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Abstract: While being as old as general relativity itself, the gravitational two-body problem has never
been under so intense investigation as it is today, spurred by both phenomenological and theoretical
motivations. The observations of gravitational waves emitted by compact binary coalescences bear
the imprint of the source dynamics, and as the sensitivity of detectors improve over years, more
accurate modeling is being required. The analytic modeling of classical gravitational dynamics
has been enriched in this century by powerful methods borrowed from field theory. Despite being
originally developed in the context of fundamental particle quantum scatterings, their applications to
classical, bound system problems have shown that many features usually associated with quantum
field theory, such as, e.g., divergences and counterterms, renormalization group, loop expansion,
and Feynman diagrams, have only to do with field theory, be it quantum or classical. The aim of
this work is to present an overview of this approach, which models massive astrophysical objects as
nonrelativistic particles and their gravitational interactions via classical field theory, being well aware
that while the introductory material in the present article is meant to represent a solid background
for newcomers in the field, the results reviewed here will soon become obsolete, as this field is
undergoing rapid development.
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1. Introduction

The recent detections of gravitational waves (GWs) [1-3] by the large interferometric
detectors LIGO [4] and Virgo [5] have revived the scientific interest on the gravitational
two-body problem. All events detected so far have been originated by coalescences of
compact binary systems, which are best searched for by correlating noisy observational
data with precomputed waveform models, or templates, via standard matched-filtering [6]
technique. As a result, the output of the filtering process is particularly sensitive to the
phase of GW signal; high accuracy modeling is required to enable faithful source parameter
reconstruction and to maximize the physics output of the detections in general.

The waveform templates used in the LIGO/Virgo data analysis pipeline [7] have been
coded over decades building on several different approaches, relying both on the analytic
and numerical knowledge of the source gravitational dynamics and on phenomenological
methods to describe the spacetime deformation around them.

For source modeling, one of the most successful perturbative analytic method has
been the post-Newtonian (PN) approximation to GR, see [8] for a review, together with the
self-force (SF) approach, see [9] for a recent review, whose small expansion parameter is the
ratio of masses of the two objects composing the binary system. Exact numerical methods
solving for the entire spacetime had tremendous success (see, e.g., [10] for one of the most
recent and complete catalogs of numerical gravitational waveforms from binary systems).
Building on results from all these approaches, two main families of accurate templates have
been built: one using the effective one body framework [11], which mapped the two-body
dynamics into that of a test body immersed in an effective Schwarzschildlike metric (see,
e.g., [12] for the latest version), and the other leading to phenomenological waveforms (see,

Symmetry 2021, 13, 2384. https:/ /doi.org/10.3390/sym13122384 https:/ /www.mdpi.com/journal /symmetry


https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2157-4401
https://doi.org/10.3390/sym13122384
https://doi.org/10.3390/sym13122384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13122384
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13122384?type=check_update&version=1

Symmetry 2021, 13, 2384

2 0f 23

e.g., [13] for latest waveform developments). See also [14] for a review of waveforms used
in data analysis.

The present work is intended as overview of the PN approximation framework treated
with effective field theory methods, as introduced in [15] and known as nonrelativistic
general relativity (NRGR), complementing existing reviews (see, e.g., [16-19] for the latest
development in this rapidly evolving field of research).

In the PN approximation of the two-body problem, the dynamics is expanded around
the Newtonian result, with expansion parameter being the relative velocity v, with v ~
GnM/r according to the third Kepler’s law (Gy is the Newton's constant, M is the total
mass of the binary system, r is the binary constituents’ mutual distance, using natural
units for the speed of light ¢ = 1), and n-PN corrections correspond to terms of the
order G;]_] 1427, with 0 < j < n+1. Note that from a point of view of particle physics
scattering, a natural expansion parameter would be the coupling constant Gy, or rather, its
dimensionless version Gy+/sq, with s being the invariant mass squared and ¢ being the
modulus of the exchanged momentum. Such expansion is known as post-Minkowskian
(PM) [20], which has received a great amount of attention recently after the successful
derivation of the 3PM dynamics [21,22] and partial results at 4PM order [23,24]. An
important feature that PM results have highlighted [25,26] is that computation of the
deviation angle in two-body unbound scattering processes seem to be more fundamental
that effective action obtained adding the contributions of gravitational mode exchanges, as
itis done, e.g., for deriving the Newtonian potential from general relativity, as pointed out
in [27].

Another issue that is currently under vigorous investigation is the contribution of
radiative modes to conservative dynamics, both in the PN and PM approaches, whose
quantitative role is not completely understood yet. In particular, exchange of radiative
modes is known to give rise to causal, nonlocal effects, which have been first identified at
O(Gy) beyond leading order in emission processes, which have been name hereditary as
they depend on the history of the source rather than on its instantaneous state at retarded
time. Historically, these have been divided into memory and tail effects [28], the former
arising from scattering of radiation onto radiation [29] and the latter from scattering of
radiation onto the static background curvature sourced by the total mass of the system [30].
The denominations are related to the nature of the phenomenological effects they have
on the waveform: the tail part of the waveform arrives later than the “wavefront”, being
delayed by the scattering, and then smoothly fades off with time; the memory part is a
persistent zero-frequency effect, which is still present well after the wavefront has passed.
While hereditary in the waveform, tail and memory contributions are vanishing in the
emitted flux [8], and instantaneous (i.e., nonhereditary) in the conservative energy [31] for
circular orbits.

Overall, interest in the gravitational two-body problem goes beyond its applications
to GW physics, due to its richness in intriguing theoretical aspects, representing a highly
nontrivial test bed for classical field theory, including expressing GR as a classical double
copy of a non-Abelian gauge theory [32-35], applying seminal ideas by [36]. The clear
separation of scales of the underlying physical problem allows a paradigmatic application
of effective field theory techniques and a systematic expansions of interactions in terms of
Feynman diagrams. Divergences are encountered in purely classical computations, which
are regularized and renormalized, and applications of the renormalization group flow
equations can be used to derive nonperturbative results.

The focus of this review is on the conservative, spinless sector for pointlike sources.
As far as dissipative effects are concerned, like computation of the gravitational luminosity
sourced by a coalescing binary, within the NRGR approach, it has been completed to the
2PN level [37], and the tail-squared quadrupole contribution to the flux has been obtained
at 3PN level in [38]. Spin degrees of freedom can also straightforwardly be included in
the NRGR approach, as per the pioneer work of [39]. Recent results in the conservative
sector reached next*-to-leading order level for linear-in spin [40], spin-squared subsec-
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tors [41], next-to-leading order in the spin-cube [42], and spin-to-the-fourth subsectors [43],
whereas those from the flux the investigations reached next-to-leading order in linear-in-
spin terms [44,45] and spin-squared [46] sectors. (The NRGR method has also been applied
to non-GR theories; see, e.g., [47-49].)

