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Chapter 1

Introduction

In recent years, interest in the study of black holes has been renewed due to a number

of fascinating advances. Nowadays, it is widely accepted that most, if not all, centers of

galaxies contain black holes that are responsible for some of the most exciting phenomena

observed in these regions. On the other hand, stars of mass beyond a certain bound

are known to result in a black hole state after gravitational collapse at the end of their

life cycle. This ends a long period of speculation on the existence of such objects that

started shortly after the discovery of Newton’s law of gravitation and peaked with the

advent of General Relativity.

In fact, both theories predict that if any object of given mass is small enough, one would

need to travel at a speed greater than that of light to escape the gravitational attraction

at its surface. To an outside observer, this surface would appear completely dark. These

predictions were considered a mathematical oddity, until Einstein’s theory of relativity

made it clear that the speed of light is the highest possible speed in Nature, implying

that if light cannot escape a black hole then nothing can. Such a unique property is

much more interesting and far-reaching, so that the study of black holes, as these objects

were later named, became one of the most active fields in Physics throughout the last

century.

There are several aspects of black holes that are important from a theoretical point

of view, as they are not only ubiquitous in all theories of gravity but, according to

the so-called uniqueness theorems, they are generally described by a small number of

parameters. This means that if one measures from a distance the global properties of a

black hole, such as the mass, angular momentum and total charge, the full structure of

the object is known uniquely. General Relativity predicts that beyond the point from

which light cannot escape, called the event horizon, any observer will invariably reach

the centre, a point of infinite density known as the singularity.

The presence of a singularity signals a breakdown of classical Einstein gravity, bringing

up the need for a theory that can describe gravity at small scales. In this realm, quantum
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2 Chapter 1 Introduction

phenomena are unavoidable, so that one needs to introduce a quantum description of

gravity. The quest for this theory is ongoing, as there are several candidates with varying

merits and drawbacks but still no fully satisfactory theory reconciling General Relativity

with Quantum Mechanics. One of the requirements on any quantum theory of gravity is

that it must be able to reproduce the large scale features of a black hole and smooth out

any singularities through quantum phenomena. At the same time, a proposed quantum

description must be robust enough to comply with the uniqueness theorems, so that

any degrees of freedom beyond the total mass and conserved charges do not affect the

region far from the singularity. Using the properties mentioned above, one can argue

that a black hole is the simplest nontrivial interacting system in any theory of quantum

gravity, as it should be completely fixed by the global parameters.

A hint towards a microscopic theory is given by the so-called four laws of black hole

mechanics, discovered in the 1970’s. It turns out that under some general assumptions,

it is possible to derive constraints on the variations of conserved quantities parametrising

a continuous variety of black holes. The resulting equations bear a striking resemblance

to the conventional laws of thermodynamics if one assigns a temperature and an entropy

to the black hole, as we discuss in due course. Thus, a microscopic picture of a black hole

must be in terms of a statistical system involving a large number of degrees of freedom,

analogous to the atoms for a gas. An appropriate test on a candidate for a quantum

gravity theory is that the proposed microscopic degrees of freedom can give rise to the

macroscopic entropy when the laws of statistical mechanics are applied.

String theory has been successful in this respect, and this thesis is devoted to a com-

parison of macroscopic properties of black holes with string theoretic predictions. In

this introductory chapter we first discuss in more detail some of the concepts mentioned

above. Later, we turn to an exposition of the basic ideas behind the construction of black

holes in theories of gravity that approximate string theory, through simple examples.

1.1 Black holes, statistical physics and string theory

The defining feature of a black hole is the presence of a so-called horizon, which can be

thought of as the surface of the black hole, in the sense that any particle that crosses

it will be trapped inside forever. Newton’s laws imply that a particle can escape the

attraction of a spherically symmetric object of mass M at distance r only if its velocity

satisfies

ṙ2 ≥ 2
GM

r
, (1.1.1)

where G is Newton’s constant and ṙ is the radial velocity of the particle. It has been

observed already in the 18th century [1], that since there is no bound on the value of the

potential as r decreases, the velocity required to escape the gravitational pull is greater

as one approaches the centre. For example, at a distance r0 = 2M/c2 away from the
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centre, where c is the speed of light, only particles moving at the speed of light or faster

would be able to escape.

Surprisingly, the above result is unchanged in the context of General Relativity. A

similar analysis involves the study of test particles in the geometry produced by the

presence of a single object of mass M , known as the Schwarzschild metric. The set of

points with distance r0 = 2M/c2 from the centre defines the horizon of a Schwarzschild

black hole. There are far more precise and formal definitions, but this is sufficient for

most of our purposes.

In fact, the total mass is sufficient to describe not only the horizon, but the complete

Schwarzschild geometry. This is a general feature of all stable black hole solutions and is

sometimes called the no hair theorem, in the sense that only total conserved quantities

are relevant. Except the mass, other such quantities are the angular momentum, J ,

and electric or magnetic charges q, p. Black holes carrying electromagnetic charges are

usually called Reissner-Nordström black holes [2, 3], whereas rotating black holes are

referred to as Kerr black holes [4]. Finally, charged rotating black holes are known as

Kerr-Newman [5]. One can consider adding further charges, for example associated to

non-abelian gauge fields, but we will not deal with such cases.

For the complete solution to make sense, there are usually constraints on the above

parameters. The main source of such restrictions is the requirement of a finite horizon

that hides the singularity at the centre of the black hole, also known as cosmic censorship.

For a Reissner-Nordström black hole with electric charge Q, one finds that the mass must

satisfy the relation

M ≥ |Q| , (1.1.2)

in geometrised units1. It follows that, unlike for Schwarzschild black holes, there is

a nonzero minimum in the mass of charged black holes. Similar bounds exist in the

presence of angular momentum and/or other charges.

Black holes that saturate the bound (1.1.2), i.e. have equal mass and charge are called

extremal and are the subject of this thesis. These solutions are interesting from a

theoretical perspective, as it should be impossible to extract mass/energy from them by

any physical process, as long as the singularity at the centre remains hidden. In other

words, they represent a kind of ground state for all black holes, that is expected to hold

even quantum mechanically.

1.1.1 Black hole thermodynamics

In order to make the concept of a ground state more precise, one has to go beyond the

classical regime, in which black holes only absorb matter and do not decay. Based on

1These units are defined as G = c = kB = 4π ε0 = 1, where kB is Boltzmann’s constant and ε0 is the
vacuum permittivity.
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this intuition, all black holes represent classical ground states of a gravitational system

irrespective of extremality. The crucial property that distinguishes extremal solutions

is a quantum effect, the so-called Hawking radiation.

As was first shown in [6] in the context of a semiclassical approximation, black holes are

not completely black when quantum effects are taken into account, but emit thermal

radiation just as any other object in nature. The associated temperature is not an

independent parameter, but is also fixed in terms of the conserved quantities, e.g. for a

Schwarzschild black hole it reads

T =
~κ
2π

=
~

8π

1

M
. (1.1.3)

Here, κ is known as the surface gravity of the black hole and is equal to the acceleration

due to gravity experienced by a test particle at the horizon as measured at infinity. It is

not surprising to note that the temperature is proportional to Planck’s constant ~, as it

is a purely quantum effect. However, it is also inversely proportional to the mass, which

implies that the smaller a black hole is, the higher temperature it will have, radiating

more energy and reducing its mass further. The result would presumably be a complete

evaporation, and one concludes that the Schwarzschild black hole is not stable quantum

mechanically.

On the other hand, this cannot happen when there is a minimum mass for the system,

which is the case of a charged black hole. The temperature now takes the form

T =
~

4π

√
M2 −Q2

M(M +
√
M2 −Q2)

, (1.1.4)

which has a zero when the bound in (1.1.2) is saturated. It is in the sense of zero

temperature that extremal black holes are ground states of more general black holes and

we use this fact to define extremality as a zero temperature condition. For Reissner-

Nordström black holes all definitions are equivalent, but this is not the case for more

general examples.

After introducing a fundamental thermodynamic quantity like the temperature for a

black hole, one is faced with the obvious question of a possible thermodynamical struc-

ture behind black holes. If this is the case, the first thing to look for is a quantity that

corresponds to the thermodynamic conjugate of temperature, the entropy, so that the

first law of thermodynamics

dM = T dS , (1.1.5)

is valid. Here, we used that the mass M is the total energy of the system. For a

Schwarzschild black hole with temperature given by (1.1.3), the entropy would be

S =
4π

~
M2 =

A

4 ~
, (1.1.6)
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where A is the area of the horizon at r0 = 2M . This is known as the Bekenstein-

Hawking entropy. It turns out that the entropy associated to all black holes in Einstein

gravity (including charged and rotating black holes) is given by the area law, with

the same normalisation as in (1.1.6). This result is inversely proportional to Planck’s

constant, making black holes the most efficient containers of entropy known. Even

more surprisingly, the relation (1.1.5) generalises straightforwardly when more conserved

charges are present, in the standard thermodynamical way

dM = T dS + Ω dJ + ΦdQ+ . . . , (1.1.7)

where Ω, Φ are the so-called angular velocity and the electrostatic potential respectively.

The dots represent extra terms corresponding to possible further charges. For extremal

black holes, the temperature is zero and the last relation is simply a statement about

the fixed relation of the mass to the other conserved quantities.

The analogy can be extended to the other laws of thermodynamics [7–9]. The zeroth

law is reflected on the constancy of the surface gravity over the horizon of all known

black holes (cf. (1.1.4)), whereas the second law of black hole mechanics states that any

classical process can never decrease the area of a black hole, and thus its associated

entropy. At the semiclassi cal level, the sum of the entropy associated to the horizon

and any emitted Hawking radiation is similarly constrained.

This surprisingly successful analogy with thermodynamics begs for an explanation in

terms of an underlying statistical system. Consequently, the construction of a micro-

scopic model that can reproduce the above relations has been a longstanding goal. Quite

generally, any attempt to produce a microscopic description of something that could be

interpreted as a black hole must include two basic ingredients: a structure that appears

as a pointlike source2 and the existence of appropriate internal degrees of freedom to

account for the large entropy.

1.1.2 String theory and supergravity

String theory is a candidate for a quantum theory of gravity, and has provided us with

theoretical models of the quantum structure of a class of extremal black holes. Accord-

ing to string theory, all matter can be described through different oscillating modes of

spatially extended objects, called strings, that can only exist in a ten dimensional space-

time. To make contact with the four dimensions we observe, one has to assume that the

extra six dimensions are curled up in very small sizes, an idea known as compactification.

In the last two decades, research has revealed that in order to make sense of the non-

perturbative aspects of string theory, other extended objects must be included, the

most important being the so-called D-branes. A string theoretic black hole involves a

2At least in the observed four dimensions.
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collection of D-branes wrapped in the unseen compactified dimensions. Thus, from a

four-dimensional point of view, they appear as heavy pointlike objects carrying charge

and angular momentum, i.e. black hole-like objects. The entropy is then given by a

standard statistical mechanical counting of the possible (microscopic) configurations of

D-branes that result in the same (macroscopic) spacetime. Intuitively one can envisage

this as counting the directions along which the D-branes can freely move in the compact

space and treat them just like particles in a box. This was made precise for the first time

in [10], followed by a large number of investigations of various aspects of black holes in

string theory.

The main goal of the thesis at hand is to study various aspects of black holes in this

context. As will be discussed in the following, one can make detailed comparisons

between the D-brane (microscopic) and spacetime (macroscopic) pictures of a black

hole within string theory. For example, the entropy of a given black hole as computed

by the microstate counting of D-branes can be directly contrasted with the Bekenstein-

Hawking entropy as computed from the area law (1.1.6). This brings up the issue of

the gravity theories used to approximate string theory, which is especially relevant here

in view of the fact that most of the following will be focused on macroscopic aspects of

black holes. At low energies and large distances compared to their length, strings can be

viewed as point particles, so that string theory can be described by a class of effective

field theories of gravity coupled to scalars and gauge fields.

These theories are supersymmetric, like string theory, and are usually called supergravi-

ties. Supersymmetric field theories are an interesting subject on their own, as they place

bosons and fermions in the same multiplet and allow for rotations between them. It fol-

lows that the parameters of supersymmetry transformations must themselves carry spin

and are usually chosen in the smallest spinor representation available. The number of

such independent parameters, N , is used to characterise the amount of supersymmetry

in a theory.

Demanding invariance of an action under supersymmetry implies strong restrictions on

the possible interactions, which turn out to be expressed through a small number of

functions. Although these couplings should be ultimately derived from a fundamental

theory, it is possible to study the structure of supergravity theories independently, de-

ferring the connection to a possible string theoretic origin until the end. This is the

approach we will follow for black hole solutions in four- and five-dimensional supergrav-

ity in the following chapters. The results can be compared to the microscopic picture,

with appropriate identifications.
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1.2 Gauge equivalence and black holes

Throughout our study of extremal black hole solutions in supergravity we make use of

a number of useful tools that require some introductory discussion. In this section we

illustrate some of these techniques through a simple example, namely Einstein-Maxwell

theory in four dimensions.

We initially present the theory, giving a qualitative discussion of its conformal formu-

lation, which elucidates the overall structure of the theory and simplifies calculations.

Subsequently, we turn to the corresponding equations of motion and consider the defi-

nition of conserved charges. In this context, the Noether procedure provides a versatile

algorithm to construct conserved quantities associated to any kind of symmetry.

In later sections, we consider the addition of a scalar field to the theory, and display

some of the known extremal black hole solutions. Finally, we discuss generic features of

these solutions, emphasising the symmetry enhancement of the near-horizon region in

the context of our explicit example.

1.2.1 Gauge equivalence

A central concept in this thesis is that of gauge equivalence between Einstein gravity and

conformal gravity, extended by supersymmetry. A simple example of such an equivalence

is given by a massive vector field, Vµ, described by the so-called Proca Lagrangian

LP = −1
4F

µνFµν − 1
2 m

2V µVµ . (1.2.1)

Here, Fµν = 2∂[µVν] and m denotes the mass of the vector field, which has four degrees

of freedom. This is in contrast to a massless vector, which describes only three, due

to the gauge invariance of (1.2.1) when the mass is set to zero. As is well known, this

symmetry acts on a vector field, Aµ, as δAµ = ∂µξ, where ξ is an arbitrary function.

It is possible to reinstate this gauge invariance, by explicitly decomposing the massive

vector into a massless one and a charged scalar, e−iφ, that carries the extra degree of

freedom, as

Vµ = Aµ − im−1eiφ∂µe−iφ . (1.2.2)

The ambiguity in this definition is identical to the standard gauge symmetry variations

for a photon and a charged scalar

δAµ = ∂µξ , δφ = mξ . (1.2.3)

The gauge covariant derivative of e−iφ takes the form

Dµe−iφ = ∂µe−iφ + imAµ e−iφ , (1.2.4)
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so that Vµ = −im−1eiφDµe−iφ and the so-called Stueckelberg Lagrangian (1.2.1) can be

rewritten in terms of Aµ and φ as

LP = −1
4F

µνFµν − 1
2 D

µeiφDµe−iφ . (1.2.5)

This Lagrangian, as the original one in (1.2.1), describes four physical degrees of freedom

for any nonzero value ofm, three for the gauge field and one for the scalar. The important

difference is that in the second formulation one is dealing with two independent fields,

Aµ and φ, i.e. we have reduced the massive vector field to a gauge vector and a scalar

locally rather than solving for the longitudinal mode. Of course, the two theories are

equivalent, as one can set the scalar to zero using (1.2.3), in which case the kinetic term

of the scalar reduces to the mass term in (1.2.1).

This simple example exhibits the general idea that it is possible to reformulate a La-

grangian so that it is invariant under a larger set of symmetries, while decomposing the

original independent fields. In a supersymmetric setting, the same procedure can be

applied to reduce multiplets consisting of several bosons and fermions to simpler ones.

We will make extensive use of this in the context of gravity, introducing its conformally

invariant version.

Consider the following action, describing a scalar σ and an abelian gauge field Aµ coupled

to Einstein gravity in four dimensions

S =

∫
d4xL0 = − 1

16π

∫
d4x
√
−g
(
− ∂µσ ∂µσ + 1

6 σ
2R+ 1

2F
µνFµν

)
, (1.2.6)

which will be part of the supergravity theories that will appear in later applications.

Here, R denotes the Ricci scalar defined by

R = gνσRµνµσ , Rµνρσ = 2 ∂[µΓρν]σ − 2 Γρτ [µ Γτν]σ , (1.2.7)

Γρµν = −1

2
gρσ

(
2 ∂(µgν)σ − ∂σgµν

)
, (1.2.8)

and Fµν = 2∂[µAν] is the field strength of the gauge potential. From the point of view of

Einstein gravity, this action describes a theory where the Newton constant is replaced

by a dynamical scalar field, as in

G−1 = 1
6 σ

2 . (1.2.9)

The action is invariant under standard general coordinate and gauge transformations

independently

δgµν =∇µξν +∇νξµ , (1.2.10)

δAµ =ξνFµν − ∂µ(ξνAν) + ∂µξ , (1.2.11)
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where ξµ is the vector parameter of coordinate transformations and ξ is the parameter

of gauge transformations. The covariant derivative ∇µ contains the Christoffel symbol,

as usual

∇µ ξν = ∂µξν + Γρµν ξρ , (1.2.12)

and similarly for higher order tensors.

However, closer inspection shows that (1.2.6) is invariant under more local symmetries.

The crucial one is the so-called scale invariance expressed through

δgµν = Λ−2
D gµν , δσ = ΛDσ , (1.2.13)

where the function ΛD is the associated parameter. Note that the gauge field is inert

under these transformation, consistent with the scale invariance of Maxwell theory at

the classical level. On the other hand, there is a subtle interplay between the other two

terms in (1.2.6). As one can verify, the Ricci scalar transforms as

δR = Λ2
DR+ 3 ∂2ΛD , (1.2.14)

so that it can be interpreted as a gauge connection associated to the transformation

(1.2.13). Analogously to the mass term for the vector field in (1.2.5), the Ricci scalar

appears as a covariantisation. Note that local scale symmetry only exists if the scalar

kinetic term in has the sign appearing in (1.2.6), which is the opposite to that of a

physical scalar. The theory is consistent only because the scale symmetry above implies

that σ is not a gauge invariant degree of freedom.

In fact one can obtain an equivalent theory where the scalar does not appear, by gauge

fixing the symmetry (1.2.6). To see this, note that the local scale invariance can be

used to arrange that the transformed scalar σ′ = ΛD σ is any nonzero constant, so that

∂µσ
′ = 0. This transformation affects the metric as well, through (1.2.13). Since the

first two terms in (1.2.6) are covariant under this transformation, they retain the same

form. All in all, one can consistently drop the primes and choose the gauge σ2 = 6 in

(1.2.6), so that the Newton constant G in (1.2.9) is set to unity (in geometrised units)

and the gauge-fixed action is simply

S =

∫
d4xL0 = − 1

16π

∫
d4x
√
−g
(
R+ 1

2F
µνFµν

)
. (1.2.15)

This is the standard Einstein-Maxwell theory in four dimensions, still invariant under

(1.2.10)-(1.2.11), but not under scale transformations. Similar to the relation between

(1.2.3) and (1.2.5), there is an extra symmetry and one more scalar. As in that example,

one of the physical degrees of freedom contained in (1.2.15), namely the conformal scale

factor of the metric, is described by an independent field, σ, in the conformally invariant

Lagrangian (1.2.6).
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Since the two theories are equivalent, one can freely choose which to use in any given

application. Arguably, the conformal theory is more complicated as it contains more

matter fields and symmetries. However, the decomposition in terms of conformal fields

is instrumental in the context of supersymmetric theories, as the systematic construction

of supersymmetric Lagrangians usually leads to such conformal theories.

1.2.2 Conserved charges

As is well known, it is generally possible to define global conserved charges corresponding

to different symmetries of a theory, such as the total mass-energy, angular momentum

and electric charge. One way to construct these quantities in an algorithmic way is

through the so-called Noether potential associated to each of the symmetries of the ac-

tion. In Appendix C.1 we provide a general discussion for various types of Lagrangians

that are used throughout this thesis. Here, we exhibit the salient features of this con-

struction in the context of the simple action (1.2.6)-(1.2.15).

Consider the effect of the variations in (1.2.10)-(1.2.11) on the theory in (1.2.6). Al-

though the Lagrangian is strictly invariant under gauge transformations, it transforms

as in

δξL0 = ∂µ (ξµL0) , (1.2.16)

under diffeomorphisms. On the other hand, one can also use Hamilton’s principle of

least action to obtain the equations of motion, again up to a total derivative

δL0 = Eσ δσ + Ee
µ
a δe

a
µ + EµA δAµ + ∂µθ

µ(δφ) , (1.2.17)

where Eσ, Ee
µ
a and EµA denote the equations of motion for the scalar, the metric and

the gauge field respectively. The total derivative for the example in (1.2.6) is

8π θµ(δφ) = 1
12

√
−g gµ[ρgσ]ν

(
Dρ(σ2)δgσν − σ2Dρδgσν

)
−
√
−g Dµσ δσ −

√
−g FµνδAν . (1.2.18)

Now, the crucial observation is that when the general variation in (1.2.17) is assumed

to be a symmetry variation, the result must equal the one in (1.2.16). Let us consider

gauge variations first, under which the Lagrangian is invariant. In this case, (1.2.17)

implies that

δξL0 = EµA∂µξ −
1

8π∂µ
(√
−g FµνδAµ

)
= 0 , (1.2.19)



11

where we took into account that the only field subject to gauge transformations is the

gauge potential. It then follows that one can define the so-called Noether current,

Jµe = 1
8π

√
−g FµνδAµ = 1

8π

√
−g Fµν∂µξ , (1.2.20)

which is conserved when evaluated on any solution of the equations of motion, by virtue

of (1.2.19). The usual procedure at this point would be to integrate the timelike compo-

nent of the conserved current over space to obtain the associated charge. However, the

equations of motion for the gauge field imply that the Noether current is itself a total

derivative

∂µ
(√
−g Fµν

)
= 0 , ⇒ Jµe = 1

8π∂µ
(√
−g Fµν ξ

)
≡ ∂µQµνe , (1.2.21)

where we defined the Noether potential Q. This observation is in line with the ge-

neral lore that the charge calculated from a conserved current associated to any local

symmetry vanishes identically. Despite this, the existence of the Noether potential allows

for a definition of the total electric charge of a solution by

qe =

∫
S
Qµνe dSµν = 1

8π

∫
S

√
−g Fµν ξ dSµν . (1.2.22)

At this stage ξ is still arbitrary and must be chosen such that the gauge field is invariant

under (1.2.11). Only then does the current (1.2.20) vanish and the charge (1.2.22) is

conserved for any surface S (see the discussion in C.1). In the case at hand, this implies

that ξ is a constant, so that the last equation is identical to the standard definition of

electric charge in Maxwell theory.

The algorithm above can be applied to the more interesting example of diffeomorphism

invariance. In this case, specialising the variation in (1.2.17) to diffeomorphisms and

comparing to (1.2.16) leads to the conclusion that

8π Jµ =− 1
12

√
−gσ2gµ[ρgσ]ν

[
∇ν∇ρξσ +Rλνρσξλ

]
+ 1

3 g
µ[ρgσ]ν∇ρσ2∇(νξσ)

−
√
−g Dµσ ξν∂νσ −

√
−g Fµν

[
ξρFνρ − ∂ν(ξρAρ)

]
− ξµL0 , (1.2.23)

is conserved for any solution of the equations of motion. As before, one can show that

this current is again a total derivative for any solution of the equations of motion. The

exact expression for the Noether potential reads

8πQµν =− 1
12

√
−gσ2∇[µξν] + 1

3 ∇
[µσ2ξν] −

√
−g ξρAρ Fµν . (1.2.24)

Once more, the parameter ξµ must be chosen appropriately. A vector for which the

metric is invariant under (1.2.10), is known as a Killing vector. If we further demand

that the gauge field is also invariant under this diffeomorphism according to (1.2.11),
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the integral of the Noether potential over a sphere can be used to define the conserved

charge associated to the symmetry described by the Killing vector.

An important subtlety though is that unlike for gauge symmetry, there can be multiple

Killing vectors, for example along the time or angular directions, leading to one or

several conserved charges, such as mass and angular momentum. As explained in more

detail in section C.2.2, in such a case the equality of the integral of Q over a sphere

at infinity and the horizon leads to a nontrivial relation between the asymptotic mass,

angular momentum and other global charges and the quantity

S = 2π

∫
hor
Qµν dS

µν . (1.2.25)

In this integral, the relevant Killing vector is the one generating the null horizon (in the

sense that it is both normal and tangent to it), rescaled so that ∇µξν = εµν , ξµ = 0 and

εµν is the binormal of the horizon.

For a generic horizon, in the example given by (1.2.24) this quantity takes the simple

form

S =
1

24
σ2
hA =

1

4G
A , (1.2.26)

where A is the area of the horizon and we used the definition (1.2.9). We further

assumed the scalar to take a constant value σh at the horizon. The last equation is

exactly the Bekenstein-Hawking area law in (1.1.6). However, the Wald entropy is more

general, as it applies to any Lagrangian density (defined to transform as in (1.2.16)),

even if it contains higher derivative terms. In C.2, we provide generic formulae for such

Lagrangians and discuss ways to define the Wald entropy even for some noncovariant

Lagrangians, which are of central importance in the following.

1.2.3 Extremal black holes and stabilisation equations

Given the above considerations, we now turn to the central subject of this thesis, namely

black hole solutions in theories containing scalars. The generic features of extremal black

holes can be exhibited in the context of the simple example in (1.2.6), to which we can

add a single physical scalar through the replacement of σ2 by the product σ−σ+. The

Lagrangian is given by

16π S = −
∫
d4x
√
−g

(
1
6σ−σ+R − ∂µσ−∂µσ+ + 1

2

(
σ+
σ−

)β
FµνFµν

)
, (1.2.27)

which can be identified with (1.2.15) upon setting σ+ = σ−. Moreover, we have modified

the gauge kinetic term by a coupling to the scalars, with coupling constant β. Note that

since this coupling is expressed in terms of the ratio of two scalars transforming as in

(1.2.13), it is scale invariant. The Poincaré version of this action is obtained by the
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gauge choice

σ−σ+ = 6 , σ± =
√

6 e±φ/
√

6 , (1.2.28)

where the second relation is a convenient parametrisation in terms of a physical scale

invariant scalar φ. The resulting gauge fixed action is

16π S = −
∫
d4x
√
−g
(
R+ ∂µφ∂

µφ+ 1
2 e
√

2βφ/
√

3FµνFµν

)
. (1.2.29)

This model, known as the Einstein-Maxwell-dilaton model, has a long history [11–13]

and several black hole solutions are known. The simplest one is for β = 0, in which

case the scalar decouples from the gauge field and (1.2.27) reduces to Einstein-Maxwell

theory. Another interesting value is β = 3
√

2, for which this theory can be viewed as

the result of reducing five-dimensional Einstein gravity on a circle, the so-called Kaluza-

Klein reduction. In all cases, the physical scalar φ is massless without a potential and

is often called a modulus.

In this thesis, we will be interested in extremal black holes, which are restricted objects

in four dimensions. Here we concentrate on static spherically symmetric solutions, for

simplicity. Extremality implies that the spatial part of the metric is proportional to

the flat three dimensional metric. Under these restrictions, there is only one degree of

freedom describing the metric, which we parametrise through a function U(r) as

ds2 = −e2Udt2 + e−2Uδijdx
idxj , (1.2.30)

where i, j · · · = 1, 2, 3. Imposing that the metric asymptotes to the Minkowski metric as

r →∞, one finds that the boundary condition for eU near infinity is

e−2U ' 1 +
2M

r
+O(

1

r2
) . (1.2.31)

The constant M is then identified with the ADM mass of the solution. All methods to

construct solutions are based on the idea of viewing eU on the same footing as the scalars

and solve for all at the same time. Indeed, a generic scalar σ comes with a boundary

condition similar to (1.2.31)

σ ' σ0 +
2 Σσ

r
+O(

1

r2
) . (1.2.32)

Here, the asymptotic value of the modulus, σ0, and Σσ (also known as the scalar charge),

are the two integration constants of the scalar equations of motion. Now, the crucial

observation for extremal black hole solutions is that Σσ for any scalar is fixed in terms

of the electric and magnetic charges and the asymptotic moduli. This follows from the

requirements of having finite values for the scalars on the horizon and smoothness of the

horizon itself. Generically, only one combination of σ0 and Σσ is compatible with these

assumptions and we conventionally choose σ0 as independent.
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The gauge field is similarly restricted for a static metric of the type in (1.2.30). In fact,

one can solve for the field strength independently of the rest of the Lagrangian, since it

can be shown that the Maxwell equations are equivalent to

εijk∂iFjk = 0 , εijk∂iGjk = 0 , (1.2.33)

where Gµν is the electric displacement tensor, given by

Gµν ≡
1

2
εµνρσ

∂L
∂Fρσ

= 1
2

√
−g

(
σ+
σ−

)β
εµνρσ F

ρσ . (1.2.34)

The solution is

Fjk = εijk∂kH
p , Gjk = εijk∂kHq , (1.2.35)

where Hp, Hq are harmonic functions in three-dimensional flat space

∇2Hp = ∇2Hq = 0 . (1.2.36)

Spherical symmetry only allows for point charges at the centre and both harmonic

functions must only depend on the distance from that centre, which leaves us with

Hp = cp +
p

r
, Hq = cq +

q

r
. (1.2.37)

Here, q, p are the electric and magnetic charges and cp ,q are integration constants. By

inverting (1.2.34) one can obtain Fti, Gti, which will be given in terms of Hp, Hq, the

scalars and the metric.

Given this, the scalars, eU , σ± can be found by solving using the Einstein and scalar

equations of motion. Equivalently, one can consider the effective one-dimensional La-

grangian that results once the obtained by imposing the above results on (1.2.27)

S =

∫
dr r2

(
1
6σ−σ+e−2U

(
∂re

U
)2 − ∂rσ−∂rσ+ + Vbh

)
, (1.2.38)

where the so-called black hole potential reads

Vbh = e2U

((
σ−
σ+

)β
q2 +

(
σ+
σ−

)β
p2

)
. (1.2.39)

We have therefore reduced the problem of finding extremal black hole solutions to

(1.2.27) to the mechanical system in (1.2.38), with potential as in (1.2.39). The concept

of a black hole potential is central in all investigations of non-supersymmetric stationary

black hole solutions to theories that contain scalars [12]. In later chapters we will en-

counter other examples in supergravity, with similar structure. Note that the effective

action is consistent with scale transformations, so that only eU and the ratio σ+/σ−,

describing the physical scalar are relevant.
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Consider first β = 0, so that the scalars are decoupled from the gauge field. In this case,

there are solutions for which σ± are constant throughout spacetime. The only unknown

is eU in the metric (1.2.30), which can be found from the Einstein equation and reads

e−2U = (Hp)2 +H2
q . (1.2.40)

This solution is the extremal limit of the familiar Reissner-Nordstöm black hole, carrying

an electric and a magnetic charge. The horizon lies at r = 0, which is not a point but a

sphere, as one can show using (1.2.30). It is straightforward to construct more general

solutions, with non-constant scalar. In fact, the assumption of constant scalars was not

used when solving for the gauge field, therefore one only needs to solve the Einstein

equation for eU , by the same method.

Rather than showing such a solution, we turn to the case β = 3
√

2, which is closer to

the supersymmetric models3 but still solvable analytically. The solution [14–16] can be

written in the conformal formulation as

e−2U

(
σ2
−
σ2

+

)
=

(
H̃qHq

H̃pHp

)
, (1.2.41)

where H̃p, H̃q are harmonic functions as in (1.2.37) with the same poles but different

constant parts, fixed in terms of cp, cq. We stress that at this stage all fields still

transform under conformal scalings. As one can verify using the general transformation

law (1.2.13) for the metric in (1.2.30), eU scales with the same weight as σ±, so that

(1.2.41) is conformally invariant, as it should. Equivalently, one can consider the gauge

fixed action. Using (1.2.28) one can solve for the physical fields as

e−4U = 36 H̃qHqH̃
pHp , e

√
2
3
βφ

=
H̃pHp

H̃qHq

. (1.2.42)

In either case, it is not possible to solve for σ± individually, since they are not physical

degrees of freedom. The solution is fully described by the two charges q, p and the

two arbitrary constants in (1.2.37), which control the asymptotic values of eU and the

physical scalar.

Using this relatively simple example, it is possible to highlight some of the generic fea-

tures of all extremal black hole solutions in theories with scalar-dependent kinetic terms

for the gauge fields, as in (1.2.27). This includes the extended supergravities considered

later in this thesis. As already mentioned, it is generally possible to solve for the gauge

fields in terms of harmonic functions that define the electric and magnetic charges of the

solution. Subsequently, one solves for the scalars, including the fundamental ones (such

as σ± in our example), the scale factor eU coming from the metric and possibly others

resulting from the reduction of additional tensor fields in a given theory.

3In fact one can show that (1.2.27) for this value of β can be always embedded in four-dimensional
N = 2 supergravity.
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The solution for the scalars is thus expressed in terms of a number of harmonic functions,

related to the ones describing the gauge fields, as in the example (1.2.41). Such a set of

equations are known as stabilisation equations. They appear in a large class of theories

in which the numbers of gauge fields and physical scalars are balanced, so that the scalars

can be uniquely fixed in terms of harmonic functions. In supersymmetric theories, as the

ones we will be interested in, this is automatically true, among other useful properties,

since all vectors are components of multiplets that also contain scalars. Much of this

thesis deals with the derivation of stabilisation equations in various cases.

1.2.4 Black hole attractors

There is a further important aspect of extremal black holes, connected to the stabilisation

equations. Consider the region near the horizon of the black hole described by (1.2.41),

which we obtain by taking the limit r → 0. All constant terms in the harmonic functions

are suppressed and the result reads

r2e−2U

(
σ2
−
σ2

+

)
=

(
q2

p2

)
, ⇒ e−2U = 6 p q r−2 , e

√
2
3
βφ

= p/q . (1.2.43)

Observe that the radial dependence affects only the metric through eU , whereas the

scalar takes a fixed value that depends only on the charges.

This is a general feature of all extremal solutions that stems from two crucial properties.

First, it is possible to show that the near-horizon region of an extremal black hole is

itself a well defined solution to the equations of motion. This is by no way obvious

in general, and it is not generally known whether non-extremal black holes share this

feature. The second property is that the near-horizon region must be invariant under

a SO(1, 2) isometry group [17, 18]. In other words, for a four dimensional static black

hole with full metric like in (1.2.30), the metric near the horizon is not only spherically

symmetric, but the time and radial parts must also come in a particular combination.

The result is the so-called Bertotti-Robinson spacetime

ds2 =

[
−r

2

v2
1

dt2 +
v2

1

r2
dr2

]
+ v2

2

[
dθ2 + sin2 θ dφ2

]
, (1.2.44)

where v1, v2 are constants. For the example above, one can easily see that using the

solution implied by (1.2.43), the general metric (1.2.30) reduces to the last equation

with v2
1 = v2

2 = p q.

The terms in the first bracket in (1.2.44) constitute the metric of AdS2, a maximally

symmetric space similar to a two-sphere, S2, in several ways. Just as the sphere is a space

of constant positive curvature, AdS2 has constant negative curvature. Both metrics are

invariant under three Killing vectors, which for an S2 combine into the familiar SO(3)

invariance, whereas for AdS2 they reflect the SO(1, 2) invariance mentioned above.
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The requirement of extremality thus puts stringent constraints on the geometry near

the horizon, which must also be reflected in all fields. Starting from the gauge fields,

there are only two components allowed for a field strength tensor, if it is assumed to be

invariant under all symmetries of the spacetime

Frt = e , Fθφ =
p

4π
sin θ , (1.2.45)

where p is again the magnetic charge and e is a constant. The second relation follows

from spherical symmetry and is valid in the full solution due to the Bianchi identity (see

(1.2.35)-(1.2.37)), whereas the first holds only in the near-horizon region and follows

from the symmetry of AdS2 in a similar fashion.

Turning to the scalar sector, spherical symmetry prohibits any dependence on the an-

gular coordinates and AdS2 symmetry implies the same for the r, t coordinates, so that

all scalars must be constant. Generally, these constant values are of two very different

kinds. First, some scalars may be fixed in terms of the electric and magnetic charges of

the solution, as is the case for the scalar in the example solution (1.2.43). Such a scenario

is automatically realised in black hole solutions that preserve some supersymmetry, for

which all scalars are attracted to particular charge dependent values near the horizon,

irrespectively of their values at infinity.

Another possibility, which arises in non-supersymmetric solutions, is that the constant

values of some scalars in the near-horizon region are arbitrary. Such a behaviour is

usually a result of a global symmetry of the Lagrangian and extends beyond the near-

horizon region, throughout spacetime. In other words, one now deals with a continuous

variety of black holes, labeled by the values of the scalars subject to this symmetry. We

will see examples of such solutions in the following chapters.

In view of a potential microscopic interpretation of black hole entropy in terms of an

underlying theory, it is crucial that the entropy depends only on conserved charges and

not on arbitrary integration constants. In this respect, the attractor mechanism for

supersymmetric solutions is a satisfactory result, since all possible quantities in the near

horizon region, including the entropy, can be ultimately expressed in terms of conserved

charges. On the other hand, the possibility of unfixed scalars in non-supersymmetric

attractors does not spoil the above general expectation, due to the observation that any

global symmetries of the scalars will also be symmetries of the Noether potential for

diffeomorphisms (1.2.24), as it only involves derivatives with respect to the Riemann

tensor. It follows that the result for the entropy must depend only on appropriate

invariants.

There is a systematic way of studying the near-horizon values of scalars in generic

theories, based on the so-called entropy function [19, 20]. In the following we will deal

both with solutions preserving supersymmetry or not. For supersymmetric attractors,
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the values of the scalars follow directly from symmetry considerations. In the non-

supersymmetric case, we will be constructing complete solutions, rather than the near-

horizon geometry, so that the attractor values for the scalars can be found by simply

taking a near-horizon limit. Therefore, we refrain from giving more details on the entropy

function, referring the interested reader to [21] for a review.

1.3 This thesis

In this chapter, we gave a basic exposition of the properties of extremal black holes

in theories containing scalars, based on a model theory. The focus of this thesis is

the study of such black hole solutions for a particular class of supersymmetric gravity

theories in four and five dimensions, which are known as N = 2 supergravities and will

be introduced in the next chapter.

The presence of supersymmetry in these theories facilitates the analysis in several ways.

For example, one can restrict attention to the subset of all black hole solutions that

preserve some supersymmetry–the so-called BPS solutions. This puts very strong con-

straints on the geometry and the matter fields, to the point that supersymmetric solu-

tions can be completely characterised by first order differential equations without making

use of the full equations of motion. In the next chapter, we give a concise summary of

supersymmetric solutions both in four- and five-dimensional supergravity.

A further simplification implied by supersymmetry is that the theory is encoded in a

small number of arbitrary functions. For example, the N = 2 supersymmetric extension

of Einstein-Maxwell theory is completely fixed by a single function of the scalars which

controls all couplings, similar to the ratio σ+/σ− in the action (1.2.27). This property

is crucial for the two main applications we consider in this thesis, namely the effects of

higher derivative terms on BPS solutions and the construction of non-supersymmetric

solutions. In chapters 3 and 4 we present a discussion of the four derivative terms

allowed by N = 2 supersymmetry in four and five dimensions respectively. Each of

these invariants is parametrised by an arbitrary function, which can be fixed when one

considers the embedding in a microscopic theory, such as string theory. Restricting to

the class of theories obtained by string theoretic models, one can connect to microscopic

constructions of black holes.

Constructing exact solutions of higher derivative theories is a complicated problem,

which has nevertheless been considered with success in the past, at least for simple

supersymmetric solutions. However, one can make general statements about BPS black

holes based on the near-horizon region, which has been shown to preserve full N = 2

supersymmetry. It follows that supersymmetric attractors for an arbitrary Lagrangian

can be constructed directly, based on the enhanced symmetry. In chapters 3 and 4 we

give a comprehensive treatment in both four and five dimensions, commenting on the
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relation between the two theories. We compare our results to the corresponding string

theoretic predictions in chapter 2 and establish full agreement between macroscopic and

microscopic predictions.

The highly restricted structure of extended supergravity theories reflects itself on the

solutions, even if one abandons the requirement that they preserve some supersymmetry.

In chapter 5 we discuss some recent results on the construction of non-BPS solutions

in N = 2 theories. As it turns out, many of the properties of BPS black holes, such

as the description in terms of first order equations and the attractor mechanism, are a

result of their extremality rather than the unbroken supercharges. In order to investigate

these similarities, we first introduce a rather special class of five-dimensional solutions

which are supersymmetric on local patches of spacetime, but nevertheless completely

break supersymmetry globally. The new solutions obtained turn out to allow for a

number of features that are present in generic extremal solutions, but forbidden in the

supersymmetric case. Based on this fact, we then go on to propose a framework for

constructing more general extremal solutions, including rotating black holes.





Chapter 2

Supergravity and Black holes

In this chapter we introduce supergravity theories invariant under eight supercharges

in four and five spacetime dimensions. The construction of the relevant Lagrangians

requires basic concepts of multiplet calculus, which we introduce along the way. We

consider superconformal multiplets, which are off-shell (with the exception of the hyper-

multiplets), so that the superconformal symmetries close without the need for imposing

field equations. The multiplet calculus consists of various multiplication and decompo-

sition rules, as well as invariant density formulae. With these results one can construct

rather general classes of invariant actions that go beyond the two derivative level, as will

be seen in due course.

The structure of supergravity theories in four and five dimensions is very similar, as

will become clear in the following. In appendix B we present the various multiplets of

the superconformal algebra in both cases. The multiplet describing the gravitational

background is the Weyl multiplet. Its bosonic part includes the vielbein eaµ, the spin

connection ωabµ and two more gauge fields of the conformal group, bµ and faµ , associated to

local scale transformations and inversions. In addition, there are gauge fields associated

to particular local symmetries in each case, SU(2) × U(1) in four and USp(2) in five

dimensions respectively. Finally, one needs to introduce two auxiliary bosonic fields, a

real scalar D and a tensor Tab. The fermionic part of the Weyl multiplet contains two

gauge fields, the gravitino ψiµ and φiµ, which arises when applying bosonic conformal

transformations on the gravitino. There is also a fermionic auxiliary field, denoted by

χi. Here, indices i, j, . . . denote the fundamental representation of SU(2) or USp(2),

depending on the theory.

Similar patterns arise for matter multiplets, as one can see from tables B.3 and B.6. In

the following, we briefly discuss the construction of supergravity theories in four and five

dimensions, both in the full conformal setting and in the Poincaré frame. In addition,

we present a concise review of BPS black hole solutions in these theories and their string

21
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theoretic interpretation, that will be used as reference in the following chapters. As

there are many excellent sources on the subject we will be concise, emphasizing ideas

and results rather than explicit derivations, referring to [22–26] for further details.

2.1 Five-dimensional supergravity

We start from the five-dimensional theory, which was introduced in the Poincaré frame

in [27] Its natural interpretation in the context of M-theory compactified on Calabi-Yau

manifolds was presented in [28]. The superconformal theory and further generalisations

were considered in [29, 30]. We introduce the relevant superconformal multiplets, namely

the Weyl, vector, linear and hypermultiplet, in Appendix B.1.

2.1.1 The Lagrangian and gauge fixing

In five space-time dimensions, composite linear multiplets play an important role in

the construction of supersymmetric invariants involving vector multiplets [29–32]. For

instance, at the linearized level in flat space, one can start with the field Y ij belonging to

a vector supermultiplet and generate a linear multiplet upon the following identification,

Lij → 2Y ij ,

ϕi → i/∂Ωi ,

Eµ → ∂νFνµ ,

N → �σ , (2.1.1)

as the reader can easily verify by explicit calculation using (B.1.9). At this point one

can generate a new vector multiplet, by starting with the field N and identifying it with

a new field σ, etcetera, at the price of including higher and higher powers of derivatives.

It is easy to see that the linear multiplet precisely corresponds to the field equations of

the vector multiplet. Conversely, the vector multiplet will arise as the field equations of

the linearized tensor multiplet action in flat space.

