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1. Stochastic differentials.

Let (fl,P) be a complete probability space and ¥ (P) denote
the 0 -algebra of all P-measurable sets. Let {Lj't 1 Ost <o} be a
right continuous increasing family of sub- ¢’ -algebras of O(P) such
that %, includes all P-null sets, and let . denote the family of
all local quasi-martingales ( .S*t) with continuous sample functions.
We denote by M and .4 respectively the local martingales ( .’]’t)
in Q and the locally bounded variation processes in ().

Q is a vector space over the reals R and both M and A
are subspaces of . ¢ is also a commutative ring over R and
is a subring of (.

The differential dX¥ of X €(J) is defined to be the random in-

terval function induced from X3
(AXI(I) = X(t) -~ X(s) for T = (8,t)
Let dQ,, d/"L and a4 denote

{ax 1 x € Q}, {aMm:mMmeM}ana {aa: Ae A}

respectively. d&} 1is a vector space over R and both dM and
dA are subspaces of d{ and

aQ = aM e aAk,

dQ is also a (Q-module with respect to the @ -multiplication:

(vyaxj(r) = II v{t)ax(+) (stochastic inteqrai [1},(2},(3])

and both 4M and dA are submodules of dQ . Introducing product
in d4Q by

dX dY = 4a{XYy) ~ Xdy - vax,

we can regard dfl as a commutative ring over (. Then dA4 is a
subring of d@. It is easy to check that

dQdQ < dA4 and d4QdA = = 0, so (dQ)> = 0.
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The stochastlc chain rule is formulated as follows: If F GCZ(hQn)
and X GQ (l=1 2,...,!1)’ then F_F(x veoX )eQ and

n . .
(c) Z 3,F axt 4S5 2, dF axtaxd,
=1 i, 3=1 J

The gymmetric @ -multiplication YedX is defined by

YodX = YdX + »dydX.
dQ 1is also a {-module with this multiplication. The stochastic
integral (YedX){(I) is often denoted by

S:f Y(t)ax(t)
I

and is called the symmetric stochastic integral that was introduced
by Fisk [1) and Stratonovich [(4). They proved that the above chain
rule (C) can be formulated in the same form as in the ordinary

differential calculuss:
n 3, mn
(cg) dF(X) = EE: 3 Fodxl , where FeC (R").
i=1

This can be derived immediately from (C) and is called the gymmetric
stochastic chain rule,

2, Stochastic differential equations.

Let B(t) = (B (), 5% (£)5040,B7(t)) Dbe an n-dimensional Brownian
motion and ﬁ; denote the ¢-algebra generated by BY(s) (i=1,2,...m,
s<t) and all P-null sets. Then each B (t) (i=1,2,...,m) is a mar-

tingale relative to the family x 03)017 Applying the results

t tag’
of Section 1 we have

dBié aM, dt ¢ a4, aB* ) = Sij dt and dB at = O.

Consider the following two stochastic differential equations
on X, (« =1,2,.,,m)1

(B) ax™ = a®(t,X) at + Z o ( t,x)ast

i=1
and
® = N i
(ES) dx” = a*{(t,X)edt + 23 o, (t »X)edB™,
1=

where a* (t,x), Jf (t,x), a° (t,x) and Ez (t,x) belong to class c¢°.
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From now on the summation sign ¥, will be omitted as is usual in

differential geometry.

Theorem 3.1. The equation (E) c¢an be written in the form (Es) with
the coefficients

—9‘_8_1 S & -d_ o
(1) a = a 3( % 6} ) ey and r;o= 04

and the equation (ES) can be written in the form (E} with the co-

efficients
: e - Y s =B G-
(1)a—a+1(9ﬁi)ﬁi and ;0= T
Proof. Using the results of Section 1 we have
atat + O'i“ ci‘B:L
= a%at + G;*odai~isd0’; ap*
=a%dt + a'i“‘odBi—%( 'af,o*:" axf) as?
= at « iy 34 p j i
= a dt + 01 o dB ] ﬁoi ( 05 dB-) dB
« i

1 e
(a™-% G'j %

o dt + 53“ adBl,

A
o)y ac + o ¢ dB

-
a
proving the first assertion, Similarly for the second.

Theorem 3.2. The equation (E) determines a diffusion process with
generator

G =a*2 %0l Tl
and the equation (Es) determines a diffusion process with generator
=a" L F° AR
q; =a & + %07 & )0 9 ),
Proof., Let f¢ C2( R™), Using the same argument as in the proof of
the last theorem we have
(3) ar(x) = f &x +% 2 3 f ax" axf
= (a* L g% o F e* i
= (@% Qf + 3% 07 o L3 £)de + G O, f dB.
Since the last term %f 2, £ dBY belongs to dAM , the first assertion
follows at once. S8Similarly for the second.

