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Introduction

Ce mémoire s’articule autour des trois themes principaux auxquels j’ai consa-
cré mes recherches au cours de ces 15 dernieres années, thémes qui sont assez
étroitement reliés entre-eux comme je m’attacherai a le montrer. Il s’agit du pro-
duit harmonique, du procédé de sommation de Ramanujan et de la fonction zéta
d’Arakawa-Kaneko qui ont fait 1'objet des articles [1] a [9] de la liste de publica-

tions L.

Les principales propriétés du produit harmonique dans l’espace des suites a
valeurs complexes ont été exposées dans [2] et sont rappelées dans le chapitre I.
Défini au moyen d’une transformation binomiale involutive notée D (Définitions
5 et 8), ce produit admet aussi une expression explicite (Théoreme 4). Les suites
invariantes par 'opérateur D sont joliment caractérisées a 1’aide du produit harmo-
nique, permettant une reformulation algébrique d’un critere d’invariance de Sun
(Théoréme 5). Le produit harmonique posséde de remarquables propriétés vis-a-
vis des sommes harmoniques; il permet notamment de généraliser les nombres
harmoniques de Roman et Rota (Théoréme 7 et Exemple 12) et de donner une
extension naturelle de la formule de Dilcher (Théoreme 8 et Exemple 13).

Le produit harmonique réapparait dans le chapitre II en relation avec la som-
mation de Ramanujan. Les propriétés fondamentales du procédé de sommation
de Ramanujan ([B] Chapitre 6) ont été étudiées en détail dans [9]; tres récem-
ment, elles ont été enrichies et réinterprétées par Candelpergher ([Cal). Dans ce
chapitre, on se place dans le cadre d’un espace de fonctions analytiques dans le
demi-plan { ®(z) > 0} qui peuvent s’écrire comme des transformées de Laplace,
cadre dans lequel le produit harmonique peut étre construit au moyen du produit
de convolution (Définition 19). Une utilisation combinée du produit harmonique
et de la sommation de Ramanujan permet d’introduire d’une maniere algébrique
une intéressante famille de fonctions analytiques Fy (k= 0,1,2,---) de la variable
complexe s dont les valeurs spéciales sur les entiers positifs s’expriment comme des
sommes infinies faisant intervenir les nombres de Bernoulli de seconde espéce et les
polynémes de Bell modifiés évalués sur les nombres harmoniques (Théoréeme 18).

Dans le cas ou k = 0, Fy(s) n’est autre que ((s) — ou ((s) est la valeur en s

de la classique fonction zéta de Riemann. L’étude des propriétés de ces fonctions
zéta modifiées a été initiée dans [3] puis récemment poursuivie par Young ([Y2] et

[Y3]).

1. Les références numérotées [10] & [12] se rattachent & une autre branche des mathématiques
et sont sans rapport avec le sujet de ce mémoire.



Le chapitre I1I est consacré aux valeurs spéciales de la fonction zéta d’Arakawa-
Kaneko. Originellement considérée par Arakawa et Kaneko en 1999 ([AK]), cette
famille de fonctions analytiques & (k = 1,2,---) de la variable complexe s a été
reconsidérée d’'un point de vue plus général dans [4] par I'introduction d’une se-
conde variable x, en s’inspirant du modele suivant lequel la fonction zéta d’Hurwitz
englobe la fonction zéta de Riemann comme cas particulier (Définition 22). Dans
le cas ou k = 1, & (s, x) n’est autre que sC(s+1, x). Sur les valeurs entieres et néga-
tives de s, (s, x) interpole les polyndmes de poly-Bernoulli (Théoréme 22), tandis
que ses valeurs sur les entiers positifs s’expriment comme des sommes infinies fai-
sant intervenir les polynémes de Bell modifiés évalués sur les nombres harmoniques
généralisés (Théoreme 20). Ces remarquables propriétés font de la fonction zéta
d’Arakawa-Kaneko & (s, x) (ainsi que de sa variante "alternée” & (s,z)) un puis-
sant outil pour I’étude des sommes d’Euler? (cas ou z prend la valeur 1) et des
sommes binomiales inverses® (cas ol x prend la valeur 1/2), comme 1'ont montré
les belles identités obtenues dans [1] (Exemples 21 et 24). Les valeurs spéciales
de la fonction zéta d’Arakawa-Kaneko sont des périodes au sens de Kontsevich et
Zagier ([KZ]). Les sommes binomiales inverses intervenant dans le cadre de cette
étude sont apparues pour la premiere fois dans la littérature scientifique il y a une
vingtaine d’années en relation avec les diagrammes de Feynman ([DK]), mettant en
exergue l'existence de profondes connexions entre certaines branches de la théorie
des nombres et de la physique quantique ([Br]).

2. Introduites par Euler et Goldbach au milieu du 18éme siecle, les sommes d’Euler sont aussi
appelées valeurs zéta multiples ou nombres polyzétas.

3. Ces sommes binomiales inverses sont des cas particuliers de séries factorielles inverses consi-
dérées par Stirling dans son Methodus Differentialis (1730).



Chapitre 1
Le produit harmonique dans
I’espace des suites

Tous les résultats énoncés dans ce chapitre ont été démontrés dans [2]. On
renvoie a cet article pour le détail des preuves.

