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Introduction

Ce mémoire s’articule autour des trois thèmes principaux auxquels j’ai consa-
cré mes recherches au cours de ces 15 dernières années, thèmes qui sont assez
étroitement reliés entre-eux comme je m’attacherai à le montrer. Il s’agit du pro-
duit harmonique, du procédé de sommation de Ramanujan et de la fonction zêta
d’Arakawa-Kaneko qui ont fait l’objet des articles [1] à [9] de la liste de publica-
tions 1.

Les principales propriétés du produit harmonique dans l’espace des suites à
valeurs complexes ont été exposées dans [2] et sont rappelées dans le chapitre I.
Défini au moyen d’une transformation binomiale involutive notée D (Définitions
5 et 8), ce produit admet aussi une expression explicite (Théorème 4). Les suites
invariantes par l’opérateurD sont joliment caractérisées à l’aide du produit harmo-
nique, permettant une reformulation algébrique d’un critère d’invariance de Sun
(Théorème 5). Le produit harmonique possède de remarquables propriétés vis-à-
vis des sommes harmoniques ; il permet notamment de généraliser les nombres
harmoniques de Roman et Rota (Théorème 7 et Exemple 12) et de donner une
extension naturelle de la formule de Dilcher (Théorème 8 et Exemple 13).

Le produit harmonique réapparaît dans le chapitre II en relation avec la som-
mation de Ramanujan. Les propriétés fondamentales du procédé de sommation
de Ramanujan ([B] Chapitre 6) ont été étudiées en détail dans [9] ; très récem-
ment, elles ont été enrichies et réinterprétées par Candelpergher ([Ca]). Dans ce
chapitre, on se place dans le cadre d’un espace de fonctions analytiques dans le
demi-plan {<(x) > 0} qui peuvent s’écrire comme des transformées de Laplace,
cadre dans lequel le produit harmonique peut être construit au moyen du produit
de convolution (Définition 19). Une utilisation combinée du produit harmonique
et de la sommation de Ramanujan permet d’introduire d’une manière algébrique
une intéressante famille de fonctions analytiques Fk (k = 0, 1, 2, · · · ) de la variable
complexe s dont les valeurs spéciales sur les entiers positifs s’expriment comme des
sommes infinies faisant intervenir les nombres de Bernoulli de seconde espèce et les
polynômes de Bell modifiés évalués sur les nombres harmoniques (Théorème 18).
Dans le cas où k = 0, F0(s) n’est autre que ζ(s)− 1

s− 1 où ζ(s) est la valeur en s
de la classique fonction zêta de Riemann. L’étude des propriétés de ces fonctions
zêta modifiées a été initiée dans [3] puis récemment poursuivie par Young ([Y2] et
[Y3]).

1. Les références numérotées [10] à [12] se rattachent à une autre branche des mathématiques
et sont sans rapport avec le sujet de ce mémoire.
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Le chapitre III est consacré aux valeurs spéciales de la fonction zêta d’Arakawa-
Kaneko. Originellement considérée par Arakawa et Kaneko en 1999 ([AK]), cette
famille de fonctions analytiques ξk (k = 1, 2, · · · ) de la variable complexe s a été
reconsidérée d’un point de vue plus général dans [4] par l’introduction d’une se-
conde variable x, en s’inspirant du modèle suivant lequel la fonction zêta d’Hurwitz
englobe la fonction zêta de Riemann comme cas particulier (Définition 22). Dans
le cas où k = 1, ξ1(s, x) n’est autre que sζ(s+1, x). Sur les valeurs entières et néga-
tives de s, ξk(s, x) interpole les polynômes de poly-Bernoulli (Théorème 22), tandis
que ses valeurs sur les entiers positifs s’expriment comme des sommes infinies fai-
sant intervenir les polynômes de Bell modifiés évalués sur les nombres harmoniques
généralisés (Théorème 20). Ces remarquables propriétés font de la fonction zêta
d’Arakawa-Kaneko ξk(s, x) (ainsi que de sa variante ”alternée” ξ∗k(s, x)) un puis-
sant outil pour l’étude des sommes d’Euler 2 (cas où x prend la valeur 1) et des
sommes binomiales inverses 3 (cas où x prend la valeur 1/2), comme l’ont montré
les belles identités obtenues dans [1] (Exemples 21 et 24). Les valeurs spéciales
de la fonction zêta d’Arakawa-Kaneko sont des périodes au sens de Kontsevich et
Zagier ([KZ]). Les sommes binomiales inverses intervenant dans le cadre de cette
étude sont apparues pour la première fois dans la littérature scientifique il y a une
vingtaine d’années en relation avec les diagrammes de Feynman ([DK]), mettant en
exergue l’existence de profondes connexions entre certaines branches de la théorie
des nombres et de la physique quantique ([Br]).

2. Introduites par Euler et Goldbach au milieu du 18ème siècle, les sommes d’Euler sont aussi
appelées valeurs zêta multiples ou nombres polyzêtas.

3. Ces sommes binomiales inverses sont des cas particuliers de séries factorielles inverses consi-
dérées par Stirling dans son Methodus Differentialis (1730).
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Chapitre I

Le produit harmonique dans
l’espace des suites

Tous les résultats énoncés dans ce chapitre ont été démontrés dans [2]. On
renvoie à cet article pour le détail des preuves.

1 Opérateurs dans l’espace des suites
On commence par introduire quelques opérateurs dans l’espace des suites à

valeurs complexes qui jouent un rôle crucial dans la construction du produit har-
monique ainsi que leurs images respectives dans l’espace isomorphe des séries for-
melles.

Notation. Le C-espace vectoriel CN∗ des suites a = (a(1), a(2), a(3), . . . , a(n), · · · )
à valeurs dans C est noté E∗.

Définition 1. Si C[[z]] désigne l’espace des séries formelles, on a un isomorphisme
naturel :

Φ : E∗ −→ C[[z]]
défini par

Φ(a)(z) =
∑
n≥0

a(n+ 1)z
n

n! = a(1) + a(2)z + a(3)z
2

2 + a(4)z
3

6 + · · ·

Exemple 1. a) La suite δm définie pour tout m ≥ 0 et n ≥ 1 par

δm(n) =

1 si n = m+ 1
0 sinon

vérifie la relation
Φ(δm)(z) = zm

m! .

