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Abstract

The fast multipole method (FMM) algorithm was devel-
oped by Greengard and Rokhlin in 1987 [1]. As one of the
top ten algorithms of the 20th century, it has been applied in
a wide range of fields. The FMM complexity is O (), where
N is the number of particles, allowing for large-scale sim-
ulations. However, it includes all the two-body collisional
forces, in contrast to other methods such as the popular par-
ticle in-cell (PIC) methods. While collisionality can be very
important, many applications require only the mean field
effects. PIC is frequently used in this regime. Due to re-
cent concerns of unphysical effects of grids, interpolation
and other approximations in PIC codes, an alternative based
on different underlying assumptions would prove enlighten-
ing. For these cases, a smoothed or softened FMM using
a Plummer-like smoothing parameter holds much promise.
Unfortunately, the original FMM algorithm based on ana-
lytic expansions of the %-like potentials does not allow for
Plummer softening. We present our new soft-FMM employ-
ing differential algebras (DA) to obtain the modified expan-
sions. We also compare the performance of the smoothed
DA-FMM with examples from PIC simulations.

INTRODUCTION

Algorithms to solve the N-body problem have advanced
greatly in recent years. With increasing interest in high inten-
sity beams, tracking codes must efficiently simulate collec-
tive effects, particularly space charge. Particle in-cell (PIC)
is the standard class of methods for the accelerator and beam
community. Since all PIC methods share the basic assump-
tions [2], comparing PIC codes would not distinguish un-
physical behavior, which are well-known to exist due to
numerical noise, interpolation errors, grid heating, etc. An
alternative method based on completely different assump-
tions would prove insightful.

Of recently developed methods, the fast multipole method
(FMM) shows great promise. We present the smoothed FMM
as an alternative to PIC. Previously, we implemented the
FMM using a differential algebraic (DA) framework. With
the DA method, we reformulated the FMM in real Cartesian
space and made it kernel independent. However, while PIC
estimates the mean fields, the FMM includes all collisional
effects. Since close encounters lead to strong collisions, un-
physical in this context, we introduced Plummer-like smooth-
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ing or softening into the FMM. This technique could not be
done with the original FMM, but the kernel independence
based on the DA framework allows computational cost in
the smooth FMM to be near the same as the original FMM.
With appropriate softening parameter, the FMM can esti-
mate the mean fields to be used for space charge tracking.
This paper illustrates the behavior of the smoothed FMM
for transverse space charge and compares it to theory, the
method of statistical moments (MoM) [3], and a widely-used
representative PIC code.

SMOOTHED DA-FMM IN CARTESIAN
FORM
The smoothed 2D Coulomb potential at (x, y) due to a
source at (xg, yo) of unit charge with smoothing parameter A
is given by (1), or alternatively by (2). (1) and its derivative
are used for particle-particle interactions.
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Far multipole expansion

We can separate (2) as @(x,y, 1) = @p + Dy, where
Or only depends on the target position. We expand @, in
(2) from the origin. Let > = x? + y? + 12. We define DA
variables, dy = %, dy = ry_z dy = r’l—z, and d? = % =
dz + dg + dﬁ. Substituting these into the second log term of
(2), we have the form for the smooth multipole expansion
@y, given in (3).

(DM(-X3 y, d)ﬁ dy’ /1’ d/l) =

1
~ 5 logll + (g +¥9)d; = 2(x0dx + yody)] ~ (3)

The DA framework allows efficient expansion of @, in
terms of the DA variables. Thus, we will get a Taylor series
indy, dy,d, describing the multipole expansion, which we
may evaluate using the DA variables defined earlier.

Multipole-to-multipole translation

To remap (3) to a new multipole center, (X, Yim), We

redefine the DA variables as d, = %, dy, = %, dy, = r’l—z,
2 2 2
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andd%2 = a’)zc2 +d§2 +chl withx) =X —Xm, Y2 =Y — Ym-
2

Let R, = :—é Thus, the map of the translation between
the multipole centers is given by (4) with @, being the
translated multipole expansion.

X
dy = = = Ro(dx, + xnd2)
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Multipole-to-local translation

Similarly, to translate (3) to a local point (x;, y;) near
(x,y), we redefine the DA variables as dy, = x — x;, dy, =
y =y, and d,, = A. Since d,, = A, we may evaluate it
and eliminate the third DA variable before translation. Let
R; = rl—z So the map for translation is now given by (5). The
potential is thus given by ® = Or(dy, + x1,dy, + ¥, 4) +
D (dyy, dy,, ).

dy = R3(x; + dX3)
dy = R3(yl +dy3)
dy = R34

= M; 5)

1
R: =
BTt de)? + Gptdyy)? + A2
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Local-to-local translation

At this point, d, is no longer needed. For local-to-local
translation, the new DA variables simply require a shift sim-
ilar to dy,, dy,.

