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Abstract

In this dissertation we explore two issues relating to Loop Quantum Cosmology
(LQC) and the early universe. The first is expressing the Belinkskii, Khalatnikov
and Lifshitz (BKL) conjecture in a manner suitable for loop quantization. The
BKL conjecture says that on approach to space-like singularities in general rela-
tivity, time derivatives dominate over spatial derivatives so that the dynamics at
any spatial point is well captured by a set of coupled ordinary differential equa-
tions. A large body of numerical and analytical evidence has accumulated in favor
of these ideas, mostly using a framework adapted to the partial differential equa-
tions that result from analyzing Einstein’s equations. By contrast we begin with a
Hamiltonian framework so that we can provide a formulation of this conjecture in
terms of variables that are tailored to non-perturbative quantization. We explore
this system in some detail, establishing the role of ‘Mixmaster’ dynamics and the
nature of the resulting singularity. Our formulation serves as a first step in the
analysis of the fate of generic space-like singularities in loop quantum gravity.

The second issue is that of the role of inflation in LQC. In LQC the big bang
singularity is replaced by a quantum bounce which is followed by a robust phase
of super-inflation. We establish the behavior of effective equations for LQC in
a generic setting then investigate in detail the particular case of early universe
inflation caused by the slow roll of a scalar field down its potential. A natural
measure is formed on the space of solutions to the equations of motion and it is
established that in this scenario the a prior: probability of seeing the required 68
efolds of inflation is in fact very high which stands in stark contrast to the results
that have been presented in the classical case. In doing so we show that inflation
in LQC suffers from no ‘fine tuning’ issue and is in fact a generic feature.
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Chapter

Introduction

From the inception of relativistic cosmology, it has been apparent that General
Relativity admits singular solutions of physical interest. Initially the presence
of singularities was the subject of a great deal of debate - some claimed that the
presence of singularities was an artifact of the symmetries imposed on cosmological
solutions and would not be present in more physically realistic solutions and in
particular the Russian school believed that the singularity itself was not a true
physical solution to the theory. This issue was ultimately laid to rest by the
powerful singularity theorems of Penrose in 1965[1], which showed that singularities
occur under very general conditions making them an essential feature of general
relativity. However, despite showing that a singularities did indeed exist little was
known about the dynamics of space-time near a generic singularity.

An alternate perspective on this is that the presence of a singularity is the
result of applying the equations of General Relativity (GR) outside of their re-
gion of validity. In this viewpoint, GR is simply the low energy limit of a more
complicated physical model. Indeed, since no physical test has been made in the
high curvature regime, this idea cannot be ruled out. Several models have been
produced which make classical corrections, mostly inspired by the idea that GR
is non-renormalizable. Corrections to the Einstein-Hilbert action involving higher
powers of the Ricci scalar or contractions of multiple copies of the Riemann tensor,
the so-called ‘f(R)’ theories[2], are amongst the more popular as by construction
they can include GR as a low curvature limit.

The issue of singularities is of great importance in any approach to Quantum



Gravity. Singularities are an aesthetic issue in any physical theory, and one which
it is expected that a deeper understanding of nature will resolve. It is deeply
unsatisfying to consider that there is a point in time before which no further
information can be known. It is to be hoped, therefore, that a more complete
model will enable us to look beyond this horizon and extend our understanding of
our past.

It is also expected that any complete theory of Quantum Gravity must agree
with GR within the latter’s range of validity. Deviations from the established
theory are only to be expected at very high energy scales, and therefore singu-
larities are our best hope of observing these deviations. Through understanding
the classical approach to a singularity one can gain insight into which aspects of
a quantum theory are the most relevant, and therefore what questions to ask of

phenomenology. Thus singularities provide a window into the quantum world.

1.1 History of the Universe According to Gen-
eral Relativity

In 1922 Friedmann provided a homogeneous, isotropic solution to Einstein’s equa-
tions [3]. Here the notion of dynamical space, as opposed to the absolute space
of Newton was applied for the first time in cosmology. In this solution it was no-
ticed that at finite time in the past the size of the universe shrank to zero, whilst
the energy-density and curvature became infinite. Despite the presence of these
features in Friedmann’s model, their implications were first really understood by
Lemaitre[4] - that they implied that the universe began with a singularity, dubbed
the ‘big bang’. In 1935 Robertson [5] and Walker [6] independently proved that
Friedmann’s metric described every cosmological scenario in which the vacuum
speed of light is held constant. Although this is now widely accepted initially the
idea that history ended to the distant past was considered unappealing - leading
even Einstein to add a cosmological constant in an effort to yield a static universe.

According to what has now become the standard model of cosmology ! the

universe began with a big bang around 1.5 x 10'° years ago (in planck units,

'Here we use the term ‘standard model’ to mean widely accepted and not out of any reference
to the standard model of physical interactions



5 x 10% s, ago). ? This point is the past singularity of our cosmological solutions.
From this point until the first planck second (10742 seconds) little is known, as the
universe was in the ‘planck era’ - during which it is assumed quantum mechanical
effects dominated dynamics. There then followed, over the next 1073¢ seconds
(105 s,) a period of ‘inflation’ in which the universe underwent an accelerated
expansion. If one believes grand unification theories, then inflation must continue
past the point of symmetry breaking of these theories and during the production
of magnetic monopoles|60].

This epoch is followed by a period of reheating, when the inflaton decays into
a relativistic plasma. This is the electroweak period[7] which takes place over the
next 10712 seconds (10% s,). After around 1079 seconds (10%° s,) quarks form, yet
the temperature is still above that which would allow for hadron formation. At
this point the four fundamental forces have become distinguishable.

Between 107% and 1 second (10*? s,,) the process of baryogenesis[8] begins and
hadrons such as protons and neutrons form. At this point the cosmic neutrino back-
ground forms as neutrinos are now decoupled from other matter. This is followed
over the next 10 seconds (10*® s,) by a lepton dominated phase[9] which ends with
lepton /anti-lepton annihilation producing a photon dominated regime[7]. During
this regime, between 200 and 1000 seconds (2 x 10* — 10% s,,) nucleosynthesis[10]
can occur producing hydrogen and helium nuclei. The photon dominated regime
lasts for around 300, 000 years (10°° s,). At the end of this period, the temperature
is low enough that the first atoms can form, and the universe becomes transpar-
ent to photons. This is the point at which the Cosmic Microwave Background is
formed giving us a picture of the universe at this time.

In this thesis we will discuss two aspects of this history from a perspective of
Loop Quantum Cosmology. The first is an investigation of the BKL conjecture
which posits a simplification of Einstein’s equations applicable to regions in a close
neighborhood of a singularity. The second is an examination of the phenomena of

effective equations for LQC and the role of the inflationary epoch therein.

2We will denote the ‘planck second’ by Sp = \/’Zi? which is a convenient until when dealing
in particular with quantum cosmology. Numbers given in this section are there to establish their
orders of magnitude rather than exact values. Throughout this thesis we will work with planck
units, obtained by setting G =h=c=1



1.2 The BKL Conjecture

In 1970, Belinskii, Khalatnikov and Lifshitz (BKL) made a conjecture which, if
proven would shed considerable light on the nature of space-like singularities in
GR: It is proposed that in the neighborhood of a singularity time derivatives would
dominate over spatial derivatives, implying that the asymptotic dynamics would
be well described by a series of coupled ordinary differential equations rather than
partial differential equations. Although at first this appears an unlikely result,
there is a growing body of evidence both analytic and numerical which supports
this view.

Specifically the conjecture proposes that at any point in space the geometry
is well described by the Bianchi I metric for long stretches of time periodically
undergoing Bianchi II transitions. At specific points, gradients can grow, forming
spikes, but the dynamics remains local.

It is now known in LQC that the Bianchi I and II singularities are resolved.
This suggests that there may well be a general result which says that all space-
like singularities of the classical theory are naturally resolved in loop quantum
gravity. It is difficult to test this idea using the current formulations of the BKL
conjecture since these approaches are motivated by the theory of partial differential
equations rather than by Hamiltonian or quantum considerations. In particular,
most approaches perform a rescaling of their dynamical variables by dividing by
the trace of the extrinsic curvature. Such a procedure is difficult to reproduce in
LQC as this would require an inverse extrinsic curvature operator. In the analysis
presented here, we reformulate the BKL conjecture in a way more suited to loop

quantization and explore the resulting system both analytically and numerically.

1.3 Effective Equations and their Implications

It has been observed both analytically and numerically that the effective equations
for the simplest models of LQC closely match the full quantum dynamics not
only in the infrared regime but throughout the entire evolution of the universe.
This remarkable feature of the effective equations leads us to ask questions of

their physical phenomena even away from these simple models to provide hints



as to where quantum effects should be manifest in the full theory. Through a
careful analysis of the effective system of LQC we are able to show that there are
signature features of these cosmologies in their full evolutions: Physical parameters
such as the Hubble expansion rate and the total matter density remain bounded
throughout an entire trajectory, attaining their bounds, and thus point towards
where potential tests of the full theory may be performed.

It is also shown that under fairly generic conditions the effective system ex-
hibits welcome geometrical features of a bouncing cosmology. The scalar curva-
ture is bounded from above and the system undergoes a period of superinflation, a
phenomenon not present in GR except in cases when energy conditions are broken
or the matter action is non-minimally coupled. This superinflationary phase is

generally short lived yet sufficient to connect contracting and expanding branches.

1.4 Loop Quantum Cosmology and Inflation

Inflationary models of the early universe have enjoyed a huge amount of success in
explaining physical phenomena. The most striking result is a natural mechanism
for structure formation. However, despite this success there is widespread concern
that inflation requires ‘fine tuning’ of initial parameters - that one may have to
require the state of the universe to be highly non-generic or chosen very carefully
for sufficient inflation to occur. In particular, Gibbons and Turok have claimed that
the probability of obtaining the required efolds in the expansion of the universe
is suppressed by a number on the order of 10788 - this would imply that further
non-trivial input is required to explain how the universe came to be in such a
state. However this calculation required a series of assumptions; since the space of
solutions is non-compact space certain cut-offs or regularizations had to be imposed
by hand.

In the LQC case, the corresponding space is in fact compact, a result that stems
from the discreteness of the area parameter in Loop Quantum Gravity. Therefore
LQC provides a system in which this calculation can be performed much more
directly. In doing so we observe that the number of solutions exhibiting less than
68 efolds of inflation is negligible in comparison to those which inflate enough.

Thus in the context of LQC coupled to a massive scalar field, inflation is a natural



mechanism through which the universe expands sufficiently, generically solving

problems such as the overabundance of monopoles in the early universe.



Chapter

The BKL Conjecture

2.1 Introduction

Originally formulated by Belinskii, Khalatnikov, and Lifshitz in 1970 [12], the BKL
conjecture states that as a space-like singularity is approached, time derivatives
dominate over spatial derivatives. Thus partial differential equations are replaced
by ordinary differential equations and the dynamics of GR become local and os-
cillatory, and with the significant exception of a scalar field, matter contributions
become negligable - to quote Wheeler ‘matter doesn’t matter’. Thus each spatial
point acts like a homogeneous cosmology, which were classified by Bianchi [13].
The simplest solutions being those with no intrinsic curvature, the Bianchi I met-
rics, and the next those with intrinsic curvature along one direction, the Bianchi II
metrics. The BKL conjecture posits that the dynamics of each spatial point follow
the ‘Mixmaster’ behavior - a sequence of Bianchi I solutions bridged by Bianchi II
transitions. Initially this conjecture, based on a heuristic analysis on the Einstein
field equations, was easy to dismiss as it appears coordinate dependent, breaking
one of the fundamental tenets of General Relativity. !

Recently both numerical and analytic investigations have provided a great deal
of support for this conjecture. Although there has not been significant progress
towards a proof of the conjecture in the full theory there has been outstanding

progress in simpler models. Berger[14], Garfinkle[15] Moncrief[16], Isenberg[17]

!This chapter follows the work of the author in [11].



and Weaver[18] showed that for a class of models the solutions to the Einstein
field equations approach the ‘Velocity Term Dominated’ solutions obtained by
neglecting spatial derivatives as the singularity is approached. Andersson and
Rendall [19] have shown that for General Relativity coupled to a massless scalar
field or a (VTD) stiff fluid even in the absence of symmetries for every solution to
the VTD equations there exists a solution to the full field equations that converges
to the VTD solution as the singularity is approached. In these VTD models the
BKL behavior is simpler, allowing a precise statement of the conjecture that could
be proven.

Numerical evolutions have provided the most convincing argument for the BKL
conjecture to date. Berger and Moncrief began a program to analyze generic
cosmological singularities [20]. Initially much work was done in symmetry reduced
cases [21]. More Recently Garfinkle has performed numerical evolution of space-
times with no symmetries in which again the Mixmaster behavior appears to be
present.

In this chapter we will begin by expressing GR in ‘first order’ terms, and
introduce a set of variables that are motivated by the BKL conjecture. The BKL
conjecture is applied in the form of a truncation of our constraints and the resulting
dynamics explored, establishing known features of Mixmaster dynamics such as the

‘u-map’ and spikes.

