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Abstract

In this dissertation we explore two issues relating to Loop Quantum Cosmology
(LQC) and the early universe. The first is expressing the Belinkskii, Khalatnikov
and Lifshitz (BKL) conjecture in a manner suitable for loop quantization. The
BKL conjecture says that on approach to space-like singularities in general rela-
tivity, time derivatives dominate over spatial derivatives so that the dynamics at
any spatial point is well captured by a set of coupled ordinary differential equa-
tions. A large body of numerical and analytical evidence has accumulated in favor
of these ideas, mostly using a framework adapted to the partial differential equa-
tions that result from analyzing Einstein’s equations. By contrast we begin with a
Hamiltonian framework so that we can provide a formulation of this conjecture in
terms of variables that are tailored to non-perturbative quantization. We explore
this system in some detail, establishing the role of ‘Mixmaster’ dynamics and the
nature of the resulting singularity. Our formulation serves as a first step in the
analysis of the fate of generic space-like singularities in loop quantum gravity.

The second issue is that of the role of inflation in LQC. In LQC the big bang
singularity is replaced by a quantum bounce which is followed by a robust phase
of super-inflation. We establish the behavior of effective equations for LQC in
a generic setting then investigate in detail the particular case of early universe
inflation caused by the slow roll of a scalar field down its potential. A natural
measure is formed on the space of solutions to the equations of motion and it is
established that in this scenario the a priori probability of seeing the required 68
efolds of inflation is in fact very high which stands in stark contrast to the results
that have been presented in the classical case. In doing so we show that inflation
in LQC suffers from no ‘fine tuning’ issue and is in fact a generic feature.
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Chapter 1
Introduction

From the inception of relativistic cosmology, it has been apparent that General

Relativity admits singular solutions of physical interest. Initially the presence

of singularities was the subject of a great deal of debate - some claimed that the

presence of singularities was an artifact of the symmetries imposed on cosmological

solutions and would not be present in more physically realistic solutions and in

particular the Russian school believed that the singularity itself was not a true

physical solution to the theory. This issue was ultimately laid to rest by the

powerful singularity theorems of Penrose in 1965[1], which showed that singularities

occur under very general conditions making them an essential feature of general

relativity. However, despite showing that a singularities did indeed exist little was

known about the dynamics of space-time near a generic singularity.

An alternate perspective on this is that the presence of a singularity is the

result of applying the equations of General Relativity (GR) outside of their re-

gion of validity. In this viewpoint, GR is simply the low energy limit of a more

complicated physical model. Indeed, since no physical test has been made in the

high curvature regime, this idea cannot be ruled out. Several models have been

produced which make classical corrections, mostly inspired by the idea that GR

is non-renormalizable. Corrections to the Einstein-Hilbert action involving higher

powers of the Ricci scalar or contractions of multiple copies of the Riemann tensor,

the so-called ‘f(R)’ theories[2], are amongst the more popular as by construction

they can include GR as a low curvature limit.

The issue of singularities is of great importance in any approach to Quantum
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Gravity. Singularities are an aesthetic issue in any physical theory, and one which

it is expected that a deeper understanding of nature will resolve. It is deeply

unsatisfying to consider that there is a point in time before which no further

information can be known. It is to be hoped, therefore, that a more complete

model will enable us to look beyond this horizon and extend our understanding of

our past.

It is also expected that any complete theory of Quantum Gravity must agree

with GR within the latter’s range of validity. Deviations from the established

theory are only to be expected at very high energy scales, and therefore singu-

larities are our best hope of observing these deviations. Through understanding

the classical approach to a singularity one can gain insight into which aspects of

a quantum theory are the most relevant, and therefore what questions to ask of

phenomenology. Thus singularities provide a window into the quantum world.

1.1 History of the Universe According to Gen-

eral Relativity

In 1922 Friedmann provided a homogeneous, isotropic solution to Einstein’s equa-

tions [3]. Here the notion of dynamical space, as opposed to the absolute space

of Newton was applied for the first time in cosmology. In this solution it was no-

ticed that at finite time in the past the size of the universe shrank to zero, whilst

the energy-density and curvature became infinite. Despite the presence of these

features in Friedmann’s model, their implications were first really understood by

Lemaitre[4] - that they implied that the universe began with a singularity, dubbed

the ‘big bang’. In 1935 Robertson [5] and Walker [6] independently proved that

Friedmann’s metric described every cosmological scenario in which the vacuum

speed of light is held constant. Although this is now widely accepted initially the

idea that history ended to the distant past was considered unappealing - leading

even Einstein to add a cosmological constant in an effort to yield a static universe.

According to what has now become the standard model of cosmology 1 the

universe began with a big bang around 1.5 × 1010 years ago (in planck units,

1Here we use the term ‘standard model’ to mean widely accepted and not out of any reference
to the standard model of physical interactions
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5× 1060 sp ago). 2 This point is the past singularity of our cosmological solutions.

From this point until the first planck second (10−42 seconds) little is known, as the

universe was in the ‘planck era’ - during which it is assumed quantum mechanical

effects dominated dynamics. There then followed, over the next 10−36 seconds

(106 sp) a period of ‘inflation’ in which the universe underwent an accelerated

expansion. If one believes grand unification theories, then inflation must continue

past the point of symmetry breaking of these theories and during the production

of magnetic monopoles[60].

This epoch is followed by a period of reheating, when the inflaton decays into

a relativistic plasma. This is the electroweak period[7] which takes place over the

next 10−12 seconds (1030 sp). After around 10−6 seconds (1036 sp) quarks form, yet

the temperature is still above that which would allow for hadron formation. At

this point the four fundamental forces have become distinguishable.

Between 10−6 and 1 second (1042 sp) the process of baryogenesis[8] begins and

hadrons such as protons and neutrons form. At this point the cosmic neutrino back-

ground forms as neutrinos are now decoupled from other matter. This is followed

over the next 10 seconds (1043 sp) by a lepton dominated phase[9] which ends with

lepton/anti-lepton annihilation producing a photon dominated regime[7]. During

this regime, between 200 and 1000 seconds (2× 1044− 1045 sp) nucleosynthesis[10]

can occur producing hydrogen and helium nuclei. The photon dominated regime

lasts for around 300, 000 years (1056 sp). At the end of this period, the temperature

is low enough that the first atoms can form, and the universe becomes transpar-

ent to photons. This is the point at which the Cosmic Microwave Background is

formed giving us a picture of the universe at this time.

In this thesis we will discuss two aspects of this history from a perspective of

Loop Quantum Cosmology. The first is an investigation of the BKL conjecture

which posits a simplification of Einstein’s equations applicable to regions in a close

neighborhood of a singularity. The second is an examination of the phenomena of

effective equations for LQC and the role of the inflationary epoch therein.

2We will denote the ‘planck second’ by sp =
√

~G
c3 which is a convenient until when dealing

in particular with quantum cosmology. Numbers given in this section are there to establish their
orders of magnitude rather than exact values. Throughout this thesis we will work with planck
units, obtained by setting G = ~ = c = 1
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1.2 The BKL Conjecture

In 1970, Belinskii, Khalatnikov and Lifshitz (BKL) made a conjecture which, if

proven would shed considerable light on the nature of space-like singularities in

GR: It is proposed that in the neighborhood of a singularity time derivatives would

dominate over spatial derivatives, implying that the asymptotic dynamics would

be well described by a series of coupled ordinary differential equations rather than

partial differential equations. Although at first this appears an unlikely result,

there is a growing body of evidence both analytic and numerical which supports

this view.

Specifically the conjecture proposes that at any point in space the geometry

is well described by the Bianchi I metric for long stretches of time periodically

undergoing Bianchi II transitions. At specific points, gradients can grow, forming

spikes, but the dynamics remains local.

It is now known in LQC that the Bianchi I and II singularities are resolved.

This suggests that there may well be a general result which says that all space-

like singularities of the classical theory are naturally resolved in loop quantum

gravity. It is difficult to test this idea using the current formulations of the BKL

conjecture since these approaches are motivated by the theory of partial differential

equations rather than by Hamiltonian or quantum considerations. In particular,

most approaches perform a rescaling of their dynamical variables by dividing by

the trace of the extrinsic curvature. Such a procedure is difficult to reproduce in

LQC as this would require an inverse extrinsic curvature operator. In the analysis

presented here, we reformulate the BKL conjecture in a way more suited to loop

quantization and explore the resulting system both analytically and numerically.

1.3 Effective Equations and their Implications

It has been observed both analytically and numerically that the effective equations

for the simplest models of LQC closely match the full quantum dynamics not

only in the infrared regime but throughout the entire evolution of the universe.

This remarkable feature of the effective equations leads us to ask questions of

their physical phenomena even away from these simple models to provide hints
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as to where quantum effects should be manifest in the full theory. Through a

careful analysis of the effective system of LQC we are able to show that there are

signature features of these cosmologies in their full evolutions: Physical parameters

such as the Hubble expansion rate and the total matter density remain bounded

throughout an entire trajectory, attaining their bounds, and thus point towards

where potential tests of the full theory may be performed.

It is also shown that under fairly generic conditions the effective system ex-

hibits welcome geometrical features of a bouncing cosmology. The scalar curva-

ture is bounded from above and the system undergoes a period of superinflation, a

phenomenon not present in GR except in cases when energy conditions are broken

or the matter action is non-minimally coupled. This superinflationary phase is

generally short lived yet sufficient to connect contracting and expanding branches.

1.4 Loop Quantum Cosmology and Inflation

Inflationary models of the early universe have enjoyed a huge amount of success in

explaining physical phenomena. The most striking result is a natural mechanism

for structure formation. However, despite this success there is widespread concern

that inflation requires ‘fine tuning’ of initial parameters - that one may have to

require the state of the universe to be highly non-generic or chosen very carefully

for sufficient inflation to occur. In particular, Gibbons and Turok have claimed that

the probability of obtaining the required efolds in the expansion of the universe

is suppressed by a number on the order of 10−88 - this would imply that further

non-trivial input is required to explain how the universe came to be in such a

state. However this calculation required a series of assumptions; since the space of

solutions is non-compact space certain cut-offs or regularizations had to be imposed

by hand.

In the LQC case, the corresponding space is in fact compact, a result that stems

from the discreteness of the area parameter in Loop Quantum Gravity. Therefore

LQC provides a system in which this calculation can be performed much more

directly. In doing so we observe that the number of solutions exhibiting less than

68 efolds of inflation is negligible in comparison to those which inflate enough.

Thus in the context of LQC coupled to a massive scalar field, inflation is a natural
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mechanism through which the universe expands sufficiently, generically solving

problems such as the overabundance of monopoles in the early universe.



Chapter 2
The BKL Conjecture

2.1 Introduction

Originally formulated by Belinskii, Khalatnikov, and Lifshitz in 1970 [12], the BKL

conjecture states that as a space-like singularity is approached, time derivatives

dominate over spatial derivatives. Thus partial differential equations are replaced

by ordinary differential equations and the dynamics of GR become local and os-

cillatory, and with the significant exception of a scalar field, matter contributions

become negligable - to quote Wheeler ‘matter doesn’t matter’. Thus each spatial

point acts like a homogeneous cosmology, which were classified by Bianchi [13].

The simplest solutions being those with no intrinsic curvature, the Bianchi I met-

rics, and the next those with intrinsic curvature along one direction, the Bianchi II

metrics. The BKL conjecture posits that the dynamics of each spatial point follow

the ‘Mixmaster’ behavior - a sequence of Bianchi I solutions bridged by Bianchi II

transitions. Initially this conjecture, based on a heuristic analysis on the Einstein

field equations, was easy to dismiss as it appears coordinate dependent, breaking

one of the fundamental tenets of General Relativity. 1

Recently both numerical and analytic investigations have provided a great deal

of support for this conjecture. Although there has not been significant progress

towards a proof of the conjecture in the full theory there has been outstanding

progress in simpler models. Berger[14], Garfinkle[15] Moncrief[16], Isenberg[17]

1This chapter follows the work of the author in [11].
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and Weaver[18] showed that for a class of models the solutions to the Einstein

field equations approach the ‘Velocity Term Dominated’ solutions obtained by

neglecting spatial derivatives as the singularity is approached. Andersson and

Rendall [19] have shown that for General Relativity coupled to a massless scalar

field or a (VTD) stiff fluid even in the absence of symmetries for every solution to

the VTD equations there exists a solution to the full field equations that converges

to the VTD solution as the singularity is approached. In these VTD models the

BKL behavior is simpler, allowing a precise statement of the conjecture that could

be proven.

