open-shell nuclei, focusing on two-particle-attached (2PA) systems, which can be obtained
adding two nucleons to a closed-(sub)shell core. In Chapter 5 we presented a derivation of
the LIT-CC equations for 2PA systems, named 2PA-LIT-CC equations, and we showed how
they can be solved employing the Lanczos algorithm. In the following, after providing a
benchmark of the newly developed 2PA-LIT-CC approach, we examine the evolution of the
dipole polarizability along the oxygen and calcium isotopic chains.

All the results have been obtained using the ∆NNLOGO(394) interaction [138], and they
represent the accomplishments of Ref. [7].

6.3.1 Validating the new method

We test the 2PA-LIT-CC approach considering nuclei which are both closed-(sub)shell and
two-particle-attached with respect to a neighbouring closed-(sub)shell system. In these spe-
cial cases, in fact, we can perform calculations with both the 2PA-LIT-CC method and the
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established closed-shell LIT-CC, allowing us to gauge the accuracy of the 2PA approxima-
tion. We focus in particular on two oxygen isotopes: 16O, which can be computed starting
from a 14O reference, and 24O, which is 2PA with respect to 22O.

For 16,24O, we examine the non-energy-weighted dipole sum rule m0 and the electric
dipole polarizability αD. Given the same nuclear interaction, we expect the closed-shell and
2PA LIT-CC results for 16,24O to be compatible within error bars, calculated as defined in
Section 6.1.

Non-energy-weighted dipole sum rule

Let us concentrate first on the results for the non-energy-weighted sum rule m0. This ob-
servable can be calculated in two ways: as an integral of R(ω) according to Eq. (5.70) and
as a ground-state expectation value according to Eqs. (5.36) and (5.54) in the closed-shell
and 2PA case, respectively. We verified that in our 2PA calculations both approaches lead
to the same results.

We choose to present here the results obtained by calculating m0 as a ground-state ex-
pectation value. In this way, we are able to assess the effect of using two independent
many-body expansions (closed-shell and 2PA) in the calculation of the Lanczos pivots. For
instance, different effective diagrams of the similarity-transformed operator are involved in
the closed-shell and 2PA Lanczos pivots. In Section 5.4, we observed that the two-body
effective diagram of Eq. (5.83), which fully determines the right Lanczos pivot of Eq. (5.48)
in the closed-shell framework, contributes only starting at the 4p-2h level in the 2PA expan-
sion.

In the rest of this paragraph, we specify only the many-body truncation adopted to de-
scribe the ground state: D or T-1 in the closed-shell case, and 3p-1h or 2p-0h in the 2PA
case. In this regard, it is relevant to notice that starting from a 2p-0h ground state, the left and
right Lanczos pivots become in general 3p-1h vectors, due to the presence of the diagram of
Eq. (5.102) in S2PA

L and of the ones of Eqs. (5.93) and (5.94) in S2PA
R .

In Figs. 6.4 and 6.5, we consider the convergence pattern of m0 as a function of ℏΩ for
different values of Nmax in 16O and 24O, respectively. For both nuclei, we show D and T-1
closed-shell results, as well as 2PA results in the 3p-1h and 2p-0h approximations. In all
cases, we vary Nmax between 8 and 12, and span a range of ℏΩ values between 8 and 16
MeV. We report m0 predictions in the closed-shell and 2PA frameworks for both nuclei in
Table 6.3.

Let us start from the case of 16O. In all the closed-shell and 2PA approximation schemes
considered, m0 is very well converged at Nmax = 12. Focusing on the closed-shell results, we
are able to identify the optimal frequency leading to a faster convergence with the crossing
point of the different Nmax curves, at ℏΩ = 12 MeV for D and ℏΩ = 14 MeV for T-1. The
addition of triples lowers the value of m0 of 1.5% with respect to the D result. In the 2PA
calculations, the optimal frequency is located at ℏΩ = 12 MeV in the 3p-1h approximation
and at ℏΩ = 10 MeV in the 2p-0h one. The effect of the many-body truncation is much
larger in the 2PA case: the 2p-0h result is around 20% higher with respect to the 3p-1h
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Figure 6.4: 16O results for m0 from the closed-shell D and T-1 approximations [panels (a)
and (b), respectively] and the 2PA 3p-1h/3p-1h and 2p-0h/3p-1h approximations
[panels (c) and (d), respectively]. Each panel shows m0 as a function of ℏΩ for
different model space sizes.
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Figure 6.5: 24O results for m0 from the closed-shell D and T-1 approximations [panels (a)
and (b), respectively] and the 2PA 3p-1h/3p-1h and 2p-0h/3p-1h approximations
[panels (c) and (d), respectively]. Each panel shows m0 as a function of ℏΩ for
different model space sizes.

result. Considering that the difference between the best closed-shell and 2PA approxima-
tion schemes (namely, T-1 and 3p-1h) is around 5%, the closed-shell and 2PA results are
consistent, as can be seen in Table 6.3.
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Table 6.3: Predictions for the non-energy-weighted sum rule m0 in fm2 of 16,24O
in the closed-shell T-1 and 2PA 3p-1h approximations obtained with the
∆NNLOGO(394) interaction. The theoretical uncertainty has been obtained as
detailed in Section 6.1.

Nucleus T-1 3p-1h
16O 4.86(4) 4.7(7)
24O 8.12(10) 7.7(8)

Let us now analyse the case of 24O. The convergence patterns of Figure 6.5 for this nu-
cleus show a larger residual dependence on the HO basis parameters in comparison to 16O.
This is a consequence of the more extended size characterizing the neutron-rich 24O with
respect to 16O. Nevertheless, an optimal frequency can be found in most of the approxima-
tion schemes considered. Starting from the closed-shell calculations, the optimal frequency
varies from ℏΩ = 10 MeV for D to ℏΩ = 12 MeV for T-1. Also for 24O, the D value of m0

at the optimal frequency is slightly higher than the T-1 one, with the difference between the
two being less than 2%. Turning to the 2PA results, while it is possible to identify an optimal
frequency of ℏΩ = 10 MeV for the 3p-1h approximation, the 2p-0h values are characterized
by a slower convergence. Since the difference between numerical values for Nmax = 10 and
Nmax = 12 reduces when going towards smaller values of ℏΩ, we can employ ℏΩ = 8 MeV
as reference frequency for the uncertainty estimate. We can then say that the value of m0

in the 2p-0h scheme is around 20% larger than the 3p-1h one. Since the T-1 and 3p-1h
values differ by 5%, as in the 16O case, the results obtained with the closed-shell and 2PA
frameworks turn out to be compatible within error bars.

Electric dipole polarizability

Let us now analyse the results for the electric dipole polarizability of 16,24O in the closed-
shell and 2PA frameworks. This observable brings to light the effects of using a differ-
ent coupled-cluster expansion not only in the ground state but also in the dipole-excited
states. As a consequence, starting from this paragraph, we indicate the many-body trunca-
tion adopted in both the ground- and excited-state computation.

According to Eq. (5.71), the dipole polarizability is calculated starting from the inverse
energy-weighted integral of the LIT, in the limit of vanishing Lorentzian width σI . The
σI → 0 limit of Eq. (5.71) converges quite quickly in both closed-shell and 2PA calculations.
Lowering progressively the value of σI , we found that αD is fully converged for σI = 10−4

MeV. Fixing σI = 0.01 MeV, variations with respect to the converged result are already of
the order of 0.001%. As it is proportional to the inverse energy-weighted sum rule m−1, αD

shows a rapid convergence also with respect to the excitation energy, saturating at around
100 MeV.

It is also useful to look at the convergence of αD with respect to the number of Lanczos
coefficients included in the calculation of the LIT according to Eq. (5.66). Such an analysis
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Figure 6.6: Left (right) panel: Dipole polarizability of 16O (24O) in the 3p-1h/3p-1h ap-
proximation as a function of the number of Lanczos coefficients NLancz used to
calculate the LIT according to Eq. (5.66).

has already been carried out for closed-shell nuclei in Ref. [86]. We focus here on the
case of 2PA-LIT-CC computations. In Figure 6.6, we present the dipole polarizability of
the benchmark nuclei 16,24O, calculated with the 2PA-LIT-CC method, as a function of the
number of Lanczos coefficients NLancz included in Eq. (5.66) to determine the LIT.

For both 16,24O, 20 Lanczos coefficients turn out to be sufficient for convergence. Al-
ready with NLancz = 10, differences from the fully converged result lie below 0.001%. This
behaviour has been observed also in heavier nuclei, and it reflects the fact that being αD an
inverse energy-weighted sum rule, it depends only on the first few dipole-excited states of
the spectrum, characterised by a faster convergence in the Lanczos algorithm.

In analogy to the case of m0, Figs. 6.7 and 6.8 illustrate the dependence on ℏΩ of both
closed-shell and 2PA results at different levels of approximation varying Nmax between 8
and 12. Closed-shell and 2PA predictions for αD of 16,24O can be found in Table 6.4.

Table 6.4: Predictions for the dipole polarizability αD in fm3 of 16,24O in the
closed-shell T-1/D and 2PA 3p-1h/3p-1h approximations obtained with the
∆NNLOGO(394) interaction. The theoretical uncertainty has been obtained as
detailed in Section 6.1.

Nucleus T-1/D 3p-1h/3p-1h
16O 0.54(4) 0.40(16)
24O 1.32(6) 1.22(16)

In all the closed-shell and 2PA approximations under study, αD for 16O converges quite
quickly at an optimal frequency of ℏΩ = 12 MeV. Considering the different closed-shell
and 2PA truncations available, the αD results share some commonalities with the behaviour
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Figure 6.7: 16O results for αD from the closed-shell D/D and T-1/D approximations [panels
(a) and (b), respectively] and the 2PA 3p-1h/3p-1h and 2p-0h/3p-1h approxima-
tions [panels (c) and (d), respectively]. Each panel shows αD as a function of
ℏΩ for different model space sizes.
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Figure 6.8: 24O results for αD from the closed-shell D/D and T-1/D approximations [panels
(a) and (b), respectively] and the 2PA 3p-1h/3p-1h and 2p-0h/3p-1h approxima-
tions [panels (c) and (d), respectively]. Each panel shows αD as a function of
ℏΩ for different model space sizes.

observed in the case of m0. First, the T-1/D value for αD is lower than the D/D one, of
around 7%. As mentioned in Section 6.2, the reduction of αD when triples are included has
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been already observed in the case of 16O employing the NNLOsat interaction [101], and it is
a feature shared by various medium-mass nuclei [5, 49, 77]. Second, as for the 2PA results,
the 3p-1h/3p-1h approximation reduces the value of αD with respect to the 2p-0h/3p-1h
scheme of around 40%. The resulting large error bar then covers the difference between the
T-1/D and 3p-1h/3p-1h optimal frequency values, which amounts to 20% (see Table 6.4).

In the case of 24O, for all the approximation schemes considered the optimal frequency
moves towards lower values of ℏΩ, ranging between 8 and 10 MeV. In analogy to the m0

results, the larger spatial extension of 24O leads to a more significant residual dependence
on ℏΩ with respect to the case of 16O. The spread of the different Nmax curves as a function
of ℏΩ appears to be similar among the different approximation schemes, except for the
2p-0h/3p-1h case, showing a more compressed pattern. Let us now consider the behaviour
of αD when going from the less accurate to the more accurate many-body framework for
both closed-shell and 2PA calculations. In the closed-shell calculations, triples reduce αD

of around 7%, the same amount observed for 16O. In the 2PA case, improving the precision
of the calculation from 2p-0h/3p-1h to 3p-1h/3p-1h increases αD, bringing it closer to the
T-1/D value. The difference between the T-1/D and 3p-1h/3p-1h results amounts to 15%.
Combining the many-body truncation and convergence contributions, the closed-shell and
2PA results are in agreement, as shown in Table 6.4.

It is interesting to analyse how the difference between the closed-shell and 2PA results
for the polarizability originates as a function of the upper integration limit of the LIT in
Eq. (5.71). To this aim, starting from Eq. (5.71), it is useful to define the αD running sum,
given by

αD(ε) = 2α lim
σI→0

∫
ε

0
dσ

L(σR,σI)

σR
. (6.5)

This quantity allows one to identify the excitation energy regions where αD receives the
largest contributions. In Figure 6.9, the upper left (right) panel shows the LIT for Γ =

0.01 MeV for 16O (24O) in the closed-shell and 2PA frameworks. These curves have been
obtained adopting the T-1/D approximation in the closed-shell case and the 3p-1h/3p-1h
one in the 2PA case. In the lower left (right) panel, the corresponding running sum αD(ε) is
illustrated.

We observe that below 20 MeV of excitation energy, the low-lying states characterizing
the LIT in the closed-shell and 2PA approaches are giving similar contributions to the polar-
izability of 16,24O. However, at higher excitation energies, corresponding to the region of the
giant dipole resonance (GDR), the 2PA result systematically underestimate the closed-shell
one in both nuclei, leading in the end to a lower value for αD. The origin of this behaviour
becomes clear when looking at the LIT: in both 16,24O the states corresponding to the GDR
are shifted towards higher energies. This effect is more pronounced for 16O, where the states
characterized by the highest strength in the LIT appear close to 40 MeV, while in 24O they
are located at around 30 MeV.