2.2 Preliminaries

We will consider spacetimes of the form “M = R x 3M where 3M is a compact 3-
dimensional manifold (without boundary). We will formulate GR in terms of first
order variables, the basis of loop quantum gravity. These consist of pairs of fields
consisting an orthonormal triad, E;‘ and its conjugate momentum K’ which on
solutions will correspond to extrinsic curvature. The fundamental poisson bracket

is given by

{Ef(x), K] (y)} = 6]56°(x — y) (2.1)

Herein, early letters, a,b,c, denote spatial indices while i,j,k denote internal



indices which take values on so(3) - the Lie algebra of SO(3). Tildes are used
to denote density weights of quantities; a tilde above indicates that the quantity
transforms as a tensor density of weight 1. These variables are related to the older

Arnowitt, Deser and Misner (ADM) counterparts by

E{En” = qq® (2.2)
KiB? = K, 23)

where g, is the metric on the leaf 3M, ¢ its determinant, and K, the extrinsic
curvature of M.
In terms of these variables we perform a 3+1 decomposition of space-time in

which our Hamiltonian is [23]

1

HIE, K] = — 3

~ 1  ~ e
NS+ SNV + (*A-1)9G, (2.4)

which is a sum of constraints with Lagrange multipliers. The Lagrange mul-

tipliers [NV ,IN¢, the lapse and shift, are related to the choice of slicing and time.

(1A - )% is related to rotations in the internal space. The constraints S, V,, and

éij are the scalar, vector, and Gauss constraints respectively. The constraints are
23]

S =-—qR-2EEYKLK] (2.5)
V. =4E'D,Kj (2.6)
Gij = _E[(;Kaj} (27)

Where R is the scalar curvature of the derivative operator D, compatible with
the metric qu. The overall sign and numerical factors in the constraints are chosen
so they reduce to the ADM constraints upon solving the Gauss constraint. R can
be written in terms of the triad and its inverse or in terms of the triad and the

connection compatible with the triad T'%.
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D,E! + ¢, I EP = 0 (2.8)
) 1 ~
=3 Ep Do E2e* (2.9)

a

The equations of motion are obtained by taking Poisson brackets with the

Hamiltonian.

Ee = {E° H|E, K]} (2.10)
Ki ={K! H[E, K]} (2.11)

The phase space variables that form the basis of loop quantum gravity can be

simply obtained from {E?, K!} by a canonical transformation.

(Be,Ki} — {AL 4B} (2.12)
Al =T, + K] (2.13)

For clarity of presentation we will work with the phase space (Ef, KY).

2.3 BKL Motivated Variables

It is not immediately apparent how to apply the BKL conjecture in terms of this
Hamiltonian formulation. A number of questions immediately arise: What kind
of derivatives dominate as one approaches the singularity and what kind become
negligible? Derivatives of what quantities are to become negligible? A framework
due to Uggla, Ellis, Wainwright and Elst (UEWE)[24] gives a rigorous statement of
what the BKL conjecture is by answering these questions in the ADM formalism.
Applying the conjecture to their equations of motion they obtain a simplified
systems that successfully describes the expected oscillatory BKL behavior. Further
their form of the BKL conjecture is supported by numerical evolutions. We will

motivate the definition of our variables and our form of the conjecture from their
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framework.

Drawing motivation from the scale-invariant framework of Uggla, et al [25] we
define a set of variables that are adapted to describe the BKL conjecture and
that are suitable for quantization. Of particular use in this framework is a ‘Hubble
normalized triad” K ~'e? which is expected to become degenerate at the singularity.

From this the ‘scale invariant variables’ are formed:

Yij = 3K elK,; — K 'e{KFs, (2.14)
Ny = —3K 'e{Tq + 3K 'eflhd; (2.15)
A = —¢/"3KtetT" (2.16)
0 = 3K 'eto, (2.17)

It is expected that these variables will remain finite at the singularity [26] due
to the division by the trace of the extrinsic curvature, and that the derivative
introduced will become negligible when acting upon these variables. We aim to
produce a similar set, but will diverge from their motivation of scale invariance
for two reasons: The first is that dividing quantities by the trace of the extrin-
sic curvature, K, is not natural for quantization, since it is difficult to define an
operator corresponding to % Using only products and sums of phase space vari-
ables it is not possible to construct scale invariant scalar quantities. The second
is that although scale invariant quantities that can be constructed, K and I’ but
are typically divergent at singularities. We will motivate our framework from the
properties of the Hubble normalized triad K 'ef. We argue that it is the degener-
acy of the Hubble normalized triad at the singularity that suppresses derivatives
and gives bounded variables at the singularity.

The densitized triad, E’f = ,/qe} has similar properties to the Hubble nor-
malized triad. Since ,/q approaches zero near a typical space-like singularity we
expect that Ef = /qef will be degenerate near the singularity as well. We will
therefore motivate our construction from this, however the resulting system is a
precise, self-contained conjecture. We find that in examples the properties we seek

are realized; for the vacuum Bianchi I solution with lapse N = 1 the densitized
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and Hubble normalized triads have the some time dependence, since

~ K
B = S B (2.18)
K=1 (2.19)

More generally if K is bounded as the singularity is approached then the densitized
triad will be degenerate if and only if the Hubble-normalized triad is.

We construct scalar densities by contracting E* with K, and I

P’ = EKi — E*Kk57 (2.20)
C.7 = ETi — BTk, (2.21)

An important feature of these variables is that they are tensors with only internal
indices . Under diffeomorphisms P and C transform as densitized scalars. Notice
that ]Bij bears a close resemblance to the P,,, the ADM momentum. These variables

are related to the scale invariant variables of Uggla et al by:

6P
N = — ﬁf + 26, (2.22)
C

Our scalar density variables ]31-]- and @j are again bounded if K is bounded as
the singularity is approached.
We further define
D; = E'D,. (2.24)

These D; will be the spatial derivatives we consider negligible near the singularity.

This operator is linear and Liebnitz, but due to its action on functions
Dif = E“O,f (2.25)

D; is not a connection, however if treated as a connection it has interesting features.
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The connection has torsion, which is related to C.

T, = eiCy) (2.27)
We can rewrite the constraints in terms of the densitized triad and these scalar

density variables.
o~ e et o~ o~ 1~ o~ o~ 1~
S = 267Dy(Cjy) + 4C}; C + Cy;CI" — 502 + PP — 5P2 ~0  (229)

Vz' = E;l‘/zl = —Qﬁjé J + 2€jklﬁkl<6ij - 6’51]) - Ez‘jkéjkﬁ + 2€ijkﬁjl6’l "(2:329)

Here we have contracted the vector constraint with a densitized triad to obtain
a constraint V;. Since the triad is assumed to be invertible everywhere except
at the singularity, this constraint defines the same surface as the original vector
constraint V. By defining this new constraint V,; the terms in each constraint
can be grouped into two classes defined as follows. Let us define II,, to be the set
of polynomials of order n in C , ]5, and N and DI, to be elements in the set of
polynomials of order m in C , ]5, N, D containing at least one derivative D. Each
constraint can then be decomposed into a sum of terms in Il; and terms in DII,.
This feature will motivate our form the BKL conjecture. The equations of motion

for £, Cyj, P;j can be written in a similar form.

O’ = MDUN(1/26P — BY)) — N[2C® PIFD 1 o0 B i — PG| (2.31)
P = —eMD(NG ) + %a‘jkﬁk(gé) _ B (N Ci)5Y (2.32)
+2e0m R D, (N) + (D'D? — D* D) N

+N[-2CRCI + CCY + 2CMI Cyy)6%

Ee= —NPJE® (2.33)

7 ~ 1 J

We have set the shift to zero to reduce clutter. The equations of motion for

]Bij and @-j can again be decomposed into two groups of terms; those in NTI3, and
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those in NDII3 or D;D;N. With zero shift the equation of motion for E‘Za is a
simple linear equation. The constraints and equations of motion for 6'2-]- and ]Bij
can then be written in terms scalar density variables and the derivative 151 Our
form of the BKL conjecture is then motivated to be that terms in II,, dominate
those in DIL,.

These equations of motion can be derived by taking Poisson brackets with the

Hamiltonian. To simplify this process the Poisson brackets between Ef, a-j, and
]”5”, can be derived
{Eg, P} = E¢ou — Efo (2.34)
{ﬁi]ﬁ ﬁkl} = ﬁkﬂu - f’iz%j (2.35)

{ fijﬁij> fgklékl} = fijgkl(akjfsil + 5jl5ik) + ejlm(sikgkljjmfij (2.36)

We notice here that the f’ij have the same algebra as GL(3,R). From the Poisson
bracket @j and ﬁij we see that @j transforms as a connection under GL(3,R)
transformations.

This formulation is applicable outside of just describing the BKL conjecture.
The evolution equations and constraints do not depend on the inverse triad, except
through the definition of C'. If initial data is then chosen that solves the constraints
as well as the constraint relating the densitized triad to C then this data can be
evolved to the point where the triad is degenerate. Further we expect that in
evolving towards the singularity the triad becomes degenerate. By contracting the
quantities that often diverge at singularities, K! T | the quantities d-j, IBZ-J- remain
bounded or have a much lower degree of divergence. Since our equations of motion
do not involve the inverse triad, E¢ the degeneracy of the triad is not an issue - in

many instances the variables we define will remain finite through the singularity.

2.4 Truncation

Since our equations of motion and constraints can be decomposed into the sum of
terms in DII,, and II,, we are naturally lead to examine a truncation of the full
theory in which we set all elements of DII,, to zero. In doing so we will retain only

those terms in II, - the terms we expect to become dominant at the singularity.
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We therefore formulate the BKL conjecture to be:

e JX € 1II, such that VY € DII,, % — 0 as we approach the singularity.

e C and P remain bounded near the singularity.
e N and N’ remain bounded near the singularity.

e The full dynamics is well approximated by setting terms in DII,, to zero.

The terms in DII, may tend to zero either due to terms in II,, becoming ho-
mogeneous or because the triad is becoming degenerate. If the triad is becoming
degenerate the covariant derivatives of P and C can be non-zero, but near the sin-
gularity they are being suppressed by the triad. The finiteness of P and C ensures
that products of these variables with derivative terms will still tend to zero as the
singularity is approached. The restriction of the finiteness of N and N* moves the
singularity infinitely far away.

If we asssume this conjecture holds we can truncate the full theory by setting
derivative terms to zero.

The truncated theory is defined by

This defines a subspace of the full phase space, which we will call the truncated
subspace. The section of this phase space containing non-degenerate triads consists
of homogeneous C and P. If we extend the phase space to include degenerate triads
then the section of the truncated subspace containing degenerate triads consists of
C and P which are homogeneous along the directions defined by the non-degerate
part of the triad, but are free to vary along the degenerate directions. The lapse and
shift are also constrained by to homogeneous along the non-degenerate directions
of the triad. The truncated subspace the becomes the union of the homogeneous
subspace with boundary of phase space consisting of degenerate triads.

This subspace is invariant under the full dynamics. If the derivatives terms are
initially zero they will remain zero under the full equations of motion. This should

be a necessary criterion for the BKL behavior because we expect the BKL behavior
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to be described by the dynamics approaching some fixed point as is discussed in
the work of Uggla.

The Poisson bracket between P and C can be simplified in this truncation.
The smearings f;; and g;; will in general be constructed from the available fields
with internal indices - in general they must be members of at least II; such as
(Bi, é’ij, 131-]-, N, Ni,n;;) When evaluating the Poisson brackets the terms containing

derivative of the smearing are then set to zero in the truncation. The truncated

Poisson brackets between C' and P are

{é‘j, 5kl}T = ékj(sil + éjléik (2.38)
{E’j, lgkz}T = Iskj@'z — 151’15@' (2.39)
{@j, ékl}T ) (2.40)

The constraints can be simply truncated to obtain

= ~ ~. 1=~ ~ ~. 1=~
Sr=CyC" — 5(12 + PP — 5P2 ~ 0 (2.41)
‘7Z(T) = 2€jklﬁkl(6’ij — 6(SZJ) —+ 2€ijkﬁjlélk ~ 0 (242)
Gijry = — Py =0 (2.43)

It is interesting to note here certain features of our constraints. The scalar
constraint is symmetric in C and P - this symmetry will be broken at the level of
equations of motion as the Poisson algebra is not symmetric. Also note that by
adding a multiple of the Gauss constraint to the vector constraint can reformulate
our constraints (with the exception of the Gauss constraint) to be completely
symmetric in C and P

/‘771(7“) = €Z'jkﬁjlélk ~ 0 (244)

We can consider C' and P as matrices, being tensors of only internal indices

and hence acting as scalars under diffeomorphisms. This constraint, ‘A//’i(T) implies

that C' and P commute. The Gauss constraint has no corresponding constraint
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on C , however as has been shown above consistency of this truncation requires
that C be symmetric. Therefore if we solve the Gauss constraint we find that our
constraint system is symmetric.