On a δ0 := (1, 0, 0, . . . ) , δ1 := (0, 1, 0, . . . ), δ2 := (0, 0, 1, 0, . . . ), etc.
b) La suite 1 := (1, 1, 1, . . . ) vérifie Φ(1)(z) = ez.
c) La suite N := (1, 2, 3, . . . ) vérifie Φ(N)(z) = (1 + z)ez.
d) Soit α ∈ C, la suite géométrique αN−1 := (1, α, α2, α3, . . . ) vérifie la relation

Φ(αN−1)(z) = eαz.
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e) La suite harmonique H0 := (1, 1
2 ,

1
3 ,

1
4 , . . . ) vérifie la relation

Φ(H0)(z) = 1
z

(ez − 1) .

Définition 2. Les opérateurs sur E∗ se transforment en opérateurs sur C[[z]]
via l’isomorphisme Φ. Plus précisément, si U désigne un opérateur sur E∗, il lui
correspond l’opérateur u sur C[[z]] défini par la relation

ΦU = uΦ⇔ u = ΦUΦ−1

que l’on appellera l’image de U . On a donc le diagramme :

E∗ U−−−→ E∗xΦ−1

yΦ

C[[z]] u−−−→ C[[z]]
L’image de l’opérateur I d’identité sur E∗ sera notée Id.

1.1 Les opérateurs L et R
Définition 3. L’opérateur L de décalage à gauche (left) sur E∗ est défini par

L(a)(n) = a(n+ 1),

c’est à dire :
(a(1), a(2), a(3), . . . ) L7−→ (a(2), a(3), a(4), . . . ) .

L’image de L est l’opérateur de dérivation formelle ∂ :

Φ(L(a))(z) =
∑
n≥0

a(n+ 2)z
n

n! = a(2) + a(3)z + a(4)z
2

2! + · · · = ∂Φ(a)(z).

Définition 4. L’opérateur R de décalage à droite (right) sur E∗ est défini par

R(a)(n) =

a(n− 1) si n > 1
0 si n = 1,

c’est à dire :

(a(1), a(2), a(3), . . . ) R7−→ (0, a(1), a(2), a(3), . . . ) .

L’image de R est l’opérateur d’intégration formelle
∫
:

Φ(R(a))(z) =
∑
n≥0

a(n+ 1) zn+1

(n+ 1)! = a(1)z + a(2)z
2

2! + · · · =
∫ z

0
Φ(a)(t) dt.
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Remarque 1. Les opérateurs L et R ne sont pas inverses l’un de l’autre. On a la
relation LR = I, mais on notera que l’opérateur RL n’est pas l’identité :

(a(1), a(2), a(3), . . . ) RL7−→ (0, a(2), a(3), a(4), . . . ) .

1.2 Les opérateurs D et S
Définition 5. Soit V : E∗ −→ C le morphisme d’évaluation défini par

V (a) = a(1).

L’image de V est l’application v : C[[z]] −→ C telle que v(Φ(a)) = Φ(a)(0).
L’opérateur de différence D : E∗ −→ E∗ est défini par

D(a)(n) = V
(
(I − L)n−1a

)
= v

(
(Id− ∂)n−1Φ(a)

)
,

ce qui se traduit explicitement par

D(a)(n+ 1) =
n∑
j=0

(−1)j
(
n

j

)
a(j + 1) pour tout n ≥ 0.

On obtient ainsi pour de petites valeurs de n,

D(a)(1) = a(1),
D(a)(2) = a(1)− a(2),
D(a)(3) = a(1)− 2a(2) + a(3),

etc.

On a la relation :
Φ(D(a))(z) = ezΦ(a)(−z) ,

ce qui signifie que l’image d de l’opérateur D vérifie pour tout f ∈ C[[z]],

d(f)(z) = ezf(−z) .

Théorème 1. L’opérateur D est un automorphisme auto-inverse qui laisse la suite
harmonique invariante ; autrement dit, pour toute suite a ∈ E∗, on a

D(D(a)) = a

et

D(H0) = H0 .
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Exemple 2. a) On a D(1) = δ0 et D(N) = δ0 − δ1.
b) Soit αN−1 la suite géométrique de raison α ∈ C. On a D(αN−1) = (1− α)N−1.

En particulier la suite (1
2)N−1 est invariante par D.

Définition 6. L’opérateur de sommation S : E∗ −→ E∗ est défini par

S(a) (n) =
n∑
j=1

a(j) .

L’opérateur S est un automorphisme d’inverse I−R. L’image de S est l’opérateur
s = Id− d

∫
d.

Exemple 3. 1) S(δ0) = 1, S(1) = N .

2) S(αN−1) = 1
1− α(1− αN) pour α 6= 1. En particulier,

S((−1)N−1) = 1
2(1 + (−1)N−1) = (1, 0, 1, 0, . . . ) .

Théorème 2 (Relation entre les quatre opérateurs précédents). Pour toute suite
a ∈ E∗, on a les relations suivantes :

DL(a) = (I − L)D(a),
DS(a) = (I −R)D(a),
DR(a) = (I − S)D(a) .

Exemple 4. On rappelle que H0 désigne la suite harmonique (1, 1
2 ,

1
3 ,

1
4 , . . . ). Pour

tout m ≥ 0, on considère la suite Hm définie par

Hm = Sm(H0) .

Ce qui se traduit par :
Hm+1(n) =

n∑
j=1

Hm(j) .

En particulier, la suite H1 est la suite des nombres harmoniques :

H1(n) =
n∑
j=1

1
j
,

et pour m ≥ 2, la suite Hm est la suite des nombres hyperharmoniques ([CG]).
On considère la suite harmonique décalée m fois à droite :

Rm(H0) = (0, . . . , 0︸ ︷︷ ︸
m

, 1, 1
2 ,

1
3 , . . . ).
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D’après la dernière des trois relations précédentes, on a

DRm(H0) = (I − S)m(H0) =
m∑
j=0

(−1)j
(
m

j

)
Hj .

En particulier,

DR(H0) = H0 −H1 , c’est à dire D(H1) = H0 −R(H0) ,

ou d’une manière plus explicite :

D(H1)(n) =

−
1

n(n− 1) si n > 1

1 si n = 1.

2 Le produit harmonique des suites
On construit à présent le produit harmonique dans l’espace des suites au moyen

de l’opérateur D introduit précédemment.

2.1 L’algèbre H = (E∗,on)
Définition 7. Si a et b sont deux suites dans E∗, on note ab la suite définie par

(ab)(n) = a(n)b(n) .

On a en particulier : 1 a = a et δm a = a(m + 1)δm pour tout m ≥ 0. Muni de
ce produit, appelé produit de Hadamard des suites, l’espace E∗ est une algèbre
commutative, associative et unitaire notée A. L’élément unité de A est la suite 1.