Another topic not treated here is represented by finite size/absorption effects, which
have been investigated within NRGR both in the nonspinning [50] and in the spinning
sector [51]. Finite size effects have received attention on the phenomenological side as they
could provide a handle to distinguish between GR black holes, which, at leading order,
absorb energy but do not exhibit tidal deformation, and other exotic types of compact
objects [52].

This review is structured as follows: NRGR is introduced in Section 2, with emphasis
being given to classical path integral and how to split the integration region of Green's
function momenta into a near and a far zone. Then, a summary of the methods permitting
the derivation of the conservative dynamics withing NRGR is presented in Section 3,
followed by Section 4, which is dedicated to the radiative sector of the problem. The final
Section 5 is dedicated to a brief outlook on the currently open problems and imminent
future line of investigations in the fields.

Notation

We adopt the mostly plus metric diag(—, +, +, +) and natural units for the speed of
light ¢ = 1 but keep the Newton's constant Gy explicit. Vectors are indicated in boldface
character, e.g., x, and for integration over momenta, the notation fk = % is adopted,
with d denoting the number of purely spatial dimensions (d = 3 in our world). Given a
quantity A(t,x) in direct space, its Fourier transform and inverse Fourier transform are

defined as

Alwk) = / dtdx A(t, x)eit- kx|
_ dw —iwt+ikx
A(t,x) = kEA(a),k)e .

For spatial indices, we will not make distinction between covariant and contravariant
indices, e.g., K% = k'k; = kik;.

2. The Setup

The starting point to describe the gravitational dynamics of any system is the bulk
Lagrangian of gravity, which is given by the gauge-fixed Einstein—-Hilbert action

_L d+1 _1 U
sEHszz/d x(R ST ), (1)

where the gauge fixing term involves I'* = FZ 8 ¢*P, with g, p being the metric and FZ 8 being

the Christoffel symbol. A is a constant with dimension of (length?~2 /mass)'/? defined by

A = (32tG4)~1/2, where G, is the Newton’s constant in generic d + 1 dimensions, related
d-3

to the ordinary 4-dimensional one via G; = Gy (\/4716715 / 2L0) , with Ly an arbitrary

length needed to ensure the correct dimension of G;.

Action (1) needs to be complemented with the coupling of gravity to world-line
sources, whose most general form in terms of mass m, spin S#* and multipole moments of
electric type I7F and of magnetic type J%/L? can be written as

1 1 g ,
Sy = —m / dr -5 / dT "0y — 5 / dr (e, ™" Roiojr + 5, ™M Rogin ) . @)

The spin antisymmetric tensor S provides a redundant description of the physical
spin §; = %e,»jksfk (see [39]); O*¥ are the components of the relativistic generalization
of the angular velocity of the object, electric multipoles of 2(2+!)-order couple to the Ith
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gradient of the electric part of the Riemann, and symbol L denotes a set of / symmetric,
traceless indices. Note that for multipoles of the magnetic type, we have adopted the
notation introduced in [53], which avoids the use of the Levi—Civita tensor that is not
straightforwardly generalizable to the generic d-dimension. Explicit expression for the
coefficients cg p; can be found in [54,55]. The multipole tensors can be intrinsic to the object
or induced by the external field. It is useful to separate the latter from the former case by
adding them explicitly to Equation (2), e.g., for the quadrupole

Sindl=2 = / dr (CEZ,OR%[()]' + cB2,0RGx + ce2,1 RoiofR™Y + e 1 Royje RO + .. ) , (3)
where cg; ; p; ; are constant quantities scaling as mr§+l+i, 75 is the size of the source, 2GyM
for black holes, and ellipses stand for terms with higher number of time derivatives. Actu-
ally, all terms with an odd number of time derivatives in Equation (3) are total derivatives,
hence they do not contribute to equation of motions derived with time-symmetric boundary
conditions. When dealing with an action principle to derive equation of motions, usually
the in—out formalism, with time-symmetric boundary conditions, is understood, which,
however, cannot account for dissipation, which is exactly what terms with odd number of
time derivatives are accounting for (see, e.g., [50,56] for the values of cgy 1, cp2,1). The correct
treatment of dissipative terms consists in adopting the in-in formalism [57,58]; however,
its description goes beyond the scope of this review. The method for extracting informa-
tion about time averaged dissipation from the imaginary part of the Fourier-transformed
Lagrangian in the in-out formalism will be shown later in this work.

Series (2) and (3) are expansions in terms of rsk and rsw; k = |k| and w are the
typical wave-number and frequency of the Riemann tensor, and thus the multipolar action
expansion parameter is the size of the source divided by the background curvature length,
and in the case in which Riemann curvature is determined by radiation, one has k = w.

The following step is to map actions in Equations (2) and (3) into the description of a
definite physical system. When applied to individual black holes, which can be described
solely by mass and spin (neglecting charge which is astrophysically insignificant), one can
drop all terms in the last integral of Equation (2) but the electric quadrupole one, since Kerr
black holes have a spin-induced quadrupole [59]

I = ﬁsikskj . €y

The induced quadrupoles cgyg oo have been shown to vanish for a Schwarzschild
black hole [60-62], and their value for Kerr black holes is subject to controversy at the
moment, as there are indications that they are vanishing [63,64], and that they are not [65].
For matter sources such as neutron stars, independently on their spin, individual objects
can be endowed with permanent multipoles, as well as induced multipoles of any kind,
coupling to the companion’s gravitational field. The spin-induced quadrupole multipole
can be larger than the black hole one with the same mass by a factor ~4-8 depending
on the equation of state [66], and none of the cry;, cpy; coefficients are expected to vanish
in general. When applied to the binary system as a whole, one can discard Equation (3)
and consider the action in Equation (2) as the coupling of the binary system multipoles
to emitted radiation. In this case, the multipole expanded action (2) is an expansion over
the internal velocity of the source, as k = w ~ v/, so truncation of the expansion to a
finite order correctly represent source with nonrelativistic or mildly relativistic internal
velocities.

2.1. Computation of the Effective Potential

One can use the coupling of the world-line action for either point particles with
no permanent multipoles, i.e., the first two terms in Equation (2), or extended objects,
to derive the effective potential ruling the dynamics of a binary system via Gaussian
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integration. Formally, the effective action S ¢ is obtained by integrating the gravitational
field mediating the interaction out:

Z[ml-,v,-, .. ] = eiseff(mi’vi”") = /'Dhyvei(SEFﬁstl) , (5)

where S, can be taken from Equation (2), possibly adding Equation (3) to take finite size
effects into account, and ellipses stand for all possible world-line degrees of freedom (such as
spin, acceleration, eventually higher derivatives of the trajectory, multipoles, tidal coefficients,
etc.).