This relationship is clearly embodied in the invariant density formula for a product

of a vector with a linear supermultiplet. In the following, we will take into account

the presence of a general superconformal background, and the corresponding expression

takes the following form

e−1Lvt =
(
Yij − 1

2 Ω̄iγ
µψµ

k εkj
)
Lij + σ

(
N − 1

2 ϕ̄iγ
µψµ

i
)

+ i Ω̄iϕ
i

+ 1
6 ie−1εµνρσλWµ ∂νEρσλ + 1

4 iσ Lij ψ̄µiγ
µνψν

kεkj . (2.1.2)
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Note that the existence of this formula is tied to the gauge fields Wµ and Eµνρ of the

two multiplets, which must be inert under scalings, fixing all other conformal weights in

both multiplets.

By using composite linear multiplets, this density formula enables the construction of

superconformally invariant actions. This represents a standard way of constructing

actions that is also well-known in the context of four space-time dimensions where it has

been exploited extensively to couple matter to N = 1 and N = 2 supergravity, but in

five dimensions the restrictions are stronger.

In the superconformal setting (2.1.1) must, however, be modified in view of the additional

restrictions posed by superconformal symmetries. For instance, the fields Lij and Y ij

behave differently under scale transformations, as can be seen from table B.3 and Lij

is invariant under S-supersymmetry, whereas Y ij is not. Nevertheless the relationship

can still be established provided one gives up linearity, replacing the first component of

(2.1.1) by (for a single multiplet),

Lij → 2σ Y ij + 1
2 i εk(iΩ̄kΩ

j) , (2.1.3)

To establish the existence of this composite linear multiplet one verifies that the lowest

component has the correct Weyl weight and is S-supersymmetric, and furthermore, that

its supersymmetry variation is expressed in terms of a simple doublet spinor which can

then act as the representative of the linear multiplet spinor ϕi. If these criteria are not

met, the result will not be a superconformal linear multiplet consisting of 8+8 degrees of

freedom, but with a much larger multiplet. When dealing with several vector multiplets,

labeled by indices A,B, · · · = 1, 2, . . . , nv, the expression (2.1.3) generalizes only slightly.

It remains quadratic on the vector multiplets and depends on it in a symmetric fashion.

Hence we start with

Lij(AB) = 2σ(A Y ijB) + 1
2 i εk(i Ω̄k

(AΩj)B) , (2.1.4)

For clarity of the notation, we will henceforth suppress the explicit indices (A,B) on the

right-hand side. In the presence of several vector multiplets, σ2 generalizes to σ(AσB),

σΩi to σ(AΩiB), etcetera.

The other components of the corresponding linear multiplet follow by applying succes-

sive supersymmetry variations and one finds the following expressions, all manifestly

quadratic in the vector multiplet components,

ϕi(AB) = iσ /DΩi + 1
2 i /DσΩi − 8σ2 χi + Y ijεjkΩ

k − 1
4(F̂ab − 6σ Tab)γ

abΩi ,

Ea(AB) = 1
8 iεabcdeF̂bcF̂de +Db(σ F̂

ba − 6σ2 T ba) + · · · ,

N (AB) = 1
2D

aDaσ
2 − 1

2(Daσ)2 + |Y ij |2

− 1
4 F̂abF̂

ab + 6σ F̂abT
ab − σ2

(
4D + 39

2 T
2
)

+ · · · , (2.1.5)
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where supercovariant terms of higher-order in the fermion fields have been suppressed.

It is also possible to derive the expression for the three-rank tensor gauge field associated

with this multiplet, by requiring (B.1.14),

E(AB)
µνρ = 1

2 i e εµνρσλ (σ F̂ σλ − 6σ2 T σλ) + 3
2W[µFνρ] + 1

4 Ω̄iγµνρΩ
i

− 3
2 iσ Ω̄iγ[µνψρ]

i − 3
4σ

2 ψ̄[µiγνψρ]
i . (2.1.6)

The above construction can be generalized to non-abelian vector multiplets as well [33].

More generally, a linear multiplet can also be constructed from the Weyl multiplet, as

will be shown in 4.1, or hypermultiplets, but the resulting linear multiplet will not be

fully realized off-shell.

Using these results, the construction of the two derivative Lagrangian for vector multi-

plets follows straightforwardly using (2.1.2). The composite linear multiplet constructed

from vector multiplets will be written by means of a symmetric three-rank constant ten-

sor CABC . The lowest component of the linear multiplet associated with the symmetrized

product of two vector multiplets will thus be identified with −1
6 CABC L

ij(BC), where we

make use of (2.1.4). Higher components are defined accordingly.

After these definitions we introduce the expression for the bosonic terms in the La-

grangian for vector multiplets, with convenient normalisation, to which we add the

hypermultiplet Lagrangian.

L = Lvvv + Lhyper . (2.1.7)

Here the Lagrangian cubic in vector multiplet fields equals,

8π e−1Lvvv = 1
2 CABCσ

A
[

1
2Dµσ

B DµσC + 1
4Fµν

BFµνC − YijBY ijC

−3σBFµν
CTµν − 1

24 i e−1εµνρστWµ
AFνρ

BFστ
C
]

−C(σ)
[

1
8R− 4D − 39

2 T
2
]
, (2.1.8)

where we also use the notation C(σ) = 1
6 CABC σ

AσBσC . The Lagrangian for hypermul-

tiplets (one of which plays the role of a compensating supermultiplet) reads,

8π e−1Lhyper = −1
2Ωαβ ε

ijDµAiαDµAjβ + χ
[

3
16R+ 2D + 3

4T
2
]
. (2.1.9)

We remind the reader that R and Rab refer to the Ricci scalar and tensor. The factor

8π2, which equals four times the volume of the unit sphere S3, has been included to

avoid explicit factors of π when defining electric charges.1 Note the presence of the

characteristic Chern-Simons term in (2.1.8), which implies that the corresponding action

is only gauge invariant up to boundary terms. This term, and similar ones appearing

1In four space-time dimensions one extracts a factor equal to two times the volume of the unit sphere
S2. In this way the Coulomb potential has the same normalization in four and in five dimensions,
without factors of π.
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in the four derivative Lagrangian, may lead to difficulty in cases where the gauge fields

are not globally defined, as we shall discuss in due course.

To appreciate the implications of the above results, let us first consider the Lagrangian

(2.1.8) alone. When suppressing the coupling to the fields Tab, D and to the metric, we

are dealing with a Lagrangian based on scalar fields σA, gauge fields WA
µ and auxiliary

fields Y ij A. Upon re-introducing the fermion fields, this Lagrangian is invariant under

rigid superconformal transformations. Note that the overall sign of the Lagrangian is

irrelevant, as it can be absorbed into an overall sign of the vector supermultiplet fields.

To identify the kinetic terms one may expand about some constant values of the fields σA.

The values of these constants are arbitrary and in fact they can be changed by a uniform

scale transformation that acts on all the fields and belongs to the rigid superconformal

symmetry group.

When coupled to the fields of the Weyl multiplet, this Lagrangian is invariant under local

superconformal transformations. However, it is inconsistent because the field D acts as

a Lagrange multiplier which requires C(σ) to vanish. To avoid this difficulty one must

also introduce the superconformally invariant Lagrangian of at least one hypermultiplet.

Introducing the hypermultiplets, the field equation for the auxiliary D implies that

χ = −2C(σ) . (2.1.10)

In view of the local invariance under scale transformations, C(σ) can be fixed to a

constant. We choose the gauge condition

1
6 CABC σ

AσBσC = 1 , (2.1.11)

so that the Ricci scalar will appear in the Lagrangian with a multiplicative factor

(16π2)−1. This convention is related to the more conventional one, where one adopts

a prefactor (16πGN)−1, just as in four space-time dimensions, by choosing Newton’s

constant2 as GN = π. As a result of this convention, the Bekenstein-Hawking area law,

leads to the area in Planck units, A/GN, with proportionality factor (4π)−1.

Making use of the local SU(2) transformations, three phases contained in the hypermul-

tiplet scalars can be fixed as well, due to the SU(2) invariance of the hypermultiplet

target space. Combing these two gauges, it follows that one of the hypermultiplets will

not correspond to physical degrees of freedom. Finally, one can choose a gauge in which

bµ = 0 and eliminate the auxiliary fields, Y ij and Tab, by their (algebraic) field equations,

which yields

Y ij = 0 , Tab = (24C(σ))−1CABCσ
AσBFCab . (2.1.12)

The equation of motion for the SU(2) gauge field is also algebraic, but this field will

not be needed in what follows. Hence one is left with the bosonic part of Poincaré

2A generic value for the Newton constant can be introduced by rescaling the tensor CABC and the
scalars accordingly, see [30]
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five-dimensional supergravity coupled to vector multiplets and hypermultiplets

8π e−1L = − 1
2R− QAB

[
1
2Dµσ

ADµσB + 1
4Fµν

AFµνB
]

− 1
48 iCABC e

−1εµνρστWµ
AFνρ

BFστ
C

− 1
2Ωαβ ε

ijDµAiαDµAjβ , (2.1.13)

where the index α now runs over one less hypermultiplet3 and

QAB = 9
2 σAσB −

1
2 CABCσ

C , σA ≡
1

6
CABCσ

BσC . (2.1.14)

Observe that all the original vector gauge fields are present, even though there is one

less vector multiplet scalar due to the constraint (2.1.11). This is consistent, as one

linear combination of gauge fields is reassigned to the Poincaré gravity multiplet through

(2.1.12), and is usually called the graviphoton in the context of the two-derivative theory.

In what follows, we will sometimes restrict attention to the case where the scalars take

values in a symmetric space, for the sake of simplicity. Such a requirement puts con-

straints on the tensor CABC [27], through the identities

4

3
δA(DCEFG) = CABCCB′(DECFG)C′δ

BB′δCC
′
, (2.1.15)

σA =
9

2
CABCσBσC , (2.1.16)

where CABC ≡ δAA′δBB′δCC′CA′B′C′ and the constraint in (2.1.11) was used in obtaining

(2.1.16).

2.1.2 BPS black holes in five dimensions

The solutions of the Poincaré theory that preserve half of the supercharges possess a

so-called (generalised) Killing spinor, ε, such that all supersymmetry variations of the

fermions vanish. According to the general classification in [25, 35], there are two distinct

classes, depending on whether the Killing vector, ε̄γµε, constructed from ε is time-like or

null. We will briefly summarise the time-like case, for which the BPS conditions imply

that the metric is a time-like fibration over a hyper-Kähler 4-manifold.

Denoting the hyper-Kähler base space metric by hmn, we choose the associated complex

structures, X(i), as anti-self-dual and assume for the moment that they are unique.

Given these data, the metric and gauge fields of a supersymmetric solution can be

3This is only possible for a restricted class of target space geometries. As the hypermultiplets will
not play any role in the following, we assume this is the case for simplicity, referring to [30, 34] for more
details.
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written locally as:

ds2 = −f2(dt+ ω̂)2 + f−1hmndx
mdxn

FA = 2 ∂[µ(σAe0
ν]) dx

µdxν + ΛAmn dx
mdxn. (2.1.17)

Here, e0 = f(dt + ω̂), the indices, m,n, . . . = 1, . . . , 4, label coordinates on the base,

and f > 0, ω̂ are a function and a one-form globally defined on the base that define the

time fibration. The ΛA(xm) are arbitrary closed self-dual forms on the base (they have

no time component). A positive orientation is chosen using e0 ∧ η as the volume form,

where η is a positive orientation on the base manifold.

Once the ΛA are chosen, the function f and the σA are determined by solving the

Maxwell equations, expressed as a Poisson equation on the base:

∆
(
f−1σA

)
=

1

12
CABCΛBmnΛmnC , (2.1.18)

where ∆ is the Laplacian on the hyper-Kähler manifold. Finally, the one-form, ω̂, is

determined by solving:

2 f ∂[mωn] = Gmn ≡ G+
mn +G−mn, σAΛA = −2

3G
+ , (2.1.19)

where G± the are self- and anti-self-dual parts of the form f ∂[mωn] on the hyper-Kähler

base. These BPS solutions are invariant under an SU(2) subgroup of the base space

isometry group and, in an orthonormal basis, their respective Killing spinors satisfy

γ0ε = iε. Note that in case the complex structures are not unique, it may be possible to

construct more BPS solutions than described by the generic equations above. This will

be seen explicitly in the following, but for the moment we continue to assume uniqueness.

In this thesis we are interested in solutions with a four-dimensional interpretation, so

we will demand that the base space has a compact isometry along which we can per-

form dimensional reduction. Under the assumption that the associated Killing vector is

triholomorphic (i.e. leaves the complex structures invariant), and generates a symmetry

of the complete solution, the base space can only be a Gibbons-Hawking space [36].

In this case the above equations can be solved explicitly [35]. For a Gibbons-Hawking

space [37], which is itself a fibration over a flat Euclidean base, the metric, hmn, can be

written:

hmndx
mdxn = H−1

(
dψ + χidx

i
)2

+Hδijdx
idxj , (2.1.20)

εijk∇iχj = ∇kH. (2.1.21)

Here, ∇ is the standard vector derivative on the Euclidean 3-space, R3, with coordinates

xi , i, j = 1, 2, 3, H(xi) is a harmonic function on R3 and 0 ≤ ψ ≤ 4π. The isometry

group is SU(2) × U(1), where the U(1) is generated by the Killing vector ∂/∂ψ. Two
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important examples we will use is flat space, corresponding to either H = 1 or H = 1/|x|,
and Taub-NUT space, for which H = h0 + p0/|x|.

The complex structures associated with (2.1.20) are given by

X(i) =
(
dψ + χjdx

j
)
∧ dxi − 1

2Hεijkdx
j ∧ dxk. (2.1.22)

Using (2.1.21), one can easily show that dX(i) = 0. Imposing that they are anti-self-dual

fixes the orientation of the base space, so that the volume form is

Hdψ ∧ dx1 ∧ dx2 ∧ dx3. (2.1.23)

The complex structures (2.1.22) are globally defined and, in all but one case, unique.

The exception is flat space (in coordinates such that H = 1, χ = 0), where one can

also choose the opposite relative sign in (2.1.22) and the forms, X(i), remain closed.

This is a consequence of the larger SO(4) ∼= SU(2)L × SU(2)R isometry group of flat

space compared to the generic SU(2) × U(1) isometry of Gibbons-Hawking spaces. It

follows that for flat space there are two triplets of complex structures: one self-dual and

one anti-self-dual, each invariant under a different SU(2)L ,R isometry. This observation

implies a slight enlargement of the set of BPS solutions in that case, to which we return

in section 5.2.1.

The explicit BPS solution for a Gibbons-Hawking base can be described in terms of

H and 2nv + 1 additional harmonic functions [35]. The self-dual forms ΛA, defined in

(2.1.17), can be written as:

ΛA = (dψ + χkdx
k) ∧ ∂j

(
KA

H

)
dxj + 1

2Hεijk∂k

(
KA

H

)
dxi ∧ dxj , (2.1.24)

where the KA are arbitrary harmonic functions related to the magnetic charges of the

solution. Given these functions, the scalar equation (2.1.18) can be solved as

f−1σA = 1
6H
−1CABCK

BKC + 2
3LA , (2.1.25)

where LA are arbitrary harmonic functions associated with the electric charges. Finally,

decomposing the one-form ω as

ω̂mdx
m = ωidx

i + ω5(dψ + χjdx
j) , (2.1.26)

one finds that the solution of (2.1.19) reads

ω5 = 1
6H
−2CABCK

AKBKC +H−1LAK
A +M (2.1.27)

∇× ω = H∇M −M∇H +KA∇LA − LA∇KA . (2.1.28)
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Here, M is again a harmonic function, which controls the angular momentum along the

ψ direction.

It is worth mentioning the so-called spectral flow transformations [38] acting on the

BPS solutions above. It is easy to verify that (2.1.25)-(2.1.28) are invariant under the

symmetry transformations

H → H ,

KA → KA + kAH ,

M → M − kALA + 1
4 CABCk

BkC KA + 1
12CABCk

AkBkC H ,

LA → LA − 1
2 CABCk

BKC − 1
4 CABCk

BkC H , (2.1.29)

for any real kA. We stress that these are exact symmetries that act on the full solution,

similar to the electric-magnetic dualities in four-dimensional theories (see section 2.2.2).

A useful result is that this symmetry can be used to eliminate any poles of the KA

coinciding with poles of the Gibbons-Hawking harmonic function H.

2.1.3 Explicit solutions and supersymmetry enhancement

One can straightforwardly construct explicit solutions using the above relations, by

choosing the harmonic functions appropriately. We will discuss two important examples,

namely the BMPV (or spinning) black hole [39] and the supersymmetric black ring of

[40]. The base is usually taken to be either flat or Taub-NUT, depending on the desired

asymptotics. In what follows we will always choose

H = h+
p0

r
, (2.1.30)

which encompasses both cases, as it describes Taub-NUT for h 6= 0 and flat space4 for

h = 0.

BMPV black hole

If one assumes that all harmonic functions are centered at a single point, the observation

under (2.1.29) shows that the KA, and thus the magnetic parts of the field strengths in

(2.1.17), can be taken to be trivial. The resulting solution carries only electric charges

and is known as the BMPV black hole.

The poles of the nonvanishing harmonic functions are equal to the electric charges and

the angular momentum

LA = lA +
qA
r
, M = m+

Jψ
r
, (2.1.31)

4Since we fixed the periodicity of ψ in (2.1.20), this gives flat space with a Zp0 identification along
that direction.
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where lA, m are arbitrary constants. The full metric and the gauge fields follow from

(2.1.17) and in these conventions the horizon is located at r = 0. The entropy, as defined

using the area law, reads

S = 2π
√
Q3 − 1

4J
2
ψ , (2.1.32)

Q3/2 = 1
12 CABCq

AqBqC qA = 1
4 CABCq

BqC . (2.1.33)

Multi-black hole solutions can be obtained by simply allowing for more poles in the

harmonic functions in (2.1.31), centered at different positions.

It is worthwhile discussing the near horizon geometry. Taking the limit r → 0 in the

above equations, all constants in the harmonic functions can be neglected and the solu-

tion simplifies. As in the example in section 1.2.3, all scalars take constant values fixed

in terms of the charges according to

f−1
0 σA = 2

3qA , f = f0 r , (2.1.34)

where f0 is a constant. The metric reads

ds2 = −f2
0 r

2(dt+ ω̂)2 +
p0

f0

[(
dψ

p0
+ cos θdφ

)2

+
dr2

r2
+ dθ2 + sin2 θdφ2

]
,

ω̂ =
Jψ
r

(dψ + p0 cos θdφ) , (2.1.35)

and the gauge fields follow from (2.1.17). This solution is invariant under all eight super-

charges, whereas the global solution preserves only four. Supersymmetry enhancement

near the horizon is a general feature of all BPS black hole solutions [41–43], that extends

the spacetime symmetry enhancement observed for extremal black holes in section 1.2.4.

The reader can easily verify that (2.1.35) describes the local product of a circle with the

AdS2 × S2 geometry in (1.2.44).

Turning this observation around, one can determine the near horizon solution by im-

posing full supersymmetry. When higher derivative corrections are taken into account,

it becomes increasingly cumbersome to find complete solutions, so the possibility of

studying supersymmetric attractors is a welcome result. Chapter 4 is devoted to super-

symmetric attractors in five-dimensional supergravity with four derivative corrections.

BPS black ring

A more involved solution is the BPS black ring, which is a magnetically charged object.

In five dimensions, magnetic monopoles are necessarily string-like objects, as they couple

naturally to the magnetic gauge fields, which are two-forms. It follows that magnetic

charges can be carried only by black holes with ring topology. The harmonic functions
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describing the full solution are

KA =
pA

∆
, LA = lA +

q̃A
∆
, M = m+

Jψ
∆
, (2.1.36)

where pA are the five-dimensional magnetic dipole moments, q̃A are related to the electric

charges qA through

q̃A = qA − 1
2CABCp

ApB, (2.1.37)

and lA, m are constants. Finally, ∆ = |~r−~r0| denotes the distance from a point ~r0 in R3.

The ring described by these harmonic functions is localised in the base, and wrapped

around the ψ-circle at ~r0.

The metric and gauge fields follow as above, but obtaining the full physical solution is a

bit more complicated. In particular, there are nontrivial constraints on the constants and

charges appearing in (2.1.36) coming from requirements such as asymptotic flatness (or

Taub-NUT) and the absence of closed timelike curves. For example, the position of the

ring is not arbitrary, but is proportional to the angular momentum Jψ, as is intuitively

clear from the requirement that the spin of the ring balances the gravitational force to

the centre. We will not be dealing with most of these subtleties, but we point out that

the charges are not simply given by the poles of the harmonic functions, but there are

shifts in the LA’s. The combination appearing in (2.1.37) has a physical meaning, as it

is additive when one considers multi-ring configurations [35], as will be seen in section

4.5.

On the other hand, the near horizon solutions is oblivious to these complications, as the

integration constants in (2.1.36) are dropped in the ∆→ 0 limit. Once more, the scalars

are constant, given by

f−1
0 σA = 1

6CABCp
BpC , f =

p0 f0

|~r0|
∆2 , (2.1.38)

where f0 is again a constant. The metric reads [35]

ds2 = −4

√
q̂0

P
dt d∆ +

8

P
∆ dt dψ +

q̂0

P
dψ2 + P 2

(
dθ2 + sin2 θdφ2

)
, (2.1.39)

where

P 3 =
1

6
CABC p

ApBpC , q̂0 = Jψ − Jϕ −
1

4
CAB q̃Aq̃B , (2.1.40)

and CAB ≡ [CABCp
C ]−1. This metric is locally isometric to AdS3 × S2 and is fully

supersymmetric, as expected [25]. Together with (2.1.35), these are the only two phys-

ically inequivalent fully supersymmetric geometries that are admissible as near horizon

limits for a black hole solution. Note that upon dimensional reduction over the ψ direc-

tion both reduce to AdS2×S2, which is the only allowed near-horizon geometry in four

dimensions.
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The area law gives the following entropy

S = 2π

√
1

6
q̂0CABC pApBpC . (2.1.41)

In view of the poles of the harmonic functions above, the result dependents on q̃A rather

than qA directly. Note that despite the presence of two angular momenta, it is the

difference Jψ − Jϕ that appears in the entropy [44], whereas the φ-component of the

angular momentum is necessarily fixed by

Jϕ = pI(qI − 1
6CIJp

J) , (2.1.42)

and is not an independent conserved charge.

2.2 Four-dimensional N = 2 supergravity

We now turn to four-dimensional N = 2 supergravity, for which the superconformal

multiplet calculus was developed in [45–48]. The multiplets relevant to the subsequent

discussion are introduced in Appendix B.2, which include the Weyl multiplet, the chiral

multiplet and the hypermultiplet. Some of the theories in this class can be viewed

as compactifications of five-dimensional theories or, upon gauge fixing to the Poincaré

frame, as Calabi-Yau compactifications of Type II string theory and M-theory. Most

techniques and results are similar to the corresponding five-dimensional ones, discussed

in the previous section. An extra feature is the presence of electric-magnetic dualities

that act on the equations of motion for vectors and scalars, which we briefly introduce.

2.2.1 The conformal and Poincaré Lagrangians

The construction of the Lagrangian for vector multiplets in four dimensions is conven-

tionally based on a chiral multiplet rather than a tensor (linear) multiplet, even though

that is also possible in principle. This is because the covariant fields in vector multiplets

comprise chiral multiplets that satisfy a constraint, as explained in section B.2.3, so that

it is natural to combine them into an unconstrained chiral multiplet, for which a density

formula analogous to (2.1.2) exists.

This formula is based on a scalar chiral multiplet with w = 2, implying that its highest

component, C, has Weyl weight 4, and chiral weight 0, as is appropriate for a conformally

invariant Lagrangian in four dimensions. It follows that the expression

e−1L =C − εij ψ̄µiγµΛj − 1
8 ψ̄µiTab jkγ

abγµΨl ε
ijεkl − 1

16A(Tab ijε
ij)2

− 1
2 ψ̄µiγ

µνψνj Bkl ε
ikεjl + εijψ̄µiψνj(G

−µν − 1
2AT

µν
kl ε

kl)

− 1
2ε
ijεkle−1εµνρσψ̄µiψνj(ψ̄ρkγσΨl + ψ̄ρkψσj A) + h.c. (2.2.1)
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is invariant under local superconformal transformations, including a conformal super-

gravity background.

In order to find an action for vector multiplets, consider the case where the chiral

multiplet in this formula is composite, expressed in terms of vector multiplets labeled

by indices I, J, · · · = 0, 1, . . . , nv. It is possible to show (cf. (B.2.18)) that the relevant

terms of such a composite multiplet are given by5

A = − i
2F (X) ,

C = − i
2F (X)I C

I + i
8F (X)IJ

[
Bij

IBkl
J εikεjl − 2G−ab

IG−abJ
]
, (2.2.2)

where FI and FIJ are the first and second derivative of the function F , known as the

prepotential. The bottom composite component, A, must have w = 2, so that F (X)

must be homogeneous of degree two in the vector multiplet scalars XI . Taking into

account the constraints in (B.2.19), the bosonic terms of the Lagrangian following from

(2.2.1) read

8π e−1 L = iDµFI DµX̄I − iFI X̄
I(1

6R−D)− 1
8 iFIJ Y

I
ijY

Jij

+1
4 iFIJ(F−Iab −

1
4X̄

IT ijabεij)(F
−Jab − 1

4X̄
JT ijabεij)

−1
8 iFI(F

+I
ab −

1
4X

ITabijε
ij)T abij ε

ij − 1
32 iF (Tabijε

ij)2 + h.c.

−1
2ε
ij Ωαβ DµAiαDµAjβ + χ(1

6R+ 1
2D) , (2.2.3)

where in the last line we added the Lagrangian for the hypermultiplets. As in the

five-dimensional theory, the vector multiplet Lagrangian alone is inconsistent and the

presence of at least one hypermultiplet as a compensating multiplet is necessary.

With this addition, the equation of motion for the auxiliary scalar D is

χ = −2 i(FI X̄
I − F̄I XI) , (2.2.4)

where the quantity in the right hand side coincides with the factor multiplying the Ricci

scalar in the action and should be used in the gauge fixing of local scale transformations.

We choose the gauge condition

i(FI X̄
I − F̄I XI) = 1 , (2.2.5)

to obtain the canonical normalisation of the Einstein term with Newton’s constant set

to unity. In addition, one can fix the local U(1) symmetry by setting the phase of one

of the XI to a desired value, but we will refrain form doing that explicitly. The end

result is that only 2nv of the original 2nv +2 scalars are physical, due to the constraints.

These are usually denoted as zA, with A = 1, . . . , nv and parametrise a so called special

5The function G in (B.2.18) is conventionally chosen as G(XI) = − i
2
F (X) in this context.
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Kähler target space manifold. A convenient choice that we will adopt is

zA =
XA

X0
, z0 =

X0

X0
= 1 , (2.2.6)

which are scale and chiral invariant. It can be shown that the associated Kähler metric

and potential are given by

gAB̄ = ∂A∂B̄K , K = − log
(

i(FI z̄
I − F̄I zI)

)
, (2.2.7)

where FI are viewed as functions of the zA. We will be generally using the variables

XI(z) even in the Poincaré theory, with the understanding that they satisfy (2.2.5) and

are subject to the local U(1) invariance.

As in the five-dimensional theory, one can set bµ = 0 and use the SU(2) gauge transfor-

mations to eliminate three phases from the hypermultiplet target space. The auxiliary

fields Y ij and T ijab can be expressed in terms of dynamical fields using their equations of

motion

Y ij = 0 , εijT
ij
ab = 4 (X̄KNKLX̄

L)−1NIJX̄
JF−Iab , (2.2.8)

where NIJ = 2 ImFIJ . The SU(2) and U(1) gauge fields also have algebraic equations

of motion, but we will only need the expression for the latter

Aµ = i
2NIJ(XI∂µX̄

J − X̄I∂µX
J) = Im(∂AK ∂µz

A) . (2.2.9)

The final form of the Poincaré supergravity Lagrangian is

8π e−1 L = −1
2R+ iDµFI DµX̄I − iDµF̄I DµXI

+ i
4N̄IJF

−I
ab F

−Jab − i
4NIJF

+I
ab F

+Jab

−1
2ε
ij Ωαβ DµAiαDµAjβ , (2.2.10)

where the covariant derivatives on the scalars contain the composite gauge field (2.2.9)

and

NIJ = F̄IJ + i
NIKX

KNJLX
L

XMNMNXN
. (2.2.11)

Similar to the convention followed in five dimensions, we implicitly keep the same index

naming for hypermultiplets, assuming the index α runs over one less value (see footnote

3).

By restricting the form of the prepotential, it is possible to interpret the four-dimensional

theory as a Kaluza-Klein reduction of five-dimensional supergravity under some assump-

tions. We will return to this point in section 2.3.
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2.2.2 Symplectic reparametrisations and Kähler geometry

The most characteristic feature of extended supergravity in four spacetime dimensions

is the presence of continuous symmetries of the equations of motion that generalise the

electric-magnetic duality transformations of Maxwell electrodynamics [49]. Generically,

such transformations are not symmetries of the Lagrangian, but rather correspond to a

reparametrisation of the same equations of motion in terms of a different Lagrangian.

In N = 2 supergravity, scalars are in the same multiplet as gauge fields and control

all couplings, so they necessarily transform under symplectic transformations [47, 50].

Here, we discuss the basic aspects of the structure appearing in this case, casting the

variables of the on-shell action (2.2.10) in a suggestive form that will be useful in the

following.

Define the dual field strength tensor, generalising the electric displacement tensor in

(1.2.34) by:

G−µνI := −16π i

e

∂L
∂F I −µν

= NIJF J −µν , (2.2.12)

in terms of which the Maxwell equations and Bianchi identities take the suggestive form:

εµνρσ∂µF
I
νρ = 0 ,

εµνρσ∂µGI νρ = 0 . (2.2.13)

These equations imply that the electric and magnetic charges conventionally defined as

pI =
1

4π

∫
S2

F I ,

qI =
1

4π

∫
S2

GI , (2.2.14)

where S2 is any closed surface near infinity, are conserved.

As is clear from (2.2.13), there is no essential difference between the field strength and

its dual. In fact one can mix them by an arbitrary constant matrix and still satisfy the

equations of motion and Bianchi identities. One then introduces a matrix O as(
F̌ I

ǦJ

)
=

(
U IK ZIL

WJK VJ
L

)(
FK

GL

)
⇔ F̌ = OF . (2.2.15)

Here and in the following we will generally use calligraphic capital symbols to denote

electric-magnetic pairs of objects, as for F I and GI in the last relation. Now, in order

for the transformed field strengths to be interpreted as coming from a Lagrangian of the
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type (2.2.10), the matrix O must be symplectic, O ∈ Sp(2nv,R), implying that

OTΩO = Ω , Ω =

(
0 I
−I 0

)
, (2.2.16)

or in terms of the block matrices:

UTW −W TU = 0 = ZTV − V TZ , UTV −W TZ = I . (2.2.17)

Such a transformation leaves the equations of motion of the gauge fields invariant, but

since (2.2.12) involves the scalars, they must also transform nontrivially so that

ŇIJ = [VN +W ]IL[(U + ZN )−1]LJ . (2.2.18)

The correct rule can be found by pairing the scalars XI with the derivatives of the

prepotential FI into a symplectic vector

V =

(
XI

FI

)
, V̌ = OV , (2.2.19)

as they are the only quantities with appropriate indices that scale with unit weight.

Then, one can show that this transformation induces (2.2.18), whereas the analog of

(2.2.12) follows from (2.2.11) and the homogeneity of the prepotential

NIJXJ = FI . (2.2.20)

As will be discussed in section 5.4, it is possible to write the full action (2.2.10) in

a manifestly symplectically covariant way, at least for stationary backgrounds. For the

moment, we exhibit the Kähler structure of the scalar manifold in terms of symplectically

covariant quantities, referring to [51] for more details.

First, note that the gauge condition (2.2.5) is invariant under symplectic transforma-

tions, as it can be recast using the antisymmetric inner product of Sp(2nv,R)

iV̄TΩV ≡ i〈V̄,V〉 = 1 , (2.2.21)

where we introduced the bracket 〈 , 〉 as shorthand. The scale and chiral transformations

of the scalars imply that V is a section of a complex line bundle with connection QA =

∂AK. The corresponding covariant derivative is given by

DAV ≡ ∂AV + 1
2(DAK)V , DĀV ≡ ∂ĀV − 1

2(DĀK)V = 0 . (2.2.22)

These relations also imply the constraints

〈V̄,DAV〉 = 0 , 〈DAV,DB̄V̄〉 = igAB̄ , (2.2.23)
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whereas all inner products of only holomorphic or anti-holomorphic objects vanish as

well. It follows that it is possible to use the section V, its derivatives DAV and their

complex conjugates as an alternative base for symplectic vectors.

To this end, we introduce two operations realised as symplectic matrices through

� ≡

 − (ImN )−1|IK ReNKJ (ImN )−1|IJ

− ImNIJ − ReNIK (ImN )−1|KL ReNLJ ReNIK (ImN )−1|KJ

 , (2.2.24)

M = Ω � , MT =M . (2.2.25)

Using these definitions, one can show that

� V = −iV , � DAV = iDAV , (2.2.26)

and

�

(
?F I

?GJ

)
=

(
F I

GJ

)
. (2.2.27)

These relations together with �2 = −1 allow for an interpretation of � as a kind of

Hodge duality. If the prepotential is such that the theory can be viewed as a Calabi-Yau

compactification of Type IIB supergravity, � is identified as the Hodge operator on the

Calabi-Yau manifold.

In the basis defined by (2.2.26), any real symplectic vector can be written as

E = 2 Im[−Z(E) V̄ + gAB̄ DAZ(E) D̄B̄V̄ ] , (2.2.28)

where the central charge Z is given by

Z(E) = 〈E,V〉 = EIFI − EIXI . (2.2.29)

One can further show that the antisymmetric inner product can be alternatively written

as

〈E1, E2〉 = 2 Im[Z(E1) Z̄(E2)− gAB̄ DAZ(E1) D̄B̄Z̄(E2) ] , (2.2.30)

where gAB̄ is the inverse matrix of gAB̄ and the Kähler covariant derivative on Z follows

from (2.2.22).

Finally, we note that the symmetric negative definite matrix M allows for a symmetric

product defined as

‖E1, E2‖ ≡ −ET1ME2 = 2 Re[Z(E1)Z̄(E2) + gAB̄ DAZ(E1) D̄B̄Z̄(E2) ] . (2.2.31)
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An application that will be of use later is provided by the black hole potential [52]

Vbh = 1
2‖Γ‖

2 = |Z(Γ)|2 + gAB̄ DAZ(Γ) D̄B̄Z̄(Γ) , (2.2.32)

for a given vector of electric and magnetic charges Γ.

2.2.3 BPS solutions in four dimensions

The supersymmetric black hole solutions of N = 2 supergravity have been classified

some time ago in [22, 24]. The existence of a Killing spinor implies that the spacetime

has a timelike Killing vector and that the three-dimensional base space is flat, so that

the metric takes the form

ds2 = −e2U (dt+ ω)2 + e−2Ud~x2 , (2.2.33)

where e2U and ω are a function and a one-form in three dimensions. The electric and

magnetic field strengths are given by

F = 2 εijk∂kH dxidxj − 2 ∂[µ

(
e0
ν] Re(e2Ue−iαV)

)
dxµdxν , (2.2.34)

where e0 = eU (dt+ωi dx
i) andH is a symplectic vector of harmonic functions in R3. The

scale factor and scalar fields are found by solving the so called stabilisation equations

2 Im
(
e−U−iαV

)
= H , (2.2.35)

where the arbitrary phase α is subject to U(1) gauge transformations and is introduced

to make the left hand side invariant under chiral U(1) transformations. Finally, the

one-form ω can be found by

∇× ω = 〈∇H,H〉 . (2.2.36)

All the above results are manifestly covariant under scale and symplectic transforma-

tions. Their derivation will be briefly discussed in section 5.4, where the duality invariant

formulation of the action will be introduced.

It is worthwhile to list a few useful relations implied by (2.2.35) for future reference [53].

Taking the intersection product with V and using (2.2.21), one finds

e−U+iα = 〈H,V〉 ≡ Z(H) , (2.2.37)

so that e−U and α are given by the absolute value and phase of the central charge,

respectively. For any single centre solution, where the harmonic functions are defined

by the charge vector Γ and some arbitrary constants H∞ through

H = H∞ +
Γ

r
, (2.2.38)



39

the square of Z is naturally related to the entropy formula as follows. Using (2.2.35),

one can show that |Z(H)|2 is homogeneous of degree two under rescalings of H, so that

the area law gives

S =
1

4
A = π lim

r→0
r2 |Z(H∞ + Γ/r)|2 = π |Z(Γ)|2 . (2.2.39)

On the other hand, in all known examples the entropy of extremal black holes in N = 2

supergravity is given in terms of a quartic invariant, I4(Γ), which is a function of the

charges as

S = π
√
I4(Γ) . (2.2.40)

This implies that all scalars must take appropriate charge-dependent values at the hori-

zon, so that |Z(Γ)|2 =
√
I4(Γ). Extending to the full solution, the scale factor resulting

from (2.2.35) is

e−2U =
√
I4(H) , (2.2.41)

a result that holds even for multi-centre solutions. In the next section, we will show an

example of such an invariant (cf. (2.3.12)), in the context of a cubic prepotential.

As in five dimensions, taking the near-horizon limit of BPS solutions leads to a solution

preserving full N = 2 supersymmetry. Making use of the observation above (2.2.39),

the metric in (2.2.33) reduces to

ds2 = − r2√
I4(Γ)

dt2 +
√
I4(Γ)

dr2

r2
+
√
I4(Γ)

(
dθ2 + sin2 θdφ2

)
. (2.2.42)

This is exactly of the form (1.2.44), with equal radii for AdS2 and S2, which is indeed

fully supersymmetric [54, 55]. The scalars follow in a similar fashion, and are given by

the so-called BPS attractor equations

2 Im
(
Z̄ V

)
= Γ , (2.2.43)

which is analogous to (1.2.43). Note that the scale invariance of V can be used to

eliminate the overall factor Z̄ in the left hand side of this equation. The gauge fields are

given by (2.2.34) as always.

In the case of supersymmetric attractors as in this section, there is an alternative way

to view (2.2.43). Due to extremality, one can study the near-horizon in its own right,

without any reference to the interpolating solution. The extra ingredient of full su-

persymmetry enhancement implies that all scalars are constant and imposes (2.2.34)

independently of the values of V. Then, the attractor equations simply express the def-

inition of electric and magnetic charges in (2.2.14). It is important to stress that all

the steps prior to the definition of charges follow only from symmetry arguments and a

choice of Lagrangian is not necessary. In the next chapter we will show how to extent

these results to more general Lagrangians using this method.
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2.3 The 4D/5D connection

The discussion in the last two sections makes it clear that there is a close relation

between five-dimensional supergravity and four-dimensionalN = 2 supergravity. In fact,

all supergravity theories in five dimensions are equivalent to a four-dimensional theory

upon Kaluza-Klein reduction on a circle [56–58]. The opposite is not true, as there are

no restrictions on the form of the prepotential F in (2.2.3) other than homogeneity,

whereas a five-dimensional theory requires a cubic structure as in (2.1.8). The result for

the prepotential in four dimensions is

F = − 1

12

CABCX
AXBXC

X0
. (2.3.1)

Here and henceforth, we identify all but the first value of the index I, J,K . . . in four

dimensions with its five-dimensional counterpart A,B,C, . . . , as is customary, unless

otherwise stated. In this section we comment on the precise dictionary between the two

theories and the BPS solutions, both in the Poincaré frame and in the full conformal

setting.

The most straightforward way to do this is to reduce the on-shell five-dimensional action

(2.1.13) on a circle to arrive at the corresponding one (2.2.10) in four dimensions. We

generally follow [57, 59], but use slightly different conventions.

The reduction is implemented through a standard Kaluza-Klein ansatz for the metric

ds2
(5) = e2φ ds2

(4) + e−4φ (dψ −A0)2 , (2.3.2)

where ds2
(5), ds

2
(4) are the five- and four-dimensional metrics, φ is a scalar and A0 is

the Kaluza-Klein gauge field in four dimensions. Here, the coordinate along the circle,

ψ, runs over 0 ≤ ψ ≤ 4π, fixing the four-dimensional Newton constant: G4 = G5/4π.

Similarly, a suitable ansatz for the vectors and scalars is

WA = AA + CA (dψ −A0) ,

σ̂A = e−2φ σA , (2.3.3)

where the AA are gauge fields and CA are scalars in four dimensions.

Note that there is an extra gauge multiplet in four dimensions, represented by the zeroth

index, originating from the off-diagonal part of the five-dimensional metric and gravitino.

The scalars are complexified in the reduction, with the nv pseudoscalars CA coming from

the gauge fields paired with the nv physical scalars σA and the Kaluza-Klein scalar φ.

All relative phases are fixed in this way, up to an unphysical overall phase6. A way out

6Remember that we refrained from fixing the U(1) invariance of the conformal action in (2.2.10).
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of this problem is to work in special coordinates

zA = CA + iσ̂A , (2.3.4)

which can be identified with the definition in (2.2.6).

For our purposes, we will only be interested in five-dimensional solutions that can be

written as a time-like fibration over a Gibbons-Hawking base space as in (2.1.17) and

(2.1.20). Under this restriction, there are significant simplifications. In particular, the

Kaluza-Klein scalar, φ, and the four-dimensional metric, are written as:

ds2
(4) = −e2U (dt+ ω)2 + e−2Ud~x2 , (2.3.5)

e−4U =
H2

f2
e−4φ = H f−3 − (H ω5)2 . (2.3.6)

Moreover, the Kaluza-Klein gauge potential seen in four dimensions is given by the

expression:

A0 = ω5H
2 e4U (dt+ ωi dx

i)− χi dxi , (2.3.7)

where the notation in (2.1.26) is used for ω.

A useful application of the above formulae is to connect BPS solutions in five dimensions,

given by (2.1.25), to the corresponding four-dimensional ones, given by (2.2.35). First,

we define convenient rescaled variables in four dimensions by

Ṽ ≡
(
Y I ; FI(Y )

)
= e−U+iαV , e−2U = i〈 ¯̃V, Ṽ〉 , (2.3.8)

whose imaginary parts are directly given by the magnetic harmonic functions. Following

[57, 60], we parametrise the real parts as

Y 0 = 1
2(φ0 + iH0) , Y A = − |Y

0|√
H0

xA +
Y 0

H0
HA . (2.3.9)

The real quantities xA are determined by the other half of the stabilisation equations

FI − F̄I = iHI , which for the prepotential (2.3.1) read

1

4
CABCx

BxC =HA +
1

4H0
CABCH

BHC ≡ ∆A , (2.3.10)

e−2U φ0 =H0 (HIHI) +
1

6
CABCH

AHBHC . (2.3.11)

Here, we used the second relation in (2.3.8), which takes the form

e−4U = 4
9H

0 (xA∆A)2 − (H0)−2
(
H0 (HIHI) + 1

3CABCH
AHBHC

)2
. (2.3.12)
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Using these formulae it is easy to find the connection with the corresponding five-

dimensional equations (2.1.25)-(2.1.28). First, (2.3.10) is identical to (2.1.25), leading

to

H0 ≡ H , HA ≡ KA , HA ≡ LA , (2.3.13)

xA = f−1/2σA , f−3/2 = 1
3 x

A∆A . (2.3.14)

Moreover, the five-dimensional rotation one-form is related to the electric charge as-

sociated to A0 and the four-dimensional angular momentum, as expected. Its fifth

component in (2.1.27) is part of the scalar in the Kaluza-Klein multiplet, as

e−2U φ0 = H2 ω5 , M ≡ H0 . (2.3.15)

whereas (2.2.36) is equal to the one in (2.1.28), using the identifications of the various

harmonic functions given above. Finally, the physical scalars in four dimensions, as

defined in (2.3.4), are given by

zA = − φ0

2|Y 0|
xA√
H0

+
HA

H0
+ i

√
H0

2|Y 0|
xA . (2.3.16)

= − f

H

(
H ω5 − i e−2U

)
σA +

KA

H
, (2.3.17)

where in the second line we display the expression in terms of five-dimensional quantities,

for future reference. This can be shown to be consistent with (2.3.4) using (2.1.24) and

(2.3.5).