Numerical evolutions have provided the most convincing argument for the BKL

conjecture to date. Berger and Moncrief began a program to analyze generic

cosmological singularities [20]. Initially much work was done in symmetry reduced

cases [21]. More Recently Garfinkle has performed numerical evolution of space-

times with no symmetries in which again the Mixmaster behavior appears to be

present.

In this chapter we will begin by expressing GR in ‘first order’ terms, and

introduce a set of variables that are motivated by the BKL conjecture. The BKL

conjecture is applied in the form of a truncation of our constraints and the resulting

dynamics explored, establishing known features of Mixmaster dynamics such as the

‘u-map’ and spikes.

2.2 Preliminaries

We will consider spacetimes of the form 4M = R× 3M where 3M is a compact 3-

dimensional manifold (without boundary). We will formulate GR in terms of first

order variables, the basis of loop quantum gravity. These consist of pairs of fields

consisting an orthonormal triad, Ẽa
i and its conjugate momentum Ki

a which on

solutions will correspond to extrinsic curvature. The fundamental poisson bracket

is given by

{Ẽa
i (x), Kj

b (y)} = δji δ
a
b δ

3(x− y) (2.1)

Herein, early letters, a,b,c, denote spatial indices while i,j,k denote internal
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indices which take values on so(3) - the Lie algebra of SO(3). Tildes are used

to denote density weights of quantities; a tilde above indicates that the quantity

transforms as a tensor density of weight 1. These variables are related to the older

Arnowitt, Deser and Misner (ADM) counterparts by

Ẽa
i Ẽ

b
jη
ij = qqab (2.2)

Ki
aẼ

b
i =
√
qK b

a (2.3)

where qab is the metric on the leaf 3M , q its determinant, and Kab the extrinsic

curvature of 3M .

In terms of these variables we perform a 3+1 decomposition of space-time in

which our Hamiltonian is [23]

H[Ẽ,K] = −
∫

3M

1

2∼
N
˜̃
S +

1

2
NaṼa + (4A · t)ijG̃ij (2.4)

which is a sum of constraints with Lagrange multipliers. The Lagrange mul-

tipliers ∼N ,∼N
a, the lapse and shift, are related to the choice of slicing and time.

(4A · t)ij is related to rotations in the internal space. The constraints
˜̃
S, Ṽa, and

G̃ij are the scalar, vector, and Gauss constraints respectively. The constraints are

[23]

˜̃
S ≡ −qR− 2Ẽa

[iẼ
b
j]K

i
aK

j
b (2.5)

Ṽa ≡ 4Ẽb
iD[aK

i
b] (2.6)

G̃ij ≡ −Ẽa
[iKaj] (2.7)

Where R is the scalar curvature of the derivative operator Da compatible with

the metric qab. The overall sign and numerical factors in the constraints are chosen

so they reduce to the ADM constraints upon solving the Gauss constraint. R can

be written in terms of the triad and its inverse or in terms of the triad and the

connection compatible with the triad Γia.
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DaẼ
b
i + εijkΓ

j
aẼ

bk = 0 (2.8)

Γja = −1

2∼
EbkDaẼ

b
i ε
ijk (2.9)

The equations of motion are obtained by taking Poisson brackets with the

Hamiltonian.

˙̃
Ea
i = {Ẽa

i , H[Ẽ,K]} (2.10)

K̇i
a = {Ki

a, H[Ẽ,K]} (2.11)

The phase space variables that form the basis of loop quantum gravity can be

simply obtained from {Ea
i , K

i
a} by a canonical transformation.

{Ẽa
i , K

i
a} → {Aia, γ−1Ẽi

a} (2.12)

Aia = Γia + γKi
a (2.13)

For clarity of presentation we will work with the phase space (Ẽa
i , K

i
a).

2.3 BKL Motivated Variables

It is not immediately apparent how to apply the BKL conjecture in terms of this

Hamiltonian formulation. A number of questions immediately arise: What kind

of derivatives dominate as one approaches the singularity and what kind become

negligible? Derivatives of what quantities are to become negligible? A framework

due to Uggla, Ellis, Wainwright and Elst (UEWE)[24] gives a rigorous statement of

what the BKL conjecture is by answering these questions in the ADM formalism.

Applying the conjecture to their equations of motion they obtain a simplified

systems that successfully describes the expected oscillatory BKL behavior. Further

their form of the BKL conjecture is supported by numerical evolutions. We will

motivate the definition of our variables and our form of the conjecture from their
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framework.

Drawing motivation from the scale-invariant framework of Uggla, et al [25] we

define a set of variables that are adapted to describe the BKL conjecture and

that are suitable for quantization. Of particular use in this framework is a ‘Hubble

normalized triad’ K−1eai which is expected to become degenerate at the singularity.

From this the ‘scale invariant variables’ are formed:

Σij = 3K−1eaiKaj −K−1eakK
k
aδij (2.14)

Nij = −3K−1ea(iΓaj) + 3K−1eakΓ
k
aδij (2.15)

Ai = −ε jki 3K−1eajΓ
k
a (2.16)

∂i = 3K−1eai ∂a (2.17)

It is expected that these variables will remain finite at the singularity [26] due

to the division by the trace of the extrinsic curvature, and that the derivative

introduced will become negligible when acting upon these variables. We aim to

produce a similar set, but will diverge from their motivation of scale invariance

for two reasons: The first is that dividing quantities by the trace of the extrin-

sic curvature, K, is not natural for quantization, since it is difficult to define an

operator corresponding to 1
K

. Using only products and sums of phase space vari-

ables it is not possible to construct scale invariant scalar quantities. The second

is that although scale invariant quantities that can be constructed,Ki
a and Γia, but

are typically divergent at singularities. We will motivate our framework from the

properties of the Hubble normalized triad K−1eai . We argue that it is the degener-

acy of the Hubble normalized triad at the singularity that suppresses derivatives

and gives bounded variables at the singularity.

The densitized triad, Ẽa
i =

√
qeai has similar properties to the Hubble nor-

malized triad. Since
√
q approaches zero near a typical space-like singularity we

expect that Ẽa
i =

√
qeai will be degenerate near the singularity as well. We will

therefore motivate our construction from this, however the resulting system is a

precise, self-contained conjecture. We find that in examples the properties we seek

are realized; for the vacuum Bianchi I solution with lapse N = 1 the densitized
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and Hubble normalized triads have the some time dependence, since

Ẽa
i =

K̃

3
Ea
i (2.18)

K̃ = 1 (2.19)

More generally if K̃ is bounded as the singularity is approached then the densitized

triad will be degenerate if and only if the Hubble-normalized triad is.

We construct scalar densities by contracting Ẽa
i with Ki

a, and Γia.

P̃ j
i = Ẽa

iK
j
a − Ẽa

kK
k
aδ

j
i (2.20)

C̃ j
i = Ẽa

i Γja − Ẽa
kΓkaδ

j
i (2.21)

An important feature of these variables is that they are tensors with only internal

indices . Under diffeomorphisms P̃ and C̃ transform as densitized scalars. Notice

that P̃ij bears a close resemblance to the Pab, the ADM momentum. These variables

are related to the scale invariant variables of Uggla et al by:

Σij = −6P̃ij

P̃
+ 2δij (2.22)

Nij = −C̃ij
P̃

(2.23)

Our scalar density variables P̃ij and C̃ij are again bounded if K̃ is bounded as

the singularity is approached.

We further define

D̃i = Ẽa
iDa. (2.24)

These D̃i will be the spatial derivatives we consider negligible near the singularity.

This operator is linear and Liebnitz, but due to its action on functions

D̃if = Ẽa
i ∂af (2.25)

D̃i is not a connection, however if treated as a connection it has interesting features.
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The connection has torsion, which is related to C̃.

D̃[iD̃j]f = −εkl[iC̃ l
j] D̃

kf = −T̃ kijD̃kf (2.26)

T̃ kij = εkl[iC̃
l

j] (2.27)

We can rewrite the constraints in terms of the densitized triad and these scalar

density variables.

˜̃
S = 2εijkD̃i(C̃jk) + 4C̃[ij]C̃

[ij] + C̃ijC̃
ji − 1

2
C̃2 + P̃ijP̃

ji − 1

2
P̃ 2 ≈ 0 (2.28)˜̃

V i = Ẽa
i Ṽa = −2D̃jP̃

j
i + 2εjklP̃

kl(C̃ j
i − C̃δ

j
i )− εijkC̃jkP̃ + 2εijkP̃

jlC̃ k
l ≈ 0(2.29)

G̃ij = −P̃[ij] ≈ 0 (2.30)

Here we have contracted the vector constraint with a densitized triad to obtain

a constraint
˜̃
V i. Since the triad is assumed to be invertible everywhere except

at the singularity, this constraint defines the same surface as the original vector

constraint Ṽa. By defining this new constraint
˜̃
V i the terms in each constraint

can be grouped into two classes defined as follows. Let us define Πn to be the set

of polynomials of order n in C̃, P̃ , and ∼N and DΠm to be elements in the set of

polynomials of order m in C̃, P̃ ,∼N, D̃ containing at least one derivative D̃. Each

constraint can then be decomposed into a sum of terms in Π2 and terms in DΠ2.

This feature will motivate our form the BKL conjecture. The equations of motion

for Ẽa
i , C̃ij, P̃ij can be written in a similar form.

˙̃
C
ij

= εjklD̃k(∼N(1/2δil P̃ − P̃ i
l ))−∼N [2C̃

(i
kP̃
|k|j) + 2C̃ [kj]P̃ i

k − P̃ C̃ij](2.31)

˙̃
P
ij

= −εjklD̃k(∼NC̃
i
l ) +

1

2
εijkD̃k(∼NC̃)− εklmD̃m(∼NC̃kl)δ

ij (2.32)

+2εjkmC̃ [ik]D̃m(∼N) + (D̃iD̃j − D̃kD̃kδ
ij)∼N

+∼N [−2C̃(ik)C̃ j
k + C̃C̃ij + 2C̃ [kl]C̃[kl]]δ

ij

˙̃
Ea
i = −∼NP̃

j
i Ẽ

a
j (2.33)

We have set the shift to zero to reduce clutter. The equations of motion for

P̃ij and C̃ij can again be decomposed into two groups of terms; those in ∼NΠ3, and
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those in ∼NDΠ3 or DiDj∼N . With zero shift the equation of motion for Ẽa
i is a

simple linear equation. The constraints and equations of motion for C̃ij and P̃ij

can then be written in terms scalar density variables and the derivative D̃i. Our

form of the BKL conjecture is then motivated to be that terms in Πn dominate

those in DΠn.

These equations of motion can be derived by taking Poisson brackets with the

Hamiltonian. To simplify this process the Poisson brackets between Ẽa
i , C̃ij, and

P̃ij can be derived

{Ẽa
i , P̃jk} = Ẽa

j δik − Ẽa
i δjk (2.34)

{P̃ij, P̃kl} = P̃kjδil − P̃ilδkj (2.35)

{
∫
fijP̃

ij,
∫
gklC̃

kl} =
∫
fijgkl(C̃

kjδil + C̃jlδik) + εjlmδikgklD̃mfij (2.36)

We notice here that the P̃ij have the same algebra as GL(3,R). From the Poisson

bracket C̃ij and P̃ij we see that C̃ij transforms as a connection under GL(3,R)

transformations.

