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In this talk proceeding, we will discuss the relation between chiral symmetry ang thass. We will
also discuss whether tli&4 (1) breaking effect remains at high temperature.
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Introduction

The breaking and the possible restoration of a symmetry at finite temperature and/or density is a fascinati
subject as the possible restoration in medium could be probed in relativistic heavy ion collision and/or i
nuclear target experiments. The restoration of chiral symmetry has been linked to the vector meson spec
density and has been the subject of great theoretical and experimental interest up to this day (Hayano ¢
Hatsuda, 2010; Leupolet al., 2010). It has also been linked to quenching of the pion decay constant (Jido
et al., 2008) and possible observation of the sigma meson in nuclear matter through theorrelation
(Hatsuda and Kunihiro, 1985; Messchendetl., 2002). As for thé/4(1) symmetry, its breaking is due

to the anomaly, which induces an operator relation that remains broken above the QCD phase transitic
However, the physical effect, such as the langenass, is intricately related to chiral symmetry breaking
and the question of whether the mass will remain constant near the chiral symmetry restoration point
of particular interest as the partial quenching could be observed in nuclear target experiments (Nagahi
et al., 2009; Jideet al., 2012; Nagahiret al., 2012, Nanovat al., 2012). In fact, a recent experimental
observation by the CBELSA/TAPS collaborationpflecaying into six photons inside a nuclear target finds
that the effective optical potential is given Bg(p = po) = —(37 £ (sta) + (syst)) MeV (Nanovaet al.,
2013). Moreover, the two pion Bose-Einstein correlation observed at RHIC seems to suggest the quenchi
of ther’ mass at high temperature (Csoegal., 2010; Verteset al., 2011, 2009).
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The talk is composed of two parts, we will first discuss the relation between chiral symmetry breaking
effects and/4 (1) breaking effects for a general number of colés in the correlation functions. This is
accomplished through analysing the Banks-Casher formula (Banks and Cacher, 1980; Cohen 1996) and
the contributions of the topologically non trivial configurations that depends on the number of flavors Lee,
1996; Evan®t al,, 1996). Next, we use the previous discussions together with the Wittten Veneziano (WV)
formula (Witten, 1979; Veneziano, 1979) to obtain the relation between chiral symmetry restoration and the
1’ mass at finite temperature (Kwetal., 2012; Lee and Cho, 2013).

Chiral Symmetry and Ua(1) Effects in Correlation Functions

Chiral Symmetry Breaking and Banks-Casher Formula

From a Euclidean path integral point of view, the origin of chiral symmetry breaking is the presence of zero
eigen values for the Dirac equation in the presence of the gauge fields (Banks and Casher, 1980).
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where we define a current density matrix of zero eigen values as follows:
Ineo(z,y) = Y dal@)el (). 2)
A=0

Here,i)1)y = Ay, and the sum is over zero eigen values onlf]) is the density of eigen valug.
Relation Eqg. (1) shows that the essence of chiral symmetry breaking is the non-vanishing zero mode current
density matrixJy—o(z,y), which reduces to the scalar density of zero eigen vatgés= 0) (Banks and
Casher, 1980; Cohen, 1996) in Eq. (1).

One can subsequently show that the presence of non-vanishing density of zero eigen values is the unify-
ing ingredient that dictates the breaking of chiral symmetry in these operators. Therefore, the same mech-
anism is at play when looking at other order parameters of chiral symmetry breaking. This is shown in the
differences between meson two point functions of chiral partners.
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voalg) = [dlze (T ((JT“VMQ(:U)qT“wq(O) - qT“75wq(w)qT“V5’mq(0)>)
m=) [ d*ze’d®(Tr { —727,(0] ﬁ |2)yuJo(x,0) (2%)} ). 4

Therefore, the difference vanishes when the current density matrix of zero mipdasishes as in Eq.
(1). It should be noted that the argument of the wave function are identical in Eq. (1), while it is not so ir
Eq. (3), the difference in will introduce a correlation length that is not of interest at this point.

If there is no flavor matrix in the scalar part of Eq. (3), such as in the SU(2) case, disconnected diagran
will contribute to the correlation function.

Col = | d4xefqm<7(qq<x>qq<o> - qfaz’v5q<x>q-7amsq<o>)>

=t [ e {m(a a:)] Ty [m(o, Oﬂ +
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Hence, the disconnected part also dependgydiCohen, 1996). Same goes for the difference in corre-
lation functions involving baryons or mesons with one heavy quark (Lee and Cho, 2013).

