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Записки научных
семинаров ПОМИ

Том 494, 2020 г.

П. А. Валиневич

ПРЕДСТАВЛЕНИЕ МЕЛЛИНА–БАРНСА ДЛЯ

SL(2,C)-МАГНЕТИКА

§1. Введение

Магнетик с группой симметрии SL(2,C) изучался многими автора-
ми [1–4] как по причине фундаментального интереса, так и в связи с
работами Л. Н. Липатова [11] об амплитудах рассеяния в физике высо-
ких энергий. Поскольку данная модель является интегрируемой, к ней
может быть применен весь аппарат квантового метода обратной зада-
чи рассеяния [9, 10]. Для нее были построены все основные объекты,
которые представляют интерес: Q-оператор Бакстера, универсальная
R−матрица и др.

В данной работе будут изучаться собственные функции отдельных
элементов матрицы монодромии. Один из методов построения таких
собственных функций [5] дает для них интегральные представления,
которые мы будем называть представлением Гаусса–Гивенталя. Меж-
ду тем для цепочки Тоды (более простой модели) в работах [6,7] были
получены другие представления для тех же собственных функций в
виде интегралов Меллина–Барнса.

В данной работе мы обобщаем результаты [6,7] на случай SL(2,C)-
магнетика и доказываем, что они совпадают с ранее построенными
функциями [5].

§2. Представления основной унитарной серии и

SL(2,C)- магнетик

Для группы SL(2,C) существует серия бесконечномерных представ-
лений [8], реализуемых на пространстве функций комплексного пере-
менного z. Для элемента группы

g =

(

a b

c d

)

Ключевые слова: интегралы Меллина–Барнса.
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действие оператора представления T (g) на функцию f(z, z̄) дается
формулой

T (g)f(z, z̄) = (a− cz)−2l(d̄− b̄z̄)−2l̄f

(

−c+ az

d− bz
,
−c̄+ āz̄

d̄− b̄z̄

)

. (1)

Оно определяется парой чисел (l, l̄) и будет унитарным относительно

скалярного произведения (f, g) =
∫

d2z f(z)g(z) при условии

l =
1 + n

2
+ iν; l̄ =

1− n

2
+ iν; 2n ∈ Z, ν ∈ R. (2)

Генераторы соответствующей алгебры Ли sl2(C) определяются стан-
дартным образом как коэффициенты разложения элемента группы в
окрестности единицы. Из (1) они имеют вид

S+ = z2∂z + 2lz; S3 = z∂z + l; S− = −∂z (3)

S̄+ = z̄2∂z̄ + 2l̄z̄; S̄3 = z̄∂z̄ + l̄; S̄− = −∂z̄ (4)

и подчиняются стандартным коммутационным соотношениям

[S+, S−] = 2S3; [S3, S±] = ±S±; [S̄+, S̄−] = 2S̄3; [S̄3, S̄±] = ±S̄±.

Генераторы S±, S3 будем называть голоморфными, S̄±, S̄3 – антиго-
ломорфными. Эти наборы генераторов коммутируют и связаны друг
с другом с помощью сопряжения: (S±)

+ = −S̄±; (S3)
+ = −S̄3.

Рассмотрим спиновую цепочку (магнетик), состоящую из N узлов,
с каждым из которых свяжем пространство представления основной
унитарной серии SL(2,C). Будем рассматривать случай, когда во всех
узлах параметры l и l̄ одинаковы (т.е. будем иметь дело с однородной
цепочкой), а граничные условия положим периодическими.

Гильбертовым пространством модели является L2(C
N ), элементы

которого f(z1, . . . , zN , z̄1, . . . , z̄N) в дальнейшем для краткости будем
обозначать f(z).

Для каждого узла определим локальные L−операторы: голоморф-
ный L и антиголоморфный L̄ :

L(u) =

(

u+ S3 S−

S+ u− S3

)

; L̄(ū) =

(

ū+ S̄3 −S̄−

S̄+ ū− S̄3

)

, (5)

зависящие от дополнительной переменной – спектрального параметра
u.
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Матрицы монодромии для голоморфного и антиголоморфного сек-
торов определяются следующим образом:

TN (u) = L1(u) . . . LN(u) =

(

AN (u) BN (u)
CN (u) DN(u)

)

; (6)

T̄N (ū) = L̄1(ū) . . . L̄N(ū) =

(

ĀN (ū) B̄N (ū)
C̄N (ū) D̄N(ū)

)

, (7)

где Lk(u) означает L-оператор, принадлежащий k-му узлу. Как видно
из сказанного, выражения для голоморфного и антиголоморфного сек-
торов отличаются только заменой S на S̄, l на l̄, z на z̄ и т.п. Поэтому
далее в тексте мы будем приводить формулы только для голоморфной
части.

