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i. Stochastic differentials, 

Let (fl,P) be a complete probability space and ~ (P) denote 

the r-algebra of all P-measurable sets. Let {% I 0 5 t ~ ~} be a 

right continuous increasing family of sub- ~-algebras of ~(P) such 

that ~0 includes all P-null sets, and let ~ denote the family of 

all local quasi-martingales ( ~t ) with continuous sample functions. 

We denote by ~ and ~ respectively the local martingales ( ~t ) 

in ~ and the locally bounded variation processes in ~. 

is a vector space over the reals ~ and both w4/~ and ~$ 

are subspaces of ~. ~ is also a commutative ring over ~ and 

is a subring of Q~ 

The differential dX of X 6 ~ is defined to be the random in- 

terval function induced from Xs 

(dX)(I) = XCt) - X(s) for I = (s,t) o 

Let d~ , d~ and d~ denote 

respectively, d~ is a vector space over ~ and both d/~ and 

d~ are subspaces of d~ and 

dCl -- d~ S d~. 

d~ ~s also a Q-module with respect to the Q-multiplication, 

(YdX)(I) = ~I Y(t)dX(t) (st Q~basti~ integral [i],$2),[3]) 

and both d~ and d~ are submodules of d<~. Introducing product 

in dQ by 

dX dY = d(XY) - XdY - YdX, 

we can regard d~ as a commutative ring over Q o Then d~ is a 

subring of d~. It is easy to check that 

dq d<~ C d~ and dQ d~ = -- 0, so (dQ) 3 = 0. 
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The stochastic chain rule is formulated as follower If F 6 C2(~n) 

and X i ~ ~ (i=l,2,...,n), then F = F(XI...xn)EQ and 

n dX i n (C) dF = ~ ~.F + ½ ~-~, ~. ~jF dXidX j, 
i--i 1 i,j--1 l 

The symmetric ~ -multiplication YodX is defined by 

Y0dX = YdX + ½dYdX. 

d~ is also a Q-module with this multiplication. The stochastic 

integral (YodX)(I) is often denoted by 

5f Y(t)dX(t) 
I 

and is called the symmetric stochastic inte~ra! that was introduced 

by Fisk [i> and Stratonov~ch [4]. They proved that the above chain 

rule (C) can be formulated in the same form as in the ordinary 

differential calculus! 

n 

(Cs) dF(X) = ~ ~iF0dXl, where F6C3(Rn). 
i=l 

This can be derived immediately from (C) and is called the symmetric 

s~0chastic chain rule. 

2~, Stochastic differential equations. 

Let B(t) = (Bl(t), B2(t),0..,Bn(t)) be an n-dimensional Brownian 

motion and ~t denote the ~-algebra generated by Bi(s) (i=l,2,...m, 

s ~t) and all P-null sets. Then each Bi(t) (i=l,2,...,m) is a mar- 

tingale relative to the family ~t =~s;O ~t+~ ~ Applying the results 

of Section 1 we have 

dBi~ d~, dt e d~&, dB i ~B j = [i~ dt and dBidt = 0. 

Consider the following two stochastic differential equations 

on X~ (~ --l,2,..,m), 

n 

(E) dX ~ -- a~(t,X) dt + ~ Y.~ ( t ,X)dB i 
1 i = l  

and 

n y~ 
(Es) dX ~ -a~(t,X),dt + ~_~ i ( t ,X)0dB I, 

i=l 

where i a (t,x) , d~. ~I (t,x), a~ (t,x) and -~ (t,x) belong to class C 3. 
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From now on the summation sign ~ will be omitted as is usual in 

differential geometry. 

Theorem 3.1. The equation (E) can be written in the form (Es) with 

the coefficients 

(I) a~ = a ~ - %( ~ ~ ~9 and ~i i ) 1 = ~i' 

and the equation (E s) can be written in the form 

efficients 

(i) a ~ ~ ? -" -~ <~ ~.~ -- + %( ~i ) ~ and i = i " 

Proof. Using the results of Section 1 we have 

cc ~ 
a ~ dt + i dBi 

= a ~dt + ~'~i o dB i - ~d ~i dBl' 

=a ~dt + ~odB i- ~ ~ ( ~ dB~) dB i 
] 

i ) dt + 1 

-- a 0 dt + i ~ dBl' 

proving the first assertion. Similarly for the second. 

(E) with the co- 

Theorem 3.2. The equation (E) determines a diffusion process with 

generator 

1 1 
and the equation (E s) determines a diffusion process with generator 

Proof. Let f ( C2(~m). Using the same argument as in the proof of 

the last theorem we have 

(3) dr(x) -- ~f dx ~ + ½ ~ ~f dx ~ ~ 

Since the last term %~ D~ f dB i belongs to d~, the first assertion 

follows at once. Similarly for the second. 

