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In this talk proceeding, we will discuss the relation between chiral symmetry and theη′ mass. We will

also discuss whether theUA(1) breaking effect remains at high temperature.
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Introduction

The breaking and the possible restoration of a symmetry at finite temperature and/or density is a fascinating

subject as the possible restoration in medium could be probed in relativistic heavy ion collision and/or in

nuclear target experiments. The restoration of chiral symmetry has been linked to the vector meson spectral

density and has been the subject of great theoretical and experimental interest up to this day (Hayano and

Hatsuda, 2010; Leupoldet al., 2010). It has also been linked to quenching of the pion decay constant (Jido

et al., 2008) and possible observation of the sigma meson in nuclear matter through theπ − π correlation

(Hatsuda and Kunihiro, 1985; Messchendorpet al., 2002). As for theUA(1) symmetry, its breaking is due

to the anomaly, which induces an operator relation that remains broken above the QCD phase transition.

However, the physical effect, such as the largeη′ mass, is intricately related to chiral symmetry breaking

and the question of whether the mass will remain constant near the chiral symmetry restoration point is

of particular interest as the partial quenching could be observed in nuclear target experiments (Nagahiro

et al., 2009; Jidoet al., 2012; Nagahiroet al., 2012, Nanovaet al., 2012). In fact, a recent experimental

observation by the CBELSA/TAPS collaboration ofη′ decaying into six photons inside a nuclear target finds

that the effective optical potential is given asV0(ρ = ρ0) = −(37 ± (sta) ± (syst)) MeV (Nanovaet al.,

2013). Moreover, the two pion Bose-Einstein correlation observed at RHIC seems to suggest the quenching

of theη′ mass at high temperature (Csorgoet al., 2010; Vertesiet al., 2011, 2009).

*Author for Correspondence : E-mail: suhoung@yonsei.ac.kr

DOI: 10.16943/ptinsa/2015/v81i1/48059



UA(1) Breaking Effects andη′ at Finite Temperature 117

The talk is composed of two parts, we will first discuss the relation between chiral symmetry breaking

effects andUA(1) breaking effects for a general number of colorNc in the correlation functions. This is

accomplished through analysing the Banks-Casher formula (Banks and Cacher, 1980; Cohen 1996) and

the contributions of the topologically non trivial configurations that depends on the number of flavors Lee,

1996; Evanset al., 1996). Next, we use the previous discussions together with the Wittten Veneziano (WV)

formula (Witten, 1979; Veneziano, 1979) to obtain the relation between chiral symmetry restoration and the

η′ mass at finite temperature (Kwonet al., 2012; Lee and Cho, 2013).

Chiral Symmetry and UA(1) Effects in Correlation Functions

Chiral Symmetry Breaking and Banks-Casher Formula

From a Euclidean path integral point of view, the origin of chiral symmetry breaking is the presence of zero

eigen values for the Dirac equation in the presence of the gauge fields (Banks and Casher, 1980).

〈q̄q(0)〉 = −〈Tr[(0| 1
D/ + m

|0)]〉 = −π〈Tr[Jλ=0(0, 0)]〉

= −π〈
∫

d4x

V
Tr[Jλ=0(x, x)]〉 = −π〈ρ(λ = 0)〉, (1)

where we define a current density matrix of zero eigen values as follows:

Jλ=0(x, y) =
∑

λ=0

ψλ(x)ψ†λ(y). (2)

Here,iD/ψλ = λψλ, and the sum is over zero eigen values only.ρ(λ) is the density of eigen valueλ.

Relation Eq. (1) shows that the essence of chiral symmetry breaking is the non-vanishing zero mode current

density matrixJλ=0(x, y), which reduces to the scalar density of zero eigen valuesρ(λ = 0) (Banks and

Casher, 1980; Cohen, 1996) in Eq. (1).

One can subsequently show that the presence of non-vanishing density of zero eigen values is the unify-

ing ingredient that dictates the breaking of chiral symmetry in these operators. Therefore, the same mech-

anism is at play when looking at other order parameters of chiral symmetry breaking. This is shown in the

differences between meson two point functions of chiral partners.