Матрицы монодромии задают набор интегралов движения модели.
Для нахождения их общих собственных функций существует большое
количество приемов в рамках квантового метода обратной задачи рас-
сеяния [9, 10].

В данной же работе нас будут интересовать собственные функции
операторов AN и ĀN :

AN (u)ψλ(z) =
N
∏

k=1

(u−λk)ψλ(z); ĀN (ū)ψλ(z) =
N
∏

k=1

(ū− λ̄k)ψλ(z), (8)

где λ = (λ1, . . . , λN , λ̄1, . . . , λ̄N ) – набор собственных значений функ-
ции. Задачи такого типа встречаются, например, в физике высоких
энергий при изучении амплитуд рассеяния (см., например, [12]).

Из коммутационных соотношений A(u) и B(u) следует, что

B(λk)ψλ(z) ∼ ψλ+ek (z),

где λ+ ek = (λ1, . . . , λk + 1, . . . , λN , λ̄1, . . . , λ̄N ). Коэффициент пропор-
циональности может быть выбран произвольно, и его выбор фиксирует
нормировку функции ψλ(z). Мы выберем её следующим образом:

B(λk)ψλ(z) = (−1)N (λk + l)(λk − l+ 1)ψλ+ek (z). (9)

Из (9) с помощью интерполяции получается формула для действия
B(u) на ψλ(z) при произвольном значении спектрального параметра
u :

B(u)ψλ(z) = (−1)N
N
∑

k=1

(λk + l)(λk − l + 1)ψλ+ek(z)
∏

m 6=k

u− λm

λk − λm
. (10)
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Аналогичные формулы имеют место и для антиголоморфного сектора.
В следующих двух разделах будет приведено два различных метода

построения этих собственных функций.

§3. Представление Гаусса–Гивенталя

Представление Гаусса–Гивенталя для собственных функций мат-
ричных элементов T (u) описано в работе [5].

Введем более удобные обозначения для локальных L операторов
(см. (5)):

Lk(u) =

(

u1 + 1 + zk∂k −∂k
zk(zk∂k + u1 − u2 + 1) u2 − zk∂k

)

. (11)

Здесь введены обозначения u1 = u + l − 1, u2 = u − l, где l – cпин
представления. Спин и спектральный параметр входят в L−оператор
только в таких комбинациях, поэтому мы будем писать L = L(u1, u2).

Матрица монодромии в этих обозначениях записывается как

TN (u1, u2) = L1(u1, u2)L2(u1, u2) . . . LN(u1, u2)

=

(

A(u1, u2) B(u1, u2)
C(u1, u2) D(u1, u2)

)

. (12)

Для SL(2,C)−магнетика существует универсальная R−матрица,
удовлетворяющая уравнению Янга–Бакстера [13]

R12(u− v)L1(u1, u2)L2(v1, v2) = L2(v1, v2)L1(u1, u2)R12(u− v), (13)

где L – операторы действуют в разных пространствах представления
SL(2,C) и в общем вспомогательном пространстве, т. е. перемножают-
ся как матрицы. Оператор R(u− v) действует в тензорном произведе-
нии произвольных представлений и зависит от разностей ui− vj . Если
L1 действует по переменной z1, а L2 – по переменной z2, то R(u − v)
будет оператором, действующим по переменным z1, z2.

Оказывается, его можно искать в виде

R12(u − v) = P12R
(1)
12 (u1 − v1, u1 − u2)R

(2)
12 (u1 − v2, u2 − v2), (14)

где P12 – оператор перестановки (заменяет z1 на z2 и наоборот), а

R
(1)
12 (u1 − v1, u1 − v2)L1(u1, u2)L2(v1, v2)

= L1(v1, u2)L2(u1, v2)R
(1)
12 (u1 − v1, u1 − v2), (15)
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Рис. 1. а) Диаграммное представление оператора R
(2)
12 ,

уравнение (17); б) Обозначение линии на диаграмме.