While our approach is completely classical, it is necessary to normalize the action in
the exponent of Equation (5) by a constant with dimensions of an angular momentum,
that is, i. However, we will work here at the classical level, i.e., by considering only terms
homogeneous in 1/#; thus, all physical results will be independent on the normalization of
the action.

Neglecting gravitational interactions, i.e., keeping in Sgy only the quadratic, gauge-
fixed, kinetic term, the Gaussian integral for the continuously infinite variables ftw (w, k)
can be performed in analogy to the fundamental one-dimensional case

is _ % Cbaa g\ ina 270 i,
e /Oodxexp( 2Ax —|—z]x> e Aexp(ZIA ]). 6)

According to standard path integral procedure, one can substitute the simple variable
x with the gravitational field, x — hw(t, x). Promoting | to a world-line source, | —
Ja(£)6®) (x, — x) (for a = 1,2), integrating over space-time, and finally taking the logarithm,
one obtains the effective action for matter particles, which schematically is

Serf(Ja) = }L/dTldTZUl(tl)G(tl —ta,x1(t1) — x(£2))]2(t2) @
+J1(t2)G(t2 — t1, x2(t2) — x1(t1)) J2(t1)] -

In the case of gravity, the source charge J, actually stands for the energy-momentum
tensor of particle a, G is the gravitational field Green’s function, the t,s are understood

to be functions of proper times T7,, and Lorentz indices have been suppressed here for
_ 2 05y
. : . . V=g o

The effective potential derived here is manifestly symmetric under 1 <+ 2, as this
construction is tailored for determining the conservative dynamics. The natural choice for

the Green'’s function boundary conditions is the Feynman one

simplicity. (As usual, the energy-momentum tensor is defined by T, =

dw efiwt+ik~x
GF (t/ X) = (8)

K 27T w2 — K2 +ia’
where “a” stands for an arbitrary small positive number, necessary to ensure convergence
of the Gaussian integral with the imaginary unit at the exponent as in Equation (6).

Adopting (a)causal boundary conditions, one can define (advanced) retarded Green’s
functions

Gar(tn) = [ 39 €™ = 1 5(t= )
AR T om (wsia? k2 AT ]

/ ©)

where the last equality holds for d = 3 only. Introducing the Wightman functions

e Tikt+ik-x dw y e
As(t,x) = /kT = kﬂg(iw)é(WZ_kZ)e iwt+ik , (10)
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one finds that [67] (To derive (11) the representation of the Heaviside theta function

o) =i [, g—‘#ufi:a is used.)
Gr(t,x) = —i[0(t)As(t,x)+0(—t)A_(t,x)],
Grltx) = —ilB(t)[A- ()~ A-(t,x)]], (1)
Ga(t,x) = i0(—t)[AL(t,x) —A_(t,x)],
from which one can derive
Gr(t,x) = (Galt,x) + Gr(t,x)) %(Am, %) +A_(£x)). (12)

One then finds that Feynman Green’s function is complex (both in real and Fourier
space), its real part being given by one half of the time symmetric combination G4 + Gg,
and its imaginary part is given by the symmetric combination of Wightman functions
known as the Hadamard function

Grlt%) = 2 (As (%) + A (£,X)), (13)

N —

whose support in Fourier space is only on the light cone, as it can be seen from Equation (10),
whereas Gg 4 r, being given by convolutions of §(w) and A~ (w), have support also inside
the light cone.

Plugging the expression in Equation (12) for Gr into Equation (7), one sees that the
real part of Gr gives the conservative, time-symmetric potential, and the imaginary part
of Gr determines the imaginary part of the effective action, which is related to the “decay
width” I of the process, i.e., it represents the rate of particle emission, which is a genuinely
quantum concept. However, by writing

dw ~

ImS,ps = h/ﬂl"(w), (14)

Seff has been conveniently expressed in terms of an integral over Fourier variable w
conjugate to time, enabling us to relate the intrinsically quantum object I'(w), which is the
w-spectrum of number of emitted particles, to the energy spectrum of emitted particles,
that is, hwI'(w), which has a clear classical counterpart in the case of macroscopically large
number of emitted gravitons.

Equivalently, one can determine the emitted flux by first obtaining the classical gravita-
tional perturbation, which can be computed by solving the linearized Einstein equation for
metric perturbations around Minkowski: g,y = 17,y + hyy, using the transverse-traceless
(TT) gauge for convenience,

h};T(t, X) = _167TGNAij,kl /dt/d3x/GR(t —t,x— X/)Tkl(t/, X/) , (15)

where Ajj; is the standard TT projector, and then compute the energy flux F via the
standard formula

1

F= 1671(;N<

hih'l)y . (16)
See Section 3 of [18] for an explicit demonstration.

At the hearth of the equivalence between the two methods lies the optical theorem,
which equates the imaginary part of the process of emission and absorption of the same
radiation mode with the modulus square of the emission process, i.e., the product of
amplitude for emission by the amplitude of absorption. In summary, the imaginary part of
the effective action in Equation (7) depends on the imaginary part of the Green’s function,
which, for the Feynman choice, is Im(Gr(w)) « §(w? — k?).
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To conclude this subsection, we find it useful to recall the explicit form of Equation (15)
expanded for small internal velocities of the source:

t—|x—x'1],x)

iC Ix — x| (17)
~ TNAij,kl/dt’d3x(Tkl(t—r,x’) + Ty(t—rx)a-x"+...),

hg}T(t, X) — 4GNAij,kl /dt/d3x Tkl(

where |x — x'| has been expanded in the argument of the energy momentum tensor as
r —fi - x" and collapsed to r in the denominator. The expansion parameter of Equation (17)
is v, the same as in the multipolar world-line action Equation (2).

2.2. Method of Regions

The main goal of the two-body problem modeling within the PN approximation is
determining the dynamics in terms of the two body trajectories (and their derivatives) by
integrating the gravitational field mediating the interactions out, i.e., by substituting the
gravitational fields with their values determined by the field equations of motion involving
the sources. This is efficiently performed via path-integral Gaussian integration as sketched
in Section 2.1.

As it is well known [68], gravitational modes separate into longitudinal modes, which
are completely specified by the sources, and radiative ones, which are the ones actually
propagating with the speed of light and taking energy and angular momentum out of
the source.

At leading order, only longitudinal modes contribute to the conservative dynamics, a
fact used in standard approach to PN approximation to decompose the contributions of the
gravitational interactions into a near and a far zone, corresponding to the scale separation
between the size of the binary system r and the gravitational wavelength A ~ T ~ r/v > r
of emitted radiation, with T being the orbital period.

In the near zone, i.e., at distances shorter than or of the order of r, the source appears as
composed of particles, eventually with finite size, whereas in the far zone, i.e., at distances
larger than r /v, the binary system is described as a composite object of negligible size and
endowed with mass, spin, and all sort of multipoles.