To understand the reason of this behaviour, we introduce a tool to gauge the quality of
the 3p-1h/3p-1h approximation in describing specific nuclear states. In Refs. [180,181], the
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Figure 6.9: Panels (a) and (b): closed-shell and 2PA LIT with Γ = 0.01 MeV as a function
of excitation energy for the 16O and 24O nuclei, respectively. Panels (c) and (d):
corresponding αD running sums as a function of the upper integration limit for
the 16O and 24O nuclei, respectively. The results shown for 16O (24O) have been
obtained with Nmax = 12 and ℏΩ = 12 MeV (ℏΩ = 8 MeV) in the closed-shell
T-1/D and the 2PA 3p-1h/3p-1h approximations.
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partial 2p-0h and 3p-1h norms of the wavefunction have been identified as possible markers
of missing higher order correlations in the 2PA expansion. It is worth to revise this here.
Given the 2p-0h and 3p-1h amplitudes of a 2PA state with angular momentum J, the partial
norms are defined as

n(2p0h) =
1
2 ∑

ab
(2J+1)(rab)2,

n(3p1h) =
1
6 ∑

abci
∑

Jab,Jabc

(2Jabc +1)(rabc
i )2,

(6.6)

where n(2p0h)+ n(3p1h) = 1. n(2p0h) and n(3p1h) allow one to quantify the wavefunc-
tion’s share in 2p-0h and 3p-1h configurations. As a rule of thumb, a 2p-0h partial norm
of around 0.9 indicates an accurate description of the nuclear state of interest within a 3p-
1h truncation of the 2PA expansion. A lower 2p-0h norm could point towards the need of
including 4p-2h or higher correlations.

The calculation of the dipole polarizability is affected by the quality of the ground state
and of the excited states that we can access via the Lanczos algorithm, as explained in
Section 5.2.4. For both 16,24O we computed the partial norm n(2p0h) for these states. In
Table 6.5, we report the values of n(2p0h) for the ground state and the first dipole-excited
state appearing in the LIT. Being αD an inverse energy-weighted sum rule, the latter has a
significant impact on this observable. For instance, in the 2PA case such state covers around
1/4 of the total value of the polarizability for 16O and almost 1/2 for 24O.

Table 6.5: Partial norms n(2p0h) of the ground state and first dipole-excited state of 16,24O
in the 2PA framework.

Nucleus Ground state First 1− state
16O 0.84 0.73
24O 0.90 0.88

The results of Table 6.5 suggest that while for 24O both the ground state and the first 1−

state, characterized by n(2p0h)≈ 0.9, appear to have a dominant 2PA structure, for 16O the
3p-1h/3p-1h approximation turns out to be less accurate. Moreover, it is worth pointing out
that considering the dipole-excited states at energies above 20 MeV, and in particular the
GDR region, n(2p0h) quickly decreases for both nuclei, falling well below 50%. This could
indicate the need of including higher order correlations for a more precise description of the
GDR.

6.3.2 Electric dipole polarizability along the oxygen isotopic chain

Equipped with the closed-shell and 2PA-LIT-CC approaches, we can now explore how the
dipole polarizability evolves along the oxygen isotopic chain. In addition to 16O and 24O,
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which can be addressed with both methods, we can consider 14O and 22O in the closed-shell
framework and 18O as a 2PA nucleus with respect to 16O. We choose to adopt the T-1/D
approximation for the closed-shell calculations and the 3p-1h/3p-1h approximation for the
2PA ones. In Figure 6.10, we show our results in comparison to available experimental data
and theoretical predictions.
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Figure 6.10: Predictions for the electric dipole polarizability of 14,16,18,22,24O obtained either
with closed-shell LIT-CC in the T-1/D approximation or with the 2PA-LIT-
CC approach in the 3p-1h/3p-1h approximation in comparison with available
experimental data for 16O [88], 18O [199], 22O [200]. The data of Refs. [199,
200] are supplemented by theory at high excitation energy (see text for details).
Ab initio results for 16,18,22,24O from the NCSM approach [201, 202] and for
16,22O from the SCGF method [203] are also included.

First of all, it is worth pointing out the significant increase of the polarizability obtained
by moving from the valley of stability to more neutron-rich systems. Starting from 14O and
going towards 24O, the polarizability becomes more than twice as large.

The uncertainty bands on our results are determined according to the recipe of Section 6.1.
For the closed-shell results, the many-body and convergence contribution to the theoretical
error are comparable, leading to a total uncertainty which varies from 3% to 5% going
from 14O to the more neutron-rich 24O. For the 2PA results, the many-body uncertainty is
dominant. While for 18O and 24O it amounts to 15 and 13% of the central value, respectively,
for 16O it grows up to 40%. The larger uncertainty in the case of 16O could reflect the lower
level of accuracy of the 3p-1h/3p-1h approximation for this nucleus, as shown in Table 6.5.
Figure 6.10 makes the consistency between the LIT-CC and 2PA-LIT-CC results visually
apparent for our benchmark 16O and 24O nuclei.
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We find an excellent agreement between our theory and the available experimental data.
The experimental values for αD are obtained by integrating the data of Ref. [88] for 16O,
Ref. [199] for 18O and Ref. [200] for 22O. While for 16O data are available up to an exci-
tation energy of 100 MeV, which is sufficient for the integral of Eq. (5.71) to saturate, the
maximum excitation energy reached by data is 40 MeV for 18O and 18 MeV for 22O. To ob-
tain a final estimate of αD for these two nuclei, we calculate αD(ω > 40 MeV) for 18O and
αD(ω > 18 MeV) for 22O and add these values to the corresponding experimental result.
In the case of 18O, integration of the experimental data give αD(ω < 40 MeV) = 0.58 fm3,
while on the theory side, we obtain αD(ω > 40 MeV) = 0.090(14) fm3. Adding up the two
values, we obtain a final determination of αD = 0.670(14) fm3. We point out that the ex-
perimental data of Ref. [199] are reported without corresponding uncertainties, and that the
error bar in this case accounts only for the theory uncertainty. For 22O, the experimental data
at low energy yield αD(ω < 18 MeV) = 0.24(6) fm3, while αD(ω > 18 MeV) = 0.63(3)
fm3. We then determine an upper and lower bound for αD by adding up the corresponding
upper and lower bounds of the theoretical and experimental values, respectively. This yields
0.78 < αD < 0.96 fm3.

In Figure 6.10, we also reported αD predictions for 16,18,22,24O in the NCSM approach [201,
202] and for 16,22O in the SCGF approach [203]. In both NCSM and SCGF calculations,
the NNLOsat interaction was employed. NCSM predictions for 16,18,22O agree well with
CC values and with data. In particular, we highlight that the excellent accordance between
the NCSM result for 18O and our 2PA prediction provides an additional benchmark for the
newly developed 2PA-LIT-CC method. The SCGF prediction for 16O is consistent with our
results and with experiment, while their value is slighly lower than the T-1/D one for 22O.

Being at the dripline, 24O represents an interesting physics case. With a polarizability
of 1.087(87) fm3, NCSM calculations underestimate this observable with respect to the
T-1/D result of 1.32(6) fm3, while being consistent with the 2PA value of 1.22(16) fm3.
To our knowledge, no experimental data are available for 24O. However, the large spread
of the predictions obtained with different ab initio methods and nuclear interaction models
motivates an experimental investigation of the dipole strength of this nucleus.

6.3.3 Electric dipole polarizability along the calcium isotopic chain

Going towards heavier systems, we can address the evolution of the dipole polarizability
along the calcium isotopic chain. In this case the polarizability of 36,40,48,52Ca can be tackled
with the usual closed-shell LIT-CC, while we can provide predictions of αD for 38,42,50,56Ca
with the 2PA-LIT-CC approach. Both LIT-CC frameworks can be used to calculate αD for
54Ca, which serves as a benchmark nucleus in this isotopic chain. As in the previous Section,
we adopt the T-1/D approximation for the closed-shell calculations, while we truncate the
2PA expansion at the 3p-1h/3p-1h level. The results are shown in Figure 6.11 in comparison
to available experimental data.

We observe that predictions for the polarizability of 2PA nuclei appear to be smaller
than the ones obtained for their closed-shell neighbours. The theoretical uncertainty of the
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Figure 6.11: Predictions for the electric dipole polarizability of 36,38,40,42,48,50,52,54,56Ca ob-
tained either with closed-shell LIT-CC in the T-1/D approximation or with the
2PA-LIT-CC approach in the 3p-1h/3p-1h approximation. Experimental values
of αD for 40Ca [5] and 48Ca [48] are also reported for comparison.

closed-shell results, mainly determined by the many-body truncation, varies between 5%
and 7% of the corresponding central value. It increases up to 15% only for the neutron-rich
54Ca, where we notice a larger residual dependence on the convergence parameters. Also
in the case of the 2PA calculations, the effect of truncating the many-body expansion dom-
inates the theoretical error. Depending on the nucleus, the uncertainty ranges between 24%
and 36% of the central value. This result is also affected by the slower convergence charac-
terizing αD for 50,54,56Ca in the 2p-0h/3p-1h scheme, considered to evaluate the many-body
truncation error. A further refinement of our 2PA results could come by including triples in
the coupled-cluster reference calculation. We leave this analysis to future work.

It is useful to focus on the case of 54Ca, where we can compare the two CC frameworks.
While being compatible with the closed-shell outcome within error bars, the 2PA calculation
leads to a smaller central value of αD for 54Ca. The reason of this behaviour lies in the
shape of the LIT, where the GDR appears at higher excitation energies in the 2PA result
with respect to the closed-shell one, as shown in Figure 6.12.

We have already observed a similar shift of the GDR towards higher energies for 16,24O
(see Figure 6.9). To understand this systematic effect, also in the case of 54Ca we analysed
the partial norm n(2p0h) for the ground state and the dipole-excited states, finding a situation
similar to the case of 24O. While the ground state and first 1− state have a good 2PA-
dominated structure, with n(2p0h) ≈ 0.9 in both cases, n(2p0h) becomes rapidly much
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Figure 6.12: LIT with Γ = 0.01 MeV in the closed-shell and 2PA-LIT-CC approaches for
54Ca as a function of excitation energy. These curves have been obtained with
Nmax = 12 and ℏΩ = 8 MeV. In the closed-shell case, the T-1/D approximation
has been used, while for the 2PA case the 3p-1h/3p-1h result is shown.

smaller than n(3p1h) for the dipole-excited states in the GDR region, suggesting the need
of higher-order correlations in this energy range.

Starting from 36Ca all the way up to 54Ca, our predictions for closed-shell and 2PA nuclei
show an increase of the dipole polarizability with the number of neutrons, as observed for
oxygen isotopes, but when going from 54Ca to 56Ca. In fact, the central value of αD for
56Ca is slightly lower than the one of 54Ca in the 2PA framework, even though uncertain-
ties increase in this region. This would make an experimental investigation of αD in these
neutron-rich nuclei particularly interesting.

To our knowledge, experimental data in this isotopic chain are available only for 40,48Ca [5,
48]. As already mentioned in Section 6.2, the family of interactions from Ref. [68] and
NNLOsat were employed in those works, but we observe here a good agreement also be-
tween the theoretical prediction obtained using ∆NNLOGO(394) and experiment. Inelastic
proton scattering data for 42Ca from iThemba Labs, currently under analysis [50], could
soon provide an experimental benchmark for our 2PA prediction.

6.4 Ground and dipole-excited states of 8He

In the previous Section, we showed that combining the closed-shell and 2PA-LIT-CC ap-
proaches we can get a deeper understanding of the physics of αD in the medium-mass region
of the nuclear chart. In parallel to these efforts, during this thesis we have also extended our
investigations to light-neutron rich nuclei at the dripline. Here, the nuclear force gives rise to
intriguing phenomena, such as the emergence of halo structures, with weakly-bound nucle-
ons orbiting a compact core at a distance. Halo nuclei are characterized by small separation
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energies and extended matter radii, which do not follow the typical A1/3 scaling found in
the valley of stability.

Among halo systems, 8He represents an interesting case study. It has the most extreme
neutron-to-proton ratio (N/Z = 3) in the nuclear chart and up to now, it is the only known
four-neutron halo. This unique configuration has been leveraged in a recent groundbreak-
ing experiment, performed at RIKEN, where a 8He knockout reaction at large momentum
transfer led to the observation of a correlated four-neutron state [204]. While from the the-
ory point of view the existence of a bound tetraneutron is disputed (see, e.g., Ref. [205]
and references therein), new experiments have either been made [206] or they are being
planned for [207]. The debate around the interpretation of the RIKEN 4n signal has trig-
gered new investigations of the neutron halo distribution and the possible correlations among
the loosely-bound neutrons in 8He [208, 209].

In halo nuclei, the extended size of the neutron cloud is often mentioned together with
a strong enhancement of the electric dipole response at low excitation energies. Revealed
by early measurements with radioactive ion beams [210], this so-called “soft E1 excitation”
ranks among the main features identifying halo nuclei [211]. However, the presence of a soft
dipole mode in 8He is still a controversial issue from both the experimental and theoretical
point of view.

Coulomb excitation [212] and nuclear fragmentation [213] experiments first supported
the existence of a 1− resonance at an excitation energy of around 4 MeV in the spectrum
of 8He. Later, (t, p) transfer reaction data [214] confirmed the presence of low-lying dipole
strength, but at a lower energy of 3 MeV. In contrast, the Coulomb excitation experiment
of Ref. [215] attributed a relatively small fraction of the total energy-weighted dipole sum
rule (less than 3%) to a potential soft dipole mode. Also, a measurement of breakup of
8He on carbon [216] found the spin-parity assignment of the excited state at 4 MeV to
1− highly uncertain. These results were validated by a recent inelastic proton scattering
experiment [217], where the measured angular distribution was found to be incompatible
with a low-lying dipole resonance. Very recently, high-statistics Coulomb excitation data
obtained at RIKEN by the SAMURAI collaboration [94] have indicated the presence of
low-lying strength between 3 and 4 MeV, in agreement with Refs. [212–214].