This formulation is applicable outside of just describing the BKL conjecture.

The evolution equations and constraints do not depend on the inverse triad, except

through the definition of C̃. If initial data is then chosen that solves the constraints

as well as the constraint relating the densitized triad to C̃ then this data can be

evolved to the point where the triad is degenerate. Further we expect that in

evolving towards the singularity the triad becomes degenerate. By contracting the

quantities that often diverge at singularities, Ki
a,Γ

i
a, the quantities C̃ij, P̃ij remain

bounded or have a much lower degree of divergence. Since our equations of motion

do not involve the inverse triad, Ei
a the degeneracy of the triad is not an issue - in

many instances the variables we define will remain finite through the singularity.

2.4 Truncation

Since our equations of motion and constraints can be decomposed into the sum of

terms in DΠn and Πn we are naturally lead to examine a truncation of the full

theory in which we set all elements of DΠn to zero. In doing so we will retain only

those terms in Πn - the terms we expect to become dominant at the singularity.
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We therefore formulate the BKL conjecture to be:

• ∃X ∈ Πn such that ∀Y ∈ DΠn,
Y
X
→ 0 as we approach the singularity.

• C̃ and P̃ remain bounded near the singularity.

• ∼N and ∼N
i remain bounded near the singularity.

• The full dynamics is well approximated by setting terms in DΠn to zero.

The terms in DΠn may tend to zero either due to terms in Πn becoming ho-

mogeneous or because the triad is becoming degenerate. If the triad is becoming

degenerate the covariant derivatives of P̃ and C̃ can be non-zero, but near the sin-

gularity they are being suppressed by the triad. The finiteness of P̃ and C̃ ensures

that products of these variables with derivative terms will still tend to zero as the

singularity is approached. The restriction of the finiteness of ∼N and ∼N
i moves the

singularity infinitely far away.

If we asssume this conjecture holds we can truncate the full theory by setting

derivative terms to zero.

The truncated theory is defined by

D̃iC̃jk = D̃iP̃jk = D̃i∼N = D̃i∼N j = C̃[ij] = 0 (2.37)

This defines a subspace of the full phase space, which we will call the truncated

subspace. The section of this phase space containing non-degenerate triads consists

of homogeneous C̃ and P̃ . If we extend the phase space to include degenerate triads

then the section of the truncated subspace containing degenerate triads consists of

C̃ and P̃ which are homogeneous along the directions defined by the non-degerate

part of the triad, but are free to vary along the degenerate directions. The lapse and

shift are also constrained by to homogeneous along the non-degenerate directions

of the triad. The truncated subspace the becomes the union of the homogeneous

subspace with boundary of phase space consisting of degenerate triads.

This subspace is invariant under the full dynamics. If the derivatives terms are

initially zero they will remain zero under the full equations of motion. This should

be a necessary criterion for the BKL behavior because we expect the BKL behavior
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to be described by the dynamics approaching some fixed point as is discussed in

the work of Uggla.

The Poisson bracket between P̃ and C̃ can be simplified in this truncation.

The smearings fij and gij will in general be constructed from the available fields

with internal indices - in general they must be members of at least Π1 such as

(D̃i, C̃ij, P̃ij,∼N,∼N i, ηij) When evaluating the Poisson brackets the terms containing

derivative of the smearing are then set to zero in the truncation. The truncated

Poisson brackets between C̃ and P̃ are

{P̃ij, C̃kl}T = C̃kjδil + C̃jlδik (2.38){
P̃ij, P̃kl

}
T

= P̃kjδil − P̃ilδkj (2.39){
C̃ij, C̃kl

}
T

= 0 (2.40)

The constraints can be simply truncated to obtain

˜̃
ST = C̃ijC̃

ji − 1

2
C̃2 + P̃ijP̃

ji − 1

2
P̃ 2 ≈ 0 (2.41)˜̃

V i(T ) = 2εjklP̃
kl(C̃ j

i − C̃δ
j
i ) + 2εijkP̃

jlC̃ k
l ≈ 0 (2.42)

G̃ij(T ) = −P̃[ij] ≈ 0 (2.43)

It is interesting to note here certain features of our constraints. The scalar

constraint is symmetric in C̃ and P̃ - this symmetry will be broken at the level of

equations of motion as the Poisson algebra is not symmetric. Also note that by

adding a multiple of the Gauss constraint to the vector constraint can reformulate

our constraints (with the exception of the Gauss constraint) to be completely

symmetric in C̃ and P̃ :

˜̃
V ′i(T ) = εijkP̃

jlC̃ k
l ≈ 0 (2.44)

We can consider C̃ and P̃ as matrices, being tensors of only internal indices

and hence acting as scalars under diffeomorphisms. This constraint,
˜̃
V ′i(T ) implies

that C̃ and P̃ commute. The Gauss constraint has no corresponding constraint
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on C̃, however as has been shown above consistency of this truncation requires

that C̃ be symmetric. Therefore if we solve the Gauss constraint we find that our

constraint system is symmetric.

The truncated equations of motion can be obtained in two ways: First by

applying the truncation to the full equations of motion by setting derivative terms

to zero. Second they can be obtained by taking truncated Poisson brackets with

truncated Hamiltonian.

ḟT = {f,HT}T (2.45)

Where the truncated Hamiltonian is defined by

H[C̃, P̃ ](T ) =

∫
Σ

1

2∼
N
˜̃
ST −

1

2∼
N iṼ(T ) − (4A · t)ijG̃ij(T ) (2.46)

From which we find the equations of motion:

˙̃
C
ij

= −∼N [2C̃
(i
kP̃
|k|j) − P̃ C̃ij] (2.47)

˙̃
P
ij

= ∼N [2C̃ikC̃ j
k − C̃C̃

ij] (2.48)

˙̃
Ea
i = ∼NP̃

j
i Ẽ

a
j (2.49)

A question arises here as to the consistency of our scheme - at what level do we

apply this truncation of the theory? For an example, consider the FLRW space-

times. There we consider space to be homogeneous and isotropic and impose this

symmetry on the system at the level of constraints. If, however the symmetry did

not hold over to the equations of motion, so that a space-time which has initial

symmetry evolved away from the symmetric sector the reduction would have no

meaning. Likewise, if an imposition of symmetry at the level of equations of motion

did not give rise to the same system as the imposition at the level of constraints,

the resulting sector would be ill-defined as there would be no agreement over

what could be called the symmetric sector. The question which we must address is

similar: Does the truncation of constraints lead us to the same system as truncation

of the full equations of motion? The answer is in the affirmative. This fact is

illustrated by the following ‘commutativity diagram’:
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Full Constraint
Truncation−−−−−−→ Truncated ConstraintyEquation of Motion

yEquation of Motion

Full Equation of Motion
Truncation−−−−−−→ Truncated Equation of Motion

The equations of motion for C̃ and P̃ depend only on C̃,P̃ , and the lapse and

shift. There is then a closed system expressed entirely in terms of C̃ and P̃ .

The triad entirely decouples from the evolution. Therefore one can first solve the

equations of motion for C̃ and P̃ and then evolve the triad afterwards. We then

take this closed system in terms of P̃ and C̃ and consider it to be the Hamiltonian

system describing the BKL conjecture. The phase space is coordinatized by P̃ and

C̃ with Poisson brackets defined above.

Furthermore the truncated system forms a fixed subspace of the full phase

space. Consider the subspace defined by X = 0 ∀X ∈ DΠn. The equations of

motion from the full theory leave this subspace invariant, that is all elements of

DΠn will remain zero. Therefore in this subspace the truncated theory reproduces

exactly the full theory. It is also worth noting here that this subspace contains

many space-times of interest, particularly all the Bianchi type A models.

2.5 Reduced Phase Space

The truncated theory in terms of C̃ and P̃ can be gauge fixed using the Gauss and

vector constraints. Should mention what the constraints are first and then how

they restrict C̃ and P̃ then what transformations they generate. The infinitesimal

transformations generated by the Gauss constraint are

{P̃ij,
∫

ΛklGkl} = Λ k
i P̃kj + Λ k

j P̃ik (2.50)

{C̃ij,
∫

ΛklGkl} = Λ k
i C̃kj + Λ k

j C̃ik (2.51)

As expected the Gauss constraint generates internal SO(3) rotations. Instead

of working directly with the vector constraint we will modify it by removing the

terms proportional to the Gauss constraint. We define therefore define V ′
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˜̃
V ′i(T ) = 2εijkP̃

jlC̃ k
l ≈ 0 (2.52)

This constraint generates the following infinitesimal transformations

{P̃ij,
∫
∼N
k˜̃V ′k(T )} ≈ 4∼N

k[εklmC̃
m

(i P̃
l

j) + εkl(iP̃
n

j) C̃
l
n ] (2.53)

{C̃ij,
∫
∼N
k˜̃V ′k(T )} ≈ −4∼N

k[εkl(iC̃
m

j) C̃
l
m] (2.54)

Solving the Gauss and Vector constraints implies that P̃ is symmetric and com-

mutes with C̃. We can then choose a basis such that P̃ and C̃ are simultaneously

diagonalized. Looking at the action of the constraints on P̃ and C̃ we see that this

is not preserved - moving along the gauge orbit takes us off the surface defined by

diagonal P̃ and C̃, thus our diagonalization fixes our choice of gauge.

The Poisson brackets of the gauge fixed subspace are

{PI , PJ} = {CI , CJ} = 0 (2.55)

{PI , CJ} = 2δIJCJ (2.56)

After gauge fixing the Hamiltonian and equations of motion take the form

1

2

(∑
I

CI

)2

−
∑
I

C2
I +

1

2

(∑
I

PI

)2

−
∑
I

P 2
I = 0 (2.57)

ṖI = ∼NCI

(∑
J

CJ − 2CI

)
(2.58)

ĊI = −∼NCI

(∑
J

PJ − 2PI

)
(2.59)

We arrive at a very simple system which can be easily simulated. The following

are the results of a numerical simulation of this system, the details of which are in

appendix A.

In the figures 2.1 and 2.2 we begin our evolution with the eigenvalues of C set
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Figure 2.1. Evolution of each of the eigenvalues of C (C1 in red, C2 green, C3 blue)
over time, in which we see a series of separate Taub transitions between Kasner states

to be {1.5, 0.004, 0.007} and P set to {−0.47,−1.3,−1.4}.

2.6 Introduction of a Scalar Field

Until now, our analysis has been performed entirely on the vacuum theory. We

can extend our system to include matter in a fairly simple manner by refining our

model via the Hamiltonian to be:

H = HGR +Hmatter (2.60)

The form of matter of particular interest to us will be that of a (massless) scalar

field. This system has been analyzed in detail by Andersson and Rendall who have

shown that in the presence of a scalar field with momentum above some minimum

value the dynamics of space-time reduces to a single Kasner epoch. A massless

scalar field is also used extensively in Loop Quantum Cosmology to define a clock

variable. The Hamiltonian, Hmatter in that case becomes HSF = π2

2
+ ηIJDIφDjφ.
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Figure 2.2. Evolution of the eigenvalues of P (P1 red, P2 green, P3 blue) over time.
The largest eigenvalue transits the second, with all three tending to zero over time.