1 Opérateurs dans ’espace des suites

On commence par introduire quelques opérateurs dans l'espace des suites a
valeurs complexes qui jouent un role crucial dans la construction du produit har-
monique ainsi que leurs images respectives dans ’espace isomorphe des séries for-
melles.

Notation. Le C-espace vectoriel CN" des suites a = (a(1),a(2),a(3),...,a(n),---)
a valeurs dans C est noté £*.

Définition 1. Si C[[z]] désigne I'espace des séries formelles, on a un isomorphisme
naturel :

¢ : & — Cl[[7]]
défini par

n 22 23

®(a)(z) = goa(n + 1)% = a(1) +a(2)z +a(3) 5 +a(d) g+

Exemple 1. a) La suite d,, définie pour tout m >0 et n > 1 par

5m(n):{1 s?nzm%—l
0 sinon
vérifie la relation .
z
D(0,,)(2) = ol

On a dp := (1,0,0,...),6; :=(0,1,0,...), 62 := (0,0,1,0,...), etc.
b) La suite 1 :=(1,1,1,...) vérifie (1)(z) = €.
¢) La suite N := (1,2,3,...) vérifie ®(N)(z) = (1 + z)e”.

d) Soit a € C, la suite géométrique ¥ =1 := (1, a, a? a3, ...) vérifie la relation

O N (2) = e
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,...) vérifie la relation

N | —
W
e~ =

e) La suite harmonique Hy = (1,

O(Hp)(2) = i (e —1).

Définition 2. Les opérateurs sur £* se transforment en opérateurs sur C[[z]]
via l'isomorphisme ®. Plus précisément, si U désigne un opérateur sur £, il lui
correspond 'opérateur u sur C[[z]] défini par la relation

U =ud & u=0Ud ™!
que l'on appellera I'image de U. On a donc le diagramme :
g o e
T@l lcb
Clle]] —— C[[z]]

L’image de l'opérateur I d’identité sur £* sera notée Id.

1.1 Les opérateurs L et R
Définition 3. L’'opérateur L de décalage a gauche (left) sur £* est défini par
L(a)(n) = a(n +1),
c’est a dire : .
(a(1), a(2),a(3), . ..) = (a(2), a(3),a(d), ...) .
L’image de L est 'opérateur de dérivation formelle O :

L)) = X aln+2) 5 = a(2) +a(3)z +a4) o+ = 9B(a) ).

=6 2!
Définition 4. L'opérateur R de décalage a droite (right) sur £ est défini par
aln—1) sin>1
R(a)(n) = o
0 sin=1,
c’est a dire :
R
(a(1),a(2),a(3),- ) 5 (0,a(1), a(2), a(3), . .) .
L’image de R est 'opérateur d’intégration formelle [ :

n+1 2

—a(l)z +a(2) 5+ = /OZCD(a)(t) dt.

P(R(@))(z) = 3 aln + 1))



Remarque 1. Les opérateurs L et R ne sont pas inverses I'un de I'autre. On a la
relation LR = I, mais on notera que 'opérateur RL n’est pas l'identité :

(a(1),a(2),a(3),...) 5 (0,a(2), a(3), a(4),...) .

1.2 Les opérateurs D et S
Définition 5. Soit V : £* — C le morphisme d’évaluation défini par
V(a) = a(l).

L’image de V est 'application v : C[[z]] — C telle que v(®(a)) = ®(a)(0).
L’opérateur de différence D : £ — £* est défini par

D(a)(n) =V ((I = L)" 'a) = v ((Id - 9)"'®(a)) ,

ce qui se traduit explicitement par
D(a)(n+1)=>_(-1) <ﬂ>a(j + 1) pour tout n > 0.
=0 J

On obtient ainsi pour de petites valeurs de n,

a(l),
D(a)(2) = a(1) — a(2),
a(l) —2a(2) + a(3),

etc.

On a la relation :
®(D(a))(z) = e*P(a)(—2),

ce qui signifie que I'image d de 'opérateur D vérifie pour tout f € C[[z]],
d(f)(z) =€ f(=2).

Théoreme 1. L’opérateur D est un automorphisme auto-inverse qui laisse la suite
harmonique invariante ; autrement dit, pour toute suite a € £*, on a

et



Exemple 2. a) Ona D(1) =6y et D(N) =9y — d;.
b) Soit a1 la suite géométrique de raison o € C. On a D(a™ 1) = (1 — )V -1
En particulier la suite (§)N ~1 est invariante par D.

Définition 6. L’opérateur de sommation S : £* — £* est défini par

n

S(a) (n) =>_a(j).

Jj=1

L’opérateur S est un automorphisme d’inverse I — R. L'image de S est l'opérateur

s=Id—d/[d.
Exemple 3. 1) S(d) =1,5(1) = N.

2) S(aN) = 11(1 — a®) pour a # 1. En particulier,
—«
1
S((_l)N_l) = 5(1 + (_1)N_1) = (17 0,1, 07 cee ) :

Théoréme 2 (Relation entre les quatre opérateurs précédents). Pour toute suite
a € E*, on a les relations suivantes :

DS(a) = (I — R)D(a),
DR(a) = (I —S)D(a).
,...). Pour

Exemple 4. On rappelle que H, désigne la suite harmonique (1, %, %, %

tout m > 0, on considere la suite H,, définie par

Ce qui se traduit par :
n

Hm—l—l(n) = ZHm(]) :

J=1
En particulier, la suite H; est la suite des nombres harmoniques :

et pour m > 2, la suite H,, est la suite des nombres hyperharmoniques ([CG]).
On considere la suite harmonique décalée m fois a droite :

1
R™(Ho) = (0. ,0,1, 5. 5.

————
m

W

10



D’apres la derniere des trois relations précédentes, on a
m m - [
DR (H) = (1 = 5)" () = 317 () ;.
=0 J
En particulier,

DR(HQ) == HO - H1 y c’est a dire D(Hl) = HO - R(Ho) s

ou d’une maniere plus explicite :

1 .
D(Hy)(n) = Tan-1) sin>1

1 sin=1.

