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Introduction

The solution of Neutron Transport equa-
tion is incredibly important for any nuclear
engineer. And the two fundamental approach
for solution are deterministic and stochastic
(Monte Carlo methods). There exists a num-
ber of computational Monte Carlo particle
transport codes which implement Monte Carlo
method for criticality safety problems, shield-
ing calculations, dose assessments, burn up
calculations.
MCDP, a Monte Carlo neutron particle trans-

port code recently developed at PDPU, is a
special purpose Monte Carlo D’neutron Particle
transport code aimed for the continuous en-
ergy (10−5eV to 2 × 106eV ) neutronic calcu-
lation especially criticality for simple bare ge-
ometries. The code is developed in Python
programing language. Important features in-
cludes variety of initial source, mesh tally
for energy wise spatial distribution computa-
tions and auto-generated output graphs and
files. The validation of the eigenvalue results
are performed on some experimental critical
systems of MCNP:Neutron Benchmark Prob-
lems [1].

Geometry

The available geometries in MCDP are spher-
ical, cylindrical, and finite slab with vacuum
boundary condition. See Figure(1).

Reactions

ENDF-B/VII.1 pointwise cross section data
at 0.0257eV is used for various neutron-
nuclear reactions such as scattering reactions
(n,el) (n,n’), radiative capture (n,γ), neutron
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producing reactions (n,xn) (x=2,3,4) and fis-
sion (n,f). Energy and angular distribution
of secondary particles of fission and elastic
scattering events are accurately considered.
ENDF Law I is used to sample the energy and
angular distribution files. The nuclear data
(cross sections and distributions) are down-
loaded from [2].

Neutronic Calculations

The multiplication of the system is esti-
mated using total subsequent method and
method of successive generations. The total
flux (Integrated to volume) is estimated us-
ing collision and track length estimators. The
spatial distribution of flux is calculated using
collision estimators.[3]

Validation Tests

The validation of results of the code devel-
oped for numerical calculations for its practi-
cal uses are performed on experimental data
(formated as Benchmark Problems). To deter-
mine MCDP’s ability to calculate multiplication
factor of critical configuration, five experimen-
tal critical assemblies are analyzed.

1. Lady Godiva 93.71% U-235

2. Jezebel 95.5% Pu-239

3. Jezebel 80% Pu-239

4. Uranium Cylinder 10.9% U-235

5. Uranium Cylinder 14.11% U-235

Godiva and Jezebel are bare spherical critical
systems. Each system is modeled in MCDP and
OpenMC (Open Monte Carlo particle trans-
port code [4]) and the simulation results are
compared to the experimental results.
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FIG. 1: Generated by MCDP 3D geometry function

TABLE I: MCDP Vs OpenMC for various Neutron Benchmark Tests

Tests No. True Value MCNP[1] Na Gen.b Keff Results of MCDP OPENMC Results
1 1 0.9976+/-0.0011(%) 1000 500 1.002827 +/- 0.0586(%) 1.00103 +/- 0.145(%)
2 1 0.9986 +/-0.0021(%) 1000 500 1.002503 +/- 0.0540(%) 1.00531 +/- 0.129(%)
3 1 1.0075 +/-0.0012(%) 1000 500 1.002518 +/- 0.0598(%) 1.01097 +/- 0.131(%)
4* 1 1.0024 +/-0.0013(%) 2000 500 0.921623 +/- 0.2272(%) 0.99159 +/- 0.113(%)
5* 1 1.0003 +/-0.0014(%) 1000 500 0.924769 +/- 0.4393(%) 0.99185 +/- 0.153(%)

aNumber of Initial Particles
bNumber of Generations
*Systems with uniform distribution of initial source

and other systems have point initial source.

Results and Conclusion

From the results of MCDP we conclude fol-
lowing:

For high enriched bare systems, which are
smaller in dimensions, the converging re-
sult is found for simulation of small num-
ber of particles.

For low enriched system, which are large in
comparison to high enriched system, the
Monte Carlo experiment requires a large
number of histories to get converging re-
sults.

Monte Carlo simulations depend more on the
model of all reactions under considera-
tion.

The multiplication results of MCDP will con-
verge to the true value irrespective of ini-
tial spatial distribution of source present
in the system.

MCDP can estimate criticality of bare geome-
tries with less error than OpenMC with

the same number of particles but time
cost is tremendously high in MCDP(of
the order of hours) in comparison to
OpenMC (in seconds).
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