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In this note we consider whether there could be Swampland constraints associated to the presence of 
fermions in the theory. We propose that any fermion must couple to an infinite tower of states, and 
that the mass scale of this tower, in Planck units, is set by the strength of the Yukawa coupling to the 
tower. This is a type of fermionic version of the (magnetic) Weak Gravity Conjecture. We also find that 
supersymmetry plays a natural part in this fermionic realisation, which motivates a further proposal 
that supersymmetry can only be broken below the scale set by this Yukawa coupling. We perform some 
preliminary checks in string theory of these ideas.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The Swampland program aims to establish constraints on ef-
fective theories coming from a consistent ultraviolet completion to 
quantum gravity (see [1] for initial work and [2,3] for reviews). 
Two important such proposed constraints are the Weak Grav-
ity Conjecture (WGC) [4] and the Swampland Distance Conjecture 
(SDC) [5] (see also [6,7] for a refined version). The magnetic WGC, 
or more precisely extensions of it [7–12], proposes that given a 
gauge field with gauge coupling g , there must be an infinite tower 
of states with a mass scale mg∞ which satisfies

mg∞ ∼ gMp . (1)

The SDC proposes that given a canonically normalised scalar field 
φ there exists an infinite tower of states with a mass scale mμ∞
depending exponentially on φ (for large φ > Mp ), so schematically 
mμ∞ ∼ e−αφ Mp for some α ∼ O(1)M−1

p . We can rewrite this state-

ment in a suggestive way, by defining μ ≡ ∣∣∂φmμ∞
∣∣, as

mμ∞ ∼ μMp . (2)

There is a clear similarity (pointed out in [13]) between (1) and (2)
once we note that both μ and g are the values of the cubic cou-
plings of the associated field to the massive tower of states. These 
cubic couplings appear in two types of diagrams, in the exchange 
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force diagram and in the 1-loop self-energy diagrams. This is illus-
trated in Fig. 1.

The proposals (1) and (2) seem to be respected in all known 
string theory examples. But what could be the physics underlying 
them? One reasoning, as in the original proposal [4], is that (1)
could be related to black holes and monopoles, or to a requirement 
that gravity should always be the weakest self-force [4,13,14]. In 
that case the conditions on the couplings would be due to their 
appearance in exchange diagrams like (a) in Fig. 1 (see, for exam-
ple, [15–21] for studies of relevant interaction strengths).

A different (though possibly related) proposal for the physics 
underlying (1) and (2) comes from considering wavefunction 
renormalization. This is the so-called emergence proposal [3,12,
22–24]. We can rewrite (1) suggestively as [12,23]

1

g2
∼

N∑
n=1

q2
n , (3)

where qn = n is the (increasing) charge of a state in the tower, and 
the sum is up to N states in the tower with

N3 ∼
(

Mp

mg∞

)2

. (4)

The rewriting in (3) is such that the right hand side corresponds to 
the running of the gauge coupling, due to diagrams of type (b) in 
Fig. 1, from integrating out N states in the tower of charged states. 
Setting this approximately equal to the left hand side is the state-
ment that the gauge coupling receives an order one contribution 
in the infrared from integrating out these states.

Note that within the emergence proposal (3) is taken to mean 
that the gauge coupling is generated by the tower of states such 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Figure showing two Feynman diagrams in which the cubic couplings of (1)
and (2) appear. Case (a) is associated to forces and possibly to black hole discharge. 
Case (b) is instead associated to running of the gauge coupling and the emergence 
proposal.

that any ultraviolet contribution at the top of the tower (or more 
precisely after N states) is restricted to be order one or vanish-
ing.1 This can equivalently be understood as the statement that 
the gauge field becomes strongly coupled at the scale

�s ∼ Nmg∞ ∼ Mp√
N

, (5)

which is the so-called Species scale [3,25–36]. This is the natural 
scale at which gravity becomes strongly coupled.

The same analysis applies to the case of scalar fields as in (2)
[12,24]. Therefore, both (1) and (2) are explained by a requirement 
that their kinetic terms in the infrared are of order the contribu-
tion to them from integrating out the tower of states at one-loop. 
This can be motivated as a type of unification at a single scale, or 
as evidence that the dynamics of the fields are emergent in the 
infrared from integrating out the tower of states (so they are not 
dynamical fields at the species scale).