2 Le produit harmonique des suites

On construit a présent le produit harmonique dans 1’espace des suites au moyen
de 'opérateur D introduit précédemment.

2.1 L’algébre H = (&*, x)

Définition 7. Si a et b sont deux suites dans £*, on note ab la suite définie par

(ab)(n) = a(n)b(n).

On a en particulier : 1a = a et §,,a = a(m + 1)d,, pour tout m > 0. Muni de
ce produit, appelé produit de Hadamard des suites, 'espace £ est une algebre
commutative, associative et unitaire notée A. L’élément unité de A est la suite 1.

Définition 8. On définit le produit harmonique a x b de deux suites a et b dans
E* par
aXb:=D(D(a)D(b)).

Comme D = D~!, on déduit immédiatement de la définition précédente les deux
relations fondamentales suivantes :

D(a x b) = D(a)D(b),

et
D(ab) = D(a) x D(b).

Exemple 5. 1) 1 x a = a(1)1, car
D(1 x a)=D(1)D(a) = doD(a) = D(a)(1)dy = a(1)dy = a(1)D(1).

11



2) N xa=a(2)1+ (a(l) —a(2))N, car
D(N)D(a) = (30 — 51)D( )
= D(a)(1)do — D(a)(2)d
=a(1)D(N) + a(2)D(1
3) @V x VL = (a+ B —af)V Y car
D(@¥1 s 4Y1) = (1 — )1 (1 — g
=1 - (a+pB-af)™"
= D((a+ B —ap)"™).

Théoréme 3. L’espace (E*,X) est une C-algébre commutative, associative et uni-
taire notée H, isomorphe a lalgébre A. L’élément unité dans H est la suite dg.

~N).

Corollaire 1. Une suite a est inversible dans H si et seulement si la suite D(a) est
inversible dans A (i.e. D(a)(n) # 0 pour tout n). Dans ce cas, I'inverse harmonique
de a est donné par la formule

=0 (55)-

(Hy)*"Y = D(N) = 6, — 0y,

= ()

Remarque 2. On notera que 'algebre ‘H contient des diviseurs de zéro. On a par
exemple

Exemple 6. a)

b)

1N51:0.

2.2 Expression explicite du produit harmonique

On a l'expression suivante du produit harmonique :

Théoreme 4. Pour toutes suites a et b € £* et tout entier n > 0,

(axb)(n+1)= > Ca(i+1)b(j+1)
i

ou les nombres C% sont définis par lidentité
(X+Y —XY) = 3 i Xyi |

0<i<n
0<j<n

12



Remarque 3. En développant (X +Y — XY)" par la formule du bindéme et en
identifiant le coefficient de X*Y7, ceci peut encore s’écrire

(a % b)(n+1) = §j<_ni%f>c>a@+nmn+1—j)(nzoy

0<j<i<n v

Exemple 7. Pour de petites valeurs de n, on obtient ainsi

(@ % b)(1) = a(1)b(1),

(a X b)(2) = a(2)b(1) + a(1)b(2) — a(2)b(2),

(a x b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2) — 2a(3)b(2) — 2a(2)b(3) + a(3)b(3)
etc.

On rappelle que la suite géométrique de raison 1/2 est invariante par D. Plus
généralement, on donne la caractérisation suivante qui est une reformulation algé-
brique du critére de Sun ([Su]).

Théoréme 5 (Caractérisation des suites invariantes par D). Une suite a € £* est
invariante par D si et seulement si elle peut s’écrire sous la forme

1 N-1
a= () X b
2
ot la suite b € £* est telle que b(2k) = 0 pour tout k > 1.

Exemple 8. a) La suite harmonique peut s’écrire

avec b= Hy x (—=1)V=1 = (1,0,

b) La suite

1 111
- - 1N =(1.=.= = ...
a 2(50+ ) (7272527 )

est invariante par D. Elle peut s’écrire

1
aZ(i)N_l X (17071707"')'

13



2.3 Puissances harmoniques k-iemes

Définition 9. Pour toute suite a € £*, on définit pour tout entier k& > 0, la
puissance harmonique k-iéme de a notée a** par

a?® =6, et a®*t) =g xa.
Par récurrence sur k, on en déduit immédiatement la formule suivante :
@** = D(D(a) ... D(a)) = D ((D(a))*) .
—_— —
k

En particulier, si a est une suite invariante par D, alors on a

a™* = D(a").
Exemple 9. a)
N si k est impair
N*=D((6—0)") =1+ (-1)*1-N) =
((% V) (=1 ) 2— N sik est pair.
b)
k
(61)% =" mIS(k,m)d,, ,
m=0

ou les S(k, m) sont les nombres de Stirling de deuxiéme espece :

Sk, m) = = S (1)t (?)zk

|
m 4

DIN) = (DN = (=5 = = (1)} ) )

0<j<i<k
2.4 Propriété d’harmonicité

Notation. Pour p entier naturel, on pose (), =1, et pour p > 1

(N), =N(N+1)---(N+p—1).