∆m
S−P (q) =

∫
d4xeiqx〈T

(
q̄τaq(x)q̄τaq(0)− q̄τaiγ5q(x)q̄τaiγ5q(0)

)
〉

m→0−→ ∫
d4xeiqx〈Tr

[
− τ2(0| 1

D/+m |x)× J0(x, 0)
(

2π

)]
〉, (3)
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∆m
V−A(q) =

∫
d4xeiqx〈T

(
q̄τaγµq(x)q̄τaγµq(0)− q̄τaγ5γµq(x)q̄τaγ5γµq(0)

)
〉

m→0−→ ∫
d4xeiqx〈Tr

[
− τ2γµ(0| 1

D/+m |x)γµJ0(x, 0)
(

2π

)]
〉. (4)

Therefore, the difference vanishes when the current density matrix of zero modesJ0 vanishes as in Eq.

(1). It should be noted that the argument of the wave function are identical in Eq. (1), while it is not so in

Eq. (3), the difference inx will introduce a correlation length that is not of interest at this point.

If there is no flavor matrix in the scalar part of Eq. (3), such as in the SU(2) case, disconnected diagrams

will contribute to the correlation function.

∆m
S−P (q) =

∫
d4xeiqx〈T

(
q̄q(x)q̄q(0)− q̄τaiγ5q(x)q̄τaiγ5q(0)

)
〉

m→0−→
∫

d4xeiqx〈Tr
[
πJ0(x, x)

]
Tr

[
πJ0(0, 0)

]
+ .

(5)

Hence, the disconnected part also depends onJ0 (Cohen, 1996). Same goes for the difference in corre-

lation functions involving baryons or mesons with one heavy quark (Lee and Cho, 2013).

UA(1) Effect and Topological Configurations

The integration over gauge fields can have nontrivial configurations characterized byν = (g2/32π2)∫
d4xFF̃ 6= 0. The QCD partition function can be divided and summed over by different topological

configurations.

Z =
∑

ν

Zν . (6)

Configuration with nontrivial topological charges haven+ (n−) number of right handed (left handed) zero

mode solutions that satisfy the index theoremν = n+−n−. For these configurations it is useful to explicitly

write the zero mode contribution with asymmetric chirality as a separate quark determinant. For example,

for configurations withν = 1, the partition function is given as follows:

Zν=1 =
∫

[dµ]ν=1det
( ∫

d4xψ̄0(x)mψ0(x)
)

. (7)

Here,ψ0 is the zero mode solution and the measure in the zero mode runs over all flavors. The prime

measure is the positive definite measure after the zero mode has been taken out from the quark determinant.

Therefore, the path integral for the difference in the correlation functions discussed in the previous section

can be thought of the integration over gauge field configurations withν = 0.
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However when calculating then-point functions involving quark operators with asymmetric chirality

containing all flavors, the topological configuration will give non vanishing contributions. This is so because

in suchUA(1) variant configurations, the integral over the chiral zero modes are saturated by the external

operators and do not appear in the zero mode part of the quark determinant.

Let us consider the 2 flavor (u,d quarks) case. For the quark condensate,

〈q̄q(0)〉 = 〈q̄q(0)〉ν=0 +
−1
Z

∫
[dµ]ν=12

(
ψ̄0ψ0(0)

)(∫
d4xψ̄0(x)mψ0(x)

)
. (8)

As can be seen in the second term of the above equation, the topological configurations are proportional to

the light quark mass and do not contribute to the quark condensate. However, when one looks at the two

point function, the zero mode integral can be saturated by the external operators:

〈q̄q(x)q̄q(0)〉 = 〈q̄q(x)q̄q(0)〉ν=0

+
1
Z

∫
[dµ]ν=1[duR][dūL][ddR][dd̄L]

(
q̄LqR(x)

)(
q̄LqR(0)

)
+ · ·

= · ·+ 1
Z

∫
[dµ]ν=12

(
ψ̄0ψ0(x)

)(
ψ̄0ψ0(0)

)
+ · · . (9)