From the theory point of view, our recent work, published in Ref. [1], was the first to
tackle dipole excited-state properties of 8He in the framework of ab initio LIT-CC calcu-
lations based on chiral EFT interactions. Together with the growing experimental interest,
our effort has driven subsequent theoretical analysis within the random-phase approxima-
tion (RPA) in EDF theory [218], the cluster orbital shell model (COSM) [219, 220] and the
equation-of-motion multiphonon approach (EMPM) [221].

In this Section, we summarise the results obtained on 8He during the work of this thesis,
drawing from Refs. [1, 2, 6]. We start our journey by testing our control on ground-state
properties of 8He, as its charge radius Rch, and compare our predictions to available experi-
mental data. We then analyse the dipole-excited spectrum, looking at the discretized dipole
response function, and provide LIT-CC predictions for the dipole polarizability, comparing
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them to the results of the theoretical approaches mentioned above. We also explore the
correlation of αD with the point-neutron radius Rn, highlighting the sensitivity of the low-
energy dipole strength to the extent of the point-neutron distribution in this exotic nucleus.
We conclude by presenting a comparison between our LIT-CC predictions for the dipole
polarizability and the high-precision RIKEN experimental data of Ref. [94].

In this Section, we calculate 8He as a closed-shell nucleus. To assess the Hamiltonian
dependence of our results, we use four chiral EFT interactions: 1.8/2.0 (EM), NNLOsat,
∆NNLOGO(450) and ∆NNLOGO(394). Among them, the latter two are ∆-full interactions,
and they differ for the cutoff value, given by 450 MeV/c for the first and 394 MeV/c for
the second. Moreover, the 1.8/2.0 (EM) interaction includes also NN force terms at N3LO,
while the other chiral force models are truncated at NNLO. More details on these interac-
tions can be found in Section 3.3. The convergence of the observables considered in this
Section has been examined increasing the model space size Nmax from 10 to 14, and varying
the ℏΩ frequency between 12 and 16 MeV. In selected cases, calculations with ℏΩ = 10
MeV have been possible for the 1.8/2.0 (EM) and ∆NNLOGO(394) interactions.

6.4.1 Charge radius

In this paragraph we begin our investigation of the structure of 8He by calculating its charge
radius Rch. To this aim, we first compute the point-proton radius Rp =

√
⟨R2

p⟩, where the
mean-square point-proton radius operator is defined as

R2
p =

1
Z

A

∑
i=1

r2
i

(
1+ τ

z
i

2

)
. (6.7)

Here, we use the same notation as Eq. (2.15). Figure 6.13 shows the convergence pattern
of Rp with respect to the HO basis parameters for the four chiral EFT interactions under
analysis, in the D and T-1 truncation schemes.

For all interactions, we can identify an optimal frequency leading to faster convergence.
In particular, for NNLOsat and ∆NNLOGO(450) the optimal frequency is ℏΩ = 14 MeV,
while for ∆NNLOGO(394) and 1.8/2.0 (EM), the optimal frequency is 12 MeV. Focusing
on the CC outcomes for the ∆NNLOGO(450) and ∆NNLOGO(394) interactions, we observe
that the cutoff difference affects the ℏΩ dependence of the results, leading to a faster con-
vergence when the cutoff is lower. At the optimal frequency, the difference between the Rp

values for D and T-1 varies between 1% and 1.5% for the different interactions.
Starting from Rp, we then compute the charge radius using

⟨R2
ch⟩= ⟨R2

p⟩+ r2
p +

N
Z

r2
n +

3
4M2

p
+ r2

so , (6.8)

where rp = 0.8414(19) fm [222] is the proton charge radius, r2
n = −0.106+0.007

−0.005 fm2 [223] is
the neutron charge radius, 3/(4M2

p) = 0.033 fm2 is the Darwin-Foldy term [224] and r2
so is
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Figure 6.13: Convergence pattern of the point-proton radius of 8He with respect to ℏΩ for
various Nmax for the four Hamiltonians in the D and T-1 truncation schemes.
Figure adapted from Ref. [1] and complemented with 1.8/2.0 (EM) results.

the spin-orbit correction [225].
In Ref. [225] it has been pointed out that r2

so could give a remarkable contribution to
the charge radius of halo nuclei. Therefore, we have consistently calculated this correction
in CC theory. Our results are reported in Table 6.6, in comparison to previous theoretical
estimates. The prediction of Ref. [225] is based on a shell model calculation, while in
Ref. [226] the Gamow shell model is employed. In this framework, the CC approach allows
us to account for many-body correlations, leading to a significant improvement with respect
to previous calculations of this quantity. Taking the NNLOsat result as an example, the
magnitude of r2

so is reduced of about 10% with respect to Ref. [226], and of approximately

Table 6.6: Theoretical predictions for the spin-orbit correction to the charge radius of 8He
in fm2 for the four different interactions in comparison to previous theoretical
results. Uncertainties are calculated as detailed in Section 6.1.

Interaction r2
so

1.8/2.0 (EM) -0.123(10)
∆NNLOGO(450) -0.134(9)
∆NNLOGO(394) -0.141(6)
NNLOsat -0.143(6)

Ref. [225] -0.17
Ref. [226] -0.158

101



CHAPTER 6. RESULTS

15% with respect to the shell model estimate.
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Figure 6.14: Comparison between the coupled-cluster theoretical values for the charge ra-
dius of 8He using the four different Hamiltonians and the experimental results
of Mueller et al. [227], Brodeur et al. [228] and Krauth et al. [229]. Figure
adapted from Ref. [1] and complemented with 1.8/2.0 (EM) results.

The final results for the charge radius of 8He are illustrated in Figure 6.14 in comparison to
three experimental determinations. The charge radius of 8He can be experimentally obtained
from a measurement of the isotope shift, namely the frequency difference δνA,A′ between
8He and the reference isotope 4He, in the same atomic transition. The frequency shift is
related to the difference δ ⟨R2

ch⟩A,A′ in the charge radius between 8He and 4He by

δνA,A′ = δ
Mass
A,A′ +KFSδ ⟨R2

ch⟩A,A′ , (6.9)

where the mass shift δ Mass
A,A′ and the field shift constant KFS are obtained from precise atomic

theory calculations. The first determination of the charge radius of 8He using this method
stems from Ref. [227], where the radius of 4He measured from electron scattering was
used as a reference. Later, Ref. [228] provided an improved estimate of the mass and field
shift parameters, based on precise nuclear mass measurements. More recently, Ref. [229]
achieved the first determination of the 4He charge radius from muonic atoms, which, im-
proving the reference, slightly modified Rch for 8He.

In general, we find that our theoretical results overlap with the area spanned by the three
experimental determinations, as seen in Figure 6.14. The ∆NNLOGO(450) interaction leads
to the largest charge radius, equal to 1.92(2) fm, which agrees best with Ref. [227]. More-
over, the distance between the upper end of the ∆NNLOGO(450) error bar and the lower
end of the one of the most recent experimental determination [229] amounts to only 10−4
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fm. Comparing this to the scale of the values involved, we can still claim a good agreement
between these two results.

6.4.2 Discretized response function and dipole polarizability

We now turn to the dipole-excited states in 8He by first looking at the discretized response
function. In our framework, this quantity can be simply calculated taking the limit of the
LIT for σI → 0, as shown in Eq. (5.68). Figure 6.15 shows the T-1/T-1 discretized response
function obtained with the different chiral forces under analysis.
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Figure 6.15: LIT of 8He with σI = 10−4 MeV in the T-1/T-1 framework for the four different
Hamiltonians. Figure taken from Ref. [6].

For all the potentials, the LIT is characterized by low-energy peaks emerging at around
5 MeV. For the 1.8/2.0 (EM) interaction, the latter appear at slightly lower energies than
predicted by the other chiral EFT interactions. This corroborates the consistency of our
coupled-cluster predictions with the experiments of Ref. [212–214], and the recent RIKEN
measurement [94], where low-lying strength has been detected between 3 and 4 MeV.

On the theory side, our findings agree with the COSM [219, 220] and EMPM [221] the-
oretical calculations, which predict the presence of a soft dipole resonance. On the other
hand, the RPA calculation of Ref. [218] disfavours such scenario, attributing it to spurious
center-of-mass contaminations.

Moving towards higher excitation energies, the large number of states that we observe for
all the potentials employed correspond to the giant dipole resonance. Starting from the dis-
cretized response function and employing Eq. (5.71), we can study the dipole polarizability
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αD. In Figure 6.16, we show the convergence pattern of αD with respect to ℏΩ for the four
Hamiltonians under analysis, in the D/D and T-1/T-1 truncation schemes.
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Figure 6.16: Convergence pattern of the dipole polarizability of 8He with respect to ℏΩ

for various Nmax for the four Hamiltonians, in the D/D and T-1/T-1 truncation
schemes. Figure adapted from Ref. [1] and complemented with 1.8/2.0 (EM)
results.

For all four interactions we observe a quite pronounced dependence of the results on
the CC truncation and model space parameters. Variations with respect to Nmax tend to
reduce in correspondence to small values of the HO frequency. This slow convergence of
the polarizability, reflecting the slow convergence of low-lying dipole states, might be due
to the loosely bound halo neutrons in 8He, which determine a more extended wavefunction.

Triples corrections give a non-negligible contribution to αD both in the ground and excited
state part of the CC calculation. For the different interactions, the inclusion of triples just
in the ground state (T-1/D truncation, not shown in Figure 6.16) leads to an increase of αD

between 3% and 5% with respect to the D/D scheme result. In the T-1/T-1 approximation,
where triples are present in both the ground- and excited-state computation, we achieve
an overall 10% enhancement of the polarizability compared to the D/D framework. This
deviates from what has been observed in the medium-mass region of the nuclear chart,
where the inclusion of triples leads to a reduction of αD [5, 48, 49].

Our predictions for the dipole polarizability are reported in Table 6.7, where RPA [218]
and EMPM [221] results are also included for comparison. As the Coulomb excitation
data from RIKEN are available only up to 15 MeV, we dedicate Section 6.4.4 to a detailed
comparison between experimental and theoretical αD running sums.
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Table 6.7: Theoretical predictions for the dipole polarizability of 8He in fm3 with the T-
1/T-1 approximation for the four chiral EFT interactions under analysis. RPA
predictions based on three relativistic mean-field (RMF) energy density function-
als [218] and the EMPM result [221], obtained with the NNLOsat interaction, are
also reported. Uncertainties are calculated as detailed in Section 6.1.

Interaction αD
1.8/2.0 (EM) 0.48(3)
∆NNLOGO(450) 0.42(3)
∆NNLOGO(394) 0.40(3)
NNLOsat 0.37(3)

RPA, RMF016 0.262
RPA, RMF022 0.242
RPA, RMF028 0.220
EMPM, NNLOsat 0.206

Looking at Table 6.7, we notice that while αD values from RPA [218] and EMPM [221]
range between 0.20 and 0.26 fm3, CC predictions are appreciably larger, with a theoretical
uncertainty varying between 6% and 8% of the central value for the different interactions.

According to our calculations, αD in 8He turns out to be more than five times larger than
the one of 4He. Combining the photoabsorption cross section data of Refs. [230–232], the
latter amounts to 0.074(9) fm3, which is compatible with the results of Ref. [46]. This
difference is driven by the fact that soft dipole modes, such as those shown in Figure 6.15 at
about 5 MeV, are not seen in 4He [45, 46].

Moreover, it is worth to point out the significant model dependence shown by our CC
results for the polarizability of 8He. The NNLOsat and ∆NNLOGO(394) interactions, which
performs well in reproducing the dipole polarizability in the medium-mass region, as shown
in Sections 6.2 and 6.3, yield the lowest values for αD in 8He. The 1.8/2.0 (EM) in-
teraction delivers instead the largest prediction, which is more than 20% higher than the
NNLOsat result. This is a consequence of the location of the low-lying dipole strength in
8He, which appears at slightly lower energies in the 1.8/2.0 (EM) case with respect to the
other interactions, as shown in Figure 6.15.

To get further insight on the model uncertainty of our calculation, we can also study how
predictions of αD vary on the basis of the order of the chiral EFT expansion of the potential.
We performed this analysis in the case of the ∆-full interaction model, for which also the
NLO order is available [138]. In Figure 6.17, we show the ℏΩ convergence pattern of αD

for the ∆NLOGO(450) and ∆NNLOGO(450) potentials at the highest value of Nmax avail-
able (Nmax = 14), indicating with bands the contribution of the coupled-cluster truncation
uncertainty. For comparison, we also present results for the energy-weighted dipole sum
rule, calculated employing Eq. (5.72).

In the case of the dipole polarizability, the theoretical error receives substantial contri-
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Figure 6.17: The ℏΩ convergence pattern of αD and m1 for 8He calculated with
∆NLOGO(450) and ∆NNLOGO(450) at fixed Nmax = 14. The green and blue
bands indicate the CC truncation uncertainty. The black points are the results
obtained including triples in both the ground- and excited-state computations.
Figure taken from Ref. [2].

butions from both the many-body method and the residual dependence on the CC conver-
gence parameter. ∆NLOGO(450) predicts a slightly larger polarizability with respect to
∆NNLOGO(450). Taking into account the σmethod uncertainty, the two results agree within
errobars.

The situation changes when turning to the energy-weighted sum rule. Here the overall
uncertainty is dominated by the coupled-cluster truncation and it is estimated to be below
2%. Also in this case ∆NLOGO(450) leads to a larger value for m1. However, due to
the smooth convergence of this observable, the difference between the two chiral orders,
amounting to 3%, can be better appreciated than in the case of the polarizability.