Ua(1) Effect and Topological Configurations

The integration over gauge fields can have nontrivial configurations characterized=by(g?/3272)
fd%FF # 0. The QCD partition function can be divided and summed over by different topological
configurations.

7 = Z Z,. (6)

Configuration with nontrivial topological charges have (n_) number of right handed (left handed) zero
mode solutions that satisfy the index theorems n —n_. For these configurations it is useful to explicitly
write the zero mode contribution with asymmetric chirality as a separate quark determinant. For exampl
for configurations withy = 1, the patrtition function is given as follows:

G = [ [dmy:ldet( / dwo(x)mwo(w)). @)

Here, v is the zero mode solution and the measure in the zero mode runs over all flavors. The prim
measure is the positive definite measure after the zero mode has been taken out from the quark determin
Therefore, the path integral for the difference in the correlation functions discussed in the previous sectic
can be thought of the integration over gauge field configurationsuth.
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However when calculating the-point functions involving quark operators with asymmetric chirality
containing all flavors, the topological configuration will give non vanishing contributions. This is so because
in suchU4(1) variant configurations, the integral over the chiral zero modes are saturated by the external
operators and do not appear in the zero mode part of the quark determinant.

Let us consider the 2 flavor (u,d quarks) case. For the quark condensate,

(@00) = {amo+ 5+ [lid=i2(0000)) [ dedeyminte) ) ®

As can be seen in the second term of the above equation, the topological configurations are proportional to
the light quark mass and do not contribute to the quark condensate. However, when one looks at the two
point function, the zero mode integral can be saturated by the external operators:

(79(z)qq(0)) = (qq(x)qq(0))r=o
+% / [dp)y=1]dug][du][ddg][ddL) (CYLQR(x)) (QLqR(0)> + -

= .. +% /[du]u12<¢o¢o($)> <¢0¢0(0)> + ©)

The topological configurations will therefore contribute when looking at the difference between corre-
lation functions related by th€4 (1) transformation. For example,

(@a(2)qa(0)) — (gr’a(z)gr’q(0))
— oo+ [t (@) (@) +. @0

For the case ofV; flavors,v = 1 configuration will still be proportional ten”s~2 and not contribute
to the four quark operators. In this case, the lowest dimensional operators where-theconfiguration
contribute are th@ N, quark operators (Lee, 1996). Hence, in general, one can conclude that for meson
correlation functions composed 8f-meson currentd/4(1) breaking effect will appear with quark mass
term proportional ton™NF— N,

Chiral Symmetry Restoration and the r,’ Mass LET for Gluonic Operators

Let us first present the low energy theorems (LET) for gluonic correlations (Lee and Zahed, 2001). We
define the scalar and pseudo-scalar gluonic two-point function,

. 3o 3o
— 4 1qx S 2 S ~2
S(q) = z/d Te <T47TG (2) =G (0)>,

Plg) = i / iy i <Tio7‘:cé(x) Gé(0)>. (11)
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Here,G? = GGl andGG = GZV%EIWOCﬁGZB' There is a well known LET that states

d . 4 22
- = T 12
T 0) = i [ e T0wEe ), a2)
wherethe bare coupling? is related to the ultraviolet cutoff/, to the unique scale of QCD.
2
A= Mpexp (-5 (13)
bg?

whereb = 11 — 2N, (Novikov et al., 1981).

The LET depends on whether the correlation function is calculated in pure gauge theory or in the pre!
ence of light quarks. When there are light quarks present, the pseudo-scalar gluon current can be writt
as

MGG = > outne (14
Therefore, forNy = 3, P(q) can be written in terms of the quark currents.

P(q) = q"q"i [ d'z e "™ (Tqy5q(x) G1750(0))- (15)
Hence,

P(g=0)=0 (16)

However, when there are no light quarks, there are similar LET as in the scalar gluonic correlator.

Sa=0) = (2@
Plg=0) = —3(26?), (a7)

wherethe subscrip0 in the pseudo-scalar current represents calculation in pure gauge theory.