R
(2)
12 (u1 − v2, u2 − v2)L1(u1, u2)L2(v1, v2)

= L1(u1, v2)L2(v1, u2)R
(2)
12 (u1 − v2, u2 − v2). (16)

Для операторов R(1,2) существуют удобные интегральные представле-
ния [5, 13], из которых нам понадобится следующее:

[

R
(2)
12 (u1 − v2, u2 − v2)Φ

]

(z1, z2)

=

∫

d2w
[z1 − z2]

u2−u1

[w − z1]1+u2−v2 [w − z2]v2−u1

Φ(w, z2). (17)

Здесь введено сокращенное обозначение, которое будет использоваться
повсеместно: [z]α = zαz̄ᾱ, где подразумевается, что α − ᾱ ∈ Z, чтобы
функция [z]α была однозначной.

Для ядра этого оператора будем использовать графическое пред-
ставление, приведенное на рис 1а, где линия обозначает функцию,
изображенную на рис 1б. Полые кружки обозначают внешние перемен-
ные, закрашенные – переменные, по которым ведется интегрирование
(на рис 1а это переменная w).

Такое графическое представление удобно тем, что для интегралов,
содержащих функции вида [w − z]α существует целое семейство со-
отношений [13], которые имеют компактное диаграммное представле-
ние. На рис. 2 приведены основные соотношения, которые понадобятся
в дальнейших вычислениях. На них в правой части написан множи-
тель, который возникает перед диаграммой. Функция a(α) является
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Рис. 2. Правила диаграммной техники.

гамма-функцией на поле комплексных чисел [14, 15]:

a(α) =
Γ(1− ᾱ)

Γ(α)
; a(ᾱ) =

Γ(1− α)

ᾱ
, (18)

где аргументом функции является пара чисел α, ᾱ, удовлетворяющих
условию α − ᾱ ∈ Z, но для краткости мы будем писать только “голо-
морфный” аргумент. Кроме того, a(α, β, γ, . . . ) = a(α)a(β)a(γ) . . . .

Вернемся к вопросу построения собственных функций A(u1, u2) =
T11(u1, u2). Для этого нам понадобится матрица монодромии с изме-
ненным параметром в первом узле:

TN (u1, u2|v) = L1(u1, v)L2(u1, u2) . . . LN(u1, u2)

=

(

A(u1, u2) B(u1, u2)
∗ ∗

)

. (19)

Второе равенство означает, что при изменении параметра u2 в первом
узле элементы в первой строке матрицы монодромии не меняются.
Элементы же во второй строке меняются и они обозначены звездоч-
ками, так как нам не понадобятся.
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Рассмотрим также оператор

ΛN(u1, u2|v)

= R
(2)
12 (u1 − v, u2 − v)R

(2)
23 (u1 − v, u2 − v) . . . R

(2)
N−1,N(u1 − v, u2 − v).

(20)

С помощью (15) можно получить следующее коммутационное соотно-
шение

TN(u1, u2|v)ΛN (u1, u2|v) = TN−1(u1, u2)LN(u1, v)ΛN (u1, u2|v). (21)

Его матричные элементы “11” и “12” будут иметь вид

AN (u1, u2)ΛN (u1, u2|v) = ΛN (u1, u2|v)(AN−1(u1, u2)(u + l + zN∂N )

+BN−1(u1, u2)zN (zN∂N + u1 − v + 1)) (22)

BN (u1, u2)ΛN (u1, u2|v) = ΛN(u1, u2|v)(AN−1(u1, u2)(−∂N )

+BN−1(u1, u2)(v − zN∂N )). (23)

Подействуем правой и левой частью (22) на функцию Ψ̃(z1, . . . , zN )
со специальной зависимостью от последней переменной:

Ψ̃(z1, . . . , zN) = Ψ(z1, . . . , zN−1)[zN ]v−u1−1 (24)

и получим следующее соотношение

AN (u1, u2)ΛN (u1, u2|v)Ψ̃(z1, . . . , zN)

= vΛN (u1, u2|v)[zN ]v−u1−1AN−1(u1, u2)Ψ(z1, . . . , zN−1). (25)

Из него видно, что если Ψ(z1, . . . , zN−1) – собственная функция
AN−1(u1, u2), то ΛN (u1, u2|v) [zN ]v−u1−1· Ψ(z1, . . . , zN−1) будет соб-
ственной функцией AN (u1, u2).