The truncated equations of motion can be obtained in two ways: First by
applying the truncation to the full equations of motion by setting derivative terms
to zero. Second they can be obtained by taking truncated Poisson brackets with

truncated Hamiltonian.

fr=A{f Hr}r (2.45)

Where the truncated Hamiltonian is defined by

H[C, Pz t/ NST——NW’ — (YA )Gy (2.46)

From which we find the equations of motion:

C' = —NJ2C" P _ P (2.47)
Y] ~..

P = N[2C*C,] - CCY) (2.48)
E¢= NPJE! (2.49)

A question arises here as to the consistency of our scheme - at what level do we
apply this truncation of the theory? For an example, consider the FLRW space-
times. There we consider space to be homogeneous and isotropic and impose this
symmetry on the system at the level of constraints. If, however the symmetry did
not hold over to the equations of motion, so that a space-time which has initial
symmetry evolved away from the symmetric sector the reduction would have no
meaning. Likewise, if an imposition of symmetry at the level of equations of motion
did not give rise to the same system as the imposition at the level of constraints,
the resulting sector would be ill-defined as there would be no agreement over
what could be called the symmetric sector. The question which we must address is
similar: Does the truncation of constraints lead us to the same system as truncation
of the full equations of motion? The answer is in the affirmative. This fact is

illustrated by the following ‘commutativity diagram’:
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Truncation

Full Constraint Truncated Constraint

lEquation of Motion J{Equation of Motion

Truncation

Full Equation of Motion ————— Truncated Equation of Motion

The equations of motion for C and P depend only on C ,]3, and the lapse and
shift. There is then a closed system expressed entirely in terms of C and P .
The triad entirely decouples from the evolution. Therefore one can first solve the
equations of motion for C and P and then evolve the triad afterwards. We then
take this closed system in terms of P and C and consider it to be the Hamiltonian
system describing the BKL conjecture. The phase space is coordinatized by P and
C with Poisson brackets defined above.

Furthermore the truncated system forms a fixed subspace of the full phase
space. Consider the subspace defined by X = 0 VX € DII,,. The equations of
motion from the full theory leave this subspace invariant, that is all elements of
DII,, will remain zero. Therefore in this subspace the truncated theory reproduces
exactly the full theory. It is also worth noting here that this subspace contains

many space-times of interest, particularly all the Bianchi type A models.

2.5 Reduced Phase Space

The truncated theory in terms of C and P can be gauge fixed using the Gauss and
vector constraints. Should mention what the constraints are first and then how
they restrict C and P then what transformations they generate. The infinitesimal

transformations generated by the Gauss constraint are

(P, / MG = AFBy + A} By (2.50)
{Cy, / MGy = MFCy + Ay, (2.51)

As expected the Gauss constraint generates internal SO(3) rotations. Instead
of working directly with the vector constraint we will modify it by removing the

terms proportional to the Gauss constraint. We define therefore define V'
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Wi(T) = 2€ijkﬁjlélk ~ 0 (2.52)

This constraint generates the following infinitesimal transformations

{Py, / NV} = AN ewmCi" Py + eua Py, (2.53)

{Cyj, / N*Viry} = =4N e Cym G| (2.54)

Solving the Gauss and Vector constraints implies that Pis symmetric and com-
mutes with C'. We can then choose a basis such that P and C are simultaneously
diagonalized. Looking at the action of the constraints on P and C we see that this
is not preserved - moving along the gauge orbit takes us off the surface defined by

diagonal Pand C , thus our diagonalization fizes our choice of gauge.

The Poisson brackets of the gauge fixed subspace are

{Pr. Py ={C1,Cs} =0 (2.55)
{Pr,Cs} =201,C, (2.56)

After gauge fixing the Hamiltonian and equations of motion take the form

H(xo) -sa(se) S e

P =NC; (Z Cy— 201> (2.58)
J

Cr=—-NC; (Z Py — 2PI) (2.59)
J

We arrive at a very simple system which can be easily simulated. The following
are the results of a numerical simulation of this system, the details of which are in
appendix A.

In the figures 2.1 and 2.2 we begin our evolution with the eigenvalues of C' set
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Figure 2.1. Evolution of each of the eigenvalues of C (C1 in red, C2 green, C3 blue)
over time, in which we see a series of separate Taub transitions between Kasner states

to be {1.5,0.004,0.007} and P set to {—0.47,—1.3, —1.4}.

2.6 Introduction of a Scalar Field

Until now, our analysis has been performed entirely on the vacuum theory. We
can extend our system to include matter in a fairly simple manner by refining our

model via the Hamiltonian to be:

H = HGR + Hmatter (260>

The form of matter of particular interest to us will be that of a (massless) scalar
field. This system has been analyzed in detail by Andersson and Rendall who have
shown that in the presence of a scalar field with momentum above some minimum
value the dynamics of space-time reduces to a single Kasner epoch. A massless
scalar field is also used extensively in Loop Quantum Cosmology to define a clock

variable. The Hamiltonian, H,,q in that case becomes Hgp = %2 +nl’D 19D;¢.
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Figure 2.2. Evolution of the eigenvalues of P (P1 red, P2 green, P3 blue) over time.
The largest eigenvalue transits the second, with all three tending to zero over time.

The analysis of section 2.5 follows almost exactly if we add the field ¢ to the set
IT. The truncated constraints remain as above, except for 2.46 which gains a term

%2, which in turn refines the fully reduced Hamiltonian, 2.57 to become:

2 2
1 9 1 R
5(20,) _Zcﬁﬁ(Za) YR e
I I I I
Wherein we recover the equations of motion for C' and P as above, along with:

p=n 7=0 (2.62)

Although we have not altered the equations of motion for C' and P, we have
altered the solutions to our Hamiltonian constraint and hence we find a different
resulting set of space-times. Of particular interest are the Bianchi I solutions to

this system. Here we find that space-time takes the form
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ds* = —dr® + 7P+ d2® + TP dy® + 777 d2° (2.63)

on which p, +p, +p. = 1 and the Hamiltonian constraint sets

prt+pitpi=1-7 (2.64)

These two relations define a one-parameter space of solutions - the intersection
of a sphere and a plane. For 7% < % we find that solutions exist only if one of
the values of p; is negative, and this leads to an instability of the solution which is
discussed below. However for 72 > % we find that all the p; are positive and hence
the solution is stable. In the vacuum case it is convenient to solve the constraints
to express the p; in terms of a single parameter u. Without loss of generality we

take u > 1 and parameterize the space of p; by:

u? +u

M= Trere (269
u+1

R (260
—U

PS Ty (2.67)

Our where py, po, p3 are the set p,, py, p. in descending order. This parametriza-
tion will later form the basis of the 'u-map’ relating transitions between Kasner

states.

2.7 Analysis of Reduced Phase Space

We can analyze these reduced equations as a dynamical system as in Uggla et al
[24]. We first identify fixed points of the dynamics for which

ér=pr=0 (2.68)

There are only two sets of fixed points for these equations.

lLoer=0and Y, p? -1 (X, p)?=0
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2. cp=coc3=0,p1 =p2,p3=0

The first fixed set of fixed points are the Kasner solutions. The second set of fixed
points are highly unstable, being essentially a dimensional reduction of our theory
[25]. We perturb away from these fixed points and obtain evolution equations for

the perturbations. For the first fixed point the solutions to the constraint

> pi- % (Zm) —0 (2.69)

are all positive or all negative p;. Since we want to analyze solutions that approach
the singularity as ¢ — oo we restrict our attention to the solutions with positive

pr. If we perturb from a Kasner fixed point,

Py = D1+ opr (2.70)
C/I =cr+ 56] (271)

the evolution equations for the perturbations are

opr = O(6p?) (2.72)
(S.C] = —N&C[(ij - 2])]) + 0(565])) (273)
J

The constraint on the p; ensures that for a solution approaching the singularity one
¢y is unstable under perturbations while the other two are stable. We can take p; to
be the largest of the p;’s initially which implies that it can ¢; are unstable under
perturbations. The evolution equations for c;,p; assuming the other variables

remain at their fixed point values are

p=—-Nci (2.74)
¢1 = —Nci(p2 +ps —p1) (2.75)

which can be solved exactly to obtain
p1(t) = p2 + p3 — 2¢/papstanh(2\/paps N (t — t,)) (2.76)

er(t) = £2/papssech(2y/pams N (t — t,)) (2.77)
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These are the Bianchi II solutions written in these variables. The p; transitions

between one Kasner solution at t = —oo and another at t = +o0o.

p1(—00) = p2 + ps + 2¢/paps = (VP2 + V/p3)” (2.78)
p1(400) = pa + ps — 2/paps = (\/1?_2 - \/27_3)2 (2.79)

2.7.1 The u-map

U parameter

20 4 _

=
M
[
=
o
m
-
o
[in]
=

Figure 2.3. Long term u-map showing transitions between Kasner phases over time -
the u parameter steps down by 1 at each transition

The transitions described in the previous section can be used to derive the
so called ‘u-map’ relating initial and final states of these processes. This map
has often been observed in numerical simulations [25] [14] and its analytic basis
examined [27]. In this process we begin with a perturbation of a Kasner state
described by the parameter u;. To recover u from 2.65 we take the ratio of the
largest to second largest exponents, u; = p;/pe. The largest exponent at the end

of the transition is py and from 2.78 we see that if u; > 2 then the second largest is
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p1, if u; < 2 the second largest is p3. Therefore we find that the Kasner parameter

defining the final state u; is given by

(= D)7 ifu; <2

Once this transition is complete, we can then relabel the p; so that they are
again in descending order and repeat the process. Thereby we see a discrete
structure emerge from our equations, as we set u,, = u; and w,11 = uy. Although
for generic initial values the orbit of u visits most of the real line, there are certain
preserved structures. As an example, v = {1 + 1/2,v/2} is a 2-cycle point of the
map, and in fact cycles of all lengths exist [26], given by the cases when u is a
quadratic irrational 2. By construction the map leaves Q invariant, and should it
ever encounter Z it should in theory end at oo. However, these points are highly
unstable and any perturbation around them will obviously evolve away from them.
Indeed for any € > 0 we find that if u; = n + € for some n € Z then on its orbit
under this map, u will visit 1/e. However, since our map was obtained by making
approximation, we cannot expect it to hold exactly in any physical system, and
hence no transition can be expected to take us to u — oo, which would correspond
to p; = {1,0,0}.

The map is also an example of the high degree of chaos in our system - a point
in space might be described by u,, = 2 + € where € > 0 u,1; = 1 + €. However a
nearby point in an inhomogeneous space could be described by u,, = 2 — € in which
case Upy1 = 1/(1 —€).

In figure 2.3 we see a long term evolution of the u parameter. Note that it
takes on stable values for large periods of time and then undergoes a transition,
the points where the parameter appears to peak upwards. This is the u-map for
the system simulated above in 2.1.

In the figure2.3 we see only the first type of transition, in which the value of u
is reduced by one. To observe the second type of transition we must see a situation
in which p; goes from being the largest eigenvalue to the smallest. This is realized

in the following simulation

2This corresponds to u = g1 + /g2 where /g5 is not rational
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Figure 2.4. Evolution of in which highest eigenvalue of P crosses both others

In simulation 2.5 we see the corresponding evolution for the u parameter:
The labeled point on this simulation is at v = 1.88 with the preceding value
being u = 1.53, which agrees with the behavior of the u-map to within 1%.

Further simulations showing this behavior can be seen in appendix A.

2.7.2 Spikes

Seen initially in both numerical simulations of Gowdy and generic space-times,
explicit analytical ’spike’ solutions have recently been found [28]. In numerical
simulations of the full equations there are points in space at which the derivatives
of spatial and extrinsic curvature grow to a large value before shrinking again. This
would appear at first glance to break the model we propose - a model in which
these derivative terms are negligible. However, an analysis of the simulations shows
that these spikes do not appear to occur in the neighborhood of the singularity.
On examination of the space-time of [28] we find that the asymptotic behavior
of our variables is still such that the assumptions about negligible terms hold - as

we move away from the spike points in both time and space the derivative terms
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Figure 2.5. Evolution exhibiting both parts of u-map

tend to zero as a result of the asymptotic behavior of the triad. However the
question remains - Does our model predict the existence of these spikes?
Surprisingly, the answer is yes. Although the spikes are a cause of non negligible
derivative terms, they are a result of the terms polynomial in curvature, as we will
show: Throughout a Taub transition we find that the sign of C} is preserved.
Suppose that we consider all points in space to be described by the dynamics
above, then C' = C°(z%) is a field in space at some time. There may generically
exists points X about which C° passes through zero. On one side of this point Cf
is positive and increasing in magnitude, on the other it is negative and increasing
in magnitude. Hence about this point the gradient, D sC7 will increase rapidly.
These points are precisely the ‘spike’ points - the spatial derivatives of P and C
become large here. In figures 2.6 2.7 we vary the initial eigenvalues of P about a
point which is stable. On either side a transition occurs, with C' undergoing Taub

transitions with opposite signs.
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Figure 2.6. Spike in the eigenvalue of P - on either side of the spike point transitions
occur but at the point the eigenvalue remains constant

2.7.3 Function Fitting

In the previous sections we found that during a transitional phase described by
2.76 the evolution of C' was well approximated by a sech function. In performing
this analysis we made the approximation that only one of the eigenvalues of C'
was non-zero during the transition, and hence that only one of the eigenvalues
of P was changing. However, a remarkable numerical result that was not shown
analytically is that this approximation appears to work away from this point. In
fact, it appears that even when all three eigenvalues of C' are non-zero, the evolution
is well approximated by a sum of these functions.