There are a number of open questions about this analysis. The 
most prominent being that there is no known microscopic the-
ory valid at the species scale in which the integrating out can be 
explicitly performed. Nonetheless, at least in toy-models of emer-
gent gauge fields which are calculable, the kinetic term for the 
gauge fields does behave like the naive integrating out of massive 
charged states (see [3,22] for a discussion of this in the present 
context). We will not discuss these issues in this note, only study 
the application of the emergence proposal assuming it has some 
validity.

2. Distinguishing couplings from expectation values

The constraint (2) is a way to state the distance conjecture for 
φ > Mp . However, the emergence proposal states that it should 
hold by itself, which is a more general statement than the distance 
conjecture, and it is important to make this distinction. The con-
straint (2) is proposed to hold as behaviour associated to having 
μ � 1, and should be most accurate in a parametric limit μ → 0. 
But this is unrelated, in general, to the expectation value of φ, so 
should hold even if φ has a vanishing expectation value. In other 
words, the limits φ → ∞ and μ → 0 are in general completely 
independent.2 The distance conjecture is only the sub-case of (2)
where μ and φ are correlated such that φ → ∞ =⇒ μ → 0. Of 
course, since string theory has no free parameters, μ is still set by 
an expectation value of some scalar field, and μ → 0 is expected 

1 This is actually a self-consistency requirement on the proposal in order to keep 
the tower contribution to the kinetic term of order one at any scale up to the top 
of the tower.

2 The constraint (2) as independent of the distance conjecture or emergence pro-
posal was first proposed in [13,15]. Its most natural name would be the magnetic 
Scalar Weak Gravity Conjecture, within the context of [12,13].
to correspond to some infinite distance limit in field space, but not 
necessarily the field space of φ.

Given the independence of (2) from the distance conjecture, 
there is an important point to clarify about its meaning. The cou-
pling μ is taken to be the coupling to an infinite tower of states, 
not to any particular state. So it is perfectly allowed to have μ = 0
for the coupling of a scalar to any particular state. However, for any 
scalar, there should exist an infinite tower of states with an associ-
ated coupling μ such that the mass scale of the tower respects (2). 
In this sense it is effectively a statement about the kinetic terms 
of the scalar, which affect the coupling to all states.

There are not many studies in string theory of (2) for cases 
where the coupling μ is independent of the scalar field expecta-
tion value. Such checks would actually be very important as test of 
the emergence proposal, and in some sense are prerequisite to the 
analysis for fermions presented in this note. We have performed a 
small preliminary analysis of some string theory tests and discuss 
them in appendix A.

3. Applying to fermions

In the emergence motivation, the couplings are constrained be-
cause they appear in diagrams of type (b) in Fig. 1. An important 
difference between diagrams of type (a) and (b) is that diagrams 
of type (b) can be considered with the gauge field replaced by a 
fermion, while there is no fermionic self-force possible in type (a) 
diagrams.

The emergence proposal can therefore be readily applied to 
fermions. This would lead to a natural Swampland constraint: 
given a fermion (either spin- 1

2 or spin- 3
2 ) in the effective theory, 

there must exist an infinite tower of states such that the kinetic 
term of the fermion receives an order one contribution from inte-
grating the tower out.

First we consider the generic case, where χ is a spin- 1
2 fermion 

which has Yukawa couplings to the infinite tower of states. Because 
of its fermionic nature we cannot write a coupling completely 
analogous to the gauge field and scalar field, where it is the same 
state running in the loop. Rather, the loop must involve a fermion 
and a scalar. Therefore, the most natural coupling involves a tower 
where at the nth level there is a scalar hn and a fermion ψn , which 
couple as

Ynhnχψn . (6)

We let the coupling strength increase up the tower proportional to 
the level in the tower

Yn ∼ Y n . (7)

For the contribution from integrating out the tower to be of order 
one the mass scale of the tower mY∞ is related to this coupling as

mY∞ ∼ Y Mp . (8)