Définition 8. On définit le produit harmonique a on b de deux suites a et b dans
E∗ par

a on b := D(D(a)D(b)) .
Comme D = D−1, on déduit immédiatement de la définition précédente les deux
relations fondamentales suivantes :

D(a on b) = D(a)D(b) ,
et

D(ab) = D(a) on D(b) .

Exemple 5. 1) 1 on a = a(1)1, car

D(1 on a) = D(1)D(a) = δ0D(a) = D(a)(1)δ0 = a(1)δ0 = a(1)D(1).
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2) N on a = a(2)1 + (a(1)− a(2))N , car

D(N)D(a) = (δ0 − δ1)D(a)
= D(a)(1)δ0 −D(a)(2)δ1

= a(1)D(N) + a(2)D(1−N).

3) αN−1 on βN−1 = (α + β − αβ)N−1, car

D(αN−1 on βN−1) = (1− α)N−1(1− β)N−1

= (1− (α + β − αβ))N−1

= D((α + β − αβ)N−1) .

Théorème 3. L’espace (E∗,on) est une C-algèbre commutative, associative et uni-
taire notée H, isomorphe à l’algèbre A. L’élément unité dans H est la suite δ0.
Corollaire 1. Une suite a est inversible dans H si et seulement si la suite D(a) est
inversible dans A (i.e. D(a)(n) 6= 0 pour tout n). Dans ce cas, l’inverse harmonique
de a est donné par la formule

aon(−1) = D

(
1

D(a)

)
.

Exemple 6. a)
(H0)on(−1) = D(N) = δ0 − δ1 ,

b) (
αN−1

)on(−1)
=
(

α

α− 1

)N−1
.

Remarque 2. On notera que l’algèbre H contient des diviseurs de zéro. On a par
exemple

1 on δ1 = 0 .

2.2 Expression explicite du produit harmonique
On a l’expression suivante du produit harmonique :

Théorème 4. Pour toutes suites a et b ∈ E∗ et tout entier n ≥ 0,

(a on b)(n+ 1) =
∑

0≤i≤n
0≤j≤n

Ci,j
n a(i+ 1)b(j + 1)

où les nombres Ci,j
n sont définis par l’identité

(X + Y −XY )n =
∑

0≤i≤n
0≤j≤n

Ci,j
n X iY j .
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Remarque 3. En développant (X + Y − XY )n par la formule du binôme et en
identifiant le coefficient de X iY j, ceci peut encore s’écrire

(a on b)(n+ 1) =
∑

0≤j≤i≤n
(−1)i−j

(
n

i

)(
i

j

)
a(i+ 1)b(n+ 1− j) (n ≥ 0) .

Exemple 7. Pour de petites valeurs de n, on obtient ainsi

(a on b)(1) = a(1)b(1) ,
(a on b)(2) = a(2)b(1) + a(1)b(2)− a(2)b(2) ,
(a on b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2)− 2a(3)b(2)− 2a(2)b(3) + a(3)b(3) ,

etc.

On rappelle que la suite géométrique de raison 1/2 est invariante par D. Plus
généralement, on donne la caractérisation suivante qui est une reformulation algé-
brique du critère de Sun ([Su]).

Théorème 5 (Caractérisation des suites invariantes par D). Une suite a ∈ E∗ est
invariante par D si et seulement si elle peut s’écrire sous la forme

a =
(1

2

)N−1
on b

où la suite b ∈ E∗ est telle que b(2k) = 0 pour tout k ≥ 1.

Exemple 8. a) La suite harmonique peut s’écrire

H0 = (1
2)N−1 on b

avec b = H0 on (−1)N−1 = (1, 0, 1
3 , 0,

1
5 , . . . ).

b) La suite
a = 1

2(δ0 + 1) = (1, 1
2 ,

1
2 ,

1
2 , · · · )

est invariante par D. Elle peut s’écrire

a = (1
2)N−1 on (1, 0, 1, 0, · · · ) .
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2.3 Puissances harmoniques k-ièmes
Définition 9. Pour toute suite a ∈ E∗, on définit pour tout entier k ≥ 0, la
puissance harmonique k-ième de a notée aonk par

aon0 = δ0 et aon(k+1) = aonk on a .

Par récurrence sur k, on en déduit immédiatement la formule suivante :

aonk = D(D(a) . . . D(a)︸ ︷︷ ︸
k

) = D
(
(D(a))k

)
.

En particulier, si a est une suite invariante par D, alors on a

aonk = D(ak) .

Exemple 9. a)

Nonk = D((δ0 − δ1)k) = 1 + (−1)k(1−N) =

N si k est impair
2−N si k est pair.

b)

(δ1)onk =
k∑

m=0
m!S(k,m)δm ,

où les S(k,m) sont les nombres de Stirling de deuxième espèce :

S(k,m) = 1
m!

m∑
l=0

(−1)m−l
(
m

l

)
lk.

c)

D(Nk) = (D(N))onk = (δ0 − δ1)onk =
∑

0≤j≤i≤k
(−1)i

(
k

i

)
j!S(i, j)δj .

2.4 Propriété d’harmonicité
Notation. Pour p entier naturel, on pose (N)0 = 1, et pour p ≥ 1

(N)p = N(N + 1) · · · (N + p− 1) .

Théorème 6 (Propriété d’harmonicité). Pour toute suite a ∈ E∗ et tout entier
p ≥ 0, on a la relation

p!
(N)p+1

on a = p!
(N)p+1

S

((N)p
p! a

)
,

En particulier, pour p = 0, on en déduit l’important corollaire :

H0 on a = H0S(a) .
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Exemple 10.

H0 on H0 = H0S(H0) = H0H1 = D
(
(H0)2

)
,

(H0)on3 = H0 on (H0 on H0) = H0S(H0H1) = D
(
(H0)3

)
.

Exemple 11. On a

1
N(N + 1) on a = 1

N(N + 1)S(Na)

c’est à dire

( 1
N(N + 1) on a)(n) = 1

n(n+ 1)

n∑
k=1

ka(k) (n ≥ 1).

2.5 Les sommes harmoniques
On rappelle la remarquable propriété de la suite harmonique H0 vis-à-vis du

produit harmonique énoncée au paragraphe précédent :

H0 on a = H0S(a) pour toute suite a.

Plus généralement, on introduit à présent une notion de somme harmonique de la
manière suivante :

Définition 10. Soit une suite a ∈ E∗, on définit pour tout entier naturel k, la
somme harmonique k-ième de a notée S(k)(a) par la formule

(H0)onk on a = H0S
(k)(a) .