In 2.8 we see the eigenvalues of C' in primary colors (red, green, blue) and a five-
point fit by a sum of sech functions in secondary colors (yellow, cyan, magenta).

This phenomenon is described in more detail in appendix A.
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Figure 2.7. Spike in eigenvalue of C - across the spike point large gradients grow

2.8 Conclusion

It has been established in the UEWE framework that by dividing divergent vari-
ables by the trace of the extrinsic curvature a set of scale invariant variables can be
formed which are well suited to examining the BKL conjecture[25]. This formula-
tion exhibited interesting features such as the Mixmaster dynamics and the u-map.
However, this system is not well suited to any quantization procedure based on
Hamiltonian systems.

By using density weighted tensors and in particular contractions with a density
weighted orthonormal triad instead of division by extrinsic curvature to normalize
our variables we obtain a system which is both simple to evolve and well adapted
for quantization. In particular, given an initial set of data consisting of an or-
thonormal triad and extrinsic curvature (E’\E’, K?) it suffices to form ]3;-, CA’; and D;
and consider the system of only this triplet. Once this system has been solved, one
can the return to the initial variables and recover their evolution of E for example

from the behavior of the triplet. As such a Hamiltonian analysis of the BKL con-
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Figure 2.8. Fit of the evolution of the eigenvalues of C by a sum of sech functions

jecture is a valuable tool for probing questions of the generic nature of singularity
resolution in LQC. The current status singularity resolution in LQC bears a strik-
ing resemblance to that of the big bang singularity. In specific symmetric cases
singularity resolution has been shown, but as yet there is not generic singularity
resolution theorem. A close analysis of the BKL conjecture could provide a step
towards that goal.

Through a detailed examination of the BKL system proposed, both numerically
and analytically, we see that there does indeed exist a well defined subspace of
the full phase space of GR which exhibits exactly the properties expected by the
BKL conjecture. By gauge-fixing our constraints, we do observe the Mixmaster
behavior, a series of Bianchi I spacetimes interspersed by Bianchi II transitions and
the presence of spikes. We recover the ‘u-map’ for these transitions, and observe the
behavior expected by Andersson and Rendall when a scalar field of large enough
magnitude is introduced. Numerical simulations show that these are exactly the
features which we expected from the analysis. Furthermore we see a remarkable fit

to the equations of motion by a sum of sech functions. Since the solutions to the
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BKL truncated system allows for the existence of spike solutions, it is important
for quantum theories of cosmology to take into account this feature. As these
spikes can be found in exact solutions of GR they are not simply an artifact of
our truncation, but potentially a physical phenomenon which should be examined
more closely. The truncation we have proposed ignores the effect of these spikes

upon dynamics and therefore is unlikely to be suited to their analysis.



Chapter

LQC Effective Equations and their

Implications

3.1 Introduction

Loop quantum gravity is a background independent approach to the quantization
of gravity. It is almost a tautology that non-perturbative quantum field theories
are not afforded the luxury of a classical background easily obtained by taking
the limit A~ — 0. Therefore it is necessary to address questions about both the
‘ultraviolet’ sector of the theory - the high energy density limit in which quantum
effects are expected to dominate, and the ‘infrared’ sector - the low energy limit
in which we should recover the classical theory.

Loop quantum cosmology [30] [31] [32] [33] (LQC) arises as the application of
the principles of loop quantum gravity [34] to cosmological spacetimes. Through
the LQC program it has been seen that the effects of quantum Riemannian geom-
etry lead directly to the resolution of big-bang type singularities[35]. Initially this
was shown in the flat FRW case with a massless scalar field [36], but has more
recently been extended to both the open [37] and closed [38] cases, and further to
Bianchi I [39] and II [40] cosmologies and hybrid quantization of Gowdy models
[41]. Furthermore it has been shown that LQC may in fact preclude the existence
of all so-called ‘strong’ singularities [42] . It is therefore natural to ask what are the

physical predictions of a theory which has such welcome mathematical properties.
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In loop quantum gravity, the spectrum of the area operator A is discrete. This
yields an area gap A? with A = 4/377 which is the minimum non-zero eigenvalue
of A. Herein ~ is the Barbero-Immirzi parameter, which is fixed to be approx-
imately 0.24 from black hole entropy calculations [43] [44]. In the cosmological
context, the net effect of this area gap is that the density operator p is bounded
from above, with its upper bound denoted pui; = v/3/327%72 ~ 0.41p,. Thus we
should expect to see quantum geometry effects once the energy density becomes of
the order of the planck density p,. In the isotropic sector it is convenient to take
the square root of of the area gap to form a ‘length gap’ .

Throughout this chapter we will work with the effective, semi-classical equa-
tions. It has been well established that these effective equations closely follow the
full quantum dynamics both in the infra-red where as expected we recover a close
approximation to general relativity, but also more surprisingly some results coin-
cide in the ultra-violet limit. This has been established in the case of a massless
scalar field[45], and a more complete program of exploration of the range of validity
of effective equations is in progress [46]. We will also make the assumption that all
matter is minimally coupled - there will be no cross terms of matter and curvature

variables.

3.2 Classical Theory

The flat (kK = 0) homogeneous, isotropic sector of cosmology is described by space-
times whose metric takes the form
ds* = —N?dt* + a*(t)(da* + dy* + d2°) (3.1)

Where N is the lapse function, and a(t) the scale factor [29]. The gravitation

part of the action in this sector is therefore

1 —3aa?
_ 2
S[N, a 87T/dt N (3.2)

1'We perform a Legendre transform to obtain the canonical conjugate momenta

'In defining this action, we are implicitly assuming that spatial integration has been performed
on a fiducial cell of size Vj. In doing so, we introduce extra, non-physical structure to our system
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Py = 6aa, Pyy = 0, and Hamiltonian

-N Pl |
g(@ +a Hm) (3.3)

where H,, is the matter Hamiltonian

2. Note that the equation of motion
for Py ensures that this Hamiltonian is constant. At this stage for reasons of
simplicity, let us fix the lapse, N = 1 and by doing so we recover the evolution of
our system with respect to proper time, by taking X = {X,H}.
In order to correspond with the LQC system which we will later analyze, let
us further perform a change of variables
ea®V; A7y Pa)

- h= —— Y 3.4
g 27y 3Vha? (34)

whose Poisson bracket is therefore given by {b, v} = 2. € = £1 is a free choice of
the system related to the freedom to pick left- or right-handed triads, and without
loss of generality we will choose to work in the positive sector. If we further fix

Vo = 1 the gravitational part of our Hamiltonian is given as:

3vb?
= 3.5
3.3 Effective Quantum Theory
The holonomy corrections due to LQC result in b being replaced by &g’\b) and
thus the gravitational part of our Hamiltonian is therefore
3v sin?(\b)

Note that in the small A limit, this reproduces the classical Hamiltonian. If one
were to include all physical constants, it would become apparent that this limit is
precisely the A — 0 limit. Although this change appears to closely reproduce the

classical system, the domain of b is now compact, as b now takes values in [0, T].

in order to perform mathematical operations. A great deal of care has been taken both in
the classical and quantum theory to ensure that physical results are independent of this extra
structure.

2This is equivalently the energy density p
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This arises as a direct consequence of the eigenvalues of v having discrete values
[47].

The equations of motion for the gravitational variables are

_ 3vsin(2Ab)
: 3sin?(A\b) OHm
b o + AnyH,, + dmyv 5 (3.8)

From the first equation we obtain the corrected Friedmann equation

_ 81Hy, 8TH
3 3

Where H is the Hubble parameter, a/a = v/3v. This reduces to the classical

Friedmann equation on taking A — 0.

1 -y (39)

By using our Hamiltonian constraint, we can reduce the second equation to

OH
ov

In our notation, the equation of state for the matter content of the universe is

b= dryw (3.10)

written

Mo ox Y v F) (3.11)

and hence if we exclude so called phantom matter, the parameter b is monotonic
non-increasing. If we make the simplification that the matter content can be de-
scribed as a sum of perfect fluids each with a single equation of state characterized

by w; with density p;, we can further simplify our equations:
b= —4my Y (1 +w)p; (3.12)

3.3.1 Critical Density

From our Hamiltonian constraint we find that H,, is bounded above. For v non-

vanishing, we find
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" — 3sin?(\b) < 3 (3.13)
4y \? 8my2\2

and hence we know that our matter density is bounded, with its maximum

denoted pei¢. In the classical limit, we again find that we recover GR as this

bound is inversely proportional to A and hence in taking A — 0 we remove the

bound. Using H,, = peait, We are able to write our corrected Friedmann equation

3.9 in a more familiar form|[45]:

8
_ 8oy
3 Perit

H2

) = Perit (314)

The existence of this critical density is in fact a prediction of the raw quantum
theory. In the full dynamics of LQC, it has been shown [48] that the density
operator has a supremum on the physical Hilbert space. This supremum is precisely
the critical density encountered by the effective theory. Thus the effective equations
reproduce a key feature of the full dynamics in the deep quantum regime, and one
which should be expected to lead to singularity resolution.

The critical density here is about 41% of the Planck density, which upon restor-
ing fundamental constants is given by

g
Perit = 0.41 % e 2.11 x 10%kgm™3 (3.15)

To obtain a sense of proportion, this density is the equivalent to having the

entire mass of the Milky Way galaxy within the one thousandth of the classical

radius of the electron.

3.3.2 Quantum Bounce

It is immediately apparent from 3.7 that the evolution of the Hubble parameter
H = 3% = % is significantly altered when b is close to 7. In fact, at this point v
changes sign, and thus contraction of the universe ends and expansion begins.
Here it is clear that the Hubble parameter can only change sign once the energy
density reaches the critical density, and that away from this critical density the
effects of quantum geometry are small. Thus LQC provides ultraviolet corrections

to GR whilst maintaining infrared physics. Due to these corrections, dynamical
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trajectories avoid the cosmological singularity, which is in the past of any expanding
branch (or future of any contracting branch) in classical GR and form a quantum
bridge between the two branches throughout which physics remains finite and
deterministic.

In order to establish that » = 0 is not achievable by our system, consider
Y = in(v) then

. ) n(2\b
Y:Z:3H:3‘%n—() (3.16)
v 27
Hence in any finite time, the change in this log volume, is given by
AY / ay = =2 / dtsin(2b) (3.17)
= = — i .
27
and hence we obtain a bound
3 3At
AY| < — [ dt|sin(2Mb)| < — 1
AY| < 5y [atsinzan) < 3 (3.18)

since sin is bounded by 1. Therefore for the volume to go to zero, we would
require Y — —oo which is not possible in a finite amount of proper time. This
result establishes that no trajectory on which the volume v is non-zero can achieve
zero volume.

Since v is either always positive or always negative, and physics does not change
between these choices, we are justified in choosing v > 0 on all our solutions and

ignoring the corresponding v < 0 states.

3.3.3 Inflation

The nature of slow-roll inflation in cosmology in general, and LQC in particular
will be discussed in detail in the following chapter. There we shall restrict ourselves
to considering the effects of a scalar field. However, the existence of inflation under
generic conditions is another feature of LQC [49]. The term inflation relates to a
period in the expansion of the universe in which the scale factor is accelerating,

i > 0. Since v ~ a® we find:
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i DY
- = = d
a v (3.19)
sin?(2Ab)  bcos(2)b) (3.20)
4N22 v

Upon applying some trigonometric identities, and re-writing our equation in
terms of the matter density p we find:
P OHm

2p
1-— + 4nv 1-—
3 Perit al/ ( Perit )

a  8mp
- =

(3.21)

On assuming that the only matter present is a mixture of perfect fluids with

equation of state p; = w;p;, we can again further simplify

a 8mp p 2p
.= 3 - @3 )pi)( %m) (3.22)

2

In the low density, single field limit (p << peit) We recover the familiar Ray-
chaudhuri equation:
a Amtp

- = —?(1 + 3w) (3.23)

3.3.4 Superinflation

Superinflation refers to a phase in the evolution of the universe in which the Hubble
parameter is increasing over time (H > 0). In any cyclic or bouncing cosmology
there must necessarily exist a period of superinflation, since in all contracting
branches H < 0 and in expanding branches H > (0. This is indeed observed in
solutions to LQC [50] However, in GR this is achievable only through the intro-
duction of ‘exotic’ matter, such as dilaton fields. In the case of normal matter,
the Hubble parameter is monotonically decreasing (or increasing) on expanding
(contracting) branches.