A more sophisticated analysis of the EFT truncation uncertainty based on Bayesian statis-
tics [196, 197] would require more chiral orders at our disposal. Therefore, for the moment
we provide an estimate of σmodel in this case by exhibiting the spread of the results obtained
using different chiral forces, as done in Table 6.7. It is anyway reassuring to see that in the
case of the ∆-full interaction model the NLO and NNLO error bands overlap.
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6.4.3 Point-neutron radius and correlation with the polarizability

To assess our understanding of the halo structure of 8He and its impact on low-energy dipole
excitations, we calculate the point-neutron radius Rn with the previously employed set of
four Hamiltonians and investigate its correlation with the dipole polarizability. In analogy
to the case of the point-proton radius, Rn is calculated as

√
⟨R2

n⟩, where the mean-square
point-neutron operator corresponds to

R2
n =

1
N

A

∑
i=1

r2
i

(
1− τ

z
i

2

)
. (6.10)

Here, the same notation as Eq. (2.15) is employed. Figure 6.18 shows CC predictions for αD

as a function of Rn, in comparison to three experimental determinations of Rn [233–235] and
the theoretical estimates obtained by the RPA-EDF2 [218] and EMPM [221] approaches.
Experimental determinations of Rn have been obtained on the basis of interaction cross
section measurements in inverse kinematics on carbon [233] and hydrogen targets [234,
235], respectively. A Glauber analysis of the experimental data allows for the extraction of
the nuclear matter radius Rm, which in combination with the point-proton radius Rp can be
employed to estimate Rn according to the relation ⟨R2

m⟩= (Z ⟨R2
p⟩+N ⟨R2

n⟩)/A.
We find that our theoretical predictions for Rn are in excellent agreement with all three

experimental determinations. We estimated our theoretical uncertainty following the proce-
dure outlined in Section 6.1. The residual dependence on convergence parameters and the
truncation of the many-body CC expansion lead to a combined error band varying between
1 and 2% for the different interactions. The EMPM value for Rn is also in good accordance
with experiment, while EDF results overestimate the data.

Looking at our predictions for different chiral forces, we notice the presence of a correla-
tion between αD and Rn, which emerges also from the RPA-EDF calculations of Ref. [218].
This reflects a link between the low-lying dipole strength, which mainly determines αD, and
an excitation of the weakly-bound excess neutrons. We can arrive to similar conclusions
also for neutron-rich nuclei in the medium-mass region, as 48Ca [77] and 68Ni [49]. In fact,
Refs. [49, 77] highlight the presence of a correlation between αD and the point-proton ra-
dius Rp for these two nuclei. At the same time, the authors also observed that increasing
values of Rp were associated to a corresponding rise in Rn, leading as a consequence to the
emergence of a correlation between αD and Rn.

6.4.4 Comparison of αD with the RIKEN experimental data

In this Section, we compare our theoretical predictions with the data of Ref. [94], recently
obtained at RIKEN by the SAMURAI collaboration. A Coulomb excitation experiment in
inverse kinematics, combined with the detection of both the two-neutron and four-neutron

2Here, the combined notation “RPA-EDF” for the calculations of Ref. [218] indicates that Rn, being a
ground-state property, is computed in EDF theory, while αD requires to couple the RPA with EDF theory.
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Figure 6.18: Electric dipole polarizability of 8He as a function of the corresponding point-
neutron radius for the four Hamiltonians under study. CC predictions for Rn
(αD) have been obtained with the T-1 (T-1/T-1) approximation. Compari-
son with the experimental determinations of Ref. [233–235] as well as with
the RPA-EDF [218] and EMPM [221] results is shown. Figure adapted from
Ref. [6].

decay channels, enabled for the first time the extraction of the complete dipole strength
distribution of 8He and of its dipole polarizability up to 15 MeV of excitation energy.

In Figure 6.19, we compare the experimental data for αD with our theoretical running
sums, calculated according to Eq. (6.5) for the previously employed set of chiral EFT in-
teractions. The green and purple bands of Figure 6.19 encompass the results obtained with
the different chiral EFT interactions in the T-1/T-1 and D/D truncation schemes, respec-
tively. Each band is enlarged by the uncertainty contribution stemming from the residual
dependence on the HO basis parameters.

We observe a striking discrepancy between theory and experiment. Although the addi-
tion of triples brings more strength to αD and moves the theoretical running sums towards
slightly lower energies, at 15 MeV the T-1/T-1 band reaches only 50% of the correspond-
ing experimental value. We point out that while the first excited states contributing to αD

are located at around 4−5 MeV, depending on the interaction, as seen also in Figure 6.15,
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Figure 6.19: Running sum for the dipole polarizability of 8He calculated with the four
Hamiltonians in comparison with the experimental data of Ref. [94]. Both
T-1/T-1 and D/D running sums are reported. The green (purple) band spans the
area covered by the running sums of the different interactions in the T-1/T-1
(D/D) truncation scheme, and accounts also for the uncertainty coming from
convergence. See text for details.

the experimental dipole strength distribution peaks at lower energies, at 3.3 MeV [94]. Be-
ing an inverse-energy-weighted sum rule of the response, αD is particularly sensitive to the
position of low-lying states.

In Figure 6.20, we focus on the result given by the 1.8/2.0 (EM) interaction, yielding the
highest prediction for αD, and we shift the running sum aligning the first excited state in the
spectrum to the experimental low-energy peak. For this chiral force, such a shift amounts to
0.7 MeV. The filled (hatched) band correspond to the T-1/T-1 result obtained employing the
theoretical (experimental) threshold, enlarged by the contribution of the method uncertainty
σmethod. Moving the theoretical running sum to the experimental threshold improves the
situation. The shifted result now reproduces the experimental data at low energy, below 5
MeV, Moreover, the overall discrepancy is reduced from 50% to 30% when integrating up
to 15 MeV. Still, a significant gap between theory and experiment remains.

In this regard, it is useful to analyse how the discrepancy originates also at lower values of
the excitation energy. In Table 6.8, we report a numerical comparison between the experi-
mental value of αD and our T-1/T-1 calculation with the 1.8/2.0 (EM) interaction, integrated
up to 5, 10 and 15 MeV. We also include the results obtained including the energy shift.

Table 6.8 clearly shows that without energy shift, theory is losing around half of the
strength over all the integration range up to 15 MeV. Focusing instead on the shifted result,
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Figure 6.20: T-1/T-1 running sum for the dipole polarizability of 8He calculated with the
chiral EFT interaction 1.8/2.0 (EM) in comparison to the experimental data
of Ref. [94]. The hatched running sum has been shifted to the experimental
threshold. The band accounts for the method uncertainty σmethod, calculated
according to Section 6.1.

Table 6.8: Theoretical and experimental [94] values of the dipole polarizability in fm3, in-
tegrated up to an excitation energy of 5, 10 and 15 MeV. The theoretical values
have been obtained with the 1.8/2.0 (EM) interaction in the T-1/T-1 approxima-
tion scheme.

Max excitation energy αD,exp αD,th αshifted
D,th

5 MeV 0.27(1) 0.14(3) 0.18(3)
10 MeV 0.51(1) 0.26(3) 0.33(3)
15 MeV 0.61(2) 0.31(3) 0.42(3)

we observe that while the theoretical αD grows of the same amount of the experimental one
between 10 and 15 MeV (≈ 0.1 fm3), the increase in αD is only 60% of the experimental
one between 5 and 10 MeV (0.15 fm3 instead of 0.24 fm3). Assuming the experiment is
detecting the correct threshold for the dipole-excited spectrum, the core of the discrepancy
turns out to be missing strength in the theoretical response at around 5− 10 MeV. Similar
conclusions can be drawn by considering the αD predictions obtained with the other chiral
EFT interactions employed in Figure 6.19.
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The fact that the 5−10 MeV region is driving the gap between theory and experiment is
supported also by looking at the energy-weighted dipole sum rule m1, calculated from the
discretized response applying Eq. (5.72). While αD is sensitive to the low-lying strength,
m1 is mostly affected by the high-energy states emerging in the spectrum. In Figure 6.21,
we show theoretical m1 running sums, with and without energy shift, in comparison to the
experimental data of Ref. [94]. The bands of Figure 6.21 enclose the T-1/T-1 results obtained
with the whole set of chiral EFT interactions, enlarged by the contribution of the method
uncertainty σmethod.
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Figure 6.21: Running sum for the energy-weighted sum rule of 8He calculated the four
Hamiltonians in comparison to the experimental data of Ref. [94]. The hatched
running sum has been shifted to the experimental threshold. Bands span the
area covered by the running sums of the different interactions in the T-1/T-1
truncation scheme, and account for the σmethod uncertainty, calculated accord-
ing to Section 6.1.

Figure 6.21 shows a good agreement between theory and experiment, especially between
10 and 15 MeV. The effect of the energy shift, impacting the low-energy part of the spec-
trum, is less evident for an observable like m1, which is mostly affected by the high-energy
states. However, also in this case we observe missing strength in the theoretical running
sum at around 5−10 MeV, as in the case of the polarizability.

What could be the reason for missing strength in this energy region? This question has
been food for thoughts during the work of this thesis. We report below some personal views
on the possible deficiencies in our understanding of the polarizability of this exotic halo
nucleus.

• Missing higher-order CC correlations. The most accurate αD calculations pre-
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sented in this Section have been performed in the T-1/T-1 approximation, where linear
triples correlations are included in both the ground-state and excited-state computa-
tions. With the 1.8/2.0 (EM) interaction, we obtained additional results in the T-3/T-3
truncation scheme, which represent a more precise approximation of the full CCSDT
framework (see Ref. [236] for details). The value of αD obtained with the T-3/T-3
truncation scheme turns out to be only 2% higher than the T-1/T-1 outcome, well
within the many-body truncation uncertainty of our prediction. Although it is reas-
suring to see the small effect of subleading triples, the fact that T-1/T-1 and T-3/T-3
results are almost identical gives us no information on the possible impact of higher
order correlations, as 4p-4h. In an intuitive picture of 8He, made of an α core sur-
rounded by a four-neutron halo, α-clustering and the simultaneous excitation of the
valence neutrons, which can be resolved starting from the 4p-4h level [39, 237], may
have an impact on a continuum observable as the polarizability. This hypothesis is
also supported by the fact that the region of missing strength between 5 and 10 MeV
corresponds to where the four-neutron decay channel starts to contribute to the ex-
perimental response of Ref. [94]. Currently, 4p-4h calculations are not available.
However, a more concrete evidence of the effect of higher-order correlations could
be deduced by comparing CC results with virtually exact NCSM calculations of this
observable.

• Deficiencies in the nuclear Hamiltonian. In Table 6.7, the significant model depen-
dence of the polarizability of 8He jumps immediately to the eye. In our CC predic-
tions, the central values of αD for the different interactions range from 0.37 fm3 to
0.48 fm3, corresponding to a 30% variation. It is also interesting to notice that such
a difference reduces to around 15% when narrowing the field to NNLO interactions.
The chiral force 1.8/2.0 (EM), in fact, contains also NN interaction terms at N3LO,
which may play a role in this case. Among the set of interactions employed in this
Section, it is also the one contributing the most to αD between 5 and 10 MeV of exci-
tation energy. However, as explained in Section 3.3, the chiral order is only one of the
aspects characterizing the nuclear interaction models on the market. Also the choice
of degrees of freedom and the fitting strategy count. In this regard, following the line
of previous works as Ref. [238], it would be interesting to perform a global sensitivity
analysis of αD in 8He to identify which low-energy constants in the interaction are
driving the substantial model dependence shown by this observable.

• Deformation effects. Recently, both theoretical and experimental works [217, 239]
have claimed that 8He could be soft towards being deformed in its ground state. Ac-
cording to the SA-NCSM calculation of Ref. [239], the ground state of this nucleus
appears to be determined by the interplay of two shapes opposite in nature, one pro-
late and one oblate (corresponding to a positive and a negative value of quadrupole
moment, respectively). The already mentioned proton inelastic scattering experi-
ment of Ref. [217], aimed at measuring the first excited state in the 8He spectrum,
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yielded a differential cross section compatible with a large deformation parameter.
The static correlations associated with deformation are not accurately captured in
our CC approach, where 8He is treated as a spherical closed-shell nucleus. How-
ever, as already mentioned in Section 4.4, it is now possible to perform CC cal-
culations starting from an axially symmetric reference state, and project the result
on the correct value of total angular momentum via a symmetry restoration proce-
dure. With the aim of looking for deformation signatures in CC, we first focused
on the preliminary Hartree-Fock step in our calculations. We considered different
axially-symmetric reference states, obtained constraining the HF calculation to a spe-
cific value of quadrupole moment Q, with and without angular momentum projection
after variation (PAV) [175]. The evolution of the ground-state energy as a function
of Q with and without PAV is illustrated in Figure 6.22. These calculations have
been performed with the ∆NNLOGO(394) interaction, fixing Nmax = 8 and ℏΩ = 16
MeV. While the minimum of the ground-state energy occurs at vanishing Q in the
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Figure 6.22: Hartree-Fock ground-state energy of 8He, calculated with the
∆NNLOGO(394) interaction, as a function of quadrupole moment with
and without angular momentum projection. Such calculations have been
performed with Nmax = 8 and ℏΩ = 16 MeV.

unprojected calculation, the addition of projection leads to the appearance of two
minima with Q ̸= 0, one with oblate and one with prolate nature, in agreement with
the SA-NCSM calculation of Ref. [239]. We then used the prolate and oblate ref-
erences in two distinct CC calculations with angular momentum projection, which
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confirmed the presence of a prolate and a oblate minimum in the CC ground-state
energy, respectively. Therefore, our preliminary calculations are hinting towards 8He
being deformed, a contingency which may impact also αD. Nevertheless, since an un-
ambiguous claim of deformation typically comes from the observation of rotational
bands emerging in the spectrum, together with a study of B(E2) electromagnetic tran-
sitions, as we argued in Ref. [3], more theoretical and experimental investigation is
needed.