In contrast to the above, finding the explicit relation between the charges of a solution to

the five-dimensional theory and its four-dimensional reduction can be subtle, especially

in the presence of magnetic charges. An example of this is given by the shifted poles in

the electric harmonic functions in (2.1.36) and (2.1.37) compared to (2.2.38), despite the

identification (2.3.13). For this reason, we refrain to give any explicit general formulae,

using the appropriate definitions in each case.

It is worth mentioning that the reduction can be reformulated so as to keep four-

dimensional conformal invariance manifest. In this setting, the metric ansatz can be

taken to be

ds2
(5) = ds2

(4) + φ−2 (dψ −A0)2 , (2.3.18)

so that the four and five-dimensional metrics have the same Weyl weight, whereas the

scalar φ has w = 1. Therefore, the scalars in four dimensions (2.3.4) can be viewed as

special coordinates parametrising the scalars

XA = eiϕ(σA + iφCA) , X0 = eiϕφ , (2.3.19)
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where eiϕ is an arbitrary phase subject to four-dimensional U(1) transformations. The

corresponding gauge field arises from the off-diagonal components of the tensor Tab as

Ta5 ∝ eaµ(Aµ − ∂µϕ) . (2.3.20)

We refrain from setting up such a correspondence in detail, pointing out that there is no

difference with the on-shell procedure described above in the context of the two derivative

action, but the conformal approach is the only practical way to dimensionally reduce

a higher derivative action. The subtleties in the definition of conserved quantities also

apply in this case, especially in the presence of nontrivial topology in five dimensions,

similar to the reduction of magnetically changed solutions discussed above.

In the following, we will use the above formulae both explicitly and implicitly, to give a

four-dimensional interpretation to five-dimensional results. More explicit details can be

found in [59].

2.4 Microscopic considerations

A major motivation for the study of black hole solutions in N = 2 supergravity is

the possibility of identifying a precise microscopic model of these objects within string

theory. For systems that preserve some supersymmetry, this has been worked out in

detail in several cases, both in four and five dimensions. Partial results also exist for

non-supersymmetric extremal and near extremal black holes in extended supergravity.

In the context of string theory, black holes arise as a system of D-branes wrapped

on internal manifolds. Here we give a general discussion of the ideas involved in the

constructions describing BPS black holes, based on the by now classic reviews [61] and

[62], as well on [63], to which we refer for more details and further references.

The starting point for modeling black holes is a system of intersecting D-branes wrapped

on some compact internal manifold in flat transverse space, carrying a set of p-form

charges. The reason that more than one kind of branes is needed is purely technical,

imposed by the requirements of having everywhere regular scalars and a nonzero horizon

area of the final black hole. The kinds of D-branes and intersections are not arbitrary

either and are chosen in such a way that the resulting state preserves some of the initial

supersymmetry, which means that it is a BPS state. Then, one considers a large number

of individual branes, which nevertheless are noninteracting due to supersymmetry.

Just as one would do for a classical gas, a counting of the free modes is performed, which

corresponds to a counting of the degeneracy of the system. In practise, the fluctuations

of a D-brane correspond to a gas of open strings ending on it so that the low energy

degrees of freedom are described by (classically) massless open strings stretching between

the D-branes. In the presence of more than one D-brane or, even better, different kinds
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of D-branes , the number of possibilities for the positions of the open string end-points is

dramatically increased. In the thermodynamic limit (equivalent to a large charge limit),

the degeneracy is essentially the exponent of the entropy, which can indeed be arranged

to be of the order of magnitude as found in classical General Relativity. Note that such

a limit is necessary in any comparison, as the macroscopic supergravity theory is only

valid in this limit and so is the entropy that is derived by it.

All the above correspond to a small string coupling description of the system and are far

from the familiar spacetime picture of say, the Schwarzschild black hole. This description

is valid when gsN � 1, where gs is the string coupling and N is the number of D-branes

(or the typical scale of that number for the case of different kinds of branes).

The black hole description in terms of a curved spacetime is found by letting the coupling

become strong: 1 � gsN < N , where the string coupling is still kept small (gs < 1) to

avoid large string loop corrections. At strong coupling the flat space description is no

longer relevant. Instead, one is dealing with a curved gravitational background carrying

the same set of charges as the higher dimensional D-branes. The above mentioned

microscopic entropy is then associated to this black hole. The extrapolation of the

degeneracy between the two regimes is possible because the number of microscopic states

in a supersymmetric configuration is given by a coupling-independent object, known as

an index. Therefore, calculating the index at one value of the string coupling is enough to

know its value at any other coupling, as long as a number of conditions is met7. These

ideas where pioneered in [10], followed by more general constructions in [39, 67, 68].

Here, we merely record the nature of the microscopic description of the D-brane systems

in weak coupling for the cases considered in the next chapters without going in any

detail. Instead, the focus will be on the supergravity description of the system in strong

coupling.

2.4.1 Supergravity vs D-brane charges

The origin of the charges carried by a string theoretic black hole can be traced to

the charges carried by the D-branes used to model it. Any supersymmetric Dp-brane is

charged under a corresponding p-form gauge field present in the spectrum of perturbative

string theory. Upon compactification on an internal manifold, the p-form fields reduce

to a number of gauge fields, whereas the corresponding Dp-branes wrapped on cycles of

the same manifold are charged under the resulting gauge fields.

One of the requirements on the final solution is that of independence on the internal

coordinates. In order to satisfy it, the position of each brane has to be ’smeared’, meaning

that one should integrate over the possible position of every brane over the volume of

the part of the internal manifold it is not wrapped on. This can be done in the higher

7The index can jump along surfaces in the moduli space, but we disregard this possibility in this
discussion. See [64–66] for a recent treatment.
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dimensional setting by constructing a periodic lattice of branes along the directions that

are to be compactified and then take the lattice spacing to zero. For example, the

electric field of a two-form gauge field created by a collection of Q1 parallel D1-branes is

described by a harmonic function in the transverse R8, given by H1 = 1 +Q1/r
6. When

the same D1-branes are wrapped over a cycle of a five-dimensional torus, T 5, one has

to consider a modified harmonic function

H1 = 1 +
1

VT 4

∫
Q1

r6
⇒ H1 = 1 +

1

32π2

Q1

r2
. (2.4.1)

The integral is over all of T 4 and expresses the zero spacing limit of the lattice. The

general rule is that the higher dimensional harmonic functions for the branes reduce

to harmonic functions over the remaining noncompact transverse directions. This is

explicit in the above example, since 1/r2 is a solution to the five-dimensional Laplace

equation.

As is clear from the discussion in sections 2.1.2 and 2.2.3, the harmonic functions in

the lower dimensional theory define the charges of a solution. Such a correspondence

can be made more precise in the context of a specific theory, such as Type IIB strings

compactified on Calabi-Yau manifolds. We choose this theory for convenience, but N =

2 compactifications of other theories can be related to this by dualities and/or mirror

symmetry. In this case, the lower dimensional gauge fields are viewed as reductions of the

ten-dimensional five-form field strength, so that their charges arise from the RR charges

of the original D3-branes. More concretely, dimensional reduction of any string theory

on a compact n-dimensional manifold Mn involves an expansion of the p-form fields on

the associated cohomology elements of that manifold. In our example, the five-form field

strength F of the IIB theory is assumed to take values in Ω2(M4)⊗H3(MCY,Z), where

Ω2(M4) represents the space of two-forms on four-dimensional spacetime. Therefore, it

can be written as

F = F I ⊗ αI −GI ⊗ βI , (2.4.2)

where {αI , βJ} is the canonical symplectic basis for the third integral cohomology

H3(MCY,Z). Here, F I are the field strengths of the four-dimensional theory and the GI

can be shown to be equal to the dual field strengths in (2.2.12), so that the component

expansion in (2.4.2) can be identified with F in (2.2.15). By integrating the five-form

field strength over an appropriate two-sphere in space as in (2.2.14), we recover the

charges as the coefficients of the three-form Γ ∈ H3(MCY,Z)

Γ =
1

4π

∫
S2

F = pIαI − qIβI , (2.4.3)

so that in terms of the Poincaré dual homology base of three-cycles {AI , BJ}, the charges

are

pI =

∫
AI

Γ ≡
∫
MCY

Γ ∧ βI , qI =

∫
BI

Γ ≡
∫
MCY

Γ ∧ αI . (2.4.4)
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Intuitively, one can think of this correspondence as an extension of the S2 in (2.4.3) to

a surface that incorporates the basis elements {AI , BJ} as in

pI =

∫
S2∪AI

F , qI =

∫
S2∪BI

F . (2.4.5)

Using Poincaré duality between cycles and cohomology classes one can relate this to

brane sources, as there is a one to one correspondence between m-cycles and n − m-

degree cohomology classes for a compact manifold. Thus, for any αI , β
I above, there is

a cycle that lies in directions transverse to that form’s support and is contained in the

interior of S2∪{AI , BJ}. By using this, the sum of the equations in (2.4.5) expresses the

standard definition of charges for F in ten dimensions, with sources along the Poincaré

dual cycles of the basis forms.

Similar reasoning applies in Type IIA and M-theory compactifications, with the further

complication that the lower dimensional gauge fields do not arise from a unique RR

form. It follows that the electric and magnetic charges arise from homology elements of

different dimension in the compactification manifold, that must nevertheless add to its

total dimension. Assuming that F is now a sum of forms of different order and that the

corresponding integrals are performed over appropriate cycles, all the above formulae go

through for the more general cases as well.

For example, the microscopics of four-dimensional black holes are more easily modeled

in Type IIA string theory or M-theory. In Type IIA the only D-branes available are

even dimensional. When wrapped on the cycles of a Calabi-Yau manifold, there are two

possible pairs of electric and magnetic branes according to the rules sketched: a D0-D6

and a D2-D4 pair. In fact, both must be used in order to get a BPS black hole in

four dimensions with a horizon area of macroscopic size. This can be seen heuristically

from the fact that the D0 and D2 branes are worldvolume instantons of the D4 and

D6 branes respectively, so that including one dual pair would generically induce (some

combination of) charges of the other pair as well. For example, a system of D2-D4

branes will in general include D0 branes as worldvolume instantons on the D4 branes.

This is a consistent reduction of the general D6-D2-D4-D0 system.

A more general and useful picture is the M-theory lift of this system. Then, the D2-D4

pair is viewed as a M2-M5 brane pair with the M5 brane wrapped on the M-circle,

whereas the D0-D6 pair is now seen as electric and magnetic Kaluza Klein charges

coming from the nondiagonal elements of the eleven-dimensional metric along the M-

circle. This is the most general configuration used in the microscopic description of all

kinds of ’black object’ solutions for Calabi-Yau compactifications of M-theory, like black

rings and supertubes [26]. The entropy for the four-dimensional black hole has not yet

been accounted for microscopically in the general setting, but only for zero magnetic

Kaluza Klein (or D6) charge [67] and this will be the case considered here as well.
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2.4.2 Wrapped M5 branes and black holes in four dimensions

The microscopic description of four-dimensional black holes [67] is based on the assump-

tion of a M5 brane wrapping the M-circle and the 4-cycles of the Calabi-Yau threefold

and M2 branes wrapping orthogonal 2-cycles. Adding momentum on the effective string

along the M-circle induces an extra Kaluza-Klein charge. This configuration preserves

1/8 of the original supersymmetries as is appropriate to describe a solitonic object in

the resulting N = 2 supergravity in the four noncompact dimensions. The charges arise

in the standard way as wrapping numbers for M5 and M2 branes as already described.

We therefore have as many electric charges qI as 2-cycles on the CY and as many mag-

netic charges pI as 4-cycles, which are both equal to the (1, 1) Hodge number of the

Calabi-Yau due to Poincaré duality. To these, one must add the Kaluza-Klein electric

charge q0 from the compactification on the circle (the magnetic one is set to zero). The

low energy modes are governed by a (0, 4) supersymmetric two-dimensional theory on

the effective string worldvolume, which flows to a CFT in the low energy limit.

The microscopic entropy then arises as the logarithm of the number of states that pre-

serve the right-moving supersymmetry and have arbitrary excitations on the left moving

side. This constrains the momentum along the circle in eleven dimensions to be left-

moving, or q0 > 0. The final result of the degeneracy counting for this system is the

entropy

S = 2π

√
q̂0

6
(CABCpApBpC + c2ApA), q̂0 = q0 +

1

12
DABqAqB (2.4.6)

where DAB is the inverse of CABCpK and CABC are the intersection numbers of the

Calabi-Yau manifold, defined through the basis elements aA of H2(CY ) by

CABC =

∫
CY
aA ∧ aB ∧ aC . (2.4.7)

Finally, c2A is the second Chern class of the tangent bundle on the Calabi Yau mani-

fold, expanded on a basis of H4(CY ) that is Poincaré dual to the basis of two cycles

used above. Without these subleading corrections, results for other than Calabi-Yau

compactifications have been obtained in [69].

On the macroscopic side, this system will correspond to a four-dimensional BPS black

hole with all charges except p0 turned on. The two derivative solution follows from

the results shown in section 2.2.3, which correctly reproduces the leading microscopic

entropy (i.e. for c2A = 0). A match with the full microscopic result requires the inclusion

of higher derivative corrections in the supergravity action. This was worked out in a

series of papers [54, 70–72] from a purely four-dimensional supergravity point of view

and will be reproduced in the next chapter based on the near horizon region.
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2.4.3 Black rings in five dimensions

As the subject of black holes started in the physical case of four dimensions, extensive

research has led to the uniqueness theorems for black holes in that number of dimensions

[73]. Under some rather general physical assumptions, these theorems show that the

only relevant topology of a black hole horizon in four dimensions is that of R × S2.

This however is not the case in higher dimensions, where more ’exotic’ objects can be

constructed. In five dimensions, one encounters the black ring solutions [74], with horizon

topology that of R×S1×S2. Thus, when dealing with more than four dimensions, one

does not have a unique black hole corresponding to a set of charges, but a finite number

of black objects with different horizon topologies. From a microscopic standpoint one

can think of these situations as different ’phases’ of the same system.

Here, we will consider a version of the black ring embedded in five-dimensional super-

gravity [40, 75]. This solution can be viewed from an M-theory perspective as the result

of a set of M2 branes wrapping 2-cycles and M5 branes wrapping 4-cycles of a Calabi-

Yau manifold describing six of the eleven dimensions. Note that the M5 branes are not

completely wrapped in the internal directions, giving rise to a remaining magnetically

charged string-like object in five-dimensional spacetime. This is thought of as forming a

closed loop that carries angular momentum, and supports a ring-like horizon. This de-

scription is exactly the same as for the four-dimensional black hole and, not surprisingly,

the two solutions are related upon dimensional reduction along the ring.

However, an important subtlety should be taken into account, namely that in the present

case the M5 branes are contractible in the five noncompact dimensions. This implies

that there are really no conserved magnetic charges associated to them from a purely

five-dimensional point of view. In fact, a macroscopic observer in five dimensions would

see a closed electrically charged loop with a current flowing around it, giving rise to a

magnetic dipole moment.

Despite this, the dipole moments appear in the entropy, which is very closely related to

the four-dimensional one. The microscopic counting [26, 76–79] gives the result:

S = 2π

√
q′0
6

(CABCpApBpC + c2ApA) , (2.4.8)

which is of the same form as (2.4.6), but the q′0 is now slightly different

q′0 = −Jψ +
1

12
DABqAqB +

1

24
CABCpApBpC . (2.4.9)

Again, the five-dimensional supergravity solution corresponding to this system has all

electric and magnetic charges turned on, as well as angular momentum. The explicit two

derivative solution can be found using the results presented in section 2.1.2 withH = 1/r,

so that the Taub-NUT charge is trivial. The resulting Bekenstein-Hawking entropy
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of the solution given in (2.1.41) agrees with (2.4.8) for c2A = 0. The corresponding

supergravity result with nonzero c2A that control the higher order corrections, will be

considered in section 4.5.

2.4.4 Five-dimensional BPS black holes

A further restricted five-dimensional system is that of M2-branes wrapping 2-cycles in

a Calabi-Yau manifold. Upon reduction to four dimensions, this is equivalent to a black

hole arising from D2-branes wrapped on the same manifold and is U-dual to the system

in section 2.4.2. However, in the five-dimensional theory, electric/magnetic duality does

not exist and this is system is a priori distinct from the black ring of the previous section.

The presence of the M2-branes gives rise to electric charges as usual, whereas the space-

time angular momentum is described by the genus of the 2-cycle they wrap in the

Calabi-Yau8. The microscopic theory was developed in [10, 39, 68], resulting in the

lowest order entropy formula

S = 2π

√
p0Q3 − 1

4
(p0Jψ)2 , (2.4.10)

where the quantities Q and qA are defined in terms of the electric charges qA by

Q3/2 = 1
6 CABCq

AqBqC qA = 1
2 CABCq

BqC (2.4.11)

which reproduces the macroscopic prediction in (2.1.33).

The effect of higher order corrections was investigated in [68, 80], but a closed analytic

formula for the entropy is only known for vanishing angular momentum. In that case,

the correction to the two derivative result is effected by modifying the definition of the

qA in (2.4.11) to

qA = 1
2 CABCq

BqC − 1
8 c2A , (2.4.12)

keeping all other relations the same. The comparison with the corresponding result in

supergravity including higher derivative corrections is the subject of section 4.4.

8This is also true in the four-dimensional theory, with the difference that angular momentum is not
an independent charge in that case, but is completely fixed in terms of the charges.





Chapter 3

BPS Attractors in four

dimensional supergravity

The attractor phenomenon for BPS black branes [41–43] is caused by full supersym-

metry enhancement at the horizon, which induces stringent restrictions on the values

of the fields and the space-time geometry. When supersymmetry is realized off shell,

the resulting attractor equations can be analyzed in a way that is independent of the

action. In this way universal results can be obtained even when the action contains

higher-derivative couplings, as was first demonstrated for N = 2 supergravity in four

dimensions [71].

In the previous chapter we introduced the standard methods to construct supergravity

Lagrangians in theories with eight supercharges, restricting ourselves to actions contain-

ing at most two derivatives of the various fields. Using the same techniques, one can go

beyond the two derivative level to construct invariants containing an arbitrary number

of derivatives. Effective theories describing the low energy limit of N = 2 string theory

compactifications naturally include such invariants as corrections to the lowest order

Lagrangian, arising either as loop or worldsheet corrections. In this chapter, we will see

how to set up a detailed comparison between the microscopic descriptions of black holes

and supergravity solutions of these effective theories in four dimensions.

We start by introducing two independent higher derivative invariants, containing up

to four derivatives, characterised by terms quadratic in the Riemann curvature and

quartic in gauge field strengths respectively. In this context conformal methods are

indispensable, as supersymmetry is realised without using equations of motion on the

conformal multiplets, irrespective of a Lagrangian. Compared to the Poincaré theory,

where one must construct the action and the transformation rules simultaneously order

by order in a derivative expansion, the simplification is considerable.

51
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When considering such higher derivative actions, it is cumbersome, if not impractical,

to gauge fix to the Poincaré theory, since the action contains kinetic terms for nominally

auxiliary fields, such as Tab. The standard lore is to consider such an operation order

by order in the parameters of the underlying fundamental theory that organise the

corrections. When the higher invariants are viewed as string theory corrections, they

are controlled by appropriate powers of the string tension α′ or string coupling gs, which

are the appropriate expansion parameters. We will not implement such a procedure when

dealing with higher derivative actions, but we will rather stay in the full superconformal

setting.

The analysis of supersymmetric attractors is presented in section 3.2. Following [54]

we derive general model-independent results for the entropy and scalars. In particular,

we discuss the non-renormalisation theorem of [81], according to which the invariant

quartic in the field strengths is irrelevant for BPS attractors. As the remaining higher

order invariant contains interactions quadratic in the Riemann tensor, it is necessary to

use the Wald entropy [82] rather than the area law. The interested reader can find a

concise review of this formalism in Appendix C.

Finally, we specialise to models describing Type II string theory compactifications on

Calabi-Yau manifolds, and compare with microscopic predictions. In view of the re-

striction on the charges in the result of section 2.4.2, this cannot be done in the most

general case. Imposing the same restriction on the supergravity results, we find precise

agreement with the microscopic counting.

3.1 Higher derivative invariants in four dimensions

In section 2.2.1 we saw how to construct the two derivative Lagrangian by combining

a set of vector into a composite unconstrained chiral multiplet. A moment’s thought

shows that this is a rather restricted choice. In fact, any kind of chiral multiplets, even if

they are composite (constrained or not), can be combined to give other chiral multiplets.

Therefore, one could construct other couplings from any chiral multiplet derived from

the fundamental multiplets of interest. In this section, we give a brief account of the

ideas behind the construction of such composites and the resulting Lagrangians.

A first choice would be to use the chiral multiplet constructed from the Weyl multiplet

in (B.2.22). As there are no other chiral anti-selfdual multiplets to couple it to, we

consider its square (B.2.24), which can be straightforwardly included in the prepotential

of section 2.2.1, as F (X, Â). Since Â has w = 2 and F must still have weight two, the

relation

XIFI + 2Â FA = 2F , (3.1.1)

is imposed, where FA denotes the derivative of F (X, Â) with respect to Â. Once this

modification is introduced, the extended action follows from the multiplication rule
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(B.2.18). The result reads

8π e−1 L = iDµFI DµX̄I − iFI X̄
I(1

6R−D)− 1
8 iFIJ Y

I
ijY

Jij − 1
4 iB̂ij FAIY

Iij

+1
4 iFIJ(F−Iab −

1
4X̄

IT ijabεij)(F
−Jab − 1

4X̄
JT ijabεij)

−1
8 iFI(F

+I
ab −

1
4X

ITabijε
ij)T abij ε

ij + 1
2 iĜ−ab FAI(F

−I
ab −

1
4X̄

IT ijabεij)

+1
2 iFAĈ − 1

8 iFAA(εikεjlB̂ijB̂kl − 2Ĝ−abĜ
−ab)− 1

32 iF (Tabijε
ij)2 + h.c.

−1
2ε
ij Ω̄αβ DµAiαDµAjβ + χ(1

6R+ 1
2D) , (3.1.2)

where the components of (B.2.24) are still to be substituted to find the fully explicit

result.

Since we used a holomorphic prepotential in the chiral density formula (2.2.1), this

action is similar to (2.2.3) in many ways, with the Riemann tensor, appearing through

Ĝ−ab, in the role of the gauge field strengths and couplings that depend on the vector

multiplet scalars. Therefore it expresses the supersymmetric completion of an R2-type

interaction, in the same sense that the lowest order action is the N = 2 completion of

the Maxwell term. It is easy to verify that (3.1.2) contains up to four derivatives on the

fields.

There are a priori more four derivative interactions involving the Riemann tensor and

the gauge fields, namely RF 2 and F 4-type interactions. A supersymmetric action con-

taining an RF 2 term1 would have to be constructed from the Weyl multiplet (B.2.22)

directly and not its square. This seems highly unlikely to be possible in a Lorentz co-

variant theory. On the other hand, it was shown in [83] that a F 4-type supersymmetric

Lagrangian can be constructed in the rigid limit, if one includes chiral and anti-chiral

multiplets in a symmetric way.

Such invariants can be also constructed in the presence of a Weyl background, using

yet another composite chiral multiplet, the so called kinetic chiral multiplet. The term

‘kinetic’ multiplet was first used in the context of the N = 1 tensor calculus [84], because

this is the chiral multiplet that enables the construction of the kinetic terms, conven-

tionally described by a real superspace integral, in terms of a chiral superspace integral.

In flat N = 1 superspace, this construction is simply effected by the conversion,∫
d2θ d2θ̄ Φ Φ̄′ ≈

∫
d2θ ΦT(Φ̄′) , (3.1.3)

up to space-time boundary terms. Here Φ and Φ′ are two chiral superfields and Φ̄′ is the

anti-chiral field obtained from Φ′ by complex conjugation. The kinetic multiplet equals

T(Φ̄′) = D̄2Φ̄′, where D̄ denotes the supercovariant θ̄-derivative. Obviously the kinetic

multiplet contains terms linear and quadratic in space-time derivatives, so that, upon

1The invariants discussed in this chapter do include individual terms proportional to the Riemann
tensor and quadratic in gauge field strengths. Here we are referring to the possibility of an invariant
purely quadratic in the vector multiplets.
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identifying Φ and Φ′, the right-hand side of (3.1.3) does indeed give rise to the kinetic

terms of an N = 1 chiral multiplet.

In [46] a corresponding kinetic multiplet was identified for N = 2 supersymmetry, which

now involves four rather than two covariant θ̄-derivatives, i.e. T(Φ̄) ∝ D̄4Φ̄. As a result,

T(Φ̄) contains up to four space-time derivatives, so that the expression∫
d4θ d4θ̄ Φ Φ̄′ ≈

∫
d4θΦT(Φ̄′) , (3.1.4)

does not correspond to a kinetic term, but to a higher-order derivative coupling. Express-

ing the chiral multiplets in terms of (products of) reduced chiral multiplets, invariants

such as (3.1.4) will correspond to higher-derivative couplings of vector multiplets. In

the presence of a conformal supergravity background, the Weyl weight of the kinetic

multiplets is relevant. Both in N = 1, 2 supergravity the kinetic multiplet carries Weyl

weight w = 2. The conversion starts from a w = 1 chiral multiplet for N = 1 and from

a w = 0 chiral multiplet for N = 2 supersymmetry, respectively.

To demonstrate this in more detail, consider an anti-chiral N = 2 supermultiplet in the

presence of the superconformal background. Its supersymmetry transformations follow

from taking the complex conjugate of (B.2.16). Precisely for w = 0 we note that the field

C̄ is invariant under S-supersymmetry and transforms under Q-supersymmetry as the

lowest component of a chiral supermultiplet with w = 2. This observation proves that

we are dealing with a w = 2 chiral supermultiplet, as is also confirmed by the weight

assignments specified in table B.5. What remains is to identify the various components

of this multiplet in terms of the underlying w = 0 multiplet. This can be done by

applying successive Q-supersymmetry transformations on C̄, something that requires

rather tedious calculations in the presence of a superconformal background.

Denote the components of a w = 0 chiral multiplet by (A,Ψ, B,G−,Λ, C), out of which

we construct the components of T(Φ̄w=0), denoted by (A,Ψ, B,G−,Λ, C)|T(Φ̄). In [81]

the following relation was established,

A|T(Φ̄) = C̄ ,

Ψi|T(Φ̄) = − 2 εij /DΛj − 6 εikεjlχ
jBkl − 1

4εijεkl γ
abTab

jk
↔
/D Ψl ,

Bij |T(Φ̄) = − 2 εikεjl
(
�c + 3D

)
Bkl − 2G+

abR(V)ab ki εjk

− 6 εk(i χ̄j)Λ
k + 3 εikεjlΨ̄

(k /Dχl) ,

G−ab|T(Φ̄) = −
(
δa

[cδb
d] − 1

2εab
cd
)

×
[
4DcD

eG+
ed + (DeĀDcTde

ij +DcĀD
eTed

ij)εij
]

+ �cĀ Tab
ijεij −R(V)−ab

i
k B

jk εij + 1
8Tab

ij TcdijG
+cd − εkl Ψ̄k

↔
/D R(Q)ab

l

− 9
4εij Ψ̄iγcγabDcχ

j + 3 εijχ̄
iγab /DΨj + 3

8Tab
ijεij χ̄kΨ

k ,
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Λi|T(Φ̄) = 2�c /DΨjεij + 1
4γ

cγab(2DcT
ab
ij Λj + T abij DcΛ

j)

− 1
2εij

(
R(V)ab

j
k + 2iR(A)abδ

j
k

)
γcγabDcΨ

k

+ 1
2 εij

(
3DbD − 4iDaR(A)ab + 1

4Tbc
ij
↔
Da T

ac
ij

)
γbΨj

− 2G+ab /DR(Q)abi + 6 εijD /DΨj

+ 3 εij
(
/Dχk B

kj + /DĀ /Dχj
)

+ 3
2

(
2 /DBkjεij + /DG+

abγ
ab δki + 1

4εmnTab
mn γab /DĀ δi

k
)
χk

+ 9
4 (χ̄lγaχl) εijγ

aΨj − 9
2 (χ̄iγaχ

k) εklγ
aΨl ,

C|T(Φ̄) = 4(�c + 3D)�cĀ− 1
2Da

(
T abij Tcb

ij
)
DcĀ+ 1

16(Tabijε
ij)2C̄

+Da

(
εijDaTbcij G

+bc + 4 εijT abij D
cG+

cb − Tbc
ij T acij D

bĀ
)

+
(
6DbD − 8iDaR(A)ab

)
DbĀ+ · · · , (3.1.5)

where in the last expression we suppressed terms quadratic in the covariant fermion

fields. Obviously terms involving the fermionic gauge fields, ψµ
i and φµ

i, are already

contained in the superconformal derivatives. Observe that the right-hand side of these

expressions is always linear in the conjugate components of the w = 0 chiral multiplet,

i.e. in (Ā,Ψi, Bij , G+
ab,Λ

i, C̄).

Using the result (3.1.5) one can construct a large variety of superconformal invariants

with higher-derivative couplings involving vector multiplets and the Weyl multiplet. The

construction of the higher-order Lagrangians therefore proceeds in two steps. First one

constructs the Lagrangian in terms of unrestricted chiral multiplets of appropriate Weyl

weights, and subsequently one expresses the unrestricted supermultiplets in terms of the

reduced supermultiplets in B.2.3. In these expressions it is natural to introduce a variety

of arbitrary homogeneous functions.

Hence we start by writing down the bosonic terms of the Lagrangian (3.1.4), making

use of the density formula (2.2.1) and of the product rule (B.2.17),

e−1L = 4D2AD2Ā′ + 8DµA
[
Rµa − 1

3R eµ
a
]
DaĀ′ + C C̄ ′

−DµBij DµB′ij + (1
6R+ 2D)BijB

′ij

−
[
εik Bij F

′+µν R(V)µν
j
k + εik B

′ij F−µνR(V)µνj
k
]

− 8DDµADµĀ′ +
(
8 iR(A)µν + 2Tµ

cij Tνcij
)
DµADνĀ′

−
[
εijDµTbcijDµAF ′+bc + εijDµTbcijDµĀ′ F−bc

]
− 4
[
εijTµbij DµADcF ′+cb + εijT

µbij DµĀ′DcF−cb
]

+ 8DaF−abDcF ′+cb + 4F−ac F ′+bcRa
b + 1

4Tab
ij TcdijF

−abF ′+cd . (3.1.6)

Note that the Lagrangian (3.1.6) vanishes whenever either one of the multiplets is equal

to a constant, as the full superspace integral of a chiral or an anti-chiral field vanishes

(up to total derivatives). This is reflected in the fact that the kinetic multiplet of a

constant anti-chiral multiplet vanishes, as can be easily deduced from (3.1.5).
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The above approach is a constructive one and in general it is hard to classify all these

invariant couplings, say, in terms of a limited number of functions, as is often possible

for supersymmetric theories. Here we are only interested in the construction of the

invariant containing F 4-couplings, so we restrict attention to invariants proportional to

a single kinetic multiplet, as given in (3.1.4) and correspondingly in (3.1.6). In that case,

one obtains the supergravity-coupled invariants corresponding to the actions derived in

[83, 85] in the abelian limit, expressing the composite chiral multiplets in terms of vector

multiplets as

Φ→ f(XI) , Φ̄′ → ḡ(X̄I) , (3.1.7)

where ΦI denote the reduced chiral multiplets associated with vector multiplets. Upon

expanding Φ and Φ̄′ in terms of the vector supermultiplets, making use of the material

presented in appendices B.2.2 and B.2.3, one obtains powers of the vector multiplet

components multiplied by derivatives of f(X) and ḡ(X̄), where as always, the XI denote

the complex scalars of the vector multiplets. Homogeneity implies that XI fI(X) = 0 =

X̄I ḡĪ(X̄), where fI and ḡĪ denote the first derivatives of the two functions with respect

to XI and X̄I , respectively.

As noted previously, the expression (3.1.6) vanishes whenever f(X) or ḡ(X̄) are con-

stant and therefore the Lagrangian will depend exclusively on mixed holomorphic/anti-

holomorphic derivatives of the product function f(X) ḡ(X̄). By summing over an arbi-

trary set of pairs of functions f (n)(X) ḡ(n)(X̄), we can further extend this function to

a general function H(X, X̄) that is separately homogeneous of zeroth degree in X and

X̄. Because H(X, X̄) is only defined up to a purely holomorphic or anti-holomorphic

function, it is thus subject to Kähler transformations

H(X, X̄)→ H(X, X̄) + Λ(X) + Λ̄(X̄) , (3.1.8)

just as for a rigid supersymmetry background. Hence H(X, X̄) can be regarded as a

Kähler potential, which may be taken real (so that Λ̄(X̄) = [Λ(X)]∗).

Carrying out the various substitutions leads directly to the following bosonic contribu-

tion to the supersymmetric Lagrangian (for convenience, we assume H to be real),

e−1L =HIJK̄L̄
[

1
4

(
G−ab

I G−ab J − 1
2Yij

I Y ijJ
)(
G+
ab
K G+abL − 1

2Y
ijK Yij

L
)

+ 4DaXI DbX̄K
(
DaXJ DbX̄L + 2G− ac J G+ b

c
L − 1

4η
ab Y J

ij Y
L ij
)]

+
{
HIJK̄

[
4DaXI DaXJ D2X̄K −DaXI Y J

ij DaY K ij

−
(
G−ab I G− Jab −

1
2Y

I
ij Y

Jij)
(
�cX

K + 1
8G
−K
ab T abijεij

)
+ 8DaXIG− Jab

(
DcG+ cbK − 1

2DcX̄
KT ij cbεij

)]
+ h.c.

}
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+HIJ̄
[
4
(
�cX̄

I + 1
8G

+ I
ab T

ab
ijε

ij
)(
�cX

J + 1
8G
− J
ab T abijεij

)
+ 4D2XI D2X̄J

+ 8DaG− abI DcG+c
b
J −DaYijI DaY ij J + 1

4Tab
ij Tcdij G

−ab IG+cd J

+
(

1
6R+ 2D

)
Yij

I Y ij J + 4G−ac I G+
bc
J Rab

+ 8
(
Rµν − 1

3g
µνR+ 1

4T
µ
b
ij T νbij + iR(A)µν − gµνD

)
DµXI DνX̄J

−
[
DcX̄J

(
DcTabij G− I ab + 4T ij cbDaG− Iab

)
εij + [h.c.; I ↔ J ]

]
−
[
εik Yij

I G+ab J R(V)ab
j
k + [h.c.; I ↔ J ]

]]
, (3.1.9)

where (we suppress fermionic contributions),

G−ab
I =F−ab

I − 1
4 X̄

I Tab
ijεij ,

�cX
I =D2XI +

(
1
6R+D

)
XI . (3.1.10)

In view of the Kähler equivalence transformations (3.1.8), the mixed derivative HIJ̄
can be identified as a Kähler metric. The results for the metric, connection, and the

curvature of the corresponding Kähler space are as follows

gIJ̄ =HIJ̄ ,

ΓIJK = gIL̄HJKL̄ ,

RIJ̄KL̄ =HIKJ̄L̄ − gMN̄ ΓMIK ΓN̄ J̄L̄ . (3.1.11)

The Lagrangian (3.1.9) can then be written in a Kähler covariant form, as shown in [81].

We conclude that the most general four derivative Lagrangian for vector multiplets is

the sum of (3.1.2) and (3.1.9). One can obtain more general couplings, for example

R2F 2- and R4-type couplings by including the Weyl multiplet in the functions f , g in

(3.1.7), as in the prepotential (3.1.1). The resulting invariants are similar to the ones in

[86, 87]. We refer to [81] for a discussion of these possibilities.

3.2 BPS attractors

We now give a brief account of BPS attractors in N = 2 theories, following [54]. As

mentioned in the introduction, the use of off-shell methods leads to results that are

independent of a Lagrangian. In the next section we discuss the implementation of

these results in the four derivative case.

In a fully supersymmetric background, all fermions and their supersymmetry variations

must vanish for any choice of Q- and S-supersymmetry parameters εi, ηi. It is convenient

to consider S-invariant combinations, so that all terms involve only the parameter ε. To

this end, we introduce the spinors

ζH
i = χ−1Ω̄αβAi

α ζβ , ζV
i = −i eK

[
(F̄I − X̄JFIJ)ΩI

i − X̄IFIA Ψ̂i

]
, (3.2.1)
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both of which transform by constant shifts under S-supersymmetry

δζH
i =χ−1Ω̄αβAi

αD/Aj
β εj + εijη

j , (3.2.2)

δζV
i =eKD/ e−Kεi + ieK

(
X̄J

↔
/Dµ FJ − F̄J

↔
/Dµ X

J

)
εi − 1

2 iεij eK/2〈F−ab,V〉 γ
abεj

+ eK N IJ
[
(F̄I − F̄IKX̄K)(FJA B̂ij − F̄JA εikεjlB̂kl)

]
εj + 2 ηi , (3.2.3)

where F− is the anti-selfdual part of the electric and magnetic field strengths in (2.2.15).

Adding the appropriate multiple of the above spinors to the supersymmetry variations of

the fermionic fields, one can construct S-invariant combinations and infer the constraints

on the bosons by demanding that all linearly independent terms of the resulting Q-

variations vanish separately. First, the combination 2 ζH
i − εijζV j is S-invariant, and its

variation implies among other relations the expression (2.2.9) for the composite U(1)

gauge field and that

Dµ(χ−1 eK) = 0 , e−K = i(FI X̄
I − F̄I XI) . (3.2.4)

The scalar eK is analogous to the one in (2.2.5), but here also depends on the Weyl

multiplet through (3.1.1). Nevertheless, this is still the combination appearing as the

coefficient of the Ricci scalar in (3.1.2) and is constrained to be proportional to the

hyper-Kähler potential χ by the equation of motion for the scalar D, similar to (2.2.4).

Imposing that the S-invariant combination of the vector multiplet spinor in (B.2.19)

vanishes one finds

F−ab = 1
4 εijT

ij
ab V̄ , Dµ(eK/2V) = 0 , (3.2.5)

The second relation implies that all vector multiplet scalars are constant, as expected.

A similar analysis for a general chiral multiplet in (B.2.16) reveals that the bottom

component A is constant, whereas all higher components vanish, consistent with the

special case w = 1 in (3.2.5) above2. Furthermore, the variations of Ψ̂i in (B.2.24) and

ζα in (B.2.25) imply that Â and the hypermultiplet scalars Ai
α are also constant.

Turning to the Weyl multiplet, we impose the vanishing of the variations for χi in (B.2.1)

and R(Q)ab
i in (B.2.23). Note that we do not demand that the variation of the gravitino

vanishes, since that is too restrictive for a gauge field. We rather use its field strength

R(Q)ab
i. The results relevant to the discussion here are the following3

DcT ijab = −1
2DdK

(
δdc T

ij
ab − 2δd[a T

ij
b]c + 2ηc[aT

ij
b]
d
)
,

R(V )ab
i
j = 0 , R̂(M)ab

cd = 0 , (3.2.6)

where the last relation implies that the spacetime is conformally flat. Finally, it turns

out that one needs to consider the variation of at least one fermionic derivative [54]. We

2Note that the tensor component of a reduced chiral multiplet is given by (B.2.19)
3See (B.2.9) for the definition of the modified curvature R̂(M)ab

cd.
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choose to use the variation of Dµζ
H
i , which results to

R(ω, e)µ
a− 1

6 e
a
µR(ω, e)µ

a = −1
8T

ij
µb T

ab
ij +DµDaK+ 1

2DµK D
aK− 1

4 e
a
µ (DcK)2 . (3.2.7)

These results are sufficient to uniquely specify the spacetime background and the tensor

T ijab, once some gauge choices similar to those in section 2.2.1 are made. We fix bµ = 0,

and eK to a constant, which also implies that χ is a constant. In view of these choices,

(3.2.6) and (3.2.7) imply that Tab is covariantly constant and the metric is Ricci flat. As

in (1.2.44), the metric is of the Bertotti-Robinson type

ds2 = − r2

|c|2
dt2 +

|c|2

r2
dr2 + |c|2 dθ2 + |c|2 sin2 θ dφ2 , (3.2.8)

whereas the tensor is harmonic

1
4 εijT

ij

âb̂
= εâb̂ĉ ∂ĉ

c

r
, 1

4 εijT
ij
tâ = i∂â

c

r
. (3.2.9)

In these relations, c is a complex constant and â, b̂, ĉ denote spatial world indices.

Using the standard definition (2.2.14) for the charges, (3.2.5) becomes

Γ = 2 Re(c̄V) ⇒ Z(Γ) = −i c , (3.2.10)

where the definition in (2.2.29) was used. The final form of the attractor equations is

identical to (2.2.43)

2 Im
(
Z̄ V

)
= Γ . (3.2.11)

Note however that the section now implicitly involves the Weyl background through

FI(X, Â), so that the attractor equations are significantly more complicated.

3.3 The attractor equations and the entropy

We now specialise the above results for the Lagrangian expressed as the sum of (3.1.2)

and (3.1.9). Firstly, we point out the non-renormalisation theorem of [81], which follows

from the remark on chiral multiplets of weight zero below (3.2.5). Inspection of the F 4

invariant in the form (3.1.6) shows that it is manifestly quadratic in components of w = 0

chiral multiplets that vanish in a fully supersymmetric background. Since the entropy

and charges are expressed through first order variations of the action with respect to

the Riemann tensor and the field strengths (see Appendix C), all contributions from the

invariant (3.1.9) vanish identically in the BPS limit. Therefore, for the remainder of the

section we concentrate on the Lagrangian in (3.1.2).
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The entropy is given by the generic formula (C.2.16), which we repeat here with appro-

priate normalisation

S = 2π

∫
H

∂L
∂Rµνρσ

εµνερσ , (3.3.1)

where εµν denotes the binormal on the horizon. In order to compute the derivative of the

Lagrangian with respect to the Riemann tensor, we again make use of the observation

on the vanishing of all chiral multiplet components in the BPS limit except the bottom

one. The only terms in (3.1.2) that are not quadratic in such higher components are the

ones involving the Ricci scalar explicitly and Ĉ, so that

8π e−1 ∂L
∂Rµνρσ

=− i
2

(
FI X̄

I − F̄I XI
)
gµνgρσ − Im

(
FA

∂Ĉ

∂Rµνρσ

)
=− i

2

(
FI X̄

I − F̄I XI
)
gµνgρσ − 8 gνσ ImFA εijT

ijµaεklTkl
ρ
a , (3.3.2)

where (3.2.6) was used to evaluate the last term. The entropy reads

S = π
(

i
(
FI X̄

I − F̄I XI
)
|Z(Γ)|2 − 256 ImFA(X, Â)

)
, (3.3.3)

where the scalar Â = −64 Z̄(Γ)−2 and we used the fact that FA is a homogeneous

function of weight zero. Once the attractor equations (3.2.11) are solved for the scalars,

all quantities, including the entropy, are expressed only in terms of charges.

In string theory compactifications on Calabi-Yau manifolds, which is the prime example

in this thesis, the leading correction to the prepotential in (2.3.1) takes the form

F (X, Â) = − 1

12

CABCX
AXBXC

X0
− 1

24

1

64

cAX
A

X0
Â . (3.3.4)

We now exhibit the attractor equations above in more detail for this prepotential, both

to compare with the microscopic prediction for the corrected entropy in section 2.4 and

for future reference. We follow the same method as in section 2.3 for the two derivative

action, using the rescaled variables introduced in (2.3.8), in the form

Y I = Z̄ XI , Υ = Z̄2 Â = −64 . (3.3.5)

Parametrising the vector multiplet scalars by Y A = 1
2(−φA+ipA), the magnetic attractor

equations of (3.2.11) are trivially satisfied. It remains to solve the electric equations, a

task that is considerably simplified when some restrictions on the charges are imposed.