The statement (8) is then the spin- 1
2 analogue of the spin-1 ex-

pression (1) and the spin-0 expression (2).3

There is a subtlety, that the relation (8) holds only when the 
tower contribution to the kinetic terms comes from renormaliz-
able Yukawa couplings. As we discuss below, for the cases of the 
gravitino and goldstino, it turns out that also non-renormalizable 
couplings can lead to an order one contribution to the kinetic term 
through 1-loop diagrams. Therefore, the general statement is that 

3 For the bosonic case we may also consider a general spin-2 state. The massless 
case is gravity and leads to the Species scale. For a massive Spin-2 field this should 
match onto the spin-2 conjecture in [37].



E. Palti / Physics Letters B 808 (2020) 135617 3
either (8) holds, or χ has an appropriate non-renormalizable cou-
pling of the type that goldstinos and gravitinos posses.4

There are a number of key differences between (8) and gauge 
and scalar cases. First, note in (6) we introduced both a scalar and 
a fermion for each level of the tower of states, rather than just a 
single state at each level. This is our first encounter with a sugges-
tion that the tower of states should be supersymmetric. Actually, 
we could have induced the running with just one state at each 
level through couplings of type Ynhχψn or Ynhnχψ . This is cer-
tainly a possibility that is consistent with the emergence proposal. 
However, it is strange in the sense that it does not associate the 
relevant states purely to the tower. In other words, it raises the 
question of what distinguishes the special field h or ψ which is 
not part of the tower.5 Also, as briefly mentioned in section 7, in 
the case where the fermion carries some charge it is natural to 
pair up states from different levels in the tower which would only 
work with something analogous to (6) (with a shifted level and 
charge between the fermion and the boson). Therefore, we believe 
that (6) is the more natural expectation.

Another difference is that the Yukawa couplings increasing with 
level (7) does not arise naturally for a fermion. For a gauge field it 
relates to the increasing charge of states, while for a scalar field it 
arises because the coupling relates to the mass of the states which 
is increasing up the tower.6 If the tower is supersymmetric then 
the increasing Yukawa coupling (7) is explained by the relation to 
either a gauge or scalar superpartner. So again we see that super-
symmetry is naturally introduced.

An important difference, related to the previous point, is that 
the overall Yukawa factor Y in (7) is not normalised across all 
the states which couple to the fermion χ . By this we mean that, 
say for a gauge field, charge quantization implies that the g fac-
tor is universal to all the charged states. So it is not possible 
to make one charged state parametrically weakly coupled with-
out making all the charged states weakly coupled.7 In general, as 
discussed in section 2, this is no longer true for a scalar which 
can couple arbitrarily weakly to a state, while maintaining strong 
coupling to other states. For a pseudo-scalar there is an analogous 
normalization where charge quantization is replaced by instanton 
number.8 The case of a fermion is similar to a generic scalar, there 
is no normalization in general. Say we consider a coupling of χ
to some particular field, which is not part of the tower, which is 
very weak. This does not imply that the coupling to the tower Y
must be small. So having a fermion with very small Yukawa cou-
pling to some fields does not imply a light tower of states.9 This 
makes (8) less constraining than its vector version. Note that if the 
small Yukawa coupling is induced by the normalisation of the ki-
netic term of the fermion, then such a suppression of the coupling 
would be universal and so include the coupling to the tower of 

4 It is natural to expect that gravitinos and goldstinos are the only fermions which 
satisfy the emergence proposal through these couplings, since as we will see, they 
are universal and gravitational in behaviour. This suggests that any other fermions 
would indeed satisfy (8). Note also that a similar issue of ambiguity occurs for 
scalars, where again a universal coupling through dimension 5 operators suppressed 
by the Planck mass will satisfy the emergence proposal.

5 For the case of ψ we may consider an identification ψ = χ natural.
6 Note that the dependence on the tower level n may be modified, say as √n, but 

some dependence is expected. It is, however, not strictly necessary, it is possible to 
integrate out a tower of states with the same charge say, for example as discussed 
in [12].

7 This is true at least in a diagonal basis of gauge fields. By appropriate mixing, 
say through kinetic terms, it is possible to induce fractional charges.