• Interpretation of experimental data. The roots of the discrepancy seen in Fig-
ure 6.19 could also lie on the experimental side. On the basis of the behaviour ob-
served in one-neutron halo nuclei [240], the analysis of Ref. [94] has been performed
excluding the possible presence of higher multipolarity contributions to the Coulomb
excitation data. However, the virtual photon spectra shown in Ref. [94] are charac-
terized by a number of E2 photons around an order of magnitude larger than the one
of E1 photons at the experimental beam energy. Moreover, considering the presence
of a low-lying 2+ state in the spectrum of 8He, as observed in Ref. [217], a higher
number of E2 photons is likely to lead to an enhancement of the E2 component in
the measured electromagnetic excitation strength. To obtain a clear identification of
the E1 contribution, we plan to propose a measurement of the E1 response of 8He
through inelastic proton scattering at forward angles in inverse kinematics at the Fa-
cility for Rare Isotope Beams (FRIB), USA. In such an experiment, in fact, the various
multipolarity contributions to the spectra can be distinguished via a Multipole Decom-
position Analysis [89]. The measurement of the angular distributions for a wide range
of excitation energy (0 to 25 MeV) would take advantage of the Active Target Time
Projection Chamber at FRIB [241], enabling the measurement of the E1 response in
inverse kinematics. The proposal will be written in collaboration with Dr. Yassid
Ayyad, researcher in experimental nuclear physics at the University of Santiago de
Compostela.

6.5 Nuclear incompressibility from monopole resonances

We now move on to consider a different electromagnetic observable, the isoscalar monopole
resonance. As explained in Section 2.5, the centroid energy of the resonance is connected
to the incompressibility of a finite A-body nucleus as

KA =
M
ℏ2 ⟨R

2
m⟩E2

ISGMR, (6.11)

where M is the nucleon mass, Rm is the rms matter radius of the nucleus and EISGMR is a
mean isoscalar monopole resonance energy. The latter is estimated

EISGMR =

√
m1

m−1
. (6.12)
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where moments of the response are key ingredients. Here, we present calculations of KA

for the closed-shell nuclei 16O, 40Ca and 56Ni, employing the ∆NNLOGO(394) interaction.
To this aim, we implemented the isoscalar monopole operator in the closed-shell LIT-CC
framework 3. The isoscalar monopole moments entering Eq. (6.12) can then be calculated
according to Eq. (5.69). We analyse the convergence of the moments and of the matter
radius by performing calculations at the maximum model space size available (Nmax = 14),
varying ℏΩ between 12 and 16 MeV. All the results presented have been obtained adopting
the D approximation in both ground- and excited-state computations.

In Figure 6.23, the discretized monopole responses of 16O, 40Ca and 56Ni are shown. For
all nuclei, the isoscalar monopole resonance is located between 20 and 30 MeV of excitation
energy. With 40Ca and 56Ni, we observe a shift of the peaks characterized by the highest
strength towards slightly lower energies with respect to 16O. This behaviour is reflected
in the corresponding value of EISGMR, determined by the ratio of isoscalar monopole sum
rules. In Table 6.9, we report for all nuclei our results for the matter radius Rm, the mean
energy EISGMR and the corresponding incompressibility KA, in comparison to available ex-
perimental data for Rm and EISGMR.

Table 6.9: RMS matter radius in fm, mean ISGMR energy in MeV and incompressibility
in MeV of 16O, 40Ca and 56Ni obtained with the ∆NNLOGO(394) interaction in
comparison to available experimental data for Rm and EISGMR. For 16O, 40Ca and
56Ni, experimental values of Rm are taken from Refs. [242–244] and the ones of
EISGMR from Refs. [245–247], respectively. See text for details about theoretical
uncertainties.

Nucleus Rm,th Rm,exp EISGMR,th EISGMR,exp KA,th
16O 2.53(5) 2.554(20) 23.2(3) 19.63(38) 83(5)

40Ca 3.33(7) 3.38(7) 21.6(1.1) 17.29(12) 125(14)
56Ni 3.57(7) 3.74+0.03

−0.06 22.1(1.1) 19.3(5) 150(16)

The theoretical uncertainties reported in Table 6.9 are determined by convergence and
by the effect of truncating the CC expansion. For all nuclei, the residual dependence on
the model space parameters is quite small, lying below 0.1% and 1% for Rm and EISGMR,
respectively. On the basis of our expertise in coupled-cluster calculations of radii and dipole
sum rules, we can tentatively assign a many-body truncation uncertainty of 2% for radii,
10% for the inverse-energy-weighted sum rule m−1 and 2% for the energy-weighted sum
rule m1 entering EISGMR. This results in an overall error band on KA ranging from 6% to
11% for the different nuclei.

CC calculations of Rm are in excellent agreement with experiment for 16O and 40Ca, while
slightly underpredicting this quantity for 56Ni. Furthermore, we observe that for all nuclei

3For the moment, we ignored the center-of-mass contribution to Eq. (2.21) in the implementation, as
center-of-mass effects should be milder for medium-mass nuclei as the ones under study.
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Figure 6.23: LIT of 16O, 40Ca and 56Ni with σI = 0.01 MeV in the D/D framework for the
chiral EFT interaction ∆NNLOGO(394). These curves have been obtained with
Nmax = 14 and ℏΩ = 12 MeV.

the centroid energy EISGMR is systematically larger than experiment. This discrepancy could
be attributed to the combination of two factors. First, the isoscalar monopole response has
been measured only up to 40 MeV in 16O, and up to 30 MeV in 40Ca and 56Ni, while on
the theory side we can verify the convergence of the integral considering excitation energies
higher than 100 MeV. Since the energy-weighted sum rule m1 entering EISGMR is particu-
larly sensitive to the high-energy part of the spectrum, neglecting the states above 30− 40
MeV could lead to a smaller experimental determination of the centroid. As an example,
let us consider the case of 56Ni. Integrating the discretized response only up to 30 MeV,
we obtain EISGMR = 20.5(1.2) MeV, which agrees with the experimental value. Moreover,
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as for the moment only one interaction has been considered, the theoretical uncertainties
reported in Table 6.9 only account for the method error σmethod.

In Ref. [109], the SA-NCSM was employed to estimate EISGMR and KA for 16O and
40Ca with the NNLOopt [248] interaction. Our results are in good accordance with the
SA-NCSM values of EISGMR = 24(1) MeV and KA = 75(7) MeV for 16O. For 40Ca, SA-
NCSM calculations lead to a larger centroid energy (27(1) MeV) with respect to CC. This
is most likely due to the fact that the NNLOopt interaction does not include 3N forces. The
corresponding KA, amounting to 170(10) MeV, is anyway compatible with CC within error
bars.

The value of the incompressibility is determined by the interplay between the matter
radius, increasing with mass number, and EISGMR. The latter contracts when going from
16O to 40Ca, and grows again when considering 56Ni. Overall, CC estimates for the centroid
energy vary less than 10% for the nuclei under study.

Using the values of KA presented in Table 6.9, we can analyse the behaviour of the incom-
pressibility as a function of A by carrying out a fit to Eq. (2.23). As explained in Chapter 2,
the latter is a leptodermous expansion characterized by the volume, surface, isospin and
Coulomb coefficients Kvol , Ksur f , Kτ and KCoul . As explained in Section 2.5, if one assumes
that Kvol coincides with the incompressibility K0 of symmetric nuclear matter, introduced in
Eq. (2.6), a fit to Eq. (2.23) provides important information on the nuclear EOS. We can also
compare the fit results to nuclear matter calculations performed in CC theory [103,249,250],
establishing an internally consistent connection between finite and infinite nuclear systems.

For the nuclei considered in this Section, characterized by N = Z, the isospin term van-
ishes. Moreover, macroscopic models have shown that the Coulomb term is significantly
smaller than the others, with KCoul amounting to −5 MeV [35, 251]. Due to the limited
dataset available, we adopt this approximation for KCoul . As a consequence, our fit reduces
to

KA,modified = Kvol +Ksur f A−1/3, (6.13)

where
KA,modified = KA +5 Z2A−4/3. (6.14)

The best fit for the CC estimates of KA is shown in black in Figure 6.24, with a blue band
encompassing the corresponding 1σ deviation. On the basis of our CC calculations with the
∆NNLOGO(394) interaction, we get

Kvol = 300(20) MeV, Ksur f =−530(60) MeV. (6.15)

Let us first focus on Kvol , which is connected to the incompressibility K0 of SNM. Using
a limited dataset of only 3 nuclei, we are able to estimate Kvol with an error bar of less
than 10%. Our result is in remarkable agreement with the CC nuclear matter result of K0 =

294(4) MeV [103]. This demonstrates the internal consistency of finite and infinite nuclear
matter calculations in CC theory. CC nuclear matter calculations were also performed with
a set of non-implausible chiral interactions in Hu et al. [30]. Their range of values, 242 ≤
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Figure 6.24: Incompressibility of an A-body system KA as a function of A, calculated in
CC theory with the ∆NNLOGO(394) interaction. The best fit of the theoretical
estimates of KA to Eq. (6.13) is shown in black, with a blue band illustrating
the 1σ deviation of the fit.

K0 ≤ 331 MeV, emcompasses our calculation. Moreover, our result is consistent with the
range 250 < K0 < 315 MeV, obtained by Stone et al. [107], while lying above the estimate
K0 = 240(20) MeV of Shlomo et al. [108].

In Table 6.10, we compare our result for K0 with the SA-NCSM results of Ref. [109],
starting from the NNLOopt and NNLOsat interaction4. Very recently, K0 was also estimated
with the PGCM [110] and the chiral NN+3N interaction of Ref. [252], on the basis of KA

values for 24Mg, 28Si and 46Ti. We also report their result for comparison.
We find good accordance with the PGCM result, and with the SA-NCSM estimate based

on the NNLOsat interaction. The NNLOopt result, instead, leads to a too small incompress-
ibility with respect to the other calculations and to the analysis of Refs. [107, 108]. This
comparison highlights the crucial role of 3N forces in achieving an accurate description of
this quantity.

As for the surface parameter Ksur f , the result of our fit is compatible with the range
−756 < Ksur f < −400 MeV, obtained combining the Kvol and c = Ksur f /Kvol ranges of
Ref. [107], while lying above the PGCM outcome of −632(9) MeV.

On the basis of these preliminary results, estimating the incompressibility of symmetric
nuclear matter from the analysis of isoscalar monopole resonances appears to provide a

4In SA-NCSM calculations, 3N forces in the NNLOsat interaction are included as averages.
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Table 6.10: Incompressibility of infinite nuclear matter in MeV based on CC, SA-NCSM
calculations from Ref. [109] and PGCM calculations from Ref. [110]. CC
computations employ the ∆NNLOGO(394) interaction, SA-NCSM results are
based on the NNLOopt and NNLOsat interactions and PGCM result on the chi-
ral NN+3N interaction of Ref. [252].

Method and interaction Kvol
CC, ∆NNLOGO(394) 300(20)

SA-NCSM, NNLOopt 213(10)
SA-NCSM, NNLOsat 297(37)

PGCM, chiral NN+3N interaction [252] 284(3)

viable strategy to reduce uncertainties on this EOS parameter, independently from infinite
nuclear matter calculations or experimental data. It is in our intention to further refine the
results presented here for a future publication [8], adding more nuclei to the fit, including
triples in the many-body expansion and examining the model uncertainty.
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7 Conclusions and Outlook

In this thesis, the connection between electromagnetic observables, as electric dipole polar-
izabilities and isoscalar monopole resonances, and parameters of the nuclear matter equa-
tion of state has motivated us to extend the reach of ab initio calculations of such quantities
across the nuclear chart.

We established a link between nuclear physics and astrophysics, illustrating how studies
of the structure, dynamics and composition of neutron stars require the nuclear matter equa-
tion of state as a fundamental ingredient. In particular, we focused on modeling the equation
of state at densities at and around saturation density, where nuclear physics plays a major
role. We showed the strong correlation arising in different theoretical approaches, energy
density functional theory and ab initio frameworks, between the EOS symmetry energy pa-
rameters, neutron skins and electric dipole polarizabilities, reviewing the progress that has
been achieved up to now. We also elucidated the connection between the incompressibility
of nuclear matter and systematic studies of isoscalar monopole resonances.

Next, we set the foundations for computing electric dipole polarizabilities and isoscalar
monopole resonances in an ab initio fashion, combining modern nuclear forces rooted in
Quantum Chromodynamics via chiral effective field theory and the coupled-cluster method,
a systematically improvable many-body solver, scaling polynomially with increasing mass
number. To ensure a proper treatment of the continuum excited states involved in the calcu-
lation of electromagnetic observables, we merged coupled-cluster theory with the Lorentz
integral transform technique in the LIT-CC method, that has made possible calculations
of electromagnetic break-up observables in medium-mass nuclei so far closed-shell. Most
importantly, we presented a derivation of the main technical novelty of this thesis, which
concerns the extension of the LIT-CC approach to open-shell nuclei obtained attaching two
particles to a closed-shell core. This development is motivated by ongoing experimental
campaigns tackling such nuclei [50].

Combining all these elements, we finally presented our results, constituting the original
product of the research conducted during the body work of this thesis [1, 2, 5, 7, 8]. We
first focused on the analysis of the electric dipole polarizability. We present a comparison
between our LIT-CC predictions, experimental data, and energy density functional theory
results for the dipole polarizability of the closed-shell nucleus 40Ca [5]. Good agreement is
found between the different approaches and the experimental determination. This analysis,
in conjunction with earlier findings concerning 48Ca [48], serves as a test of the closed-
shell LIT-CC approach, and supports the constraints on the symmetry energy parameters
suggested by the chiral effective field theory interactions utilized in this study.