Consider first the case where all but one magnetic charges are zero, chosen as pA = 0,

p0 6= 0. We then obtain the following expressions for the entropy

S =
2πp0

(φ02 + p02)2

[ 1

12
p02

CABCφ
AφBφC +

1

6
cAφ

Aφ02
]
, (3.3.6)
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and the remaining attractor equations

qA =
p0

φ02 + p02

[ 1

4
CABCφ

BφC − 1

6
cA

]
,

q0 = − 2φ0p0

(φ02 + p02)2

[ 1

12
CABCφ

AφBφC − 1

6
cAφ

A
]
. (3.3.7)

It is possible to find the corresponding expressions for non-zero pA charges, using the

symmetry of the theory based on (3.3.4) under the following transformations, which take

the form of electric/magnetic dualities (see, e.g. [88]),

X0 → X0 ,

XA → XA + kAX0 ,

F0 → F0 − kAFA + 1
4 CABCk

BkC XA + 1
12CABCk

AkBkC X0 ,

FA → FA − 1
2 CABCk

BXC − 1
4 CABCk

BkC X0 , (3.3.8)

where the parameters kA are real. In principle there could be other dualities as well,

depending on the specific form of the coefficients CABC and cA. It follows that the

electric and magnetic charges will exhibit similar transformations,

p0 → p0 ,

pA → pA + kAp0 ,

q0 → q0 − kAqA + 1
4 CABCk

BkC pA + 1
12CABCk

AkBkC p0 ,

qA → qA − 1
2 CABCk

B pC − 1
4 CABCk

BkC p0 . (3.3.9)

Note that this is a symmetry of the equations of motion and holds irrespective of any

supersymmetry preserved by a specific solution.

Let us now turn to the case of a black hole with p0 = 0, but otherwise arbitrary charges.

Then, (3.3.3) and (3.2.11) imply

S = −2π

φ0

[ 1

12
CABC p

ApBpC +
1

6
cAp

A
]
, (3.3.10)

with

qA = − 1

2φ0
CABC p

BφC ,

q̂0 ≡ q0 − 1
6D

ABqAqB = − 1

12

1

φ02

[
CABC p

ApBpC + 2 cAp
A
]
, (3.3.11)

where DAB is the inverse of DABCp
C . Just as before this gives rise to

S = 2π
√

1
12 |q̂0(CABC pApBpC + 2 cApA)| . (3.3.12)
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Compared to the microscopic prediction in section 2.4.2, this expression agrees with the

entropy in (2.4.6), upon identifying CABC = 2 CABC and cA = c2A.

As the reader can easily verify, the expressions for q̂0 and for the entropy are invariant

under the transformations (3.3.9) with p0 = 0. Also the expression for the charges qA

is consistent with this symmetry as it acts on φA according to φA → φA + kA φ0, which

follows straightforwardly from (3.3.8). When the R2 correction is set to zero by cA = 0,

the above results agree with the ones presented in section 2.3. In particular, the reader

can verify that (3.3.9) is a symmetry of (2.3.12), where all charges are present.



Chapter 4

BPS attractors in five dimensions

In this chapter we give a detailed discussion of supersymmetric black hole attractors in

five spacetime dimensions, including four derivative interactions. There are a number

of reasons to explore the five-dimensional setting. First, the space of solutions is richer

compared to four dimensions, both due to the absence of electric/magnetic duality and

because the BPS conditions allow for nontrivial angular momentum. It is very interesting

to study the effects of this extra charge, especially for black rings, which have no static

limit. A further motivation is that five-dimensional black holes are naturally related to

four-dimensional ones by dimensional reduction, as in section 2.3. An investigation of

this link can lead to a better understanding of the microscopic theories for both case,

through a precise mapping of the relevant quantities.

The two varieties of five-dimensional BPS attractors, associated with the near-horizon

geometry of the rotating black hole [39, 89], and of the black ring [40], have been studied

in the context of the two-derivative effective action in [25, 35, 58, 89–91], using mostly on-

shell methods. It is possible to include higher-derivative couplings into the conventional

two-derivative supergravity action, such as the four-derivative supersymmetric action

constructed in [32]. Both the two- and the four-derivative couplings involve a Chern-

Simons term, which is a characteristic feature of five-dimensional supergravity. In the

two-derivative case the Chern-Simons term is cubic in the gauge fields, whereas the

higher-derivative mixed Chern-Simons term involves also the spin connection field. As

a result the Lagrangian is only gauge invariant up to a total derivative, a feature that

causes certain technical complications.

A study of BPS black holes and black rings that includes these higher-derivative inter-

actions was initiated in [92–95]. In these works, a number of black hole solutions was

constructed, and the corresponding attractors were studied by taking the near-horizon

limit. In addition, the entropy function formalism [19] was used to determine the macro-

scopic entropy of these black holes, after reducing to four dimensions to restore gauge

63
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invariance of the action. A corresponding analysis for black rings was hampered by the

difficulty in obtaining full asymptotically flat solutions.

Here, we present a comprehensive treatment of five-dimensional N=2 attractors in the

presence of the same four-derivative couplings, using the tools provided by the off-shell

calculus. This analysis of the near-horizon behaviour thus relies only on the full su-

persymmetry enhancement and does not take into account the more global aspects of

possible solutions. In particular, no assumptions are made concerning the existence of

interpolating solutions towards asymptotic infinity, and no use is made of any informa-

tion from outside the near-horizon region. This is in line with the idea that the entropy

of black branes should be determined fully by the horizon properties, in the spirit of

the Bekenstein-Hawking area law.1 As in the four-dimensional analysis, we find that

the allowed space-time geometry is the same as for the two-derivative theory, which in

the case at hand is described by the AdS2 × S2 × S1 geometry of [97]. Because this

geometry interpolates between the black hole and the black ring attractors, we can treat

both types of five-dimensional attractors in a unified way for a large part of the analysis.

The higher-derivative corrections in the action enter into the expressions for both the

entropy and the attractor equations pertaining to electric charges and angular momenta.

For the Wald entropy [82, 98, 99] we obtain a universal formula expressed in terms of the

horizon fields, which applies to both black holes and rings. This is an intriguing result,

because the derivation in these two cases proceeds rather differently due to a number

of subtleties associated with the mixed gauge-gravitational Chern-Simons term. Our

treatment of this mixed Chern-Simons term is inspired by, but not completely identical

to, the approach followed in [100]. The existence of a universal entropy formula is in line

with previous results based on the entropy function upon reduction to four dimensions,

and we confirm this by confronting the results with the four-dimensional near-horizon

analysis.

The charges and the angular momenta can also be defined at the horizon. In view of the

first law of black hole mechanics, this requires the use of the same Noether potential that

enters into the determination of the Wald entropy. The evaluation of the full Noether

potential is rather involved, and, as alluded to above, the relevant potentials do not take

the same form for black rings and for black holes. The electric charges defined at the

horizon are conserved by construction (although they are not invariant under large gauge

transformations in the case of black rings). Subtleties arise with the proper definition of

the gauge fields in the presence of the Chern-Simons terms, and those have important

implications on the attractor equations for black hole and black ring charges.

As mentioned above, the BPS near-horizon geometries come in two varieties. In the

case of a spacelike horizon cross section with spherical topology, we recover the AdS2 ×
S3 near-horizon geometry of the rotating black hole [39, 89]. In the other case we

1See, however, [96], for a possibly different perspective.
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find the AdS3 × S2 near-horizon geometry of the supersymmetric black ring [40]. The

latter constitutes a special limit of the generic BPS near-horizon geometry for which the

spacelike cross section of the horizon has the topology of S2 × S1, as is appropriate for

a ring. Unlike the black hole, the black ring carries two independent angular momenta

associated with rotations in two orthogonal planes. There are some other new features

related to the non-contractible S1. The first concerns the fact that this background

allows for non-trivial magnetic charges on the circle, as magnetic charges are not pointlike

in five dimensions, but stringlike objects. Hence the ring carries magnetic dipole charges.

The second one concerns the non-trivial moduli associated with Wilson lines along the

circle. We present a careful treatment of the gauge fields in this topology, recovering the

correct electric charges and their associated attractor equations, following the strategy

of [58].

Finally, we comment on the connection between corresponding black hole solutions and

their associated entropy in four and in five dimensions. This connection is motivated

by the fact that the four-dimensional theory can be obtained by dimensional reduction

on a circle from the five-dimensional one [56–58], although there may be subtleties.

Following this reasoning, our five-dimensional attractor equations are related to the

four-dimensional attractors with a specific R2-coupling. Comparing with the results in

the previous chapter, we find agreement with four dimensions in the case of the black

ring, except that the quantity q̂0 in four dimensions will only depend on the unmodified

electric charges. For the case of the rotating black hole, we find a clear discrepancy in

the contributions from the higher-derivative couplings to the electric charges. A similar,

though somewhat different, deviation from the four-dimensional situation was observed

in [93–95].

4.1 The R2 invariant in five dimensions

As explained for the two derivative case in section 2.1.1, the construction of supersym-

metric invariants in five dimensions depends on composite linear multiplets. There, we

showed how a linear multiplet can be constructed out of a set of vector multiplets, but

the same strategy can also be used to construct a linear multiplet from the square of the

Weyl multiplet. In view of the fact that the transformations for the Weyl multiplet fields

are nonlinear, this construction is considerably more complicated. The starting point,

as before, is to define a composite field LWij in terms of the Weyl multiplet fields, which

satisfies all the requirements for the lowest-dimensional component of a superconformal

linear multiplet. This linear multiplet has originally been determined in [32]. In our

conventions we find the following result,

LijW = − εk(i
[

1
32 iR̄abk(Q)Rj) ab(Q) + 32

3 iχ̄kχ
j) − 1

4T
abRabk

j)(V )
]
, (4.1.1)
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which indeed is S-invariant and transforms under Q-supersymmetry into a spinor dou-

blet. Furthermore it scales with Weyl weight 3, as is appropriate for a linear multiplet.

By applying successive supersymmetry transformations, we identify the other compo-

nents of this linear multiplet,

ϕiW = 1
64Rab

cd(M) γcdR
abi(Q) + 1

32Rabj
i(V )Rabj(Q)− 3

4T
abRab

i(S)

− 1
6Rabj

i(V )γabχj − 3
8 iDaTbc γ

cRabi(Q) + 3
16T

abTcd γ
cdRab

i(Q)

+ 4iT abγaDbχ
i − 1

2 i
(
γab /DTab + 3 /DγabTab

)
χi + 8

3

(
2D + 3T 2

)
χi ,

ÊaW =− 1
128 i εabcde

[
Rbc

fg(M)Rdefg(M) + 1
3Rbcj

i(V )Rdei
j(V )

]
+ 3

2 i εabcdeDb

[
TcfD

fTde + 3
2TcfDdTe

f
]

−Db

[
3
8R(M)cd

ab T cd + 2T abD + 3
4T

ab T 2 − 9T acTcdT
db
]

+ · · · ,

NW = 1
64Rab

cd(M)Rcd
ab(M) + 1

96Rabj
i(V )Rabi

j(V ) + 15
8 T

abTcdRab
cd(M)

+ 3T abDcDaTbc − 3
2

(
DaTbc

)2
+ 3

2DcTabD
aT cb

− 9
4 iεabcdeT

abT cdDfT
fe + 8

3D
2 + 8T 2D − 33

8 (T 2)2 + 81
2 (T acTbc)

2

+ · · · , (4.1.2)

where the dots refer to fermionic terms, which we will not need for what follows.

In order to represent a linear multiplet, the vector ÊaW should satisfy the constraint

DaÊ
aW = 0, as a consequence of which this vector can be expressed in terms of a

three-rank tensor field EW
µνρ. In principle, we can determine the full expression of this

composite tensor by verifying its supersymmetry transformation (B.1.14). This is how

we originally obtained (2.1.6). For the Weyl multiplet, however, this calculation is

considerably more involved, so that we restrict ourselves to the expression for the purely

bosonic terms. The result reads as follows,

EW
µνρ = − 3

16ω[µ
ab
(
∂νωρ] ab − 2

3ων ac ωρ]
c
b

)
− 1

16V[µi
j
(
∂νVρj

i − 1
3Vνj

k Vρ]k
i
)

− 9
(
Tσ[µDσTνρ] + 3

2Tσ[µDνTρ]
σ
)

+ i e εµνρσλ

(
3
16R(M)κτ

σλT κτ + T σλD + 3
8T

σλT 2 − 9
2T

σκTκτT
τλ
)

+ · · · , (4.1.3)

where the dots represent the fermionic contributions. It is not difficult to verify that

this expression is invariant under scale transformations and conformal boosts, up to

tensor gauge transformations and up to terms proportional to fermions (we recall that

the spin connection depends both on bµ and ψµ
i), and that the tensor field strength

corresponding to it reproduces the bosonic terms in ÊaW shown in (4.1.2).

The construction of the relevant invariant follows from the results presented in section

2.1.1, by using (2.1.2) to couple the linear multiplet quadratic in the Weyl multiplet to

a vector multiplet characterized by constants cA, so that its scalar field equals 4
3cAσ

A,
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where the prefactor is chosen for later convenience. Employing the same normalizations

as in section 2.1.1, the higher-derivative Lagrangian is given by

32π2 e−1Lvww = 1
3 cAYij

A T abRabk
j(V ) εki

+ cAσ
A
[

1
48Rab

cd(M)Rcd
ab(M) + 1

72Rabj
i(V )Rabi

j(V )
]

− 1
96 ie−1 εµνρστ cAWµ

A
[
Rνρ

ab(M)Rστab(M) + 1
3Rνρj

i(V )Rστi
j(V )

] ]
+ 1

4cA
(
10σA Tab − FabA

)
R(M)cd

ab T cd

+ 4 cAσ
A
[
T abDcDaTbc − 1

2

(
DaTbc

)2
+ 1

2DcTabD
aT cb

+ 8
9Rab(T

acT bc − 1
2η

abT 2)D2 + 8
3 T

2D − 11
8 (T 2)2 + 27

2 (T acTbc)
2
]

− 4
3 cAFab

A
[
T abD + 3

8T
ab T 2 − 9

2 T
acTcdT

db
]

+ i εabcde
[
cAFab

A
(
TcfDfTde + 3

2TcfDdTe
f
)
− 3 cAσ

ATabTcdDfTfe
]
,

(4.1.4)

which should be added to the lowest order action (2.1.7). In the above result there

are two terms which cannot be written in a manifestly gauge invariant form, related to

the appearance of gravitational and SU(2) Chern-Simons terms. To avoid these Chern-

Simons terms we have chosen to write their contribution in a form that is explicitly

proportional to the gauge fields Wµ
A. These non-covariant terms add to the two deriva-

tive Chern-Simons term and must also be handled carefully in the presence of magnetic

charges.

The construction of this action parallels the corresponding four-dimensional one in

(3.1.2). Both contain R2-type interactions with scalar dependent couplings, very sim-

ilar to the gauge theory action. In fact, upon dimensional reduction on a circle the

five-dimensional R2 invariant reduces to a sum of the Lagrangian in (3.1.2) with a pre-

potential as in (3.3.4), and the F 4 invariant (3.1.9), associated to the Kaluza-Klein gauge

field.

4.2 BPS attractors

In this section we derive the conditions for full supersymmetry of the field configuration

in five dimensions. Here we follow the systematic approach introduced for four space-

time dimensions in [54] and outlined in section 3.2. In this section the analysis is done

entirely at the off-shell level, so that all results apply to any N = 2 superconformal

action, perhaps including higher derivative corrections. Our analysis differs from the

one of [95], where on-shell information was already introduced at an earlier stage of the

calculation. Only in the next section 4.3 we will make use of the supersymmetric action.
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Although our analysis is different in spirit and covers a much larger class of supergravity

theories, the results turn out to overlap substantially with those of [25].

4.2.1 Supersymmetry

To analyze supersymmetry one chooses a purely bosonic field configuration and re-

quires that the supersymmetry variation of all fermion fields vanish up to a uniform

S-supersymmetry transformation. In this context it is convenient to define two ‘com-

pensating’ spinor fields, ζiV and ζiH, belonging to the vector multiplet sector and the

hypermultiplet sector, respectively, which transform linearly under S-supersymmetry,

ζiV =
1

6C(σ)
CABCσ

AσB ΩiC , ζiH = − 2

3χ
εij ΩαβAj

αζβ . (4.2.1)

Here we have used a symmetric rank-three tensor CABC and the corresponding function

C(σ) = 1
6 CABCσ

IσJσK that may be identified with the ones used in the construction

of the lowest order action in section 2.1.1. This is by no means necessary, as one

could choose an arbitrary nonvanishing tensor, at the expense of making the following

discussion somewhat more complicated.

It is straightforward to write down the supersymmetry variations of these two spinor

fields (which both carry scaling weights equal to 1
2),

δζiV =
(
Tab − 1

12Fab
A∂A lnC(σ)

)
γabεi − 1

6 i /D lnC(σ) εi − 1
3εjkY

ijA∂A lnC(σ) εk + ηi ,

δζiH = −1
6 i /D lnχ εi + 1

3 i/kj
i εj + ηi , (4.2.2)

where here and henceforth we suppress terms proportional to the fermion fields. Fur-

thermore we made use of the identity [34],

χ−1Ωαβ Ai
αDµAjβ = 1

2εij Dµ lnχ+ kµi
kεkj , (4.2.3)

where kµj
i is proportional to the SU(2) Killing vectors of the underlying hyperkähler

cone.

We now require that the S-supersymmetric linear combinations,

ζiV − ζiH , ζα − 3
2Ai

α ζiH , ΩiA − σAζiV ,

ϕi − 3 εjkL
ijζkV , χi − 3

16Tabγ
abζiV , (4.2.4)
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do not transform under Q-supersymmetry. This leads to the following conditions,

Dµ(χ−1/2Ai
α) = 0 ,

∂µ(C−1/3(σ)σA) = 0 ,

Dµ
(
C−1(σ)Lij

)
= 0 ,

C(σ)χ−1 = constant ,

Fab
A = 4σATab ,

D[a

(
C1/3(σ)Tbc]

)
= 0 ,

Db
(
C2/3(σ)T ba

)
= iεabcdeTbcTdeC

2/3(σ) ,

kµj
i = 0 ,

Rµνi
j(V ) = 0 ,

Y ijA = 0 ,

N = 0 ,

Êa = 0 ,

D = 0 ,

(4.2.5)

which were also given in [95] in the conventions of [31, 32]. However, there are further

constraints in view of the fact that all fermionic quantities must vanish under supersym-

metry. Experience from the corresponding analysis in four space-time dimensions [54]

indicates that one must also consider the variations of

Rab
i(Q)− (Tcdγcdγab − 4Tab)ζ

i
V ,

Dµζ
i
H − 1

6 [δij /D lnχγµ − 2/̂kj
iγµ − 6iTµaγ

a]ζjH . (4.2.6)

Combining the result of the first variation with the previous results, one finds,

DcTab = 1
2 i ηc[aεb]defg T

deT fg

− 1
3

[
2D[a lnC(σ)Tb]c −Dc lnC(σ)Tab − 2Dd lnC(σ)Td[a ηb]c

]
,

Rab
cd(M) = −2

[
T 2 δab

cd + 4TabT
cd + 4T[a

cTb]
d − 8Te[aT

e[cδb]
d]
]
. (4.2.7)

In addition one considers the variation of the second combination in (4.2.6), subject

to the conditions (4.2.5). This confirms the consistency of the previous results and, in

addition, gives rise to one more condition,

fµ
a =− 1

6DµD
a lnχ+ 1

18Dµ lnχDa lnχ− 4TµbT
ab

+ 1
4

[
3TbcT

bc − 1
9(Db lnχ)2

]
eµ
a . (4.2.8)

Using the arguments presented in [54], we conclude that the above equations (4.2.5),

(4.2.7) and (4.2.8) comprise all the conditions for a supersymmetric field configuration

consisting of the Weyl multiplet, vector multiplets, linear multiplets and hypermultiplets,

without imposing equations of motion. Because the fermionic equations of motion must

be satisfied, simply because of supersymmetry, most of the bosonic equations of motion

must be satisfied as well. There are, however, exceptions, such as the equation of motion

associated with the scalar field D belonging to the Weyl multiplet, which does not appear

as the supersymmetry variation of a fermionic expression.
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Combining the second equation of (4.2.7) with (4.2.8), we derive the following equation

for the Riemann tensor,

Rabcd(ω, e) = 2 ea
µeb

ν
(
∂[µων]

cd − ω[µ
ceων]e

d
)

= − 8
(
TabT

cd + Ta
[cTb

d]
)

+ δc[aδ
d
b]

(
4TefT

ef − 2
9(De lnχ)2

)
− δ[a

[c
(

16Tb]eT
d]e + 4

3Db]D
d] lnχ− 4

9Db] lnχDd] lnχ
)
. (4.2.9)

4.2.2 Space-time geometry

Before discussing the resulting space-time geometry we have to impose a number of

gauge choices, as in section 3.2. We set the dilatational gauge field bµ = 0 (in fact,

K-invariance implies that the equations found above are already independent of bµ) and

furthermore we set the function C(σ) equal to a constant C. This implies that also χ

becomes a constant. The ratio of the two constants C and χ will eventually be defined

by the equation of motion for the field D, but at the moment we proceed without

making reference to any particular Lagrangian. Note that the various fields will still

be subject to constant scale transformations which are a remnant of the full space-time

dependent dilatations. Physical results should, of course, be insensitive to these scale

transformations. In addition we set the SU(2) gauge connections to zero, in view of

the fact that their field strength is vanishing (c.f. (4.2.5)). In this situation the various

scalar fields σI and Lij are all constant.

The resulting geometry is now of a special type, as the tensor Tµν is an example of a

conformal Killing-Yano tensor [101]. Locally, in five space-time dimensions, this tensor

generically induces a family of pairs of two-surfaces which together with the fifth or-

thogonal dimension foliate the space-time. It also leads to a Killing vector associated

with this fifth dimension and a symmetric Killing tensor,

ξµ = ie−1 εµνρστ Tνρ Tστ , Kµν = Tµρ Tν
ρ , (4.2.10)

where e = det(eµ
a). Using the properties of the tensor Tµν (in the gauge indicated

above), we obtain the following results for the Riemann tensor and for the derivative of

Tµν ,

Rabcd = −8
(
TabT

cd + Ta
[cTb

d]
)
− 16 δ[a

[c Tb]eT
d]e + 4 δc[aδ

d
b] TefT

ef ,

DρTµν = 1
2gρ[µ ξν] . (4.2.11)

Furthermore we note the results,

Dµξν = −ie εµνρστξ
ρT στ ,

DρKµν = −1
2ξ(µTν)ρ ,

ξµTµν = 0 ,

T 2 ≡ (Tab)
2 = constant .

(4.2.12)
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From these equations it is clear that ξµ is indeed a Killing vector. Furthermore one may

easily verify that the Riemann tensor satisfies the Bianchi identity.

If ξµ vanishes then the tensors Tµν and Kµν are covariantly constant and so is the Rie-

mann tensor so that we are dealing with a locally symmetric space. In this particular case

the space is in fact the product of a two- and a three-dimensional maximally symmetric

space, as the Riemann tensor decomposes into two Riemann tensors corresponding to

these subspaces satisfying Râb̂
ĉd̂ ∝ c T 2 δ[â

ĉδb̂]
d̂, with proportionality c = −16 and c = 4

for the two- and the three-dimensional subspace, respectively. Here the indices â, b̂, ĉ, d̂

refer to the tangent-space projected onto the two- or three-dimensional subspaces.

Rather than considering this case any further, we concentrate on the more general case

where ξµ 6= 0 and return to the limit of vanishing ξµ at the end. Obviously the line

element must reflect the isometry associated with the Killing vector ξµ. Choosing a co-

ordinate ψ by ξµ∂µ = ∂/∂ψ, we decompose the coordinates into ψ and four-dimensional

coordinates xm, where m = 1, 2, 3, 4, without committing ourselves to a certain signa-

ture yet.2 Correspondingly, the tangent-space indices a = 1, 2, . . . , 5 are decomposed

into a = 5 and indices p, q, . . . = 1, 2, 3, 4. Upon a suitable local Lorentz transformation,

the fünfbein is brought into the form,

eµ
5 dxµ = eg

[
dψ + σm dxm

]
, eµ

p dxµ = e−g/2 êm
p dxm . (4.2.13)

In view of the isometry corresponding to shifts of the coordinate ψ we may assume that

g, σm and the vierbein field êm
p do not depend on ψ. The corresponding inverse fünfbein

components are given by,

e5
ψ = e−g , e5

m = 0 , ep
ψ = −σp eg/2 , ep

m = eg/2 êp
m , (4.2.14)

where, on the right-hand side, four-dimensional tangent-space and world indices are

converted by the vierbein êm
p and its inverse (so that, e.g. σp = êp

m σm, and the

covariant derivative ∇p contains the spin connection ω̂m
pq, associated with the vierbein

êm
p). This leads to the following expressions for the spin connection, ωabc ≡ eaµ ωµcd,

ωpqr = eg/2
[
ω̂pqr + δp[q∇r]g

]
,

ω5pq = ωqp5 = 1
2e2gQpq ,

ω55p = −eg/2∇pg , (4.2.15)

where Qpg equals,

Qpq = êp
mêq

nQmn , Qmn = ∂mσn − ∂nσm . (4.2.16)

2 At this point we are using Pauli-Källén metric conventions, where the signature is determined by
making one of the coordinates purely imaginary. This enables us to consider all possible signatures at
once, so that this analysis encompasses the solutions for minimal supergravity found in [25]. Momentarily
we will assume that the Killing vector ξµ is spacelike.
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Let us now return to (4.2.11) and consider the second equation, which we write in

tangent-space indices as,

ec
µ ∂µTab + 2ωc[a

d Tb]d = 1
2δc[aδb]5 ξ , (4.2.17)

where we made use of the fact that T5a = 0 and defined ξ = iεpqrsTpqTrs, where εpqrs =

ε5pqrs so that ξψ = e−g ξ. Changing the overall sign of the epsilon tensor is irrelevant

as it only corresponds to a sign change of the coordinate ψ.3 Imposing the equations

contained in (4.2.17) leads to the following results,

∂ψTab = 0 , Qpq = −2ie−2g εpqrsT
rs , ∇pTqr = 0 , g = constant . (4.2.18)

These results are consistent with what is found when considering the Riemann tensor

from the connections (4.2.15) upon comparison with the first equation (4.2.11).4 Here

and henceforth we will be assuming that the four-dimensional subspace has signature

(−,+,+,+), so that the Killing vector ξµ is spacelike and ξ is real. The various curvature

components read,

Rpq5r = −1
2e5g/2

[
∇rQpq +∇rgQpq +∇[pgQq]r − δr[pQq]s∇sg

]
,

R5p5q = eg
[
∇p∇qg − 1

2δpq (∇rg)2 + 2∇pg∇qg
]
− 1

4e4gQprQqr ,

Rpqrs = egRpqrs(ω̂)− 2 eg δ[p[r

[
∇s]∇q]g + 1

2∇s]g∇q]g −
1
4δs]q] (∇ug)2

]
+ 1

2 e4g
[
QpqQrs −Qp[rQs]q

]
, (4.2.19)

where the right-hand side is consistently written in four-dimensional notation. Obviously

Rpq5r must vanish in order to be consistent with the first equation (4.2.11), and this is

indeed what is implied by the earlier results (4.2.18). Likewise the expression for R5p5q

is consistent with the corresponding equation (4.2.11). Hence we are left to analyse the

last equation of (4.2.19), which determines the four-dimensional Riemann tensor R(ω̂)

according to

Rpqrs(ω̂) = −16 e−g
[
4 δ[p[r Ts]tTq]

t − δp[rδs]q T 2
]
. (4.2.20)

The Ricci scalar, Rabab(ω̂) = 0. Further inspection shows that this Riemann tensor

corresponds to a product of two two-dimensional spaces with equal radii, namely AdS2

and S2. The geometry thus takes the form of a circle (parametrized by the coordinate

ψ) non-trivially fibered over an AdS2 × S2 base space. We now adopt four-dimensional

coordinates by writing the respective metrics in the standard form of a Bertotti-Robinson

and a two-sphere metric, with coordinates t, r, and θ, ϕ, respectively, so that the five-

dimensional line element takes the following form (r is non-negative and θ and ϕ have

3In Pauli-Källén notation we now fix convention such that εµνρστx
µxνxρxσxτ = i 5!x0x1x2x3x5.

4We note that (4.2.18) has been derived from (4.2.17) assuming det[T ] 6= 0. For det[T ] = 0 one can
arrive at the same result by also making use of (4.2.11) and (4.2.19).
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periodicity π and 2π, respectively),

ds2 =
1

16 v2

(
− r2dt2 +

dr2

r2
+ dθ2 + sin2 θ dϕ2

)
+ e2g

(
dψ + σ

)2
,

σ = − 1

4 v2
e−g

(
T23 r dt− T01 cos θ dϕ

)
, (4.2.21)

corresponding to,

Qtr =
1

4 v2
e−g T23 , Qθϕ = − 1

4 v2
e−g T01 sin θ . (4.2.22)

Here and henceforth we use the definition,

v =
√

(T01)2 + (T23)2 , (4.2.23)

where T01 and T23 are the nonvanishing components of the tensor field Tab, where the lo-

cal Lorentz indices are (0, 1, 2, 3). Note that the vierbein fields can be chosen diagonally;

their values can be read off from (4.2.21),

em
p dxm =

1

4 v

(
r dt,

dr

r
, dθ, sin θ dϕ

)
, (p = 0, 1, 2, 3) . (4.2.24)

In this Lorentz frame, the fields Tab are constant. For future use we also list the nonva-

nishing spin-connection fields,

ωm
pq =

◦
ωm

pq + 1
2σm e3gQpq ,

ωm
p5 = 1

2emq e2gQpq ,

ωψ
pq = 1

2e3gQpq , (4.2.25)

where
◦
ωt

01 = −r and
◦
ωϕ

23 = cos θ.

Observe that σI , Tab, v and e−g transform with weight +1 under the (constant) scale

transformations inherited from the five-dimensional dilatations. As a result, the met-

ric (4.2.21) scales uniformly with weight −2 and the one-form σ is inert under scale

transformations. Note that σ is determined up to a four-dimensional gauge transfor-

mation associated with shifts of the coordinate ψ with a function depending on the

four-dimensional coordinates. Such diffeomorphisms leave the form of the line element

invariant.

Let us now further discuss the line element (4.2.21). Assuming that T01 6= 0, we can

rewrite the line element in the form,

ds2 = − ρ4

16 v2

(
T01

v
dt+

T23

v ρ2

(
cos θ dϕ+

1

p0
dψ
))2

+
1

4 v2ρ2

(
dρ2 +

ρ2

4

(
dθ2 + dϕ2 +

1

(p0)2
dψ2 +

2

p0
cos θ dϕdψ

))
,(4.2.26)
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where we used the definitions

ρ =
√
r , p0 =

e−g

4 v2
T01 . (4.2.27)

To make p0 unambiguous we fix the periodicity interval for ψ to 4π. The second term of

the line element then corresponds to a flat metric, up to an overall warp factor (2vρ)−2.

To see this we combine the four Cartesian coordinates into two complex ones, which we

parametrize as,

z1 = ρ cos θ/2 exp 1
2 i[ψ/p0 + ϕ] , z2 = ρ sin θ/2 exp 1

2 i[ψ/p0 − ϕ] . (4.2.28)

Clearly for |p0| = 1 we cover the whole four-dimensional space R4. For |p0| 6= 1 we have

a conical singularity at the origin. In all cases the three-dimensional horizon is located

at r = 0 and its cross-sectional area is equal to

A3 =

∫
Σhor

= π2v−2 eg . (4.2.29)

Observe that this result is not invariant under the scale transformations introduced

earlier, which simply reflects the fact that the line element is not invariant either. Fur-

thermore the bi-normal tensor at the horizon is the same in all cases when given with

tangent space indices. Its only non-vanishing components are,

ε01 = ±1 , (4.2.30)

so that εµνε
µν = −2. Both (4.2.29) and (4.2.30) can be derived by first determining the

bi-normal tensor and the cross-sectional area in a coordinate frame that is non-singular

at the horizon, and subsequently converting the results to the singular frame used in the

text.

The line element (4.2.26) describes the near-horizon geometry of the spinning charged

black hole [39] (see also, [89]), and we observe that the rotation is associated with a

globally defined one-form on S3, in view of

Im [z1 dz1
∗ + z2 dz2

∗] = ρ2[(p0)−1dψ + cos θ dϕ] .

Clearly the angular momentum of the black hole is proportional to T23. When T23 = 0

we are dealing with a static black hole and the near-horizon geometry is given by,

ds2 =
1

16 v2

(
−r2dt2 +

dr2

r2

)
+

1

4 v2
ds2(S3/Zp0) . (4.2.31)

Finally we turn to the case T01 = 0 where we find,

ds2 =
1

16T23
2

dr2

r2
+ e2g dψ2 − eg

2T23
r dψ dt+

1

16T23
2

ds2(S2) , (4.2.32)
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where ds2(S2) is the line element belonging to the unit two-sphere. The first three terms

constitute a metric which is locally AdS3 so that the near-horizon geometry is that of

AdS3×S2. This is the near-horizon geometry of a supersymmetric black ring, or, when

we drop the identification ψ ∼= ψ + 4π, of an infinitely long black string.

4.2.3 Gauge fields and linear multiplets

We now turn to the gauge fields and the composite linear multiplets constructed in

sections 2.1.1 and 4.1 from the product of two vector multiplets and from the square

of the Weyl multiplet. Due to the intricate relationship between the vector and linear

multiplets described in section 2.1.1, the equations of motion for the vector multiplets

are expressed through the components of the two linear multiplets. As the reader can

easily verify using the results in section 4.2.1, both vanish for BPS configurations, so

that the equations of motion are satisfied.

In particular, the condition that the vector component, Ea, of any linear multiplet must

vanish, imposes the Maxwell equations. The corresponding three-forms, denoted by

Eµνρ, are then required to be closed by (B.1.13), but do not necessarily vanish and

provide the standard definition of the electric charges. Since these results are central to

what follows, we will evaluate some of the corresponding expressions here.

According to (4.2.5), the field strengths Fµν
A are determined in terms of the tensor field

Tab,

Ftr
A =

σA

4 v2
T01 , Fθϕ

A =
σA

4 v2
T23 sin θ . (4.2.33)

At this point we can define magnetic charges associated with Qθϕ and Fθϕ
A. Employing

the same conventions for these field strengths (apart from a relative sign between p0 and

pA), we define

p0 =
e−g

4 v2
T01 , pA =

σA

4 v2
T23 , (4.2.34)

with the same expression for p0 as given in (4.2.27). In the five-dimensional context,

the pA will play the role of dipole magnetic charges. They are proportional to T23, so

they will vanish for a static black hole. The definition of the electric charges, which

involves the equations of motion, will be discussed in section 4.3. From (4.2.33) we can

determine the vector potentials,

Wµ
A(x) dxµ = − σA

4 v2
(T01 r dt+ T23 cos θ dϕ) + dΛA(x) , (4.2.35)

up to an abelian gauge transformation, parametrized by ΛA(x).

Given an appropriate choice for this transformation, which should define the fifth com-

ponent of the gauge field, Wψ
A, we present some components of the tensor field E

(AB)
µνρ ,
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defined in (2.1.6). Subject to the BPS conditions, one obtains the following results,

E
(AB)
ψθϕ =

sin θ

8 v2

[
− eg σAσB T01 + σ(AWψ

B) T23

]
,

E
(AB)
ψrt = − 1

8 v2

[
eg σAσB T23 + σ(AWψ

B) T01

]
,

E
(AB)
rtϕ = − cos θ

T01T23 σ
AσB

32 v4
,

E
(AB)
θtϕ = r sin θ

T01T23 σ
AσB

32 v4
. (4.2.36)

Note that these components are invariant under the scale transformations mentioned

previously. The choice of the correct gauge transformation ΛA depends on the presence

of magnetic charges, which do not allow for a globally defined gauge field.

For the spinning black hole, where T01 6= 0, the gauge potentials can be chosen to be

globally defined on S3. To see this one makes use of the observation preceding (4.2.31)

in the previous subsection, which leads to,

Wµ
Adxµ = − σA

4 v2

(
T01 r dt+ T23

(dψ

p0
+ cos θ dϕ

))
. (4.2.37)

In the case of the black ring, where T01 = 0, the gauge transformations in (4.2.35) in-

troduce an uncontractible component corresponding to Wilson lines around the circle

parametrized by ψ. The proper definition of the Wilson line moduli is subtle due to

the presence of the charges pA and the S1 × S2 topology, as we shall discuss below.

Generically, due to the presence of large gauge transformations (i.e. gauge transforma-

tions that cannot be connected continuously to the identity), these moduli aA should

be periodically identified and furthermore they should be defined such that they are not

subject to small gauge transformations. At any rate, the gauge fields are expected to

contain the following terms,

Wµ
Adxµ = −pA cos θ dϕ+ aAdψ . (4.2.38)

However, unlike in the case of the spinning black holes, the gauge fields are not globally

defined, as is obvious from the fact that the monopole fields are sourced by Dirac strings.

This phenomenon implies that the gauge fields should be defined in patches, connected

by suitable gauge transformations. In the context of five space-time dimensions the Dirac

strings are degenerate and one is actually dealing with Dirac membranes. Just as in the

case of Dirac strings, the Dirac membranes are subject to constraints, some of them

related to charge quantization (to appreciate this, the reader may consult [102, 103],

where some of this is explained in the context of 2 + 1 dimensions).

For a single black ring and for multiple concentric black rings, the appropriate sections

have been considered in [58], guided by the explicit ring solutions [40] and [35]. Although
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these results were obtained without taking into account possible higher-derivative inter-

actions, they should still apply to the general case, as the choice of the sections and

the corresponding Dirac membranes is entirely based on the topology of the underlying

charge configuration. With this in mind we replace (4.2.38) by the following sections

(for a single ring),

Wµ
Adxµ = −pA

[
cos θ dϕ± d(ϕ+ 1

2ψ)
]

+ aAdψ , (4.2.39)

where we note that cos θ can be extended globally into the ring coordinate conventionally

denoted by x [40, 104]. For x = 1 and x = −1 one is dealing with the inner and the outer

part, respectively, of the two-dimensional plane that contains the ring. Hence the plus

sign in (4.2.39) refers to the section that is singularity free in the outer part of plane,

and the minus sign to the section that is singularity free in the inner part.

The nontrivial, and somewhat unexpected, feature of (4.2.39), is that the gauge transfor-

mation between the two patches involves a dψ component, contrary to what one would

expect based on intuition from four dimensions. Indeed, in the case of an infinite black

string, this gauge transformation is just ∝ pAdϕ. However, the ring topology requires a

more extended gauge transformation.

One way to understand this difference is to appreciate the fact that, in order that the

Dirac membrane be unobservable, the gauge transformation between the patches must

allow for general deformations of its worldvolume irrespective of its topology. Choosing

a topologically trivial brane on each patch, say along the north and south pole of each

sphere on the ring (see the two figures on the left-hand side of Fig. 4.1), leads to the

gauge transformation −2pAdϕ between the patches. This is also the only possible choice

for an infinite string. But in the case of a proper ring embedded in a four-dimensional

space,5 the topology of the spatial manifold M4 corresponding to the embedding space

minus the ring is nontrivial. Possible Dirac branes are classified as the boundaries

of three-dimensional spatial hypersurfaces. Thus it is important to know the third

homology group H3(M4), since the Dirac brane can also be the boundary of a non-

trivial hypersurface, as opposed to the trivial one discussed above.

In the case at hand it can be shown that H3(M4) = Z, so that the generator of the group

is a hypersurface with no boundary that wraps the ring once. A corresponding Dirac

brane is described as the boundary of the sum of the topologically trivial hypersurface

and this generator. Such a brane starts at the north pole of the sphere at some point

along the ring. When moving along the S1 of the ring, this brane rotates to the south

pole and subsequently it returns to the north pole when reaching the point of departure.

A singular limit of this surface is shown on the right-hand side of Fig. 4.1. Using

the construction based on de Rham currents in [102, 103, 105], this leads to a gauge

transformation between the gauge field patches that is proportional to the Poincaré dual

5We assume a topologically trivial embedding space, like R4 or Taub-NUT, in the following discussion.
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of the generator described above. A component along ψ is obviously necessary due to

the plane in the centre. The relative coefficient in the gauge transformation d(ϕ+ 1
2ψ)

has been fixed by demanding periodicity of this generator. Finally, note that higher

wrappings would introduce integral multiples of dψ, and are therefore irrelevant in view

of the integral shift symmetry of aA.

Figure 4.1: The two figures on the left-hand side correspond to the two different gauge field patches
based on a topologically trivial choice for the two-dimensional Dirac brane. The three-dimensional
hypersurface bounded by the two branes is a ball B3. The gauge transformation associated with the
transition between the two patches has only components along the angle ϕ not shown in the picture.
On the right-hand side the two figures show a singular limit of the relevant but non-trivial choice for
the Dirac brane. The three-dimensional hypersurface connecting the two branes is the sum of the
B3 above and the generator of H3(M4). The corresponding gauge transformation has an additional
component along the ring circle, normal to the plane.

The way to measure the Wilson line moduli aA now proceeds through the Chern-Simons

charges of the ring, defined by the integral over the 3-cycle associated with the horizon

Σ,

QCS
A ∝

∮
Σ
CABCW

B ∧ FC , (4.2.40)

as in (4.2.36). It was demonstrated in [58], by using the sections (4.2.39) and carefully

evaluating the integral, that the Chern-Simons charges are linearly related to the moduli

aA, i.e., QCS
A ∝ CABC a

BpC . The use of the sections (4.2.39) is essential for obtaining

this relationship, so that the aA, which are identified in this way, are no longer subject

to small gauge transformations. Here it is relevant that the Chern-Simons charges are

also invariant under small gauge transformations. This result is also consistent with

large gauge transformations as both the aA and the QCS
A change under a large gauge

transformations by an integer (in proper units).



79

Although it is not the primary purpose of this discussion to consider multi-ring solutions,

it is illuminating to briefly consider the situation of concentric rings [35]. Labeling the

rings by an index i, one introduces the moduli aAi and the charges pAi of the i-th ring.

Following the same logic as above, an extended set of sections generalizing (4.2.39) can

be found that matches the one used in [58]. One can then derive the following relation,

QCS
A ∝ CABC

[∑
i

(2 aB + pB)i p
C
i −
(∑

i

pBi

)(∑
j

pCj

)]
, (4.2.41)

which, for a single ring, reduces to the previous result. The above relation indicates that

the Chern-Simons charges are not additive, unlike the moduli (aA)i and the charges (pA)i

associated with the various rings. In fact, as we will establish later in section 4.5, the

best way to write this result is as follows,

QCS
A − 6CABCP

BPC = −12CABC
∑
i

(aB + 1
2p
B)i p

C
i , (4.2.42)

where PAi =
∑

i p
A
i. This indicates that the expression on the left-hand side is in fact

additive. We will return to this topic in section 4.5.

One encounters similar subtleties when considering the three–form EW
µνρ, defined in

(4.1.3). Using the BPS conditions, it is straightforward to derive the following expression

EW
µνρ = − 3

16ω[µ
ab
(
∂νωρ] ab − 2

3ων ac ωρ]
c
b

)
− 3

4 ie εµνρσλ

(
T 2T σλ + 6T σκTκτT

τλ
)
, (4.2.43)

which is manifestly scale invariant. Adopting the gauge choice for the spin connection

in (4.2.25), this leads to the following components

EW
ψθϕ = − 3

8 sin θ eg T01 .

EW
ψrt = 3

8 eg T23 ,

EW
rtϕ = cos θ

T01T23

16 v2
,

EW
θtϕ = − r sin θ

T01T23

16 v2
. (4.2.44)

However, just as for gauge fields, it is generally not possible to define the Chern–Simons

term in (4.2.43) globally when the Euler density Tr[R ∧ R] has a nontrivial source

and our choice above requires some explanation. For a black ring the Euler form is

trivial, but for the spinning black hole its integral is related to the charge p0, which

is a topological property of the spatial base space. We will again employ two patches,

similar to the magnetic monopole, connected by an appropriate closed but non-exact
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gauge transformation, β0, defined as

ω[µ
ab
(
∂νωρ] ab − 2

3ων ac ωρ]
c
b

)∣∣∣
1

= ω[µ
ab
(
∂νωρ] ab − 2

3ων ac ωρ]
c
b

)
|2 + β0

µνρ . (4.2.45)

Since the Chern-Simons term is a composite object constructed from gauge fields, rather

a fundamental gauge field, the transformation between patches can be ultimately con-

sidered as a particular choice of gauge transformation on the spin connection.6 Here,

we concentrate on the construction of the patches, disregarding the fundamental gauge

transformations. Any additional ambiguity on the Chern-Simons term is assumed to be

of trivial cohomology and gauge fixed through (4.2.25).