The analysis of section 2.5 follows almost exactly if we add the field φ to the set

Π. The truncated constraints remain as above, except for 2.46 which gains a term
π2

2
, which in turn refines the fully reduced Hamiltonian, 2.57 to become:

1

2

(∑
I

CI

)2

−
∑
I

C2
I +

1

2

(∑
I

PI

)2

−
∑
I

P 2
I +

π2

2
(2.61)

Wherein we recover the equations of motion for C and P as above, along with:

φ̇ = π π̇ = 0 (2.62)

Although we have not altered the equations of motion for C and P , we have

altered the solutions to our Hamiltonian constraint and hence we find a different

resulting set of space-times. Of particular interest are the Bianchi I solutions to

this system. Here we find that space-time takes the form
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ds2 = −dτ 2 + τ 2pxdx2 + τ 2pydy2 + τ 2pzdz2 (2.63)

on which px + py + pz = 1 and the Hamiltonian constraint sets

p2
x + p2

y + p2
z = 1− π2 (2.64)

These two relations define a one-parameter space of solutions - the intersection

of a sphere and a plane. For π2 < 1
2

we find that solutions exist only if one of

the values of pi is negative, and this leads to an instability of the solution which is

discussed below. However for π2 > 1
2

we find that all the pi are positive and hence

the solution is stable. In the vacuum case it is convenient to solve the constraints

to express the pi in terms of a single parameter u. Without loss of generality we

take u > 1 and parameterize the space of pi by:

p1 =
u2 + u

1 + u+ u2
(2.65)

p2 =
u+ 1

1 + u+ u2
(2.66)

p3 =
−u

1 + u+ u2
(2.67)

Our where p1, p2, p3 are the set px, py, pz in descending order. This parametriza-

tion will later form the basis of the ’u-map’ relating transitions between Kasner

states.

2.7 Analysis of Reduced Phase Space

We can analyze these reduced equations as a dynamical system as in Uggla et al

[24]. We first identify fixed points of the dynamics for which

ċI = ṗI = 0 (2.68)

There are only two sets of fixed points for these equations.

1. cI = 0 and
∑

I p
2
I − 1

2
(
∑

I pI)
2 = 0
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2. c1 = c2,c3 = 0, p1 = p2, p3 = 0

The first fixed set of fixed points are the Kasner solutions. The second set of fixed

points are highly unstable, being essentially a dimensional reduction of our theory

[25]. We perturb away from these fixed points and obtain evolution equations for

the perturbations. For the first fixed point the solutions to the constraint

∑
I

p2
I −

1

2

(∑
I

pI

)2

= 0 (2.69)

are all positive or all negative pI . Since we want to analyze solutions that approach

the singularity as t → ∞ we restrict our attention to the solutions with positive

pI . If we perturb from a Kasner fixed point,

p′I = pI + δpI (2.70)

c′I = cI + δcI (2.71)

the evolution equations for the perturbations are

˙δpI = O(δp2) (2.72)

˙δcI = −∼NδcI(
∑
J

pJ − 2pI) +O(δcδp) (2.73)

The constraint on the pI ensures that for a solution approaching the singularity one

cI is unstable under perturbations while the other two are stable. We can take p1 to

be the largest of the pI ’s initially which implies that it can c1 are unstable under

perturbations. The evolution equations for c1, p1 assuming the other variables

remain at their fixed point values are

ṗ1 = −∼Nc
2
1 (2.74)

ċ1 = −∼Nc1(p2 + p3 − p1) (2.75)

which can be solved exactly to obtain

p1(t) = p2 + p3 − 2
√
p2p3tanh(2

√
p2p3∼N(t− to)) (2.76)

c1(t) = ±2
√
p2p3sech(2

√
p2p3∼N(t− to)) (2.77)
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These are the Bianchi II solutions written in these variables. The p1 transitions

between one Kasner solution at t = −∞ and another at t = +∞.

p1(−∞) = p2 + p3 + 2
√
p2p3 = (

√
p2 +

√
p3)2 (2.78)

p1(+∞) = p2 + p3 − 2
√
p2p3 = (

√
p2 −

√
p3)2 (2.79)

2.7.1 The u-map

Figure 2.3. Long term u-map showing transitions between Kasner phases over time -
the u parameter steps down by 1 at each transition

The transitions described in the previous section can be used to derive the

so called ‘u-map’ relating initial and final states of these processes. This map

has often been observed in numerical simulations [25] [14] and its analytic basis

examined [27]. In this process we begin with a perturbation of a Kasner state

described by the parameter ui. To recover u from 2.65 we take the ratio of the

largest to second largest exponents, ui = p1/p2. The largest exponent at the end

of the transition is p2 and from 2.78 we see that if ui > 2 then the second largest is
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p1, if ui < 2 the second largest is p3. Therefore we find that the Kasner parameter

defining the final state uf is given by

uf =

{
ui − 1 if ui ≥ 2

(ui − 1)−1 if ui < 2
(2.80)

Once this transition is complete, we can then relabel the pi so that they are

again in descending order and repeat the process. Thereby we see a discrete

structure emerge from our equations, as we set un = ui and un+1 = uf . Although

for generic initial values the orbit of u visits most of the real line, there are certain

preserved structures. As an example, u = {1 +
√

2,
√

2} is a 2-cycle point of the

map, and in fact cycles of all lengths exist [26], given by the cases when u is a

quadratic irrational 2. By construction the map leaves Q invariant, and should it

ever encounter Z it should in theory end at ∞. However, these points are highly

unstable and any perturbation around them will obviously evolve away from them.

Indeed for any ε > 0 we find that if ui = n + ε for some n ∈ Z then on its orbit

under this map, u will visit 1/ε. However, since our map was obtained by making

approximation, we cannot expect it to hold exactly in any physical system, and

hence no transition can be expected to take us to u→∞, which would correspond

to pi = {1, 0, 0}.
The map is also an example of the high degree of chaos in our system - a point

in space might be described by un = 2 + ε where ε > 0 un+1 = 1 + ε. However a

nearby point in an inhomogeneous space could be described by un = 2− ε in which

case un+1 = 1/(1− ε).
In figure 2.3 we see a long term evolution of the u parameter. Note that it

takes on stable values for large periods of time and then undergoes a transition,

the points where the parameter appears to peak upwards. This is the u-map for

the system simulated above in 2.1.

In the figure2.3 we see only the first type of transition, in which the value of u

is reduced by one. To observe the second type of transition we must see a situation

in which p1 goes from being the largest eigenvalue to the smallest. This is realized

in the following simulation

2This corresponds to u = q1 +
√
q2 where

√
q2 is not rational
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Figure 2.4. Evolution of in which highest eigenvalue of P crosses both others

In simulation 2.5 we see the corresponding evolution for the u parameter:

The labeled point on this simulation is at u = 1.88 with the preceding value

being u = 1.53, which agrees with the behavior of the u-map to within 1%.

Further simulations showing this behavior can be seen in appendix A.

2.7.2 Spikes

Seen initially in both numerical simulations of Gowdy and generic space-times,

explicit analytical ’spike’ solutions have recently been found [28]. In numerical

simulations of the full equations there are points in space at which the derivatives

of spatial and extrinsic curvature grow to a large value before shrinking again. This

would appear at first glance to break the model we propose - a model in which

these derivative terms are negligible. However, an analysis of the simulations shows

that these spikes do not appear to occur in the neighborhood of the singularity.

On examination of the space-time of [28] we find that the asymptotic behavior

of our variables is still such that the assumptions about negligible terms hold - as

we move away from the spike points in both time and space the derivative terms
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Figure 2.5. Evolution exhibiting both parts of u-map

tend to zero as a result of the asymptotic behavior of the triad. However the

question remains - Does our model predict the existence of these spikes?

Surprisingly, the answer is yes. Although the spikes are a cause of non negligible

derivative terms, they are a result of the terms polynomial in curvature, as we will

show: Throughout a Taub transition we find that the sign of CI is preserved.

Suppose that we consider all points in space to be described by the dynamics

above, then C = C0(xa) is a field in space at some time. There may generically

exists points X about which C0 passes through zero. On one side of this point CI

is positive and increasing in magnitude, on the other it is negative and increasing

in magnitude. Hence about this point the gradient, D̃JCI will increase rapidly.

These points are precisely the ‘spike’ points - the spatial derivatives of P and C

become large here. In figures 2.6 2.7 we vary the initial eigenvalues of P about a

point which is stable. On either side a transition occurs, with C undergoing Taub

transitions with opposite signs.
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Figure 2.6. Spike in the eigenvalue of P - on either side of the spike point transitions
occur but at the point the eigenvalue remains constant

2.7.3 Function Fitting

In the previous sections we found that during a transitional phase described by

2.76 the evolution of C was well approximated by a sech function. In performing

this analysis we made the approximation that only one of the eigenvalues of C

was non-zero during the transition, and hence that only one of the eigenvalues

of P was changing. However, a remarkable numerical result that was not shown

analytically is that this approximation appears to work away from this point. In

fact, it appears that even when all three eigenvalues of C are non-zero, the evolution

is well approximated by a sum of these functions.

In 2.8 we see the eigenvalues of C in primary colors (red, green, blue) and a five-

point fit by a sum of sech functions in secondary colors (yellow, cyan, magenta).

This phenomenon is described in more detail in appendix A.
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Figure 2.7. Spike in eigenvalue of C - across the spike point large gradients grow

2.8 Conclusion

It has been established in the UEWE framework that by dividing divergent vari-

ables by the trace of the extrinsic curvature a set of scale invariant variables can be

formed which are well suited to examining the BKL conjecture[25]. This formula-

tion exhibited interesting features such as the Mixmaster dynamics and the u-map.

However, this system is not well suited to any quantization procedure based on

Hamiltonian systems.

By using density weighted tensors and in particular contractions with a density

weighted orthonormal triad instead of division by extrinsic curvature to normalize

our variables we obtain a system which is both simple to evolve and well adapted

for quantization. In particular, given an initial set of data consisting of an or-

thonormal triad and extrinsic curvature (Ẽa
i , K

i
a) it suffices to form P̃ij, C̃ij and D̃i

and consider the system of only this triplet. Once this system has been solved, one

can the return to the initial variables and recover their evolution of Ẽ for example

from the behavior of the triplet. As such a Hamiltonian analysis of the BKL con-
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Figure 2.8. Fit of the evolution of the eigenvalues of C by a sum of sech functions

jecture is a valuable tool for probing questions of the generic nature of singularity

resolution in LQC. The current status singularity resolution in LQC bears a strik-

ing resemblance to that of the big bang singularity. In specific symmetric cases

singularity resolution has been shown, but as yet there is not generic singularity

resolution theorem. A close analysis of the BKL conjecture could provide a step

towards that goal.

Through a detailed examination of the BKL system proposed, both numerically

and analytically, we see that there does indeed exist a well defined subspace of

the full phase space of GR which exhibits exactly the properties expected by the

BKL conjecture. By gauge-fixing our constraints, we do observe the Mixmaster

behavior, a series of Bianchi I spacetimes interspersed by Bianchi II transitions and

the presence of spikes. We recover the ‘u-map’ for these transitions, and observe the

behavior expected by Andersson and Rendall when a scalar field of large enough

magnitude is introduced. Numerical simulations show that these are exactly the

features which we expected from the analysis. Furthermore we see a remarkable fit

to the equations of motion by a sum of sech functions. Since the solutions to the
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BKL truncated system allows for the existence of spike solutions, it is important

for quantum theories of cosmology to take into account this feature. As these

spikes can be found in exact solutions of GR they are not simply an artifact of

our truncation, but potentially a physical phenomenon which should be examined

more closely. The truncation we have proposed ignores the effect of these spikes

upon dynamics and therefore is unlikely to be suited to their analysis.



Chapter 3
LQC Effective Equations and their

Implications

3.1 Introduction

Loop quantum gravity is a background independent approach to the quantization

of gravity. It is almost a tautology that non-perturbative quantum field theories

are not afforded the luxury of a classical background easily obtained by taking

the limit ~ → 0. Therefore it is necessary to address questions about both the

‘ultraviolet’ sector of the theory - the high energy density limit in which quantum

effects are expected to dominate, and the ‘infrared’ sector - the low energy limit

in which we should recover the classical theory.