RADIAL SPREAD DUE TO SPACE
CHARGE IN A DRIFT

Space charge in a drift is the simplest solvable case. For a
zero-emittance beam, the radial spread is purely from space
charge. From Reiser [4], the equation of motion is given
by (6) where ry is initial beam radius, / is the current, Iy =
areome’ [4 is the characteristic current, and K is the generalized
perveance with no charge neutralization.

2R K I 2
6—:—; Rs@; K=——— (6)
922 2R ro Iy p3y3

Solving (6), we get an integral equation (7) for a zero-
emittance electron beam or an approximate solution (8) as

ISBN 978-3-95450-168-7
664

Proceedings of IPAC2015, Richmond, VA, USA

described in [4].
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We limited ourselves to this regime to maintain the paraxial
approximation. This led to the beam parameters in Table 1.

BEAM PARAMETERS AND SIMULATION
CONDITIONS

Table 1: Beam and System Parameters

Species Electron
Energy 100 keV
Current 1A
Spatial distribution Uniform circular
Initial radius 1 cm
Initial emittance 0 m-rad
Drift length 0.5m
Radial spread (Theory) 1.521

We set up the simulation to calculate a single space charge
kick at order 12 with optimal FMM parameters. We chose
IMPACT-T [5] to represent PIC for this paper. For PIC, we
set the time step such that we could compare the FMM with
a single time step, analogous with a single space charge kick,
and after the PIC behavior converges, choosing around 300
time steps. For other parameters, see Table 2.

The beam radius is calculated simply using the maximum
particle distance from the origin. Collisional effects in the
FMM could cause particles at the edge of the distribution
to jump significantly, leading to outliers. Thus, the outliers
will inflate results from the beam radius calculation.

Table 2: PIC Simulation Conditions

Code IMPACT-T
No. particles 300000
Bunch length 1.03 m
No. slices (transverse) 64
No. slices (longitudinal) 32
i Z-slices picked 16-17
Total travel time in drift 3.1 ns
Convergent time step 0.01 ns
RESULTS

Full smoothing

We started by testing the behavior of the FMM with equal
smoothing in the particle-particle interactions and multipole
expansions. We compared the predicted radial spread of the
same distribution, as described by Table 1, using the FMM,
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PIC after convergence, PIC with 1 time step, the MoM, and
(8). Figure 1 shows the theoretical crossover point. The MoM
at order 12 nearly matches the theoretical result as expected
from previous work [3]. Inspection of the final distribution
showed the radial spread from the FMM was inflated by
some outliers. The clear beam edge showed R = 1.63. For
this setup, we expect theory to be most accurate without
collisions. With collisions, R will be slightly larger than
given by (8). We see this behavior in the range of moderate
smoothing, where the outliers match the beam edge.
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Figure 1: Smoothed DA-FMM vs. PIC, MoM, and theoret-
ical radial spread along App = Awyie- The two FMM cases
converge around A = 1072 with a slight difference for mod-
erate smoothing, 107 < App < 10~*. The FMM equals the
theoretical radial spread around A = 1.4 x 1073,

Independent smoothing

Our implementation allows for two separate smoothing
parameters, Ap_p for particle-particle interactions and Ay
for multipole expansions. Figure 2 shows the case for small
Ap-p. For small Ay, we get similar results to Figure 1, but
levels off around R = 1.63.
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Figure 2: Smoothed DA-FMM vs. PIC, MoM, and theoret-
ical radial spread with small App. Softening the multipole
expansions exhibits similar behavior for different N.

With smoothing, we are able to freely adjust the strength
of the interactions. Combining the two parameters allows the
FMM to match the behavior predicted by the PIC simulation.
However, theory and our numerical methods suggest the
chosen PIC simulation may underestimate the space charge
strength in this regime.
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Runtime

The runtime of the unsmoothed and smoothed DA-FMM
is nearly the same. Figure 3 shows the runtime vs. N of the
smoothed DA-FMM at optimal average bin density, S = %
The behavior is approximately O(N).
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Figure 3: Smoothed DA-FMM runtime vs. N at optimal
S = X per point. The curve displays near O(N) behavior.
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CONCLUSIONS

We implemented a smooth DA-FMM as an alternative to
PIC for space charge tracking. The collisional FMM overesti-
mates beam size due to the occasional strong collisions from
the low particle numbers used. Our novel smooth FMM,
with a softening parameter in the range 107 < 1 < 1074,
is approximately where the outliers disappear and the beam
edge behaves smoothly. Adjusting the smoothing parameter
adaptively allows detailed comparisons with PIC. Optimal
smoothing parameter ranges will need a systematic study.
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