Viewing the Chern-Simons term as a gauge potential coupled to a membrane in five

spacetime dimensions, one concludes that the magnetic dual is a scalar field sourced at a

single point (completely localised in spacetime). Such a magnetic monopole at the centre

of the geometry gives rise to a Dirac string ending on it and reaching timelike infinity.

Any given choice for the string defines a gauge patch and is connected to a different

choice by a two-dimensional surface, which in turn defines the gauge transformation

between the two patches. Now consider two Dirac strings, one moving off to infinite

timelike future and one to infinite timelike past, so that they are connected by a surface

spanning the time and radial coordinates. Similar to the gauge theory example in

(4.2.39), the gauge transformation connecting the two patches is given by the normal

form of this connecting surface. For the metric in (4.2.26) one finds

β0 =
T 2

01

v2p0
sin θ dθ ∧ dφ ∧ dψ , (4.2.46)

where the correct normalisation is fixed by demanding that in the static limit the flux

of β0 is equal to 2/p0, i.e. equal to the flux of Tr[R ∧ R] for a Gibbons–Hawking base

space.

Assuming the Dirac strings are timelike, there will be exactly one intersection of one

of the Dirac strings with a given time slice. The gauge transformation (4.2.46) on the

Chern-Simons term changes the position of this intersection, shifting the integral of

the above Chern-Simons term over a 3-surface, affecting the definition of the electric

charges through the integral of (4.2.43). Note that while this is similar to the situation

encountered above for the Wilson line moduli in (4.2.38), the ambiguity in this case is

only related with the position of the Dirac brane singularity on each time slice. In this

context, there are only two reasonable choices, namely spatial infinity and behind the

horizon, contrary to the infinitely many equivalent choices for the αA in (4.2.38).

In a purely five-dimensional setting one can push the Dirac brane to infinity and calculate

all physical charges in the standard way. The connection in (4.2.44) is chosen according

6As the argument presented here is independent of the connection used, one can consider the Christof-
fel connection in computing the Chern–Simons term.
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to this requirement, in line with the general view that a nontrivial Taub-NUT charge is

not considered to be part of the black hole in the centre, so there should be no singularity

coming from the R∧R term there. This parallels the microscopic counting [10, 39, 68],

where the large charge limit is taken for the electric charges but not for the Taub-NUT

charge.

On the other hand, when considering the corresponding four-dimensional solution ob-

tained by dimensional reduction, it is not acceptable to have a gauge dependent singu-

larity present near spatial infinity. In this case, a physical solution can be obtained if

the singularity is hidden behind the horizon, which amounts to a change of patch as in

(4.2.46), which adds a delta source singularity to the Euler density. The charge com-

puted using the patch appropriate from a four-dimensional point of view is then different

from the one computed in the five-dimensional theory, due to the nonzero integral of

(4.2.46) over the three-sphere.

The above difference between four and five-dimensional charges can be also seen by

reducing the Chern–Simons term in (4.1.4) to four dimensions and computing the con-

served charges of the resulting covariant theory [106]. This confirms the shift of the

electric charge by the integral of (4.2.46), independent of supersymmetry.

4.3 The Lagrangian and conserved charges

The results of the previous section are generic for five-dimensional supergravity, in the

sense that they follow from symmetry considerations without using a specific Lagrangian.

One of the consequences is that, even though supersymmetry imposes enormous restric-

tions on all fields, these are of a kinematical nature. For example, all scalars must be

constant but there are no restrictions on their values and only the magnetic parts of

gauge fields could be explicitly related to conserved charges.

In order to proceed in the study of attractors, one needs to make use of the standard

conserved charges present in any theory containing gauge fields and gravity, namely the

electric charges and angular momentum7. Moreover, the entropy of a black hole is a

further conserved quantity that has to be identified. The definition of such quantities

in the context of a given theory requires the choice of a Lagrangian. Here, we consider

extending the two derivative Lagrangian (2.1.7) by the addition of the R2 invariant

introduced in the previous chapter. The total Lagrangian reads

L = Lvvv + Lhyper + Lvww , (4.3.1)

where the first two terms are given in (2.1.8) and (2.1.9), whereas the higher derivative

correction was displayed in (4.1.4).

7The mass is also a conserved charge, but since we are considering only extremal solutions it is not
independent.
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We now proceed with the definition of the conserved charges following from this La-

grangian. For the evaluation of the entropy and the angular momentum, we make use

of the Noether potential associated with space-time diffeomorphisms [82, 98, 99]. A

concise introduction to the algorithmic construction of the Noether current is given in

Appendix C.1, to which we refer for details.

4.3.1 The electric charges

We first discuss the electric charges, which follow from the three-forms of the composite

linear multiplets used in the definition of the action in (2.1.8) and (4.1.4). The invariant

density (2.1.2) implies that the gauge field equation of motion is equal to Eµ, so the

relevant integral that defines the electric charge is

qA =
1

16π2

∫
dθ dϕdψ

[
−1

2 CABC E
BC
ψθϕ + 4

3cAE
W
ψθϕ

]
, (4.3.2)

where one has to integrate over the 3-cycle that encloses the black hole or the black ring

and the relative factor 3 results from the fact that the Lagrangian (2.1.8) is cubic in

the vector multiplets, whereas the Lagrangian (4.1.4) is only linear. Making use of the

results (4.2.36) and (4.2.44), one obtains the following result,

qA =
1

16 v2
CABC

(
σBσC egT01 −

1

4
σB[Wψ

C ]T23

)
− 1

2
cA egT01 , (4.3.3)

where we used the definition

[Wψ
A] =

1

16π2

∫
dθ dϕdψ sin θ Wψ

A . (4.3.4)

which is gauge invariant under periodic gauge transformations. For spinning black holes,

where the gauge fields are globally defined, (4.3.3) takes the form

qA =
eg

16T01

[
CABCσ

BσC − 8 cAT01
2
]
. (4.3.5)

Observe that the above results are scale invariant.

To derive the corresponding result for the black ring is more subtle in view of the fact

that the gauge fields are not globally defined, as was discussed in subsection 4.2.3. This

will be discussed in subsection 4.5 and the resulting expression for the charges will be

given in (4.5.7).

The charges can also be determined by making use of the Noether potential associated

with abelian gauge transformations. Consider, for instance, a Lagrangian in five space-

time dimensions consisting of an invariant Lagrangian depending on the abelian field

strength Fµν , its space-time derivatives ∇ρFµν , and matter fields denoted by ψ and their
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derivatives ∇µψ, plus an abelian Chern-Simons term,

L = L0(Fµν ,∇ρFµν , ψ,∇µψ) + εµνρστAµFνρFστ . (4.3.6)

As explained in C.2.1, for this Lagrangian, the Noether potential reads as follows,

Qµνgauge = 2LµνF ξ − 2∇ρLρ,µνF ξ + Lρ,µνF ∂ρξ + 6 e−1εµνρστ ξAρFστ , (4.3.7)

where ξ is the infinitesimal local parameter associated with the gauge transformations.

Here we use the notation,

δL0 = LµνF δFµν + Lρ,µνF δ(∇ρFµν) + Lψ δψ + Lµψ δ(∇µψ) (4.3.8)

It is straightforward to verify that ∂νQ
µν is equal to the field equation, up to terms

proportional to ∂νξ. The electric charge defined in (4.3.2) can be now written as

q =

∫
Σhor

εµν Q
µν
gauge . (4.3.9)

where εµν is the binormal tensor associated with the horizon and the gauge parameter

ξ must be taken constant so that the underlying field configuration is invariant and the

corresponding Noether current vanishes on-shell.

4.3.2 Entropy and angular momentum

We now turn to the definition of the entropy and angular momentum, specialising some

of the general expressions given in Appendix C.1 for the Lagrangian specified above. This

Lagrangian contains two different Chern-Simons terms, one of the type W ∧F ∧F , which

is cubic in the abelian gauge fields, and a mixed one of the type W ∧ Tr[R∧R], which

is linear in the gauge fields and quadratic in the Riemann curvature. The derivation of

the corresponding Noether potential is straightforward but subtle.

We first evaluate this potential for a Lagrangian that depends on the Riemann tensor, the

field strengths of abelian gauge fields, and on an anti-symmetric tensor field Tµν with at

most first-order space-time derivatives ∇µTνρ. This Lagrangian does not contain the two

Chern-Simons terms, which are considered separately. Its Noether potential associated

with space-time diffeomorphisms is a slight extension of (C.2.10) (which does not include

the tensor field), and reads

Qµν0 (ξρ) = −2LµνρσR ∇ρξσ + 4∇ρLµνρσR ξσ

− 2LµνF A(ξσWA
σ ) + 2∇ρLρ,µνF A (ξσWA

σ )− Lρ,µνF A ∂ρ(ξ
σWA

σ )

+
[
Lµ,ρσT T νσ + Lρ,µσT T νσ + Lν,µσT T ρσ − (µ↔ ν)

]
ξρ , (4.3.10)
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where ξρ parametrizes the diffeomorphisms, and Lµνρσ and Lµ,νρ denote partial deriva-

tives of the Lagrangian according to

δL = LµνρσR δRµνρσ + Lµ,νρT δ(∇µTνρ) + LµνF A δ(F
A
µν) + Lµ,νρF A δ(∇µFAνρ) . (4.3.11)

These derivatives are subject to the BPS attractor equations. As a result they take the

following form on the horizon,

32π2 LµνρσR = (−1
2C(σ)− cAσA T 2)gµ[ρgσ]ν + 2

3cAσ
A(TµνT ρσ − Tµ[ρT σ]ν) ,

32π2 LµνF A = − 1
2 CABCσ

BσC Tµν + cA
(
Tµν T 2 + 6TµρTρσT

σν
)
,

32π2 Lρ,µνT = −3i cAσ
A εµνσλτ TσλTτ

ρ , (4.3.12)

whereas Lµ,νρF A vanishes. Obviously we also need the derivative ∇ρLµνρσR , which follows

form (4.3.12) by means of the attractor equations. The result reads as follows,

32π2∇ρLµνρσR = 5
6 i cAσ

A(Tµνεσρλκτ − T σ[µεν]ρλκτ )TρλTκτ . (4.3.13)

Combining the above contributions we obtain an explicit expression for (4.3.10). In

practice we need the contraction of the Noether potential with the bi-normal tensor

(4.2.30) associated with the horizon. Therefore we evaluate the following expression for

(4.3.10),

8π2 εµνQ
µν
0 = − 2 ε01C(σ)∇[0ξ1]

− 1
3 ε01 cAσ

A
[
3T23

2∇[0ξ1] − 2T01T23∇[2ξ3] + 11T01
2T23 ξ5

]
+ ε01 ξ

ρWρ
A T01

[
−2CABCσ

BσC + cA(T23
2 + 2T01

2)
]
. (4.3.14)

These results will be used verbatim in subsequent sections both for spinning black holes

and black rings, as they follow from the covariant terms in the Lagrangian. The issue

of Chern-Simons terms will be dealt with in the next section.

By integrating the Noether potential over the horizon one obtains the entropy and the

angular momentum from the Noether potential associated with the appropriate Killing

vector. For the entropy the relevant Killing vector is the timelike8 one,

ξµ∂µ = ∂/∂t , ∇[0ξ1] = ε01 .

According to the recipe in C.2.2, one furthermore drops all terms in the integrand except

the ones proportional to ∇ξ

S = −π
∫

Σhor

εµνQ
µν(ξ)

∣∣∣
∇[µξν]=εµν ; ξµ=0

, (4.3.15)

8This is the timelike vector that generates the horizon, which is a linear combination of the asymptotic
timelike and rotational Killing vectors near the horizon.
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where we included a conventional normalisation factor. For the angular momentum, the

Killing vector is associated with the corresponding periodic isometry of the space-time,

and we define

J(ξ) =

∫
Σhor

εµνQ
µν(ξ) . (4.3.16)

This agrees with the expression in (C.2.14), since Cξφ vanishes by symmetry considera-

tions for any angular Killing vector [58, 107].

4.3.3 Noether potential for Chern-Simons terms

The two Chern-Simons terms contained in (2.1.8) and (4.1.4),

32π2 LCS = − 1
48 i εµνρστ

[
CABCWµ

AFνρ
BFστ

C + 1
2cAWµ

ARνρabRστab
]
, (4.3.17)

and their contribution to the Noether potential requires a more detailed discussion.

Straightforward application of the standard formula (C.2.10) yields the result

32π2QµνCS = 1
12 i εµνρστ CABC ξ

λWλ
AWρ

BFστ
C

+ 1
24 i εµνρστ cAWρ

ARστ κλ∇κξλ
− 1

24 i ερστλ[µ cAFρσ
ARτλν]κ ξκ

+ 1
48 i ερστλκ cAFρσ

ARτλµν ξκ . (4.3.18)

A priori, there is no reason not to use the generic formula, as both terms are not gauge

invariant, but are manifestly covariant under diffeomorphisms. As a result, the contri-

bution in (4.3.18) is not gauge invariant. The same holds for the expression (4.3.10),

containing terms linear in ξµAµ, which also seem troublesome at first sight. It was shown

in [108] that the component of the gauge field along the Killing vector is in fact well

defined under the integral. However, (4.3.18) is not of this type, especially the terms

proportional to the square of the gauge potential, and is problematic when integrating

to obtain the angular momentum.

Thus, (4.3.18) can be used as it stands only when the gauge potential is globally defined,

or in other words in the absence of magnetic charges. This is the case with black holes,

as explained in section 4.2.3. Evaluating the expression above at the horizon, using

(4.2.9) and (4.2.37), one finds

32π2 εµνQ
µν
CS = 4

3 ε01 T23CABC σ
AW5

BWλ
C ξλ

− 4
3ε01 cAW5

A
[
−2T01T23∇[0ξ1] + (T01

2 + 4 T23
2)∇[2ξ3]

]
− 4

3ε01 T01
2 cA

[
W3

A∇[5ξ2] −W2
A∇[5ξ3]

]
+ 8

3 ε01 cAσ
A T23

[
6T01

2 − T23
2
]
ξ5 , (4.3.19)

which will be used for black holes in the following.
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For black rings however, the situation is different and extra care is required, as the gauge

fields are not globally defined. In such a situation there are two ways to proceed. A

simple way out would be possible if a version of the action that is gauge invariant exists,

perhaps sacrificing some other symmetry. Alternatively, one can try to regularise the

integral of the Noether potential, using different gauge patches. As is clear by inspection,

there is no way to rewrite the first Chern-Simons term of (4.3.17) in a gauge invariant

form. Therefore, in section 4.5 we will present a recipe to modify the integral of the first

term in (4.3.18) to a gauge covariant quantity.

Interestingly, we can employ an alternative treatment of the mixed Chern-Simons term

which will lead to expressions that differ from (4.3.17)-(4.3.19). Consider a modification

of the Lagrangian (4.1.4) proportional to εµνρστWµ
ARνρabRστab, by adding a suitable

total derivative. In this way the gauge field is converted to its field strength (which

is globally defined), and the square of the curvature tensor R is converted to a corre-

sponding Chern-Simons term. The alternative form of the mixed Chern-Simons term is

thus,9

32π2LCS = − 1
48 i εµνρστ cAFµν

Aωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
. (4.3.20)

From the point of view of general coordinate invariance, this change does not seem

crucial, as the Lagrangian (4.3.20) still transforms as a scalar. On the other hand, the

spin-connection field ωµ
ab is a composite vector field associated with local Lorentz trans-

formations. As a result of the explicit spin-connection, this form of the Lagrangian is no

longer invariant under local Lorentz transformations, but transforms into a boundary

term.

In this formulation diffeomorphism invariance of the relevant field configurations will be

defined up to a local Lorentz transformation. Therefore Lorentz transformations have

to be taken into account in the relevant Noether potential. In the previous form of

the mixed Chern-Simons term given in (4.3.17), the local Lorentz transformations were

avoided because that expression can be interpreted directly in the metric formulation

without the need for including vielbein fields.

Under the combined variation of a diffeomorphism and a local Lorentz transformation

with parameters ξµ and εab, the Noether potential for the Lagrangian (4.3.20) corre-

sponding to the mixed Chern-Simons term follows from (C.2.21), where some details of

9Note that for the remainder of this subsection we suppress the W ∧ F ∧ F Chern-Simons term of
(4.3.17), which is not affected by the conversion and whose effect has already been evaluated.
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the derivation are given

32π2QµνCS = − 1
24 i εµνρστ cAFρσ

Aωτ
ab
[
εab − 1

2ξ
κωκ ab

]
+ 1

24 i εµνρστ cA ξ
λWλ

Aωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
− 1

24 i ερστλ[µ cAFρσ
ARτλν]κ ξκ

+ 1
48 i ερστλκ cAFρσ

ARτλµν ξκ . (4.3.21)

We note that the last two covariant terms proportional to F ∧ R are identical to the

corresponding terms given in (4.3.18). This expression should be evaluated for back-

grounds that are invariant, which implies that the transformation parameter εab should

be chosen such that the vielbein is invariant under the diffeomorphisms. This implies

that the diffeomorphism is again generated by a Killing vector ξµ, and

εab = −∇[aξb] + ξλωλ
ab . (4.3.22)

This value for εab should be substituted into the expression (4.3.21) for the Noether

potential. The resulting expression is then expected to match the previous result (4.3.18)

(without the contribution of the W ∧ F ∧ F Chern-Simons term which has not been

included above), when both the gauge fields and the spin connection field can be globally

defined. This is not the case for the black hole and black ring solutions, so that only

one of the two expressions will be applicable in either case. It should be of interest to

compare the two formulae in more detail by making explicit use of coordinate patches.

4.4 Spinning BPS black holes

In this section we apply the material derived in the preceding sections to the case of

spinning black holes. Subsequently we discuss various implications of our results and

compare them to results that have been obtained elsewhere.

We assume arbitrary non-zero values of p0. Using (4.2.29), we integrate the total Noether

potential Q = Q0 + QCS derived in (4.3.14) and (4.3.19) over the horizon. In this way

we obtain the following expression for the entropy,

S =
π eg

16 v2

[
C(σ) + 16

3 cAσ
A T23

2
]
. (4.4.1)

The moduli are expressed in terms of the angular momentum Jψ and the charges qA

and p0 by the attractor equations. The black holes have only one component of angular

momentum, associated with the Killing vector ξµ∂µ = ∂/∂ψ. Here we refrain from

introducing any additional normalization factor. This leads to ξ5 = eg and

∇[0ξ1] = 2T23 eg , ∇[2ξ3] = −2T01 eg . (4.4.2)
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Substituting these results into (4.3.14) and (4.3.19), and setting ε01 = 1, yields the

following expression for Jψ,

Jψ =
T23e2g

24T01
2

[
CABC σ

AσBσC − 32 cAσ
A T01

2
]
. (4.4.3)

Note that there is no other non-vanishing component of angular momentum in this case.

The charges follow from (4.3.3) and (4.2.34),

qA =
eg

16T01

[
CABCσ

BσC − 8 cAT01
2
]
, p0 =

e−g

4 v2
T01 . (4.4.4)

It is convenient to express these results in terms of scale invariant variables defined by

φA =
σA

4T01
, φ0 =

e−gT23

4v2
=
p0 T23

T01
. (4.4.5)

In terms of these variables (4.4.1) reads

S =
πp0

(φ02 + p02)2

[ 1

6
p02

CABCφ
AφBφC +

1

3
cAφ

A φ02
]
, (4.4.6)

whereas the attractor equations for the electric charges qA and the angular momentum

Jψ take the form,

qA =
1

4

p0

φ02 + p02

[
CABCφ

BφC − 1

2
cA

]
,

Jψ =
φ0p0

(φ02 + p02)2

[ 1

6
CABCφ

AφBφC − 1

3
cAφ

A
]
. (4.4.7)

This result shows that φ0 is proportional to the angular momentum, as is also obvious

from (4.4.5). To understand the limit in which the charges become uniformly large, we

consider uniform rescalings of the charges qA and p0 as well as of the moduli φA and φ0.

Obviously, the terms proportional to CABC in the attractor equations are consistent with

this scaling, whereas the terms proportional to cA are suppressed inversely proportional

to the square of the charges and thus represent subleading contributions. The leading

term of the entropy then scales as the square of the charges, while the correction terms

proportional to cA, which originate from the higher-order derivative couplings, represent

the subleading contributions in the limit where all charges become large. These results

are different from those obtained in [94], especially in the case of non-zero angular

momentum. For details, we refer to the discussion at the end of this subsection.

The above attractor equations can be compared to the corresponding ones in four space–

time dimensions discussed in section 3.2. It is possible to show that upon dimensional

reduction, the Lagrangian in (4.3.1) leads to a four-dimensional theory including both

the R2 and F 4 invariants presented in chapter 3. Since the latter is irrelevant for super-

symmetric attractors, we concentrate on the former, which turns out to be described by
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the prepotential (3.3.4), where the tensors CABC and cA are those appearing in (2.1.8)

and (4.1.4) respectively.

It is clear that the four- and five-dimensional expressions for the entropy, given by (3.3.6)

and (4.4.6) respectively, are identical. The same holds for the angular momentum,

assuming that the charge q0 is identified with Jψ when comparing (4.4.7) with (3.3.7).

In order to compare the attractor equations for the electric charges qA, one has to

take into account the comments at the end of section 4.2.3 to give a four-dimensional

interpretation to the electric charge. Using the gauge transformation (4.2.46) in (4.3.2)

to move the Dirac brane singularity behind the horizon, the attractor equation (4.4.7)

for qA becomes

qA| 2 = qA −
cA
24

T01
2

v2
=

1

4

p0

φ02 + p02

[
CABCφ

BφC − 2

3
cA

]
, (4.4.8)

which is exactly the same as the four-dimensional one in (3.3.7). The difference between

the four- and five-dimensional charges is therefore completely accounted for by the shift

of the Chern–Simons terms and is of a purely topological nature. Somewhat related

arguments that reconcile the five- and four-dimensional attractors have been presented

in [94], but given that the attractor equations in that work differ from (4.4.7) for nonzero

angular momentum, the relevant shift is also different in that case.

To investigate some of the consequences of this difference, we again consider the attractor

equations (4.4.7), where we rescale the coefficients cA in the attractor equations for qA

by cA → α cA to account for the two expressions. Hence we set the parameter α = 1 or
4
3 , depending on whether we consider D = 5 or 4 space-time dimensions, respectively.

Subsequently we solve the attractor equations for φA and φ0 to first order in cA, keeping

the charges constant. To do this we first determine the solution for the case that cA = 0,

φ̂A ≡ φA√
φ02 + p02

≈ q̂A√
p0

+O(cA) ,

φ0 ≈
Jψ p

02√
4 p0Q3 − (p0Jψ)2

+O(cA) , (4.4.9)

where the q̂A are defined by the requirement that they satisfy the attractor equations

in the limit of vanishing cA. Therefore we have,

qA = 1
4 CABC q̂

B q̂C ,

Q3/2 = 1
12 CAB q̂

Aq̂B ,

CAB = CABC q̂
C . (4.4.10)
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To first order in cA this result changes into,

φ̂A ≈ 1√
p0

{
q̂A +

α (4 p0Q3 − (p0 Jψ)2)

16 p02Q3
CAB cB

}
+O(cA

2) ,

φ0 ≈
Jψ p

02√
4 p0Q3 − (p0Jψ)2

{
1− (3α− 8) cA q̂

A

48 p0Q3/2

}
+O(cA

2) , (4.4.11)

where the matrix CAB denotes the inverse of CAB. Substituting these expressions into

the entropy formula (4.4.6), one obtains,

S ' 2π
√
p0Q3 − 1

4(p0Jψ)2

(
1 +

α

16

cA q̂
A

p0Q3/2

)
+O(cA

2) . (4.4.12)

We note that the terms proportional to cA are indeed subleading in the limit of large

charges.

The expression (4.4.12) can be confronted with results from the literature. For the non-

rotating case, where a direct comparison with microscopic counting is possible, the above

result with α = 1 agrees with the results of [68, 80] presented in section 2.4, provided the

triple intersection tensor and the second Chern class are identified as CABC = 1
2CABC

and c2 = c2A. For the rotating black hole, no analytic microscopic results are available,

but our results can be compared to the supergravity results of [94, 95]. Here there

is a clear discrepancy originating from the different form of the attractor equations

(4.4.3) for the electric charges and the angular momentum, which reflects itself in a

different dependence on J in (4.4.12). This expression can also be compared to the

results of [109], where the only higher-derivative coupling included into the action was

the Euler density. For zero angular momentum one recovers the same relative factor for

the subleading correction between the four- and five-dimensional entropies represented

by the parameter α in (4.4.12). For finite angular momentum the subleading corrections

determined by [94, 95] and [109] are mutually different and both fail to reproduce the

expression (4.4.12).

In summary, it seems that, while in the static case the 4
3 difference in the attractor

equation for the charges between four and five dimensions is ubiquitous, discrepancies in

the rotating case remain. On the other hand, there exist microscopic results for theories

with 16 supercharges [110, 111], which could possibly be connected to the results above

in certain asymptotic limits. It would be very interesting to investigate this further, in

order to identify the correct dependence of the entropy on the angular momentum.

To further explore this difference between four and five space-time dimensions, let us

also consider the case of small black holes, whose entropy depends sensitively on the

higher-derivative couplings. We assume C1ab = ηab and ca = 0, which represents the

typical situation for K3 × T 2 heterotic string compactifications. From the attractor
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equations (including the parameter α as before) we obtain

q1 =
1

4

p0

φ02 + p02

[
ηabφ

aφb − α

2
c1

]
,

qa =
1

2

p0 φ1

φ02 + p02 ηabφ
b . (4.4.13)

Using the above equations one easily derives,

S =
π p0 φ1

(φ02 + p02)2

[
2 p0q1(φ02

+ p02
) +

1

3

(3α

4
p02

+ φ02
)
c1

]
, (4.4.14)

ηabqaqb =
1

4

p0 (φ1)2

φ02 + p02

[
4 q1 +

α c1

2

p0

p02 + φ02

]
. (4.4.15)

Let us now set q1 = 0, so that we are describing small black holes. In that case one

finds,

S = π
√
|12 α c1 ηabqaqb|

{
1 +

4− 3α

3α

φ02

φ02 + p02

}
, (4.4.16)

where φ0 is related to the angular momentum according to

Jψ = − φ0

φ02 + p02

4− 3α

3α

√
|12 α c1 ηabqaqb| . (4.4.17)

This last relation only allows for a uniform rescaling of the charges in the way indicated

before in the four-dimensional setting, for which α = 4/3 and the angular momentum

is necessarily zero. Indeed, a small black hole in four dimensions is characterised by

vanishing q0, p
1, pa. In that case the entropy coincides with the four-dimensional result

for small black holes.

The result (4.4.16) can be compared with the predictions of [80], where exact expressions

for microscopic degeneracies of small static black holes in five space-time dimensions

were derived. In this work it was found that the asymptotics of the entropy of the small

black holes in five dimensions is the same as in four, with the same normalization. This

disagrees with (4.4.16), which differs by an overall relative factor equal to
√

4/3 induced

by the α-dependence. To resolve this puzzle it might perhaps be helpful to also have

microscopic results for non-zero angular momentum, so that one has a more detailed test

for (4.4.16). However, such results are quite difficult to obtain. As is well known, in four

space-time dimensions the sub-leading contribution to the entropy of small black holes

is problematic in the supergravity description, but the leading contribution is in perfect

agreement with microstate counting arguments. The five-dimensional result thus poses

a puzzle in this respect.
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4.5 BPS black rings

In this final section we turn to the black rings, for which the relevant Noether potential

has been derived in section 4.3.2. In particular we refer to the treatment of the mixed

Chern-Simons term in subsection 4.3.3, which is crucial for the black ring. In this

section we discuss the resulting expressions for the entropy, and for the charges and

angular momenta, which are then confronted with results from the literature. As we

shall see, the actual evaluation still involves a number of non-trivial issues related to the

integration over the spacelike section Σ of the horizon.

The relevant Noether potential consists of (4.3.14) combined with the contributions from

the Chern-Simons terms that can be extracted from (4.3.19) and (4.3.21). Using that

T01 = 0 for the black ring, it is easy to see that (4.3.14) gives rise to the following

contribution,

32π2 εµνQ
µν
0 = −2 ε01

[
C(σ) + 4 cAσ

A T23
2
]
∇[0ξ1] . (4.5.1)

Subsequently we add the contributions from (4.3.21), together with the first term in

(4.3.19) that originates from the W ∧ F ∧ F Chern-Simons term,

32π2QµνCS = 1
12 i εµνρστ CABC ξ

λWλ
AWρ

BFστ
C

− 1
24 i εµνρστ cAFρσ

Aωτ
ab
[
εab − 1

2ξ
κωκ ab

]
+ 1

24 i εµνρστ cA ξ
λWλ

Aωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
− 1

24 i ερστλ[µ cAFρσ
ARτλν]κ ξκ

+ 1
48 i ερστλκ cAFρσ

ARτλµν ξκ . (4.5.2)

Observe that the last two terms in (4.5.2) have already been evaluated in (4.3.19). The

third term of (4.5.2) vanishes as can be readily deduced from (4.2.44). Straightforwardly

combining the various contributions gives rise to the following additional contribution

to the Noether potential,

32π2 εµνQ
µν
CS = 4

3 ε01 T23

[
CABC σ

AW5
B ξλWλ

C − 2cAσ
A T23

2 ξ5

]
− 8

3 ε01 cAσ
A T23

2
[
∇[0ξ1] − 1

2ξ
λωλ01

]
, (4.5.3)

where we have used that ω5
ab vanishes with the exception of ω5

01 = −2T23.

From (4.5.3) we directly determine the expression for the entropy, which coincides with

the corresponding expression (4.4.1) for the black hole,

S =
π eg

16 v2

[
C(σ) + 16

3 cAσ
A T23

2
]
. (4.5.4)

Observe that, in order to obtain this result, it was crucial to use the alternative form

of the Noether potential derived in subsection 4.3.3. Naive application of the Noether

potential that was used earlier for the black hole, will yield a different result. In any
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case, we should stress that the mixed Chern-Simons term contributes to both the black

hole and the black string entropy.

To obtain the expression (4.5.4) we had to integrate over the horizon, which, in the

case at hand, was straightforward. However, to determine the electric charges and the

angular momenta, one is confronted with an integration of terms that depend explicitly

on gauge fields that are not globally defined. To perform the integral one therefore has

to make use of patches, as was already explained in section 4.2.3, in such a way that

the result will be invariant under ‘small’ gauge transformations continuously connected

to the identity. The precise procedure for doing this has already been proposed in [58],

and we will adopt it here.

We thus define two coordinate patches on the S1 × S2 spacelike cross section Σ of the

horizon. As we shall discuss in due time, these patches have to be also defined away

from Σ, but for the moment we restrict our attention to Σ itself. One patch contains the

north pole N of the S2 factor. It is parametrized by −1 + ε ≤ cos θ ≤ 1, 0 ≤ ϕ < 2π and

0 ≤ ψ < 4π. This patch has the topology of a solid two-torus. The second patch, which

has the same topology, contains the south pole S of the S2 factor, and is parametrized

by −1 ≤ cos θ ≤ −1 + ε, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π. The boundary of these two

patches is a two-torus defined by cos θ = −1 + ε, where the parameter ε will be taken

to zero at the end of the calculation. On these patches we define the gauge fields, WNA
µ

and W SA
µ , respectively, which are related by gauge transformations βA. These gauge

transformations move the Dirac brane singularities from the south to the north pole in

a way that involves the ring coordinate ψ, as was already described in subsection 4.2.3

(in particular, see (4.2.39)). Hence,

WNA
µ dxµ = −pA

[
cos θ dϕ− d(ϕ+ 1

2ψ)
]

+ aAdψ ,

W SA
µ = WNA

µ + βµ
A , βµ

Adxµ = −2 pAd(ϕ+ 1
2ψ) . (4.5.5)

Integrals over the spacelike cross section Σ of the horizon, are now decomposed into

integrals over the sections N and S and an additional integral over the boundary of the

coordinate patches that involves the gauge transformations βA. This last term must

restore the gauge invariance of the integral under small gauge transformations [58]. The

limit ε ↓ 0 is taken for convenience, so that the contribution from the section S will

vanish, and the contribution from N will cover the whole horizon with the exception of

the singular points related to the position of the Dirac brane.

Let us first consider the attractor equations for the electric charges qA. From the evalu-

ation of the charges for the black hole (c.f. (4.3.3)) it is clear that the only contribution

originates from the CABCW
A ∧ FB ∧ FC Chern-Simons term, since all other contri-

butions vanish when T01 = 0. Therefore we focus directly on the Chern-Simons term,

which requires to evaluate the integral of CABCW
B∧FC over the spacelike cross section

Σ of the horizon. According to the prescription specified above, this integral is evaluated
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as follows,∫
Σ
CABCW

B ∧ FC =

∫
N
CABCW

NB ∧ FC +

∫
S
CABCW

SB ∧ FC

+ 2

∫
∂N
CABCW

NB ∧ βC , (4.5.6)

where the factor 2 arises because FA = 2 dWA. In the limit ε ↓ 0, the second integral

vanishes. The third integral extends over the boundary, ∂N = −∂S, of the two sections.

Now, observe that WN J ∧FK is proportional to (aJ + 1
2p
J)pK dθ∧dϕ∧dψ, while WN J ∧

βK is proportional to (aJ − 1
2(1 − ε)pJ)pK dϕ ∧ dψ. As it turns out, the contributions

proportional to pJpK from the first and the second integral cancel (in the limit ε ↓
0), whereas the terms proportional to aJpK add. This confirms the conclusion below

(4.2.40) that the Chern-Simons charge should be proportional to CABC a
BpC . From

comparison with (4.3.3), one then easily determines the expression for the electric charges

by substituting [Wψ
K ] = 2 aK . The attractor equations for the black ring charges are

therefore summarized by

qA = − 1

4T23
CABC σ

BaC , p0 = 0 , pA =
σA

4T23
. (4.5.7)

It is important to realize that the prescription of [58] is based on the fact that d[WB ∧
FC ] = 1

2F
B ∧ FC is gauge invariant. Upon extending the patches outside the horizon,

we may calculate FB ∧ FC over a four-dimensional manifold by extending the radial

coordinate r, which can then be expressed as an integral over its three-dimensional

boundary. This is the justification for the prescription (4.5.6), as Σ constitutes (part of)

this boundary. However, we have simply ignored that the gauge fields must in principle

be extendable outside the horizon in the two patches, and in the above calculation this

feature does not seem to play a role as we obtain a result that is invariant under small

gauge transformations. Indeed, one can repeat the calculation without any difficulty for a

different choice of coordinate patches, such as, for instance, defined by cos θ0 ≤ cos θ ≤ 1

for the N patch and −1 ≤ cos θ ≤ cos θ0 for the S patch, so that the boundary is located

at θ = θ0. As it turns out the final result will not depend on θ0 and simply remains the

same.

However, the situation is different when considering the evaluation of the angular mo-

menta and we shall see that the extension of the sections away from Σ will become

an issue. The expression for the angular momenta follows from the Noether potential

(4.5.3), which is again not gauge invariant so that the integral is again subtle. The trou-

blesome term is the first one, depending on W5
J , which originates form the W ∧ F ∧ F

Chern-Simons term shown in the first line of (4.5.2). This term leads to

8π2 εµνQ
µν
CS = 1

6ε01 ε
µνρCABC ξ

λWλ
AWµ

BFνρ
C + · · · , (4.5.8)
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where the dots denote the remaining gauge invariant contributions in (4.5.3), which can

be evaluated straightforwardly. Note that, unlike as on previous occasions, we converted

the above expression to a density over Σ, so that its integration will require only the

surface element dψ ∧ dϕ ∧ dθ.

In order that the integral over Σ of (4.5.8) is amenable to the same prescription as used

above, it is important that Σ and the gauge potentials are invariant under the isometries

associated with linear combinations, ξψ∂ψ + ξϕ∂ϕ, of the two Killing vectors associated

with rotations over the angles ψ and ϕ. One then observes that d[(ξ · W )W ∧ F ]

can be written as a linear combination of two terms. One is the contraction of the

Killing vector with the five-form W ∧ F ∧ F whose integral must vanish for symmetry

reasons. The second term equals (ξ ·W )F ∧F , which changes by a total derivative under

gauge transformations, again because the gauge fields are invariant under the symmetry

associated with the Killing vector. Hence the integral over the four-dimensional manifold

is invariant under small gauge transformations, and, just as before, the integral of (4.5.8)

over its boundary Σ can be decomposed into integrals over the patches N and S and an

additional integral over the boundary ∂N of

εµνρCABC [ξλWλ
NAWµ

NB − ξλWλ
SAWµ

SB]Fνρ
C =

+ εµνρCABC ∂µ

[
ξλWλ

SA βν
BWρ

SC − 2 ξλβλ
A βν

BWρ
SC
]

− 3
2ε
µνρCABC ξ

λβλ
AWµ

SBFνρ
C . (4.5.9)

Here we insisted in writing the last two lines in terms of sections Wµ
SA, which are well

defined at the south pole. Therefore, when writing the last term as a surface term over

ξλβλ
AWψ

SBWϕ
SC , its contribution will vanish in the limit ε ↓ 0 because Wϕ

SC vanishes

at the south pole.

Combining the results above, the integral of (4.5.8) over Σ can therefore be written as∫
Σ
εµνQ

µν
CS =

ε01

24π2

∫
dθ dϕdψCABC ξ

λWλ
NAWψ

NBFθϕ
C

+
ε01

12π2

∫
dϕdψCABC β

A
[ϕWψ]

SB (1
2ξ
λWλ

SC − ξλβλC)
∣∣∣
θ=π

.

(4.5.10)

For both of these integrals the limit ε ↓ 0 can be taken without difficulty, so that the first

one extends over the whole horizon section Σ and the second one over the boundary of the

sections on the horizon. A straightforward calculation then leads to 2CABCp
ApB(aC −

1
6p
C) and CABCp

A(aBaC + aBpC − 1
12p

BpC), for Jϕ and Jψ, respectively.

The same calculation can be repeated for a different choice of the patches, namely

such that, in the limit ε ↓ 0, the S patch will cover the whole horizon area Σ and

the overlap of the N patch will shrink to the north pole. This requires to re-evaluate

(4.5.9), but up to a few signs the calculations proceeds in the same way. However,
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now the result is not the same, and one finds instead, −2CABCp
ApB(aC + 1

6p
C) and

CABCp
A(aBaC − aBpC − 1

12p
BpC), for Jϕ and Jψ, respectively. The reason for this

discrepancy resides in the last term in (4.5.9), which we dropped because it does not

contribute at the south pole of the horizon.

However, one must verify whether there is no obstruction away from the horizon. If one

assumes that the south poles are directed to the outward part of the ring, extending all

the way to spatial infinity as in [104], one expects an obstruction which will result in an

extra contribution from the integral at spatial infinity. On the other hand, for the inner

region of the ring which contains the north poles, there is obviously no obstruction, so

that the second result will be valid. In case the south poles are directed to the inward

part of the ring, it is the first result that would be valid. In other words, a minimal

understanding of the topological embedding of the near-horizon region in the global

solution is essential in order to distinguish between the two prescriptions. It is possible

that only one embedding leads to a solution that is globally BPS, in line with what was

found in [112]. For a space that is asymptotically flat, both embeddings seem possible

and lead to two inequivalent BPS solutions.

In light of the above we adopt the second result, which must be combined with the

contributions from (4.5.3). Then we obtain the following result for the two indepen-

dent angular momenta, associated with the two independent rotations of the ring in

orthogonal planes,

Jϕ = −1
2 CABp

A(aB + 1
6p
B)

Jψ − Jϕ = − e2g

8T23

[
C(σ) + 16

3 cAσ
A T 2

23

]
+ 1

4 CAB(aA + 1
2p
A)(aB + 1

2p
B) ,(4.5.11)

where CAB is the inverse of CABCp
C .

The above results are all invariant under scale transformations, as they should. Note

that the Wilson line moduli aA are scale invariant. As in the case of black holes, we

introduce a scale invariant variable,

φ0 =
e−g

4T23
, (4.5.12)

so that the above expressions for the entropy and the electric charges take a manifestly

scale invariant form,

S =
π

φ0

[1

6
CABC p

ApBpC +
1

3
cAp

A
]
,

qA = −CABC pBaC . (4.5.13)
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The angular momenta can be expressed as follows,

Jψ − Jϕ − 1
4 C

AB(qA − 1
2 CACp

C)(qB − 1
2 CBDp

D) = − 1

2φ02

[
C(p) +

1

3
cAp

A
]
,

Jϕ =1
2 p

A(qA − 1
6CABp

B) . (4.5.14)

The choice of the linear combination of the angular momenta in the first term is mo-

tivated by the explicit dimensional reduction of the known two-derivative solution [44],

which showed that the rotation of the four-dimensional black hole cannot be identified

with a rotation of the S2 of the black ring but necessarily involves also a rotation along

the ring. Likewise the dimensional reduction is over a circle generated by a simultaneous

rotation around the ring and of the S2. The corresponding generator equals the linear

combination of two angular momenta, Jψ−Jϕ, which therefore corresponds to the charge

associated with the Kaluza-Klein photon. Hence we introduce a modified charge q̂0 in

the usual fashion,

q̂0 = Jψ − Jϕ − 1
4 C

AB(qA − 1
2 CACp

C)(qB − 1
2 CBDp

D) . (4.5.15)

This expression coincides precisely with the one presented in [78].

With this definition the entropy takes its familiar form [67, 71],

S = 2π
√
| 1
12 q̂0(CABC pApBpC + 2 cApA)| , (4.5.16)

This result for the corrected entropy agrees with the microscopic counting of [76, 77],

presented in section 2.4.3, using the same identifications for the intersection numbers

and the second Chern class as above. Furthermore, the above results are generally in

line with the AdS/CFT results for the black ring attractors [92, 113, 114]. As briefly

reviewed in section 2.4, the entropy (4.5.16) is closely related to the microscopic entropy

of a corresponding four-dimensional black hole.

Let us now confront the above expressions in more detail with the corresponding results

in four space-time dimensions, again based on the function (3.3.4). Hence we are dealing

with a black hole with p0 = 0, which leads to (3.3.10)-(3.3.12). The symmetry transfor-

mations (3.3.9) can be considered in the five-dimensional case. In five dimensions there

is no electric/magnetic duality but there is spectral flow [38], giving rise to the same

transformations (cf. (2.1.29)). These transformations are precisely generated by integer

shifts of the Wilson line moduli, aA → aA +kA. Observe that the angular momenta will

also transform under these shifts, and we find the following results,

qA → qA − 12CABCp
BkC ,

Jϕ → Jϕ − 12CABCp
ApBkC ,

Jψ → Jψ − qAkA − 6CABCp
ApBkC + 6CABCp

AkBkC , (4.5.17)
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which imply that q̂0 remains invariant.

The difference between (3.3.11) and (4.5.15) resides in the shifts of the electric charges

proportional to CABCp
BpC . The presence of these shifts is consistent with many previous

results, both from field theoretic solutions and from microstate counting [35, 38, 44, 58,

76–79], and is reflected in the two derivative solution through the harmonic functions

(2.1.36) (see section 2.3). The modified charges qA− 1
2 CABCp

BpC in (4.5.14) are additive,

as follows from a calculation similar to the one leading to the attractor equation for qA,

but now for a configuration of concentric rings. Such a calculation has been performed

in [58] and resulted in the equations (4.2.41) and (4.2.42) that we discussed earlier.

When combined with the attractor equation for qA shown in (4.5.13), they establish the

additivity of the shifted charges. The latter is manifest in the results of [35, 38]. The

modified charges should therefore be used in the microscopic formula of [67] to match

with the macroscopic result (4.5.14), as was already emphasized in [38, 77, 78]. Note,

however, that in spite of the qualitative agreement of these conclusions, we should stress

that we have adopted a different definition of the electric charges qA, which is not based

on the asymptotic fall-off of the electric fields at spatial infinity. Therefore the modified

charges should be the same, but the electric charges may still be different.

The shifts in the electric charges cannot be removed in the four-dimensional results

by a suitable duality transformation of the form (3.3.9), because that transformation

induces shifts that are twice as large. The shifts are related to the terms ±1
2p
Adψ in the

gauge field sections in (4.2.39). From the point of view of subsection 4.2.3, they arise

due to the non-trivial topology of the full five-dimensional space-time. Therefore the

four-dimensional black hole should be compared to the reduction of an infinite magnetic

string in five dimensions, which is topologically trivial. In that case, both the terms

±1
2p
Adψ in (4.2.39) and the shifts in the electric charges in (4.5.11) will be absent, so

that one obtains full agreement with the four-dimensional attractor results.