Если теперь представим v в виде v = u− λ, то получим, что

AN (u1, u2)ΛN (λ)Ψ(z1, . . . , zN−1)

= (u− λ)ΛN (λ)AN−1(u1, u2)Ψ(z1, . . . , zN−1), (26)

где

ΛN (λ) = r(λ) [zN ]v−u1−1
Λ(u1, u2|v)

∣

∣

v=u−λ
. (27)

В последней формуле правая часть не зависит от u благодаря специ-
альной зависимости R(2) от своих параметров, см. (20) и (17).

Нормировочный множитель r(λ) имеет вид

rk(λk) =
(

a(l − λk)a(l̄ + λ̄k)
)k

(28)
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и нужен для того, чтобы было выполнено перестановочное соотноше-
ние

Λk(λk)Λk−1(λk−1) = Λk(λk−1)Λk−1(λk), (29)

которое обеспечивает симметричность функций Ψλ(z) относительно
перестановки параметров λ.

Таким образом, собственная функция Ψλ1...λN
(z) оператора A(u)

имеет вид

Ψλ1...λN
(z) = ΛN (λN )ΛN−1(λN−1) . . .Λ1(λ1). (30)

Последний оператор в предыдущей формуле – это просто [z1]
−l−λ1 .

Графическое представление ΛN (λ) для N = 4 приведено на рис. 3а,
а на рис. 3б изображена собственная функция Ψλ1λ2λ3λ4

(z1, z2, z3, z4).
На рисунке переменные, по которым производится интегрирование,
обозначены закрашенными кружками. Параметры линий α = 1− l+λ,
β = 1− l− λ, γ = 2l− 1.

§4. Представление Меллина–Барнса

4.1. Общий вид собственной функции. Рассмотрим теперь дру-
гой метод построения собственных функций A(u), который приведет к
интегральным представлениям другого типа – представлениям в виде
интегралов Меллина–Барнса. Такого типа формулы были получены
для цепочки Тоды в работах Харчева и Лебедева [6, 7]. Наши вычис-
ления для SL(2,C) магнетика во многом аналогичны.

Пусть нам известна собственная функция φγ(z
′) для N − 1 узла.

Для кратности мы ввели обозначение для аргумента

z′ = (z1, . . . , zN−1, z̄1, . . . , z̄N−1),

а набор параметров γ

γ = (γ1, . . . , γN−1, γ̄1, . . . , γ̄N−1).

Эта функция удовлетворяет условиям

AN−1(u)φγ(z
′) =

N−1
∏

k=1

(u− γk)φγ(z
′); (31)

BN−1(γk)φγ(z
′) = (−1)N−1(γk + l)(γk − l + 1)φγ+ek(z

′) (32)

и аналогичным уравнениям для антиголоморфного сектора (про кото-
рый в дальнейшем будем упоминать редко, т.к. для него все вычисле-
ния практически не отличаются).
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Рис. 3. а) Ядро оператора Λk(λk) для k = 4; б) Функ-
ция Ψλ1λ2λ3λ4

(z) (N = 4).

Собственную функцию ψλ(z) для N узлов, удовлетворяющую (8) и
(9) будем искать в виде

ψλ(z) =

∫

DN−1γ µγ Dγ φγ(z
′) [zN ]t−s−l. (33)

В этой формуле использовано много новых обозначений; определим
их.

Мера интегрирования DN−1γ понимается следующим образом: ес-
ли, согласно (2), γj =

nj

2 + iνj ; γ̄j = −
nj

2 + iνj , то

DN−1γ = Dγ1 . . .DγN−1,

Dγj =
∞
∑

nj=−∞

∞
∫

−∞

dνj , (34)
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и суммирование по nj ведется либо по всем целым числам (для целого
nj), либо по всем полуцелым (для полуцелого nj).

Мера интегрирования µγ имеет вид

µγ =
N−1
∏

i,j=1
i<j

a(γi − γj) a(γj − γi), (35)

где функция a(γ) дается формулой (18). Из определения (35) легко
доказать, что

µγ−ek = (−1)N−2
∏

m 6=k

γk − γm − 1

γk − γm
µγ . (36)

Степенная функция [z]γ в (33) определяется как zγ z̄γ̄ , а s и t обо-
значают суммы параметров:

s =

N
∑

k=1

λk; t =

N−1
∑

k=1

γk.

И, наконец, в (33) присутствует функция Dγ , которую мы найдем в
процессе вычислений. (Она также зависит и от λ, но эту зависимость
мы будем указывать только когда это будет необходимо).