Note that superinflation necessarily implies inflation. Since H = a/a we there-

fore find:

H=-——=—_-H? (3.24)
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and therefore for H > 0 we necessarily require d/a > H? > 0.
This period of superinflation exists when the energy density is greater than
half of the critical density. From 3.14 we establish that the Hubble parameter H

evolves via

i beos(2Xb)

b
= (1 —2sin*(\b 3.25
5 7( (AD) (3.25)
b 2p
= —(1-— 3.26
7( pmt) (3:26)

Since b is monotonic non-increasing b < 0 and hence in this regime we see
superinflation. It is a striking signature of LQC that given minimally coupled,
non-phantom matter, the universe will superinflate whilst p > peit/2 regardless of
the form of the matter itself.

3.3.5 Bounded Hubble Parameter

By considering the conditions for the beginning and end of this superinflationary
phase we observe another feature of LQC: The Hubble parameter is bounded and
achieves its bounds. In particular, we know that at the onset and end of superin-
flation H = 0. The above conditions yield p = peir /2 and so from 3.14 it is obvious
that we are still not in a region where LQC agrees with GR.

Further from these conditions we find at the end of superinflation

2 cri
H =44/ ”g t ~ 40.93 (3.27)

Since b is monotonic non-increasing, the matter density of each trajectory

achieve each of these exactly once, that is every contracting solution passes through
H = —0.93, at which point superinflation begins and persists through the bounce
where H = 0 and then superinflates to the point H = 0.93, before the Hubble
parameter starts to fall again.

The equation of state for the matter content will further constrain H as follows:
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: b 2p
H = —(1- 3.28
’7( pcrit) ( )
2
= —4r(1 +w)p(l — pp ) (3.29)
crit

Since the density is bounded above by the critical density, H is therefore
bounded between +47(1 + w)peris-

Note that the above, however, assumes a single field with fixed equation of
state. A more complicated system, such as that of a scalar field in a potential,
may violate this constraint. In this case we should vary separately the equation of

state and the density and maximize each to obtain the bound

|H| < 87peis ~ 10.3 (3.30)

Note that this bound is an absolute maximum on the space of all trajectories
but is not necessarily achieved on a given trajectory. For a typical evolution of

this see figure 3.1.

1 T T T T T T

08 -

08 =

07 - —

06 -

T 05 =

04 —

03 -

02 —

dHidt

Figure 3.1. Hubble and its time derivative. Time runs counter-clockwise
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In figure 3.1 we see the evolution of the Hubble parameter in LQC coupled to a
massless scalar field. The right portion of the diagram is entirely quantum effects
showing superinflation as here H > 0 and H > 0. The Hubble parameter starts at
zero, the bounce point, and increases to its global maximum before descending to
follow a path close to that of GR.

From 3.7 and the above, we find that the scalar curvature is bounded above

since

‘R=6H + H* (3.31)
Maximizing this independently over H and H we find that it is bounded from
above:

1447 perit

'R| < ~ 61.8 (3.32)

Note that, as with H, this is a global maximum, not achieved by all trajectories.
In fact it is not attained by any trajectory, as we have separately maximized both

H and H to obtain it, whereas we know that H achieves it maximum when H = 0.

3.4 Solutions

We can solve our theory directly in the case of a universe dominated by a single

perfect fluid with w > —1. We begin from the LQC-Friedmann equations 3.14:

v

SWBV_(H_w) V—(l-l—w)
3_y - -

2 p—
( ) 3 Perit
in which f is chosen such that p = p.; at the bounce. We expand our equations

to find:

) (3.33)

D2 _ 87]-61/171”(1 _ BV_(l-HU)

3.34
2 o (334
This can be further rearranged, following the standard method of solving the

Friedmann equations in GR to give:
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d 2 873 By~ 1+w)
—(pHw)/2y = 1— 3.35
" ) 1«+1u\/ o7 ( ot ) (3.35)

Setting © = v(*%)/2 and noting that our boundary conditions can be applied

by gauge fixing the bounce volume to 1, which in turn sets 8 = pei; we find:

2 .
@ %gmfﬁﬁﬁ (3.36)

- 14w
Which has solutions:

327 Peritt® 1

(] 4 28T Pt T
v=0+ e

(3.37)

Where we have chosen ¢ = 0 as the bounce point. At late times (¢ large)
as expected this asymptotes to the GR solution in which v ~ T+ as the second
term in 3.37 dominates. At early times we see corrections, and indeed the bouncing
behavior is recovered, with v = 1 and 7 = 0 at t = 0. Note further that this solution
is time symmetric: t — —t does not affect our system. This property is due to the
symmetry of H,, and in general we do not expect it to persist, particularly when
H,, includes interactions. Indeed as will be shown in the following chapter, there
can be a great deal of asymmetry in the contracting and expanding branches due
to the phase of matter at the bounce.

In figure 3.2 we see the evolution of solutions with varying equation of state.
The red line depicts a free scalar field (w = 1), the green radiation (w = 1/3) and
the blue dust (w = 0)

These solutions clearly exhibit the properties described in section3.3. At large,
negative t the solution closely approximates that of GR on an contracting branch.

As the density increases, we see that there is inflation when

1 1
\/27Tpcrit(1 + 4w + 3w?) \/27Tpcrit(1 + 4w + 3w?)
This period includes super-inflation when
1 1
te- ] (3.39)

V0T perit (1 + w) 7 /6T peris (1 + w)
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Figure 3.2. Volume evolution for varying matter types

In figure 3.3 we see the evolution of the Hubble parameter for the cases above.
We see a period of superinflation in each, which ends at the universe point of
the Hubble achieving its maximum. Similarly in figure 3.4 we see the rate of
acceleration for the matter types, all of which exhibit inflation for a period.

Of relevant physical interest particulary in forming questions of observables
would be questions of how much superinflation or inflation we observe. By taking
the ratio of the volumes at the end of superinflation (v.,) and at the bounce ()

we find:

”V_e: = (24 w)Te (3.40)

Remarkably, this factor is entirely independent of the critical density, it is
simply a function of the equation of state. Similarly one can calculate the amount
of inflation with the volume at the end of inflation denoted v;:

31+ w)” )T (3.41)

Vb_ 1+ 4w + 3w?

Similarly it is possible to view the maxima of the rate of change of the Hubble
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Hubble

Time

Figure 3.3. Hubble evolution for varying matter types

parameter, given the profile of the solution in terms of H and H, which is illustrated
for the cases above in 3.5.

The bounded nature of H and H leads to the scalar curvature, R being bounded.
This is plotted in figure 3.6.

3.5 Discussion

The application of the principles of Loop Quantum Gravity to the cosmological
sector yields a theory, LQC, which appears to exhibit every aesthetic quality that
one could have hoped for: In the cases so far studied in detail, semi-classical
solutions at late times both match GR in the infrared limit and receive quantum
corrections in the ultraviolet which ultimately lead to the resolution of the big
bang singularity. All physically interesting quantities evolve in a deterministic,
non-singular manner. On top of all this, LQC exhibits, at least in specific cases a
most fortuitous property that appears highly unlikely: There exists a well defined
semi-classical set of effective equations which closely match the expectation values

of the related quantum evolution of a solution which is semi-classical at late times
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Figure 3.4. Acceleration for varying matter types

throughout the entire evolution. Before performing the analysis, one could not
have predicted this with any degree of confidence. The quantum state which is
semi-classical at late times could have evolved back into a solution which had a
very large dispersion, rendering a classical interpretation of the quantum state
meaningless in the planck regime.

Since the effective equations do appear globally effective, it is natural that
we should exploit this fortuitous result. In examining these effective equations in
a naive fashion, that is without close reference to their origin, we see that they
exhibit certain very welcome physical predictions - providing bounds on geometric
quantities such as the scalar curvature and Hubble parameter independently of the
matter content. We find a Hamiltonian system which is susceptible to standard
numerical techniques for solution, and easily coupled to most matter Hamiltonians.

As has been pointed out, it remains to be seen whether such fortune is borne
out by examination of more complicated systems, indeed it seems likely that some
of the results relating to the effective equations will be altered by a close analysis
of more complicated systems.

As an example, the area gap exhibited in the loop quantization of the FRW
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Figure 3.5. Hubble profile for varying matter types - Time runs counter-clockwise from
the origin. Here we see for each matter type the universe begins at a large volume which
is slowly contracting, the Hubble parameter achieves its lower bound then superinflation
begins. The universe superinflates through a quantum bounce (crossing the x axis here)
to the maximum of the Hubble parameter and then expansion slows and the universe
becomes large again and slowly expanding.

models is half of the supremum of the area operator in Loop Quantum Gravity.
3 Indeed the numerical value of the area gap could change with more input from
the full theory on how the area operator is to be formed in the symmetry reduced

case. Therefore some overall details will likely change, however it seems reasonable

3This is due to an assumption of isotropy that an edge incident on a plaquette must be
matched by an exiting edge of same spin and parallel to the incident edge - a condition not
required in anisotropic spacetimes - see [51].
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Figure 3.6. Scalar curvature for varying matter types

to expect many of the qualitative features to remain - in particular the existence

of bounds on physically relevant quantities.



Chapter

Inflation in Loop Quantum

Cosmology

4.1 Introduction

Inflation provides an elegant explanation for structure formation in the early uni-
verse and has recently enjoyed a great deal of success in this area. Given a suffi-
ciently long period of slow roll inflation, several problems such as those of cosmo-
logical horizons and the absence of magnetic monopoles are solved. However, it is
argued that achieving this period of inflation requires a great deal of fine tuning.
Indeed it was recently stated by Gibbons and Turok [52] that the probability of
observing a period of N efolds of inflation, an ‘efold’ being the increase of the scale
factor by a factor of e, is suppressed by a factor of exp(—3N). Since it is typically
accepted that at least 68 e-folds would be required to answer the problems above,
a heavy burden is placed upon any theoretical framework to explain this apparent
fine tuning. It is therefore of key interest to understand if LQC can address this
issue. !

The basic ideas of inflationary cosmology have been around since the 1970s
[54] when it was discovered that a scalar field can be used to model a cosmological
constant or ‘vacuum energy’ - an energy density associated with otherwise empty

space. The premise was that this scalar field could fuel a deSitter phase during

!This chapter follows the work of the author in [53].
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which the universe would undergo an exponential expansion and then a phase
transition of the field would end this period. This model was highly unrealistic as
it was shown that it results in a highly inhomogeneous universe [55].

A more realistic model was put forward by Starobinsky [56] at the end of the
decade, and was the first to predict the now familiar anisotropy of the cosmic
microwave background [58]. This model suffered from the ‘graceful exit’ problem,
that different ‘bubble’ universes would form and collisions between the walls of
these bubbles would lead to inhomogeneities.

The modern inflationary model came about in 1981 when Albrecht and Stein-
hardt [57], and separately Linde [59] modeled the inflaton as a scalar field which
is subject to a potential. The scalar field begins in some state on a sloping poten-
tial and slowly rolls down this, subject to a friction-like term which arises when
considering the effects of a non-zero Hubble parameter. Once this field reaches
the minimum of its potential it then decays into other forms of matter, ending
the process. Proponents of inflation argue, with varying degrees of success, that
it solves a range of cosmological issues. Amongst the more compelling arguments
are the horizon problem and the issue of monopoles.

On large scales the universe is observed to be both homogeneous and isotropic.
Examination of the the CMB has revealed that the temperature distribution varied
by less than 0.1%. However, in the absence of an inflationary phase, these regions
would be causally disconnected. Therefore it is a challenge to explain how such
regions were in an approximate thermal equilibrium [60]. In a cyclic or bouncing
scenario, such as LQC, this problem is at least theoretically addressed - distant
parts of space were in causal contact in the distant past, before the bounce. This
argument is not entirely satisfactory as it remains to be seen whether regions which
have the same temperature down to small fluctuations will remain similar through
the highly quantum regime in which the bounce occurs. Inflation not only explains
the presence of density fluctuations, but also the observed (almost) scale-invariant
spectrum [61] [62].

The question of magnetic monopoles also arises as a spacetime which admits
monopoles will be dominated by their presence in the early universe [63]. The pro-
duction of monopoles would outweigh all the other matter present in the universe

by an enormous factor, found to be around 10'2. Inflation answers this question if
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the universe is inflating either during the production of monopoles or thereafter,
as the density of monopoles would be greatly diluted. This is the source of the
requirement of 68 efolds - enough inflation that we would expect to see less than
one monopole in our cosmic horizon.

The concept of inflation in the very early universe raises two fundamental ques-
tions which can be addressed by a quantum theory of gravity. The first relates
to the number of efolds, in particular when do we begin counting efolds? Since
classically the universe began with a big bang, one cannot simply take the number
to be the natural logarithm of the ratio of initial and final scale factors, as the
initial scale factor is zero. Therefore one must somehow pick an initial point (in
terms of time or density or other physical consideration) from which to count the
number of efolds.

The second question is to what degree one should trust the dynamics of GR
in the early universe. This relates to the first question, as if one is to make
predictions about the spectrum of gravitational waves, say, or the CMB from an
inflating cosmology, one must be certain that GR is valid in this region. Since, in
our models inflation is to happen before the physical phenomena whose structure
it explains, one cannot argue that this is a test of the validity of GR here, as it is
a modification of GR by the introduction of the inflaton field that we posit as an
explanation of the observed phenomena.