Assuming that the world-line action in Equation (2) describes the source dynamics, the
effective potential between two particles with trajectories x,(t,) can be expressed in terms
of the particle energy—-momentum tensors (in mixed time/Fourier-space representation)

T (tK) = mpmn SQ)ZZ)() ek, (18)

and considering for simplicity only the contribution of the 00 gravitational polarization to
the effective action, the only one surviving in the static case, one has

Seff — Glemz/dtldtzfi—:e_iw(tl_m /keik'(xl(fl)—xz(fz))kz — :}2 — (19)

The O(Gy) potential in the small velocity limit can be reproduced by expading the
Green’s function for w < k, i.e., by replacing the expression inside the k integral in
Equation (19) with

/eik‘(xl—xz)% :/eik'(xl_xz)iz Z (C();)m (20)
Jk ks —w k k m=>0 k

After this substitution, the w integration becomes straightforward, and it leads to
5(t; — to) terms and derivatives. Note that the expansion parameter (w/k)? of Equation (20)
then becomes equivalent to (k - v)?/k? ~ v2. Expansion in Equation (20) matches the qual-
itative expectation that the effective potential is mediated by the exchange of off-shell
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longitudinal modes with w < k, not by on-shell radiative modes with k = w. The result is
an instantaneous potential with v corrections arising from the repeated use of

;%wzneiw(tl—fz) = a?] ?2(5(1?1 —t), ey

i.e., relativstic retardation effects are reconstructed by the derivatives of the trajectories.
Approximation in Equation (20) represents a dramatic simplification in the com-

putations but leaves out the contribution of on-shell modes with k ~ w, for which a

complementary expansion can be taken in the far zone, characterized by kr < 1:

ik-(x] —x: 1 1 [lk . (X1 - XZ)]n
/ke . Z)kz—aﬂ:/kkz—wzz n! ’ (22)

n>0

Note that both integrals in Equations (20) and (22) are performed over all values
of k, hence none of the two is expected to reproduce quantitatively the exact result of
Equation (19) for any finite order truncation of the infinite sums. As it will be shown
in a simplified example (see [69] for a formal proof based on [70,71]), the exact result is
given by the sum of Equations (20) and (22), provided dimensional regularization [72] is
adopted in computing the integrals, which consists of extending the three dimensional
integrals to arbitrary d = 3 4- € dimensions and taking the limit € — 0 only at the end of
the computation.

The sketch of the proof goes as follows. Let us define

; 1
k-
I = ¢ rikz—wz’
tor 1 w\"
N = Elk'rf <> , 23
i m%o i @)
ik-r)" 1
F =
n;o nt k—w?’

and rewrite the original k integral of Equation (19) as the trivial identity

AI:Af+A?W+AMk—BU—N—F}+AME—HU—N—FL (24)

with k being a conveniently chosen wavenumber such that w < k < 1/r, hence requiring
that the near and far zone (lenth) scale r and w~! must be well separated. Since for k > k
(near zone), one has k > w, and for k < k (far zone), kr < 1, the full integral I in each region
can be written as

\
>
—~
=
\
=
N~—
—~
I
\.
>
—~
=
\
=
S~—
zZ

=

)
—
=

|

=~
SN—

—~

I

f _ (25)
| 6(k—K)F.

Hence, to demonstrate that the left hand side of Equation (24) is given by the first two
terms only on the right hand side, i.e., by the sum of the integral of the near and far zone
expansions over the full momentum space, one just needs to show that

Aew—@F+Ae@—mN:o, 26)

which holds because both integrands in the left hand side of Equation (26) admit the same
parametrization

/ke(k—fc)p:/kklzm%o (i x) (;ﬁ)m = [oE-0N, @7)
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which vanishes in dimensional regularization.

We have seen that Equation (20) leads to an expansion in terms of v?; in the far zone,
the expansion parameter is ~ wrs (with rs being the size of the source, whether it is a single
fat object or a binary system), which is the expansion parameter of the multipole part of
the action in Equation (2), and for binary systems, one has wr; ~ v/r x r = v.

3. The Conservative Sector

Having presented an overview of the calculation framework, we give in this section
some more details about the tools needed to compute the conservative dynamics. We refer
to [73-77] for the actual near zone computations at respectively 2, 3, 4, and 5PN order.

3.1. Expansion in Terms of Feynman Diagrams

When gravitational self-interactions or nonlinear coupling of the source to gravity are
taken into account, the Gaussian integral in Equation (5) involves bulk terms of the type h*,
with a > 3, or world-line terms of the type | hY, with b > 2. It is then convenient to to treat
all interactions, including linear ones, perturbatively.

In case of the one-dimensional Gaussian variable in the example of Equation (6), one
Taylor expands from the exponential everything but the quadratic term Ax? to be left with
integration of the type

, 1/2 k
k T2\ insaf 2T d 1, 1y
/dxx exp< 2Ax > =e <A) (d]’> exp(sz J

Performing the x integration is equivalent to substituting pairs of x variables with one
Green’s function for each pair, summing over all the possible ways to form pairs.

When dealing with infinite number of fields, such as for fzw, (w, k), the path integral
integration has the effect of replacing each pair of fields in the integrand outside the
exponential with the inverse of what multiplies the quadratic term |/1,,, |* in the exponent,
i.e., the Green’s function. This substitution is called Wick contraction.

Examples of representations in terms of Feynman graphs of processes involving the
direct linear interaction of two sources, interaction mediated by a bulk, cubic self coupling,
and a nonlinear source interaction are shown in Figure 1.

(28)

J'=0

T
!
|
|
|
| /N
!
!
!
L

(a) (b) (o)

Figure 1. Examples of Feynman diagrams representing near zone contributions at leading order (a)
and at v order with respect to leading (b,c).

Another fundamental concept for the derivation of the effective action in terms of
perturbative path integral is the definition of a connected diagram: if by following Green’s
function lines, all the vertices (both gravitational self-interaction and gravity source ones)
can be connected, the diagram is said to be connected; otherwise, it is disconnected.
Only connected diagrams contribute to the effective action. This statement will not be
demonstrated here, but the following is a sketch of the proof.

Let us collectively indicate with | all the source degrees of freedom in Equation (6),
and let us define Zy[]] by setting to 0 all interactions in Z[]]. Taking the logarithm of
Equation (5) and Taylor expanding Z[]] around Z[]], one gets

oo 1\n+1
Seprll = —itog ZolJ] i Y T zon 1z - zoln)"

n=1 n
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In the expression for S,¢f, all terms with n > 1 describe disconnected diagrams, and some
disconnected diagrams are also present, along with connected ones, in the n = 1 term.
However, the n = 1 disconnected contribution is precisely canceled by the n = 2 terms,
and an exact cancellation of all disconnected diagrams happens at all .