P
Théoréme 6 (Propriété d’harmonicité). Pour toute suite a € E* et tout entier

p >0, on a la relation
! ! N
o wa= s (D).
(N)p+1 (N>p+1 p:

En particulier, pour p =0, on en déduit ['important corollaire :

Hg X a = H()S(CL)

14



Exemple 10.
Hy w Hy = HyS(Hy) = HoHy = D ((Ho)?) ,
(Ho)™® = Ho w0 (Hy w Ho) = HoS(HoHy) = D ((Ho)*) .
Exemple 11. On a

1 1
NN+D YT NN+
c’est a dire
1 1 v

2.5 Les sommes harmoniques

On rappelle la remarquable propriété de la suite harmonique H vis-a-vis du
produit harmonique énoncée au paragraphe précédent :

Hy @ a = HyS(a) pour toute suite a.

Plus généralement, on introduit a présent une notion de somme harmonique de la
maniere suivante :

Définition 10. Soit une suite a € £*, on définit pour tout entier naturel k, la
somme harmonique k-i¢me de a notée S*(a) par la formule

(Ho)mk X a = H()S(k)<a/) .

Théoréme 7. Pour toute suite a € £*, on a SW(a) = S(a) et la relation de
récurrence :

S®(a)(m) pour k> 1.

1l en résulte que pour k > 1,

S® (a)(n) = > —a(nyg) .

n>ny>o>n>1 1 =1

Exemple 12. Dans le cas ot a est la suite harmonique Hy, les nombres S*)(a)(n)
ne sont autres que les nombres harmoniques c*) de Roman et Rota ([Ro]). Pour

15



de petites valeurs de k, on retrouve ainsi :

1 1
SW(Hy)(n) = M L4ttt
n

1 1 1 1 1 1 1 1

@ (H, —c@ 111 += 1+ 4= e (124 -
SO (Ho)(n) = ) = 1+ 514 )+ 5 (Lt 5t g) 4o (Lot ),

1 1 1 1 1 1 1 1 1

@ (m, =c® =1 [1 ~(1 } [1 14+ +=(1+= }

1 1 1 1 1 1
SR I Sy [P R [ |
+ +n{+2(+2)+ +n(+2+ +n)]

Théoréme 8 (Formule de Dilcher étendue). Pour toute suite a € E*, et pour
k> 1, on a l'identité

S8 (a)) = 3o (-1 () D).

k
m—1 m)m

D’ou
1

Y= ()

n>ny>e>n>1 T T m=1 m

1
mk—1

D(a)(m).

Exemple 13. a) Si a = Hy, alors D(a) = Hy et on retrouve la classique formule

de Dilcher ([D]) :
Y ey (n)

= —.
I (SR [ S — m]m

b) Si a = (Hy)?, alors D(a) = HyH, ot H; = S(Hy) est la suite des nombres
harmoniques ordinaires (H;(n) = >7_, 1/j), d’ou

nznlz-Zznkzl Ny e
¢) Si a = (Hy)?, alors D(a) = HyS(HyH,), d’on

Y =Sy 3 )

n>ni>>n>1 ny...Ng—1My

1

d) Enfin, pour a = (Hy)*, on montre que

. BN 1 (E ()2 HO
5 14=Z<—1>m—1( )ﬁwZ(H (3)?* + HG)

n>ni>>n>1 ny...Ng—1Ny

avec

16



Chapitre 11
La sommation de Ramanujan

Tous les résultats énoncés dans ce chapitre ont été démontrés dans [3]. On
renvoie a cet article pour le détail des preuves.

3 L’opérateur D dans I’espace des fonctions

On commence par introduire un cadre analytique dans lequel l'opérateur de
différence D est étendu.

3.1 Transformation de Laplace-Borel

Définition 11. On consideére U'espace vectoriel E des fonctions f € C'(]0, +o0[) &
valeurs complexes vérifiant la propriété suivante :

Pour tout ¢ > 0, il existe C. > 0 tel que |f(¢)| < C.e® pour tout t € ]0, +o0] .

Définition 12. Soit f une fonction dans 'espace E. La transformée de Laplace
L(f) de f est définie par

£()a) = | ety dt pour R(x) > 0.

Notation. Dans la suite, on note £ = L(F) I'image de E par L.

Théoreme 9. Si a est une function dans &, alors elle vérifie les propriétés sui-
vantes :

a) a est une fonction analytique dans le demi-plan { ®(z) >0},

b) a(z) = 0 quand R(z) — +o0,

¢) L:E— & est un isomorphisme.

Définition 13. Soit a € £. La transformée de Borel de a est I'unique function
a € E telle que a = £(a). On a les formules réciproques :

1 c+ioco
a(t) = —/ e*a(z)dz pourc>0ett>0,
20T Je—ico
et o
a(x) = / e ™a(t)dt pour R(z) > 0.
0

17



Définition 14. Soient f et g deux fonctions dans E. Le produit de convolution
f*gde f et gest la function definie pour tout ¢ > 0 par

(Fo)t)= [ fluglt —u)d
Théoreme 10. Pour tout f € E et g € E, alors fxg € E et
L(f*g) = L(f)L(g)-

Il en résulte que sia € E et b e & alors le produit ab € & car ab = L(a* b).