Fortunately LQC provides us with a well defined answer to both of these ques-
tions. Since our cosmological solutions now ‘bounce’ rather than ‘bang’ we can
begin counting efolds from the bounce point itself, as the scale factor is non-zero
here. Also, from 3.14 we find that GR holds to an excellent approximation up to
1% of the critical density, and therefore we are justified in accepting the predictions
of GR from this point onwards. In the case of inflation, this turns out to be more

than sufficient to answer questions about the CMB observations.

4.2 Preliminaries

We will examine the £ = 0 cosmological models as these are the most interesting
from a phenomenological standpoint. Our system will consist of a 2D configuration

space of the volume v ~ a® of our space as measured with respect to a fiducial cell,
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and a scalar field ¢ which will play the roll of the inflaton. From these we form
our 4D phase space of our configuration variables and their conjugate momenta
b, py. Dynamics on this phase space is governed by a single constraint, the effective
Hamiltonian:

v 3 sin?(A\b)

H= Tow d e + 2%V () (4.1)

1
Q= do Adp + 5dv A db (4.2)

Thus we obtain the effective equations of motion for our phase space variables

. 3vsin(2XD)
= 4.4
¢ pxo— (4.4)
P
L _ -
b = Py ATy (4.5)
Dy = —QWVVZ—‘; (4.6)

It is often convenient in cosmology to consider the Hubble parameter, H = i

From 4.3 it is apparent that this is given by:

1 sin(27b)
2y A

and hence we can observe that although in GR H is a monotonic parameter, in

(4.7)

LQC it is not. This leads us to consider the variable b - the conjugate momentum

to volume - to be fundamental as its evolution is monotonic.

4.3 Gauge symmetry under rescaling

The space of solutions S to our theory admits a further symmetry in the £ = 0
case - that of rescaling of volume. Consider the transformation on phase space
II: {v,¢:b,ps} — {av,¢;b,ap,}. This transformation can be thought of as a

shrinking of the fiducial cell from which volume is determined. Since the fiducial
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cell itself is a purely extraneous structure which we required to allow a Hamiltonian
formulation of our theory, it should have no physical manifestation and this is
indeed the case. Under the action of II we find that the dynamics of the inflaton ¢
and the Hubble parameter H, the physical observables of our theory, are invariant.

This transformation generates a flow y on phase space given by

X = V% +P¢aip¢ (4.8)

This flow is not a symplectomorphism, since £, = €2, but it does preserve the
constraint surface H = 0 since £,’H = H and hence can be considered as a choice
of gauge on this surface. For reasons of clarity in what follows we will use this
gauge freedom to choose the volume of spacetime at the bounce point, to be given
by v, = 1. 2 We began with a four dimensional phase space on which we had a
single constraint, so the constraint surface is three dimensional. Identifying points
connected under the Hamiltonian flow - our dynamical trajectories - further reduces
us to a two-dimensional space of solutions to our theory. By further identifying
physically equivalent solutions under this rescaling by fixing this gauge freedom we
are left with 1 dimensional space of physically distinct solutions. For convenience
lets us characterize these solutions by the value of the scalar field at the bounce
point, ¢. Strictly speaking, the quadratic nature of the constraint only fixes py
up to a choice of sign. Since we are primarily concerned with potentials which are
symmetric under ¢ — —¢, the solutions ¢, = ¢¢,py > 0 and ¢, = —¢@g,py < 0
are physically indistinguishable, and hence considering pgs to be positive at the
bounce point and ¢, to take both positive and negative values we parameterize all

solutions to our theory.

4.4 Inflation in LQC

In this section we will investigate the dynamics of inflation in LQC. Throughout
this section we will fix the potential to take a quadratic form, V' (¢) = m?¢*/2. For

agreement with COBE data we will take the mass parameter to be m = 6 % 107

2This gauge freedom should be familiar from considerations in GR, in which the scale factor
a has no physical meaning by itself, and hence one fixes a given value ag to be, for example, the
value today, and hence only terms such as a/ag have physical meaning.
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in units of the planck mass[60] which corresponds to about 7 x 10?GeV. From
our equations of motion 4.3...4.6 one can show that the dynamics of the inflaton

are governed by the equation:

¢+ 3Ho+m?p=0 (4.9)

This equation bears a striking resemblance to that of a damped harmonic os-
cillator, with damping parameter ( = H/2m. For this to be a true harmonic
oscillator we would require that H be fixed, whereas in our case it is a dynamical
variable. In many of the cases of interest, in particular slow roll inflation, H will be
approximately constant and so the analogy will loosely hold. However, elsewhere
(in particular in superinflation phase) the evolution of H is significant and this
approximation will break.

To simplify the analysis of our dynamics we will consider three separate cases
labeled by the distribution of energy in the harmonic oscillator at the bounce.
Since at the bounce the Hubble parameter H is zero, 4.9 reduces to the equation
of a simple harmonic oscillator, with energy peit-

In particular, let us define f = ﬂm = \/?iibt Note that f takes values on
[—1,1].

4.4.1 Strong Kinetic Domination (|f| < 0.1)

In the kinetic dominated case, the scalar field is close to its minimum at the bounce
point and here we will drop terms of higher order than f2. Since the potential is
small during superinflation, corrections to the massless case due to its presence will

be small. The amount of time that superinflation lasts, At is well approximated

by

AH Hma$ Hm(lm Hmaw
Iy S < R (14 f?) (4.10)
Havg 27T§Z§§ 47Tpcrit(1 - f ) 47Tpcrit
From the bounce to the end of superinflation (H, H) goes from (0, 47rgz§b2) to

(Hmaz, 0) Hence we can form an estimate of the number of efolds
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Hmaw H72nax
log(N Hdt ~ Hg,yAt = ,wg4 - 1+ f3) ~ S (14 %) (411
crit crit

Using the extreme case, in which the potential is zero, this approximation yields
an absolute minimum of 1.08 efolds, which is slightly lower than our true lower
bound of 25 ~ 1.12. During this time we can also calculate the change in the

inflaton:

Aqb:/@dtw&angT:M(Hg)wm(u U

2m V 2pcrit

After the superinflation phase there follows a frictional phase in during which

L) (4.12)

the Hubble parameter decreases and we approach the onset of slow-roll inflation.
If ¢ > 0 at the bounce, during this phase we will encounter a turning point, ¢ = 0,
when the inflaton achieves its maximum potential and begins to roll back down.
At this turn around point, H = 0 and we can use the hamiltonian constraint to
find the Hubble parameter:

5in(2\byq sin( )\b a) AT N2m2¢0?
H;, = (2Ab00) = 22 /1 — sin? (Abyo) = mqﬁm\/ ATATI i
2y 3

(4.13)

To understand this phase better, we split it into two parts: The first, from

kinetic energy dominance until parity between kinetic and potential energy, and

the second from this parity until the turn around point (where kinetic energy is
7€ero).

From the onset of slow roll inflation, the number of efolds can now be approx-

imated since the overdamping of our system yields:

O(t) = poe (4.14)

With w = 3 Ho
taken for the inflaton to exit slow roll (¢ = O(1)) by:

Therefore we can calculate the number of efolds using the time



95

N ~2m (1 ——=5%)¢2 Ing, (4.15)

max

100 — =1

Total e-foldings

Figure 4.1. Number of efolds vs ¢3 for small ¢;,. Note the absolute minimum of about
6 efolds and limited range in which we observe less than 68 efolds.

Taking the further approximation that ¢, ~ ¢, since the change in ¢ before
this onset is relatively small, we find that the number of efolds of inflation is given
by

N~ 4r L 21— )| 2L (4.16)

Which gives 68 efolds for |¢| > 3 ie |f| > 2%1075. From numerical simulations
we find 68 efolds for ¢y, ¢ [—5.3,0.99].

This region which does not yield enough inflation is f € [~3.5%1077,6.6% 1077]
which is a very small section of the allowed range. See figure 4.1.

In figure 4.2 we see an example of this extreme kinetic domination case in which

there are an insufficient number of e-folds before the slow roll period ends. Here
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we observe a rapid superinflationary phase from the bounce point at t = 0 followed
by a slow roll period in which the number of efolds (= log(r)/3) increases almost

linearly.

EQ T T T T T T
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40
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Tirne 7

Figure 4.2. E-folds against time for extreme kinetic domination in which we do not see
68 efolds.

In this simulation we began with ¢, = 0.15 which corresponds to f = 1077 -
in the range that indeed we claim will not produce enough e-folds. The time scale
here is in planck seconds, and hence we are observing the evolution over the first
10736 seconds after the bounce. The corresponding evolution of the scalar field can

be seen in figure 4.3

Here we see that the scalar field begins near zero, and rapidly rises up its
potential achieving its maximum before returning to slowly roll down its potential.

Note that it achieves its minimum at almost the same time as which we observe
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Figure 4.3. Evolution of the scalar field in the extreme kinetic domination case - the
field quickly achieves its maximum and begins to slowly roll down.

the linear expansion phase of the number of e-folds to end.

4.4.2 Intermediate Range 0.1 < |f| <22

The intermediate range of values is characterized by a short period of super-
inflation followed by a long slow roll inflation. When f < 0.35 there is a brief
non-inflationary period during which the Hubble parameter undergoes a rapid re-
duction. As f is increased this period becomes shorter, until the point where it
ceases to exist at f ~ 0.35. The combined period of the short lived superinflation
and the inflaton slowing until the onset of slow roll can be seen as the effect of
the friction term 3H¢ in the equation of motion for the inflaton. This friction is
coupled to ¢ and so is essentially removing the kinetic energy of the oscillator.

During this phase, the change in the value of the inflaton is negligible as



o8

0~ =

g0 - ]

60 1

e-folds

A0 =

40 s

20 1

0 1 1 | 1 1 1 | 1 1
20 40 EQ &0 100 120 140 180 180 200
Time

Figure 4.4. E-folds against time for intermediate case, showing a long period of slow
roll

o 0 _m/1-F (4.17)
¢ P f

which for all f in this range is less than 107°. Therefore we are justified in
making the approximation that the inflaton takes its bounce value at the onset of
inflation. We can use this approximation together with 4.15 to show that in this
range of f we always get more than 68 efolds.

In figure 4.4 we see that in the intermediate case, slow roll inflation happens
very soon after the bounce point. The time scale is again in planck seconds, and
so we see that in fact we have achieved enough e-folds incredibly soon after the
bounce. In the corresponding evolution of the scalar field, figure 4.5 we see that the
inflaton achieves its maximum very soon after the bounce, changing by a negligible
amount between the bounce and the turn around point. It then begins its slow

roll back down the potential, which will lead to a very large number of e-folds of
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slow roll inflation.
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Figure 4.5. Evolution of scalar field for intermediate case - the scalar field reaches its
maximum, which is very close to the bounce value, and begins a long period of slow roll.

4.4.3 Potential Domination |f| > 272

In the potential dominated case we begin our evolution with energy primarily
in the form of potential. Here we see that superinflation can be long lasting
and play the main role in the expansion of the universe. If we begin with the
scalar field rolling up the potential we see that the turn around must occur during
the superinflationary phase, since we begin with V(¢) > peit/2 and increasing.
Therefore at the turnaround, ¢ = 0 the matter density is still above half the
critical density, and so still superinflating. We then see that slow roll begins in
this region, and hence this phase can be long lived with a high and increasing
Hubble parameter. Since superinflation cannot end until the hubble parameter

has achieved its maximum value, this will lead to an enormous number of efolds.

In figure 4.6 we observe that the Hubble parameter increases rapidly after the
bounce point, but does not in fact reach its maximum. Meanwhile the scalar field

has reached its maximum value and in fact has begun to slowly roll back down its
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Figure 4.6. Evolution of Hubble parameter in potential dominated case. The Hubble
has not yet reached its maximum but is slowly increasing since the scalar field has already
begun slow roll. This will result in a large number of efolds.

potential, whilst the Hubble parameter is increasing. This is the origin of the long
period of superinflation that we observe in this case.

After super-inflation, the number of efoldings of slow-roll inflation will also
be very large. Superinflation ends with the Hubble parameter at its maximum,
and due to the massive over-damping from the frictional term, at this point the
kinetic energy of the inflaton is low. Hence we exit superinflation with V' (¢) ~ 23t
and ng small. We can obtain a lower bound for the number of e-foldings for this
range of initial values by taking the case where the inflaton begins with energy
evenly distributed between kinetic and potential, moving towards its minimum:
¢ = —mé = \/2perir-

To gain an estimate of the number of post-superinflation e-folds, we can begin
from the condition that superinflation ends, p = puit/2. Then the system is again
an over-damped harmonic oscillator whose solution is well approximated by 4.14,
with initial amplitude ¢, = \/m Since H is slowly varying over time, in this

case from H,,,, to zero, we will approximate its value by Hyy,y = Hpaz/2, to obtain
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3H2 Perit
= —mar] 4.18
N = By e (418)

Using the values given above, this number is of the order of 103, greatly in
excess of the required 68 e-folds. Despite the huge order of this number, it is not
out of keeping with generic inflationary scenarios in GR. Indeed expansions of as

0130

many as 1 efolds have been discussed in the literature [60], and as yet there is

no observational constraint bounding this number from above.