Loop quantum cosmology [30] [31] [32] [33] (LQC) arises as the application of

the principles of loop quantum gravity [34] to cosmological spacetimes. Through

the LQC program it has been seen that the effects of quantum Riemannian geom-

etry lead directly to the resolution of big-bang type singularities[35]. Initially this

was shown in the flat FRW case with a massless scalar field [36], but has more

recently been extended to both the open [37] and closed [38] cases, and further to

Bianchi I [39] and II [40] cosmologies and hybrid quantization of Gowdy models

[41]. Furthermore it has been shown that LQC may in fact preclude the existence

of all so-called ‘strong’ singularities [42] . It is therefore natural to ask what are the

physical predictions of a theory which has such welcome mathematical properties.
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In loop quantum gravity, the spectrum of the area operator Â is discrete. This

yields an area gap ∆2 with ∆ = 4
√

3πγ which is the minimum non-zero eigenvalue

of Â. Herein γ is the Barbero-Immirzi parameter, which is fixed to be approx-

imately 0.24 from black hole entropy calculations [43] [44]. In the cosmological

context, the net effect of this area gap is that the density operator ρ̂ is bounded

from above, with its upper bound denoted ρcrit =
√

3/32π2γ2 ∼ 0.41ρpl. Thus we

should expect to see quantum geometry effects once the energy density becomes of

the order of the planck density ρpl. In the isotropic sector it is convenient to take

the square root of of the area gap to form a ‘length gap’ λ.

Throughout this chapter we will work with the effective, semi-classical equa-

tions. It has been well established that these effective equations closely follow the

full quantum dynamics both in the infra-red where as expected we recover a close

approximation to general relativity, but also more surprisingly some results coin-

cide in the ultra-violet limit. This has been established in the case of a massless

scalar field[45], and a more complete program of exploration of the range of validity

of effective equations is in progress [46]. We will also make the assumption that all

matter is minimally coupled - there will be no cross terms of matter and curvature

variables.

3.2 Classical Theory

The flat (k = 0) homogeneous, isotropic sector of cosmology is described by space-

times whose metric takes the form

ds2 = −N2dt2 + a2(t)(dx2 + dy2 + dz2) (3.1)

Where N is the lapse function, and a(t) the scale factor [29]. The gravitation

part of the action in this sector is therefore

S[N, a] =
1

8π

∫
dt
−3aȧ2

N
(3.2)

1 We perform a Legendre transform to obtain the canonical conjugate momenta

1In defining this action, we are implicitly assuming that spatial integration has been performed
on a fiducial cell of size V0. In doing so, we introduce extra, non-physical structure to our system
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P(a) = 6aȧ, P(N) = 0, and Hamiltonian

H =
−N
8π

(
P 2

(a)

12a
+ a3Hm) (3.3)

where Hm is the matter Hamiltonian 2. Note that the equation of motion

for P(N) ensures that this Hamiltonian is constant. At this stage for reasons of

simplicity, let us fix the lapse, N = 1 and by doing so we recover the evolution of

our system with respect to proper time, by taking Ẋ = {X,H}.
In order to correspond with the LQC system which we will later analyze, let

us further perform a change of variables

ν =
εa3V0

2πγ
b = −

4πγP(a)

3V0a2
(3.4)

whose Poisson bracket is therefore given by {b, ν} = 2. ε = ±1 is a free choice of

the system related to the freedom to pick left- or right-handed triads, and without

loss of generality we will choose to work in the positive sector. If we further fix

V0 = 1 the gravitational part of our Hamiltonian is given as:

Hg =
3νb2

4γ
(3.5)

3.3 Effective Quantum Theory

The holonomy corrections due to LQC result in b being replaced by sin(λb)
λ

and

thus the gravitational part of our Hamiltonian is therefore

Hg = −3ν

4γ

sin2(λb)

λ2
(3.6)

Note that in the small λ limit, this reproduces the classical Hamiltonian. If one

were to include all physical constants, it would become apparent that this limit is

precisely the ~ → 0 limit. Although this change appears to closely reproduce the

classical system, the domain of b is now compact, as b now takes values in [0, π
λ
].

in order to perform mathematical operations. A great deal of care has been taken both in
the classical and quantum theory to ensure that physical results are independent of this extra
structure.

2This is equivalently the energy density ρ
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This arises as a direct consequence of the eigenvalues of ν having discrete values

[47].

The equations of motion for the gravitational variables are

ν̇ =
3νsin(2λb)

2γλ
(3.7)

ḃ = −3sin2(λb)

2γλ2
+ 4πγHm + 4πγν

∂Hm

∂ν
(3.8)

From the first equation we obtain the corrected Friedmann equation

H2 =
8πHm

3
− λ2γ2(

8πHm

3
)2 (3.9)

Where H is the Hubble parameter, ȧ/a = ν̇/3ν. This reduces to the classical

Friedmann equation on taking λ→ 0.

By using our Hamiltonian constraint, we can reduce the second equation to

ḃ = 4πγν
∂Hm

∂ν
(3.10)

In our notation, the equation of state for the matter content of the universe is

written

Hm ∝
∑
w

ν−(1+w) (3.11)

and hence if we exclude so called phantom matter, the parameter b is monotonic

non-increasing. If we make the simplification that the matter content can be de-

scribed as a sum of perfect fluids each with a single equation of state characterized

by wi with density ρi, we can further simplify our equations:

ḃ = −4πγ
∑
i

(1 + wi)ρi (3.12)

3.3.1 Critical Density

From our Hamiltonian constraint we find that Hm is bounded above. For ν non-

vanishing, we find
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Hm =
3sin2(λb)

4γλ2
≤ 3

8πγ2λ2
(3.13)

and hence we know that our matter density is bounded, with its maximum

denoted ρcrit. In the classical limit, we again find that we recover GR as this

bound is inversely proportional to λ and hence in taking λ → 0 we remove the

bound. Using Hm = ρcrit, we are able to write our corrected Friedmann equation

3.9 in a more familiar form[45]:

H2 =
8πρ

3
(1− ρ

ρcrit

) = ρcrit (3.14)

The existence of this critical density is in fact a prediction of the raw quantum

theory. In the full dynamics of LQC, it has been shown [48] that the density

operator has a supremum on the physical Hilbert space. This supremum is precisely

the critical density encountered by the effective theory. Thus the effective equations

reproduce a key feature of the full dynamics in the deep quantum regime, and one

which should be expected to lead to singularity resolution.

The critical density here is about 41% of the Planck density, which upon restor-

ing fundamental constants is given by

ρcrit = 0.41 ∗ c5

G2~
= 2.11× 1096kg m−3 (3.15)

To obtain a sense of proportion, this density is the equivalent to having the

entire mass of the Milky Way galaxy within the one thousandth of the classical

radius of the electron.

3.3.2 Quantum Bounce

It is immediately apparent from 3.7 that the evolution of the Hubble parameter

H = ν̇
3ν

= ȧ
a

is significantly altered when b is close to π
2λ

. In fact, at this point ν̇

changes sign, and thus contraction of the universe ends and expansion begins.

Here it is clear that the Hubble parameter can only change sign once the energy

density reaches the critical density, and that away from this critical density the

effects of quantum geometry are small. Thus LQC provides ultraviolet corrections

to GR whilst maintaining infrared physics. Due to these corrections, dynamical



37

trajectories avoid the cosmological singularity, which is in the past of any expanding

branch (or future of any contracting branch) in classical GR and form a quantum

bridge between the two branches throughout which physics remains finite and

deterministic.

In order to establish that ν = 0 is not achievable by our system, consider

Y = ln(ν) then

Ẏ =
ν̇

ν
= 3H =

3sin(2λb)

2γλ
(3.16)

Hence in any finite time, the change in this log volume, is given by

∆Y =

∫
dtẎ =

3

2γλ

∫
dtsin(2λb) (3.17)

and hence we obtain a bound

|∆Y | ≤ 3

2γλ

∫
dt|sin(2λb)| ≤ 3∆t

2γλ
(3.18)

since sin is bounded by 1. Therefore for the volume to go to zero, we would

require Y → −∞ which is not possible in a finite amount of proper time. This

result establishes that no trajectory on which the volume ν is non-zero can achieve

zero volume.

Since ν is either always positive or always negative, and physics does not change

between these choices, we are justified in choosing ν > 0 on all our solutions and

ignoring the corresponding ν < 0 states.

3.3.3 Inflation

The nature of slow-roll inflation in cosmology in general, and LQC in particular

will be discussed in detail in the following chapter. There we shall restrict ourselves

to considering the effects of a scalar field. However, the existence of inflation under

generic conditions is another feature of LQC [49]. The term inflation relates to a

period in the expansion of the universe in which the scale factor is accelerating,

ä > 0. Since ν ∼ a3 we find:
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ä

a
=

ν̈

3ν
− 2ν̇2

9ν2
(3.19)

=
sin2(2λb)

4λ2γ2
+
ḃcos(2λb)

γ
(3.20)

Upon applying some trigonometric identities, and re-writing our equation in

terms of the matter density ρ we find:

ä

a
=

8πρ

3

√
1− ρ

ρcrit

+ 4πν
∂Hm

∂ν
(1− 2ρ

ρcrit

) (3.21)

On assuming that the only matter present is a mixture of perfect fluids with

equation of state pi = wiρi, we can again further simplify

ä

a
=

8πρ

3

√
1− ρ

ρcrit

− 4π(
∑
i

(1 + wi)ρi)(1−
2ρ

ρcrit

) (3.22)

In the low density, single field limit (ρ << ρcrit) we recover the familiar Ray-

chaudhuri equation:

ä

a
= −4πρ

3
(1 + 3w) (3.23)

3.3.4 Superinflation

Superinflation refers to a phase in the evolution of the universe in which the Hubble

parameter is increasing over time (Ḣ > 0). In any cyclic or bouncing cosmology

there must necessarily exist a period of superinflation, since in all contracting

branches H < 0 and in expanding branches H > 0. This is indeed observed in

solutions to LQC [50] However, in GR this is achievable only through the intro-

duction of ‘exotic’ matter, such as dilaton fields. In the case of normal matter,

the Hubble parameter is monotonically decreasing (or increasing) on expanding

(contracting) branches.

Note that superinflation necessarily implies inflation. Since H = ȧ/a we there-

fore find:

Ḣ =
ä

a
− ȧ2

a2
=
ä

a
−H2 (3.24)
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and therefore for Ḣ > 0 we necessarily require ä/a > H2 ≥ 0.

This period of superinflation exists when the energy density is greater than

half of the critical density. From 3.14 we establish that the Hubble parameter H

evolves via

Ḣ =
ḃcos(2λb)

γ
=

ḃ

γ
(1− 2sin2(λb) (3.25)

=
ḃ

γ
(1− 2ρ

ρcrit

) (3.26)

Since b is monotonic non-increasing ḃ ≤ 0 and hence in this regime we see

superinflation. It is a striking signature of LQC that given minimally coupled,

non-phantom matter, the universe will superinflate whilst ρ > ρcrit/2 regardless of

the form of the matter itself.

3.3.5 Bounded Hubble Parameter

By considering the conditions for the beginning and end of this superinflationary

phase we observe another feature of LQC: The Hubble parameter is bounded and

achieves its bounds. In particular, we know that at the onset and end of superin-

flation Ḣ = 0. The above conditions yield ρ = ρcrit/2 and so from 3.14 it is obvious

that we are still not in a region where LQC agrees with GR.

Further from these conditions we find at the end of superinflation

H = ±
√

2πρcrit

3
≈ ±0.93 (3.27)

Since b is monotonic non-increasing, the matter density of each trajectory

achieve each of these exactly once, that is every contracting solution passes through

H = −0.93, at which point superinflation begins and persists through the bounce

where H = 0 and then superinflates to the point H = 0.93, before the Hubble

parameter starts to fall again.

The equation of state for the matter content will further constrain Ḣ as follows:
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Ḣ =
ḃ

γ
(1− 2ρ

ρcrit

) (3.28)

= −4π(1 + w)ρ(1− 2ρ

ρcrit

) (3.29)

Since the density is bounded above by the critical density, Ḣ is therefore

bounded between ±4π(1 + w)ρcrit.