Théorème 7. Pour toute suite a ∈ E∗, on a S(1)(a) = S(a) et la relation de
récurrence :

S(k+1)(a)(n) =
n∑

m=1

1
m
S(k)(a)(m) pour k ≥ 1.

Il en résulte que pour k ≥ 1,

S(k)(a)(n) =
∑

n≥n1≥···≥nk≥1

1
n1 . . . nk−1

a(nk) .

Exemple 12. Dans le cas où a est la suite harmonique H0, les nombres S(k)(a)(n)
ne sont autres que les nombres harmoniques c(k)

n de Roman et Rota ([Ro]). Pour
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de petites valeurs de k, on retrouve ainsi :

S(1)(H0)(n) = c(1)
n = 1 + 1

2 + · · ·+ 1
n
,

S(2)(H0)(n) = c(2)
n = 1 + 1

2(1 + 1
2) + 1

3(1 + 1
2 + 1

3) + · · ·+ 1
n

(1 + 1
2 + · · ·+ 1

n
) ,

S(3)(H0)(n) = c(3)
n = 1 + 1

2

[
1 + 1

2(1 + 1
2)
]

+ 1
3

[
1 + 1

2(1 + 1
2) + 1

3(1 + 1
2 + 1

3)
]

+ · · ·+ 1
n

[
1 + 1

2(1 + 1
2) + · · ·+ 1

n
(1 + 1

2 + · · ·+ 1
n

)
]
.

Théorème 8 (Formule de Dilcher étendue). Pour toute suite a ∈ E∗, et pour
k ≥ 1, on a l’identité

S(k)(a)(n) =
n∑

m=1
(−1)m−1

(
n

m

)
1

mk−1D(a)(m) .

D’où ∑
n≥n1≥···≥nk≥1

1
n1 . . . nk−1

a(nk) =
n∑

m=1
(−1)m−1

(
n

m

)
1

mk−1D(a)(m).

Exemple 13. a) Si a = H0, alors D(a) = H0 et on retrouve la classique formule
de Dilcher ([D]) :

∑
n≥n1≥···≥nk≥1

1
n1 . . . nk

=
n∑

m=1
(−1)m−1

(
n

m

)
1
mk

.

b) Si a = (H0)2, alors D(a) = H0H1 où H1 = S(H0) est la suite des nombres
harmoniques ordinaires (H1(n) = ∑n

j=1 1/j), d’où
∑

n≥n1≥···≥nk≥1

1
n1 . . . nk−1n2

k

=
n∑

m=1
(−1)m−1

(
n

m

)
1
mk

H1(m) .

c) Si a = (H0)3, alors D(a) = H0S(H0H1), d’où
∑

n≥n1≥···≥nk≥1

1
n1 . . . nk−1n3

k

=
n∑

m=1
(−1)m−1

(
n

m

)
1
mk

m∑
j=1

H1(j)
j

.

d) Enfin, pour a = (H0)4, on montre que
∑

n≥n1≥···≥nk≥1

1
n1 . . . nk−1n4

k

=
n∑

m=1
(−1)m−1

(
n

m

)
1

2mk

m∑
j=1

(H1(j))2 +H(2)(j)
j

,

avec
H(2)(n) = S

(
(H0)2

)
(n) =

n∑
j=1

1
j2 .
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Chapitre II

La sommation de Ramanujan
Tous les résultats énoncés dans ce chapitre ont été démontrés dans [3]. On

renvoie à cet article pour le détail des preuves.

3 L’opérateur D dans l’espace des fonctions
On commence par introduire un cadre analytique dans lequel l’opérateur de

différence D est étendu.

3.1 Transformation de Laplace-Borel
Définition 11. On considère l’espace vectoriel E des fonctions f ∈ C1(]0,+∞[) à
valeurs complexes vérifiant la propriété suivante :

Pour tout ε > 0, il existe Cε > 0 tel que |f(t)| ≤ Cεe
εt pour tout t ∈ ]0,+∞[ .

Définition 12. Soit f une fonction dans l’espace E. La transformée de Laplace
L(f) de f est définie par

L(f)(x) =
∫ +∞

0
e−xtf(t) dt pour <(x) > 0 .

Notation. Dans la suite, on note E = L(E) l’image de E par L.

Théorème 9. Si a est une function dans E, alors elle vérifie les propriétés sui-
vantes :
a) a est une fonction analytique dans le demi-plan {<(x) > 0 } ,
b) a(x)→ 0 quand <(x)→ +∞ ,
c) L : E → E est un isomorphisme.

Définition 13. Soit a ∈ E . La transformée de Borel de a est l’unique function
â ∈ E telle que a = L(â). On a les formules réciproques :

â(t) = 1
2iπ

∫ c+i∞

c−i∞
ezta(z) dz pour c > 0 et t > 0 ,

et
a(x) =

∫ +∞

0
e−xtâ(t) dt pour <(x) > 0 .

17



Définition 14. Soient f et g deux fonctions dans E. Le produit de convolution
f ∗ g de f et g est la function definie pour tout t > 0 par

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u) du .

Théorème 10. Pour tout f ∈ E et g ∈ E, alors f ∗ g ∈ E et

L(f ∗ g) = L(f)L(g) .

Il en résulte que si a ∈ E et b ∈ E alors le produit ab ∈ E car ab = L(â ∗ b̂).

3.2 L’opérateur D et le difféomorphisme Λ
Définition 15. Soit a une function de E alors l’intégrale∫ +∞

0
e−t(1− e−t)x−1â(t)dt

converge pour tout x vérifiant <(x) > 0. On appelle D(a) la function definie pour
tout x tel que <(x) > 0 par

D(a)(x) =
∫ +∞

0
e−t(1− e−t)x−1â(t)dt .

Remarque 4.
Les valeurs de D(a) sur les entiers positifs peuvent être calculées directement sans
recourir à â. Le développement de (1− e−t)n par la formule du binôme conduit à
l’expression :

D(a)(n+ 1) =
n∑
j=0

(−1)j
(
n

j

)
a(j + 1) pour tout entier n ≥ 0.

Autrement dit, l’opérateur D dans l’espace E des fonctions étend l’opérateur D
défini au Chapitre I dans l’espace E∗ des suites.

Notation. On appelle Λ le C1-diffeomorphisme de R+ defini par

Λ(u) = − log(1− e−u).

En particulier, il est important de noter que Λ est involutif :

Λ−1 = Λ .

18



Théorème 11. Soit a une function dans E. Alors, la fonction D(a) ∈ E et , de
plus, elle verifie la relation

D̂(a) = â(Λ) ,
où â(Λ) désigne â ◦ Λ.