3.2 L’opérateur D et le difftomorphisme A

Définition 15. Soit a une function de £ alors 'intégrale

+o0
/ et (1 — e la(t)dt
0

converge pour tout x vérifiant $(x) > 0. On appelle D(a) la function definie pour
tout = tel que R(z) > 0 par

Remarque 4.

Les valeurs de D(a) sur les entiers positifs peuvent étre calculées directement sans
recourir & a. Le développement de (1 — e~*)" par la formule du bindme conduit &
I’expression :

D(a Z < ) a(j +1) pour tout entier n > 0.

Autrement dit, I'opérateur D dans l'espace £ des fonctions étend l'opérateur D
défini au Chapitre I dans I'espace £ des suites.

Notation. On appelle A le C!-diffeomorphisme de R, defini par
A(u) = —log(l —e™™).
En particulier, il est important de noter que A est involutif :

A=A,

18



Théoréme 11. Soit a une function dans €. Alors, la fonction D(a) € € et , de
plus, elle verifie la relation

D(a) = a(A),
ot a(A) désigne ao A.

s—1

[(s)

1
Exemple 14. Soit a(z) = — avec R(s) > 1. Alors a(t) = Il en résulte, par
xS

le changement de variable t = A(u), que

=< (1)

Remarque 5. Le Théoreme 11 peut étre visualisé par le diagramme suivant

s 2. ¢
e+ e
E X, E

ou A*(a) = a(A). Les propriétés algébriques de D sont résumées dans le théoréme
suivant qui est I'analogue du Théoreme 1.

Théoréme 12. L'opérateur D est un automorphisme de € qui verifie D = D!

o . . 1
et laisse invariante la function r +— —.
x

3.3 Sommation de Ramanujan

Définition 16. La suite des nombres de Bernoulli de seconde espece (b,) ([J],
[Y1]), encore appelés coefficients de Gregory4, est définie par la fonction génératrice

sz

n>0

log
Pour supprimer 'alternance des signes, on pose pour n > 1,
Ap = |by| = (=1)""'b,.

Exemple 15. Les nombres A,, sont des nombres rationnels qui peuvent se calculer
au moyen de la relation de récurrence

1
Zn—k

k=1

1
— pourn > 2.
n

4. Cette famille de nombres apparait en effet pour la premiere fois dans une lettre de James
Gregory datant de 1670.
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ou par ’expression intégrale :

1 /! T T
_1 _ _Noq— > 2.
A, n/o z(1—2)(1 2) (1 n_l)dx pour n > 2
On a ainsi pour de petites valeurs de n,
1 1 1 19 3
A== A= — A3=— Ay= — A = — etc.
PR T B T M T e T 160

Théoreme 13. Soit a une fonction dans €. La serie
S 4, / (1 — ety la(t) di
n>1

converge et

- Ty —t\n—1~ T 1 L
ZAH/O et — et a(t)dt:/o e~ palt)dt.
n=1

Remarque 6. Si a € &, alors la série ,,5; a(n) peut s’écrire

m=3 [ era

n>1 n>1

et une permutation formelle de 3,5, et f;"> conduirait & écrire

S a(n) = /0+°° .

1 l1—e

Cependant, cette derniere intégrale peut diverger en 0. On peut la renormaliser
en retirant la singularité en 0 et ceci peut étre fait simplement en soustrayant la
partie polalre 7 de ;== . Ceci conduit a la définition suivante :

Définition 17. Soit a une function dans &€ = L(E). La somme de Ramanujan de
la série Y°,5; a(n) est définie par

S a(n) = / e —2)a()dt =3 AuD(a) (n).
n>1 0 L—e™ 1 n=1
1 s—1
Exemple 16. Soit a(x) = s avec R(s) > 1. Alors, a € € et a(t) = ) Par

conséquent

il_ v sis=1,
o1 e C(S)_S_% sis#1



ou ((s) est la valeur en s de la fonction zéta de Riemann et ou v désigne la
constante d’Euler :

=t (0 - =) = [Tetm - Pt

s—1 s—1 1—et ¢

Remarque 7. a) La définition de la somme de Ramanujan donnée ce chapitre
coincide avec celle donnée dans un cadre plus général dans [9] et [Ca]; elle
possede donc les mémes propriétés fondamentales. En particulier, il résulte de
la définition que I'application a ++ 3", a(n) est linéaire.

b) Soit m un entier positif et a € £. La somme de Ramanujan de la série translatée
Y on>1a(n +m) s’exprime par la formule :

S a(n +m) = [~ etem(— _ Lamar
=1 ~Jo 1—et ¢t '

Cette somme ne vérifie cependant pas la propriété de décalage usuelle :

> afn-+m) = §a<n>—flla<ﬂ'>

mais seulement la relation inhabituelle :

R R m m+1
Za(n—l—m):Za(n)—Za(j)qL/l " a(x) dx

Dans [Ca] Chapitre V est développé un formalisme algébrique adéquat qui
explique pourquoi cette relation est "naturelle”.