The topological configurations will therefore contribute when looking at the difference between corre-

lation functions related by theUA(1) transformation. For example,

〈q̄q(x)q̄q(0)〉 − 〈q̄τ3q(x)q̄τ3q(0)〉
= 〈..〉ν=0 +

1
Z

∫
[dµ]ν=14

(
ψ̄0ψ0(x)

)(
ψ̄0ψ0(0)

)
+ · · . (10)

For the case ofNf flavors,ν = 1 configuration will still be proportional tomNf−2 and not contribute

to the four quark operators. In this case, the lowest dimensional operators where theν = 1 configuration

contribute are the2Nf quark operators (Lee, 1996). Hence, in general, one can conclude that for meson

correlation functions composed ofN -meson currents,UA(1) breaking effect will appear with quark mass

term proportional tomNF−N .

Chiral Symmetry Restoration and theη′ Mass LET for Gluonic Operators

Let us first present the low energy theorems (LET) for gluonic correlations (Lee and Zahed, 2001). We

define the scalar and pseudo-scalar gluonic two-point function,

S(q) = i

∫
d4x eiqx

〈
T 3αs

4π
G2(x)

3αs

4π
G2(0)

〉
,

P (q) = i

∫
d4x eiqx

〈
T 3αs

4π
GG̃(x)

3αs

4π
GG̃(0)

〉
. (11)
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Here,G2 = Ga
µνG

a
µν andGG̃ = Ga

µν
1
2εµναβGa

αβ . There is a well known LET that states

d

d(−1/4g2)
〈O〉 = i

∫
d4x〈T O(x)g2G2(0)〉, (12)

wherethe bare couplingg2 is related to the ultraviolet cutoffM0 to the unique scale of QCD.

Λ = M0 exp
(
−8π2

bg2
s

)
, (13)

whereb = 11− 2
3Nf (Novikov et al., 1981).

The LET depends on whether the correlation function is calculated in pure gauge theory or in the pres-

ence of light quarks. When there are light quarks present, the pseudo-scalar gluon current can be written

as

Nfαs

4π
GG̃ =

∑
q

∂µq̄γµγ5q. (14)

Therefore, forNf = 3, P (q) can be written in terms of the quark currents.

P (q) = qµqνi
∫

d4x eiq·x〈T q̄γµγ5q(x) q̄γνγ5q(0)〉. (15)

Hence,

P (q = 0) = 0 (16)

However, when there are no light quarks, there are similar LET as in the scalar gluonic correlator.

S(q = 0) =
18
b
〈αs

π
G2〉

P0(q = 0) = −8
b
〈αs

π
G2〉, (17)

wherethe subscript0 in the pseudo-scalar current represents calculation in pure gauge theory.

At finite temperature, the constant gets modified because there are extra scales in the system; temperature

and/or density. Then the matrix element could depend directly on the extra scale. Hence, one has to make

sure that the derivative in Eq. (12) do not act on these part. Such operations can be taken into account

explicitly by noting that the matrix element can now be expressed as follows:

〈O〉µ,T = const× Λdf

(
T

Λ
,
µ

Λ

)
, (18)

wherethe subscriptµ, T denote that the expectation value is taken at finite chemical potential and/or tem-

perature. Eq. (12) will then be modified as

d

d(−1/4g2)
〈O〉µ,T =

32π2

b

(
d− T

∂

∂T
− µ

∂

∂µ

)
〈O〉, (19)
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and the LET will look as follows:

S(q = 0) =
9
2b

(
d− T

∂

∂T
− µ

∂

∂µ

)
〈αs

π
G2〉

P0(q = 0) = −2
b

(
d− T

∂

∂T
− µ

∂

∂µ

)
〈αs

π
G2〉 (20)

Gluonic Correlator in Medium

Now let us go back to the pseudo scalar correlation function given in Eq. (11) and discuss their fate when

chiral symmetry is restored. Here, we will again introduce light quarks withNf flavors. Then using Eq.

(14), the pseudoscalar gluonic current can be written in terms of the divergence of the axial current.