Exemple 14. Soit a(x) = 1
xs

avec <(s) ≥ 1. Alors â(t) = ts−1

Γ(s) . Il en résulte, par

le changement de variable t = Λ(u), que

D( 1
xs

) = L
(

Λs−1

Γ(s)

)
,

Remarque 5. Le Théorème 11 peut être visualisé par le diagramme suivant

E D−−−→ EyL−1

xL
E

Λ?−−−→ E

où Λ?(â) = â(Λ). Les propriétés algébriques de D sont résumées dans le théorème
suivant qui est l’analogue du Théorème 1.

Théorème 12. L’opérateur D est un automorphisme de E qui verifie D = D−1

et laisse invariante la function x 7→ 1
x
.

3.3 Sommation de Ramanujan
Définition 16. La suite des nombres de Bernoulli de seconde espèce (bn) ([J],
[Y1]), encore appelés coefficients de Gregory 4, est définie par la fonction génératrice

z

log(1 + z) =
∑
n≥0

bnz
n .

Pour supprimer l’alternance des signes, on pose pour n ≥ 1,

An = |bn| = (−1)n−1bn .

Exemple 15. Les nombres An sont des nombres rationnels qui peuvent se calculer
au moyen de la relation de récurrence

n−1∑
k=1

Ak
n− k

= 1
n

pour n ≥ 2.

4. Cette famille de nombres apparaît en effet pour la première fois dans une lettre de James
Gregory datant de 1670.
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ou par l’expression intégrale :

An = 1
n

∫ 1

0
x(1− x)(1− x

2 ) · · · (1− x

n− 1) dx pour n ≥ 2.

On a ainsi pour de petites valeurs de n,

A1 = 1
2 , A2 = 1

12 , A3 = 1
24 , A4 = 19

720 , A5 = 3
160 etc.

Théorème 13. Soit a une fonction dans E. La serie
∑
n≥1

An

∫ +∞

0
e−t(1− e−t)n−1â(t) dt

converge et
∞∑
n=1

An

∫ +∞

0
e−t(1− e−t)n−1â(t)dt =

∫ +∞

0
e−t( 1

1− e−t −
1
t
) â(t) dt .

Remarque 6. Si a ∈ E , alors la série ∑n≥1 a(n) peut s’écrire

∑
n≥1

a(n) =
∑
n≥1

∫ +∞

0
e−nt â(t) dt ,

et une permutation formelle de ∑n≥1 et
∫+∞

0 conduirait à écrire

∑
n≥1

a(n) =
∫ +∞

0

e−t

1− e−t â(t) dt.

Cependant, cette dernière intégrale peut diverger en 0. On peut la renormaliser
en retirant la singularité en 0 et ceci peut être fait simplement en soustrayant la
partie polaire 1

t
de 1

1−e−t . Ceci conduit à la définition suivante :

Définition 17. Soit a une function dans E = L(E). La somme de Ramanujan de
la série ∑n≥1 a(n) est définie par

R∑
n≥1

a(n) =
∫ +∞

0
e−t( 1

1− e−t −
1
t
) â(t)dt =

∞∑
n=1

AnD(a) (n) .

Exemple 16. Soit a(x) = 1
xs

avec <(s) ≥ 1. Alors, a ∈ E et â(t) = ts−1

Γ(s) . Par
conséquent

R∑
n≥1

1
ns

=

γ si s = 1,
ζ(s)− 1

s−1 si s 6= 1
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où ζ(s) est la valeur en s de la fonction zêta de Riemann et où γ désigne la
constante d’Euler :

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
=
∫ +∞

0
e−t( 1

1− e−t −
1
t
) dt .

Remarque 7. a) La définition de la somme de Ramanujan donnée ce chapitre
coïncide avec celle donnée dans un cadre plus général dans [9] et [Ca] ; elle
possède donc les mêmes propriétés fondamentales. En particulier, il résulte de
la définition que l’application a 7→ ∑R

n≥1 a(n) est linéaire.
b) Soitm un entier positif et a ∈ E . La somme de Ramanujan de la série translatée∑

n≥1 a(n+m) s’exprime par la formule :

R∑
n≥1

a(n+m) =
∫ +∞

0
e−te−mt( 1

1− e−t −
1
t
) â(t)dt .

Cette somme ne vérifie cependant pas la propriété de décalage usuelle :

R∑
n≥1

a(n+m) =
R∑
n≥1

a(n)−
m∑
j=1

a(j)

mais seulement la relation inhabituelle :
R∑
n≥1

a(n+m) =
R∑
n≥1

a(n)−
m∑
j=1

a(j) +
∫ m+1

1
a(x) dx

Dans [Ca] Chapitre V est développé un formalisme algébrique adéquat qui
explique pourquoi cette relation est ”naturelle”.

Exemple 17. Les constantes de Stieltjes γk sont définies par le développement en
série de Laurent de ζ :

ζ(s) = 1
s− 1 + γ +

∞∑
k=1

(−1)k
k! γk(s− 1)k (s 6= 1) .

On a l’expression ([2], [Ca]) :

γk =
R∑
n≥1

lnk (n)
n

.

En particulier,
γ1 = −γ2 −

∫ +∞

0
e−t( 1

1− e−t −
1
t
) ln t dt .
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4 Le produit harmonique des fonctions
On donne à présent une construction du produit harmonique dans ce cadre

analytique au moyen du produit de convolution.

4.1 Le Λ-produit de convolution
Définition 18. Si a et b sont deux fonctions dans E , alors le Λ-produit de convo-
lution â~ b̂ de â et b̂ est défini par

â~ b̂ = Λ?(Λ?(â) ∗ Λ?(b̂)) ,

ou de manière équivalente (puisque Λ? = (Λ?)−1) par

(â~ b̂)(Λ) = â(Λ) ∗ b̂(Λ) .

Le Λ-produit de convolution hérite des propriétés algébriques du produit de convo-
lution ordinaire : il est bilinéaire, commutatif et associatif.

Définition 19. Soient a et b deux fonctions dans E . Le produit harmonique a on b
de a et b est défini par

a on b = L(â~ b̂) ∈ E .

Cette construction peut être synthétisée dans le diagramme suivant :

(a, b) −−−→ (â, b̂) −−−→ (â(Λ), b̂(Λ))y y y
a on b ←−−− â~ b̂ ←−−− â(Λ) ∗ b̂(Λ)

Le produit harmonique dans E hérite des propriétés de bilinéarité, de commutati-
vité et d’associativité du Λ-produit de convolution.