4.2. Действие A(u) и B(u) на собственные функции. Из (6) сле-
дуют формулы, которые связывают элементы матрицы TN с элемен-
тами TN−1 :

AN (u) = AN−1(u)(u+ l + zN∂N ) +BN−1(u)zN(zN∂N + 2l); (37)

BN (u) = AN−1(u)(−∂N ) +BN−1(u− l − zN∂N ). (38)

Подействуем A(u) на (33), пользуясь (31)-(32):

A(u)ψλ(z) =

∫

DN−1γ µγ Dγ

{N−1
∏

k=1

(u− γk)(u + t− s)φγ(z
′) [zN ]t−s−l

+ (−1)N−1(t− s+ l)

N−1
∑

k=1

(γk + l)(γk − l + 1)

×
∏

m 6=k

u− γm

γk − γm
φγ+ek(z

′)[zN ]t−s−l+1

}

.
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Во каждом слагаемом из второй строки сделаем замену переменной
интегрирования γk → γk − 1. Тогда весь интеграл превратится в

∫

DN−1γ φγ(z
′)[zN ]t−s−l

{N−1
∏

k=1

(u− γk)(u + t− s)µγDγ

+ (−1)N−1(t− s+ l − 1)

N−1
∑

k=1

(γk + l − 1)(γk − l)µγ−ek Dγ−ek

×
∏

m 6=k

u− γm

γk − γm − 1

}

.

Мы хотим подобрать Dγ так, чтобы выполнялось (8). Пользуясь свой-
ством меры (36), получаем уравнение на Dγ :

N
∏

m=1

(u− λm)Dγ =

N−1
∏

k=1

(u− γk)(u+ t− s)Dγ

− (t− s+ l − 1)

N−1
∑

k=1

(γk + l− 1)(γk − l)

×
∏

m 6=k

u− γm

γk − γm
Dγ−ek . (39)

В правой и левой части этого уравнения стоят полиномы степени N по
спектральному параметру u. Коэффициенты при uN и uN−1 у них оди-
наковы. Следовательно, для того, чтобы они совпадали, они должны
давать одинаковые значения в N−1 точке. В качестве таких точек вы-
берем u = γk, k = 1, . . . , N − 1. Это даст нам более простые уравнения
на Dγ :

Dγ−ek = −

N
∏

m=1

(γk − λm)

(γk + l− 1)(γk − 1)(t− s+ l − 1)
Dγ . (40)

Аналогичные уравнения имеют место при сдвигах антиголоморфных
параметров Dγ−ēk . Решение всего этого набора уравнений имеет вид

Dγ =

N
∏

m=1

N−1
∏

k=1

a(γk − λm + 1)

N−1
∏

k=1

a(l − γk)

a(l + γk)
·

1

a(t− s+ l)
. (41)
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Теперь докажем, что ψλ(z) с выбранным таким образом Dγ будет
удовлетворять (9). По формуле (38) имеем

BN (λk)ψλ(z)=

∫

DN−1γµγDγ

{

(s−t+l)

N−1
∏

m=1

(λk−γm)φγ(z′)[zN ]t−s−l−1

+ (−1)N−1(λk − t+ s)
N−1
∑

n=1

(γn + l)(γn − l + 1)

×
∏

m 6=n

λk − γm

γn − γm
φγ+en(z

′)[zN ]t−s−l

}

.

В каждом слагаемом второй строки сделаем замену переменной γn →
γn − 1. Тогда правая часть превратится в

∫

DN−1γ φγ(z
′)[zN ]t−s−l−1 ·

[

(s− t+ l)

n−1
∏

m=1

(λk − γm)µγDγ

+ (−1)N−1(λk − t+ s+ 1)
N−1
∑

n=1

(γn + l − 1)(γn − l)

×
∏

m 6=n

λk − γm

γn − γm − 1
µγ−enDγ−en .

Согласно (9), это должно быть равно

Cλ

∫

DN−1γ φγ(z
′)[zN ]t−s−l−1 µγ Dγ(λ+ ek), (42)

где Cλ – числовой коэффициент. Докажем, что он равен (−1)N(λk +
l)(λk − l + 1).