4.5 Robustness

The results we have obtained so far have all considered the mass of the inflaton to be
fixed at 6 x 10~ "m,,. This was chosen to be in best agreement with observations, and
a quadratic potential was assumed. Since the usual inflationary scenario involves
a scalar field oscillating close to the minimum of a potential, this approximation is
appropriate. However, in LQC we have established that we are able to explore the
entire allowed range of values available to the scalar field subject to the Hamiltonian
constraint. Therefore we should consider a more generic set scenarios.

The first consideration is changing the mass of the inflaton. Under a decrease
in the mass of the inflaton, the allowed range of initial values of the scalar field

increases: Our constraint is that

|8 < V/2perit /1 (4.19)

and hence the range of initial values grows as m~!. In a numerical investigation
it becomes apparent that the minimum number of efolds increases as we reduce
the mass and the range leading to less than 68 efolds does not grow as quickly as
the total range. We find that the range leading to extreme kinetic domination is
again smaller as a fraction of the total range. Therefore our results persist under
reduction of the mass, even by several orders of magnitude. Under an increase
of the mass, we find the the mass of the inflaton must approach 10~*m, before a
significant fraction of the solutions do not experience 68 efolds. This is far outside
the observational constraints[59] and therefore we are justified in claiming that the

results obtained are robust under changing the inflaton mass.
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We can further consider a change of the form of the potential. One of the
generalizations which agrees with the COBE data is a quartic potential shown in
figure 4.7 [60]:

mQ ¢2 n ¢4

Vi(g) =Vo + = (4.20)
2 4
W]
L.x1o~ 1L
8. x m"!-
G107 15 1
4.><1n"3-

—10

Figure 4.7. The quartic potential with negative sign chosen on quadratic term

Where the mass m is restricted as before, and n ~ 10~ for the best fit to
the data. To ensure that we have separated the potential from the effects of a
cosmological constant, we pick 1} such that the minimum of this potential is zero.
In the case where the sign in front of the quadratic term is positive, this simply
implies that V, = 0. When the sign is negative, this sets Vy = m*/4n.

If we let © = ¢ + m/+/n we see that we can then rewrite the potential as

4
V(z) = m*2® — /nma® + % (4.21)

and hence, as expected, in the large ¢ limit the potential will reproduce that
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of a simple ng*/4 form. In terms of the dynamics of the scalar field subject to this

potential, the effects of the lower order terms are less than 1% for z > 10.
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Figure 4.8. efolds against time subject to quartic potential - again we see a long period
of slow roll inflation

In figure 4.8 we see that we do once again recover a period of slow roll inflation.
This simulation began with ¢, = 16 and the evolution of the scalar field can be

seen in figure 4.9.

Obviously the allowed range of ¢ is restricted by this potential, and from nu-
merical simulations one does indeed recover more than 68 e-folds for ¢ > 10.

One can further make heuristic arguments about the robustness of our results
in the presence of generic potentials. The quadratic and quartic potentials exhibit
enough inflation when ¢, is relatively close to the minimum of the potential and
moving towards the minimum. In these cases the Hubble parameter is zero, there-
fore we have the least possible friction. In a more general setting we can consider
the trajectory of the scalar field subject to a more complicated potential which

is approximated by a quadratic or quartic in the vicinity of its minimum. Let us
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Figure 4.9. Evolution of inflaton subject to quartic potential - despite the new form of
potential the slow roll behavior persists.

suppose this approximation holds for, say, ¢ — ¢, < 10 where ¢, are the locations
of the minima of the potential, where we shall take the potential to be zero to
exclude the deSitter cases which will obviously lead to enough efolds. Then, any
motion of ¢ outside these regions will eventually encounter one of these regions.
At such time, the Hubble parameter will be non-zero, and the energy density lower
than the bounce density. Therefore in these regions the inflaton will be moving
slower than if it had begun its motion in this region, and will encounter (at least
initally) more friction, and thus we are likely to see more efolds. Therefore it is
likely that the results we have obtained will hold for a general class of potentials,
not just the quadratic or quartics considered so far. However it should be stressed
that this is a heurestic argument only and further study is required to establish

these results in any detail.
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4.6 Probability of Inflation

In this section we will define a measure on the space of solutions to our theory.
We will then define the a priori probability of an event occurring as being the
volume of the space of solutions in which the event occurs, where the total volume
of the space of solutions has been normalized to unity. This idea arises as Laplace’s
Principle of Indifference which states that in the absence of further information, if
an observation can have N possible outcomes one should assign equal probability
(1/N) to each. In the case we consider there is not a discrete set of outcomes
but rather a continuum, and hence a measure on this space must be employed to

perform such a counting operation.

4.6.1 Defining Probabilities

A natural measure available on phase space is the Liouville Measure duy. A
volume form is obtained on a D-dimensional phase space by taking the symplectic
structure w and raising it to the power D/2 (Note here that D is even by virtue of
each configuration variable having a conjugate momentum). Thus we are equipped

D/2 on phase space. Since we are interested in solutions

with a volume form 2 = w
to our theory we must find a surface S within phase space which every solution
crosses exactly once, and define our measure on the space of solutions, {25 to be
the pull-back of €2 to this surface.

We can therefore define the a priori probability of an event X occurring to be:

P(X) = ;“ g (4.22)

Where A is the subset of solutions in S for which the event X occurs. Since the
Liouville measure is preserved under evolution, it does not matter which surface S
we choose so long as each solution crosses it exactly once. At this point, one might
be tempted to point out that we have merely a measure on this space, and that

by introducing a probability density function f on the surface S one could obtain

e
fS f(u)Qs

where P’ is the probability as defined with reference to this density function,

P(X) (4.23)
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and v some variables on S. To answer this question we must introduce the notion
of the Information contained in a probability density function.

The information contained in a probability density function f(u) is defined to
be

I:/f(u)ln(f(u))du (4.24)

under the constraint that the total probability be normalized to 1 and be posi-
tive for all u. The information I is minimized by the uniform distribution, f(u) = 1,
and hence we are justified in choosing 4.22 to be our definition of a priori proba-
bility. Furthermore it can be seen that such a priori probabilities are of particular
interest when they are particularly low. In these cases there is a heavy burden
placed upon any theory to provide sufficient information to overcome this bare

probability.

4.6.2 Harmonic Oscillator

Once we have a total measure which is finite, we can ask questions about probabili-
ties of our system having certain physical properties, or the moments (expectation
values) of our variables. To find the probability that our system has a certain
property, X we need to identify the portion of phase space A which corresponds
to this property.

In order to better understand what is going on here, let us investigate the
canonical physics test problem: The harmonic oscillator. To have the same number
of degrees of freedom, let us consider a 2D SHO with a given energy E with
unit mass and spring constant. The task will be to investigate the likelihood of
the oscillator having certain physical properties without being given any further
information about its state. We can proceed using the above method:

The expressed in polar coordinates, our constraint is

2
CzQE—Pf—%Jrrz (4.25)

With symplectic structure
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w=dP. Ndr +dP, Nd¢ (4.26)

Here we have options in terms of which slicing we choose in order to count
the number of solutions. Note that each solution crossed P, = 0 at least twice
on an orbit, at the minimum and maximum values of r. This might indicate that
we should use r = r,,;, and P, to define the surface onto which we pull back the
symplectic structure. However, we have far more powerful tools at our disposal
in this case: we know that P, is a constant of motion and that the constraint
is independent of ¢. Therefore a simpler method is to eliminate P, using our
constraint, and pullback onto a ¢ = constant surface.

From our constraint

P¢>
P =\/2E— —£ — 2 (4.27)

and hence our natural two-form is:

2P,
W= L dPy Ndr (4.28)
\/2F — % — 72

With the available phase space, Z being

P, € [0,7V2E — 72, r € [0,V2E] (4.29)

Hence we can integrate our two form over this surface to find the total measure
to be E?m/2

We can now find expectation values for our physical variables:

2 2P

<P> = — / P, dP,dr (4.30)

E*m Jz \/2F — % —7r2

2K
= = 4.31
: (431)
And variance
2 2 E2

<Py > - < Pi>=— (4.32)

18
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Likewise we can find the probability that the particle is less than half-way to

its maximum radius.

V2E
V2E 2 2 2P
P(r < ) = — / dP,dr (4.33)
2 E2m ), 9F _ % 2
1 V3
_ L V3 o (4.34)

The probability that the particle is within a fraction f of its maximum radius

18:

— 2 [IV2P 2P,
T J0 \/2F — % —r2

_ 2f/1— f2(2f% — 1) + ArcSin(f) (4.36)

™

From which we find the pleasant result that P(r < fv/2E) = 0.5 for f = 272.
So, what about a more difficult yet physically relevant quantity? As an exam-
ple, let us consider the shape of the ellipse described by the particle, in particular

let us consider:

e = —min (4.37)

T'maz
As written this is not easily found using the methods described. In order to find
this quantity let us exploit a further set of tools at our disposal: The equations
of motion. Finding the min and max values of » we want to use the condition
7 = 0. Using the equations of motion, this tells us that P, = 0. On the surface of
solutions to our constraint this then tells us:
2
2% + % —F (4.38)
and setting u = r? and noting that there is only one physical solution to this

with r being the positive square root, we then find that these values are solutions
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to the equation:

u? —2uE 4+ P, =0 (4.39)

We then find the shape parameter to be

P2
1—y/1— %
e= |—Y £ (4.40)
P2
L+41— %5

If we want to find out if our orbits are almost circular we can then integrate

our measure frome =¢ytoe =1. Weset v =1/1 — Z—"z. Then for small v we find:
e ~ 1 —wv, and hence we integrate our measure from Py = E\/2¢q — ¢3 to Py = E
and over the region r,,;, <7 < rmaez-

By numerical methods we find that the probability of being in an orbit with
shape parameter e > 0.5 to be around 0.2 and hence would conclude that orbits

which appear circular are very unlikely.

4.6.3 Application to Inflation

Let us now apply this procedure to the system in question. We form the Liouville
measure {2 = dP,AdpA\dbAdv. Recall that we have a single Hamiltonian constraint
to satisfy and from our equations of motion b is monotonic decreasing on any open
interval in time with no fixed points on the interval (0,7/)) and hence for any b
in this interval every solution crosses b = by exactly once. In particular, since we
are interested in knowing probabilities for numbers of efolds after the bounce, we

can pick the bounce point, b = 7/2\ to define our surface.

s
2\

Note that this choice for b is made purely for ease of calculation. The results

S={H=0n{b= (4.41)

obtained are independent of this choice due to the invariance of the Liouville
measure. We further solve the Hamiltonian constraint to eliminate P, leaving the

measure on this surface:
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Qs =/ — — 8122V (¢)dv A do (4.42)

In the above expression the square root is necessarily real on the set of solu-
tions to the Hamiltonian constraint, since the potential cannot exceed the critical

density. We are now in a position to calculate the total measure

N = /S Q, (4.43)

Here we notice that the surface S is non-compact and therefore the total mea-
sure is in fact infinite. The problem arises because we are considering the space
of all possible volumes, v at the bounce point. However, as has been previously
mentioned, there is no physical meaning to this quantity in the £ = 0 case, as
choice of volume at a given point can be considered gauge. Therefore, since our
task is to count the number of physically distinct solutions, we should take the
further step of eliminating this choice. This can be done in a number of ways;
One can perform a group-averaging procedure under the action of rescaling the
volume, place a cut-off on any integral over volume and take the limit as we relax
this cut-off, or declare the fiducial cell used to be that which gives the volume at
the bounce to be a fixed value, say v, = 1. Performing any one of these leaves the
same result in terms of a priori probability of physical events, since we have fixed
this gauge degree of freedom leaving us with a system entirely determined by the
value of the inflaton at the bounce point, ¢,. Thus we derive the probability that

the value of the scalar field lies in a set A at the bounce point to be

Poy€ A) = » \/ o~ 8r2V (9)dg (1.44)

wherein NNV is the total measure on this space:

3 5 o
N = /S \/ o~ 812V (9)do (4.45)

and S the region V(¢) < p. (in which the square root takes real values). The

total measure is finite if we enforce weak restrictions on V(¢): that it be bounded
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below and the region V(¢) < peis is compact® we have a finite total measure, and

well defined notion of probability.

4.6.4 The Quadratic Potential

Let us now focus our attention on the quadratic potential V(¢) = m?¢?/2. This
potential satisfies all the requirements outlined above, namely it is bounded below
and the region in which the energy density is less than the critical density is
compact. In particular the value of the inflaton at the bounce must be in the
region S = [—v/2pcrie /1M, V2perie /m)-

The procedures outlined above now yield a finite total measure N given by

3T 37
N = — 4m22m202dd = _ 4.4
/S\/)\2 Ty mEgtdg 4y 2m (4.46)

We are now in a position to calculate the a priori probability of the inflaton
being in a certain region at the bounce point, whose relationship to the number of
efolds a solution will undergo has been previously established.