8 This is part of the axion version of the WGC. There is also a version for higher 
dimension objects, which corresponds to a quantization condition for higher anti-
symmetric degree tensors.

9 In the case where the tower is supersymmetric and the fermion is part of a 
vector multiplet, so a gaugino, then this normalisation is fixed again by supersym-
metry.
states. Such a scenario would then be more strongly constrained 
by (8).

In the case of a Spin- 3
2 field, a consistent microscopic descrip-

tion of such a fundamental field requires that it should be the 
gravitino. So it intrinsically requires supersymmetry, and we dis-
cuss it in the next section.

4. Supersymmetry

We have seen that there are natural suggestions that supersym-
metry should be approximately restored at the tower mass scale 
m∞ . In that case, all fermions are related to some field of spin 
0, 1 or 2. Therefore, their Swampland constraints follow from the 
bosonic ones. The simplest case is when the fermion is part of 
a vector multiplet (so a gaugino), which then relates the overall 
Yukawa coupling Y in (7) to the gauge coupling Y = g . In the case 
of a chiral multiplet we have the relation to the scalar coupling 
Y = μ.

The gravitino �μ couples purely through operators suppressed 
by the Planck mass

1

Mp
�μSμ . (9)

Here Sμ is the supercurrent which carries dimension 7
2 and con-

tains terms like

Sμ ⊃ (Dνh)∗ γ νγ μχL , (10)

where h is a boson and χL a (left hand component of a) fermion. 
See, for example, [38] for a good account of gravitinos.

We can do a simple dimensional analysis of the 1-loop con-
tribution from gravitino interactions to their kinetic terms. These 
should be suppressed by M2

p and be dimensionless and so, up to 

irrelevant logarithmic factors, should go as 
(

�
Mp

)2
where � is the 

cutoff scale of the theory. Taking N fields running in the loop, and 
the cutoff scale as the Species scale, gives the contribution to the 
kinetic term

N

(
�s

Mp

)2

∼ 1 . (11)

As expected from supersymmetry, this is consistent with the emer-
gence proposal.

Another interesting fermion is the Goldstino χG . Upon F -term 
supersymmetry breaking the Goldstino has two interaction terms 
(see, for example [38])

1

F
χG∂μSμ

m + 1

Mp
χGγμS

μ
m . (12)

Here Sμ
m is the contribution to the supercurrent from the matter 

fields excluding the Goldstino.
It is interesting to consider the first term in (12). In flat space, 

the F-term is related to the gravitino mass m 3
2

as F ∼ m 3
2

Mp . The 
divergence of the supercurrent is only non-vanishing due to su-
persymmetry breaking and so goes approximately as (m 3

2
)2. This 

yields a Yukawa coupling of the goldstino which satisfies YG Mp ∼
m 3

2
. Comparing with (8) we would have that m∞ ∼ m 3

2
which 

would mean that there is no effective theory of the supersymme-
try breaking.

The second term in (12) allows us to avoid this conclusion. It 
is of a similar form as the gravitino interaction (9) and so yields 
a contribution of order one. This is expected since the Goldstino 
becomes the helicity- 1 polarization of a massive gravitino.
2
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5. Supersymmetry breaking scale

In section 3 we proposed a number of motivations for includ-
ing supersymmetry at the tower mass scale m∞ in order to ensure 
emergence for fermions. As expected, and outlined in section 4, 
if supersymmetry is restored at that scale then the fermionic re-
quirements automatically follow from the more familiar bosonic 
ones.

Motivated by these ideas, we are therefore led to a natural 
proposal that a Swampland constraint is that supersymmetry is 
approximately restored at the tower mass scale for the towers as-
sociated to fermions as in (8). So, denoting the supersymmetry 
breaking scale mSU SY , we have that

mSU SY < mY∞ . (13)

Actually, we will see that some refinements of the statement 
(13) are required. More precisely, mSU SY should be the supersym-
metry breaking scale sensed by the tower of states. So the mass 
splitting of the bosons and fermions in the tower. As well as of 
course the fermion χ itself. If there are multiple couplings and as-
sociated towers, then each tower has an associated mSU SY . It may 
be that supersymmetry is broken up to a higher scale in some 
other sufficiently sequestered sector of the theory. This possibility 
seems to be suggested by examples in string theory. In terms of 
constraints on the effective theory for the fermion χ this is not so 
important, the effective theory essentially feels the restoration of 
supersymmetry below the scale in (13).