Для Dγ(λ+ ek) из явного вида Dγ имеем

Dγ(λ+ ek) =

N−1
∏

s=1
(γs − λk)

t− s+ l − 1
Dγ (43)
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Из предыдущих выражений пользуясь свойством меры (36), а также
(43) и (40), получаем следующее соотношение

Cλ

N−1
∏

s=1
(γs − λk)

(t− s+ l − 1)
= (s− t+ l)

N−1
∏

m=1

(λk − γm)

+
(λk − t+ s+ 1)

(t− s+ l − 1)

N−1
∑

n=1

N
∏

s=1

(γn − λs)
∏

m 6=n

λk − γm

γn − γm
. (44)

Отсюда после сокращений получаем, что

Cλ = (−1)N−1(s− t+ l)(t− s+ l − 1)

+ (−1)N(λk − t+ s+ 1)

N−1
∑

n=1

N
∏

m=1
m 6=k

(γn − λm)

∏

m 6=n

(γn − γm)
. (45)

Далее воспользуемся формулой

N−1
∑

n=1

∏

m 6=k

(γn − λm)

∏

m 6=n

(γn − γm)
= t− s+ λk, (46)

которая легко доказывается, если записать левую часть в виде опре-
делителя. Тогда (45) превращается в

Cλ = (−1)N−1 {(s− t+ l)(t−s+l−1)−(t−s+λk)(λk − t+ s+ 1)} .

и после некоторых алгебраических преобразований получаем

Cλ = (−1)N (λk + l)(λk − l + 1),

что соответствует (9).
Таким образом, функция (33) cDγ определяемой (41) удовлетворяет

(8) и (9).

§5. Эквивалентность двух представлений

Докажем теперь, что два разных представления для собственных
функций A(u) ( Ψλ(z) – представление Гаусса–Гивенталя (30), и ψλ(z)
– представление Меллина–Барнса (33)) совпадают.
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Однако у этих функций разные нормировки; найдем множитель,
который бы обеспечивал выполнение условия (9) для функции в пред-
ставлении Гаусса-Гивенталя.

5.1. Нормировка. Как было доказано в [5], функции Ψλ нормиро-
ваны условием

∫

DzΨλ(z)Ψλ′(z) = µ−1
λ δ(λ− λ′), (47)

где интегрирование ведется по всем переменным z : Dz ≡ d2z1 . . . d
2zN ,

а функция µλ в правой части дается формулой (35). Формула (47)
следует из локальных перестановочных соотношений для операторовΛ

Λ†
k(λ

′
k)Λk(λk) =

π2

(λk − λ′k)(λ̄k − λ̄′k)
Λk−1(λ

′
k)Λ

†
k−1(λk). (48)

Найдем множитель, который бы обеспечивал Ψλ(z) такую же нор-
мировку (9), как и у функций ψλ(z) в представлении Меллина-Барнса.

Для этого воспользуемся рекуррентной формулой (38)

Bk(u)Λk(λk) = Λk(λk) [Bk−1(u− λk − zk∂k)−AN−1(u)∂N ] . (49)

Применим правую и левую часть к ΨN−1(z) и воспользуемся формулой

Ψ(λ1,...,λN−1,λN )(z) = ΛN (λN )Ψ(λ1,...,λN−1)(z
′) (50)

которая напрямую следует из (30). Тогда при u = λ1 второе слагаемое
исчезает, и мы приходим к

BN (λ1)Ψ(λ1,...,λN )(z) = (λ1 + l)BN−1(λ1)Ψ(λ1,...,λN−1)(z
′). (51)

Применяя такое же разложение к BN−1(λ1) в конечном счете придем к
B1(λ1)Λ1(λ1). Последнее легко вычисляется и равно (λ1+ l)Λ1(λ1+1).
Таким образом,

BN (λ1)Ψλ(z) = (λ1 + l)NΨλ+e1(z)

В силу симметрии функции Ψλ(z) по параметрам λk, такие же фор-
мулы можно написать для u = λk, т. е.

BN(λk)Ψλ(z) = (λk + l)NΨλ+ek(z), k = 1, . . . , N. (52)

Зная это, можно подобрать такой множитель Cλ, чтобы CλΨλ(z) удо-
влетворяло (9). Тогда утверждение, которое мы доказываем будет
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иметь вид ψλ(z) = CλΨλ(z). Подставляя сюда явный вид Cλ, имеем

ψλ(z) =

N
∏

k=1

a(λk − l + 1)

[a(λk + l)]N−1
Ψλ(z). (53)

Идея доказательства (53) изложена в следующем параграфе.