P (q) = qµqνi

∫
d4x eiq·x

[
〈T q̄γµγ5q(x) q̄γνγ5q(0)〉 − 〈T q̄γµq(x) q̄γνq(0)〉

]
, (21)

where we have subtracted out the zero contribution from the conserved vector current. Using the previous

representations,

P (q) = qµqν

∫
d4xeiq·x

[
〈Tr[S(x, x)γµγ5]Tr[S(0, 0)γνγ5]

− Tr[S(x, x)γµ]Tr[S(0, 0)γν ]〉
− 〈Tr[S(0, x)γµγ5S(x, 0)γνγ5] + Tr[S(0, x)γµS(x, 0)γν ]〉

]
. (22)

Now, when chiral symmetry is restored, the two terms in the last line of the above equation will cancel

each other, as they are the same as the difference between flavored chiral partners; vector and axial vector

currents. The remaining first line constitutes the disconnected contributions. However, as discussed before,

the disconnected pieces all vanish in the chiral limit when chiral symmetry is restored. This is again because

the disconnected contributions are proportional to the current density matrix of zero eigen values.

Tr[SA(x, x)] ∼ Tr[SA(x, x)Γ] = Tr[Jλ=0(x, x)Γ] → 0, (23)

whereΓ is a Hermitian gamma matrix (Cohen, 1996). Therefore, when chiral symmetry is restored,

P (q) → 0, (24)

in the chiral limit for any finite external momentaq. It should be noted that Eq. (24) is true only when chiral

symmetry is restored, while Eq. (16) is always true.
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η′ Mass in Medium

We have discussed the relationship between chiral symmetry andUA(1) effects in both the vacuum and in

medium in the correlators. One still needs to establish the relation between the chiral symmetry and theη′

mass. This can be established at the largeNc limit through the use of the WV formula together with the

relation we obtained for the correlation functions (Kwonet al., 2012).

One can directly relate the pseudo-scalar current and theη′ mass using the largeNc arguments (Witten,

1979; Veneziano, 1979). In terms of the physical states, the pseudo-scalar gluonic correlation function looks

as follows:

P (q) = −
∑

n

|〈0|3α
4π GG̃|nthglueball〉|2

q2 −M2
n

−
∑

n

|〈0|3α
4π GG̃|nthmeson〉|2

q2 −m2
n

≡ P0(q) + P1(q). (25)

The first term in the right hand side of the above equation indicates contributions from glueballs, while

the second term shows those from the mesons composed of light quarks. As discussed before,P (q = 0) = 0

whileP0(q = 0) 6= 0 when we assume massless quark. This seems in contradiction to the largeNc argument

becauseP0(q = 0) that scales asN2
c is canceled by quark effects that scales asNc. It was noted that this

cancellation is possible by the existence of theη′ whose mass scales as1/Nc and cancels the gluonic effect

in Eq. (25) only whenq = 0; other meson masses have a smooth largeNc limit. This constraint directly

relates theη′ mass to the LET.

P0(0) = −|〈0|
3α
4π GG̃|η′〉|2

m2
η′

. (26)

By usingtheUA(1) anomaly〈0|3α
4π GG̃|η′〉 = 〈0|∂µJµ

5 |η′〉 =
√

Nf m2
η′fπ, Eq. (26) becomes as follows:

P0(0) = −m2
η′f

2
πNf , (27)

whereNf is the number of light flavors and made use offη′ = fπ to lowest order inNc. Eq. (27) is the

celebrated WV formula. Then we find

mη′ =

√
8
33

1
fπ
〈αs

π
G2〉1/2 ≈ 464 MeV, (28)

wherewe have usedfπ = 130 MeV, 〈αs
π G2〉 = (0.35GeV)4 and usedb = 11 for pure glue theory. This is

smaller than the vacuum value of theη′ mass as expected; this is the part coming from theUA(1) effect to

the mass ofη′.

To obtain the generalized formula at finite temperature, one notes that the thermal gluonic effects are of

orderN2
c while that of the quarks are of orderNc. If one is in the confined phase, the phase is composed of
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mesons, glueballs and baryons: The scattering of these states scale as order 1, 1 andNc respectively. Hence

as long as one assumes that the number of hadrons do not scale withNc, hadronic effects can be neglected.