While the motivation for (13) holds for fermions, it is possi-
ble to consider a stronger version of it that it should hold for 
any of the infinite towers. So this strong version would state that 
(13) holds for any of mg∞ , mμ∞ and mY∞ , as in (1), (2) and (8). 
Heuristically, this can also be motivated by the idea that these are 
ultraviolet scales where physics begins to complete towards quan-
tum gravity, and so naturally supersymmetry is expected to make 
an appearance at those scales.

Such a strong version appears, at least naively, too strong. For 
example, we may consider a non-supersymmetric theory and com-
pactify on a circle. The scale mg∞ for the graviphoton is then the 
Kaluza-Klein scale. We can send this to zero by decompactifying, 
this would take us to the original higher dimensional theory which 
has a non-vanishing supersymmetry breaking scale. More gener-
ally, this example is a proposal for a setup where we have a gauge 
coupling which can be varied independently of the supersymme-
try breaking scale. Whether something like this can be realised in 
string theory is not completely clear. This is because all coupling 
constants are dynamical and so must also be fixed by some poten-
tial which can tie them to the supersymmetry breaking effects. In 
section 6 we will study some simple string theory cases, and there 
at least it seems even the stronger version holds. On balance, we 
remain agnostic about the strong version. It would be very inter-
esting to see if there is more evidence for it from string theory, or 
if there are good counter examples.10

6. Preliminary tests in string theory

A supersymmetric vacuum of string theory will satisfy the con-
jecture (8) as long as it satisfies the Swampland constraints (1)
and (2). As discussed in section 2, the constraint (2) is actually 
different from the distance conjecture, and so while it has passed 
many tests in string theory, and we discussed some further ones 
in appendix A, it is still not as well established as the original 

10 See, [39,40] for some initial studies of the Swampland conjectures in string the-
ory setups with broken supersymmetry.
magnetic Weak Gravity Conjecture (1). Still, we will assume that 
it holds here. If we then break supersymmetry below the tower 
mass scale for the fermions, as proposed to be required by (13), 
then the fermionic constraint (8) will also be satisfied since the 
tower will not feel the effect of supersymmetry breaking. There-
fore, in searching for violation of (8) we first require a violation of 
(13).

We are not aware of any violation of (13) in string theory. Since 
Y is a coupling to an infinite tower of states a suppression of it 
would be expected to occur through parameters controlling the 
kinetic terms of the fields. In this section we will study such uni-
versal suppression of all Yukawa couplings through dependence on 
the string coupling and volume factors.

In looking for violations of (13) it is natural to look for settings 
in string theory which break supersymmetry as strongly as possi-
ble. There are a number of completely non-supersymmetric string 
theories [41–43]. While all of these exhibit instabilities, we may 
consider them as testing grounds. As shown in [44] (see, for ex-
ample, [45,46] for recent expositions), non-supersymmetric strings 
do not restore full supersymmetry at any scale but rather exhibit 
‘misaligned supersymmetry’. However, the effective theory below 
the String scale effectively restores supersymmetry at the string 
scale, and it is only a tower of massive states which break it. 
This is the same as in Scherk-Schwarz supersymmetry breaking 
where there is a tower of winding modes which exhibit a non-
supersymmetric spectrum even if the size of the extra dimension 
is taken to infinity. The low-energy theory however does exhibit 
supersymmetry in that limit, with only exponentially small correc-
tions coming from the massive winding modes. Further, even in 
misaligned supersymmetry the mass splitting of the states is al-
ways of order their mass, and so is effectively satisfying (13) at all 
levels with the tower mass scale being the string scale. All in all, 
it seems that effectively supersymmetry is always restored at the 
string scale.