Théorème 14. Si a et b sont deux fonctions dans E alors on a les relations
fondamentales

D(a on b) = D(a)D(b) ,

et
D(ab) = D(a) on D(b) .

Du point de vue de la sommation de Ramanujan, les deux relations précédentes
s’interprètent de la façon suivante :
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Corollaire 2. Soient a et b dans E , on a les identités :

R∑
n≥1

(a on b)(n) =
∞∑
n=1

AnD(a)(n)D(b)(n) .

et
R∑
n≥1

(ab)(n) =
∞∑
n=1

An(D(a) on D(b))(n) .

Remarque 8. Les valeurs du produit a on b sur les entiers positifs peuvent être
évaluées sans recourir à â ni à b̂. Par des transformations élémentaires, on peut en
effet montrer que

(a on b)(n+ 1) =
∫ +∞

0

∫ +∞

0
(e−t−s)(e−t + e−s − e−te−s)nâ(t)b̂(s)dtds .

Par conséquent, si les nombres Ci,j
n sont définis par

(X + Y −XY )n =
∑

0≤i≤n
0≤j≤n

Ci,j
n X iY j ,

on a l’expression explicite

(a on b)(n+ 1) =
∑

0≤i≤n
0≤j≤n

Ci,j
n a(i+ 1)b(j + 1) ,

Autrement dit, le produit harmonique dans l’espace E des fonctions étend natu-
rellement le produit harmonique défini au Chapitre I dans l’espace E∗ des suites.

4.2 Propriété d’harmonicité
On énonce à présent une propriété d’harmonicité dans l’espace E des fonctions

analogue à celle déjà vue dans l’espace des suites (cf. Théorème 6).

Théorème 15. Soit a ∈ E. Alors

1
x
on a = S(a)(x)

x
,

où S(a) désigne la fonction définie pour <(x) > 0 par

S(a)(x) =
∫ +∞

0

e−t

1− e−t (1− e
−xt)â(t)dt .
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Remarque 9. L’opérateur S étend l’opérateur de sommation introduit au Cha-
pitre I. Pour tout entier n ≥ 1, on a en effet

S(a)(n) =
n∑
j=1

a(j) .

Exemple 18.
1
x
on

1
x

= L(Λ) = ψ(x+ 1) + γ

x
,

où ψ désigne la fonction digamma (dérivée logarithmique de la fonction Γ).

4.3 La fonction zêta modifiée
Définition 20. Pour tout entier k ≥ 1, on considère la puissance harmonique
k-ième de la fonction x 7→ 1

x
notée (abusivement) 1

x
.

(1
x

)onk
= 1
x
on

1
x
on . . . on

1
x︸ ︷︷ ︸

k

(k = 1, 2, 3, · · · ) ,

Pour tout entier k ≥ 0 et <(s) ≥ 1, on définit la fonction zêta modifiée d’ordre k
par la formule suivante :

Fk(s) =


∑R
n≥1

1
ns

si k = 0,∑R
n≥1

((
1
x

)onk
on 1

xs

)
(n) si k ≥ 1

Théorème 16. Pour tout entier k ≥ 0,

Fk(s) =
∞∑
n=1

An
nk
D
( 1
xs

)
(n) = 1

Γ(s)

∫ +∞

0

e−t

1− e−tfk(1− e
−t) ts−1 dt

avec
fk(z) =

∞∑
n=1

An
zn

nk
.

En particulier,
F0(s) = ζ(s)− 1

s− 1 .

Théorème 17. La fonction Fk se prolonge analytiquement dans C en une fonction
entière. Les valeurs aux entiers négatifs de la fonction zêta modifiée sont données
par :

Fk(−n) =
n∑

m=0

Am+1

(m+ 1)k
m∑
j=0

(−1)j
(
m

j

)
(j + 1)n . (n = 0, 1, 2, . . . )
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En particulier, pour k = 0, on déduit la relation

1−Bn+1

n+ 1 =
n∑

m=0
Am+1

m∑
j=0

(−1)j
(
m

j

)
(j + 1)n

où les Bn sont les nombres de Bernoulli ([AIK]).

Définition 21 (Polynômes de Bell modifiés). La suite des polynômes de Bell
modifiés (Pn) est définie par la fonction génératrice

exp
( ∞∑
k=1

xk
zk

k

)
=
∞∑
n=0

Pn(x1, · · · , xn) zn

ou par la relation de récurrence équivalente :

P0 = 1, nPn(x1, . . . , xn) =
n∑
j=1

xj Pn−j(x1, . . . , xn−j) (n ≥ 1) ,

ou bien encore par la représentation explicite :

Pn(x1, ..., xn) =
∑

k1+2k2+···+nkn=n

1
k1!k2! . . . kn!

(
x1

1

)k1 (x2

2

)k2

. . .
(
xn
n

)kn
Pour de petites valeurs de n, on obtient ainsi les expressions suivantes :

P0 = 1 ,
P1(x1) = x1 ,

P2(x1, x2) = 1
2x

2
1 + 1

2x2 ,

P3(x1, x2, x3) = 1
6x

3
1 + 1

2x1x2 + 1
3x3 ,

P4(x1, x2, x3, x4) = 1
24x

4
1 + 1

4x
2
1x2 + 1

8x
2
2 + 1

3x1x3 + 1
4x4 .

Théorème 18 (valeurs spéciales de Fk sur les entiers positifs). Pour tout entier
m ≥ 0, on a

Fk(m+ 1) =
∞∑
n=1

An
nk+1Pm(H(1)

n , H(2)
n , . . . , H(m)

n ) ,

où An désigne le n-ième nombre de Bernoulli de seconde espèce non-alterné, Pm
est le m-ième polynôme de Bell modifié et H(m)

n =
n∑
j=1

1
jm

.

25



Remarque 10. Avec les notations du Chapitre I, on a en particulier l’identité
H(1)
n = H1(n).

Corollaire 3. Pour m ≥ 1,

F0(m+ 1) = ζ(m+ 1)− 1
m

=
∞∑
n=1

An
Pm(H(1)

n , H(2)
n , . . . , H(m)

n )
n

,

Corollaire 4 (formule de dualité). Pour tout entier k ≥ 0,

Fk(1) =
∞∑
n=1

An
nk+1 =

R∑
n≥1

Pk(H(1)
n , H(2)

n , . . . , H(k)
n )

n
.

Exemple 19.