Note that among the connected diagrams, one has to consider both nonfactorizable
and factorizable ones, such as the ones in Figure 1, whereas disconnected diagrams such
as the one in Figure 2 do not contribute to the effective action. Factorizable diagrams
have the advantage that they can be computed via simple algebraic manipulations from
lower order ones, a well-known fact that has been exploited, e.g., in [78,79] to show that
near zone static contributions to the effective potential at odd PN orders are completely
ascribable to factorizable diagrams only, whereas at generic order, factorizable diagrams
still make a non-negligible share of the complete set of diagrams, their share growing with
PN order [80]. Factorizable diagrams are then intrinsically less fundamental, implying that
the effective potential is not the most fundamental object to compute, as part of it can be
derived by lower order computations.

Figure 2. Example of a disconnected diagram.

Remarkably, it was observed in [81,82] that the functional dependence of the scattering
angle x on the total energy and the total angular momentum in a two-body (unbound)
scattering process is a more fundamental object to deal with. Indeed, the 3PM dynamics
have been rederived in terms of scattering angles [22,25] and a partial result at 4PM order
(confined to the pontential mode exchange [24]) confirmed earlier results for the effective
Hamiltonian [23].

A crucial observation in the scattering angle approach [27] is that the x dependence on
the symmetric mass ratio v = mymy/ M? is surprisingly (at least for the author) simple. The
Hamiltonian at n-PN order involves terms up to v, whereas v dependence drastically
simplifies for scattering angle, as the exchanged momentum Ap can be schematically
written as

Gymim G
|Ap| = Nblz{q(lpM)‘l'bN(mlqupM)"'m2qupM)>
G} 3PM
+7§(m%q§1 -t o)
(4PM)
2

G3 4PM
+T§[ (m?qgn ) mimagiy

3PM) | o
2 Mgy,

(3PM)) 29)

(4PM) (4PM))

+mimgyy, ) + M3y, +0(GY),

with b being the impact parameter of the scattering, and ql(an) are generic functions not

depending on m » but on the relative velocity only (in the spinless case). Using symmetry
under 1 < 2 in the center of mass frame, and substituting the identities m,/M =

(1£+/1—4v)/2, one obtains

GNE GnM GNM)?
= vZ[XW’MufZx<2PM>+(Nb2)(xSPM> FuxP) .
(GNM)® 1 (aPm) (4PM) 5 30)
R (Xlll +vXip ) +0(GR),

for appropriate functions X i("PM) that do not depend of v nor m », thus showing that terms

involving 11, or equivalently nSF results, allow to determine up (21 +2)PM order scatter-
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ing angle dynamics, being the O0SF order the limit of a test mass in a
Schwarzschild background.

In particular, this simple argument predicts that one can determine up to 4PM dynam-
ics using only the 1SF results, which are well available [83]. This observation has profound
consequences for constraining PM and PM results, as it will be shown in Section 3.4, yet it
is unclear to the author if the argument of [27] connecting nSF results to (21 4+ 2)PM ones
can be extended to the effect of radiative modes at arbitrary PN order.

3.2. Classical vs. Quantum

All the examples in Figure 1 correspond to connected diagrams, two of them being
loop diagrams, i.e., involving an integration over internal momenta. However they all
describe classical processes.

For a generic graph the number of loops, L is given by L = I —V + 1, with V
being the number of vertices and I the number of internal lines (including the solid line
for nonpropagating massive particles). Let us denote with I;, the number of internal
gravitational lines and by I, the number of massive source internal lines, with I = Ij, + ;..
Each Green’s function, being the inverse of the quadratic part of (Sgg + Sgr)/h, brings
a factor 7; each vertex, as it comes from the expansion of Sgy /T, has a factor h~. Note
that in NRGR, the massive bodies are nondynamical source/sinks of gravitational mode;
they are not associated to any Green’s function. Thus, for any graph, we have the quantum
scaling

hlh—v _ hL*[mfl , (31)

where 7171 is the scaling for classical graphs, and it can be straightforwardly verified that
all three diagrams in Figure 1 are classical.

The two-body potential V(x) is a classical concept, and one can derive it from the
computation of relativistic scattering amplitudes A; , ¢ for a process taking from some
two-body initial state i to a two-body final state f via (see, e.g., chapter 6 of [84])

V(x) = —/qAeriq'X/ (32)

where q is a wave number (i.e., momentum divided by 71) and the nonrelativistic normaliza-
tion for the quantum states is understood. In the computation of a matrix element between
states |p) and |p’) mediated by the energy momentum tensor T*V for a particle of mass m,
the relativistically and nonrelativistically normalized amplitudes are related by

~ m ~
<P|TW|P/>(NR); = <P|Tyv|P/>(R)-

Then, for the tree-level graph in Figure 1, assuming for simplicity a matter scalar field
with action Sy given b
¢ 98 y

2
Sp = f% / drd?x (aﬂ(paf*(p - ZZZ(PZ) , (33)

and using that (p|T%|p/)(R) ~ (p°/ h)z ~ (m/h)? for small velocities, one finds the scaling
of the first diagram in Figure 1 to be

. h
Scallngl:igure la ™~ ? <P1 | Tl |P,1> (NR) <P2 | TZ |P£> (NR)
4

h
= (p1|T11ph) R (pa| T2|ph) (R (34)

hf mitiy
13

4
#2 (%)2<%>2m?m2 - mlhmz !
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which correctly reproduces the classical scaling with 7 (and masses) of the diagram.
The diagram () in Figure 1 is slightly more involved, as it includes a loop integral

dicu 1 1 1
k27T w? — K2 +ia w2 — (q—k)? +ia (E+w)? — (p+ k) —m2/i® +ia’

(35)

where (0, q) is the overall wave number exchanged between the two objects, and the
massive body with two gravitational insertions has initial wave number (E, p). In the
nonrelativistic limit E ~ m/#, ip/m — 0, expression (35) gives [85]

h d 1 1 1 h
— [ = . _|1+0(2)], (36)
2m kanz—k2+zaw2_(q_k)2+iaa}+ze m

which can be integrated by closing the integration contour in the upper half-plane to pick
the contribution from the residues at the poles w = —|k| —iaand w = —|k + q| —ia to get

R 1 1 hq
—zm/l(l(zw{l—i-O(mﬂ. (37)

This result is proportional to the loop integral in the potential region of momenta (see
the Green’s function representation in Equation (20)), and it is understood that the region
of integration is |k| < m/h.

This exercise shows that the loop integral in expression (35) has both classical and
quantum pieces, the former being isolated by the limit iq/m — 0; taking such a limit
before performing the loop integration over k kills the quantum part of the diagram.

Going back to 71 power counting, one gets

h

m*h (m)Z(rnz)‘l n mlm% (38)

Scalingr; ~ ~
8Figure 1b mAmy \ T

mimsyp h !
hence it scales as a classical diagram with appropriate mass powers. As a result, we have
shown how classical contributions from loop diagram arise by taking the large mass limit.