6.1. String coupling dependence

As an initial test, we may therefore consider if mY∞ can be 
made parametrically smaller than the string scale. We will anal-
yse this generally with the parameter being the string coupling gs . 
We keep track of the factors of string coupling as follows. We ab-
sorb factors of gs in the vertex operators into the fields. The factor 
of gs for a given operator in the theory is therefore determined by 
the topology of the amplitude which determines it. We will only 
be concerned with tree-level operators and so they come with a 
prefactor of g−p

s with p = 1 for open strings (disc) and p = 2 for 
closed strings (sphere). We then take the fields to be dimension-
less and complete the dimensions with the only mass scale in the 
theory, the string scale Ms . So for a D-dimensional effective the-
ory the kinetic terms for scalar φ, fermion χ and their Yukawa 
coupling take the schematic form

1

g p
s

M(D−2)
s (∂φ)2 + 1

g p
s

M(D−1)
s χ∂χ + 1

g p
s

Ŷ M D
s φχχ . (14)

In D-dimensions the relation (with respect to the string coupling 
dependence) between the string scale and Planck mass is

Ms ∼ g
2

D−2
s Mp . (15)

Now we need to canonically normalise the fields by absorbing ap-
propriate powers of gs from the kinetic terms. So write the cubic 
coupling as

Y φ̃χ̃ χ̃ M D
p , (16)

with
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φ̃ = g
1− p

2
s φ , χ̃ = g

D−1
D−2 − p

2
s χ , (17)

the (dimensionless) canonically normalised fields. The canonically 
normalised Yukawa coupling Y then has gs dependence of

Y ∼ Ŷ g

(
p
2 −1

)
D+(4−p)

D−2
s . (18)

Comparing (15) and (18) we find that taking gs → 0 contributes 
towards ensuring mY∞ > Ms whenever D > 2. For closed strings 
p = 2 we have that mY∞ ∼ Ms for any D , while for open strings 
p = 1, mY∞ is parametrically higher than Ms at weak coupling.

We therefore conclude that the string coupling gs cannot be 
used to violate (13), and for open-string fields always works to-
wards satisfying (13) more strongly. In particular, this means that 
in non-supersymmetric string theories, where the only parameter 
is gs , (13) is satisfied.

Actually, even the stronger version where the susy breaking 
scale is smaller than the towers associated to any couplings is sat-
isfied. So say for the S O (16) × S O (16) Heterotic string we have 
mg∞ ∼ Ms .

6.2. Volume dependence

A way to break supersymmetry through dimensional reduction 
which is compatible with string theory is through the Scherk-
Schwarz mechanism [47]. More generally, this can be understood 
as compactifying on manifolds with torsion.11 Let us consider 
such a setup with a compactification average scale R . The scale 
of supersymmetry breaking is then the Kaluza-Klein scale MK K . 
Therefore a parametric test of (13) is whether it is satisfied with 
mSU SY ∼ MK K , for any value of R .

To illustrate the point we will ignore any dependence on the 
string coupling, and consider dimensional reduction on a circle 
(the case of reduction on higher dimensional manifolds will fol-
low simply). Let M̂p denote the higher dimensional Planck mass, 
say in D dimensions. Then we follow a similar analysis as in (14), 
so start with

M̂(D−2)
p (∂φ)2 + M̂(D−1)

p χ∂χ + Ŷ M̂ D
p φχχ , (19)

with Ŷ the Yukawa coupling in the higher dimensional theory.
After the dimensional reduction the lower dimensional Planck 

mass Mp is related to the higher dimensional one through

M̂p

Mp
∼ 1(

RMp
) 1

D−2

. (20)

Using this we find that mY∞ , associated to the canonically nor-
malised lower dimensional Yukawa coupling Y , takes the form

mY∞ ∼ Y Mp ∼ Ŷ M̂p . (21)

The Kaluza-Klein scale is

MK K ∼ M̂p

RMp
∼ mY∞

Ŷ RMp
. (22)

We therefore see that the R dependence works towards satisfying 
(13). This analysis is simple to generalise for higher dimensional 
reductions and therefore suggests that when breaking supersym-
metry by compactification effects, increasing the volume of the 
compactification will always work towards respecting (13).

It is worth noting that also in Scherk-Schwarz breaking of 
supersymmetry, the stronger version of (13) applied also to 

11 By duality, this should also capture supersymmetry breaking by fluxes.
the gauge coupling holds, with the gauge field here being the 
graviphoton that has an associated mg∞ ∼ MK K ∼ mSU SY .