4.6 Concluding remarks

In this chapter, we gave a detailed discussion of four derivative corrections to five-

dimensional supergravity and their effects on BPS attractors. Both for black holes and

black rings we found full agreement with available microscopic results. In the case

of black holes, this comparison is restricted to the static limit, due to the difficulty of

obtaining microscopic results for rotating solutions. When including angular momentum,

our results were compared to the supergravity predictions of [109] and [92–95]. Even

though all supergravity predictions agree in the static limit, there are discrepancies

related to attractor equations for the electric charges.

A somewhat related issue is the connection to the corresponding four-dimensional results

presented in chapter 3. Upon dimensional reduction, the five-dimensional R2 correction
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leads to a four-dimensional action including both the R2 and F 4 invariants discussed

in section 3.1, so that the results of section 3.3 apply. The comparison is however

not straightforward, due to the presence of Chern–Simons terms in the five-dimensional

action, which modify the relation between the four- and five-dimensional electric charges.

After a careful analysis of the patch structure for the various gauge fields (section 4.2.3),

we were able to identify the general form of the modifications, which depends only on the

topology of spacetime. For a black ring, the electric charge is shifted due to the subtle

gauge transformations between gauge patches in the presence of a spatially extended

magnetic monopole and is related to the cubic Chern-Simons term. For the spinning

black hole, a similar effect arises due to the nontrivial Euler density of spacetime, which

does not allow for the gravitational Chern–Simon terms to be defined globally. Taking

into account these results, we were able to give a precise four-dimensional interpretation

to our results, which exactly match the corresponding expressions in chapter 3.

It would be very interesting to expand this understanding of the macroscopic properties

of BPS black holes in connection with recent ideas on the supergravity interpretation

of microstates [26, 115–118] and the associated partition function [119–121]. Parallel

to that, the construction of higher derivative actions in supergravity is an interesting

subject of its own, as knowledge of the possible invariants can elucidate the structure of

the low energy effective description of string theory.





Chapter 5

Non-BPS black hole solutions

5.1 Introduction and Overview

In previous chapters we studied BPS black holes, including higher order corrections, and

found very good agreement with the corresponding microscopic models. The presence

of unbroken supercharges was instrumental, as they imply constraints that allow both

for the explicit construction of the full solutions and for the matching to the microscopic

theory.

In contrast, when the requirement that the solutions preserve some supersymmetry is

abandoned, much less is known both about the general structure of the supergravity

solutions and the microscopic theory behind them. The simplest generalisation of BPS

black holes is to consider extremal black holes that do not preserve any supersymmetry.

These are known to share some desirable features with the BPS branch, most importantly

the attractor phenomenon [19, 52, 122].

For maximal and half maximal supergravity, where the constraints on the couplings are

stronger, a number of general results have been obtained using symmetries of the action

[123–126]. In theories with 8 supercharges coupled to vector multiplets in four and five

dimensions,1 the structure of general extremal black hole solutions is unclear, as only

partial results are available. For instance, it is known that non-BPS attractors exhibit

flat directions, in the sense that the scalars are not completely fixed at the horizon

once the charges are chosen [127]. A few restricted examples can be obtained from

BPS solutions simply by changing the sign of some charges [127, 128]. However, these

examples are not generic enough – they contain (at least) one less than the minimum

number of parameters required for the most general solution to be derived from them by

dualities [126]. A solution that does contain enough parameters is called a seed solution

in this context.

1Since the two are related by dimensional reduction, we do not make a distinction between them in
this introduction.
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For cubic prepotentials, an appropriate seed was found in [129, 130] and the full duality

orbit for the stu model was subsequently derived in [131]. This full example clarifies

how the non-supersymmetric solutions differ from their BPS counterparts in more than

simply changing the signs of charges. In particular the scalar sector has flat directions,

which are realised as symmetries acting along the full flow, including the horizon [132–

134].

However, static solutions are not the end of the story, as non-supersymmetric extremal

solutions can also rotate. If one allows for angular momentum, the space of solutions

is extended into two types of single-centre extremal black holes [14–16], both displaying

attractor behaviour [135]. The so-called over-rotating black holes feature an ergoregion

and are continuously connected to the Kerr solution. Schematically, the entropy of these

solutions is

S ≈ 2π
√
J2 − I4(Γ) , (5.1.1)

where J is the angular momentum and I4(Γ) is the quartic invariant of the model,

introduced in section 2.2.3. This relation shows that it may not be possible to set the

angular momentum of some over-rotating black holes to zero. On the other hand, the

under-rotating (or ergo-free) black holes always have a continuous limit to static charged

black holes, as the entropy has the general form

S ≈ 2π
√
I4(Γ)− J2 . (5.1.2)

Such solutions correspond to the five-dimensional spinning black hole of section 2.1.3

and seem to be tractable using BPS-inspired techniques, as will be shown in this chapter.

Despite the existence of some known solutions, mentioned above, finding an organis-

ing principle for their general structure has proven challenging. The best developed

approaches are based on four-dimensional supergravity, where electric-magnetic duality

limits the possible structures. One such framework is provided by the timelike dimen-

sional reduction of [12], which relates black holes, regardless of supersymmetry (or even

extremality), to geodesics on an extended scalar manifold. Given sufficient symme-

try on the scalar manifold, solutions may be generated with powerful group-theoretical

methods, cf. [136–140], including multi-centre black holes. Recently, it has even been

possible to show integrability of the scalar equations of motion in black hole backgrounds

[141, 142], for specific models. Unfortunately, this comes at the expense of the results

being expressed less explicitly.

A more direct perspective has been offered by the fake superpotential approach of [143],

where it was pointed out that the rewriting of the effective Lagrangian as a sum of

squares is not unique, leading to more than one type of first-order flow for the scalar

fields. The flow, which in the supersymmetric case is governed by the absolute value of

the central charge, may be more generally controlled by a different function, called the

fake superpotential. The derivation of first-order equations based on a superpotential
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has been subsequently extended to static non-extremal black holes, and for a number of

models the relevant superpotential has been identified explicitly [144–148] (see [149] for

a synopsis of these developments and more references).

In this chapter, we summarise the investigations in [112, 150], where first order equations

and stabilisation equations were introduced for some classes of non-BPS solutions. Along

the way, we comment on some further generalisations considered in [151–154], as well as

on the relation with the approaches mentioned above.

5.2 BPS versus almost-BPS solutions

A longstanding observation [127, 128, 155] in the context of four-dimensional N = 2

supergravity is that one can generate a non-supersymmetric black hole solution from a

supersymmetric one by changing the signs of charges. This operation is known to work

for a very restricted set of solutions. The standard example, appearing in the following

discussion, is the so called static electric solution, for which the harmonic functions in

(2.2.34) are given by

H = (H0, 0 ; 0, HA) . (5.2.1)

Then, a BPS solution is given by solving (2.2.35) as usual, leading to the scale factor

and scalars

e−4U ∝ H0CABCHAHBHC , zA ∝ ie2UCABCHBHC (5.2.2)

where we considered the case of a symmetric scalar manifold for simplicity. In order to

have a well defined solution, the quartic product in (5.2.2) nuts be positive, imposing

restrictions on the relative signs of the harmonic functions and thus the charges.

On the other hand, one can show that even if the harmonic functions are such that the

product above is negative, a solution is also given by the above equations if one takes the

absolute value. Equivalently, one can obtain this solution by solving the system (2.2.35)

with H as in (5.2.1), whereas the gauge fields are instead controlled by the vector2

Hc = (H0, 0 ; 0, −HA) . (5.2.3)

The net effect is that the resulting solution does not preserve any supersymmetry, since

the contributions from the geometry and the scalars in the Killing spinor equations are

the same but the ones from the gauge fields are not. Based on this simple observation,

there have been hopes of constructing the full class of non-BPS solutions generalising

the relation between (5.2.1) and (5.2.3) to generic charges, as in [128].

However, a simple counting argument [130] shows that this is not possible, as the solution

above is not generic enough to generate all other solutions in its class by electric-magnetic

2One can alternatively change the sign of H0. In what follows we will consider both choices, depending
on the context.
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duality. Such a solution is called a seed solution and in four dimensions it must have

at least one more independent parameter compared to the one in (5.2.2). For the BPS

branch, a seed solution can be found by simply adding more harmonic functions, resulting

in the supersymmetric solutions of (2.2.35). For the non-supersymmetric branch this

is not true, as was shown in [129, 130] by explicit construction of the seed solution,

which cannot be obtained by sign changes on a BPS solution. Therefore, it is necessary

to develop new tools to construct non-BPS solutions in order to uncover their general

structure, including the special case of sign flips.

5.2.1 Five-dimensional BPS solutions with flat base space

It turns out that an intuitive way of investigating the relation between the two solutions

above is to consider the five-dimensional uplift of the supersymmetric solution, which

is the static limit of the BMPV black hole in Taub-NUT (see section 2.1.3). In order

to connect to the sign reversed solution, consider first the near-horizon region (2.1.35),

which is described by a flat base space. In this context, it is possible to give a geometric

interpretation to sign flip leading to the non-BPS solution described by (5.2.3), as we

now show.

It was noted below (2.1.23) that there is some extra freedom in choosing the hyper-Kähler

complex structures on flat space: they can be chosen to be either self- or anti-self-dual.

This is a result of the larger group of rotations for R4 compared to a generic hyper-

Kähler manifold, namely SO(4) ≡ SU(2)L × SU(2)R rather than SU(2)× U(1),

so that the two triplets of complex structures rotate under different linear combinations

of SU(2)R and SU(2)L. In this special case, there is a second half-supersymmetric

solution one can write down, in which all the fields are left invariant under the self-dual

complex structures [25]. Explicitly, the relevant BPS conditions (2.1.17)-(2.1.19) for the

flat case are modified to:

ds2 = −f2(dt+ ω̂)2 + f−1hmndx
mdxn ,

FA = ±2 ∂[µ(σAe0
ν]) dx

µdxν ± ΛAmn dx
mdxn ,

σAΛA = −2

3
G± ,

∆
(
f−1σA

)
=

1

12
CABCΛBmnΛmnC . (5.2.4)

Here, ΛA are self-dual forms on the base for the upper sign and anti-self-dual for the

lower sign. These pairs of BPS solutions are aligned with the two complex structures

in the sense that they are invariant under the corresponding SU(2) subgroups of the

SO(4) isometry group and, in an orthonormal basis, their respective Killing spinors

satisfy γ0ε = ±iε. Some examples of supersymmetric pairs were written down in [25],

using right- and left- invariant one-forms on S3.
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An interesting property of these BPS pairs is that when reducing to four dimensions

along a circle, it is not possible to retain both in the BPS spectrum. This is because the

two sets of BPS solutions respect a different SU(2) isometry in five dimensions, while

any reduction ansatz can only respect one SU(2) ≡ SO(3) isometry. Thus, choosing

a particular SU(2) to break in the reduction, all the BPS solutions aligned with it are

lost as well. Equivalently, the Killing spinors of only one set of solutions are invariant

under the SU(2) that is being broken and will be trivially reduced to four dimensions.

Those of the other set will be charged under the Kaluza-Klein gauge field, violating the

natural assumption of invariance and leading to a non-BPS solution. A very similar

situation was encountered in [156, 157], where it was shown that if one considers the full

Kaluza-Klein tower, supersymmetry is recovered.

This “supersymmetry without supersymmetry” effect, was observed in [129, 158], in the

context of lifting to five dimensions the near horizon geometry of the four-dimensional

non-BPS black hole described by (5.2.3), which can be also written as a solution with

flat base space. In the particular electric case discussed here, one has ΛA = 0, ω = 0

and H = p0/r for flat base space with a conical singularity (the coordinate ψ has a fixed

range as in (2.1.20)). Then the two five-dimensional BPS solutions above are identical

with respect to the metric and the scalars, but have opposite electric charges:

ds2 = −f2dt2 + f−1

(
p0

r
dxidxi +

r

p0
(dψ + p0 cos θφ)2

)
FA = ±2 ∂m(fσA) dxmdt, f−1σA =

1

3
LA =

1

3

qA
r
. (5.2.5)

Upon reduction to four dimensions preserving the SO(3) symmetry of the directions xi,

they give the BPS and the non-BPS attractor (5.2.1) and (5.2.3) for the plus and minus

sign respectively3.

It should be noted that this observation does not affect the 4D/5D connection for BPS

solutions as described in [56, 159]. There, a Taub-NUT base that interpolates between

a five-dimensional and a four-dimensional solution was used to argue that the BPS

index is the same in four and five dimensions. As Taub-NUT has a unique triplet of

complex structures, there is only one BPS solution for each choice of harmonic functions.

Thus, all asymptotically Taub-NUT BPS solutions in five dimensions are mapped to

asymptotically flat BPS solutions with appropriate charges, under dimensional reduction

[57]. The same holds for any Gibbons-Hawking space except flat space.

This is explicitly seen from the asymptotically Taub-NUT extensions of the two attractor

solutions. The solution with the plus sign in (5.2.5) is compatible with the anti-self-dual

complex structures of R4 and its asymptotically Taub-NUT extension is the BMPV black

hole [39] in the centre of Taub-NUT, described by the harmonic functions in (2.1.31). In

view of the anti-self-duality of the complex structures of this base, it is a BPS solution

3If the other SO(3) symmetry of R4 is chosen in the ansatz, one ends up with the same solutions in
four dimensions, but their origins in five dimensions are interchanged.
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[25]. The solution with the minus sign is instead compatible with the self-dual complex

structures of R4. Its Taub-NUT extension was constructed in [129], and is the non-BPS

static seed solution mentioned above. Interestingly, this solution can be viewed as a

special case of a more general class of solutions, to which we now turn.

5.2.2 Almost-BPS solutions

One might wonder about the fate of the two different supersymmetric solutions in case

the base space is not flat. This becomes especially interesting in view of the fact that

both kinds of BPS solutions with a flat base (5.2.5) can be the near horizon region

of (not necessarily BPS) black holes embedded in a more general space, as mentioned

above. The existence of full interpolating Taub-NUT solutions for the two attractors in

(5.2.5), only one of which is BPS, suggests that the two different solutions might survive

as BPS/non-BPS pairs in this case.

Indeed, it is straightforward to show that as long as the base is Ricci flat, both expressions

in (5.2.4)-(5.2.4) solve the equations of motion [112, 153, 154]. For a general base both

solutions are non-supersymmetric, whereas for a hyper-Kähler base, anti-self-duality of

the complex structures allows only for the one with the upper sign to be supersymmetric.

An intuitive picture of the relation between the two solutions can be given for a Gibbons-

Hawking base space. Such a manifold is a U(1) bundle over R3, so it can be trivialised

into R4 by a suitable choice of coordinates on any local patch. One then has a choice

between self-dual or anti-self-dual complex structures on every such patch as before, so

that both expressions in (5.2.4)-(5.2.4) constitute BPS solutions.

By extending to the full base space, only the anti-self-dual structures on local patches

can be integrated to the unique global complex structures (2.1.22). In contrast, the local

self-dual structures can be integrated to the almost hyper-Kähler structures:

X̃(i) =
(
dψ + χjdx

j
)
∧ dxi +

1

2
Hεijkdx

j ∧ dxk, (5.2.6)

that are globally defined, but not integrable: d X̃(i) 6= 0. The existence of the forms

(5.2.6) allows one to construct globally defined fields by aligning local solutions on every

patch with the appropriate restriction of these structures4. It is then clear why both

signs in (5.2.4) provide a solution to the equations of motion, since they can be viewed as

constructed locally from BPS solutions aligned with the forms in (5.2.6). The difference

is that the one with the upper signs is compatible with the global complex structures

and is a global BPS solution. The second solution fails to be supersymmetric only due

to a global obstruction, providing an example of a non-supersymmetric solution with

4Note that the restriction of these forms on a patch is transformed to a constant by the coordinate
transformation that trivialises the patch. It is the non-compatibility of these local coordinate trans-
formations that makes the global forms non-integrable. This is also what prohibits the existence of a
corresponding global Killing spinor.
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the peculiar property of admitting four supercharges on local patches. In fact, it is

expected to have all the local properties of a BPS solution, which are behind most of

the computational simplifications in that case. This property, which is based on the

existence of an almost hyper-Kähler structure, motivates the nickname, “almost-BPS”,

for these solutions. By the same argument, almost-BPS solutions are supersymmetric

on local patches for a base more general than Gibbons-Hawking if there exists a globally

defined almost hyper-Kähler structure.

Here, we restrict to Gibbons-Hawking base spaces for simplicity. In this case, the almost-

BPS solutions can be specified through arbitrary harmonic functions as for the BPS case,

following the algorithm in [35]. First write

ω̂ = ω5

(
dψ + χidx

i
)

+ ωidx
i, (5.2.7)

ΛA = V A
i

(
dψ + χjdx

j
)
∧ dxi − 1

2
HεijkV

A
k dx

i ∧ dxj , (5.2.8)

for the one-form ω and the anti-self-dual form in (5.2.4), where V A are arbitrary one-

forms to be determined.

Using (2.1.20), closure of ΛA reduces to the relations:

∇×VA = 0 , ∇ ·VA = 0 , (5.2.9)

which in turn imply that locally:

VA = ∇KA , (5.2.10)

for some harmonic functions KA. The equation for f−1σA in (5.2.4) implies that

∇2
(
f−1σA

)
=

1

3
HCABC∇KB∇KC =

1

6
H∇2

(
CABCK

BKC
)
, (5.2.11)

which can be solved up to a set of arbitrary harmonic functions LA, given the KA. Here,

we will restrict to solutions of the slightly stronger relation:

∇
(
f−1σA

)
=

1

6

(
H∇

(
CABCK

BKC
)
− CABCKBKC∇H

)
+

2

3
∇LA , (5.2.12)

even though there might be physically interesting solutions not captured by it. The

advantage of this simplification is that the scalars are governed by a first order flow very

similar to the BPS one.

Finally, we find the conditions on ω5 and ω̂i. Writing out the first equation in (5.2.4)

using (2.1.19) and (5.2.10) one gets:

∇× ω +∇ (Hω5) = 3 f−1HσA∇KA (5.2.13)
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Taking the divergence of this gives the integrability condition

∇2 (Hω5) = 3∇
(
f−1HσA

)
· ∇KA, (5.2.14)

which can be solved up to an arbitrary harmonic function M , given the solution of

(5.2.12). Substituting in (5.2.13), the one-form ω̂ can be determined up to a total

derivative (removable by a change of coordinates).

Observe that, just like its supersymmetric partner, an almost-BPS solution is determined

by 2nv + 2 harmonic functions H, KA, LA, M , which encode the charges as in section

2.1.2. In this respect, almost-BPS solutions are a five-dimensional analogue of the four-

dimensional change of sign between (5.2.1) and (5.2.3). Comparing (5.2.11)-(5.2.14)

with (2.1.25)-(2.1.28), shows that they are related in exactly that way if the KA vanish,

but the general case is more complicated than a change of relative signs, as it involves

different powers of the harmonic function H.

When H is such that the base is flat, the BPS/almost-BPS pairs degenerate into the

supersymmetric pairs of the previous section, so that there are no asymptotically flat

five-dimensional non-supersymmetric solutions in the almost-BPS class. In this case, if

one chooses H = 1, the supersymmetric pairs are always related by a sign change, but

not if one takes H = 1/r. The latter choice typically leads to genuinely different BPS

solutions that are not asymptotically flat, as in [25].

Choosing a Taub-NUT base instead, there are solutions that asymptote to R3 × S1,

allowing for an interpretation as asymptotically flat solutions in four dimensions. It

follows that reduction along the ∂/∂ψ direction results in non-supersymmetric solutions

of four-dimensional N = 2 supergravity that are more general in several ways than the

ones produced by the four-dimensional sign change. In particular, almost-BPS solutions

allow for some nontrivial moduli at infinity as in [129, 130] and multiple centres, unlike

the four-dimensional flip of signs between (5.2.1) and (5.2.3), that only works for single-

centre solutions with purely imaginary scalars.

However, almost-BPS solutions are far from being the most general non-BPS black holes,

as they represent very special points in the duality orbits. For example, D0−D6 non-BPS

black holes (see e.g [59, 130, 131]) are not captured by the almost-BPS equations, as they

were derived from the BPS conditions, that do not allow for such objects. Similarly, it is

known that non-BPS black holes generically exhibit flat directions all along the flow in

both four and five dimensions [132–134, 160, 161]. This feature is also not captured by

almost-BPS solutions, since the BPS solutions have no flat directions either. Therefore,

in practice, the extra freedom in the almost-BPS equations has been used to produce

seed solutions for non-BPS black holes, which can lead to more general solutions. In this

respect, four-dimensional dualities are crucial, since the most general non-BPS solution

in a specific theory can be explicitly generated from a restricted example, provided there
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are enough symmetries [130, 131]. In later sections we will discuss some the implications

of symplectic reparametrisations, after reducing to four dimensions.

At the same time, the class of almost-BPS solutions can be enriched by relaxing the

ansatz for the metric and gauge fields, as in [153, 154, 162–165]. In these works, new

interesting classes of solutions were generated, mostly in the five-dimensional setting.

One of the most exciting results is the construction of smooth, horizonless solutions with

the same asymptotic charges as non-BPS black holes, which can be used as microstate

geometries in the fuzzball approach [26, 115–118].

5.2.3 Non-BPS electric black hole

One of the remarkable properties of supersymmetric solutions is that they can usually

be constructed analytically (see chapter 2 for a discussion in the two derivative case

and [54, 93] for solutions to the four derivative theories). However, non-BPS solutions

are significantly more complicated, as one can see by comparing the BPS equations

with their almost-BPS counterparts, which can not be solved formally as in section

2.1.2 in the general case. Here we first discuss some of the general features of almost-

BPS solutions, specialising to a single-centered example which is very interesting from

a four-dimensional perspective. For further details, generalisations and more examples

of explicit solutions we refer to [112, 151–154].

The most important feature of almost-BPS solutions is the special structure of their near

horizon and asymptotic regions. Indeed, since the near horizon region of these solutions

can be written as a timelike fibration over flat space, it preserves four supercharges

by construction. In fact, it preserves all eight supercharges, since the near horizon

region is maximally supersymmetric for BPS solutions. The same holds trivially for the

asymptotic region, up to compactness of one coordinate in the case of asymptotically

Taub-NUT solutions, as they asymptote to R3 × S1. It follows that the mass of any

almost-BPS solution takes the same form as for its BPS partner, namely a simple sum

of charges. This feature has been observed for non-supersymmetric solutions of the

STU model in four dimensions [130], which can be lifted to almost-BPS solutions in

five dimensions, as we show below. Note that the BPS nature of the attractors and the

asymptotic region of our solutions is invisible from a four-dimensional perspective, as

explained in section 5.2.1.

A second, more intricate, property that also follows from the almost-BPS conditions is

the existence of a first order flow for the scalars as in [129, 143, 144]. For supersym-

metric solutions, the function governing this flow is the central charge. The almost-BPS

equations can then be used to obtain an analogous quantity for the non-supersymmetric

case, both in the five and the four-dimensional theory, by dimensional reduction.
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We now turn to an explicit single-centered example, which departs from the simple sign

flip relation to it BPS partner and has two independent angular momenta [129, 130, 151].

Similar to the BMPV solution on the BPS side, we choose the harmonic functions as:

H = h0 +
p0

r
, KA = 0 , LA = lA +

qA
r
, M = b+

J cos θ

r2
. (5.2.15)

Here, lA , b are constants and p0 , qA , J are the Taub-NUT charge, the electric charges

and the angular momentum of the solution. Considering the case of a symmetric scalar

manifold for simplicity, one can solve the scalar equation explicitly as

f−1σA =
2

3
LA , ⇒

f−3 =
4

3
CABCLALBLC , σA = 2 f2CABCLBLC , (5.2.16)

whereas the angular momentum one-form is given by

ω5 =
M

H
, ∇× ω = −∇M , ω =

J sin2 θ

r
dφ . (5.2.17)

The metric and gauge fields follow straightforwardly from (5.2.4) with the lower sign.

Even though the five-dimensional geometry is interesting in its own right, we choose to

emphasise the four-dimensional interpretation of this solution for future reference. Upon

reduction along the ψ direction one obtains a single-centred under-rotating extremal

solution that carries angular momentum along the φ direction, as in (5.2.17). Using

(2.3.2), the four-dimensional metric is as in (2.3.5), with

e−4U =
4

3
H CABCLALBLC −M2 , lim

r→∞
e−4U = h0l3 − b2 = 1, (5.2.18)

l3 =
1

3
lAlA, lA = 4CABC lBlC , (5.2.19)

where we imposed four-dimensional asymptotic flatness and introduced some useful no-

tation. The four-dimensional scalars (2.3.4) and gauge fields are given by:

zA =
f σA

H

(
−M + ie−2U

)
, (5.2.20)

FA(4) = −d
[
σAf(1 +M2 e4U )(dt+ ω)

]
, (5.2.21)

and F 0 = dA0, with A0 as in (2.3.7). Note that, unlike in (5.2.2), the scalars have a

nontrivial (common) phase.

The ADM mass associated to this solution is simply found by expanding the metric to

first order in 1/r. The result is:

MADM =
1

4G4

(
p0l3 + h0 lAqA

)
, (5.2.22)
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which is simply a sum of charges just like for its BPS partner, as anticipated above. Note

the absence of angular momentum from this equation for the same reason, a feature that

is also consistent with general expectations on four-dimensional under-rotating black

holes.

Interestingly, this four-dimensional solution contains an extra parameter at infinity, b,

which turns out to be exactly the missing degree of freedom for the construction of

a static seed solution, mentioned in the beginning of the section. However, this con-

stant is only the trivial part of a full harmonic function, M , which controls the angular

momentum. Therefore, we find this an appropriate seed solution in four dimensions

[151], and we expect that the most general under-rotating extremal black hole for a

four-dimensional N = 2 theory with a symmetric scalar manifold can be obtained by

applying dualities on the above solution, along the lines of [131]. In the next section we

discuss how to implement electric-magnetic duality for generic special Kähler manifolds.

Before doing that, we discuss two possible generalisations. The first is to the multi-centre

case, by adding more centres in the harmonic functions H ,LA in (5.2.15), generalising

the base space to multi-Taub-NUT. Upon reduction to four dimensions, these solutions

seem to agree qualitatively with the solutions of [137]. A second generalisation would

be to turn on the magnetic harmonic functions. In the BPS case this is irrelevant due to

spectral flow [38], as in (2.1.29). In contrast, equations (5.2.12)-(5.2.14) do not appear

to have such an invariance. In this case, the functions f , ω5 diverge at the centre5 as

r−3 and r−4 respectively, making them unattractive at first sight. However, the near

horizon geometry of these solutions is described by the BPS solutions considered in [25]

(for the minimal theory). There, a number of curvature invariants were examined and

were found to remain finite at r = 0, hinting at a regular solution.

5.3 Stabilisation equations and an ansatz

Having gained some insight for non-BPS solutions using the five-dimensional theory,

we now return to its four-dimensional reduction. The reason is that, even though five-

dimensional supergravity appears to be simpler, solution generating techniques are more

powerful in the four-dimensional theory. The crucial difference is that the equations of

motion of four-dimensional N = 2 supergravity are covariant under electric-magnetic

duality, including the scalar sector, as discussed in section 2.2.2. One can use this

covariance to generate new solutions from a given one by symplectic rotations. If the

starting solution is generic enough, i.e. it is a proper seed, this process can lead to the

most general solution of a given class. In this section, we consider the explicit electric

solution of the last section and rewrite it in terms of symplectically covariant objects.

5One would naively expect to find a horizon at r = 0 in these coordinates, as in all other cases treated
in this work.
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Based on these variables, we can generate new solutions through symplectic rotations,

aiming towards a generic ansatz that covers all single-centre solutions.

5.3.1 The four-dimensional solution and symplectic rotations

The importance of the rotating electric solution in the previous section stems from the

fact that it can be used as a seed for four-dimensional under-rotating black holes [14–

16] in theories with a cubic prepotential. Consequently, all under-rotating solutions,

carrying arbitrary charges, can be generated from this by applying appropriate electric-

magnetic rotations, as in (2.2.15).

This transformation does not act on the metric, but it does act on the symplectic sec-

tion V according to (2.2.19), inducing projective linear transformations on the physical

scalars, as can be seen using the special coordinates given by (2.2.6). As it is cum-

bersome to implement this in practice, especially in the case of non-symmetric scalar

manifolds, we follow the opposite route, rewriting the known solution (5.2.20) for the

physical scalars and the metric in terms of V, so that symplectic rotations can be ap-

plied directly. It is worth noting that using a rotating black hole solution is very useful,

as the presence of an extra harmonic function describing rotation provides guidance,

minimising the ambiguity introduced in the process.

After reducing to four dimensions, it is useful to define a symplectic vector of harmonic

functions describing the associated physical charges, as in6

Hc = (−H0, 0 ; 0, HA) , (5.3.1)

where the dictionary (2.3.13) was used to rename the harmonic functions. As the har-

monic function M controls the angular momentum, it is invariant under symplectic

transformations.

Using the 4D/5D dictionary of section 2.3 [56, 57, 159], we can rewrite the full solution

given in five-dimensional notation above in terms of variables natural from the four-

dimensional perspective. The metric is as in (2.2.33), which we repeat here

ds2 = −e2U (dt+ ωidx
i)2 + e−2Ud~x2 , (5.3.2)

while the resulting expressions for the gauge fields and scalars are7

F = ?0dHc − 2 d(e2U Re Ṽω) , 2 Im Ṽ = J ≡ H+R (5.3.3)

6Here and henceforth we reverse the signs of all the charges of the non-BPS solution compared to the
previous section for convenience, so that the BPS solution is found by changing the sign of p0, rather
than all the electric charges as is natural in five dimensions. This can be absorbed in an irrelevant overall
sign change of V.

7 In the remainder of the chapter, we use form notation for quantities in the three spatial dimensions,
which will be generally denoted by boldface symbols.
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Here, ?0 is the Hodge dual with respect to the flat three-dimensional metric δij and

we use again the shorthand Ṽ = e−Ue−iαV as in section 2.3. The vector J is written

in terms of a harmonic part, H, and a part containing ratios of harmonic functions R,

given respectively by

H = (H0, 0 ; 0, HA) , R =
(

0, 0 ;
M

H0
, 0
)
. (5.3.4)

Finally, the metric functions are re-expressed as

?0dω = −dM = d〈H,R〉 , e−2U = i〈Ṽ, ¯̃V〉 =
√
I4(H)−M2 . (5.3.5)

Here, I4 is the quartic invariant that appears in the entropy formula for cubic prepoten-

tials (see (2.3.12)), as usual.

The expression (5.3.3) for the scalars is in the form of stabilisation equations as they

are known for BPS solutions [22]. In particular, the asymptotic values of the scalars

are controlled by the constant parts of the harmonic functions H and M , whereas the

attractor equations, obtained in the limit r → 0, are controlled by the charges and the

angular momentum [135].

The harmonic functions H are related to the physical ones (5.3.1) by a single sign flip, as

in the example in the beginning of section 5.2, where the scalars were purely imaginary.

The novel addition to J is a ratio of harmonic functions that was not present in previous

attempts to write non-BPS stabilisation equations and allows for a nontrivial phase of the

scalars. Note that the gauge field strengths are related to the corresponding expression

in (2.2.34) by the sign flip of the harmonic functions only, whereas the term involving

the angular momentum in (5.3.3) is exactly the same as for a BPS solution.

As this is the seed solution for under-rotating extremal black holes, the most general

solution can be found by duality rotations on the stabilisation equations (5.3.3) and one

concludes that a ratio of harmonic functions is generated in all other cases as well. For

example, in the case of the stu model, one can explicitly dualise to the frame with only

two charges present, corresponding to a D0-D6 brane system in Type IIA theory. For

this model, the prepotential is as in (2.3.1) with CABC = |εABC | and the scalar sector

is then described by the choice (no sum on A = 1, 2, 3):

H =
(
H0,

1

λA
HA ; H0, λ

AHA

)
, R =

1

8

M

H+
0

(
1,

1

λA
;−1, −λA

)
, (5.3.6)

where

HI = hI +
q0

r
, H+

0 =
1

4

(
h0 +

∑
A

hA

)
+
q0

r
(5.3.7)

HI = −λ3HI , H0 + = −λ3H+
0 , CABCλ

AλBλC ≡ λ3 , (5.3.8)

e−4U = I4(H)−M2 = (H0H
0)2 −M2 , (5.3.9)
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and λ3 must be a constant. Note that the individual constants λA appear only as

multiplicative factors in H and R, but not in e−U , which depends only on the physical

harmonic functions H0 and H0. It follows that the metric and gauge fields only depend

on the combination λ3, so that two of the λA correspond to flat directions. The structure

in (5.3.6) seems to be generic for D0-D6 solutions for all cubic prepotentials.

It is interesting to note that for both solutions the angular momentum harmonic function

can be invariantly characterised by M = 〈H,R〉 and that the flat directions described

by the λA are zero modes of this equation as well. However, the harmonic part H is

not related to the charges by sign flips, as one might expect on the basis of (5.3.3). In

fact the electric solution is special, in the sense that the flat directions can be described

through (5.3.3) by simply allowing for the missing harmonic functions to be constants,

at the cost of making R more complicated, but still proportional to a single ratio and

consistent with (5.3.5).

5.3.2 The ansatz in four dimensions

In view of the above observations, it is natural to propose an ansatz for the scalars

in terms of the period vector that contains harmonic functions and ratios of harmonic

functions. In fact, it is simple to see that imposing consistency of any generic ansatz

Im Ṽ ∼ H +R, leads to inverse harmonic functions. Since one can compute 〈H,R〉 in

two ways:

〈H,R〉 = Im〈Ṽ,R〉 = − Im〈Ṽ,H〉 , (5.3.10)

where H and R are a priori independent, it follows that 〈H,R〉 must be a scalar-

independent quantity. The only other fields in the system are the scale factor and the

rotation form ω in the metric, but in view of the scale invariance8 of 〈H,R〉, it cannot

depend on eU , in accord with the explicit solution above, where 〈H,R〉 = M . In the

static limit M reduces to a constant, in which case the constraint can be solved even if R
is harmonic, but in the rotating case one has to reproduce the full θ-dependent function

M in (5.2.15). This implies a structure as in (5.3.3), which then must be present even

when the angular momentum is turned off.

Based on the linearity of symplectic reparametrisations and that (5.3.4) and (5.3.6) are

seed solutions, we expect the structure seen in the previous section to be universal for

all under-rotating extremal black holes. In other words, we take the point of view that

there is no essential difference between static non-supersymmetric and under-rotating

black holes, since they are continuously connected by setting to zero the nonconstant

part of a single harmonic function, as in (5.2.15). Therefore, we propose the following

8Here we refer to the invariance of the Poincaré Lagrangian under rigid scale transformations, inher-
ited from the full conformal formulation of the theory and corresponds to eU → eDeU , V → eDV, for
the scalars and gij → e2Dgij for the spacial metric, where D is constant [23].
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form for the stabilisation equations for the scalars and the angular momentum:

2 Im Ṽ = H+R , (5.3.11)

?0dω = 〈dH,H〉+ d〈H,R〉 , (5.3.12)

where H is a vector of harmonic functions and R is a vector of ratios of harmonic

functions. The integrability condition of the last equation implies that their symplectic

inner product is a harmonic function, while the scale function of the metric is given by:

e−2U = i〈Ṽ, ¯̂V〉 =
√
I4(H+R) . (5.3.13)

The solution for the components of Ṽ can then be obtained in the same way as the

solutions to supersymmetric stabilisation equations [57, 60]. Note that when R = 0

and the charges carried by H are identified with the physical charges, one recovers

the BPS stabilisation equations, as required. More generally, for a physically reasonable

solution the harmonic and inverse harmonic functions in (5.3.11) are quite restricted due

to various consistency constraints, both generic and based on known explicit solutions.

The rest of this section is devoted to a discussion of these generic constraints and some

of their implications.

A first requirement is that in the near-horizon limit the scale factor e−4U of an under-

rotating black hole must reduce to [135]:

e−4U ∝ I4(Γ)− J2 cos2 θ , (5.3.14)

where I4(Γ) is the quartic invariant for the physical charges and J is the angular momen-

tum. In the simple case of vanishing angular momentum, R is proportional to inverse

harmonic functions and thus vanishes near the horizon. Therefore, a harmonic piece

must always be present in the right hand side of (5.3.11), to make sense of the static

solution in the near-horizon region. Similar comments apply to the full rotating case,

hence it is impossible to have a physical solution for the scalars based purely on inverse

harmonic functions. The poles of these harmonic functions must be such that I4(H) > 0

and that this quartic invariant should be related to the one of the physical charges by a

sign flip in order to reproduce the first term in (5.3.14).

Going over to the constraints posed by the form of the full solution, observe that in the

(necessarily static) BPS case the full scale function is simply e−4U = I4(H), where the

charges are replaced by their corresponding harmonic functions. Similarly, for the stu

model, where the most general non-BPS static black hole was explicitly constructed in

[131] (using the seed solution of [129, 130]), it has been shown that the scale factor is

shifted as e−4U ∼ I4(H)− b2, where b is a constant that does not depend on the charges.

Interestingly, for the known under-rotating seed solution the expression for e−U in (5.3.5)

can again be found from (5.3.14) by replacing the charges and angular momentum by
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harmonic functions. In this extended setting, the additional constant b of [131] is iden-

tified with the constant piece in the harmonic function for the angular momentum in

(5.3.5). Therefore it is reasonable to expect that generically the scale factor is a function

of the harmonic functions for the charges and angular momentum, thus allowing for the

presence of a possible residual constant in the static solutions, when J is set to zero.

Now, for an ansatz of the type (5.3.11) to describe the known solutions, the vector R
must be such that (5.3.13) is consistent with the above comments, in particular with

(5.3.5), so that

e−4U = I4(H+R) = I4(H)− 〈H,R〉2 . (5.3.15)

This equality poses very strong restrictions on R, as it does not appear in linear, cubic

or quartic terms. In particular, the components of R must be such that I4(R) and

its first derivatives vanish, implying that it must have at most as many independent

components as the charge vector of a two charge small black hole. Then, given H and

a model in which I4 is known, the linear term in R should vanish, further restricting

its independent components. Indeed, R appears to completely fixed up to an overall

nontrivial function in the explicit solutions, (5.3.4) and (5.3.6).

For symmetric cubic models this can be made more precise9, by Taylor expanding the

left hand side of (5.3.15) explicitly. For such models, it is possible to show that [166]

I4(H+R) = I4(H) + 4 I3,1(H,R) + 6 I2,2(H,R) + 4 I3,1(R,H) + I4(R) , (5.3.16)

where

I4(H) = 1
2 KÎĴK̂L̂H

ÎHĴHK̂HL̂

I3,1(H,R) = 1
2 KÎĴK̂L̂H

ÎHĴHK̂RL̂ (5.3.17)

I2,2(H,R) = 1
2 KÎĴK̂L̂H

ÎHĴRK̂RL̂ .

Here the hatted indices stand for pairs of electric-magnetic indices asHÎ ≡ {HI , HI} and

KÎĴK̂L̂ is a completely symmetric symplectic tensor. The previous discussion suggests

that R should have only one independent component, so we assume it lies in a doubly

critical orbit, characterised by [167]

3KÎĴK̂L̂R
K̂RL̂ + ΩÎK̂R

K̂ΩĴL̂R
L̂ = 0 , (5.3.18)

where Ω is the symplectic matrix (2.2.16). Contracting the last equation with R it is

easy to see that I4(R) = I3,1(R,H) = 0 and that (5.3.16) reads

I4(H+R) = I4(H) + I3,1(H,R)− 〈H,R〉2 . (5.3.19)

9The author wishes to thank Alessio Marrani for pointing out this version of the derivation.
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Thus, the quadratic term reorganizes itself in the desired form without further assump-

tions. For a given model, R can then be determined by demanding that the linear term

vanishes. Similar invariants constructed from two charge vectors have been considered

recently in the context of multi-centre solutions [166, 168, 169].

Therefore, the only object missing for a complete characterisation of the ansatz for

extremal solutions in principle, is an explicit form for H given a vector of physical

charges. Unfortunately, solving this constraint is not a straightforward task. The only

a priori requirement on H is that it must be “BPS” in the sense that I4(H) > 0 and

that its quartic invariant should be related to the one of the physical charges by a sign

flip. In fact the result should not be unique, as one can expect in view of the ambiguity

is seen in (5.3.6), where the two extra unconstrained parameters in λA represent the

flat directions of the scalar sector. On the other hand, the relation between H and the

physical charges must be the same throughout the flow, as follows from (5.3.11), so that

an attractor analysis would be sufficient for this purpose. In any case, one can always

dualise the stabilisation equations for the seed solutions above to find any other solution

and we comment on a possible way to construct H at the end of the next section.

5.4 Flow equations from the action

In the last section we argued in favour of a particular ansatz for under-rotating extremal

black holes, motivated by symplectic covariance. In order to put it to use, one also needs

to cast the equations of motion for N = 2 supergravity in a symplectically covariant

form, using the variables introduced in section 2.2.2. The standard action (2.2.10) is

not invariant under electromagnetic duality rotations, and our first task is to rewrite

it so as to make this invariance manifest, following [24]. Using the symplectic section

in (2.2.19), it is straightforward to do this for the scalar kinetic term. However, it is

not possible to obtain a duality invariant formalism for gauge fields in terms of Lorentz

covariant quantities, so we are forced to use the alternative action of [170, 171].

As we are interested in asymptotically flat, stationary extremal black holes, we use

(5.3.2) as an ansatz for the spacetime metric

ds2 = −e2U (dt+ ωidx
i)2 + e−2Ud~x2 , (5.4.1)

with the condition U, ωi → 0 as r →∞. We have restricted the ansatz to describe under-

rotating black holes, by choosing a flat base space, so that the angular momentum enters

only through the one-form ω.10 It is convenient to introduce the following product for

10An appropriate ansatz for over-rotating solutions should have a more complicated base space [14–
16, 135].
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symplectic vectors of spatial 2-forms

(X ,Y) =
e2U

1− w2

∫
MCY

X ∧
[
?0(�Y)− ?0(w ∧ �Y)w + ?0(w ∧ ?0Y)

]
, (5.4.2)

where � is the scalar-dependent inner product defined in (2.2.24) and we defined w =

e2Uω.

With this notation, the two derivative action (2.2.10) can be recast in the form [170]

S = − 1

16π

∫
dt

∫
R3

[
2 dU ∧ ?0dU − 1

2 e4U dω ∧ ?0dω

+2 gab̄ dza ∧ ?0dz̄b̄ + (F ,F)
]
, (5.4.3)

where we assume all time derivatives to vanish and F = dA is the field strength associ-

ated to a symplectic vector of spatial gauge fields A. In this formulation, F is identified

with the spatial components of F in (2.2.15), whereas the electric components of the field

strength F and its dual G are non-dynamical fields, determined by the self-duality con-

straint (2.2.27). The corresponding charge vector is given by the integral of F through

(2.2.14), as usual.

The scalars za, the metric factor eU and the angular momentum one-form can be also

repackaged in a similar form using the two-form

W = 2 Im?0D(Ṽ)− 2 Re D(Ṽ w), (5.4.4)

where

D = d + i(Q + dα+ 1
2e2U?0dω) , Q = Im (∂aKdza) , (5.4.5)

and α(x) is an arbitrary function. Similar to (2.2.35), the combination Ṽ ≡ e−Ue−iαV
is invariant under rigid scale and U(1) transformations. The action is now simply

S = − 1

16π

∫
dt

∫
R3

[
(W ,W) + (F ,F)− 2 (Q + dα+ 1

2e2U?0dω) ∧ dw
]
, (5.4.6)

which is manifestly a quadratic form of functionally independent terms.

A standard trick to obtain solutions to the equations of motion arising from a Lagrangian

of this type, due to Bogomol’nyi, is to set to zero each of these terms. Direct application

to (5.4.6) leads to W = F = Q = ω = 0, which can be shown to describe a flat spacetime

with constant scalars. In order to obtain more interesting solutions, one needs to find

an equivalent rewriting of the Lagrangian by mixing the scalars with the gauge fields.