3.3. Ultraviolet Divergences

When dealing with loop integrals, it is not unlikely to encounter divergent quantities,
which need regularization to save predictivity of the computations, and the regulariza-
tion mechanism naturally embedded in effective field theory methods is dimensional
regularization.

As an introductory example, let us analyze the divergences of the fundamental 1-loop
diagrmam, which is the standard textbook integral [86]

L 1 ()7 /2 - a)T(d/2 - b)T(a+b—d/2)
1loop = /k kzu(k _ p)2b - (47_[):1/2 F(a)F(b)F(d —a_ b) ’

(39)

and remember that the Gamma function has simple poles for all nonpositive integers.
The poles for a = d/2 and b = d/2 correspond to infrared (IR) divergences of the type

~ i (K?) “2 for k — 0, whereas an ultraviolet (UV) divergence appears fora+b = d/2.
The integral vanishes identically when either a = 0 or b = 0, but care is needed for the

scaleless integral [, (k?) ~“, which is always vanishing, but it can be considered as the sum
of mutually compensating UV and IR divergences for the specific case a = (3 —€) /2 [87]:

1 Ly*( 1 1
/ 3 0 2 ( - ) ’ (40)
k(K27 4T \euv  €IR
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where the arbitrary length scale Ly has been added on the right-hand side to adjust dimen-
sions. Any dependence on Ly vanishes when € — 0, i.e.,, d — 3, and the notation €7y 1r
has been introduced to identify from which integration region the divergences arise, as it
is important to keep track of the nature of divergences, which have different origins and
different physical meanings, as we now discuss. (We could have also introduced aLg;g and
Loyy to clarify which limit the arbitrary L scale originates from.)

Note that the divergences of the scaless integral in Equation (40) does not depend on
7, so one may be tempted to simply discard it as it does not affect the potential; however it
could still enter as a subdiagram of a larger, factorizable diagram overall dependent on 7,
or involve derivatives of the particle velocity, such as |¥| ~ v?/r, thus having an implicit r
dependence.

In general, in gauge theories, UV divergences signal the failure to describe the short-
distance features of the physical problem being modeled: they point to some short distance
incompleteness of the model. Divergences in dimensional regularization appear as a pole
for d — 3 (poles for € 4 0 can be reabsorbed in dimensional parameter redefinitions);
however, since the gravitational coupling has a dependence on the arbitrarily length scale
Ly of the type G, o Lg_3, one has

1 Gn
——= Gy = —(1+e€logLy), 41
(d—3) d €( +€Og O) ( )
so that the effective potential acquires a spurious dependence on the arbitrary quantity L
in presence of divergences.
Since the physical result cannot depend on Ly, there are two main possibilities:

1.  the divergences are unphysical, as one can get rid of them by a field redefinition, i.e.,
a mere change of (field) coordinates, which does not affect observables;

2. aphysical parameter (such as the mass or a multipole moment) acquires a logarithmic
dependence on the typical source-observer distance scale, say 7, at which the physical
parameter is measured, i.e., « log(r/Ly), to compensate for the log Ly dependence
from Equation (41).

It turns out the the UV divergences of the near zone description up to 5PN are of type
1. Considering a generic field redefinition such as

Euv —>g;“, = g‘uv‘f‘(sgyv/
® weo_ M I (42)
Xg =X, = x;+0x,,
that changes the action by the amount
55— %55 + ij 05 syl (43)
S T el

A necessary condition for UV divergences to be absorbed by such redefinition is that
they vanish on the equation of motions, and this is indeed what happens in the conservative
sector of the two-body dynamics as explicitly checked up to 4PN order in [88].

Equivalently, using the language of field theory, it is possible to add to the action
counterterms to cancel the UV divergences, and since they vanish on the equation of
motions, they do not affect any physical observables.

The explicit counterterms respecting the symmetry of the problem are made of curva-
ture invariants and particle trajectory derivatives, and at lowest order, they are

2 .
Se=Y / (it + iRy ! + cigR) (44)
i=1
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with R and Ry, being the Ricci scalar and tensor, respectively, and where a term aiya? has
not been included since it is proportional to the square of the equations of motion (as long
as geodesic motion is considered), hence it can be considered exactly zero.

The Ricci scalar and tensor appearing in Equation (44) on the ith particle world-line
are the ones sourced by the other particle hence they vanish on the equation of motions
(i.e., Einstein equation), and af‘ = 0 because of the geodesic equation. (Note that for a
spinning particle, one can indeed build a term linear in the Riemann of the type [;jR;o;
with a permanent quadrupole given by Equation (4).)

In [88], the values of the counterterm coefficients have been computed, resulting in

11 B
Cig = 736%\]1”? + Cza(LO) ’
o = Gim}+cy(Lo), (45)
cr = 0,

the coefficients ¢; corresponding to arbitrary finite term addition of the counter terms,
which, in general, must be fixed by matching to an observable whose value is affected
by their values. However, as stated earlier, these terms are proportional to equation of
motions, hence the values of the ¢; are completely irrelevant.

At second order in the curvature, a possible invariant term is

2
SRz ™~ Z/dTiCiRZRyvpon‘wl (46)
i=1

which is exactly of the type of the static finite size effect for spinless object introduced
in Equation (3). However, as it is well known [60-62], static tidal effects that would be
generated by this term for nonspinning black holes vanish in 3 + 1 dimensions. The lowest
order diagram in which the Riemann-squared term can enter has the same topology as
the (c) one in Figure 1, and considering that Rffpg ~ 9%h, power counting shows that this
diagram with a Riemann-squared insertion would contribute to S, ff /has Lvl%/h, ie., a
5PN term, in the static case, in agreement with the effacement principle [89]. Indeed, the
near zone contributions to the two-body conservative dynamics have been derived up to
5PN [77], and no finite size effect has appeared.

3.4. Infrared Divergences and Radiative Contributions to the Effective Potential

Infrared (IR) divergences are of a complete different nature, showing that the modeling
is inconsistent at large distances. The source of the inconsistency can be readily identified
in the near zone Taylor expansion Equation (20): the leading k — 0 behavior of the nth
order element of the expansion is ~ 8%”6“""/ k2 o~ k- (dzn’lx / dtzn’l) /k*"  hence the
approximation used in the near zone is bound to create infrared divergences for large
enough n. Equivalently, one can see that expansion in Equation (20) fails to capture the
contribution of modes with k ~ w, which are precisely the radiative ones.

The problem admits a straightforward fix, named zero-bin subtraction [70], which
consists of deleting all IR divergences because they do not belong to the near zone region
(k ~ 1/r > v/r), by combining them with the UV divergences of the far zone. Zero-bin
subtraction can be adopted as a simple recipe justified by the general description of adding
near and far zone integrals outlined in Section 2.2.