Exemple 17. Les constantes de Stieltjes 7, sont définies par le développement en
série de Laurent de ( :

()= 4+ > T s 520,
k=1 :

On a lexpression ([2], [Ca]) :

R 1.k

In" (n)

Y = Z .

n>1 N
En particulier,
2 / o - ! YIntdt
= —° — —)Intdt.
n 7 0 ¢ l—et ¢t



4 Le produit harmonique des fonctions

On donne a présent une construction du produit harmonique dans ce cadre
analytique au moyen du produit de convolution.

4.1 Le A-produit de convolution

Définition 18. Si a et b sont deux fonctions dans £, alors le A-produit de convo-
lution @ ® b de a et b est défini par

a®b= A (A(a) * A*(D)),

ou de mani¢re équivalente (puisque A* = (A*)~!) par

o~

(@®b)(A) =a(A) =b(A).

Le A-produit de convolution hérite des propriétés algébriques du produit de convo-
lution ordinaire : il est bilinéaire, commutatif et associatif.

Définition 19. Soient a et b deux fonctions dans €. Le produit harmonique a X b
de a et b est défini par ~
axb=La®b) €.

Cette construction peut étre synthétisée dans le diagramme suivant :
(a,b) —— (@,b) —— (a(A),b(0))
aMb— a®b «—— a(A)*b(A)

Le produit harmonique dans £ hérite des propriétés de bilinéarité, de commutati-
vité et d’associativité du A-produit de convolution.

Théoréme 14. Si a et b sont deux fonctions dans £ alors on a les relations
fondamentales

D(a x b) = D(a) D(b),

et
D(ab) = D(a) x D(b) .

Du point de vue de la sommation de Ramanujan, les deux relations précédentes
s’'interpretent de la fagon suivante :
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Corollaire 2. Soient a et b dans &£, on a les identités :

> (o b)) = >~ 4.D(a)(n) D))
et - _
;(ab)(n) = Z;An(D(a) x D(b))(n).

Remarque 8. Les valeurs du produit a x b sur les entiers positifs peuvent étre
évaluées sans recourir a a ni a b. Par des transformations élémentaires, on peut en
effet montrer que

(a w b)( /+°O /+°° 1) (et 4 e~ — e~ G(1)B(s)dtds

Par conséquent, si les nombres C%’ sont définis par

(X+Y —XY)"= ¥ CHXiY7,
0<i<n
0<j<n

on a l'expression explicite

(axb)(n+1)= > Cila(i+1)b(j+1),

0<i<n
0<j<n

Autrement dit, le produit harmonique dans 'espace £ des fonctions étend natu-
rellement le produit harmonique défini au Chapitre I dans I'espace £ des suites.

4.2 Propriété d’harmonicité

On énonce a présent une propriété d’harmonicité dans I'espace £ des fonctions
analogue a celle déja vue dans 'espace des suites (cf. Théoreme 6).

Théoréme 15. Soit a € £. Alors

z x
ot S(a) désigne la fonction définie pour R(z) > 0 par
—t

Sa)@) = [ o (= e a(t)de
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Remarque 9. L’opérateur S étend l'opérateur de sommation introduit au Cha-
pitre I. Pour tout entier n > 1, on a en effet

n

S(a)(n) = _alj).

7j=1
Exemple 18.
1 1 Plr+1)+7

M- =L(A)= T
ox =LA P

ou ¢ désigne la fonction digamma (dérivée logarithmique de la fonction T).

4.3 La fonction zéta modifiée

Définition 20. Pour tout entier & > 1, on considere la puissance harmonique

1
k-ieme de la fonction x — — notée (abusivement) —.
x T

1 Xk 1 1 1
() ==X —-—NX...NX — (k:172737'”)7
x X X Xz

k
Pour tout entier & > 0 et (s) > 1, on définit la fonction zéta modifiée d’ordre k
par la formule suivante :
Z§>l % si k= Oa
Fi(s) = . k
) o1 <(1)M X mlé,) (n) sik>1

xT

Théoreme 16. Pour tout entier k > 0,

Rl =3 0 (1) 00 = s [ SR e e a

ok \gs
avec . .
fr(z) = nz_:l Anm
En particulier, .
Fy(s) =((s) — 1

Théoréme 17. La fonction F}, se prolonge analytiquement dans C en une fonction
entiere. Les valeurs aux entiers négatifs de la fonction zéta modifiée sont données
par :

" Am—l—l “ j m . n " —
ZWZ(—D <j)(j+1)- (n=0,1,2,...)



En particulier, pour k£ = 0, on déduit la relation

1- B, n
n+1+1 ZAmHZ (J)j-f-l)

ou les B, sont les nombres de Bernoulli ([AIK]).

Définition 21 (Polynoémes de Bell modifiés). La suite des polynomes de Bell
modifiés (P,) est définie par la fonction génératrice

o] Zk o]
exp (Z Ikk) = Z Py(xq,-  x,) 2"
k=1 n=0

ou par la relation de récurrence équivalente :
n
Py=1, nPy(z1,...,3,) =Y x;Poj(z1,...,005) (n>1),

ou bien encore par la représentation explicite :
1 ! h X2 k2 Tn kn
s @) ()
k1+2ko+-+nkp,=n kl'kQ‘ e k‘n' 1 2 n

Pour de petites valeurs de n, on obtient ainsi les expressions suivantes :

P():l,
P(z1) = 21,
1 1

PQ(J]l,IQ) = ixf + 51‘2,

Py( ) Lo 1 1
Xr1,To, T = =T —T1r —T

341, L2, L3 61 9 142 337

P )= 1 +1 _'_1 +1 +1
T1,To, T3, T X Tix xT T1x xT
1, 42,43, 44 241 412 82 313 44

Théoréme 18 (valeurs spéciales de Fj, sur les entiers positifs). Pour tout entier
m >0, on a

00 An
Fm+1)=> nkHPm(Hnl), a@. .. H ™),
n=1

ou A, désigne le n-iéme nombre de Bernoulli de seconde espéce non-alterné, P,

est le m-ieme polynome de Bell modifié et H(m Z —
J=1 "
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Remarque 10. Avec les notations du Chapitre I, on a en particulier 'identité
H" = H\(n).