F0(1) =
∞∑
n=1

An
n

= γ ,

F0(2) =
∞∑
n=1

AnH
(1)
n

n
= ζ(2)− 1 ,

F0(3) = 1
2

∞∑
n=1

An(H(1)
n )2

n
+ 1

2

∞∑
n=1

AnH
(2)
n

n
= ζ(3)− 1

2 ,

F1(1) =
∞∑
n=1

An
n2 =

R∑
n≥1

H(1)
n

n
.

Les valeurs spéciales de la fonction F1 sur les entiers positifs admettent une
expression particulière :

Théorème 19. Pour tout entier q ≥ 2,

F1(q) = γζ(q) + ζ(q + 1)−
∞∑
n=1

Hn

nq
−

q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k +

∞∑
n=1

log(n+ 1)
nq

.

Exemple 20.

F1(2) =
∞∑
n=1

AnH
(1)
n

n2 = γ
π2

6 − ζ(3)− 1 +
∞∑
n=1

log (n+ 1)
n2 ,

F1(3) = γζ(3)− π4

360 −
π2

12 +
∞∑
n=1

log (n+ 1)
n3 ,

F1(4) = γ
π4

90 − 2ζ(5) + π2

6 ζ(3)− 2
3ζ(3) + π2

18 −
1
2 +

∞∑
n=1

log (n+ 1)
n4 .

26



Chapitre III

La fonction zêta
d’Arakawa-Kaneko

Tous les résultats énoncés dans ce chapitre ont été démontrés dans [1] et [4].
On renvoie à ces deux articles pour le détail des preuves. On commence par intro-
duire la fonction zêta d’Arakawa-Kaneko générale ξk(s, x) puis sa variante alternée
ξ̄k(s, x). On s’intéresse tout particulièrement à leurs valeurs spéciales sur les entiers
qui sont des périodes au sens de Kontsevich et Zagier ([KZ]).

Définition 22. Pour tout entier k ≥ 1, la fonction zêta d’Arakawa-Kaneko ξk(s, x)
est définie pour <(s) > 0 et <(x) > 0 par la transformée de Mellin normalisée

ξk(s, x) = 1
Γ(s)

∫ +∞

0
e−xt

Lik(1− e−t)
1− e−t ts−1 dt

avec
Lik(z) =

∞∑
n=1

zn

nk
.

On pose
ξk(s) = ξk(s, 1) et αk(s) = 2−sξk(s,

1
2) .

Pour k = 1, il existe une relation simple entre les valeurs des fonctions ζ, ξk et αk :

ξ1(s) = s ζ(s+ 1) et α1(s) = (2− 2−s)sζ(s+ 1) .

Remarque 11 (Lien avec l’opérateurD et le produit harmonique). Pour <(s) ≥ 1,
on peut donner au moyen de l’opérateurD et du produit harmonique une définition
plus algébrique de la fonction ξk d’Arakawa-Kaneko comme suit :

ξk(s) =
∞∑
n=1

D

((1
x

)onk
on

1
xs

)
(n)

=
∞∑
n=1

1
nk
D
( 1
xs

)
(n)

où 1
xs

désigne la fonction x 7→ x−s .
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5 Valeurs spéciales de ξk
5.1 Valeurs sur les entier positifs
Théorème 20 (valeurs aux entiers positifs). Pour tout entier m ≥ 0 et <(x) > 0,

ξk(m+ 1, x) =
∞∑
n=0

n!
(n+ 1)kx(x+ 1) . . . (x+ n)Pm(h(1)

n (x), . . . , h(m)
n (x))

où Pm(x1, . . . , xm) désigne le m-ième polynôme de Bell modifié évalué sur les
nombres harmoniques généralisés

h(m)
n (x) =

n∑
j=0

1
(j + x)m .

En spécialisant cette relation en x = 1 et x = 1/2, on déduit le corollaire
suivant :

Corollaire 5. Pour tout entier m ≥ 0,

ξk(m+ 1) =
∞∑
n=1

1
nk+1 Pm(H(1)

n , . . . , H(m)
n ) ,

αk(m+ 1) =
∞∑
n=1

22n−1(
2n
n

)
nk+1

Pm(O(1)
n , . . . , O(m)

n ) ,

avec

O(m)
n = 2−mh(m)

n−1(1/2) =
n∑
j=1

1
(2j − 1)m ,

et

H(m)
n = h

(m)
n−1(1) =

n∑
j=1

1
jm

.

Corollaire 6. Pour k ≥ 1,

ξk(1) = ζ(k + 1) ,

ξk(2) =
∞∑
n=1

H(1)
n

nk+1 = 1
2(k + 3)ζ(k + 2)− 1

2

k∑
j=2

ζ(j)ζ(k + 2− j) .

28



Corollaire 7. Pour tout entier m ≥ 0,

(m+ 1)ζ(m+ 2) =
∞∑
n=1

1
n2 Pm(H(1)

n , . . . , H(m)
n ) ,

(2− 2−m−1)(m+ 1)ζ(m+ 2) =
∞∑
n=1

22n−1(
2n
n

)
n2
Pm(O(1)

n , . . . , O(m)
n ) .

Corollaire 8 (formule d’Ohno). Pour tout entier k ≥ 2,

k−2∑
m=0

∞∑
n=1

1
nk−m

Pm(H(1)
n , . . . , H(m)

n ) = (2− 22−k)(k − 1)ζ(k) .

Théorème 21. Pour tout entier k ≥ 1,

2αk(1) =
∞∑
n=1

22n(
2n
n

) 1
nk+1 = 2k−1

k∑
j=1

(−1)j−1 (ln 2)k−j
(j − 1)!(k − j)! Lj ,

avec
Lk = −Ls(1)

k+1(π) :=
∫ π

0
u lnk−1

(
2 sin u2

)
du .

Exemple 21.

ξ1(2) =
∞∑
n=1

H(1)
n

n2 = 2ζ(3) ,

α1(2) =
∞∑
n=1

22n−1(
2n
n

) O(1)
n

n2 = 7
2ζ(3) ,

ξ2(2) =
∞∑
n=1

H(1)
n

n3 = 5
4ζ(4) = π4

72 ,

α2(1) =
∞∑
n=1

22n−1(
2n
n

) 1
n3 = π2

2 ln 2− 7
4ζ(3)

α2(2) =
∞∑
n=1

22n−1(
2n
n

) O(1)
n

n3 = 7ζ(3) ln 2− π4

32 − 8G(1) ,

α3(1) =
∞∑
n=1

22n−1(
2n
n

) 1
n4 = π2

2 (ln 2)2 − 7
2ζ(3) ln 2 + π4

96 + 4G(1)

où G(1) =
∞∑
n=1

O(1)
n

(2n)3 désigne la constante de Ramanujan ([B], [Si]).