Note that the above, however, assumes a single field with fixed equation of

state. A more complicated system, such as that of a scalar field in a potential,

may violate this constraint. In this case we should vary separately the equation of

state and the density and maximize each to obtain the bound

|Ḣ| ≤ 8πρcrit ≈ 10.3 (3.30)

Note that this bound is an absolute maximum on the space of all trajectories

but is not necessarily achieved on a given trajectory. For a typical evolution of

this see figure 3.1.

Figure 3.1. Hubble and its time derivative. Time runs counter-clockwise
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In figure 3.1 we see the evolution of the Hubble parameter in LQC coupled to a

massless scalar field. The right portion of the diagram is entirely quantum effects

showing superinflation as here H > 0 and Ḣ > 0. The Hubble parameter starts at

zero, the bounce point, and increases to its global maximum before descending to

follow a path close to that of GR.

From 3.7 and the above, we find that the scalar curvature is bounded above

since

4R = 6Ḣ +H2 (3.31)

Maximizing this independently over Ḣ and H we find that it is bounded from

above:

|4R| < 144πρcrit

3
≈ 61.8 (3.32)

Note that, as with Ḣ, this is a global maximum, not achieved by all trajectories.

In fact it is not attained by any trajectory, as we have separately maximized both

H and Ḣ to obtain it, whereas we know that H achieves it maximum when Ḣ = 0.

3.4 Solutions

We can solve our theory directly in the case of a universe dominated by a single

perfect fluid with w > −1. We begin from the LQC-Friedmann equations 3.14:

(
ν̇

3ν
)2 =

8πβν−(1+w)

3
(1− βν

−(1+w)

ρcrit

) (3.33)

in which β is chosen such that ρ = ρcrit at the bounce. We expand our equations

to find:

ν̇2 =
8πβ

27
ν1−w(1− βν−(1+w)

ρcrit

) (3.34)

This can be further rearranged, following the standard method of solving the

Friedmann equations in GR to give:
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d

dt
(ν(1+w)/2) =

2

1 + w

√
8πβ

27
(1− βν−(1+w)

ρcrit

) (3.35)

Setting x = ν(1+w)/2 and noting that our boundary conditions can be applied

by gauge fixing the bounce volume to 1, which in turn sets β = ρcrit we find:

x′ =
2

1 + w

√
8πρcrit

27

√
1− x−2 (3.36)

Which has solutions:

ν = (1 +
32πρcritt

2

27(1 + w)2
)

1
1+w (3.37)

Where we have chosen t = 0 as the bounce point. At late times (t large)

as expected this asymptotes to the GR solution in which ν ∼ t
1

1+w as the second

term in 3.37 dominates. At early times we see corrections, and indeed the bouncing

behavior is recovered, with ν = 1 and ν̇ = 0 at t = 0. Note further that this solution

is time symmetric: t→ −t does not affect our system. This property is due to the

symmetry of Hm and in general we do not expect it to persist, particularly when

Hm includes interactions. Indeed as will be shown in the following chapter, there

can be a great deal of asymmetry in the contracting and expanding branches due

to the phase of matter at the bounce.

In figure 3.2 we see the evolution of solutions with varying equation of state.

The red line depicts a free scalar field (w = 1), the green radiation (w = 1/3) and

the blue dust (w = 0)

These solutions clearly exhibit the properties described in section3.3. At large,

negative t the solution closely approximates that of GR on an contracting branch.

As the density increases, we see that there is inflation when

t ∈ [− 1√
2πρcrit(1 + 4w + 3w2)

,
1√

2πρcrit(1 + 4w + 3w2)
] (3.38)

This period includes super-inflation when

t ∈ [− 1√
6πρcrit(1 + w)

,
1√

6πρcrit(1 + w)
] (3.39)
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Figure 3.2. Volume evolution for varying matter types

In figure 3.3 we see the evolution of the Hubble parameter for the cases above.

We see a period of superinflation in each, which ends at the universe point of

the Hubble achieving its maximum. Similarly in figure 3.4 we see the rate of

acceleration for the matter types, all of which exhibit inflation for a period.

Of relevant physical interest particulary in forming questions of observables

would be questions of how much superinflation or inflation we observe. By taking

the ratio of the volumes at the end of superinflation (νes) and at the bounce (νb)

we find:

νes
νb

= (2 + w)
1

1+w (3.40)

Remarkably, this factor is entirely independent of the critical density, it is

simply a function of the equation of state. Similarly one can calculate the amount

of inflation with the volume at the end of inflation denoted νei:

νei
νb

= (1 +
3(1 + w)2

1 + 4w + 3w2
)

1
1+w (3.41)

Similarly it is possible to view the maxima of the rate of change of the Hubble
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Figure 3.3. Hubble evolution for varying matter types

parameter, given the profile of the solution in terms ofH and Ḣ, which is illustrated

for the cases above in 3.5.

The bounded nature ofH and Ḣ leads to the scalar curvature, R being bounded.

This is plotted in figure 3.6.

3.5 Discussion

The application of the principles of Loop Quantum Gravity to the cosmological

sector yields a theory, LQC, which appears to exhibit every aesthetic quality that

one could have hoped for: In the cases so far studied in detail, semi-classical

solutions at late times both match GR in the infrared limit and receive quantum

corrections in the ultraviolet which ultimately lead to the resolution of the big

bang singularity. All physically interesting quantities evolve in a deterministic,

non-singular manner. On top of all this, LQC exhibits, at least in specific cases a

most fortuitous property that appears highly unlikely: There exists a well defined

semi-classical set of effective equations which closely match the expectation values

of the related quantum evolution of a solution which is semi-classical at late times
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Figure 3.4. Acceleration for varying matter types

throughout the entire evolution. Before performing the analysis, one could not

have predicted this with any degree of confidence. The quantum state which is

semi-classical at late times could have evolved back into a solution which had a

very large dispersion, rendering a classical interpretation of the quantum state

meaningless in the planck regime.

Since the effective equations do appear globally effective, it is natural that

we should exploit this fortuitous result. In examining these effective equations in

a naive fashion, that is without close reference to their origin, we see that they

exhibit certain very welcome physical predictions - providing bounds on geometric

quantities such as the scalar curvature and Hubble parameter independently of the

matter content. We find a Hamiltonian system which is susceptible to standard

numerical techniques for solution, and easily coupled to most matter Hamiltonians.

As has been pointed out, it remains to be seen whether such fortune is borne

out by examination of more complicated systems, indeed it seems likely that some

of the results relating to the effective equations will be altered by a close analysis

of more complicated systems.

As an example, the area gap exhibited in the loop quantization of the FRW
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Figure 3.5. Hubble profile for varying matter types - Time runs counter-clockwise from
the origin. Here we see for each matter type the universe begins at a large volume which
is slowly contracting, the Hubble parameter achieves its lower bound then superinflation
begins. The universe superinflates through a quantum bounce (crossing the x axis here)
to the maximum of the Hubble parameter and then expansion slows and the universe
becomes large again and slowly expanding.

models is half of the supremum of the area operator in Loop Quantum Gravity.
3 Indeed the numerical value of the area gap could change with more input from

the full theory on how the area operator is to be formed in the symmetry reduced

case. Therefore some overall details will likely change, however it seems reasonable

3This is due to an assumption of isotropy that an edge incident on a plaquette must be
matched by an exiting edge of same spin and parallel to the incident edge - a condition not
required in anisotropic spacetimes - see [51].
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Figure 3.6. Scalar curvature for varying matter types

to expect many of the qualitative features to remain - in particular the existence

of bounds on physically relevant quantities.



Chapter 4
Inflation in Loop Quantum

Cosmology

4.1 Introduction

Inflation provides an elegant explanation for structure formation in the early uni-

verse and has recently enjoyed a great deal of success in this area. Given a suffi-

ciently long period of slow roll inflation, several problems such as those of cosmo-

logical horizons and the absence of magnetic monopoles are solved. However, it is

argued that achieving this period of inflation requires a great deal of fine tuning.

Indeed it was recently stated by Gibbons and Turok [52] that the probability of

observing a period of N efolds of inflation, an ‘efold’ being the increase of the scale

factor by a factor of e, is suppressed by a factor of exp(−3N). Since it is typically

accepted that at least 68 e-folds would be required to answer the problems above,

a heavy burden is placed upon any theoretical framework to explain this apparent

fine tuning. It is therefore of key interest to understand if LQC can address this

issue. 1

The basic ideas of inflationary cosmology have been around since the 1970s

[54] when it was discovered that a scalar field can be used to model a cosmological

constant or ‘vacuum energy’ - an energy density associated with otherwise empty

space. The premise was that this scalar field could fuel a deSitter phase during

1This chapter follows the work of the author in [53].
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which the universe would undergo an exponential expansion and then a phase

transition of the field would end this period. This model was highly unrealistic as

it was shown that it results in a highly inhomogeneous universe [55].

A more realistic model was put forward by Starobinsky [56] at the end of the

decade, and was the first to predict the now familiar anisotropy of the cosmic

microwave background [58]. This model suffered from the ‘graceful exit’ problem,

that different ‘bubble’ universes would form and collisions between the walls of

these bubbles would lead to inhomogeneities.

The modern inflationary model came about in 1981 when Albrecht and Stein-

hardt [57], and separately Linde [59] modeled the inflaton as a scalar field which

is subject to a potential. The scalar field begins in some state on a sloping poten-

tial and slowly rolls down this, subject to a friction-like term which arises when

considering the effects of a non-zero Hubble parameter. Once this field reaches

the minimum of its potential it then decays into other forms of matter, ending

the process. Proponents of inflation argue, with varying degrees of success, that

it solves a range of cosmological issues. Amongst the more compelling arguments

are the horizon problem and the issue of monopoles.

On large scales the universe is observed to be both homogeneous and isotropic.

Examination of the the CMB has revealed that the temperature distribution varied

by less than 0.1%. However, in the absence of an inflationary phase, these regions

would be causally disconnected. Therefore it is a challenge to explain how such

regions were in an approximate thermal equilibrium [60]. In a cyclic or bouncing

scenario, such as LQC, this problem is at least theoretically addressed - distant

parts of space were in causal contact in the distant past, before the bounce. This

argument is not entirely satisfactory as it remains to be seen whether regions which

have the same temperature down to small fluctuations will remain similar through

the highly quantum regime in which the bounce occurs. Inflation not only explains

the presence of density fluctuations, but also the observed (almost) scale-invariant

spectrum [61] [62].

The question of magnetic monopoles also arises as a spacetime which admits

monopoles will be dominated by their presence in the early universe [63]. The pro-

duction of monopoles would outweigh all the other matter present in the universe

by an enormous factor, found to be around 1012. Inflation answers this question if
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the universe is inflating either during the production of monopoles or thereafter,

as the density of monopoles would be greatly diluted. This is the source of the

requirement of 68 efolds - enough inflation that we would expect to see less than

one monopole in our cosmic horizon.

The concept of inflation in the very early universe raises two fundamental ques-

tions which can be addressed by a quantum theory of gravity. The first relates

to the number of efolds, in particular when do we begin counting efolds? Since

classically the universe began with a big bang, one cannot simply take the number

to be the natural logarithm of the ratio of initial and final scale factors, as the

initial scale factor is zero. Therefore one must somehow pick an initial point (in

terms of time or density or other physical consideration) from which to count the

number of efolds.

The second question is to what degree one should trust the dynamics of GR

in the early universe. This relates to the first question, as if one is to make

predictions about the spectrum of gravitational waves, say, or the CMB from an

inflating cosmology, one must be certain that GR is valid in this region. Since, in

our models inflation is to happen before the physical phenomena whose structure

it explains, one cannot argue that this is a test of the validity of GR here, as it is

a modification of GR by the introduction of the inflaton field that we posit as an

explanation of the observed phenomena.

Fortunately LQC provides us with a well defined answer to both of these ques-

tions. Since our cosmological solutions now ‘bounce’ rather than ‘bang’ we can

begin counting efolds from the bounce point itself, as the scale factor is non-zero

here. Also, from 3.14 we find that GR holds to an excellent approximation up to

1% of the critical density, and therefore we are justified in accepting the predictions

of GR from this point onwards. In the case of inflation, this turns out to be more

than sufficient to answer questions about the CMB observations.