An interesting example of (E s) is the Stro0ck equation [8] 

determining a spherical Brownian motion! 

n 
(s) dx ~ . ~U ( ;i~- XlX"iXl-2l'aBi' ~ =l,2,...,n, 

i=l 
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where ~X( denotes the length of the vector (xl,x2,...,xn). 

n 
dIX| 2 = 2 ~. X~odX ~ 

~=i 
n n 

~=i i=l ~2 )°dBi 

n Xi)o = 2 ~ (X i - dB i 

= 0p 

so IX~ = const. This shows that the solution of (S) is a diffusion 

process on a sphere ~ with center at the origin. Let e be any 

rotation around the origin and let ~(X) denote the coefficient 

matrix on the right hand side of (S). Then 

~(0x) = ~ ~(x) 0 -I, 

so 

d(~ X) = ~dX = ~ ~(X)0dB = ~ V(X)~-i0 0dB = q( 8X)od(# B). 

Since @B is also an n-dimensional Brownian motion, the process @X 

has the same probability law as X. Thus X(t) is a rotation invariant 

diffusion process on the sphere [ , i.e. a spherical Brownian motion. 

3. Stochastic parallel transport 

The parallel transport in an affinely connected C 3 manifold N = 

(M, ~) is given by the Levi-Civita equation, 

du = ~k u dE k 

where u is a tensor of type (m,n). The stochastic analogue of this 

concept was introduced by ItS [57 for the special case of tensors of 

type (0,n) in a Rieman/Rian manifold and was extended by Dynkin [6 ) 

to the general case~ We will discuss this in terms of stochastic cal- 

culus [7]~ 

Let C = C(t), 0~t < ~ , be a random curve on Ms It is said 

to belong to class Q if for every C 3 function fl M~R the process 

f(C(t)), 0~ t< ~ , belongs to ~ . This definition can be phrased in 

terms of local coordinatesz If for every local coordinate (xi(t)) of 

C and for every pair of previslble stopping times ( ~t ) T15 T 2 such 

that xi(t) is well-defined for T 1 ~ tS T 2 the process xl((t v TI)~ 

T2), 0~t <~ , belongs to Q , then C is said to belong to class Q. 
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The spherical Brownian motion of the last section is of class Q . 

Now we want to define the parallel transport U(t), 0& t<~, of a 

tensor u of type (m,n) at a along a random curve C of class 

starting at a. Since the sample curve of C is not smooth in general, 

we cannot use the Levi-Civita equation in its original form, so we 

define U(t) as follows. Take any division points of ~0, ~ ) : 

= (0=t 0~t i~ ...) 

and construct a random curve C~ = C~ (t,~) by connecting C(t i, ~) 

with C(ti+l,~ ) by a geodesic curve for every i. Then C is piece- 

wise smooth, so we can define the parallel transport U(t) of u 

for each sample curve by the Levi-Civita equations 

rku  = , U ~(0) = u. 

By a routine method we can prove the existence of the limit process U 

of U A as 

id~ ~ sgPlti - ti_ll +0. 
1 

The limit process U is called the stochastic parallel transport of 

u along C. 

Theorem 4.1. The above stochastic parallel transport U is determined 

by the stochastic differential equations 

= ( CkU)odX k, "U(0) = U. dU 

Proof. Routine. We should note that this differential equation has 

the same form as in differential geometry because of use of symmetric Q- 

multiplication. 

We can use stochastic parallel transport to discuss diffusions of 

tensors [5], [6~, [7] and rolling along Brownian motion on a Riemannian 

manifold [73. 
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QUESTIONS AND ANSWERS 

Question (T. Hida), The speaker emphasizes the significance of the second 

definition of stochastic integral, that is the one due to Stratonovich, 

So far as differential (stochastic) calculus is concerned~ I agree with 

the speaker's opinion. However as soon as we come to integral calculus 

such as multiple integrals with respect to martingales, the first defi- 

nition of the integral, namely the It~ integral, seems to be more impor- 

tant. How is the speaker's opinion on this? 

Answer (It6). The first definition is more basic, but in this lecture 

I emphasized that there are quite a few cases in which the second one 

is convenient. 

Question (J.L. Lebowitz). Can you also conveniently describe the Ornstein- 

Uhlenbeck process on a sphere? 

Answer (ITS). I hope so. There is one point to be noted. Since the 

Ornstein-Uhlenbeck process in ~n is a velocity process of a random 

motion in ~n the spherical analogue is not a process on a sphere but 

a process on the space of tangent bundles of the sphere° 