Near the phase transition, the degeneracy of hadrons would increase and follow the scaling of gluons and

quarks. Therefore, the leading order effect would come from the gluons. Taking into account the effect

of the thermal gluons, the LET given in Eq. (20) will be modified only by the effect of finite temperature.

Therefore, the generalization of the WV formula given in Eq. (26) would be the following.

m2
η′ =

|〈0|3αs
4π GG̃|η′〉|2

2
b

(
d− T ∂

∂T

) 〈
αs
π G2

〉
T,puregauge

. (29)

In obtaining the result, we have assumed that the general structure given in Eq. (25) does not change.

First let us consider the denominator of Eq. (29). It has been known for a long time, that the gluon

condensate has contribution from the perturbative and non-perturbative parts. Moreover, it was also known

that at the critical temperature, the non-perturbative contribution changes abruptly, but does not vanish

completely, and retains more than half of its non-perturbative value (Lee, 1989).

The effect of subtracting out the second term in the denominator of Eq. (29) is to get rid of the per-

turbative correction, or the seemingly scale breaking effect that is not related to scale breaking but due to

the introduction of an external scale parameterT . The leading perturbative correction to the gluon conden-

sate is proportional tog4
sT

4 (Kapusta, 1979; Boydet al., 1996). Therefore, assuming that the temperature

dependence is
〈

αs
π G2

〉
T

= G0(T ) + ag4
sT

4, we find,

(
d− T

∂

∂T

) 〈αs

π
G2

〉
T

=
(

d− T
∂

∂T

)
G0(T ), (30)

if the temperature dependence ofgs is neglected. The only temperature dependence that survives isG0(T ),

whose scale dependence is coming from dimensional transmutation and not from the external temperature

only. It is the non-perturbative part that dominates the behavior of the right hand side of Eq. (29). Moreover,

as we discussed before, for the gluon condensate, one has to use the lattice result obtained in the pure-gauge

theory calculation, where the critical temperatureTpure−gauge ∼ 260 MeV is known to be around 100

MeV larger than that from a full QCD calculationTQCD (Boyd et al., 1996). On the other hand, while the

expected change of the gluon condensate is more abrupt in the pure-gauge calculation, the actual change in

the condensate value itself at the critical temperature is found to be similar to the full calculation (Morita

and Lee, 2008). This means that the change of the gluon condensate can be effectively neglected up to

temperatures nearTQCD.

Finally, we use the fact that when chiral symmetry is restored, Eq. (29) is zero for largeq as given by
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Eq. (24), which is true for anyNc. Hence, when chiral symmetry is restored,

〈0|GG̃|η′〉 ∼ O(mq). (31)

Therefore, going back to Eq. (29) and making use of the previous discussions, we find that when chiral

symmetry is restored,

m2
η′
〈q̄q〉→0−→ 0, (32)

in the chiral limit. One concludes that in the largeNc limit of QCD, η′ mass will become degenerate with the

other Goldstone bosons. A similar conclusion was obtained in Ref. (Benicet al., 2011); that the anomalous

UA(1) η′ mass squared vanishes at high T as the chiral quark condensate〈q̄q〉.

Summary

We have looked at how chiral andUA(1) symmetries and/or breaking are manifest in correlation functions

and further studied the how theη′ mass is related to the symmetries. The results can be summarized as

follows:

1. Order parameter of symmetries can be constructed by taking the difference of correlation functions

that are related by respective symmetry transformations (symmetry partners).

2. Chiral symmetry breaking occurs in these order parameters when the current density matrix of zero

modes are non zero.

3. TheUA(1) breaking effect comes about when the topological configuration contributes to the order

parameter. These effects are due to the quark zero modes that are always present. However, since

the zero modes consist ofNf left handed quarks and the same number of right handed quarks, their

contributions will appear only when looking at correlation functions composed of at leastNF point

functions. In another words,

• For meson correlation functions composed ofN -meson currents,UA(1) breaking effect will

appear with quark mass term proportional tomNF−N .

〈J1J2..JN 〉 = 〈..〉ν=c0 + mNF−N × (zero−mode)N (33)

4. Using the previous relations on correlation functions and the WV formula, we find that theη′ mass

will be quenched to theUA(1) symmetric value when chiral symmetry is restored.
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