The analysis of the volume scaling is relevant for Yukawa cou-
plings of bulk fields which are not localised in the extra dimen-
sions. If we consider fields localised, for example on D-branes, 
then the expectation is that their interaction strengths will only 
get stronger since their wavefunctions are less diluted. If super-
symmetry breaking is mediated gravitationally to their sector, and 
therefore is diluted by the full volume, then (13) should continue 
to hold.

We can also consider complicated scenarios of supersymmetry 
breaking in string theory (which are under less microscopic con-
trol). For example, the Large Volume Scenario [48] proposes a non-
supersymmetric vacuum of type IIB string theory. In this proposal 
the supersymmetry breaking scale is controlled by the volume V
as mSU SY ∼ V−1. Yukawa couplings for fields living on D-branes 
behave as Y ∼ V0 and Y ∼ V− 1

2 depending on if the branes are on 
contractible or large cycles [49]. While these are Yukawa couplings 
between massless fields, they can be taken as an indication for the 
coupling to the massive tower, and so suggest that (13) is satisfied.

We may consider a strongly warped region or throat in the ex-
tra dimensions and attempt to suppress the Yukawa couplings this 
way. However, the towers of states, say those tied to the string 
scale or Kaluza-Klein scale, are also reduced due to the warping. Or 
in other words, the system inside a warped throat contains not just 
the fermion but also the full tower of states, and so their coupling 
is not expected to be suppressed by this. It would be interesting to 
perform a more quantitative analysis of this.

Finally, we can consider how the strong version of (13), where 
we may replace the tower mass scale by mg∞ say, fares in string 
examples. For a specific example, we may take the Large Vol-
ume Scenario above, where we can make the gauge coupling of 
D7 branes very small. These wrap four-cycles and so we should 
have g ∼ V− 1

3 , which satisfies (13). There is also a general inter-
esting relation for closed-string couplings (which may be gauge or 
higher form). These, by the Weak Gravity Conjecture, bound the 
tension of associated D-branes. If we then break supersymmetry 
by introducing non-supersymmetric D-branes, then the supersym-
metry breaking scale should be at most of order the brane tension 
and so be bounded from above by the associated coupling.

7. Discussion

In this note we considered what Swampland conditions may be 
associated to the presence of fermions in the theory. Motivated by 
the idea of emergence, we proposed that there must exist an infi-
nite tower of states which couple to any fermion in the theory. The 
mass scale of this tower is set by the strength of the Yukawa cou-
pling of the fermion to the tower (8). This is a fermionic version 
of the (magnetic) Weak Gravity Conjecture.

While the fermionic constraint is analogous in many ways to 
the vector field Weak Gravity Conjecture, there are some funda-
mental differences. Perhaps foremost is the point that for a generic 
fermion (and also a generic scalar) there is no overall normaliza-
tion of the Yukawa couplings, which means it can couple very 
weakly to some particle while still coupling strongly to the massive 
tower of states. This implies that the conjecture does not necessar-
ily imply a light tower of states if a fermion has any small Yukawa 
coupling to any field. In this sense, it is unfortunately less predic-
tive. However, still, a fermion cannot couple weakly to all fields 
without having a light tower. In particular, this restricts the kinetic 
terms of the fermion, which affect all couplings.

The fermionic constraint appeared to be tied to the presence 
of supersymmetry at the tower mass scale. This motivated a fur-
ther proposal that for the tower of states associated to fermions, 
supersymmetry must be effectively restored by the mass scale of 



6 E. Palti / Physics Letters B 808 (2020) 135617
the tower (13). So if a fermion couples weakly to all fields, then 
supersymmetry must be broken at a low scale.

We made some preliminary checks of these proposals in string 
theory, and these were consistent with them.

As a precursor to the fermionic analysis we also, in section 2
and appendix A, clarified some aspects of the constraint (2). In 
particular, emphasising its independence from the distance con-
jecture, and performing some simple tests in string theory of its 
validity.