At finite temperature, the constant gets modified because there are extra scales in the system; tempera
and/or density. Then the matrix element could depend directly on the extra scale. Hence, one has to mzg
sure that the derivative in Eq. (12) do not act on these part. Such operations can be taken into accol
explicitly by noting that the matrix element can now be expressed as follows:

(O)r = const x A’f G; 1’() (18)
wherethe subscripi, T' denote that the expectation value is taken at finite chemical potential and/or tem-
perature. Eq. (12) will then be modified as

d 32m? 5, 0
W<O>M,T = b(d_TﬁT _Mau> (0), (19)



Ua(1) Breaking Effects ang’ at Finite Temperature 121

and the LET will look as follows:

2b T
2 0 0\ oy
Py(g=0) = 3 <d - Tﬁ - M@,u) (;G2> (20)

Gluonic Correlator in Medium

Now let us go back to the pseudo scalar correlation function given in Eq. (11) and discuss their fate when
chiral symmetry is restored. Here, we will again introduce light quarks wittflavors. Then using Eq.
(14), the pseudoscalar gluonic current can be written in terms of the divergence of the axial current.

P(q) = ¢"q"i / dz " {(Tqvwsq(:c) 7 59(0)) — (T qvuq(w) 77.9(0)) |, (21)

where we have subtracted out the zero contribution from the conserved vector current. Using the previous

representations,
Pl) = o' [ dec® | (TS (o, 2 onlTS0.010
- TY[S($7$)7#]TT[S(O7O)7VD

- <T1“[S(0, x)7u75s($a 0)'71/75] + TI"[S(O, $)7u5(xv 0)7u]> . (22)

Now, when chiral symmetry is restored, the two terms in the last line of the above equation will cancel
each other, as they are the same as the difference between flavored chiral partners; vector and axial vector
currents. The remaining first line constitutes the disconnected contributions. However, as discussed before,
the disconnected pieces all vanish in the chiral limit when chiral symmetry is restored. This is again because
the disconnected contributions are proportional to the current density matrix of zero eigen values.

Tr[Sa(z,z)] ~ Tr[Sa(z, z)T'] = Tr[Jy=o(z,2)I'] — 0, (23)
wherel is a Hermitian gamma matrix (Cohen, 1996). Therefore, when chiral symmetry is restored,
P(q) — 0, (24)

in the chiral limit for any finite external momenga It should be noted that Eq. (24) is true only when chiral
symmetry is restored, while Eq. (16) is always true.
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7/ Mass in Medium

We have discussed the relationship between chiral symmetr{/ad) effects in both the vacuum and in
medium in the correlators. One still needs to establish the relation between the chiral symmetry:and the
mass. This can be established at the lakgdimit through the use of the WV formula together with the
relation we obtained for the correlation functions (Kwetral., 2012).

One can directly relate the pseudo-scalar current ang’ theass using the larg¥,. arguments (Witten,
1979; Veneziano, 1979). In terms of the physical states, the pseudo-scalar gluonic correlation function loo
as follows:

™

P(q) = 2
= Po(q) + Pi(g)- (25)

—Z (0|32 GG nth glueball) |? B Z |<0|%Gé’\ n'hmeson)|?
¢* —mj,

The first term in the right hand side of the above equation indicates contributions from glueballs, while

the second term shows those from the mesons composed of light quarks. As discussed®befoere) = 0
while Py(¢ = 0) # 0 when we assume massless quark. This seems in contradiction to th&aaggiment
because’ (¢ = 0) that scales a®'? is canceled by quark effects that scales\as It was noted that this
cancellation is possible by the existence of fhevhose mass scales 88V, and cancels the gluonic effect
in Eg. (25) only when; = 0; other meson masses have a smooth la¥gdimit. This constraint directly
relates the)’ mass to the LET.

Po(0) = LGP 26)

m
n'

By usingtheU (1) anomaly(0|22GG|n') = (0|0, JE ') = /Ny mg,fﬁ, Eq. (26) becomes as follows:
Py(0) = —m, f2Ny, (27)
where N, is the number of light flavors and made usefpf = f. to lowest order inV.. Eq. (27) is the

celebrated WV formula. Then we find

_ §i<%
33 fr'

wherewe have used, = 130 MeV, (2:G?) = (0.35GeV)* and used = 11 for pure glue theory. This is

smaller than the vacuum value of themass as expected; this is the part coming fromlihé1) effect to

My G2 ~ 464 MeV, (28)

the mass ofy'.