We then arrived at the analysis of the first ab initio calculations of the electric dipole
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polarizability in open-shell nuclei, based on the newly developed 2PA-LIT-CC method [7].
We validate this new approach by considering the non-energy-weighted dipole sum rule and
dipole polarizability of 16O and 24O, where both the closed-shell LIT-CC and 2PA-LIT-CC
methods can be applied. The two frameworks yield compatible results within uncertain-
ties, giving us confidence in the implementation of the 2PA-LIT-CC method. At the same
time, such comparison suggested the need of higher-order excitations in the 2PA expansion
to capture more accurately the contribution of the giant dipole resonance region to the po-
larizability. Performing calculations with both the closed-shell LIT-CC and 2PA-LIT-CC
approaches, we considered the evolution of the dipole polarizability along the oxygen and
calcium isotopic chains. In the case of oxygen isotopes, we compared predictions from
coupled-cluster and other theoretical approaches for 14,16,18,22,24O with available experi-
mental data. This comparison shows an excellent understanding of the physics of the dipole
polarizability for the closed-shell 16,22O and the open-shell 18O. We observed that theoreti-
cal predictions of the polarizability of 24O, employing different interactions, span a large set
of values, from 1 to 1.4 fm3, calling for an experimental benchmark on this nucleus. As for
calcium isotopes, we presented results for 36,38,40,42,48,50,52,54,56Ca. In this case, although
our predictions for open-shell nuclei are lower than the closed-shell ones, the tendency of
the dipole polarizability to grow with the number of neutrons clearly emerges, except when
going from 54Ca to 56Ca, making it an exciting region to investigate in future experiments.
Soon experimental data on the polarizability of 42Ca [50] will provide an experimental ben-
chamark for our 2PA predictions. To improve the accuracy of our calculations, we plan to
analyse the effect of adding triples in the coupled-cluster reference for 2PA-LIT-CC calcu-
lations.

Next, we pushed our calculations at the dripline, with an analysis of the most exotic nu-
cleus on Earth, 8He [1, 2, 6]. Using different chiral forces, we computed its ground-state
properties, as the charge and point-neutron radius, finding consistency with available ex-
perimental data, and we employed the closed-shell LIT-CC approach to address its dipole
polarizability. Comparing our theoretical predictions with high-statistics experimental data
obtained at RIKEN, Japan, by the SAMURAI collaboration [94], we found a large discrep-
ancy: at the maximum excitation energy reached by experiment, theory covers around 50%
of the experimental value. We present a detailed analysis of the possible sources of such
disagreement, dwelling on missing higher-order correlations, deficiencies in the nuclear
Hamiltonian, possible deformation effects and the interpretation of experimental data.

In the end, we considered isoscalar monopole resonances. We presented preliminary con-
straints on the incompressibility of nuclear matter starting from LIT-CC calculations of the
mean energy of isoscalar monopole resonances in 16O, 40Ca and 56Ni. Our range for the in-
compressibility is in agreement with the corresponding value obtained from coupled-cluster
nuclear matter calculations, highlighting the internal consistency between finite and infi-
nite matter computations. It also overlaps with a global analysis of available experimental
data on isoscalar monopole resonances [107], and with very recent calculations employing
different ab initio approaches. We plan to complete these results adding more nuclei and
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performing a more sophisticated uncertainty quantification [8].
The new developments contained in this thesis open up numerous potential research av-

enues. For example, the derivation of the LIT-CC method for 2PA nuclei suggests a straight-
forward way to extend the capabilities of this approach also to open-shell nuclei obtained
removing two nucleons from a closed (sub)shell (two-particle-removed, or 2PR). Work in
this direction is underway [253]. The same reasoning could be applied also to one-particle-
attached (1PA) and one-particle-removed (1PR) nuclei. With these methods at our disposal,
we could explore electromagnetic observables in most of the nuclei of the medium-mass
region. In parallel to this efforts, a more sophisticated estimate of the theoretical uncertainty
within a Bayesian framework would be also desirable. Moreover, developing emulators
(see, e.g., Ref. [254] for a recent review) for electromagnetic observables, we would be able
to get an insight on the typically large Hamiltonian dependence that characterizes them, by
evaluating their sensitivity to specific low-energy constants in the nuclear force. With a uni-
fied approach to the treatment of structure and electromagnetic observables, as the LIT-CC
method, now available also for selected open-shell nuclei, we envision a variety of applica-
tions impacting our knowledge of the nuclear matter equation of state.

For instance, up to now, the correlation between neutron skins and dipole polarizabilities
has been investigated in stable neutron-rich nuclei as 48Ca and 208Pb. However, cutting-edge
radioactive ion beam facilities, as RIKEN, Japan and FRIB, USA, and advancements in their
infrastructure, as the FRIB400 upgrade [51], are opening exciting opportunities to explore
these observables also in extremely neutron-rich systems. Mapping the relation between
neutron skins and polarizabilities in these nuclei from an ab initio perspective would be key
to extract unique constraints on the symmetry energy. In this regard, interesting case studies
could be neutron-rich nickel isotopes in the A ≈ 80− 90 region, around the closed-shell
86Ni, which is predicted to have a large neutron skin [51, 255].

It would also be useful to understand if the polarizability can be used to constrain the
symmetry energy parameters away from saturation. In the framework of energy density
functional theory, two studies [256, 257] focused on investigating correlations between αD

and the symmetry energy at subsaturation density. These works found a strong correla-
tion between 1/αD and the symmetry energy at densities around 1/3 saturation density in
208Pb. Using this relation, they obtained stringent constraints on the symmetry energy and
the equation of state of pure neutron matter in this density regime, in agreement with pre-
vious works. It would be interesting to see a similar relation emerging also from ab initio
calculations.

In the end, we would like to point out that the LIT-CC framework for closed-shell and
2PA nuclei, on which this thesis is built, could be used to compute also more general elec-
troweak transitions. In this regard, possible future studies could focus on Gamow-Teller
strengths of neutron-rich nuclei, which are of particular importance for nucleosynthesis sim-
ulations [258] and have been the object of recent experimental activity [259, 260].
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1. RULES FOR COUPLED-CLUSTER DIAGRAMS

1 Rules for coupled-cluster diagrams

In this Section, we present the rules that allow us to derive the algebraic expression associ-
ated to a CC diagram. We take this list from Ref. [153], where they are derived in detail. To
illustrate the procedure, we consider as an example one of the diagrams of the right Lanczos
pivot S2PA

R

⟨ab|ΘRA+2|0⟩ = × , (1)

which contributes to the pivot at the 2p-0h level. The curly line ended by a cross represents
the action of Θ, while the solid line corresponds to the EOM excitation operator RA+2. To
deduce the corresponding algebraic expression, we apply the following steps:

1. Associate hole and particle indices corresponding to the ones of the matrix element
in the bra and ket of Eq. (1) with external, open lines. Associate different particle and
hole indices to internal lines, as

a
b

e
×

. (2)

2. Attach a factor ⟨out|Θ|in⟩ to any one-body operator vertex, as in this case Θ. With
a two-body operator, the corresponding factor becomes ⟨outleft outright|Θ|inleft inright⟩,
where “out” and “in” identify outward and inward lines linked to the vertex consid-
ered. In our example we get

⟨b|Θ|e⟩ . (3)

3. Associate to a EOM excitation operator RA+2 contributing at the 2p-0h level the cor-
responding amplitude

⟨b|Θ|e⟩⟨ab|RA+2|0⟩ . (4)

In the case of the de-excitation operator LA+2, a left amplitude ⟨0|LA+2|ab⟩ is in-
cluded. If the diagram contributes at the 3p-1h level, the right (left) EOM amplitude
⟨abc|RA+2|i⟩

(
⟨i|LA+2|abc⟩

)
is to be included. In the presence of T or Λ vertices,

associate the corresponding amplitude.

4. Include a sum over all internal lines

∑
e
⟨b|Θ|e⟩⟨ab|RA+2|0⟩ . (5)

5. Include a factor 1/2 for each pair of equivalent internal lines. Equivalent internal lines
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connect the same two vertices, going in the same direction. In our example, no pairs
of equivalent lines appear.

6. Each diagram has to be multiplied by an overall phase factor (−1)h−l , where h is the
number of hole lines and l is the number of loops. In counting loops we consider also
virtual particle-hole loops, which can be generated by linking external open lines.
Coming back to our example, we have h = 0 and l = 0. Therefore, we obtain an
overall positive phase, and nothing changes in our expression at this stage.

7. Associate to each pair of inequivalent external hole or particle lines a permutation
operator, P(pq) = 1−Pp,q, to ensure antisymmetry of the final expression. External
lines are considered inequivalent if they are connected to different operator lines. This
is the case of the a and b particle lines of our example. We get

P(ab)∑
e
⟨b|Θ|e⟩⟨ae|RA+2|0⟩ . (6)

We have therefore obtained the expression reported in Eq. (5.89)

⟨ab|ΘRA+2|0⟩= P(ab)∑
e
⟨b|Θ|e⟩⟨ae|RA+2|0⟩ . (7)

2 Spherical coupled-cluster theory for 2PA nuclei

As explained in Section 4.4, the benefit of employing EOM-based methods to address nuclei
in the vicinity of closed shells lies in the possibility to operate within a j-scheme framework.
This approach significantly reduces memory demands compared to the m-scheme approach,
eliminating at the same time the need of symmetry restoration. In this Section, we briefly
summarize the formalism and notation of spherical coupled-cluster theory, employed in the
implementation of the 2PA-LIT-CC method. To this aim, we follow Refs. [86, 181]. As
an example, we also show how the diagram in Eq. (1), entering the 2PA-LIT-CC Lanczos
pivots, can be translated from m-scheme to j-scheme.

2.1 Formalism

Two- and three-body states

In Section 5.4, the diagrams contributing to the 2PA-LIT-CC method have been presented
together with their algebraic expression in m-scheme. The matrix elements appearing in
such expressions involve single-particle states

|p⟩= |np,(lp,sp) jpmp⟩⊗ |τp,τ
z
p⟩= |αp, jpmp⟩ , (8)

where αp = {np,(lp,sp),τp,τ
z
p} is a cumulative index, enclosing all the quantum numbers

except for the angular momentum jp and its projection mp. Relevant matrix elements in-
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clude also two- and three-body states

|pq⟩= |αp, jpmp;αq, jqmq⟩ , |pqr⟩= |αp, jpmp;αq, jqmq;αr, jrmr⟩ . (9)

When working in j-scheme formulation, we start from the single-particle states

|p⟩= |np,(lp,sp) jp⟩⊗ |τp,τ
z
p⟩= |αp, jp⟩ , (10)

where the dependence on the projection mp is suppressed.

We now consider the j-scheme equivalent of the two- and three-body states of Eq. (9).
Starting from two-body states we obtain

|pq⟩C = {|p⟩⊗ |q⟩}Jpq
Mpq

= |αp,αq; jp jq;Jpq,Mpq⟩ , (11)

where the subscript C indicates the coupling of jp and jq to total angular momentum Jpq

with projection Mpq. Employing the completeness of the |pq⟩C states

1̂ = ∑
JpqMpq

|αp,αq; jp jq;JpqMpq⟩⟨αp,αq; jp jq;JpqMpq|, (12)

we get a relation between the m-scheme and j-scheme two-body states

|pq⟩= |αp, jpmp;αq, jqmq⟩= ∑
JpqMpq

⟨αp,αq; jp jq;JpqMpq|αp, jpmp;αq, jqmq⟩×

×|αp,αq; jp jq;JpqMpq⟩

= ∑
JpqMpq

CJpqMpq
jpmp jqmq

|pq⟩C .

(13)

In the above equation, we introduced the Clebsch-Gordan coefficients, defined as

⟨αp,αq; jp jq;JpqMpq|αp, jpmp;αq, jqmq⟩ ≡CJpqMpq
jpmp jqmq

. (14)

We observe that in Eq. (13), the uncoupled state is determined by two separate contributions,
with one of them being independent from single-particle angular momentum projections m.