Corollaire 3. Pour m > 1,

1 & P,(HY H® ... HM™
Fo(m+1):C(m+1)—E:ZAn (H, ’;2 n ),
n=1

Corollaire 4 (formule de dualité). Pour tout entier £ > 0,

< A, K PHDV H? . HR)

Exemple 19.

=
I
M]3

3
Il
—_

) Aan(zl)
R(2) =Y =0 = (@) -1,
n=1
1.3 A (HW)? o0 S 1
FO(3)Z§Z n 52 3)_57
n=1 n=1
712::1 n? 7; n

Les valeurs spéciales de la fonction Fj sur les entiers positifs admettent une
expression particuliere :

Théoreme 19. Pour tout entier ¢ > 2,

g—1
% 10 1 >, log(n +1)
F(q) = 2 T \kma—k Y
1(g) = 7C(a) + (g +1) Z kzlk;<n+1)’“ﬂq"“+; nd
Exemple 20.
< A, HWY 2 = log(n+1
F(2)=) —=7——C3) -1+ (2 ),
n=1 n 6 n=1 n
w2 Xlog(n+1)
Fi(3) =~¢(3) — - 75
1(3) =¢(3) 360 12 nz:l n3 ’
4 2 2 ™ 1 Slog(n+1)
Fi(4) =~v——=2¢0)+ —C3) — =¢3) + —= — =
1() 790 C()+ GC() 36()+18 2"‘7; n?
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Chapitre 111

La fonction zéta
d’Arakawa-Kaneko

Tous les résultats énoncés dans ce chapitre ont été démontrés dans [1] et [4].
On renvoie a ces deux articles pour le détail des preuves. On commence par intro-
duire la fonction zéta d’Arakawa-Kaneko générale & (s, z) puis sa variante alternée
&4(s, z). On s'intéresse tout particulierement & leurs valeurs spéciales sur les entiers
qui sont des périodes au sens de Kontsevich et Zagier ([KZ]).

Définition 22. Pour tout entier & > 1, la fonction zéta d’ Arakawa-Kaneko & (s, z)
est définie pour R(s) > 0 et R(x) > 0 par la transformée de Mellin normalisée

_ 1 oo —xt L1k<1 B eit) s—1
gk(SWZ‘) - F(S) /0 € ]_—@_t t dt
avec -
. 2"
Lix(z) = nz::l vl
On pose
1
&(s) = &(s,1) et ap(s) = 27%¢E(s, 5) )

Pour k£ = 1, il existe une relation simple entre les valeurs des fonctions ¢, & et ay :
&1(s)=sC(s+1) et ag(s)=(2—-2""sC(s+1).

Remarque 11 (Lien avec I'opérateur D et le produit harmonique). Pour R(s) > 1,
on peut donner au moyen de I'opérateur D et du produit harmonique une définition
plus algébrique de la fonction &, d’Arakawa-Kaneko comme suit :

1 T s
1 1

= —D[(—
>0 () @

N : _
ou — désigne la fonction x — x
x
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5 Valeurs spéciales de &

5.1 Valeurs sur les entier positifs

Théoréme 20 (valeurs aux entiers positifs). Pour tout entier m > 0 et ®(z) > 0,

[e.e]

n!
1, P (Wi (), ..., h™
Gl +1,7) = 3 o s P W @)
ot Pp(x1,...,2,) désigne le m-iéme polynéme de Bell modifié évalué sur les

nombres harmoniques généralisés

n

=X Gram

Jj=0 ‘7+x

En spécialisant cette relation en x = 1 et x = 1/2, on déduit le corollaire
suivant :

Corollaire 5. Pour tout entier m > 0,

avec
O — 9 ) (1/2) =3 — L
j=1 (23 - 1)m
et
(m) _ 5 (m) ~ 1
Hn :hnfl(l) :Zim
=17
Corollaire 6. Pour k£ > 1,
6(2) = 3 s = SR+ 3)C(k+2) = 5 S+ 2 ).
n=1 7=2
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Corollaire 7. Pour tout entier m > 0,

(m + 1)¢(m +2) Z W(HWD o HmY
o:o n—l
2-2""Hm+1)¢(m+2) =" P,(0W .  0m).