We can state the cumulative distribution function, P(¢y) € [0, f@maz|, Where
Gmaz 1s the value of ¢ such that V(¢) = perit, as

%(f 1— f2+sin'(f)) (4.47)

From the details of 4.4 we see that the only cases in which we do not see
68 efolds of inflation is that of strong kinetic domination with f in the range
[—3.5%1077,6.6%1077]. From our cumulative distribution function we find that the
probability that we are indeed on one of these trajectories is 6.4 * 107%. Therefore
the a priori probability that we see 68 efolds of inflation in LQC coupled to a
massive scalar field is very high meaning that in this system it would take a great
deal of fine tuning to avoid inflation.

This result holds under an increase of the inflaton mass by up to two orders of
magnitude (ie m < 6 * 107°m,,;). At this value, the range of f which leads to less
than 68 efolds is [-3.1%107%,1.1%10™* and hence the a priori probability that we

find the inflaton in this range at the bounce is 2.7 10™%], again giving us a greater

3This condition is non-restrictive in the sense that all polynomials with even leading powers
will satisfy it
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than 99.9% chance of seeing 68 efolds. Under a decrease in the inflaton mass, the

probability of 68 efolds increases until the inflaton mass becomes zero.

4.6.5 The Quartic Potential

As discussed above 4.5 a more generic potential for the inflaton can be considered.
In the case examined here, we see that from numerical simulations we recover 68
efolds when |¢,| > 10. Hence we can repeat the process above and calculate the
probability of being in this region. There is also a region around ¢ = 0 which is
an unstable equilibrium point on our potential, and will contribute to the set that
leads to at least 68 e-folds. However, we can gain a crude lower bound by ignoring
this region.

To simplify the calculation, we will consider only the pure quartic contribution.
This will actually reduce our allowed range of ¢ contributing to our crude lower
bound. In doing this we find the probability of ¢, being less than some fraction f’

of its maximum to be

, _ p e D(7/4)oF1[—1/2,1/4,5/4,p"]
P[¢b < f ¢maz] - 2\/7_TF(9/4)

and we once again recover a greater than 99.9% probability of seeing 68 efolds.

(4.48)

4.6.6 Alternate Start Point

One can take the viewpoint that instead of beginning our count of the number of
efolds at the bounce point, one should rather begin at some point at which GR
is valid. In LQC this can be taken to correspond to the density being around
1% of the critical density. Here for simplicity we will consider only the quadratic
potential case, with analogous arguments holding for quartic potentials. Then,
following the above prescriptions, one can calculate the fraction of solutions which
undergo 68 efolds from this point forwards. There are two fundamental differences
between this formulation and that considered at the bounce point: The first is
that there will be no superinflation in this counting. Since the density is well
below the critical density the Hubble parameter H is monotonic non-increasing

from this point forward, which is a consequence of being in good agreement with
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the dynamics of GR. The second is that the allowed region on phase space is
smaller - we consider S’ to be the region in which V(¢) < 0.01pey. This in turn
reduces ¢4, by a factor of 10. In doing so, we recover exactly the same probability
distribution in terms of f = ¢/dmq as before, however the region which leads to
more than 68 efolds has changed.

From numerical simulations we find that the region in which we do not see 68
efolds of inflation is ¢,—0.01p.; € [—5,3]. This again corresponds to a greater than
99.9% chance of seeing at least 68 efolds of inflation forwards of this time, although
it is indeed lower than the estimate beginning at the bounce. Since the Liouville
measure is preserved under evolution, if we counted again the number of solutions
in which we see 68 efolds from the bounce point, we would indeed recover the same
result. The difference here is precisely the portion of trajectories in which we see
less than 68 efolds after reaching 1% of the critical density yet more than 68 from

the bounce point.

4.7 Discussion

Although highly successful as an explanation for physical phenomena, the infla-
tionary scenario in GR encounters a number of conceptual difficulties. Questions
about whether inflation is a generic phenomenon arise, and the framework is not
equipped with the tools to answer these questions. Similarly the total number
of efolds is an ill-defined quantity, as an expanding cosmological solution begins
with a big bang in which the Hubble parameter and matter density are infinite,
and volume zero. These importance of these issues is amplified by the success of
inflation.

In this chapter we examined the effects of the LQC corrections to GR. Expand-
ing cosmology now begins at a bounce point, with zero Hubble parameter, fixed
finite density and a non-zero volume. We have seen that LQC yields a paradigm in
which questions of inflation can be made precise: The bounce gives a clear ‘start
point’ from which to count efolds, and we can form a natural measure on phase
space which shows that in a somewhat general inflationary scenario, the a priori
probability of the universe undergoing enough efolds to solve physical problems is

very high. This in turn indicates that the inflationary scenario in LQC does not
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require ‘fine tuning’, but rather that the generic predictions of the model are in
good agreement with the observed data.

This is not to say that all the problems of inflation are addressed in LQC.
LQC has so far put forward no candidate field to play the role of the inflaton, the
scalar field used here was added by hand for the purpose. One possible candidate
under consideration is the taking the Barbero-Immirzi parameter v to be a field
[64]. However, in this case the dynamics of the associated quantum cosmology
have yet to be defined and would likely be different from those described here, not
least because the critical density depends directly upon this parameter. It is also
assumed that the inflaton somehow decays into other matter fields which go on
to become the constituents of our observed universe. Again there is no detailed
model for this decay, only the idea that around the minimum of the potential
this is expected to occur. The scalar field can be thought of as merely a model
for the inflaton, whose dynamics are in reality described by a more complicated
system. As was noted above, the scalar field changes equation of state across all
non-phantom matter and so is a good toy model for more complicated dynamics,
especially once more complicated potentials are considered.

A second question which arises is that of the ‘trans-planckian’ nature of a cos-
mology which undergoes a large degree of inflation. If, as is highly likely according
to our measure, the universe underwent a large number of efolds (say > 150) then
at the bounce point the entire currently observable universe would have had a
radius less than the planck length. Therefore one could argue that quantum fluc-
tuations of the fields involved, which could be large at the bounce, should still be
present and so the universe would not appear classical. This argument is some-
what vague, as in all singular cosmologies there is point beyond which the entire
observable universe would be less than a plank length in radius. Inflation does
highlight this problem as rapid expansion would cause this region to expand more
quickly, but this question appears one that should be addressed by cosmology as
a whole, not simply inflationary models.

Inflation, as was shown in chapter 3 is a generic feature of LQC. The particular
model of inflation due to a scalar field being subject to a potential has a high
probability of producing a universe which agrees with cosmological observations.

Therefore we find the opposite result to that of Gibbons and Turok - it would
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require fine tuning to have an inflationary universe which did not produce enough

inflation.



Appendix

Numerical Details of BKL

Simulations

A.1 One point evolutions

Simulations of the BKL system for a single set of initial data described by 2.59 and
2.58 were performed in MATLAB using a Runge-Kutta (4,5) algorithm (ODE45)
[65] to numerically solve the differential equations. Both relative and absolute tol-
erances were set at 107 and on every solution preservation of the Hamiltonian
constraint 2.57 to this order was verified. Calculations of the u-map and Hamil-
tonian were performed on the raw output data. In both the simulations done on
the BKL conjecture and the inflationary trajectories in LQC, we are evolving a
Hamiltonian system. Numerical error in the system is not directly coupled to any
of the dynamical variables, and therefore will play the role of a cosmological con-
stant (which is pseudo-random in time). In requiring that the absolute tolerance
levels of our system are small in comparison to the timescales involved, we ensure
that the integrated effect over time of this error is small - the effective cosmolog-
ical constant created by this error plays little role in long term evolution. In also
requiring that the relative tolerance for error is low we ensure that there is little
effect played by the change of this parameter, hence our solutions do in fact well

approximate the physical systems after which they are modeled.
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A.1.1 The u-map

Through numerical simulation we are able to verify the behavior of the u-map as
state in 2.80 - we do see the signature stepping down by 1 of the u parameter
and its inversion below 2 in systems which have settled into a Bianchi I/Bianchi II
transition regime. However, at early times this behavior is not necessarily present
- it is a phenomenon which can appear in our simulations at late times, as we see
in figures A.1 and A.2

25F
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a 20 40 &0 gl 100 120 140 160 180

Figure A.1. The system can quickly settle into u-map behavior when starting from an
almost Kasner state

Adding a scalar field to the system stops this behavior - the u-map appears to
be no longer valid when there is matter present. This is clearly to be expected as
the presence of a strong enough scalar field, as discussed in chapter 2, causes the

Taub transitions to cease. An example of this is shown in figure A.3.

A.1.2 Function fitting

The approximation of our solutions by a sum of sech functions was also performed

numerically. For each Taub transition, the fitting was asigned two parameters
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Figure A.2. A system initially far from a Kasner state can require some initial ‘settling’
before the u-map behavior emerges

corresponding to the amplitude and time of the sech function used in the approxi-
mation. The initial positions for the search on the space of functions were the peak
points of the transitions. These were then fit to the data using an multivariate
linear fitting program (nlinfit).

In this simulation we observe that even when the number of transitions is far
higher than the number of degrees of freedom in the system we still can recover
a close approximation to the dynamics. Here there are several transitions in the
highest eigenvalue of C' which appear to be perturbations around the one more

long term transition which is well fit by the associated sech function.

A.2 Solutions with varying initial data

In order to investigate the presence of spikes in our system it was necessary to
perform simulations in which the initial data varied over space such that a spike
would form during a Taub transition. These simulations were run on hand writ-
ten differential equation solving code using an iterative Picard method to solve
the equations. Despite the calculational inefficiency of using superlinear methods

over increasing data points, memory limitations of the systems involved caused
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Figure A.3. The non u-map behavior in the presence of a scalar field. Here the scalar
field is not strong enough to stop transitions but does break the u-map

optimization of the grid beyond a certain point (around 10° grid points) to be
impossible. Therefore once an optimal grid was achieved the number of iterations
of the Picard algorithm was increased.

Initial data was picked by choosing the all three eigenvalues of P and one of
C'. The second eigenvalue of C' was varied across the allowed parameter space and
the Hamiltonian constraint applied to solve for the remaining eigenvalue. In doing
so we ensured that all our initial data satisfied the boundary conditions imposed
and that we were indeed evolving physical solutions to our theory.

In figure A.5 we see an example of the behavior of a spike in the eigenvalue of
C. Here we see that on either side of the ‘spike point’ transitions occur, one with
positive C' the other negative. The spike point itself is actually stationary as no
transition occurs at this point. It is rather the nearby transitions that pick out

this point, as the nearby eigenvalues diverge.



Figure A.4. Fit of varied C evolution by sum of sech functions
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Figure A.5. Profile view of spike in C



Appendix

Numerical Details of LQC

Simulations

Simulations of the LQC inflationary system for a single set of initial data described
by 4.3-4.6 were performed in MATLAB using a variable order Adams-Bashforth-
Moulton PECE solver (ODE113)[66] to numerically solve the differential equations.
In the simulations for precision the natural logarithm of the volume was taken as
a fundamental variable instead of the volume itself. Both relative and absolute
tolerances were set at 10~** and on every solution preservation of the Hamiltonian
constraint 4.1 to this order was verified. Simulations all used the choice that the
volume at the bounce point, v, was fixed to unity, and initial conditions were fixed
by choice of the value of the scalar field ¢, with the Hamiltonian 4.1 being used
to calculate p,. Since our system is symmetric under ¢,p, — —¢, —ps we could,
without loss of generality, take the positive square root that arose from solving the
constraint.

Upon completion of a simulation the various physical quantities of interest
(in particular the number of efolds) were calculated. This was done numerically,
performing a binary search for the maxima of ¢ to establish turning points, and for
q‘b. for the onset of slow-roll inflation. Similarly a search of where ¢ exited slow-roll
was calculated numerically, with the exit point being the point where the slow roll
conditions were violated. A spot check of these results was performed by hand for
generic statements, and any individual results required were verified directly.

As a test case for every simulation, both the massless scalar field and fixed
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potential (effective cosmological constant) solutions were calculated and compared
to their known analytic solutions. In each case agreement up to one part in a
million were observed in the evolutions of the fundamental variables. Similarly
simulations in which the initial volume was varied by orders of magnitude in each
direction were performed, producing identical results to the case in which the
volume was fixed. Likewise the negative py solution to the Hamiltonian constraint
was checked to yield identical physical results to the positive choice. This is obvious
from a physical perspective, however from the point of view of simulations it was
necessary to establish that no artifacts of our choices of gauge were present in the
simulations themselves.

In order to establish the data for 4.1 a preliminary search on the initial param-
eter space of ¢ was performed with a uniform linear spacing between data points.
Once this revealed the approximate location of the minimum, a binary search on
this space was performed until the minimum of the number of efolds as a function
of initial parameter was found and verified to 3 significant figures.

Numerical simulations were used to find the number of efolds directly only
in the kinetic dominated case. Once the number of efolds grew beyond 100 the
numerical stability of the equations would break. Fortunately, at this point we
were beyond the point of interest in our paradigm, since we are interested in initial
conditions which yield less than 68 efolds. In both the intermediate and potential
dominated regimes, the numerical solutions were used to verify that this bound

was exceeded.
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