This was done in [24] to obtain the symplectically covariant form of the BPS solutions,

making use of the combination G = F −W , so that the action takes the form

S = − 1

16π

∫
dt

∫
R3

[
(G,G)− 4 (Q + dα+ 1

2e2U?0dω) ∧ Im〈G, eUe−iαV〉
]
, (5.4.7)
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In this form, the Bogomol’nyi trick leads to

G = 0 , (5.4.8)

Q + dα+ 1
2e2U?0dω = 0 , (5.4.9)

which are easily shown to be identical to (2.2.34)-(2.2.35). Note that the supersymmetry

variations were not used in this approach, and one still has to check that the above

relations solve the Killing spinor equations to establish supersymmetry.

Inspired by the relation between (5.2.1) and (5.2.3), it is possible to use different ways to

rewrite the action to obtain non-supersymmetric equations as well, employing a specific

rigid transformation (rotation) of the charge vector with a corresponding modification of

the field strengths [143, 172]. A further generalisation was presented in [150], where no

assumptions about this transformation or about the resulting modified (or ‘fake’) field

strength were made. Consider a new two-form valued symplectic vector F̃ , constrained

to satisfy (
F ,F

)
=
(
F̃ , F̃

)
−Ξ , (5.4.10)

where we allowed for a possible extra term described by the three-form Ξ, which will

be determined in due course by consistency arguments. Note that, unlike the physical

field strength, we do not require F̃ to be closed.

As in [24] the crucial step in deriving the manifestly duality-invariant equations of motion

is to appropriately pair the derivatives of the scalars with the gauge fields and use the

invariant product (5.4.2) to re-express the Lagrangian. As before, the combination

G̃ = F̃ − 2 Im?0D(Ṽ) + 2 Re D(Ṽ w) , (5.4.11)

leads to an action of the form

S = − 1

16π

∫
d4x
[
(G̃, G̃)− 4 (Q + dα+ η + 1

2e2U?0dω) ∧ Im〈G̃, eUe−iαV〉
]
, (5.4.12)

where we introduced an (otherwise arbitrary) one-form η, which we require to satisfy

η ∧ Im〈G̃, eUe−iαV〉 = 〈dF̃ ,Re(eUe−iαV)〉 + 1
4Ξ , (5.4.13)

up to a total derivative.

In the form (5.4.12), it is again possible to find a stationary point of the action by

requiring that the variations of the two terms vanish separately

G̃ = 0 , (5.4.14)

Q + dα+ η + 1
2e2U?0dω = 0 . (5.4.15)
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The second relation implies that D = d− iη, so that the first becomes

F̃ − 2 Im
[
?0(d− iη)(Ṽ)

]
+ 2 Re

[
(d− iη)(Ṽ w)

]
= 0 . (5.4.16)

Differentiating one finds:

d?0d Im Ṽ − d
(
?0ηRe Ṽ

)
− d

(
η ∧ w Im Ṽ

)
= 1

2dF̃ , (5.4.17)

where we note that the modified field strength is not necessarily closed, as mentioned

earlier.

It is now possible to derive Ξ in terms of the other quantities, using the observation that

in the dynamical system we are considering, the electromagnetic part of the Lagrangian

acts as a potential for the remaining fields. Therefore, when evaluated for solutions of

the equations of motion with vanishing action, this potential is expected to equal the

kinetic energy. Using (5.4.16) and (5.4.15), this requirement is imposed by comparing(
F̃ , F̃

)
= 2dU ∧ ?0dU − 1

2e4Udω ∧ ?0dω + 2gab̄dz
a ∧ ?0dzb̄

+ e2Udw ∧ ?0dω + 2dQ ∧ w

=
(
F ,F

)
+ e2Udw ∧ ?0dω + 2dQ ∧ w ,

(5.4.18)

with the original assumption (5.4.10) on F . Up to boundary terms, one obtains:

Ξ = −2η ∧ dw , (5.4.19)

which we assume to hold henceforth.

In summary, we have obtained first-order equations expressed in terms of a non-closed

two-form valued symplectic vector F̃ , implicitly related to the field strength F through

(5.4.10). This formulation comes at the price of introducing an auxiliary object, η,

related to the non-closure of F through (5.4.13). It follows that in any given model for

which nontrivial F̃ , η can be found such that (5.4.10) and (5.4.13) are satisfied with Ξ

as in (5.4.19), there exist solutions described by the first order flow in (5.4.16).

5.4.1 Solving for the flow

The simplest solutions to the flow equations above can be found in the special case that

F̃ is closed. Then, Ξ and η must vanish by eq. (5.4.13) and equation (5.4.17) reduces to

the Laplace equation, which can be solved through a vector of (possibly multi-centred)

harmonic functions as

2 d?0d Im Ṽ = 0 , ⇒ 2 Im Ṽ = H . (5.4.20)
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If one further assumes that F̃ = F , the supersymmetric solutions of [24] are recovered,

leading to (2.2.34)-(2.2.35). Dropping this identification, one finds a rather restricted11

set of non-BPS solutions with charges as in (5.2.3) and vanishing axions [137, 172, 174].

As discussed above, F̃ is related to F by sign reversals for these special solutions, and

the same holds for the poles of the harmonic functions H in (5.4.20) compared to the

physical charges.

In its general form, however, equation (5.4.16) cannot be solved directly, since the period

vector V, η, ω and F̃ are all unknown and constrained by (5.4.10) and (5.4.13). One is

then forced to introduce an appropriate ansatz either for F̃ or Ṽ. In view of the results

in the previous section, we adopt the ansatz in (5.3.11)-(5.3.12) for the scalars.

Compared to the first order equations (5.4.16), the non-closure of F̃ is linked to the

presence of the non-harmonic part in the ansatz for the scalars. Differentiating both

sides of (5.3.11) and taking the intersection product with the imaginary part of V, one

obtains the following expression for the Kähler connection

dα+ Q = eU Im(e−iαΨ) = −1
2e2U 〈dJ ,J 〉 . (5.4.21)

When combined with (5.4.15), it implies that η is given by

η = 1
2e2U

(
〈dJ ,J 〉 − ?0dω

)
= e2U 〈dR,H〉 . (5.4.22)

where in the second step we used the integrability conditions 〈dH,H〉 = 〈dR,R〉 = 0

implied by (5.3.12).

Using this information, we can show that the ansatz (5.3.11) automatically solves the

constraint (5.4.13), which can be expressed purely in terms of J using (5.4.16). The

left-hand side is clearly zero while on the right-hand side we have an intersection product

that we know how to compute. Neglecting the total derivative, one finds

e2U 〈d?0dJ ,Re Ṽ〉 = η ∧
(
?0η + e2U dω

)
. (5.4.23)

Using (5.3.13) and (5.3.15), one can show that

〈d?0dJ ,Re Ṽ〉 = −1
2 e2U 〈R,H〉 〈d?0dR,H〉 = e2U 〈R,H〉 〈?0dR,dH〉 , (5.4.24)

where the last step follows from the fact that 〈R,H〉 is a harmonic function. Finally,

since R depends only on a single ratio of the form 〈H,R〉/H̄ (with H̄ a harmonic

function, cf. (5.3.6)), it is possible to show that

〈H,R〉dR = −〈dR,H〉R . (5.4.25)

11By charge redefinitions one can generate physically equivalent solutions also for other charge con-
figurations [173].
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Combining the last relation with (5.4.24) and (5.4.22) shows that the constraint (5.4.23)

is identically satisfied. Therefore we have conclude that the choice of ansatz in (5.3.11)-

(5.3.12), together with the additional requirements of section 5.3.2, is a solution of the

constraint (5.4.13). The seed solution (5.3.3) also satisfies these relations, as expected.

This is a rather nontrivial result, as (5.4.23) is a quartic equation for J in view of

(5.4.22). Assuming this to be the general solution, the only constraint remaining at this

stage is (5.4.10), which generalises the definition of the fake superpotential for static

black holes [158] to the case of under-rotating black holes. However, it is difficult to

verify (5.4.10) and (5.4.16) explicitly for the seed solution (5.3.3), or find the general

solution. In the next section, we give a more detailed comparison to the ansatz (5.3.11)–

(5.3.12) in the static limit.

5.4.2 The static flow equations

The static limit of the results in section 5.4 leads to several simplifications, as all solutions

are necessarily spherically symmetric. This implies that ω = 0 and all quantities depend

only on the radial coordinate. Similar to the actual field strength, spherical symmetry

implies that the modified field strength F̃ is of the form:

F̃ = sin θ dθ ∧ dϕ⊗ Γ̃ , (5.4.26)

where now Γ̃ is an symplectic vector that dependents on r. By (5.4.10), it must reproduce

the same black hole potential Vbh as the physical charge Γ

1
2‖Γ̃‖

2 = Vbh = 1
2‖Γ‖

2 , (5.4.27)

where we used (2.2.32). This relation was introduced in [143] in the context of finding

a moduli dependent function W (Γ), called the fake superpotential, such that

Vbh = |Z(Γ)|2 + gAB̄ DAZ(Γ) D̄B̄Z̄(Γ) = |W (Γ)|2 + gAB̄ DAW (Γ) D̄B̄W̄ (Γ) . (5.4.28)

In what follows we indicate how to connect the flow equations above to this formalism.

In the static limit, it is convenient to choose the arbitrary function eiα to be the phase

of 〈Γ̃,V〉, and eqs. (5.4.16)-(5.4.15) reduce to

2 ∂τ
(
Im Ṽ

)
− 2 η Re Ṽ = −Γ̃ , (5.4.29)

η = −α̇−Qτ = − Im
〈 ˙̃Γ,V〉
Z(Γ̃)

, (5.4.30)

where Qτ = Im(∂aKż
a) and the dot stands for the derivative with respect to the inverse

radial coordinate τ = 1/r. Note that (5.4.30) is equivalent to (5.4.13), which has not

been used. As before, the ansatz in (5.3.11) identically solves this constraint.
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Imposing this solution for (5.4.30), the equations of motion are solved if one can construct

a J , along the lines of section 5.3.2, such that the other constraint is satisfied using

(5.4.29). In this case, (5.4.27) and the definition of α are equivalent to

1
2‖∂τJ ‖

2 = 1
2‖Γ‖

2 + e2UJ 〈H, ∂τR〉2 . (5.4.31)

Once (5.3.11) is used for the scalars, this is a quadratic equation for the physical charges

in terms of the harmonic functions H. Therefore, finding a ∂τJ that satisfies (5.4.31)

is equivalent to integrating the static equations of motion. Note that the presence of a

nontrivial η is essential in the treatment of section 5.4 and is easiest to understand if

one allows for angular momentum to be a priori present, as we have done here.

We have checked that J for the known explicit static solutions of section 5.3 is such

that they satisfy (5.4.31) and hence are described by the flow equation (5.4.29) with η as

in (5.4.22). As all static non-BPS solutions are related by symplectic rotations to these

seed solutions, it follows that they satisfy the same duality covariant equations. The

nontrivial η is reflected in the anharmonic part of (5.3.3), controlled by the constant b

that remains after setting the angular momentum to zero in (5.2.15). This observation

is in line with [130] where it was stressed that the crucial departure of the static non-

BPS seed solution from a BPS-like ansatz is the presence of a parameter related to the

asymptotic scalars, identified with this residual constant.

The approach above is similar in spirit, but different than the one of [146–148], were one

seeks to rewrite the black hole potential in (5.4.27) through the fake superpotential in

(5.4.28), which is a function of the physical charges and moduli za directly. In contrast,

(5.4.31) is an equation relating the harmonic functions controlling the physical charges

to the ones controlling the scalars through the period vector Ω.

In order to compare, we make use of the fact that the fake superpotential is defined

through the flow equations for the metric function and the moduli. The corresponding

equations can be found by taking the inner product of (5.4.29) with the basis elements,

leading to

U̇ = −eUe−iα〈Γ̃,V〉 ≡ −eUW , (5.4.32)

ża = −eUe−iαgab̄〈Γ̃, D̄b̄V̄〉 ≡ −2eUgab̄∂̄b̄W , (5.4.33)

where in the second step we identified the fake superpotential W in (5.4.28). When

W = Z(Γ), the flow is supersymmetric, in the same way as the BPS solutions arise in

the framework of the last two sections when F̃ = F .

Whenever W is explicitly known for a given model and charge configuration, a practical

way to connect it with our approach may be to first look for a moduli-independent
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matrix S that rotates the physical charge vector Γ so that:

Z(Γ̃) := 〈SΓ,V〉 , (5.4.34)

where S is a complex nonconstant symplectic matrix. The relation of Γ with Γ̃ is

expressed indirectly through

Γ̃ := iZ(Γ̃)V − igābDaZ(Γ̃)DbV + igab̄DaZ(Γ̃) D̄b̄V̄ − iZ(Γ̃) V̄ . (5.4.35)

In the standard fake superpotential approach one assumes S to be a constant real sym-

plectic matrix and identifies Γ̃ = SΓ. However, in view of the discussion in section 5.4

this is not the generic situation and we find it simpler to keep S complex.

One can find the matrix S explicitly for the electric configuration, as in (5.3.3), assuming

all physical scalars to have the same phase, say eif . The relevant superpotential was

given in [59, 131] and reads

W = p0 F0 eif − qAXA = 〈SΓ,V〉 , (5.4.36)

with S given by

S = diag
(
e−2if , 1, 1, 1, e2if , 1, 1, 1

)
. (5.4.37)

In terms of the parameters appearing in the solution of section 5.3 one can identify

cot f = e2UM and check that the equations of motion (5.4.29) are satisfied. The one-

form η is given by (5.4.22). If the scalars are assumed purely imaginary, M vanishes

and f = π/2 so that S is constant (but not identity), while allowing for a τ -dependent

f leads to more general non-supersymmetric solutions. It is worth noting that η = 0

whenever S is constant (cf. eq. (5.4.30)) and that if S = I we recover the supersymmetric

solution.

Alternatively, one can rewrite (5.4.29) and (5.4.31) in terms of a real matrix T such that:

TΓ := ΓT = Γ̃− 2ηRe
(
e−Ue−iαV

)
, (5.4.38)

1
2〈ΓT , �ΓT 〉 = Vbh + e−2Uη2 , (5.4.39)

e−iα〈ΓT ,V〉 = W − ie−Uη . (5.4.40)

If T is known, it leads to simpler equations of motion for the scalars, that is

2∂τ Im
(
e−Ue−iαV

)
= −ΓT , (5.4.41)

which have the advantage of being directly integrable. For the electric example above,

T takes the form:

T =

(
I 0

W I

)
, W =

− e−2U cot f
(H0)2

2qa
p0

2qa
p0

0

 , (5.4.42)
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so that (5.3.4) can be written as J = −THc, if the constants in (5.3.1) are appropriately

chosen. Similar to its complex counterpart S, it reduces to a constant matrix if the phase

of the scalars is f = π/2.

It is interesting to point out that the matrix (5.4.42) is a (position dependent) element

of the Peccei–Quinn group of transformations, defined as the largest subgroup of the

symplectic group leaving the XI ’s and the Kähler potential invariant. As was shown

recently [175], applying such a transformation on the charges indeed shifts the black hole

potential as in (5.4.39). For generic charges and phases of the scalars, the corresponding

T can be found from the one in (5.4.42) by conjugation with the appropriate element of

the symplectic group. Such a matrix would leave a certain combination of XI ’s and FI ’s

unchanged, e.g. for the magnetic dual of the electric solution in (5.3.1) it would leave

the FI ’s invariant. Identifying the combinations that must be invariant for a given set

of charges could be a way to determine T from first principles.

5.5 Concluding remarks

In this chapter, we presented various aspects of recent work on non-BPS black hole

solutions ofN = 2 supergravity in both four and five dimensions, emphasising techniques

based on similarities to the supersymmetric solutions in order to reduce the non-linear

second order equations of motion to simpler ones.

Motivated by the observation that one can obtain simple non-BPS solutions by simply

changing the sign of harmonic functions describing supersymmetric solutions, we were led

to introduce the almost-BPS class of five-dimensional solutions. These are constructed

so that they preserve four supercharges on local patches of spacetime but nevertheless

break supersymmetry globally. Recently, this class has been explored in detail and

further generalisations have appeared in the literature [151–154, 162–165]. Some of the

results include a novel black ring solution and non-extremal configurations without a

horizon, which are interesting in the context of the fuzzball proposal.

In order to gain a better understanding of the space of solutions, it is helpful to consider

the reduction to four dimensions, where one can make use of the extended electric-

magnetic duality. A particularly interesting almost-BPS solution is the rotating electric

black hole of [151], discussed in section 5.2.3. Upon Kaluza-Klein reduction on a circle,

this can be used as a seed solution to obtain all under-rotating black hole solutions

in four-dimensional N = 2 supergravity. Based on the form of the seed solution we

proposed an ansatz that encompasses all known single centred extremal solutions. Sub-

sequently, we presented a new derivation of first order equations for extremal black hole

solutions that are compatible with the explicit seed solution and the generic ansatz,

extending [24, 172]. As the proposed ansatz is highly restricted, the flow equations
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are essentially reduced to algebraic equations, which nevertheless are still not directly

solvable. Hence the situation remains unsatisfactory.

It is important to note that our flow equations are by construction fully covariant with

respect to electric-magnetic duality and are compatible with the general single centered

seed solutions in four dimensions. It then follows that they capture the full orbit of

non-BPS extremal solutions, regardless of the existence of other stationary points of the

action, which should not be part of the standard non-BPS orbit of extremal black holes.

We expect a similar pattern to exist beyond the single centre case, especially in view of

the results of [151, 152, 154]. As we have not made any assumptions on the number of

centres in deriving the flow equations in section 5.4, it would be interesting to investigate

the possibility of constructing multi-centre solutions by allowing the harmonic functions

in the ansatz of section 5.3.2 to have multiple centres. Such constructions would provide

a test on the robustness of the assumption on the existence of stabilisation equations for

generic extremal backgrounds.

On the microscopic side, it would be very interesting to reproduce the stabilisation

equations (5.3.11). In the rotating case the ratio of harmonic functions survives the

near-horizon limit and modifies the attractor equations [135], so one generally expects

this structure to be accessible from microscopics. Given the model of [176], where the

constant part of M in (5.3.4) is interpreted as the angle between wrapped D3 branes,

one expects that the full angular momentum harmonic function might have a similar

microscopic analogue. Similar considerations for over-rotating black holes have appeared

recently in [177–179].

There is considerable ongoing research on the structure of non-BPS solutions, utili-

sing both the powerful constraints following from the symplectic structure of the four-

dimensional theory and the relative simplicity of the five-dimensional theory. Finding

the appropriate set of variables to express all extremal black hole solutions is a very

interesting problem, both from a mathematical point of view and because it can shed

light on several related open questions about non-supersymmetric backgrounds in string

theory.
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Conventions

In this short appendix we specify some of the details of our conventions used in four and

five dimensions. Throughout this thesis, especially when dealing with spinors, we use

Pauli-Källén conventions. Unless otherwise indicated, space-time and Lorentz indices

are denoted by µ, ν, . . ., and a, b, . . ., respectively; SU(2)-indices are denoted by i, j, . . ..

All (anti-)symmetrisations are defined with unit strength.

Our conventions for four-dimensional supergravity follow the notation used e.g. in [54].

In five dimensions we use closely related conventions as follows. We employ hermitean

4-by-4 gamma matrices γa, which satisfy

CγaC
−1 = γa

T , CT = −C , C† = C−1 ,

γabcde = 1 εabcde . (A.0.1)

Here C denotes the charge-conjugation matrix and gamma matrices with k multiple

indices denote the fully antisymmetrised product of k gamma matrices in the usual

fashion, so that we have, for instance, γa γb = 1 δab + γab. In view of the last equation

of (A.0.1), gamma matrices with more than two multiple indices are not independent,

and can be decomposed into the unit matrix, γa and γab. Note that C, Cγa and Cγab

constitute a complete basis of 6 antisymmetric and 10 symmetric (unitary) matrices

in spinor space. The gamma matrices commute with the automorphism group of the

Clifford algebra, USp(2N), where N denotes the number of independent spinors. Spinors

can be described either as Dirac spinors, or as symplectic Majorana spinors. The latter

description has the advantage that it makes the action of the USp(2N) R-symmetry

group manifest. We thus employ symplectic Majorana spinors ψi with i = 1, 2, . . . , 2N ,

subject to the reality constraint,

C−1 χ̄i
T = Ωij χ

j , (A.0.2)

127



128 Appendix A Conventions

where Ω is the symplectic USp(2N) invariant tensor. The Dirac conjugate is defined

by ψ̄ = ψ†γ5. Observe that we adhere to the convention according to which raising or

lowering of USp(2N) indices is effected by complex conjugation.

The gravitini ψµ
i and associated supersymmetry parameters εi transform in the 2N

representation of USp(2N). In principle we may also consider spinors transforming under

more complicated representations of USp(2N). For example, we note the following result

for fermionic bilinears, with spinor fields ψi and ϕi and a spinor matrix Γ constructed

from products of gamma matrices,

ψ̄iΓϕ
j = −Ωik Ωjl ϕ̄l C

−1 ΓTC ψk = (ϕ̄j γ5 Γ† γ5 ψ
i)† . (A.0.3)

Hence i ψ̄i ϕ
j , ψ̄iγaϕ

j and i ψ̄iγabϕ
j are pseudo-hermitean (provided a, b, . . . = 1, . . . , 4;

in Pauli-Källén convention the time component associated with a = 5 acquires an extra

minus sign) . Generalization of this result to spinors transforming according to more

complicated USp(2N) representations is straightforward.

Multiplication of symplectic Majorana spinors with spinor matrices Γ consisting of prod-

ucts of gamma matrices are not automatically symplectic Majorana spinors. This follows

from

Γχi
T

= Ωij C γ5(C−1ΓTC)†γ5 χ
j . (A.0.4)

This means that iγaχ
i, γabχ

i, iγabcχ
i, γabcdχ

i are also symplectic Majorana spinors with

the same reality phase as (A.0.2).



Appendix B

Conformal Supergravity

A convenient method for dealing with off-shell formulations of supergravity theories is

provided by the superconformal multiplet calculus. This calculus was originally set up

for N =2 supergravity in d=4 dimensions [45–48], following early work for N =1, d=4

supergravity [180, 181]. The N=1 case was worked out more fully in [182], and shortly

thereafter the formalism was also applied to N = 1, d = 6 supergravity in [183]. For

d=5 dimensions superconformal methods were developed relatively recently by several

groups [29–32].

The field content of the various multiplets in four-dimensional N = 2 and five-dimen-

sional N = 1 supergravity is rather similar, in view of the facts that spinors carry

four components in both cases and that the R-symmetry groups are similar, equal to

SU(2) × U(1) and USp(2), respectively. The only exception to this rule are the Weyl

multiplets, which have a different number of degrees of freedom, as is shown in table

B.1. The reason can be understood from the fact that the Weyl multiplet is conjugate

to the smallest massive supersymmetry representation containing spin-2 and spin-3/2 as

the highest spin states. For comparison we also display the situation for the N = 4 Weyl

multiplet in four dimensions, and the N = 2 Weyl multiplet in five dimensions, with

corresponding R-symmetry groups U(4) and USp(4), respectively. These two multiplets

comprise the same number of degrees of freedom.

In this section we give a self-contained summary of the transformation rules of super-

conformal multiplets in four and five space-time dimensions, namely the Weyl multiplet,

the chiral multiplet, the vector multiplet, the linear multiplet and the hypermultiplet for

supergravity with eight supercharges. With the exception of the hypermultiplet, these

multiplets define off-shell representations of the algebra of superconformal transforma-

tions. We refer to appendix A for spinor and space-time conventions.

129
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8 supercharges 16 supercharges

field d=4 d=5 d=4 d=5

eµ
a 5 9 5 9

Vµi
j 9 12 45 40

Aµ 3 - - 4

Tab
[ij] 6 10 36 50

D[kl]
[ij] 1 1 20 14

E(ij) - - 20 10

φ - - 2 1
ψµ

i 16 24 32 48

χi[kl] 8 8 80 64

Λi - - 16 16

bosons+fermions 24+24 32+32 128+128 128+128

Table B.1: Bosonic and fermionic degrees of freedom of the Weyl multiplets in four and five
dimensions for the case of four and sixteen supercharges. All degrees of freedom can be assigned
to a product representation of the group of spatial rotations and the R-symmetry group. De-
composing the states in the second column under the group of 3-dimensional rotations yields a
reducible multiplet comprising the states of the four-dimensional Weyl multiplet (given in the
first column) and of an extra vector (or tensor) multiplet.

B.1 Superconformal multiplets in five dimensions

The bosonic gauge transformations are those of the conformal group, diffeomorphisms,

local Lorentz transformations with generators Mab, scale transformations with generator

D and special conformal transformations (also called conformal boosts) with generators

Ka. Furthermore there are local R-symmetry transformations. In five space-time di-

mensions, the R-symmetry group equals USp(2N) so that for simple supergravity we

have USp(2) ∼= SU(2). The fermionic gauge transformations are the conventional Q-

and the special conformal S-supersymmetry transformations.

B.1.1 The Weyl multiplet

The Weyl multiplet of five-dimensional simple conformal supergravity is shown in ta-

ble B.2. The independent fields consist of the fünfbein eµ
a, the gravitino field ψµ

i, the

dilatational gauge field bµ, the R-symmetry gauge fields Vµi
j (which is an anti-hermitean,

traceless matrix in the SU(2) indices i, j) and a tensor field Tab, a scalar field D and a

spinor field χi. The three gauge fields ωµ
ab, fµ

a and φµ, associated with local Lorentz

transformations, conformal boosts and S-supersymmetry, respectively, are not indepen-

dent and will be discussed later. The infinitesimal Q, S and K transformations of the

independent fields, parametrised by spinors εi and ηi and a vector ΛK
a, respectively, are
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Weyl multiplet parameters

field eµ
a ψµ

i bµ Vµ ij Tab χi D ωµ
ab fµ

a φµ
i εi ηi

w −1 −1
2 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

Table B.2: Weyl weights w of the Weyl multiplet component fields and the supersymmetry
transformation parameters.

as follows,

δeµ
a = 1

2 ε̄iγ
aψµ

i ,

δψiµ = Dµεi + 1
4 iTab(3 γ

abγµ − γµγab)εi − iγµη
i ,

δVµi
j = 3iε̄iφµ

j − 8ε̄iγµχ
j − 3iη̄iψµ

j + δij [−3
2 iε̄kφµ

k + 4ε̄kγµχ
k + 3

2 iη̄kψ
k
µ] ,

δbµ = 1
2 iε̄iφ

i
µ − 2ε̄iγµχ

i + 1
2 iη̄iψ

i
µ + 2ΛK

aeµa ,

δTab = 2
3 iε̄iγabχ

i − 1
8 iε̄iRab

i(Q) ,

δχi = 1
4ε
iD + 1

128Rµνj
i(V )γµνεj + 3

128 i(3 γab /D + /Dγab)Tab ε
i

− 3
32TabTcdγ

abcdεi + 3
16Tabγ

abηi ,

δD = ε̄i /Dχ
i − iε̄iTabγ

abχi − iη̄iχ
i . (B.1.1)

Under local scale transformations the various fields and transformation parameters trans-

form as indicated in table B.2. The derivatives Dµ are covariant with respect to all the

bosonic gauge symmetries with the exception of the conformal boosts. In particular we

note

Dµεi =
(
∂µ − 1

4ωµ
cd γcd + 1

2 bµ
)
εi + 1

2 Vµj
i εj , (B.1.2)

where the gauge fields transform under their respective gauge transformations according

to δωµ
ab = Dµλab, δbµ = DµΛD and δVµi

j = DµΛi
j , with (Λi

j)∗ ≡ Λij = −Λj
i. The

derivatives Dµ are covariant with respect to all the superconformal symmetries.

In order to discuss the dependent gauge fields, we first introduce the following curvature

tensors,

Rµν
a(P ) = 2D[µeν]

a − 1
2 ψ̄[µiγ

aψν]
i ,

Rµν
ab(M) = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 8 e[µ
[afν]

b] + iψ̄[µiγ
abφν]

i

−1
4 iT cd ψ̄[µi(6γ

[aγcdγ
b] − γabγcd − γcdγab)ψν]

i

−1
2 ψ̄[µi(γν]R

abi(Q) + 2 γ[aRν]
b]i(Q)) + 8 e[µ

[a ψ̄ν]iγ
b]χi ,

Rµν(D) = 2 ∂[µbν] − 4 f[µ
aeν]a − iψ̄[µiφν]

i + 4 ψ̄[µiγν]χ
i .

Rµνi
j(V ) = 2 ∂[µVν]i

j − V[µi
kVν]k

j

−6i ψ̄[µiφν]
j + 16ψ̄[µiγν]χ

j + δi
j
[
3i ψ̄[µkφν]

k − 8ψ̄[µkγν]χ
k
]
,

Rµν
i(Q) = 2D[µψν]

i − 2i γ[µφν]
i + 1

2 iTab(3 γ
abγ[µ − γ[µγ

ab)ψν]
i . (B.1.3)
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The conventional constraints (which are not invariant under Q- and S-supersymmetry)

are as follows,

Rµν
a(P ) = 0 ,

γµRµν
i(Q) = 0 ,

ea
µRabµν(M) = 0 . (B.1.4)

These conditions determine the gauge fields ωµ
ab, fµ

a and φµ
i. We only display the

bosonic parts here

ωabµ =− 2eν[a∂[µeν]
b] − eν[aeb]σeµc∂σeν

c − 2eµ
[aeb]νbν ,

fµ
a = 1

6R(ω, e)µ
a − 1

48R(ω, e)
)
eµ
a . (B.1.5)

The conventional constraints lead to additional constraints on the curvatures when com-

bined with the Bianchi identities. In this way one derives R[abc]d(M) = 0 = Rab(D) and

the pair-exchange property Rabcd = Rcdab from the first and the third constraint. The

second constraint, which implies also that γ[µνRρσ]
i(Q) = 0, determines the curvature

Rµν
i(S), which we refrained from defining previously. It turns out to be proportional to

Rµν
i(Q) and derivatives thereof,

Rµν
i(S) = −i /DRµν

i(Q)− iγ[µD
ρRν]ρ

i(Q)− 4 γµνT
ρσRρσ

i(Q)

+18 γσT
ρσγ[µRν]ρ

i(Q)− 5T ρσγρσRµν
i(Q)− 12T ρ[µRν]ρ

i(Q) .(B.1.6)

The remaining curvature Rµν
a(K) does not play a role in the applications considered

here.

Whereas the first constraint is invariant under S- but not under Q-supersymmetry, the

other two constraints are invariant under neither supersymmetry. This implies that the

dependent gauge fields will acquire terms in their transformation rules proportional to

the constrained curvature tensors,

δωµ
ab = Dµλab + 4ΛK

[aeµ
b] − 1

2 iε̄iγ
abφµ

i + 1
2 iη̄iγ

abψµ
i

+ 1
8 iT cd ε̄i(6γ

[aγcdγ
b] − γabγcd − γcdγab)ψµi

+ 1
4 ε̄i(γµR

abi(Q) + 2 γ[aRµ
b]i(Q)) + 4 eµ

[a ε̄iγ
b]χi ,

δφµ
i = Dµηi + 1

4 iTab(γµγ
ab − γabγµ)ηi + ifµ

aγaε
i − iΛK

aγaψµ
i

− 1
48 i(2 γabγµ − γµγab)Rabji(V )εj + 1

4

(
/DT abγabγµ +DaT

abγµγb
)
εi

+i
(
− 3

4T
abT cdγµabcd + TµaTbcγ

abc − 4TµaT
abγb − 3

4γµT
2
)
εi

−9
4 i ε̄jψµ

j χi + 7
4 i ε̄jγaψµ

j γaχi − 1
8 iε̄kγ

abψµ
k
(
γabχ

i + 1
4Rab

i(Q)
)

+1
4 iε̄kγ

abψµ
i
(
γabχ

k + 1
4Rab

k(Q)
)
,

δfµ
a = DµΛK

a + 1
2ηiγ

aφµ
i + · · · , (B.1.7)
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where here and henceforth T 2 ≡ (Tab)
2. With these results we obtain the following Q-

and S-variations for Rab
i(Q) and Rabi

j(V )

δRab
i(Q) = − 1

24(γcdγab − 4 δa
[cδb

d])Rcdi
i(V )εj − 1

4Rab
cd(M)γcdε

i

+ 1
2 i
(
3D[aT

cdγcdγb] −D[aT
cdγb]γcd − γ[a /DT

cdγcdγb] −DcT
cdγabγd

)
εi

− 2
(
TabTcdγ

cd + TacTbdγ
cd + 2Tc[aT

cdγb]d + 1
4T

2γab
)
εi

+
(
γcdγab − 4 δa

[cδb
d]
)
ηi Tcd ,

δRabi
j(V ) = 3i ε̄iRab

j(S) + 16 ε̄iγ[aDb]χ
j − 4i ε̄i

(
3 γ[aγ

cdγb] − γcdγab
)
χj Tcd

− 3i η̄iRab
j(Q)− 16i η̄iγabχ

j − trace . (B.1.8)

The above transformations agree with those of [29, 30], upon including a T -dependent

S-supersymmetry transformation into the Q-supersymmetry variations and rescaling the

tensor field by a factor 4/3. The difference with the conventions of [31, 32] are a bit

more involved.

B.1.2 The vector supermultiplet

The vector supermultiplet consists of a real scalar σ, a gauge field Wµ, a triplet of

(auxiliary) fields Y ij , and a fermion field Ωi. Under superconformal transformations

these fields transform as follows,

δσ = 1
2 iε̄iΩ

i ,

δΩi = − 1
4(F̂ab − 4σTab)γ

abεi − 1
2 i /Dσεi − εjk Y ijεk + σ ηi ,

δWµ = 1
2 ε̄iγµΩi − 1

2 iσ ε̄iψ
i
µ ,

δY ij = 1
2ε
k(i ε̄k /DΩj) + iεk(i ε̄k(−1

4Tabγ
abΩj) + 4σχj))− 1

2 iεk(i η̄kΩ
j) . (B.1.9)

where (Y ij)∗ ≡ Yij = εikεjlY
kl, and the supercovariant field strength is defined as,

F̂µν = ∂µWν − ∂νWµ − Ω̄iγ[µψν]
i + 1

2 iσ ψ̄[µiψν]
i . (B.1.10)

We also note the transformation rule,

δ(F̂ab − 4σTab) = − ε̄iγ[aDb]Ω
i − 8

3 σ ε̄iγabχ
i

+ 1
4 iε̄i(3 γ[aγ

cdγb] − γcdγab − 8 δcaδ
d
b )Ωi Tcd + iη̄iγabΩ

i .(B.1.11)

The fields behave under local scale transformations according to the weights shown in

table B.3.
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vector multiplet

field σ Wµ Ωi Yij
w 1 0 3

2 2

linear multiplet

field Lij Ea ϕi N

w 3 4 7
2 4

hypermultiplet

field Ai
α ζα

w 3
2 2

Table B.3: Weyl weights w of the vector multiplet, the tensor (linear) multiplet, and the
hypermultiplet component fields.

B.1.3 The linear supermultiplet

The linear multiplet consists of a triplet of scalars Lij , a divergence-free vector Êa, an

(auxiliary) scalar N , and a fermion field ϕi. The superconformal transformation rules

for these fields are as follows,

δLij = − i εk(i ε̄kϕ
j) ,

δϕi = − 1
2 i εjk /DL

ijεk + 1
2(N − i /̂E)εi + 3εjkL

ijηk ,

δÊa = − 1
2 i ε̄iγabD

bϕi + 1
8 ε̄i(3γaγ

bc + γbcγa)ϕ
iTbc − 2η̄iγaϕ

i ,

δN = 1
2 ε̄i /Dϕ

i + 3
4 iε̄iγ

abϕiTab − 4i εjk ε̄iχ
kLij + 3

2 iη̄iϕ
i . (B.1.12)

The constraint on Êa,

DaÊ
a = 0 , (B.1.13)

can be solved in terms of a three-rank anti-symmetric tensor gauge field Eµνρ, which

transforms as follows under the superconformal transformations,

δEµνρ = 1
2 ε̄iγµνρϕ

i − 3
2 i ε̄iγ[µνψρ]

k εjkL
ij . (B.1.14)

The corresponding supercovariant field strength associated with Eµνρ equals

Êµ = 1
6 i e−1εµνρσλ

[
∂νEρσλ − 1

2 ψ̄νiγρσλϕ
i + 3

4 i ψ̄νiγρσψλ
k εjkL

ij
]
. (B.1.15)

The behaviour under local scale transformations follow from the weights shown in ta-

ble B.3. The tensor field Eµνρ is inert under scale transformations and thus carries zero

weight.

B.1.4 Hypermultiplets

Hypermultiplets are necessarily associated with target spaces of dimension 4r that are

hyperkähler cones [34, 184]. The supersymmetry transformations are most conveniently
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written in terms of the sections Ai
α(φ), where α = 1, 2, . . . , 2r,

δAi
α = i ε̄iζ

α ,

δζα = −1
2 i /DAi

αεi + 3
2Ai

αηi . (B.1.16)

The Ai
α are local sections of an Sp(r) × Sp(1) bundle. The existence of such an asso-

ciated bundle is known from general arguments [185]. We also note the existence of a

covariantly constant skew-symmetric tensor Ωαβ (and its complex conjugate Ωαβ satis-

fying ΩαγΩβγ = −δαβ), and the symplectic Majorana condition for the spinors reads as

C−1ζ̄α
T = Ωαβ ζ

β. Covariant derivatives contain the Sp(r) connection ΓA
α
β, associated

with rotations of the fermions. The sections Ai
α are pseudo-real, i.e. they are subject to

the constraint, Ai
αεijΩαβ = Ajβ ≡ (Aj

β)∗. The information on the target-space metric

is contained in the so-called hyperkähler potential,

εij χ = Ωαβ Ai
αAj

β . (B.1.17)

For the local scale transformations we refer again to the weights shown in table B.3.

The hypermultiplet does not exist as an off-shell supermultiplet. Closure of the super-

conformal transformations is only realized upon using fermionic field equations, but this

fact does not represent a serious problem in our considerations.

B.2 Superconformal multiplets in four dimensions

We now turn to the transformation rules of the superconformal multiplets in four space-

time dimensions. The superconformal algebra comprises the generators of the general-

coordinate, local Lorentz, dilatation, special conformal, chiral SU(2) and U(1), super-

symmetry (Q) and special supersymmetry (S) transformations.

B.2.1 The Weyl multiplet

The Weyl multiplet contains the gauge fields associated with general-coordinate trans-

formations (eµ
a), dilatations (bµ), chiral symmetry (Vµij and Aµ) and Q-supersymmetry

(ψµ
i) are independent fields. The remaining gauge fields associated with the Lorentz

(ωµ
ab), special conformal (fµ

a) and S-supersymmetry transformations (φµ
i) are depen-

dent fields. They are composite objects, which depend on the independent fields of

the multiplet [46–48]. The corresponding supercovariant curvatures and covariant fields

are contained in a tensor chiral multiplet, which comprises 24 + 24 off-shell degrees of

freedom. In addition to the independent superconformal gauge fields, it contains three

other fields: a Majorana spinor doublet χi, a scalar D, and a selfdual Lorentz tensor

Tabij , which is anti-symmetric in [ab] and [ij]. The Weyl and chiral weights have been

collected in table B.4.
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Under Q-supersymmetry, S-supersymmetry and special conformal transformations the

independent fields of the Weyl multiplet transform as follows,

δeµ
a = ε̄i γaψµi + ε̄i γ

aψµ
i ,

δψµ
i = 2Dµεi − 1

8Tab
ijγabγµεj − γµηi

δbµ = 1
2 ε̄
iφµi − 3

4 ε̄
iγµχi − 1

2 η̄
iψµi + h.c. + ΛaKeµa ,

δAµ = 1
2 iε̄iφµi + 3

4 iε̄iγµ χi + 1
2 iη̄iψµi + h.c. ,

δVµij = 2 ε̄jφµ
i − 3ε̄jγµ χ

i + 2η̄j ψµ
i − (h.c. ; traceless) ,

δTab
ij = 8 ε̄[iR(Q)ab

j] ,

δχi = − 1
12γ

ab /DTab
ij εj + 1

6R(V)µν
i
jγ
µνεj − 1

3 iRµν(A)γµνεi +Dεi + 1
12γabT

abijηj ,

δD = ε̄i /Dχi + ε̄i /Dχ
i . (B.2.1)

Here εi and εi denote the spinorial parameters of Q-supersymmetry, ηi and ηi those

of S-supersymmetry, and ΛK
a is the transformation parameter for special conformal

boosts. The full superconformally covariant derivative is denoted by Dµ, while Dµ
denotes a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2)

transformations,

Dµεi =
(
∂µ − 1

4ωµ
cd γcd + 1

2 bµ + 1
2 iAµ

)
εi + 1

2 Vµ
i
j ε
j . (B.2.2)

Weyl multiplet parameters

field eµ
a ψµ

i bµ Aµ Vµij Tab
ij χi D ωabµ fµ

a φµ
i εi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table B.4: Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet com-

ponent fields and the supersymmetry transformation parameters.
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The covariant curvatures of the various gauge symmetries take the following form,

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b − 1
2(ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i = 2D[µψν]

i − γ[µφν]
i − 1

8 T
abij γab γ[µψν]j ,

R(A)µν = 2 ∂[µAν] − i
(

1
2 ψ̄[µ

iφν]i + 3
4 ψ̄[µ

iγν]χi − h.c.
)
,

R(V)µν
i
j = 2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j + 2(ψ̄[µ

i φν]j − ψ̄[µj φν]
i)− 3(ψ̄[µ

iγν]χj − ψ̄[µjγν]χ
i)

− δj i(ψ̄[µ
k φν]k − ψ̄[µk φν]

k) + 3
2δj

i(ψ̄[µ
kγν]χk − ψ̄[µkγν]χ

k) ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] + 1
2(ψ̄[µ

i γab φν]i + h.c.)

+ (1
4 ψ̄µ

i ψν
j T abij − 3

4 ψ̄[µ
i γν] γ

abχi − ψ̄[µ
i γν]R(Q)abi + h.c.) ,

R(D)µν = 2 ∂[µbν] − 2f[µ
aeν]a − 1

2 ψ̄[µ
iφν]i + 3

4 ψ̄[µ
iγν]χi − 1

2 ψ̄[µiφν]
i + 3

4 ψ̄[µiγν]χ
i ,

R(S)µν
i = 2D[µφν]

i − 2f[µ
aγaψν]

i − 1
8 /DTab

ijγabγ[µψν] j − 3
2γaψ[µ

i ψ̄ν]
jγaχj

+ 1
4R(V)ab

i
jγ
abγ[µψν]

j + 1
2 iR(A)abγ

abγ[µψν]
i ,

R(K)µν
a = 2D[µfν]

a − 1
4

(
φ̄[µ

iγaφν]i + φ̄[µiγ
aφν]

i
)

+ 1
4

(
ψ̄µ

iDbT
ba
ijψν

j − 3 e[µ
aψν]

i /Dχi

+ 3
2D ψ̄[µ

iγaψν]j − 4 ψ̄[µ
iγν]DbR(Q)bai + h.c.

)
. (B.2.3)

There are three conventional constraints (which have already been incorporated in

(B.2.3),

R(P )µν
a = 0 ,

γµR(Q)µν
i + 3

2γνχ
i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa + 1

8TabijTµ
bij − 3

2Deµa = 0 , (B.2.4)

which are S-supersymmetry invariant. They determine the fields ωµ
ab, φµ

i and fµ
a as

follows,

ωabµ = − 2eν[a∂[µeν]
b] − eν[aeb]σeµc∂σeν

c − 2eµ
[aeb]νbν

− 1
4(2ψ̄iµγ

[aψ
b]
i + ψ̄aiγµψ

b
i + h.c.) ,

φµ
i = 1

2

(
γρσγµ − 1

3γµγ
ρσ
) (
Dρψσi − 1

16T
abijγabγρψσj + 1

4γρσχ
i
)
,

fµ
µ = 1

6R(ω, e)−D −
(

1
12e
−1εµνρσψ̄µ

i γνDρψσi
− 1

12 ψ̄µ
iψν

jTµνij − 1
4 ψ̄µ

iγµχi + h.c.
)
. (B.2.5)

We will also need the bosonic part of the expression for the uncontracted connection

fµ
a,

fµ
a = 1

2R(ω, e)µ
a − 1

4

(
D + 1

3R(ω, e)
)
eµ
a − 1

2 iR̃(A)µ
a + 1

16Tµb
ijT abij , (B.2.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the cor-

responding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection
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field ωµ
ab, given in (B.2.5).