To obtain the generalized formula at finite temperature, one notes that the thermal gluonic effects are
order N2 while that of the quarks are of ordéf.. If one is in the confined phase, the phase is composed of



Ua(1) Breaking Effects ang’ at Finite Temperature 123

mesons, glueballs and baryons: The scattering of these states scale as order/¥, flegpédctively. Hence
as long as one assumes that the number of hadrons do not scalgithdronic effects can be neglected.
Near the phase transition, the degeneracy of hadrons would increase and follow the scaling of gluons and
quarks. Therefore, the leading order effect would come from the gluons. Taking into account the effect
of the thermal gluons, the LET given in Eq. (20) will be modified only by the effect of finite temperature.
Therefore, the generalization of the WV formula given in Eg. (26) would be the following.

(032 GGy ) ?

m2 = . (29)
TR (d-Tgr) (3G

T, puregauge
In obtaining the result, we have assumed that the general structure given in Eq. (25) does not change.

First let us consider the denominator of Eq. (29). It has been known for a long time, that the gluon
condensate has contribution from the perturbative and non-perturbative parts. Moreover, it was also known
that at the critical temperature, the non-perturbative contribution changes abruptly, but does not vanish
completely, and retains more than half of its non-perturbative value (Lee, 1989).

The effect of subtracting out the second term in the denominator of Eq. (29) is to get rid of the per-
turbative correction, or the seemingly scale breaking effect that is not related to scale breaking but due to
the introduction of an external scale param@teiThe leading perturbative correction to the gluon conden-
sate is proportional tg7* (Kapusta, 1979; Boyet al., 1996). Therefore, assuming that the temperature
dependence i62G?) ., = Go(T) + agsT*, we find,

0 Qg 0
(d - T8T> <?G2>T - <d - T8T> Go(T), (30)

if the temperature dependenceggfis neglected. The only temperature dependence that surviggg13),

whose scale dependence is coming from dimensional transmutation and not from the external temperature
only. Itis the non-perturbative part that dominates the behavior of the right hand side of Eqg. (29). Moreover,

as we discussed before, for the gluon condensate, one has to use the lattice result obtained in the pure-gauge
theory calculation, where the critical temperatig,..—gquge ~ 260 MeV is known to be around 100

MeV larger than that from a full QCD calculatidfycp (Boyd et al., 1996). On the other hand, while the
expected change of the gluon condensate is more abrupt in the pure-gauge calculation, the actual change in
the condensate value itself at the critical temperature is found to be similar to the full calculation (Morita
and Lee, 2008). This means that the change of the gluon condensate can be effectively neglected up to
temperatures nedigcp.

Finally, we use the fact that when chiral symmetry is restored, Eq. (29) is zero forglagygiven by
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Eq. (24), which is true for any.. Hence, when chiral symmetry is restored,
(OIGGIn') ~ O(my). (31)

Therefore, going back to Eq. (29) and making use of the previous discussions, we find that when chir
symmetry is restored,

m2, W20, (32)

in the chiral limit. One concludes that in the lardye limit of QCD, n’ mass will become degenerate with the
other Goldstone bosons. A similar conclusion was obtained in Ref. (Beraic 2011); that the anomalous
Ua(1) ' mass squared vanishes at high T as the chiral quark condengate

Summary

We have looked at how chiral arids (1) symmetries and/or breaking are manifest in correlation functions
and further studied the how thg mass is related to the symmetries. The results can be summarized a:
follows:

1. Order parameter of symmetries can be constructed by taking the difference of correlation functior
that are related by respective symmetry transformations (symmetry partners).

2. Chiral symmetry breaking occurs in these order parameters when the current density matrix of ze
modes are non zero.

3. TheU4(1) breaking effect comes about when the topological configuration contributes to the ordel
parameter. These effects are due to the quark zero modes that are always present. However, si
the zero modes consist of; left handed quarks and the same number of right handed quarks, their
contributions will appear only when looking at correlation functions composed of atAgagbint
functions. In another words,

e For meson correlation functions composedNofmeson currents/4(1) breaking effect will
appear with quark mass term proportionahtd= —" .

(N1 T2 IN) = (Dpmeo + MmNV X (zero — mode)™ (33)

4. Using the previous relations on correlation functions and the WV formula, we find that thass
will be quenched to thé& 4 (1) symmetric value when chiral symmetry is restored.
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