4.2 Preliminaries

We will examine the k = 0 cosmological models as these are the most interesting

from a phenomenological standpoint. Our system will consist of a 2D configuration

space of the volume ν ∼ a3 of our space as measured with respect to a fiducial cell,
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and a scalar field φ which will play the roll of the inflaton. From these we form

our 4D phase space of our configuration variables and their conjugate momenta

b, pφ. Dynamics on this phase space is governed by a single constraint, the effective

Hamiltonian:

H =
p2
φ

4πγν
− 3πν

4

sin2(λb)

λ2
+ 2π2γνV (φ) (4.1)

Ω = dφ ∧ dpφ +
1

2
dν ∧ db (4.2)

Thus we obtain the effective equations of motion for our phase space variables

ν̇ =
3ν

2γ

sin(2λb)

λ
(4.3)

φ̇ =
pφ

2πγν
(4.4)

ḃ = −
p2
φ

πγν2
= −4πγφ̇2 (4.5)

ṗφ = −2πγν
∂V

∂φ
(4.6)

It is often convenient in cosmology to consider the Hubble parameter, H = ν̇
3ν

.

From 4.3 it is apparent that this is given by:

H =
1

2γ

sin(2λb)

λ
(4.7)

and hence we can observe that although in GR H is a monotonic parameter, in

LQC it is not. This leads us to consider the variable b - the conjugate momentum

to volume - to be fundamental as its evolution is monotonic.

4.3 Gauge symmetry under rescaling

The space of solutions S to our theory admits a further symmetry in the k = 0

case - that of rescaling of volume. Consider the transformation on phase space

Π : {ν, φ; b, pφ} → {αν, φ; b, αpφ}. This transformation can be thought of as a

shrinking of the fiducial cell from which volume is determined. Since the fiducial
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cell itself is a purely extraneous structure which we required to allow a Hamiltonian

formulation of our theory, it should have no physical manifestation and this is

indeed the case. Under the action of Π we find that the dynamics of the inflaton φ

and the Hubble parameter H, the physical observables of our theory, are invariant.

This transformation generates a flow χ on phase space given by

χ = ν
∂

∂ν
+ pφ

∂

∂pφ
(4.8)

This flow is not a symplectomorphism, since LχΩ = Ω, but it does preserve the

constraint surface H = 0 since LχH = H and hence can be considered as a choice

of gauge on this surface. For reasons of clarity in what follows we will use this

gauge freedom to choose the volume of spacetime at the bounce point, to be given

by νb = 1. 2 We began with a four dimensional phase space on which we had a

single constraint, so the constraint surface is three dimensional. Identifying points

connected under the Hamiltonian flow - our dynamical trajectories - further reduces

us to a two-dimensional space of solutions to our theory. By further identifying

physically equivalent solutions under this rescaling by fixing this gauge freedom we

are left with 1 dimensional space of physically distinct solutions. For convenience

lets us characterize these solutions by the value of the scalar field at the bounce

point, φb. Strictly speaking, the quadratic nature of the constraint only fixes pφ

up to a choice of sign. Since we are primarily concerned with potentials which are

symmetric under φ → −φ, the solutions φb = φ0, pφ > 0 and φb = −φ0, pφ < 0

are physically indistinguishable, and hence considering pφ to be positive at the

bounce point and φb to take both positive and negative values we parameterize all

solutions to our theory.

4.4 Inflation in LQC

In this section we will investigate the dynamics of inflation in LQC. Throughout

this section we will fix the potential to take a quadratic form, V (φ) = m2φ2/2. For

agreement with COBE data we will take the mass parameter to be m = 6 ∗ 10−7

2This gauge freedom should be familiar from considerations in GR, in which the scale factor
a has no physical meaning by itself, and hence one fixes a given value a0 to be, for example, the
value today, and hence only terms such as a/a0 have physical meaning.
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in units of the planck mass[60] which corresponds to about 7 × 1012GeV . From

our equations of motion 4.3...4.6 one can show that the dynamics of the inflaton

are governed by the equation:

φ̈+ 3Hφ̇+m2φ = 0 (4.9)

This equation bears a striking resemblance to that of a damped harmonic os-

cillator, with damping parameter ζ = H/2m. For this to be a true harmonic

oscillator we would require that H be fixed, whereas in our case it is a dynamical

variable. In many of the cases of interest, in particular slow roll inflation, H will be

approximately constant and so the analogy will loosely hold. However, elsewhere

(in particular in superinflation phase) the evolution of H is significant and this

approximation will break.

To simplify the analysis of our dynamics we will consider three separate cases

labeled by the distribution of energy in the harmonic oscillator at the bounce.

Since at the bounce the Hubble parameter H is zero, 4.9 reduces to the equation

of a simple harmonic oscillator, with energy ρcrit.

In particular, let us define f = φb
φmax

= mφb√
2ρcrit

. Note that f takes values on

[−1, 1].

4.4.1 Strong Kinetic Domination (|f | < 0.1)

In the kinetic dominated case, the scalar field is close to its minimum at the bounce

point and here we will drop terms of higher order than f 2. Since the potential is

small during superinflation, corrections to the massless case due to its presence will

be small. The amount of time that superinflation lasts, ∆t is well approximated

by

∆H
˙Havg

≈ Hmax

2πφ̇2
b

=
Hmax

4πρcrit(1− f 2)
≈ Hmax

4πρcrit

(1 + f 2) (4.10)

From the bounce to the end of superinflation (H, Ḣ) goes from (0, 4πφ̇b
2
) to

(Hmax, 0) Hence we can form an estimate of the number of efolds
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log(N) =

∫
Hdt ≈ Havg∆t = Havg

Hmax

4πρcrit

(1 + f 2) ≈ H2
max

8πρcrit

(1 + f 2) (4.11)

Using the extreme case, in which the potential is zero, this approximation yields

an absolute minimum of 1.08 efolds, which is slightly lower than our true lower

bound of 2
1
6 ≈ 1.12. During this time we can also calculate the change in the

inflaton:

∆φ =

∫
φ̇dt ≈ φ̇avg∆T =

Hmax

2π
√

2ρcrit

(1 +
f 2

2
) ≈ 0.16(1 +

f 2

2
) (4.12)

After the superinflation phase there follows a frictional phase in during which

the Hubble parameter decreases and we approach the onset of slow-roll inflation.

If φ > 0 at the bounce, during this phase we will encounter a turning point, φ̇ = 0,

when the inflaton achieves its maximum potential and begins to roll back down.

At this turn around point, Ḣ = 0 and we can use the hamiltonian constraint to

find the Hubble parameter:

Hta =
sin(2λbta)

2γλ
=
sin(λbta)

γλ

√
1− sin2(λbta) =

√
4π

3
mφta

√
1− 4πλ2m2φ2

ta

3
(4.13)

To understand this phase better, we split it into two parts: The first, from

kinetic energy dominance until parity between kinetic and potential energy, and

the second from this parity until the turn around point (where kinetic energy is

zero).

From the onset of slow roll inflation, the number of efolds can now be approx-

imated since the overdamping of our system yields:

φ(t) ≈ φoe
−ωt (4.14)

With ω = m2

3Ho
. Therefore we can calculate the number of efolds using the time

taken for the inflaton to exit slow roll (φ = O(1)) by:
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∼N ≈ 2π
(
1− φ2

o

φ2
max

)
φ2
o lnφo (4.15)

Figure 4.1. Number of efolds vs φb for small φb. Note the absolute minimum of about
6 efolds and limited range in which we observe less than 68 efolds.

Taking the further approximation that φo ≈ φb since the change in φ before

this onset is relatively small, we find that the number of efolds of inflation is given

by

∼N ≈ 4π
ρcrit

m2
f 2(1− f 2) ln(|f |

√
2ρcrit

m
) (4.16)

Which gives 68 efolds for |φb| > 3 ie |f | > 2∗10−6. From numerical simulations

we find 68 efolds for φb /∈ [−5.3, 0.99].

This region which does not yield enough inflation is f ∈ [−3.5∗10−7, 6.6∗10−7]

which is a very small section of the allowed range. See figure 4.1.

In figure 4.2 we see an example of this extreme kinetic domination case in which

there are an insufficient number of e-folds before the slow roll period ends. Here
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we observe a rapid superinflationary phase from the bounce point at t = 0 followed

by a slow roll period in which the number of efolds (= log(ν)/3) increases almost

linearly.

Figure 4.2. E-folds against time for extreme kinetic domination in which we do not see
68 efolds.

.

In this simulation we began with φb = 0.15 which corresponds to f = 10−7 -

in the range that indeed we claim will not produce enough e-folds. The time scale

here is in planck seconds, and hence we are observing the evolution over the first

10−36 seconds after the bounce. The corresponding evolution of the scalar field can

be seen in figure 4.3

.

Here we see that the scalar field begins near zero, and rapidly rises up its

potential achieving its maximum before returning to slowly roll down its potential.

Note that it achieves its minimum at almost the same time as which we observe
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Figure 4.3. Evolution of the scalar field in the extreme kinetic domination case - the
field quickly achieves its maximum and begins to slowly roll down.

the linear expansion phase of the number of e-folds to end.

4.4.2 Intermediate Range 0.1 < |f | < 2−
1
2

.

The intermediate range of values is characterized by a short period of super-

inflation followed by a long slow roll inflation. When f < 0.35 there is a brief

non-inflationary period during which the Hubble parameter undergoes a rapid re-

duction. As f is increased this period becomes shorter, until the point where it

ceases to exist at f ≈ 0.35. The combined period of the short lived superinflation

and the inflaton slowing until the onset of slow roll can be seen as the effect of

the friction term 3Hφ̇ in the equation of motion for the inflaton. This friction is

coupled to φ̇ and so is essentially removing the kinetic energy of the oscillator.

During this phase, the change in the value of the inflaton is negligible as
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Figure 4.4. E-folds against time for intermediate case, showing a long period of slow
roll

φ̇

φ
≈ φ̇b
φb

=
m
√

1− f 2

f
(4.17)

which for all f in this range is less than 10−5. Therefore we are justified in

making the approximation that the inflaton takes its bounce value at the onset of

inflation. We can use this approximation together with 4.15 to show that in this

range of f we always get more than 68 efolds.

In figure 4.4 we see that in the intermediate case, slow roll inflation happens

very soon after the bounce point. The time scale is again in planck seconds, and

so we see that in fact we have achieved enough e-folds incredibly soon after the

bounce. In the corresponding evolution of the scalar field, figure 4.5 we see that the

inflaton achieves its maximum very soon after the bounce, changing by a negligible

amount between the bounce and the turn around point. It then begins its slow

roll back down the potential, which will lead to a very large number of e-folds of
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slow roll inflation.

Figure 4.5. Evolution of scalar field for intermediate case - the scalar field reaches its
maximum, which is very close to the bounce value, and begins a long period of slow roll.

.

4.4.3 Potential Domination |f | > 2−
1
2

In the potential dominated case we begin our evolution with energy primarily

in the form of potential. Here we see that superinflation can be long lasting

and play the main role in the expansion of the universe. If we begin with the

scalar field rolling up the potential we see that the turn around must occur during

the superinflationary phase, since we begin with V (φ) > ρcrit/2 and increasing.

Therefore at the turnaround, φ̇ = 0 the matter density is still above half the

critical density, and so still superinflating. We then see that slow roll begins in

this region, and hence this phase can be long lived with a high and increasing

Hubble parameter. Since superinflation cannot end until the hubble parameter

has achieved its maximum value, this will lead to an enormous number of efolds.

.