The transformations of ωµ
ab, φµ

i and fµ
a are induced by the constraints (B.2.4). We

present their Q- and S-supersymmetry variations, as well as the transformations under

conformal boosts, below,

δωµ
ab = − 1

2 ε̄
iγabφµi − 1

2 ε̄
iψµ

j T abij + 3
4 ε̄
iγµγ

abχi

+ ε̄iγµR(Q)abi − 1
2 η̄

iγabψµi + h.c.+ 2 ΛK
[aeµ

b] ,

δφµ
i = − 2 fµ

aγaε
i + 1

4R(V)ab
i
jγ
abγµε

j + 1
2 iR(A)abγ

abγµε
i − 1

8 /DT
ab ijγabγµεj

+ 3
2 [(χ̄jγ

aεj)γaψµ
i − (χ̄jγ

aψµ
j)γaε

i] + 2Dµηi + ΛK
aγaψµ

i ,

δfµ
a = − 1

2 ε̄
iψµ

iDbT
ba
ij − 3

4eµ
aε̄i /Dχi − 3

4 ε̄
iγaψµiD

+ ε̄iγµDbR(Q)bai + 1
2 η̄

iγaφµi + h.c.+DµΛK
a . (B.2.7)

The transformations under S-supersymmetry and conformal boosts reflect the structure

of the underlying SU(2, 2|2) gauge algebra. The presence of curvature constraints and

of the non-gauge fields Tabij , χ
i and D induce deformations of the Q-supersymmetry

algebra, as is manifest in the above results, in particular in (B.2.3) and (B.2.7).

Combining the conventional constraints (B.2.4) with the various Bianchi identities one

derives that not all the curvatures are independent. For instance,

εabcdDbR(M)cd
ef = 2 εabc[eR(K)bc

f ] + 9
2 η

a[eχ̄iγf ]χi + 3
2

[
χ̄iγaR(Q)efi − h.c.

]
. (B.2.8)

Furthermore it is convenient to modify two of the curvatures by including suitable co-

variant terms,

R̂(M)ab
cd =R(M)ab

cd + 1
16

(
Tabij T

cdij + Tab
ij T cdij

)
,

R(S)ab
i =R(S)ab

i + 3
4Tab

ijχj . (B.2.9)

where we observe that γab
(
R(S) − R(S)

)
ab
i = 0. The modified curvature R̂(M)ab

cd

satisfies the following relations,

R̂(M)µν
ab eνb = iR̃(A)µνe

νa + 3
2Deµ

a ,

1
4εab

ef εcdgh R̂(M)ef
gh = R̂(M)ab

cd ,

εcdea R̂(M)cd eb = εbecd R̂(M)a
e cd = 2R̃(D)ab = 2iR(A)ab . (B.2.10)

The first of these relations corresponds to the third constraint given in (B.2.4), while the

remaining equations follow from combining the curvature constraints with the Bianchi

identities. Note that the modified curvature does not satisfy the pair exchange property;

instead we have,

R̂(M)ab
cd = R̂(M)cdab + 4iδ

[c
[a R̃(A)b]

d] . (B.2.11)
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We now turn to the fermionic constraint given in (B.2.4) and its consequences for the

modified curvature defined in (B.2.9). First we note that the constraint on R(Q)µν
i

implies that this curvature is anti-selfdual, as follows from contracting the constraint

with γν γab,

R̃(Q)µν
i ≡ 1

2 e εµν
ρσR(Q)ρσ

i = −R(Q)µν
i . (B.2.12)

Furthermore, combination of the Bianchi identity and the constraint on R(Q)µνi yields

the following condition on the modified curvature R(S)ab
i,

γaR̃(S)ab
i = 2DaR̃(Q)ab

i = −2DaR(Q)ab
i . (B.2.13)

This identity (upon contraction with γbγcd) leads to the following identity on the anti-

selfdual part of R(S)ab
i,

R(S)ab
i − R̃(S)ab

i = 2 /D
(
R(Q)ab

i + 3
4γabχ

i
)
. (B.2.14)

Finally we note the following useful identities for products of (anti)selfdual tensors,

G±[a[cH
±
d]b] = ± 1

8G
±
ef H

±ef εabcd − 1
4(G±abH

±
cd +G±cdH

±
ab) ,

G±abH
∓cd +G±cdH∓ab = 4δ

[c
[aG
±
b]eH

∓d]e ,

1
2ε
abcdG±[c

eH±d]e = ±G±[a
eH
±b]e ,

G±acH±c
b +G±bcH±c

a = − 1
2η

abG±cdH±cd ,

G±acH∓c
b =G±bcH∓c

a , G±abH∓ab = 0 . (B.2.15)

B.2.2 Chiral multiplets

Chiral multiplets are complex carrying a Weyl weight w and a chiral U(1) weight c,

which is opposite to the Weyl weight, i.e. c = −w. The weights indicate how the

lowest-θ component of the superfield scales under Weyl and chiral U(1) transformations.

Anti-chiral multiplets can be obtained from chiral ones by complex conjugation, so that

anti-chiral multiplets will have equal Weyl and chiral weights, hence w = c.

The components of a generic scalar chiral multiplet are a complex scalar A, a Majorana

doublet spinor Ψi, a complex symmetric scalar Bij , an anti-selfdual tensor G−ab, a Ma-

jorana doublet spinor Λi, and a complex scalar C. The assignment of their Weyl and

chiral weights is shown in table B.5. The Q- and S-supersymmetry transformations for
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Chiral multiplet

field A Ψi Bij G−ab Λi C

w w w + 1
2 w + 1 w + 1 w + 3

2 w + 2

c −w −w + 1
2 −w + 1 −w + 1 −w + 3

2 −w + 2

γ5 + +

Table B.5: Weyl and chiral weights (w and c) and fermion chirality (γ5) of

the chiral multiplet component fields.

a scalar chiral multiplet of weight w, are as follows

δA = ε̄iΨi ,

δΨi = 2 /DAεi +Bij ε
j + 1

2γ
abG−ab εijε

j + 2wAηi ,

δBij = 2 ε̄(i /DΨj) − 2 ε̄kΛ(i εj)k + 2(1− w) η̄(iΨj) ,

δG−ab = 1
2ε
ij ε̄i /DγabΨj + 1

2 ε̄
iγabΛi − 1

2(1 + w) εij η̄iγabΨj ,

δΛi = − 1
2γ

ab /DG−abεi − /DBijε
jkεk + Cεij ε

j + 1
4

(
/DAγabTabij + wA /DγabTabij

)
εjkεk

− 3 γaε
jkεk χ̄[iγ

aΨj] − (1 + w)Bijε
jk ηk + 1

2(1− w) γabG−abηi ,

δC = − 2 εij ε̄i /DΛj − 6 ε̄iχj ε
ikεjlBkl

− 1
4ε
ijεkl

(
(w − 1) ε̄iγ

ab /DTabjkΨl + ε̄iγ
abTabjk /DΨl

)
+ 2wεij η̄iΛj . (B.2.16)

Products of chiral superfields constitute again a chiral superfield, whose Weyl weight

is equal to the sum of the Weyl weights of the separate multiplets. Also functions of

chiral superfields may describe chiral superfields, assuming that they can be assigned a

proper Weyl weight. In the local supersymmetry setting, we will usually be dealing with

homogeneous functions of chiral multiplets with equal Weyl weight w so that a scaling

weight equal to the product of w times the degree of homogeneity can be assigned to

the function.

The product of two chiral multiplets, with components
(
A,Ψi, Bij , G

−
ab,Λi, C

)
and(

a, ψi, bij , g
−
ab, λi, c

)
, respectively, leads to the following decomposition,

(
A,Ψi, Bij , G

−
ab,Λi, C

)
⊗
(
a, ψi, bij , g

−
ab, λi, c

)
=(

Aa , Aψi + aΨi, A bij + aBij − Ψ̄(iψj) ,

A g−ab + aG−ab −
1
4ε
ijΨ̄iγabψj ,

A λi + aΛi − 1
2ε
kl(Bik ψl + bik Ψl)− 1

4(G−abγ
abψi + g−abγ

abΨi) ,

A c+ aC − 1
2ε
ikεjlBij bkl +G−ab g

−ab + εij(Ψ̄iλj + ψ̄iΛj)
)
. (B.2.17)
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Vector multiplet

field X Ωi Wµ Yij

w 1 3
2 0 2

c −1 −1
2 0 0

γ5 +

Hypermultiplet

field Ai
α ζα

w 1 3
2

γ5 −

Table B.6: Weyl and chiral weights (w and

c) and fermion chirality (γ5) of the vector mul-

tiplet and hypermultiplet component fields.

Using this, one can show that a function G(Φ) of chiral superfields ΦI defines a chiral

superfield, whose component fields take the following form,

A|G =G(A) ,

Ψi|G =G(A)I Ψi
I ,

Bij |G =G(A)I Bij
I − 1

2G(A)IJ Ψ̄(i
IΨj)

J ,

G−ab|G =G(A)I G
−
ab
I − 1

8G(A)IJ ε
ijΨ̄i

IγabΨj
J ,

Λi|G =G(A)I Λi
I − 1

2G(A)IJ
[
Bij

IεjkΨk
J + 1

2G
−
ab
IγabΨk

J
]

+ 1
48G(A)IJK γ

abΨi
I εjkΨ̄j

JγabΨk
K ,

C|G =G(A)I C
I − 1

4G(A)IJ
[
Bij

IBkl
J εikεjl − 2G−ab

IG−abJ + 4 εikΛ̄i
IΨj

J
]
,

+ 1
4G(A)IJK

[
εikεjlBij

IΨk
JΨl

K − 1
2ε
klΨ̄k

IG−ab
JγabΨl

K
]

+ 1
192G(A)IJKL ε

ijΨ̄i
IγabΨj

J εklΨ̄k
KγabΨl

L . (B.2.18)

B.2.3 Reduced chiral multiplets

Chiral multiplets of w = 1 are special, because they are reducible upon imposing a reality

constraint [186, 187]. The two cases that are relevant are the vector multiplet, which

arises upon reduction from a scalar chiral multiplet, and the Weyl multiplet, which is

a reduced anti-selfdual chiral tensor multiplet. Both reduced multiplets require weight

w = 1.

We will denote the components of the w = 1 multiplet that describes the vector mul-

tiplet by (A,Ψ, B,G−,Λ, C)|vector. The constraint for a scalar chiral superfield reads,
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εij D̄iγabDjΦ = [εij D̄iγabDjΦ]∗, where Di denotes the covariant derivative in super-

space. This implies that C|vector and Λi|vector are expressed in terms of the lower com-

ponents of the multiplet, and imposes a reality constraint on B|vector and a Bianchi

identity on G−|vector [46, 186, 187]. The latter implies that G−|vector can be expressed

in terms of a gauge field Aµ.

The reduced scalar chiral multiplet thus describes the covariant fields and field strength

of a vector multiplet, which encompasses 8 + 8 bosonic and fermionic components. Ta-

ble B.6 summarizes the Weyl and chiral weights of the various fields belonging to the

vector multiplet: a complex scalar X, a Majorana doublet spinor Ωi, a vector gauge

field Aµ, and a triplet of auxiliary fields Yij . The identification with the chiral multiplet

components is as follows,

A|vector =X ,

Ψi|vector = Ωi ,

Bij |vector =Yij = εikεjlY
kl ,

G−ab|vector =F−ab + 1
4

[
ψ̄ρ

iγabγ
ρΩj + X̄ ψ̄ρ

iγρσγabψσ
j − X̄ Tab

ij
]
εij ,

Λi|vector = − εij /DΩj

C|vector = − 2�cX̄ − 1
4G

+
ab T

ab
ijε

ij − 3 χ̄iΩ
i , (B.2.19)

where Fµν = 2∂[µAν] is the field strength of the gauge field. The corresponding Bianchi

identity on Gab can be written as,

Db
(
G+
ab −G

−
ab + 1

4XTabijε
ij − 1

4X̄Tab
ijεij

)
+ 3

4

(
χ̄iγaΩjε

ij − χ̄iγaΩjεij
)

= 0 , (B.2.20)

and the reality constraint on Yij is included in (B.2.19).

The Q- and S-supersymmetry transformations for the vector multiplet take the form,

δX = ε̄iΩi ,

δΩi = 2 /DXεi + 1
2εijGµνγ

µνεj + Yijε
j + 2Xηi ,

δAµ = εij ε̄i(γµΩj + 2ψµjX) + εij ε̄
i(γµΩj + 2ψµ

jX̄) ,

δYij = 2 ε̄(i /DΩj) + 2 εikεjl ε̄
(k /DΩl) , (B.2.21)

and, for w = 1, are in clear correspondence with the supersymmetry transformations of

generic scalar chiral multiplets given in (B.2.16).

Subsequently we turn to the Weyl multiplet, which is a chiral anti-selfdual tensor multi-

plet subject to D̄iγ
abDj Φab

ij = [D̄iγ
abDj Φab

ij ]∗. Its chiral superfield components take
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the following form,

Aab|W =Tab
ijεij ,

Ψabi|W = 8 εijR(Q)jab ,

Babij |W = − 8 εk(iR(V)−ab
k
j) ,(

G−ab
)
cd|W = − 8 R̂(M)−ab

cd ,

Λabi|W = 8
(
R(S)−abi + 3

4γab /Dχi
)
,

Cab|W = 4D[aD
cTb]c ijε

ij − dual . (B.2.22)

We give the Q- and S-supersymmetry variations for the first few components,

δTab
ij = 8 ε̄[iR(Q)ab

j] ,

δR(Q)ab
i = − 1

2 /DTab
ij εj +R(V)−ab

i
j ε
j − 1

2R̂(M)ab
cd γcdε

i + 1
8Tcd

ij γcdγab ηj ,

δR(V)−ab
i
j = 2ε̄j /DR(Q)ab

i − 2ε̄i
(
R(S)−abj + 3

4γab /Dχj
)

+ η̄j(2R(Q)ab
i + 3γabχ

i)− (traceless) ,

δR̂(M)−ab
cd = 1

2 ε̄i /Dγ
cdR(Q)ab

i − 1
2 ε̄
iγcd

(
R(S)−abi + 3

4γab /Dχi
)

− η̄iγabR(Q)cdi − 1
2 η̄iγ

cdR(Q)ab
i − 3

4 η̄iγabγ
cdχi . (B.2.23)

A scalar chiral multiplet with w = 2 is obtained by squaring the Weyl multiplet. The

various scalar chiral multiplet components are given by,

Â = (Tab
ijεij)

2 ,

Ψ̂i = 16 εijR(Q)jab T
klab εkl ,

B̂ij = − 16 εk(iR(V)kj)ab T
lmab εlm − 64 εikεjl R̄(Q)ab

k R(Q)l ab ,

Ĝ−ab = − 16 R̂(M)cd
ab T klcd εkl − 16 εij R̄(Q)icdγ

abR(Q)cd j ,

Λ̂i = 32 εij γ
abR(Q)jcd R̂(M)cdab + 16 (R(S)ab i + 3γ[aDb]χi)T

klab εkl

− 64R(V)ab
k
i εklR(Q)ab l ,

Ĉ = 64 R̂(M)−cdab R̂(M)−cd
ab + 32R(V)−ab kl R(V)−ab

l
k

− 32T ab ij DaD
cTcb ij + 128 R̄(S)abiR(Q)ab

i + 384 R̄(Q)ab iγaDbχi . (B.2.24)

These components can straightforwardly be substituted in the expression for the higher-

derivative couplings.

B.2.4 Hypermultiplets

Hypermultiplets in four dimensions [34, 184] are again on-shell supermultiplets and have

the same structure as in five dimensions, described in B.1.4. In terms of the sections

Ai
α(φ) (α = 1, 2, . . . , 2r) of the Sp(r)×Sp(1) bundle, the supersymmetry transformations
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read

δAi
α = 2 ε̄iζ

α + 2 εij G
αβ̄Ωβ̄γ̄ ε̄

jζ γ̄ ,

δζα = /DAi
αεi +Ai

α ηi . (B.2.25)

Again, one can show the existence of a covariantly constant skew-symmetric tensor

Ωαβ and the covariant derivatives contain the Sp(r) connection ΓA
α
β. The hyperkähler

potential reads

εij χ = Ωαβ Ai
αAj

β . (B.2.26)

For the local scale transformations we refer again to the weights shown in table B.6.



Appendix C

The Noether potential and

conserved charges

In order to deal with black holes in higher derivative theories, it is important to use

generic definitions of quantities such as the entropy. We therefore give a short summary

of the Wald formalism and the derivation of the first law of black hole thermodynamics

[82, 98, 99]. The following discussion is applicable for any theory of gravity described

by a Lagrangian that contains arbitrary combinations of the Riemann tensor, as the

Lagrangians that appear throughout this thesis.

C.1 The Noether potential

Consider a generic Lagrangian L in D dimensions that depends on fields that we collec-

tively call φ and their derivatives. For the applications in this thesis it will always be

assumed to contain Maxwell-Einstein theory as a subsector, in terms of a vielbein eaµ and

one or more gauge fields Aµ. We assume the theory defined by the corresponding action

to admit a number of local symmetries and we collectively denote the associated trans-

formation parameters by Ξ. In particular, we use a vector ξµ for diffeomorphisms, an

antisymmetric tensor εab for local Lorentz and a function ξ for abelian gauge symmetry.

In general, under a symmetry transformation δΞφ of the fields, the Lagrangian will

transform as

δΞL = ∂µN
µ
Ξ , (C.1.1)

where Nµ is a vector linear in Ξ. As the theory contains gravity this always includes

ξµL, but if the Lagrangian contains e.g. gauge non-invariant terms it will also contain

ξ and similarly for other cases. On the other hand, one can perform a general variation

145
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of the action to obtain the equations of motion E:

δL = Eδφ+ ∂µθ
µ(δφ) , (C.1.2)

up to a boundary term linear in the field variations δφ, that we indicate by θµ. Of course,

when the generic variation is assumed to be a symmetry variation, the two expressions

must coincide:

∂µN
µ
Ξ = Eδφ+ ∂µθ

µ(δΞφ) . (C.1.3)

It then follows that there exists a current associated with any field configuration:

Jµ = θµ(δΞφ)−Nµ
Ξ ⇒ ∂µJ

µ = −Eδφ , (C.1.4)

which is conserved when the configuration is a solution to the equations of motion. This

is known as the Noether current associated to the symmetry Ξ. For a rigid symmetry,

that is when some of the parameters Ξ are necessarily constant and do not appear in

Nµ
Ξ , this definition coincides with the conserved current originally introduced by Noether

and can be used to define conserved charges.

For the local case the situation is more subtle, and one has to consider the action of

symmetries generated by Ξ on the full phase space, or in other words on the space of all

solutions viewed as a manifold. The generator of symmetries on this space is expressed

through another conserved current:

Ωµ(δφ, δΞφ) = δθµ(δΞφ)− δΞθ
µ(δφ) (C.1.5)

and is identified with the variation of the corresponding Hamiltonian associated with the

symmetries. As we expect a conserved charge to appear whenever there is a symmetry

of the solution at hand, δΞφ and consequently Ω should vanish. This can be computed

by variation of (C.1.4), as

Ωµ(δφ, δΞφ) = δJµ −Πµ
Ξ , (C.1.6)

Πµ
Ξ ≡ δΞθ

µ(δφ)− δNµ
Ξ . (C.1.7)

As shown in [188], any conserved current locally constructed from fields can be written

as the divergence of an antisymmetric tensor, using the equations of motion. It follows

that one can locally define the so called Noether potential through

Jµ = ∂νQ
µν , (C.1.8)

and similarly for ΠΞ

Πµ
Ξ = ∂νδC

µν
Ξ , (C.1.9)

which also depend linearly on Ξ. The existence of these tensors allows for a definition of

the charge associated with symmetric backgrounds, for which Ω vanishes, in the following
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way. One can compute the integral of (C.1.6) over the total spacial manifold Σ as∫
Σ

Ω = δ

∫
S1

(Q− CΞ)− δ
∫
S2

(Q− CΞ) = 0 , (C.1.10)

where we used the Gauss theorem and S1,2 are D−2-dimensional spacial hypersurfaces.

The conserved charge can then be defined through

Q =

∫
S

(Q− CΞ) , (C.1.11)

which is independent of the hypersurface. This is the central result on which all appli-

cations are based.

It is worthwhile commenting on the ambiguities introduced in the process of defining the

quantities above. Firstly, both θ and NΞ are defined up to the divergence of a rank-two

antisymmetric tensor, as in (C.1.8), and these ambiguities affect the Noether current and

potential. However, one can easily see that the ambiguity of θ leads to terms in (C.1.6)

proportional to δΞφ, which vanishes on symmetric backgrounds, whereas the shift on

NΞ drops out. Furthermore, there is an ambiguity in the definition of Qµν and CµνΞ by

the divergence of a rank-three antisymmetric tensor. Such ambiguities drop out from

the integral in (C.1.11), provided that S is closed and the fields are well defined on it.

C.2 Applications

One can write concrete expressions for the formal quantities above for specific cases.

Here we concentrate on gauge symmetry and diffeomorphisms. For later convenience,

consider a five-dimensional Lagrangian that contains two parts, one that depends on the

Riemann tensor and an abelian gauge field strength and its derivatives and a Chern-

Simons part:

L = L0(Rµνρσ, Fµν ,∇ρFµν) + LCS , (C.2.1)

LCS = α εµνρστAµFνρFστ + β εµνρστAµRνρ
ab(M)Rστab(M) , (C.2.2)

where α, β are constants and the spin connection curvature Rµν
ab(M) can be replaced

by the Riemann tensor.
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C.2.1 Gauge symmetry

The first part of the Lagrangian (C.2.1) is invariant under gauge transformations, but

the Chern-Simons terms vary by a total derivative, so that we have

Nµ = α ξεµνρστFνρFστ + β ξεµνρστRνρ
ab(M)Rστab(M) (C.2.3)

θµ(δφ) = 2Lµν0 δAν − 2∇ρL(µ,ρ)ν
0 δAν + 2L(µ,ρ)ν

0 ∇ρδAν + 4α εµνρστδAνAρFστ , (C.2.4)

where

Lµν0 =
∂L0

∂Fµν
, Lρ,µν0 =

∂L0

∂∇ρFµν
. (C.2.5)

Straightforward application of the above formulae shows that the only term contributing

to ΠΞ is the cubic Chern-Simons term. The final expression for the conserved electric

charge reads

q =

∫
S
dSµν

[
2 ξ Lµν0 − 2 ξ∇ρLµ,ρν0 + Lρ,µν0 ∂ρξ + 6α ξεµνρστAρFστ (C.2.6)

+ 4β εµνρστ ωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

) ]
,

which should be evaluated on a symmetric background (∂ξ = 0) and dSµν denotes the

surface element on S. The last term can be replaced by the Chern-Simons term involving

the Christoffel symbol, depending on the application. This is not an ambiguity of the

Noether charge, since one can convert the corresponding term in the Lagrangian into

a gauge invariant term proportional to either the Christoffel or spin connection Chern-

Simons form by partial integration and combine it with L0. Then, (C.2.6) formally

gives the same result, even though such manipulations may not be well defined for

backgrounds containing magnetic and/or Taub-NUT charge.

C.2.2 Diffeomorphisms and the first law

We now turn to the Noether potential associated to diffeomorphisms for the same La-

grangian in (C.2.1). For the moment we consider the mixed Chern-Simons term in the

metric formulation, assuming the gauge field is globally defined. After a diffeomorphism

and a general variation of the Lagrangian, one finds Nµ = ξµL and

θµ(δφ) = 2 (Lµνρσ∇ρδgσν −∇ρLρνµσδgσν)

+ 2LµνδAν − 2∇ρL(µ,ρ)νδAν + 2L(µ,ρ)ν∇ρδAν , (C.2.7)

where now

Lµν =
∂L
∂Fµν

, Lρ,µν =
∂L

∂∇ρFµν
, Lµνρσ =

∂L
∂Rµνρσ

. (C.2.8)
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Using these results, the vector Πξ takes the form:

Πµ = δξθ
µ(δφ)− ξµδL = δξθ

µ(δφ)− ξµ∂νθν(δφ) = 2 ∂ν

(
ξ[µ θν](δφ)

)
, (C.2.9)

whereas the Noether potential reads

Qµν = 2Lµνρσ∇ρξσ − 4∇ρLµνρσξσ (C.2.10)

+ 2 (ξσAσ)Lµν − 2 (ξσAσ)∇ρLµ,ρν + Lρ,µν∂ρ(ξσAσ) .

Note that these formulae are generic and no special care is taken for the Chern-Simons

terms in (C.2.1), which are fully diffeomorphism covariant, but contribute with terms

proportional to explicit gauge fields. This is unavoidable for the gauge Chern-Simons

term, but not for the mixed term, as we will see later.

The last three terms in (C.2.10) are clearly related to the gauge symmetry Noether

potential in (C.2.6), if one omits the Chern-Simons term. The reason is the following

decomposition of the diffeomorphisms on a gauge field,

δξWµ
I = −∂µξνWν

I − ξν∂νWµ
I = ξνFµν

I + ∂µ(−ξνWν
I) . (C.2.11)

which is transferred to the Noether potential, by linearity. This holds for all covariant

terms in the action, but not for Chern-Simons terms, which must necessarily be treated

using (C.2.10). The relative factor ξµWµ is necessarily constant near infinity [108] and

is identified with the electrostatic potential Φ in (1.1.7).

It follows that the integral of (C.1.6) takes the form∫
Σ

[
δ∂ν Q

µν − 2 ∂ν

(
ξ[µ θν](δφ)

)]
= 0 , (C.2.12)

so that if one can find a Cξ such that δCµνξ = 2ξ[µθν](δφ), the following relation holds

for variations of the fields:

δ

∫
S1

dSµν

(
Qµν − Cµνξ

)
= δ

∫
S2

dSµν

(
Qµν − Cµνξ

)
. (C.2.13)

Evaluated on a symmetric background, which possesses a Killing vector ξ, the quantity

under variation is identified with the corresponding conserved charge. In the presence

of a Killing horizon, evaluation of the two sides of this relation on the horizon H and

at infinity lead to the first law of black hole mechanics as follows. Let the horizon

be generated by the Killing vector ξ = ξt + Ωξφ, where ξt, ξφ are the generators of

time translation and rotations and Ω is the angular velocity of the horizon. Using the

comments below (C.2.11) and the charge in (C.2.6), we find

δ

∫
H

(Qξ − Cξ) = δ

∫
∞

(Qξt − Cξt) + Ω δ

∫
∞

(
Qξφ − Cξφ

)
+ Φ δq , (C.2.14)
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where the two integrals in the right hand side are identified with the total mass M and

angular momentum J . Generically, there exists a special cross section of the horizon,

the bifurcation surface, on which ξ = 0 and ∇µξν = κεµν , where κ is the surface gravity

and εµν is the binormal on this surface. Using this surface in the integral on the left

hand side of (C.2.14), one finds

κδS = δM + Ω δJ + Φ δq . (C.2.15)

This relation is identified as the first law of black hole mechanics, with the entropy given

by

S =

∫
H
εµν (2Lµνρσερσ + Lρ,µνερσAσ) . (C.2.16)

The result is always proportional to the area of the horizon, but details vary depending

on the theory. In particular, for pure General Relativity only the first term is present

and it is proportional to the metric, so that the result is exactly equal to the area, up

to normalisation. More generally, this result holds for all theories involving any power

of the Riemann tensor and the derivatives of the field strength, which is the case for

Lagrangians considered in this thesis.

C.2.3 Local Lorentz symmetry

Until now we have been cavalier about the presence of explicit gauge fields in the ex-

pressions for the Noether potential, silently assuming they were globally defined. This

is not true for backgrounds that contain magnetic charges and appear in applications.

In some cases, such terms are unavoidable and one has to carefully perform the corre-

sponding final integration on different gauge patches, perhaps adding boundary terms.

One example where one can avoid them is the mixed gauge/gravitational Chern-Simons

term in (C.2.1). By partial integration, this can be written as

LCS = −2β εµνρστ Fµνωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
, (C.2.17)

where we chose to use the spin connection because this is the natural object in supergrav-

ity, unlike the Christoffel connection. This form of the Lagrangian is no longer invariant

under local Lorentz transformations, but transforms into a boundary term as a result of

the explicit spin-connection, but is manifestly gauge invariant. In this setting one takes

the vielbein as the fundamental variable, whereas diffeomorphisms are extended by local

Lorentz transformations that act on the flat indices.
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As the algorithm for constructing the Noether potential is linear, we concentrate here

on the contribution from the term (C.2.17). The relevant variations result in

Nµ
ξ =− 2β ξµ ελνρστ Fλνωρ

ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
+ 2β εµνρστFνρ∂σε

ab ωτab (C.2.18)

θµ =− 4β εµνρστδAνωρ
ab(∂σωτab − 2

3ωσac ωτ
c
b) + 2β εµνρστFνρ ωσ

ab δωτab

− 2β ελνρστFνρRστ
ab(eλcea

µeb
β δeβ

c + 2ea
µ δeλb) . (C.2.19)

In this case, Cµν acquires a novel term:

δCµνξ = 2 ξ[µ θν](δξφ) + 16β εµνρστ δAρ ∂σε
ab ωτ ab , (C.2.20)

whereas the Noether potential reads

Qµν = 4β εµνρστ Fρσ ωτ
ab(εab − 1

2ξ
λωλab)

− 4β εµνρστ ξλAλ ωρ
ab
(
∂σωτab − 2

3ωσac ωτ
c
b

)
+ 4β ερστκ[µ Fρσ Rτκ

ν]λ ξλ − 2 ερστκλ Fρσ Rτκ
µν ξλ . (C.2.21)

The integral of these quantities over a closed surface as in (C.1.11) leads to the conserved

Noether charge for diffeomorphisms extended by local Lorentz transformations, provided

that the gauge parameters are taken to be those of a symmetric background. These are

again described by a Killing vector ξµ, and a Lorentz parameter given by

ξab = −∇[aξb] + ξλωλ
ab . (C.2.22)

It is simple to verify that the covariant terms in the Noether potential agree with the

corresponding ones in the metric formulation. On the other hand, this result is gauge

invariant but features explicit spin connections, therefore it is applicable in cases where

the gauge fields are not globally defined but the spin connections are.

Finally, we should briefly comment on the ambiguity in (4.3.21) related to the fact that

the extraction of the derivative ∂µ in (C.2.18) is not well motivated for the second term,

as we could have also left the derivative on the spin connection field ωτ
ab and extracted

the derivative from the transformation parameter εab. The choice made above can be

justified along the lines of [100], which is consistent with the original description of Wald

[82, 99]. Due to the nonstandard term (C.2.20), the generic variation (C.1.6) equals,

8π2δJµ(φ, ξ, ε) = ∂ν
[
ξµθν(φ, δφ)− ξνθµ(φ, δφ)

]
+ Ωµ(φ; δξφ, δφ)

+ 16∂ν
[
εµνρστδAρ ∂σε

ab ωτab
]
, (C.2.23)

where δξ denotes the combined effect of both diffeomorphisms and Lorentz transfor-

mation. The variations δφ and δAµ connect two nearby solutions. At this point the
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diffeomorphism and the Lorentz transformation are arbitrary and do not have to con-

stitute an invariance of the field configuration.

The first term on the right-hand side is generic, as seen in (C.2.20), and does not change

the entropy because it does not involve derivatives of ξµ. Furthermore, it gives no

contribution to the variations of the angular momenta at spatial infinity [99]. Actually,

the form of this term ensures that the angular momenta can be determined from the

Noether potential and remain constant as a function of the distance from the horizon

[107].

The hope is that the third term in (C.2.23) will behave in the same way. This term will

also lead to modifications of the Noether potential, and since it depends on ξµ as well

as on its derivatives, these modifications may affect the entropy. However, it is easy to

see that this will not be the case, because the relevant εab at the horizon is precisely

the bi-normal tensor, whose derivatives vanish. Therefore the third term in (C.2.23)

will not lead to extra terms in the entropy. For the angular momenta, the situation

is similar but more subtle. In that case the combination ∂σε
ab ωτab vanishes at the

horizon due to kinematical reasons, except for ∂θε
ab ωϕab ∝ sin θ cos θ. Therefore this

term vanishes upon integration over the horizon for all δWρ
I that are allowed. Hence

the angular momenta at the horizon are not modified and can be determined from

the Noether potential obtained earlier. An obvious question is, whether the angular

momentum whose variation appears in the first law, and which is measured at spatial

infinity, will coincide with the angular momenta determined at the horizon. The answer

to this question is not known, but the results presented in section 4.5 indicate that the

answer is affirmative. Obviously a full derivation of the first law for the ring geometry is

subtle in the presence of higher-derivative couplings. Without the latter, the derivation

of the first law has already been pursued in [108] in connection with the presence of the

dipole charges.
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Samenvatting

In de afgelopen jaren is er hernieuwde belangstelling ontstaan voor de studie van zwarte

gaten als resultaat van een aantal boeiende ontwikkelingen. Tegenwoordig wordt al-

gemeen aanvaard dat de meeste, zo niet alle, centra van sterrenstelsels zwarte gaten

bevatten. Deze zwarte gaten zijn verantwoordelijk voor enkele van de meest boeiende

verschijnselen die waargenomen worden in deze gebieden. Bovendien is het bekend dat

sterren met een massa groter dan een bepaalde limiet aan het einde van hun levenscyclus

onder invloed van de zwaartekracht ineenstorten tot een zwart gat. Dit maakt een eind

aan een lange periode van speculaties over het bestaan van dergelijke objecten die begon

kort na de ontdekking van Newtons gravitatiewet en een hoogtepunt bereikte met de

komst van de algemene relativiteitstheorie.

Beide theorieën voorspellen dat als een object van een gegeven massa klein genoeg is,

men met een snelheid groter dan die van licht zou moeten reizen om te ontsnappen

aan de aantrekkingskracht op het oppervlak van het object. Een dergelijk object zou

volledig donker lijken voor een externe waarnemer. Dit werd lange tijd beschouwd als

een wiskundige curiositeit, totdat Einsteins relativiteitstheorie aantoonde dat de snelheid

van het licht de hoogst mogelijke snelheid is in de natuur. Eén van de implicaties van

deze limiet is, dat als licht niet kan ontsnappen aan een object, niets dat kan. Deze

unieke eigenschap is zo interessant en verreikend, dat het onderzoek aan zwarte gaten,

zoals deze objecten later werden genoemd, een van de meest actieve gebieden in de

natuurkunde werd gedurende de laatste eeuw.

Vanuit een theoretisch oogpunt zijn verschillende aspecten van zwarte gaten van belang.

Niet alleen zijn zwarte gaten alomtegenwoordig in alle theorieën van de zwaartekracht,

maar volgens de zogenaamde uniciteitstellingen, worden ze over het algemeen beschreven

door een klein aantal parameters. Dit betekent dat als men van een afstand de globale

eigenschappen van een zwart gat meet, zoals de massa, het impulsmoment en de totale

lading, de volledige structuur van het object uniek is vastgelegd. Algemene relativiteit-

stheorie voorspelt dat voorbij het punt van waaruit licht niet meer kan ontsnappen,

genaamd de waarnemingshorizon, elke waarnemer steevast het centrum zal bereiken,

een punt van oneindige dichtheid, bekend als de singulariteit.
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De aanwezigheid van een singulariteit geeft aan dat de klassieke algemene relativiteit-

stheorie van Einstein niet meer toereikend is. Hierdoor ontstaat de behoefte aan een

theorie die zwaartekracht op de allerkleinste schaal kan beschrijven. In dit domein zijn

kwantumeffecten onvermijdelijk, zodat een kwantumtheorie van de zwaartekracht ben-

odigd is. De zoektocht naar deze theorie is nog niet bëindigd, omdat er verschillende

kandidaten zijn die elk hun voor- en nadelen hebben, en een volledig bevredigende theorie

die algemene relativiteitstheorie met kwantummechanica verenigd ontbreekt nog steeds.

Eén van de eisen op een kwantumtheorie van de zwaartekracht is dat het de globale

eigenschappen van een zwart gat moet kunnen reproduceren en alle singulariteiten moet

oplossen door middel van kwantumeffecten. Met behulp van de hierboven vermeldde

eigenschappen, kan men stellen dat een zwart gat het eenvoudigste, niet-triviale, inter-

acterende systeem is in een theorie van kwantumzwaartekracht, want het zou volledig

moeten worden vastgelegd door de globale parameters.

Om ervoor te zorgen dat een oplossing die een zwart gat beschrijft zinnig is, zijn er

meestal beperkingen op de hierboven genoemde parameters. De belangrijkste restrictie

komt uit de eis dat er een eindige horizon moet zijn, die de singulariteit in het centrum

van het zwarte gat verbergt. Dit staat ook wel bekend als kosmische censuur. Voor een

zwart gat met massa M en elektrische lading Q, vindt men dat de massa moet voldoen

aan de relatie,

M ≥ |Q| , (i)

in de juiste eenheden. Hieruit volgt dat er een positief minimum is in het massaspectrum

van fysische, geladen zwarte gaten. In de aanwezigheid van impulsmoment en/of andere

ladingen bestaan soortgelijke begrenzingen. Zwarte gaten die gelijke massa en lading

hebben, en dus (i) verzadigen, worden extremaal genoemd en zijn het onderwerp van dit

proefschrift. Deze oplossingen zijn interessant vanuit een theoretisch perspectief, omdat

het onmogelijk zou moeten zijn dat deze zwarte gaten massa/energie verliezen door een

fysisch proces, zolang de singulariteit in het centrum verborgen blijft door de horizon.

Met andere woorden, ze vertegenwoordigen een soort grondtoestand voor alle zwarte

gaten, iets wat naar verwachting ook kwantummechanisch geldt.

Een hint naar een microscopische theorie die zwarte gaten beschrijft wordt gegeven door

de zogenaamde vier wetten van de mechanica van zwarte gaten, ontdekt in de jaren ’70.

Het blijkt dat onder bepaalde algemene aannames, het mogelijk is om beperkingen af

te leiden op de variaties van behouden grootheden die een continue verscheidenheid van

zwarte gaten parametriseren. De resulterende vergelijkingen zijn in opvallende gelijkenis

met de conventionele wetten van de thermodynamica als men een temperatuur en een

entropie toekent aan het zwarte gat. Zodoende moet de microscopische beschrijving

van een zwart gat begrepen worden in termen van een statistisch systeem met een

groot aantal vrijheidsgraden, analoog aan de atomen van een gas. Een goede test op

een kandidaat voor een kwantumzwaartekrachttheorie is daarom dat de microscopische
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vrijheidsgraden tot de macroscopische entropie kunnen leiden, als de wetten van de

statistische mechanica worden toegepast.

Snaartheorie is een kandidaat voor een kwantumtheorie van de zwaartekracht, en voor-

ziet ons van theoretische modellen van de kwantumstructuur van een klasse van ex-

tremale zwarte gaten. Volgens de snaartheorie, kan alle materie worden beschreven door

middel van bepaalde oscillaties van ruimtelijk verlengde objecten, zogenaamde snaren.

Bij lage energieën en grote afstanden ten opzichte van hun lengte, kunnen snaren worden

gezien als puntdeeltjes, zodat de snaartheorie kan worden benaderd door een klasse van

effectieve veldentheorieën van de zwaartekracht gekoppeld aan materie. Deze theorieën

zijn supersymmetrisch, net zoals de snaartheorie, en worden meestal supergravitati-

etheorieën genoemd. Supersymmetrische theorieën zijn een interessant onderwerp op

zichzelf, omdat bosonen en fermionen in hetzelfde multiplet voorkomen en ze onderling

roteren. Hieruit volgt dat de parameters van supersymmetrietransformaties zelf spin

moeten dragen. Ze worden meestal gekozen in de kleinst mogelijke spinorrepresentatie.

Het aantal van deze onafhankelijke parameters, N , wordt gebruikt om de hoeveelheid

supersymmetrie te karakteriseren in een theorie.

Dit proefschrift is gewijd aan het vergelijken van de macroscopische eigenschappen van

extremale zwarte gaten met theoretische voorspellingen vanuit de snaartheorie. De fo-

cus ligt op een bepaalde klasse van supersymmetrische zwaartekrachttheorieën in vier

en vijf ruimtetijd dimensies, die bekend staan als N = 2 supergravitatietheorieën. De

aanwezigheid van supersymmetrie in deze theorieën vergemakkelijkt de analyse op ver-

schillende manieren. Men kan bijvoorbeeld de aandacht beperken tot de deelverzameling

van alle oplossingen van zwarte gaten die een deel van de supersymmetrie behouden -

de zogenaamde BPS oplossingen. Dit lijdt tot zeer sterke beperkingen op de geometrie

en de materievelden, tot op het punt dat de supersymmetrische oplossingen volledig

gekenmerkt kunnen worden, zonder gebruik te maken van de volledige bewegingsvergeli-

jkingen. In hoofdstuk 2 introduceren we N = 2 supergravitatie in vier en vijf dimensies

en geven we een beknopte samenvatting van supersymmetrische oplossingen in beide

theorieën.

Supersymmetrie impliceert de verdere vereenvoudiging dat de theorie gecodeerd is in

een klein aantal willekeurige functies. Bijvoorbeeld, de N = 2 supersymmetrische uit-

breiding van de Einstein-Maxwell theorie is volledig vastgelegd door een enkele functie

die alle koppelingen bepaald. Deze eigenschap is cruciaal voor de twee belangrijkste

toepassingen beschouwd in dit proefschrift, namelijk de effecten van hogere afgeleide

termen op BPS oplossingen en de constructie van niet-supersymmetrische oplossingen.

In de hoofdstukken 3 en 4 bespreken we de vierde orde afgeleide termen toegestaan

door N = 2 supersymmetrie in vier en vijf dimensies, respectievelijk. Elk van deze

invarianten is geparametriseerd door een willekeurige functie, die kan worden vastgelegd

wanneer men een inbedding in een microscopische theorie, zoals snaartheorie, aanneemt.
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Door te beperken tot de klasse van theorieën verkregen door snaartheoretische modellen,

kan men verband maken met microscopische constructies van zwarte gaten.

De constructie van exacte oplossingen van hogere afgeleide theorieën is een ingewikkeld

probleem, dat niettemin met succes is bestudeerd in het verleden, althans voor een-

voudige supersymmetrische oplossingen. Desondanks kan men algemene uitspraken doen

over BPS zwarte gaten gebaseerd op de regio dicht bij de horizon (de attractorregio),

waarvan is aangetoond dat deze de volledige N = 2 supersymmetrie behoudt. Hieruit

volgt dat supersymmetrische attractoren direct kunnen worden geconstrueerd, gebaseerd

op de vergrote symmetrie. In de hoofdstukken 3 en 4 worden de vier- en vijfdimension-

ale theorieën uitgebreid behandeld, met toelichting op de relatie tussen de twee theo-

rieën. We vergelijken onze resultaten met de corresponderende voorspellingen vanuit de

snaartheorie in hoofdstuk 2 en vinden volledige overeenkomst tussen de macroscopische

en microscopische voorspellingen.

De zeer beperkte vrijheid in supergravitatietheorieën met N > 1 wordt teruggezien

in de oplossingen, zelfs als deze supersymmetrie volledig breken. In hoofdstuk 5 be-

spreken we enkele recente resultaten over de constructie van niet-BPS oplossingen in

N = 2 theorieën. Het blijkt dat een groot deel van de eigenschappen van BPS zwarte

gaten volgt uit het feit dat ze extremaal zijn, en niet uit supersymmetrie. Om deze

eigenschappen te onderzoeken, presenteren we eerst een nogal speciale klasse van vijfdi-

mensionale oplossingen. Deze zijn supersymmetrisch op lokale delen van de ruimtetijd,

maar breken niettemin globaal alle supersymmetrie. Deze nieuwe oplossingen blijken een

aantal eigenschappen te hebben die aanwezig zijn in generieke extremale oplossingen,

maar verboden zijn in het supersymmetrische geval. Op basis van dit feit, stellen we

vervolgens een schema voor om algemenere extremale oplossingen te construeren, met

inbegrip van roterende zwarte gaten.
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