29



5.2 Polynômes de Poly-Bernoulli
Théorème 22 (valeurs aux entiers négatifs). Pour tout entier k ≥ 1 et pour
<(x) > 0, la fonction s 7→ ξk(s, x) se prolonge analytiquement dans C en une
fonction entière. Les valeurs aux entiers négatifs de la fonction d’Arakawa-Kaneko
sont données par :

ξk(−n, x) = (−1)nB(k)
n (x) (n = 0, 1, 2, . . . )

où les B(k)
n (x) sont les polynômes de poly-Bernoulli définis par la fonction généra-

trice :
e−xt

Lik(1− e−t)
1− e−t =

∞∑
n=0

B(k)
n (x) t

n

n! .

Remarque 12. Les polynômes B(k)
n (x) sont des polynômes de degré n en x. Pour

k = 1, on retrouve (au signe près) les polynômes de Bernoulli classiques ([J],
[AIK]).

B(1)
n (x) = (−1)nBn(x) =

n∑
j=0

(−1)n−j
(
n

j

)
Bjx

n−j

où les Bj sont les nombres de Bernoulli.

Exemple 22. On a l’expression explicite

B(k)
n (x) = (−1)n

n∑
m=0

1
(m+ 1)k

m∑
j=0

(
m

j

)
(x+ j)n .

Pour de petites valeurs de k et n, on obtient ainsi

ξ2(−1, x) = −B(2)
1 (x) = x− 1

4 ,

ξ2(−2, x) = B
(2)
2 (x) = x2 − 1

2x−
1
36 ,

ξ2(−3, x) = −B(2)
3 (x) = x3 − 3

4x
2 − 1

12x+ 1
24 ,

ξ3(−1, x) = −B(3)
1 (x) = x− 1

8 ,

ξ3(−2, x) = B
(3)
2 (x) = x2 − 1

4x−
11
216 ,

ξ3(−3, x) = −B(3)
3 (x) = x3 − 3

8x
2 − 11

72x+ 1
288 .

30



5.3 La fonction ξk alternée
Définition 23. On considère la fonction zêta d’Arakawa-Kaneko alternée ξ∗k(s, x)
définie pour <(s) > 0, <(x) > 0 et k ≥ 0 par :

ξ∗k(s, x) = 1
Γ(s)

∫ +∞

0

e−xt

1− e−t Lik(
1− e−t

2 ) ts−1 dt

On pose
ηk(s) = ξ∗k(s, 1) et βk(s) = 2−sξ∗k(s,

1
2) .

En particulier, pour k = 0, on a,

η0(s) =
∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s) et β0(s) =

∞∑
n=1

(−1)n−1

(2n− 1)s = β(s)

où β désigne la fonction bêta de Dirichlet ([RZ]).

Théorème 23. Pour tout entier m ≥ 0,

ηk(m+ 1) =
∞∑
n=1

1
2n nk+1 Pm(H(1)

n , . . . , H(m)
n ) (k ≥ 0) ,

βk(m+ 1) =
∞∑
n=1

2n−1(
2n
n

)
nk+1

Pm(O(1)
n , . . . , O(m)

n ) (k ≥ 0) .

Exemple 23. Comme β0(s) = β(s), on a pour tout entier m ≥ 1,

2β(2m) =
∞∑
n=1

2n(
2n
n

)
n
P2m−1(O(1)

n , . . . , O(2m−1)
n ) .

On en déduit l’expression suivante de la constante de Catalan G = β(2) :

2G =
∞∑
n=1

2n(
2n
n

)O(1)
n

n
, et celle de la constante β(4) :

12β(4) =
∞∑
n=1

2n(
2n
n

) (O(1)
n )3

n
+ 3

∞∑
n=1

2n(
2n
n

)O(1)
n O(2)

n

n
+ 2

∞∑
n=1

2n(
2n
n

)O(3)
n

n
.

Théorème 24. Pour tout entier m ≥ 1,

η1(m) =
∞∑
n=1

(−1)n−1H
(m)
n

n
=
∞∑
n=1

1
2nn2 Pm−1(H(1)

n , . . . , H(m−1)
n ) ,

β1(m) =
∞∑
n=1

(−1)n−1O
(m)
n

n
=
∞∑
n=1

2n−1(
2n
n

)
n2
Pm−1(O(1)

n , . . . , O(m−1)
n ) .
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Exemple 24.
∞∑
n=1

(−1)n−1O
(1)
n

n
=
∞∑
n=1

2n−1(
2n
n

) 1
n2 = π2

16 ,

∞∑
n=1

(−1)n−1O
(2)
n

n
=
∞∑
n=1

2n−1(
2n
n

) O(1)
n

n2 = 7
4ζ(3)− π

2G ,

∞∑
n=1

(−1)n−1O
(3)
n

n
=
∞∑
n=1

2n(
2n
n

) (O(1)
n )2

(2n)2 +
∞∑
n=1

2n(
2n
n

) O(2)
n

(2n)2 = π4

64 −G
2

où G désigne la constante de Catalan.

Remarque 13. Pour les valeurs de η1, on a :

η1(1) = Li2(1
2) =

∞∑
n=1

(−1)n−1H
(1)
n

n
= π2

12 −
1
2(ln 2)2 ,

et pour m ≥ 2,

η1(m) = 1
2mζ(m+ 1)− (1− 21−m)ζ(m) ln 2

− 1
2

m−1∑
j=2

(1− 21−j)(1− 2j−m)ζ(j)ζ(m+ 1− j) .

En particulier ([B], [CS]), on a l’identité :

η1(2) =
∞∑
n=1

(−1)n−1H
(2)
n

n
=
∞∑
n=1

H(1)
n

2nn2 = ζ(3)− π2

12 ln 2 .

Théorème 25. Pour tout entier k ≥ 1,

2βk(1) =
∞∑
n=1

2n(
2n
n

) 1
nk+1 =

k∑
j=1

(−1)j−1 2j−1(ln 2)k−j
(j − 1)!(k − j)! L̄j

avec
L̄k = −Ls(1)

k+1(π2 ) :=
∫ π

2

0
u lnk−1

(
2 sin u2

)
du .

Exemple 25.

η2(1) =
∞∑
n=1

1
2n n3 = Li3(1

2) = 7
8ζ(3)− π2

12 ln 2 + 1
6(ln 2)3 ,

2β2(1) =
∞∑
n=1

2n(
2n
n

) 1
n3 = π2

8 ln 2 + πG− 35
16ζ(3) .
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