We can follow a similar procedure also for three-body states. However, given a state
|pqr⟩, an additional complication arises, as different options for the coupling order can be
applied. Here, we choose to adopt a two-step procedure, coupling first p and q and then the
resulting two-body state (pq) with r. This leads to the following expression{

{|p⟩⊗ |q⟩}Jpq
Mpq

⊗|r⟩
}Jpqr

Mpqr
= |αp,αq,αr; jp jq;Jpq jr;JpqrMpqr⟩ ≡ |pqr⟩C . (15)

At this point we can find the three-body equivalent of Eq. (13), making repeated use of
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Eqs. (13) and (14)
|pqr⟩= ∑

JpqrMpqr
JpqMpq

CJpqMpq
jpmp jqmq

CJpqrMpqr
JpqMpq jrmr

|pqr⟩C . (16)

Matrix elements of 2PA operators

Eqs. (13) and (16) allow us to derive coupled two- and three-body states starting from the
corresponding uncoupled expression, eliminating the dependence on single-particle angular
momentum projections. The calculation of matrix elements of operators, however, requires
an additional step. As an example, let us consider a two-body spherical tensor operator OJ

M
of rank J and projection M. This could correspond, for instance, to the two-body part of the
similarity-transformed operator Θ of Eq. (5.14). Employing Eq. (13), we can transform its
matrix elements from m-scheme to j-scheme

⟨pq|OJ
M|rs⟩= ∑

JpqMpq
JrsMrs

CJpqMpq
jpmp jqmq

CJrsMrs
jrmr jsms

⟨pq|OJ
M|rs⟩C . (17)

Although the dependence on the quantum number m is suppressed in the two-body states
entering the coupled matrix element, the latter still carries a dependence on the projection M
characterizing the tensor operator, as well as on the projections of the total angular momenta
of the many-body state. This is where the Wigner-Eckart theorem comes into play, providing
a way to connect the matrix elements of a spherical tensor operator OJ

M to its reduced matrix
elements

⟨pq|OJ
M|rs⟩C =CJpqMpq

JMJrsMrs
⟨pq||OJ||rs⟩ , (18)

where we dropped the subscript C on the right-hand side of the equation, as the use of
coupled states is implicit when considering reduced matrix elements. Eq. (18) corresponds
to the convention adopted in Ref. [181], and it is the one we employ in the derivation of
the 2PA-LIT-CC diagrams. Other choices are possible (see, e.g., Ref. [39, 193]). Applying
the Wigner-Eckart theorem to Eq. (17), we get a direct link between m-scheme and reduced
matrix elements of O

⟨pq|OJ
M|rs⟩= ∑

JpqMpq
JrsMrs

CJpqMpq
jpmp jqmq

CJrsMrs
jrmr jsms

CJpqMpq
JMJrsMrs

⟨pq||OJ||rs⟩ . (19)

As shown in Section 5.4, the implementation of the 2PA-LIT-CC method in the 3p-1h
approximation requires the calculation of matrix elements of right and left spherical tensor
operators of rank K and projection MK on the 2PA basis of Eq. (5.38). We denote the latter
with R and L , respectively. In m-scheme, the matrix elements of such operators at the
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2p-0h and 3p-1h level can be written as

⟨ab|RK
MK

|0⟩ , (20)

⟨abc|RK
MK

|i⟩ , (21)

on the right side, and

⟨0|L K
MK

|ab⟩ , (22)

⟨i|L K
MK

|abc⟩ , (23)

on the left side. Let us now construct the coupled two-body and three-body states entering
2p-0h and 3p-1h matrix elements, respectively. Using Eqs. (13) and (16), we obtain

⟨ab|RK
MK

|0⟩= ∑
JabMab

CJabMab
jama jbmb

⟨ab|RK
MK

|0⟩C , (24)

⟨abc|RK
MK

|i⟩= ∑
JabcMabc
JabMab

CJabMab
jama jbmb

CJabcMabc
JabMab jcmc

⟨abc|RK
MK

|i⟩C , (25)

and similarly on the left side

⟨0|L K
MK

|ab⟩= ∑
JabMab

CJabMab
jama jbmb

⟨0|L K
MK

|ab⟩C , (26)

⟨i|L K
MK

|abc⟩= ∑
JabcMabc
JabMab

CJabMab
jama jbmb

CJabcMabc
JabMab jcmc

⟨i|L K
MK

|abc⟩C . (27)

At this point, we can apply the Wigner Eckart theorem to suppress the residual dependence
on angular momentum projections. We use the convention of Eq. (18) for the matrix ele-
ments of the excitation operator R

⟨ab|RK
MK

|0⟩C =CJabMab
KMK00 ⟨ab||RK||0⟩ , (28)

⟨abc|RK
MK

|i⟩C =CJabcMabc
KMK jimi

⟨abc||RK||i⟩ . (29)

The matrix elements of the de-excitation operator L require more attention. In this case,
we choose to define the left and right operators in such a way to obtain identical j-scheme
algebraic expressions for the left and right diagrams, except for the fact that in the left
case the operator is transposed. Following this strategy, the numerical implementation of
the left part of the calculation is greatly simplified. In fact, the same code can be used
for both the left and right diagrammatic contributions, except for the fact the operator in
input is transposed when computing left matrix elements. This is equivalent to consider the
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following Wigner-Eckart convention for matrix elements of L

⟨0|L K
MK

|ab⟩C =CJabMab
KMK00 ⟨0||L

K||ab⟩ , (30)

⟨i|L K
MK

|abc⟩C =CJabcMabc
KMK jimi

⟨i||L K||abc⟩ . (31)

Substituting Eqs. (28), (29) in Eqs. (24), (25), respectively, we obtain

⟨ab|RK
MK

|0⟩= ∑
JabMab

CJabMab
jama jbmb

CJabMab
KMK00 ⟨ab||RK||0⟩ , (32)

⟨abc|RK
MK

|i⟩= ∑
JabcMabc
JabMab

CJabMab
jama jbmb

CJabcMabc
JabMab jcmc

CJabcMabc
KMK jimi

⟨abc||RK||i⟩ , (33)

and similarly inserting Eqs. (30), (31) in Eqs. (26), (27) on the left side

⟨0|L K
MK

|ab⟩= ∑
JabMab

CJabMab
jama jbmb

CJabMab
KMK00 ⟨0|||L

K||ab⟩ , (34)

⟨i|L K
MK

|abc⟩= ∑
JabcMabc
JabMab

CJabMab
jama jbmb

CJabcMabc
JabMab jcmc

CJabcMabc
KMK jimi

⟨i||L K||abc⟩ . (35)

The above equations clearly show the power of the Wigner-Eckart theorem: matrix ele-
ments can be factorized in such a way that the dependence on angular momentum projec-
tions is isolated in Clebsch-Gordan coefficients only. Formulating the 2PA-LIT-CC method
in j-scheme allow us to store only the reduced matrix elements of the relevant operators,
significantly reducing the memory requirements of the calculations.

Up to now we have not specified the form of the 2PA operators R and L , which differ
on the basis of which part of a 2PA-LIT-CC computation is considered. Let us first focus
on the calculation of the Lanczos pivots S2PA

R and S2PA
L , defined in Eqs. (5.40) and (5.41),

respectively. In this case, R and L assume the following form

RK
MK

=
[
Θ

K′

M′
K
⊗RA+2,J

M

]K

MK
, L K

MK
=

[
LA+2,J

M ⊗Θ†K′

M′
K

]K

MK

. (36)

Therefore RK
MK

(L K
MK

) corresponds to a tensor product between the similarity-transformed

transition operator Θ
K′

M′
K

(Θ†K′

M′
K

), with rank K′ and projection M′
K , and the 2PA (de-)excitation

operators RA+2,J
M (LA+2,J

M ) related to the ground state of the 2PA nucleus, with rank J and
projection M. From now on, we drop the superscript “A + 2” in the left and right 2PA
de-excitation operators for convenience. As most 2PA systems are characterized by total
angular momentum 0 in their ground state, we restrict ourselves to scalar R and L opera-
tors. This implies J = M = 0, and as a consequence K′ = K, M′

K = MK . When we consider
instead the 2PA-LIT-CC matrix-vector product, R and L become

RK
MK

=
[
H0

0 ⊗RK
MK

]K

MK
, L K

MK
=
[
LK

MK
⊗H0

0

]K

MK
. (37)
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In this case, the similarity-transformed Hamiltonian, which is a scalar operator, is multi-
plied with a 2PA Lanczos vector, having the same quantum numbers as the Lanczos pivots
described above.

Permutation operators

In the diagrams presented in Section 5.4, two-body and three-body permutation operators
are used to obtain antisymmetrized amplitudes. In m-scheme representation, they are de-
fined as

P(ab) = 1−Pa,b, (38)

P(ab,c) = 1−Pa,c −Pb,c. (39)

The action of such operators on reduced matrix elements leads to a different coupling order
of the permuted indices with respect to the original one. To restore the correct coupling
order, the expression of the permutation operator needs to be modified when working in
j-scheme representation. A complete derivation of the j-scheme expression of P(ab) and
P(ab,c) can be found in Ref. [181]. The final result is given by

P(ab) = 1− (−1) ja+ jb−JPa,b, (40)

P(ab,c) = 1+∑
Jcb

ĴcbĴab

{
jc jb Jcb

ja Jabc Jab

}
Pa,c− (41)

∑
Jac

(−1) jb+ jc−Jab+Jac ĴabĴac

{
jc ja Jac

jb Jabc Jab

}
Pb,c, (42)

where we use the notation Ĵ =
√

2J+1. As the antisymmetrization is among the most
expensive parts of the calculations, the numerical implementation of the diagrams is per-
formed in such a way that the permutation operators P(ab) and P(ab,c) are applied only
once to the sum of all the 2p-0h and 3p-1h diagrammatic contributions, respectively. This is
achieved by including an additional 1/2 (1/3) factor in the 2p-0h (3p-1h) diagrams which
do not include permutation operators.

2.2 2PA-LIT-CC diagrams in j-scheme: an example

With the formalism developed in Section 2.1, we can compute all the diagrammatic contri-
butions relevant for the 2PA-LIT-CC method in j-scheme. As an example, in this Section
we illustrate how the diagram of Eq. (1) can be translated to j-scheme. Let us start from its
m-scheme expression

⟨ab|[ΘK
MK

⊗R0
0]

K
MK

|0⟩= P(ab) ∑
αe, je,me

⟨b|ΘK
MK

|e⟩⟨ae|R0
0|0⟩ . (43)
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The sum over the index e is intended to run over all the quantum numbers of a single-particle
m-scheme state, given by Eq. (8). In the above sum, we have explicitly specified the angular
momentum indices, and denoted collectively the remaining quantum numbers with the index
αe. Let us start from the left-hand side of the above equation and rewrite it using Eq. (32)

⟨ab|[ΘK
MK

⊗R0
0]

K
MK

|0⟩= ∑
JabMab

CJabMab
jama jbmb

CJabMab
KMK00 ⟨ab||[ΘK ⊗R0]K||0⟩

= CKMK
jama jbmb

⟨ab||[ΘK ⊗R0]K||0⟩ ,
(44)

where in the last step we used

CJabMab
KMK00 = δK,JabδMK ,Mab. (45)

Considering now the right-hand side of Eq. (43), the one-body matrix element of Θ appears.
The corresponding reduced matrix element can be obtained by applying the Wigner-Eckart
theorem

⟨b|ΘK
MK

|e⟩=C jbmb
KMK jeme

⟨b||ΘK||e⟩ (46)

Ignoring for the moment the presence of the permutation operator and the sum over αe, we
use Eq. (46) and apply Eq. (32) to the matrix element of the 2PA excitation operator R. We
get

∑
jeme

⟨b|ΘK
MK

|e⟩⟨ae|R0
0|0⟩= ∑

jeme

∑
JaeMae

C jbmb
KMK jeme

CJaeMae
jama jeme

CJaeMae
0000 ⟨b||ΘK||e⟩⟨ae||R0||0⟩

= ∑
jeme

C jbmb
KMK jeme

C00
jama jeme

⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩ ,
(47)

where in analogy to Eq. (45) we used CJaeMae
0000 = δJae,0δMae,0, implying Jae = 0. We can

remove the C00
jama jeme

coefficient in the above equation by employing the relation1

C00
aαbβ

=
(−1)a−α

â
δa,bδα,−β , (48)

obtaining

∑
jeme

⟨b|ΘK
MK

|e⟩⟨ae|R0
0|0⟩= ∑

je

C jbmb
KMK ja−ma

(−1) ja−ma

ĵa
⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩δ ja, je.

(49)
The order of the indices in the remaining Clebsch-Gordan coefficient can be reshuffled to
match the one of Eq. (44). Using the equality2

Ccγ

aαbβ
= (−1)b+β ĉ

â
Caα

b−βcγ
, (50)

1This equality corresponds to Eq. (1) page 248 of Ref. [193].
2This equality corresponds to Eq. (10) page 245 of Ref. [193]
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we get

∑
jeme

⟨b|ΘK
MK

|e⟩⟨ae|R0
0|0⟩= ∑

je

CKMK
jama jbmb

ĵb
ĵaK̂

⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩δ ja, je . (51)

At this point we can write an expression for the diagram only in terms of reduced matrix
elements, comparing Eqs. (44) and (51). We have

CKMK
jama jbmb

⟨ab||[ΘK ⊗R0]K||0⟩= ∑
je

CKMK
jama jbmb

ĵb
ĵaK̂

⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩δ ja, je (52)

By simplifying the last remaining Clebsch-Gordan coefficient we obtain the final j-scheme
expression for this diagram

⟨ab||[ΘK ⊗R0]K||0⟩= ∑
e

P(ab)
ĵb

ĵaK̂
⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩δ ja, je . (53)

It is worth pointing out that the sum over e appearing in the j-scheme expression is different
from the sum over e found in the m-scheme expression. The latter has to be understood as
a sum over “spherical e”, where the projections are not included. The complexity of the
spherical sum is sometimes reduced by the presence of a Kronecker delta on the values of
the total angular momentum, as we see in this case.

3 2PA-LIT-CC Lanczos pivots: j-scheme diagrams

In this Section, we show the j-scheme expressions for the diagrams contributing to the right
and left Lanczos pivots in the 2PA-LIT-CC method. For each diagram we report first the
m-scheme expression and then the j-scheme one. In the diagrams, the curly line ended by
a cross represents the action of the similarity-transformed operator Θ. The derivation of the
j-scheme expressions for these diagrams is part of the original work of this thesis [7]. The
diagrams contributing to the 2PA matrix-vector product can be found in Ref. [181].