An aspect which we did not explore in detail is the role fermion 
charges under symmetries play in the conjecture. It would be in-
teresting to explore how such a charge would affect the conjecture 
and what this could imply for the charges of the towers of states. 
In particular, it is natural to expect that if the fermion is charged 
then the tower should have increasing charges. This way one is 
able to always form a neutral Yukawa coupling by taking states 
from different levels in the tower. A small piece of evidence to-
wards this is that a way to make open-string modes couple weakly 
is by diluting their wavefunction. This means making the cycle 
wrapped by the brane they are on very large. This is the same limit 
as making the gauge coupling small, which is proposed to lead to 
a light tower of charged states of increasing charges. It would be 
interesting to perform more quantitative tests of this.
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Appendix A. Scalar couplings in string theory

In this appendix we make some comments on, and very simple 
tests of, (2) in string theory for cases where μ is not controlled 
by the scalar expectation value.12 The case where μ → 0 coincides 
with φ → ∞ corresponds to the Swampland Distance Conjecture 
which has been extensively tested.

One setting where general checks can be made is for scalars 
controlling the volumes of cycles, and for their axionic super-
partners. For concreteness we can consider the Kahler moduli of 
type IIA compactifications on a Calabi-Yau to four dimensions, la-
belled here as φ, but the argument is, through dualities, general. 
The Kahler moduli have associated towers of states corresponding 
to wrapped (even dimensional) D-branes. The mass scale of this 
tower schematically behaves as (see, for example [3])

m∞ ∼
(

Ms

Mp

)
φ . (A.1)

This can be understood by noting that φ gives the volume of the 
cycle wrapped by the brane, and the mass should go like the string 
scale. Now we consider the coupling of the fields to the branes,

μ ∼ ∂φm∞ ∼ Ms

Mp
. (A.2)

Actually, (A.2) is not quite right for two reasons. First, since the 
volume of the cycle φ is not a canonically normalised field (the 

12 There was an analysis in [50] of the emergence proposal at finite distances in 
field space which is in the same spirit. We will consider much simpler settings in 
this section.
canonically normalised field actually leads back to exactly (A.1)
again in examples we could study). But this is not important be-
cause of the limit we will consider. The second reason is that Ms

depends on φ, but taking a derivative of it only induces a sublead-
ing additional term in (A.2).

The point is then rather simple, we can send μ → 0 by varying 
the other fields such that Ms

Mp
→ 0. But clearly m∞ would retain the 

same parametric dependence. In such a setting, the scalar φ has a 
fixed expectation value for the μ → 0 limit, but still (2) is satisfied. 
In fact, we could apply the same logic to the axion superpartner 
of φ, and the result would be the same, this time holding for the 
case where the scalar has vanishing expectation value. While this 
analysis seems simple and obvious, it actually underlies (through 
dualities) the general μ → 0 limits in field space of closed string 
moduli, as studied for example in [12,51,52].

The previous analysis is general for towers of wrapped states, 
but it is important to allow for the possibility that those states 
are not a tower of particles but possibly to some extended objects 
(which exhibit a tower of states). For example, strings with a tower 
of oscillator modes (for example, as in [16,53–56]). The mass scale 
m∞ would then be associated to the tension of the objects. As 
discussed in many places, see for example the review [3], allowing 
for such a generalisation is important in the case of scalar fields 
(and will also be true for fermions).

More evidence is that in the case of N = 2 supersymmetry one 
can prove that for any scalar field in the vector multiplet moduli 
space there exists an infinite number of charges whose associated 
BPS states satisfy μMp > m∞ [13]. This proof holds at any point in 
moduli space, so is unrelated to the expectation value of the par-
ticular scalar which couples to the BPS states. In all known points 
in moduli space this inequality is an approximate equality, thereby 
satisfying (2).

Informative tests would be in the context of open-string fields, 
especially since they are charged under gauge symmetries. How-
ever, in general the tower of states associated to open string 
modes is difficult to analyse quantitatively as it is expected to be 
composed of non-perturbative states [16]. Nonetheless, since open 
string fields can be uplifted to geometry in F-theory and M-theory, 
it is natural to expect that they will also satisfy the constraint. It 
would be good to test this in future work.
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