The far zone diagrams involve a source endowed with multipoles, which describes

the composite object made by the binary system.
The diagram involving the lowest number of Gy factors is given in Figure 3a, where
a gravitational mode is emitted and reabsorbed, its contribution to the effective action
being [31]
Figure3a = —inGy /700 % ; 7112((:})32(76:
Gy

_ ® dw 407 2
- 10 7OOE|“J“U |L](w)‘ .

[fw‘*aik(sﬂ + 20?5 KK — L il
2 47)
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The diagram in Figure 3a (that contributes to iS.s¢) gives a purely imaginary con-
tribution to the effective action, which, as discussed in Section 2.1, can be related to the
emitted energy since we used the Green’s function with Feynman boundary conditions in
Equation (47). Had we used the causal (retarded or advanced) Green’s function, the result
of Figure 3a would have been identically zero, as in the limit for a — 0 one has

—(w? +ia) — —ilw|,
(@ tia) - il s
—(w+ia)? — Fiw,

having assumed the branch cut on the negative real semiaxis of the w complex plane.

Note that had we inserted in the same diagrams mass M or angular momentum L at
the source-gravity interaction vertex instead of the electric quadrupole I;, the amplitude
would have vanished in both the real and imaginary part because both M(w) and L(w)
have support only for w = 0, being conserved quantities. Substituting I;j(w) with higher
order multipoles would give their contribution to the emitted flux,

© dw -
F =Gy f, /O ST ()2, (49)

where L denotes collectively I (symmetric and traceless on any pair) space indices, with the
numerical coefficients f, g, given by (including those for magnetic multipoles) [54]

(n+1)(n+2)

f = 1(2n "’
i n(n—lé)}l;;.((r%_’_‘;)l)- (50)
o = G Dmr D

At the next order in Gy, one hits on the tail (Figure 3b; see [30]) for the first ever
computation of a tail process, which describes the emission, scattering, and absorption of
radiation [90,91]

2G4 M [
Figure3b = — N / d‘”< LI
0

: e\ 30 T 2log(L0w)>w6|Iij(w)|2. (51)

This diagram contains both a real and an imaginary part, contributing to the real part
of S,rr a UV divergent quantity with its related log(Low) and a finite piece. The result
in Equation (51) has to be combined with the near zone result as per the discussion of
the previous section to obtain the complete binary dynamics and give a finite answer by
canceling the IR divergence there.

To combine near and far zone results, one needs to express the quadrupole in
Equation (51) in terms of individual binary components parameters, according to a stan-
dard procedure that goes under the name of matching, that will be deferred to next section.
However, the leading order quadrupole expression in terms of binary constituents can be
immediately written as

. 1 2 i 6l

TV = /d3xT00 <x1x] — ddijx2> = Z mg (x;xé — dxg) P (52)
a=1

which, once plugged into Equation (51), allows to recover the correct finite result for the

conservative dynamics, with the UV divergence in Equation (51) exactly compensating the

IR divergence from the near zone and the Ly dependence of the logarithm being canceled,

as explicitly demonstrated in [88].
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Figure 3. Diagrams describing far zone processes. Subdiagram (a) is the leading order
emission/absorption process, which is purely imaginary. Subdiagram (b) represents emis-
sion/scattering/absorption of radiation, known as the tail process, where scattering is off the static
background curvature generated by total mass M. Subdiagram (c) involves a three-radiation-mode
interaction, and it is the leading order memory process [31].

Note that the coefficients of the divergence, of the related logarithm, and of the relative
imaginary term are in a simple relationship with one another. This is not an accident of the
quadrupole case, but the relationship can be generalized to arbitrarily multipole (see [31,55]
for details). This implies that the flux coefficients in Equation (50) fix the tail correction to
the flux and also the logarithmic contribution to the conservative dynamics; the logarithmic
term coming from high PN order from the near zone dynamics is fixed because its L
dependence must match the Ly dependence in Equation (51).

This shows that the near zone IR and far zone UV divergences are two sides of the
same coin; the arbitrary replacement of the full theory integral with the sum of two partial
representations introduces spurious divergences that cancel out in the full theory.

In this case, the near zone act as a UV completion of the far zone theory. There is
an additional lesson that we can take from this: what if we had at our disposal only
the far zone, i.e., the low-energy theory, without knowing its UV completion? If that
were the case, we could have rather imposed Ly-independence of the far zone result and
obtain renormalization group equations for physical parameters such as mass, angular
momentum, and multipoles. To describe how this works, we need to compute processes
involving emission of external gravitational modes; that will be the topic of the next section.

What about the imaginary term in Equation (51)? As it should be clear by now, it
appears because of the choice of Feynman boundary conditions for the Green’s functions
of the two radiative modes. Had one used causal boundary conditions, one would have
obtained 1/2(G%(w) + G4 (w)) instead of G#(w), which would have led to the same result
for the real part, i.e., the contribution to the conservative action. Indeed, using definitions
in Equation (11), one has

GF — 1(GA(W) +Gr(@))" = =4 (@)A- (@) +i(Ga(w) + Cr(@))Crl(w),  (53)

with A4 (w)A_ (w) = 0 as Ay (w) have no common support, and no imaginary part would
have been obtained using causal boundary conditions.

For the case of the diagram in Figure 3¢, involving the interaction of three radiative
modes, things are more complicated and still under investigation at the moment of writing
the present work, with apparently mutually inconsistent results in [31,92,93].

In particular, using the argument outlined around Equation (30), at O(GY,), there
should be no v? term in the scattering angle formula. However, using the near zone
result at 5PN of [77] and the far zone one of [31] or [92], such a condition is not satisfied.
This disagreement represents the last obstacle preventing a satisfactorily completion of
the 5PN conservative dynamics. (Note that, formally, the tail result of Equation (51) is
O(G%;); however, it involves the square of the quadrupole derived three times, hence once
expressed in terms of position and velocities of binary constituents, it becomes O(G;{]).)

4. The Radiative Sector

All processeses under consideration so far had the same initial and final states: either
two fundamental particles exchanging gravitational interactions or a composite object inter-
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acting with itself. This section is dedicated to processes involving one external gravitational
mode, such as the ones represented in Figure 4.

1
1
1
1 N
1
1
1

M,L L Iij M
(a) (b) (c)

Figure 4. Leading order (a,b) and next-to-leading order (c) coupling of an external gravitational
mode to a composite source indicated by a double line. Black dashed lines indicate longitudinal
gravitational modes; green wavy lines represent radiative modes. The (a) coupling is non-radiative,
the (b) one is radiative, whose leading tail correction is given by (c).

To express the multipoles in terms of binary constituent parameters, it is necessary to
map diagrams of the type of Figure 5 that represent coupling to radiation as seen in the
near zone into those of Figure 4.