=()

Corollaire 8 (formule d’Ohno). Pour tout entier k£ > 2,

k—2 oo

3 an — Ppn(H, .. H™M) = (2= 22F)(k — 1)¢(k) .

m=0n=

Théoreme 21. Pour tout entier k > 1,

>, 2] i (In2)k~d
206(1) =) o =5 = - L
)= 2 oy e =2 ROV g
avec
m u
L, = —Lséazl(ﬂ') ::/ uln®! (2 sin 2) du .
0
Exemple 21
S HT(LI)
6(2)= > ~a = 2(3),
n=1

0 92n— 10(1) 7
a(2) =) (Qn) = 5603),
n=1

n

oo H?'(Ll) 5 7.‘.4
52(2):2 3 :15(4):57
o'} 22n71 1 7T2 7
as(l) = Wﬁ =5 In2- ZC(?’)
n=1 n
© 92n—1 O(l) 7.(.4
2) = Zn = 7¢(3)In2 — — —

22n—1 1 2 4

> T 5 7 T
as(1) = nz::l (29 5= ?(m 2)% — 55(3) In2 -+ ot 4G(1)

oi  G(1)=> " désigne la constante de Ramanujan ([B], [Si]).
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5.2 Polynémes de Poly-Bernoulli

Théoréme 22 (valeurs aux entiers négatifs). Pour tout entier k > 1 et pour
R(x) > 0, la fonction s — &(s,x) se prolonge analytiquement dans C en une
fonction entiére. Les valeurs aux entiers négatifs de la fonction d’Arakawa-Kaneko
sont données par :

&(—n,z) = (—1)"B,(Lk)(x) (n=0,1,2,...)

ot les B (x) sont les polynémes de poly-Bernoulli définis par la fonction généra-

trice : ] -
—xt le(l —€ k‘ tn

1—et Z

Remarque 12. Les polynémes B%¥)(x) sont des polynémes de degré n en z. Pour
k = 1, on retrouve (au signe pres) les polynémes de Bernoulli classiques ([J],
[AIK]).

B,(Il)(a:) = (—=1)"B,(z) = zn:(—l)"_j (?) Bx"™

=0

ou les B; sont les nombres de Bernoulli.
Exemple 22. On a I'expression explicite
B(k n n .
Y e (7))

Pour de petites valeurs de k et n, on obtient ainsi

1
L(—1,2) = —BF)(Q;) -t
1 1
22)=BP@) =22 20— —
Ga(-2.2) = BY () = — S - 2.
3 1 1
_ :_B(Q) — 3 2.2 - o
Ga(-3.0) = B (@) =2’ - Ja’ - S+ o,
1
&(-La)=-BY (@) =z,
9y L1
-2 B — e
3 11 1

&(=3,2) = —BP(2) =2® — 22 — —p 4+ —
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5.3 La fonction &, alternée

Définition 23. On consideére la fonction zéta d’Arakawa-Kaneko alternée & (s, x)
définie pour R(s) > 0, R(z) > 0 et k > 0 par :

1 400 —xt 1— —t
£(s,z) = /  Lin 26 )L dt
0

I'(s) 1—et
On pose
* —S8 ¢k 1
m(s) = &(s,1) et Bi(s) =27°6(s, 5).
En particulier, pour k=0, on a,
->EI a2 @ e =X G =)
= “— (2n—1)
ou [ désigne la fonction béta de Dirichlet ([RZ]).
Théoreme 23. Pour tout entier m > 0,
o0 1 m
ne(m +1) = Z:IWP w(HY, . H™M) (k> 0),
n—l
(1) (m) S
k(m+ 1) ;<2n)nk+1 P,(O",...;,0i™) (k>0).
Exemple 23. Comme [y(s) = 5(s), on a pour tout entier m > 1,
o0 2n
26(2m) = Y 75— Pon—1 (O, ..., O%™ V).
Zr

On en déduit I'expression suivante de la constante de Catalan G = ((2) :

o 9n O(l)
G = Z:l (2”>;: , et celle de la constante 5(4) :

< on (OW) < on OWO® = 9n OB)
125(4):2?71)(0" 32(2)0 On +22:j1(§n)07’;

Théoreme 24. Pour tout entier m > 1,

00 Hm) [e'S) 1
A R P (HD . gmD
771(7”) r;( ) n ;ang 1( n s Hn )7
[e%s) B Onm) 00 2n—1 .
Bi(m) =D (=" = 7w Pna (O, 00"Y)
n=1 n n=1 (n)n2



Exemple 24.

00 O(l) o 9n—1 1 2
Z(_l)n_l o = 2 5 — u )
= n ot (:) n 16
00 0(2) 00 2n71 O(l) 7 T
1 n—1%n — n 3 G
oo 0(3) o 9n O(l) 2 o 9n 0(2) 4
( 1)n—1 n :Z 2n(n)2+z - n2_£_G2
n=1 n n=1 (n) (2n) n=1 (n) (277,) 64
ou GG désigne la constante de Catalan.
Remarque 13. Pour les valeurs de 77, on a :
1, & HY 72 1
1) =Liy(z) =Y (-1)" ' = — — ~(In2)?
m(1) =Tip(5) = S (~1) 22 = T 2,

et pour m > 2,

m(m) = sm¢(m+1) — (1=2""")¢(m) In2

l\DM—‘ 1\9\

Z_: (1 =2") (1 = 27™)C(5)¢(m + 1 = j) .

En particulier ([B], [CS]), on a l'identité :

o0 2 o 7701 2
=Sy S ) - T
Théoreme 25. Pour tout entier k > 1,
R 1 27 Y(In2)F7
230) = 32 Ty e ~ D =77 b
avec
Lk——L,(Cle( ) :/Oguln (28111 )du
Exemple 25.
> 1 1 7 2
ml1) = 3 s = Liny) = () = [y In2 4 G (in2)
205(1) 2(3;)13 7;21112—1—7TG ?2((3)
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