An interesting example of (ES) is the Stroock equation (8]
determining a spherical Brownian motion:

n P - s
(S) dX“ - Z( Si”‘- XiX fX| z)odBl, 0(=1,2,oan,n’
i=1
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where (X! denotes the length of the vector (xl,xz,...,xn).

n .
aixt 2 = 2 3 x%Meax®

o=]
n n ) i,0%,2

=2 > 3D oxtl, - XKD ogpt
«=1 1i=1 ;}d
n 0

=2 > (xt - xHoast
1=1

= 0,

so Xl = const. This shows that the solution of (S) is a diffusion

process on a sphere I° with center at the origin. Let € be any
rotation around the origin and let ©¢(X) denote the coefficient
matrix on the right hand side of (S). Then

F(6X) = ¢ o(x) 071,
SO
(4 X) = #aX = O o(X)edB = 6 o(X) 0™ 64dB = o(68X)»d(6 B).

Since ¢B is also an n~dimensional Brownian motion, the process bX
has the same probability law as X. Thus X(t) is a rotation invariant
diffusion process on the sphere [, i.e. @a spherical Brownian motion.

3. Stochastic parallel transport

The parallel transport in an affinely connected 03 manifold M =

(M, f};) is given by the Levi-Civita equation:

du = rk u dxk

vhere u is a tensor of type (m,n). The stochastic analogue of this
concept was introduced by I1t6 [5) for the special case of tensors of
type (0,n) in a Riemannian manifold and was extended by Dynkin [(6)
to the general case, We will discuss this in terms of stochastic cal-
culus [73.

let C =¢C{(t), 0gt <=, be a random curve on M. It is said
to belong to class @Q if for every C3 function fi1 M-R the process
f(c(t)), 0K t<e, belongs to @ . This definition can be phrased in
terms of local coordinatess If for every local coordinate (Xi(t)) of
C and for every pair of previsible stopping times ( 3;) T,<T, such
that X (t) is well-defined for T,<tET, the process Xi((tv’l’l)"
Tz), <t <w, belongs to @ , then € 1is said to belong to class Q.
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The spherical Brownian motion of the last section is of class @ ,

Now we want to define the parallel transport U(t), 0¢ t<®, of a
tensor u of type (m,n) at a along a random curve C of class Q
starting at a. Since the sample curve of € is not smooth in general,
we cannot use the Levi-Civita eguation in its original form, so we
define U(t) as follows. Take any division points of (0, ):

4 = (0=t <ti<...)

0
and construct a random curve C, = C, (t,« ) by connecting C(ti,‘v)
with C(ti
wise smooth, so we can define the parallel transport u(t) of wu

+1,w) by a geodesic curve for every 1i. Then C is piece-

for each sample curve by the Levi-Civita egquation:

k
au, = M U, a&x*, U ,(0) = u.
By a routine method we can prove the existence of the limit process U
of UA as
. — |
fal = sup t; - £, |0,
1 (I § il‘

The limit process U is called the stochastic parallel transport of
u along C,

Theorem 4.1, The above stochastic parallel transport U is determined
by the stochastic differential equation:

av = ([ u)eax™, U(0) = u.

Proof:. Routine, We should note that this differential equation has
the same form as in differential geometry because of use of symmetric Q-
multiplication,

We can use stochastic parallel transport to discuss diffusions of
tensors L[5]), [6], {7) and rolling along Brownian motion on a Riemannian
manifold {7).
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QUESTIONS AND ANSWERS

Question (T. Hida), The speaker emphasizes the significance of the second
definition of stochastic integral, that is the one due to Stratonovich,.
So far as differential (stochastic) calculus is concerned, I agree with
the speaker's opinion. However as scon as we come to integral calculus
such as multiple integrals with respect to martingales, the first defi-
nition of the integral, namely the Ito integral, seems to be more impor-
tant., How is the speaker's opinion on this?

Answer (Itd)., The first definition is more basic, but in this lecture
T emphasized that there are quite a few cases in which the second one

is convenient.

Question (J.L. Lebowitz), Can you also conveniently describe the Ornstein-
Uhlenbeck process on a sphere?

Answer (Itd), I hope so. There is one point to be noted. Since the
Oornstein-Uhlenbeck process in R 1is a velocity process of a random
motion in R™, the spherical analogue is not a process on a sphere but
a process on the space of tangent bundles of the sphere.