Figure 5. Diagrams describing leading order radiative process from a spinless binary system. The
first one must be supplemented by its mirror image under particle exchange. Green wavy lines
represent radiation; the black dashed line stands for longitudinal modes.

Diagrams in Figure 5 give the following coupling between the radiative field h;; and
the binary system:

e, mq i GNTH2TiTj
—iFigure5 = 2(0’10]1 — M)hij—i-l 2. (54)
Using the Newtonian equation of motion a; = —Gymor/ 73, one can recast Equation (54)

into the standard %I if Roioj of Equation (2), where [ ij at lowest order is given as expected
by Equation (52). The derivation of the equivalence between Equation (54) and 1/21;;Rio;,
with [;; expressed by Equation (52), is a standard textbook exercise that can be obtained
in complete generality, i.e., not necessarily for the binary system case, by repeated use of
the energy—momentum conservation law T"}, = 0. (See [37] for matching calculation of
multipoles up to electric exadecapole and the magnetic octupole.)

The diagram in Figure 4c is the radiative analog of the tail process Figure 3b, and
it gives O(GnyMuw) correction to the leading order radiative coupling of Equation (54).
Relative to the leading order process represented in Figure 4b, it has a finite real part and
an IR divergent imaginary part [44]

Figure 4c = Figure 4b x {1 + GNMw [ZV‘( +i (;R +2log(wLy) + v — 161)] } . (55)
The imaginary part can actually be resummed to a phase and hence drops out of the
modulus squared of the (corrected) quadrupole to determine the emitted flux. However,
such a phase can in principle leave an observable imprint on the waveform, as its shift is
not universal in its finite rational part for all multipoles, while the universal unphysical
divergent (and the irrational) part(s) are unobservable.
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To compute radiation processes at next order, one has to evaluate the diagrams in
Figure 6, which are (G Mw)? corrections to leading order emission process. Such diagrams
also present a UV divergence, which makes manifest the failure of the far zone description
to treat the binary as a single object up arbitrary small scales. The modulus squared of
the sum of diagrams in Figures 4c and 6 gives the (GyMw)? ~ v, i.e., 3PN gravitational
self-interaction (or tail-squared) corrected quadrupole moment entering the flux formula
Equation (16), which is [38]

6
|Ii(]? )|2

1
=14 27GyM|w| 4+ (GyMw)?| B, [ — —2log(wLo) + ... ]|, (56)
|1,(,°)\2 euv
)

where the ellipses stand for a finite part and ;s for any [ have been computed in [94] for
the electric case and in [95] for the magnetic ones.

~ [ [
N N N
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Figure 6. Coupling of radiative mode to a composite source at G2, M? order with respect to leading
radiative diagram given in Figure 4b.

Tail corrections represent the leading order gravitational corrections to the multipoles
scaling with an odd power of v: GyMw ~ ©v3. Additional corrections to the multipoles
come from near zone nPN corrections to the “matching” diagrams in Figure 5, adding v2"
corrections in the expansion of Equation (17).

Differently from the conservative sector, the near zone computation to resolve this
far zone UV divergence has not been performed; however, we have the possibility to use
renormalization group equation to know about logarithmic terms in multipoles. After
subtracting the infinite part, one can write the renormalization group flow equation for
the renormalized quadrupole (which will still be indicated by I'/) by imposing 1 = Ly L
independence of the flux, which is a physical observable, to obtain [38]

ycifij(w,y) = —B,(GNMw)* T (w, 1), (57)

which can be solved immediately for constant M to give [38]

—B1, (GNMw)®
) I (w, n) - (58)

ﬁww—(;

An analog exercise can be performed for tail-squared diagrams to determine the G
corrections to the mass M [96] and angular momentum L [97] to obtain

dlog M :_%&@waﬂﬁm&H@ﬁg

ydlogy ij i ij i ijocijo) (59)
dL! 8GIM 5 (1),(4) , /(2),03

Filogr = 5 (g - 11 + 1))
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By observing that ¢ dependence in M starts only at G%; order, Equation (58) turns out
to be a consistent solution of Equation (57). Short-circuiting Equations (58) and (59), one
finds [98]:

+oo =\

(M) = 1-cy OB g o) a ),
n=1

(60)

. . 12GM 21 n— n n
Jw) = (i) - lsz Og” (BLG*M2)" MV )y,

where the brackets () denote the time average, fi = p/ o and M and [;; without arguments
are understood to be evaluated at the scale pyg.

Such a result can be cast into a more interesting form by finding the leading logarithms
at all order in v of the energy of circular orbit, which is a relationship between two physical
observables: the energy and the frequency of circular orbits. To do so, we must express
the energy and the quadrupoles in Equation (60) not as functions of the velocity v and
radius r of the orbit, which are coordinate-dependent and have no invariant meaning, but
as a function of the invariant orbital frequency w. To obtain a relationship between r, v,
and w, this last one usually traded for the PN parameter x = (GyMw)?/3, we need an
extra piece of information, which is usually provided by the binary constituents equation
of motion. Here, however, it is more convenient to use the information that on circular
orbits [99,100], the differential of the binding energy E and the differential of the angular
momentum modulus | are related by

dE dJ

o~ Yaw’ (61)
also known as thermodynamic relation, derived from the first law of binary black hole me-
chanics for constant individual masses. Equation (61), together with the two Equations (60),
permit to determine r(x) and v(x), leading to invariant functions M(x) and J(x) contain-
ing all the leading logarithms of the invariant energy and angular momentum functions.
Remarkably, these functions admit a resummation, and we report here only the one relative
to the energy [98]

8mu2x?

1581,

This result for the leading logarithmic terms in the energy of circular orbits involves
only up to the next-to-leading order in v (1SF), hence it can be checked with self-force
calculations, from which information about up to the 21PN order has been extracted [101],
showing perfect agreement.

E(x)=—

[(1 +24B,x% log x) AP 1} . (62)

5. Conclusions

The effective field theory modeling of compact binary dynamics is a program currently
under active development whose main phenomenological motivation lies in improving
the templates used for gravitational wave detections. The program has been developed
successfully up to the fourth perturbative post-Newtonian order, where a complete un-
derstanding of the interplay of near and far zone dynamics has been obtained, and it
has been extended to the radiative sector up to third post-Newtonian order and to the
spinning sector.

At fifth post-Newtonian order, the conservative dynamics has been obtained for both
contributions of the potential and radiative modes, but discrepancies recently emerged
by comparing post-Newtonian, scattering angle, and self-force computations show that a
complete understanding of either the interplay between potential and radiative modes, or
of the relationship between scattering angle and bound orbit dynamics, is still lacking.
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Anyway, it is clear that cross-pollination among different investigation methods is the
key to a deeper understanding of the problem that is advancing rapidly, spurred by the
observations that are accumulating at ever-increasing pace.
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