3.1 Right pivot

Diagram 1

×

⟨ab|[ΘK
MK

⊗R0
0]

K
MK

|0⟩= ∑
e

P(ab)⟨b|ΘK
MK

|e⟩⟨ae|R0
0|0⟩ , (54)

⟨ab||[ΘK ⊗R0]K||0⟩= ∑
e

P(ab)
ĵb

ĵaK̂
⟨b||ΘK||e⟩⟨ae;Jae = 0||R0||0⟩δ ja, je . (55)
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Diagram 2

×

⟨ab|[ΘK
MK

⊗R0
0]

K
MK

|0⟩= ∑
ne
⟨n|ΘK

MK
|e⟩⟨abe|R0

0|n⟩ , (56)

⟨ab||[ΘK ⊗R0]K||0⟩=∑
ne

ĵ2
n

K̂2
⟨n||ΘK||e⟩

×⟨abe;Jab = K;Jabe = jn||R0||n⟩ .
(57)

Diagram 3

×

⟨abc|[ΘK
MK

⊗R0
0]

K
MK

|i⟩= P(ab,c)∑
e
⟨c|ΘK

MK
|e⟩⟨abe|R0

0|i⟩ , (58)

⟨abc;Jab;Jabc||[Θ
K ⊗R0]K||i⟩=∑

e
P(ab,c)(−1) jc+Jab+K+ ji ĵi ĵc

×
{

je Jab ji
Jabc K jc

}
×⟨c||ΘK||e⟩⟨abe;Jab;Jabe = ji||R0||i⟩ .

(59)

Diagram 4

×

⟨abc|[ΘK
MK

⊗R0
0]

K
MK

|i⟩=−∑
n
⟨n|ΘK

MK
|i⟩⟨abc|R0

0|n⟩ , (60)

⟨abc;Jab;Jabc||[Θ
K ⊗R0]K||i⟩=−∑

n
⟨n||ΘK||i⟩

×⟨abc;Jab;Jabc = jn||R0||n⟩δ jn,Jabc.

(61)

Diagram 5
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⟨abc|[ΘK
MK

⊗R0
0]

K
MK

|i⟩= P(a,bc)∑
e
⟨bc|ΘK

MK
|ei⟩⟨ae|R0

0|0⟩ , (62)

⟨abc;Jab;Jabc||[Θ
K ⊗R0]K||i⟩=∑

e
∑

Jbc,Jei

P(a,bc)(−1) jb+Jbc+Jei+Jabc+K
ˆJ3
bcĴei

ĵc
3

×
{

ji K Jabc

Jbc jc Jei

}
×⟨bc;Jbc||Θ

K||ei;Jei⟩⟨ae;Jae = 0||R0||0⟩δ ja, je.

(63)

This diagram can be coupled in a more efficient way if we use the permutation operator in
order to obtain the same coupling (e.g., in this case the coupling between a and b) on both
sides. Starting from Eq. (62), we obtain

⟨abc|[ΘK
MK

⊗R0
0]

K
MK

|i⟩= P(a,bc)∑
e
⟨bc|ΘK

MK
|ei⟩⟨ae|R0

0|0⟩

=−P(c,ba)∑
e
⟨ba|ΘK

MK
|ei⟩⟨ce|R0

0|0⟩

=−P(ab,c)∑
e
⟨ab|ΘK

MK
|ei⟩⟨ec|R0

0|0⟩ .

(64)

The j-scheme expression corresponding to the final result of Eq. (64) turns out to be:

⟨abc;Jab;Jabc||[Θ
K ⊗R0]K||i⟩=P(ab,c)∑

e
∑
Jei

(−1)1+K+Jei+Jabc+ jc ĴeiĴab

ĵc

×
{

ji K Jabc

Jab jc Jei

}
⟨ab;Jab||Θ

K||ei;Jei⟩

⟨ec;Jec = 0||R0||0⟩δ jc, je ,

(65)

where we observe that this equation contain one less sum with respect to Eq. (63).

Diagram 6

×

⟨abc|[ΘK
MK

⊗R0
0]

K
MK

|i⟩= P(ab,c)⟨c|ΘK
MK

|i⟩⟨ab|R0
0|0⟩ , (66)

⟨abc;Jab;Jabc||[Θ
K ⊗R0]K||i⟩=P(ab,c)⟨c||ΘK||i⟩

×⟨ab;Jab = 0||R0||0⟩δ jc,Jabc.
(67)

137



3.2 Left pivot

Diagram 1

×

⟨0|[L0
0 ⊗Θ†K

MK
]KMK

|ab⟩= ∑
e

P(ab)⟨e|Θ†K
MK

|b⟩⟨0|L0
0|ae⟩ , (68)

⟨0||[L0 ⊗Θ†K
]K||ab⟩= ∑

e
P(ab)

ĵb
ĵaK̂

⟨e||Θ†K
||b⟩⟨0||L0||ae;Jae = 0⟩δ ja, je . (69)

Diagram 2

×

⟨0|[L0
0 ⊗Θ†K

MK
]KMK

|ab⟩= ∑
ne
⟨e|Θ†K

MK
|n⟩⟨n|L0

0|abe⟩ , (70)

⟨0||[L0 ⊗Θ†K
]K||ab⟩=∑

ne

ĵ2
n

K̂2
⟨e||Θ†K

||n⟩

×⟨n||L0||abe;Jab = K;Jabe = jn⟩ .
(71)

Diagram 3

×

⟨i|[L0
0 ⊗Θ†K

MK
]KMK

|abc⟩= ∑
e

P(ab,c)⟨i|L0
0|abe⟩⟨e|Θ†K

MK
|c⟩ , (72)

⟨i||[L0 ⊗Θ†K
]K||abc⟩=∑

e
P(ab,c)(−1) ji+ jc+K+Jab ĵi ĵc

×
{

je K jc
Jabc Jab ji

}
×⟨i||L0||abe;Jab;Jabe = ji⟩⟨e||Θ†K

||c⟩ .

(73)

Diagram 4

×
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⟨i|[L0
0 ⊗Θ†K

MK
]KMK

|abc⟩=−∑
n
⟨n|L0

0|abc⟩⟨i|Θ†K
MK

|n⟩ , (74)

⟨i||[L0 ⊗Θ†K
]K||abc⟩=−∑

n
⟨n||L0||abc;Jab;Jabc = jn⟩

×⟨i||Θ†K
||n⟩δ jn,Jabc .

(75)

Diagram 5

⟨0|[L0
0 ⊗Θ†K

MK
]KMK

|ab⟩= 1
2 ∑

e f n
P(ab)⟨n|L0

0|ae f ⟩⟨e f |Θ†K
MK

|bn⟩ , (76)

⟨0||[L0 ⊗Θ†K
]K||ab⟩= 1

2 ∑
e f n

∑
Jae,Je f ,Jbn

P(ab)(−1)K+ ja+ je+ j f+ jn+Je f+Jbn

×
Ĵe f Ĵae ĵnĴ2

bn

K̂

{
je j f Je f

jn ja Jae

}{
jn Je f ja
K jb Jbn

}
×⟨n||L0||ae f ;Jae;Jae f = jn⟩⟨e f ;Je f ||Θ†K

||bn;Jbn⟩ .

(77)

As in the case of Diagram 5 for the right pivot, we can make this diagram more efficient
using the permutation trick. We get

⟨0|[L0
0 ⊗Θ†K

MK
]KMK

|ab⟩= 1
2

P(ab)∑
e f n

⟨n|L0
0|ae f ⟩⟨e f |Θ†K

MK
|bn⟩

=
1
2

P(ab)∑
e f n

⟨n|L0
0|e f a⟩⟨e f |Θ†K

MK
|bn⟩

=−1
2

P(ab)∑
e f n

⟨n|L0
0|e f b⟩⟨e f |Θ†K

MK
|an⟩ .

(78)

The j-scheme expression corresponding to the final result of Eq. (78) turns out to be

⟨0||[L0 ⊗Θ†K
]K||ab⟩= 1

2
P(ab)∑

e f n
∑

Je f ,Jan

(−1)1+ ja+ jn+Jan

× Ĵ2
an ĵn
K̂

{
jn Je f jb
K ja Jan

}
×⟨n||L0||e f b;Je f ;Je f b = jn⟩⟨e f ;Je f ||Θ†K

||an;Jan⟩ .

(79)
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Diagram 6

⟨i|[L0
0 ⊗Θ†K

MK
]KMK

|abc⟩= P(ab,c)⟨0|L0
0|ab⟩⟨i|Θ†K

MK
|c⟩ , (80)

⟨i||[L0 ⊗Θ†K
]K||abc⟩=P(ab,c)⟨0||L0||ab;Jab = 0⟩

×⟨i||Θ†K
||c⟩δ jc,Jabc.

(81)
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rell, M. Geiger, M. Gennari, N. Goldberg, J. Herko, T. Kirchner, L.-P. Kubushishi,
Z. Li, S. S. L. Muli, A. Long, B. Martin, K. Mohseni, I. Moumene, N. Paracone,
E. Parnes, B. Romeo, V. Springer, I. Svensson, O. Thim, and N. Yapa, “Effective
field theory analysis of the coulomb breakup of the one-neutron halo nucleus 19C,”
The European Physical Journal A, vol. 59, p. 273, Nov. 2023.

[5] R. W. Fearick, P. von Neumann-Cosel, S. Bacca, J. Birkhan, F. Bonaiti, I. Brandherm,
G. Hagen, H. Matsubara, W. Nazarewicz, N. Pietralla, V. Y. Ponomarev, P.-G. Rein-
hard, X. Roca-Maza, A. Richter, A. Schwenk, J. Simonis, and A. Tamii, “Electric
dipole polarizability of 40Ca,” Phys. Rev. Res., vol. 5, p. L022044, May 2023.

[6] F. Bonaiti and S. Bacca, “Low-Energy Dipole Strength in 8He,” Few-Body Systems,
vol. 65, p. 54, May 2024.

[7] F. Bonaiti, S. Bacca, G. Hagen, and G. R. Jansen, “Electromagnetic observables of
open-shell nuclei from coupled-cluster theory,” arXiv:2405.05608 [nucl-th]. Submit-
ted to Physical Review C.

[8] F. Bonaiti, S. Bacca, and W. Jiang, “Nuclear incompressibility from isoscalar
monopole resonances.” , in preparation.

[9] “A New Era of Discovery - The Long Range Plan for Nuclear Science.” https:

//doi.org/10.2172/2280968. Accessed: 2024-04-25.

141

https://doi.org/10.2172/2280968
https://doi.org/10.2172/2280968


Bibliography

[10] J. M. Lattimer and M. Prakash, “The physics of neutron stars,” Science, vol. 304,
no. 5670, pp. 536–542, 2004.

[11] D. G. Yakovlev, P. Haensel, G. Baym, and C. Pethick, “Lev Landau and the concept
of neutron stars,” Physics-Uspekhi, vol. 56, p. 289, Mar 2013.

[12] W. Baade and F. Zwicky, “Supernovae and cosmic rays,” Phys. Rev., vol. 45, p. 138,
Jan 1934.

[13] R. C. Tolman, “Static Solutions of Einstein’s Field Equations for Spheres of Fluid,”
Phys. Rev., vol. 55, pp. 364–373, Feb 1939.

[14] J. R. Oppenheimer and G. M. Volkoff, “On massive neutron cores,” Phys. Rev.,
vol. 55, pp. 374–381, Feb 1939.

[15] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, “Observation
of a rapidly pulsating radio source,” Nature, vol. 217, pp. 709–713, Feb. 1968.

[16] R. W. Romani, D. Kandel, A. V. Filippenko, T. G. Brink, and W. Zheng, “PSR J0952-
0607: The Fastest and Heaviest Known Galactic Neutron Star,” The Astrophysical
Journal Letters, vol. 934, p. L17, Jul 2022.

[17] J. Piekarewicz, “The Nuclear Physics of Neutron Stars,” arXiv:2209.14877 [nucl-th].

[18] The LIGO Scientific Collaboration and Virgo Collaboration, “GW170817: Observa-
tion of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett.,
vol. 119, p. 161101, Oct 2017.

[19] The LIGO Scientific Collaboration and the Virgo Collaboration, “Multi-messenger
observations of a binary neutron star merger,” The Astrophysical Journal Letters,
vol. 848, p. L12, oct 2017.

[20] The LIGO Scientific Collaboration and the Virgo Collaboration, “GW170817: Mea-
surements of Neutron Star Radii and Equation of State,” Phys. Rev. Lett., vol. 121,
p. 161101, Oct 2018.
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ibility coefficient from data on isoscalar compression modes,” The European Physical
Journal A - Hadrons and Nuclei, vol. 30, pp. 23–30, Oct. 2006.

[109] M. Burrows, R. B. Baker, S. Bacca, K. D. Launey, T. Dytrych, and D. Langr, “Re-
sponse functions and giant monopole resonances for light to medium-mass nuclei
from the \textitab initio symmetry-adapted no-core shell model,” arXiv:2312.09782
[nucl-th], 2023.

[110] A. Porro, T. Duguet, J.-P. Ebran, M. Frosini, R. Roth, and V. Somà, “Ab initio de-
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of the neutron charge radius from a precision calculation of the deuteron structure
radius,” Phys. Rev. Lett., vol. 124, p. 082501, Feb 2020.

[224] J. L. Friar, J. Martorell, and D. W. L. Sprung, “Nuclear sizes and the isotope shift,”
Phys. Rev. A, vol. 56, pp. 4579–4586, Dec 1997.

[225] A. Ong, J. C. Berengut, and V. V. Flambaum, “Effect of spin-orbit nuclear charge
density corrections due to the anomalous magnetic moment on halo nuclei,” Phys.
Rev. C, vol. 82, p. 014320, Jul 2010.

[226] G. Papadimitriou, A. T. Kruppa, N. Michel, W. Nazarewicz, M. Płoszajczak, and
J. Rotureau, “Charge radii and neutron correlations in helium halo nuclei,” Phys.
Rev. C, vol. 84, p. 051304, Nov 2011.

163



Bibliography

[227] P. Mueller, I. A. Sulai, A. C. C. Villari, J. A. Alcántara-Núñez, R. Alves-Condé,
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