5.2. Идея доказательства. Предположим, что система функций
Ψλ(z) в представлении Гаусса-Гивенталя является полной. Тогда функ-

цию Ψ
(N)
λ (z) для цепочки из N узлов можно разложить по полно-

му набору функций Ψ
(N−1)
γ (z′)Ψ

(1)
ξ (zN ), где функции в одном узле

Ψ1(zN ) = [zN ]−ξ−l. Условие однородности функций Ψ приводит к тому,
что параметр ξ должен быть равен s− t. Таким образом, разложение
будет иметь вид

Ψ
(N)
λ (z) =

∫

Dγ µγ D̃γ(λ)Ψ
(N−1)
γ (z′)[zN ]t−s−l. (54)

Здесь для удобства мы явно выделили меру µγ , чтобы сделать фор-
мулу (54) похожей на (33). Умножим правую и левую часть (54) на

Ψ(N−1)
λ′(z′) и проинтегрируем по z′. Тогда, пользуясь ортогонально-

стью (47) получим

D̃γ(λ) = [zN ]s−t+l

∫

Dz′ Ψ
(N)
λ (z)Ψ

(N−1)
γ (z′). (55)

Пусть (53) верно для N − 1. Тогда оно будет верно для N, если будет
доказано, что

D̃γ(λ) = Dγ(λ)
N−1
∏

m=1

a(l − γm)

[a(1− l − γm)]N−2

N
∏

k=1

a(λk − l + 1)

[a(λk + l)]N−1
, (56)

где Dγ(λ) – коэффициенты, возникающие в (33), для которых было
получено выражение (41). Для этого нужно вычислить скалярное про-
изведение в правой части (55).

5.3. Вычисление скалярного произведения. Первым шагом к
вычислению скалярного произведения является упрощение вида функ-

ции Ψ
(N)
λ (z). Это удобно делать на языке диаграмм, используя пред-

ставление 3б. С помощью многократного применения правил (c) и (d)
преобразования диаграмм с рис. 2 к вертикальным линиям рис. 3б,

диаграмма для функции Ψ
(N)
λ (z) станет такой как на рис. 4. В резуль-

тате такого преобразования возникнет множитель.
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Рис. 4. Преобразованная диаграмма собственной
функции (N = 4).

Поскольку γk, λk имеют вид

γk =
1

2
nk + iνk; γ̄k = −

1

2
nk + iνk; n ∈ Z, ν ∈ R.

а l, l̄ даются формулой (2), то при сопряжении степени меняются сле-
дующим образом: αi → 1− αi, βi → 1− βi.

Скалярное произведение
∫

Dz′Ψ
(N)
λ (z)Ψ

(N−1)
γ (z′) тогда изобразится

в виде диаграммы на рис 5. На ней штрихованные переменные соот-
ветствуют параметрам γ : α′

k = 1− l+γk, β
′
k = 1− l−γk. Единственной

внешней переменной будет zN .
Она вычисляется с помощью преобразования (c) с рис. 2 и правила

интегрирования цепочки (a). Сначала (a) применяется к двум верх-
ним линиям, затем образовавшаяся линия переносится в низ диаграм-
мы многократным использованием (c). В результате сверху образуется
две цепочки, к которым снова применяется (a) и т. д. Результатом вы-
числения такой диаграммы, c учетом множителей rk в определении
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Рис. 5. Скалярное произведение
∫
Dz

′ Ψ
(N)
λ (z)Ψ

(N−1)
γ (z′)

для N = 4.

оператора Λk(λk), будет

D̃γ(λ) =
N
∏

k=1

a(αk)[a(1 − βk)]
N−1

N−1
∏

m=1

[a(β′
m)]N−1 (57)

Подставляя только что полученное выражение и (41) в (56) нетруд-
но убедиться, что оно выполняется. Следовательно, функция Ψλ(z) в
представлении Гаусса-Гивенталя и функция ψλ(z) совпадают с точно-
стью до нормировочного множителя, который дается формулой (53).
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Valinevich P. A. Mellin–Barnes representation for SL(2,C) magnet.

We consider SL(2,C) spin magnet and construct eigenfunctions for
the element A(u) of the monodromy matrix. We use recursive procedure
which gives representations of these functions in the form of Mellin-Barnes
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type integrals. We compare these functions to those constructed earlier by
S. Derkachov and A. Manashov (Gauss–Givental representation) and prove
that they coincide up to normalization factor.
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