In figure 4.6 we observe that the Hubble parameter increases rapidly after the

bounce point, but does not in fact reach its maximum. Meanwhile the scalar field

has reached its maximum value and in fact has begun to slowly roll back down its
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Figure 4.6. Evolution of Hubble parameter in potential dominated case. The Hubble
has not yet reached its maximum but is slowly increasing since the scalar field has already
begun slow roll. This will result in a large number of efolds.

potential, whilst the Hubble parameter is increasing. This is the origin of the long

period of superinflation that we observe in this case.

After super-inflation, the number of efoldings of slow-roll inflation will also

be very large. Superinflation ends with the Hubble parameter at its maximum,

and due to the massive over-damping from the frictional term, at this point the

kinetic energy of the inflaton is low. Hence we exit superinflation with V (φ) ≈ ρcrit
2

and φ̇ small. We can obtain a lower bound for the number of e-foldings for this

range of initial values by taking the case where the inflaton begins with energy

evenly distributed between kinetic and potential, moving towards its minimum:

φ̇ = −mφ =
√

2ρcrit.

To gain an estimate of the number of post-superinflation e-folds, we can begin

from the condition that superinflation ends, ρ = ρcrit/2. Then the system is again

an over-damped harmonic oscillator whose solution is well approximated by 4.14,

with initial amplitude φo =
√
ρcrit/m. Since H is slowly varying over time, in this

case from Hmax to zero, we will approximate its value by Havg = Hmax/2, to obtain



61

N =
3H2

max

8m2
ln(

ρcrit

m
) (4.18)

Using the values given above, this number is of the order of 1013, greatly in

excess of the required 68 e-folds. Despite the huge order of this number, it is not

out of keeping with generic inflationary scenarios in GR. Indeed expansions of as

many as 10130 efolds have been discussed in the literature [60], and as yet there is

no observational constraint bounding this number from above.

4.5 Robustness

The results we have obtained so far have all considered the mass of the inflaton to be

fixed at 6×10−7mp. This was chosen to be in best agreement with observations, and

a quadratic potential was assumed. Since the usual inflationary scenario involves

a scalar field oscillating close to the minimum of a potential, this approximation is

appropriate. However, in LQC we have established that we are able to explore the

entire allowed range of values available to the scalar field subject to the Hamiltonian

constraint. Therefore we should consider a more generic set scenarios.

The first consideration is changing the mass of the inflaton. Under a decrease

in the mass of the inflaton, the allowed range of initial values of the scalar field

increases: Our constraint is that

|φb| <
√

2ρcrit/m (4.19)

and hence the range of initial values grows as m−1. In a numerical investigation

it becomes apparent that the minimum number of efolds increases as we reduce

the mass and the range leading to less than 68 efolds does not grow as quickly as

the total range. We find that the range leading to extreme kinetic domination is

again smaller as a fraction of the total range. Therefore our results persist under

reduction of the mass, even by several orders of magnitude. Under an increase

of the mass, we find the the mass of the inflaton must approach 10−2mp before a

significant fraction of the solutions do not experience 68 efolds. This is far outside

the observational constraints[59] and therefore we are justified in claiming that the

results obtained are robust under changing the inflaton mass.
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We can further consider a change of the form of the potential. One of the

generalizations which agrees with the COBE data is a quartic potential shown in

figure 4.7 [60]:

V (φ) = V0 ±
m2φ2

2
+
nφ4

4
(4.20)

Figure 4.7. The quartic potential with negative sign chosen on quadratic term

.

Where the mass m is restricted as before, and n ≈ 10−14 for the best fit to

the data. To ensure that we have separated the potential from the effects of a

cosmological constant, we pick V0 such that the minimum of this potential is zero.

In the case where the sign in front of the quadratic term is positive, this simply

implies that V0 = 0. When the sign is negative, this sets V0 = m4/4n.

If we let x = φ+m/
√
n we see that we can then rewrite the potential as

V (x) = m2x2 −
√
nmx3 +

nx4

4
(4.21)

and hence, as expected, in the large φ limit the potential will reproduce that
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of a simple nφ4/4 form. In terms of the dynamics of the scalar field subject to this

potential, the effects of the lower order terms are less than 1% for x > 10.

Figure 4.8. efolds against time subject to quartic potential - again we see a long period
of slow roll inflation

.

In figure 4.8 we see that we do once again recover a period of slow roll inflation.

This simulation began with φb = 16 and the evolution of the scalar field can be

seen in figure 4.9.

.

Obviously the allowed range of φ is restricted by this potential, and from nu-

merical simulations one does indeed recover more than 68 e-folds for φ > 10.

One can further make heuristic arguments about the robustness of our results

in the presence of generic potentials. The quadratic and quartic potentials exhibit

enough inflation when φb is relatively close to the minimum of the potential and

moving towards the minimum. In these cases the Hubble parameter is zero, there-

fore we have the least possible friction. In a more general setting we can consider

the trajectory of the scalar field subject to a more complicated potential which

is approximated by a quadratic or quartic in the vicinity of its minimum. Let us
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Figure 4.9. Evolution of inflaton subject to quartic potential - despite the new form of
potential the slow roll behavior persists.

suppose this approximation holds for, say, φ− φo < 10 where φo are the locations

of the minima of the potential, where we shall take the potential to be zero to

exclude the deSitter cases which will obviously lead to enough efolds. Then, any

motion of φ outside these regions will eventually encounter one of these regions.

At such time, the Hubble parameter will be non-zero, and the energy density lower

than the bounce density. Therefore in these regions the inflaton will be moving

slower than if it had begun its motion in this region, and will encounter (at least

initally) more friction, and thus we are likely to see more efolds. Therefore it is

likely that the results we have obtained will hold for a general class of potentials,

not just the quadratic or quartics considered so far. However it should be stressed

that this is a heurestic argument only and further study is required to establish

these results in any detail.
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4.6 Probability of Inflation

In this section we will define a measure on the space of solutions to our theory.

We will then define the a priori probability of an event occurring as being the

volume of the space of solutions in which the event occurs, where the total volume

of the space of solutions has been normalized to unity. This idea arises as Laplace’s

Principle of Indifference which states that in the absence of further information, if

an observation can have N possible outcomes one should assign equal probability

(1/N) to each. In the case we consider there is not a discrete set of outcomes

but rather a continuum, and hence a measure on this space must be employed to

perform such a counting operation.

4.6.1 Defining Probabilities

A natural measure available on phase space is the Liouville Measure dµL. A

volume form is obtained on a D-dimensional phase space by taking the symplectic

structure ω and raising it to the power D/2 (Note here that D is even by virtue of

each configuration variable having a conjugate momentum). Thus we are equipped

with a volume form Ω = ωD/2 on phase space. Since we are interested in solutions

to our theory we must find a surface S within phase space which every solution

crosses exactly once, and define our measure on the space of solutions, Ωs to be

the pull-back of Ω to this surface.

We can therefore define the a priori probability of an event X occurring to be:

P (X) =

∫
A

Ωs∫
S

Ωs

(4.22)

Where A is the subset of solutions in S for which the event X occurs. Since the

Liouville measure is preserved under evolution, it does not matter which surface S

we choose so long as each solution crosses it exactly once. At this point, one might

be tempted to point out that we have merely a measure on this space, and that

by introducing a probability density function f on the surface S one could obtain

P ′(X) =

∫
A
f(u)Ωs∫

S
f(u)Ωs

(4.23)

where P ′ is the probability as defined with reference to this density function,
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and u some variables on S. To answer this question we must introduce the notion

of the Information contained in a probability density function.

The information contained in a probability density function f(u) is defined to

be

I =

∫
f(u)ln(f(u))du (4.24)

under the constraint that the total probability be normalized to 1 and be posi-

tive for all u. The information I is minimized by the uniform distribution, f(u) = 1,

and hence we are justified in choosing 4.22 to be our definition of a priori proba-

bility. Furthermore it can be seen that such a priori probabilities are of particular

interest when they are particularly low. In these cases there is a heavy burden

placed upon any theory to provide sufficient information to overcome this bare

probability.

4.6.2 Harmonic Oscillator

Once we have a total measure which is finite, we can ask questions about probabili-

ties of our system having certain physical properties, or the moments (expectation

values) of our variables. To find the probability that our system has a certain

property, X we need to identify the portion of phase space A which corresponds

to this property.

In order to better understand what is going on here, let us investigate the

canonical physics test problem: The harmonic oscillator. To have the same number

of degrees of freedom, let us consider a 2D SHO with a given energy E with

unit mass and spring constant. The task will be to investigate the likelihood of

the oscillator having certain physical properties without being given any further

information about its state. We can proceed using the above method:

The expressed in polar coordinates, our constraint is

C = 2E − P 2
r −

P 2
φ

r2
+ r2 (4.25)

With symplectic structure
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ω = dPr ∧ dr + dPφ ∧ dφ (4.26)

Here we have options in terms of which slicing we choose in order to count

the number of solutions. Note that each solution crossed Pr = 0 at least twice

on an orbit, at the minimum and maximum values of r. This might indicate that

we should use r = rmin and Pr to define the surface onto which we pull back the

symplectic structure. However, we have far more powerful tools at our disposal

in this case: we know that Pφ is a constant of motion and that the constraint

is independent of φ. Therefore a simpler method is to eliminate Pr using our

constraint, and pullback onto a φ = constant surface.

From our constraint

Pr =

√
2E −

P 2
φ

r2
− r2 (4.27)

and hence our natural two-form is:

←−ω =
2Pφ√

2E − P 2
φ

r2
− r2

dPφ ∧ dr (4.28)

With the available phase space, I being

Pφ ∈ [0, r
√

2E − r2], r ∈ [0,
√

2E] (4.29)

Hence we can integrate our two form over this surface to find the total measure

to be E2π/2

We can now find expectation values for our physical variables:

< Pφ > =
2

E2π

∫
I
Pφ

2Pφ√
2E − P 2

φ

r2
− r2

dPφdr (4.30)

=
2E

3
(4.31)

And variance

< Pφ >
2 − < P 2

φ >=
E2

18
(4.32)
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Likewise we can find the probability that the particle is less than half-way to

its maximum radius.

P (r <

√
2E

2
) =

2

E2π

∫ √
2E
2

0

2Pφ√
2E − P 2

φ

r2
− r2

dPφdr (4.33)

=
1

3
−
√

3

4π
≈ 0.2 (4.34)

The probability that the particle is within a fraction f of its maximum radius

is:

P (r < f
√

2E) =
2

E2π

∫ f
√

2E

0

2Pφ√
2E − P 2

φ

r2
− r2

dPφdr (4.35)

=
2f
√

1− f 2(2f 2 − 1) + ArcSin(f)

π
(4.36)

From which we find the pleasant result that P (r < f
√

2E) = 0.5 for f = 2−
1
2 .

So, what about a more difficult yet physically relevant quantity? As an exam-

ple, let us consider the shape of the ellipse described by the particle, in particular

let us consider:

e =
rmin
rmax

(4.37)

As written this is not easily found using the methods described. In order to find

this quantity let us exploit a further set of tools at our disposal: The equations

of motion. Finding the min and max values of r we want to use the condition

ṙ = 0. Using the equations of motion, this tells us that Pr = 0. On the surface of

solutions to our constraint this then tells us:

Pφ
2r2

+
r2

2
= E (4.38)

and setting u = r2 and noting that there is only one physical solution to this

with r being the positive square root, we then find that these values are solutions
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to the equation:

u2 − 2uE + P 2
φ = 0 (4.39)

We then find the shape parameter to be

e =

√√√√√1−
√

1− P 2
φ

E2

1 +

√
1− P 2

φ

E2

(4.40)

If we want to find out if our orbits are almost circular we can then integrate

our measure from e = e0 to e = 1. We set v =

√
1− P 2

φ

E2 . Then for small v we find:

e ≈ 1− v, and hence we integrate our measure from Pφ = E
√

2e0 − e2
0 to Pφ = E

and over the region rmin < r < rmax.

By numerical methods we find that the probability of being in an orbit with

shape parameter e > 0.5 to be around 0.2 and hence would conclude that orbits

which appear circular are very unlikely.

4.6.3 Application to Inflation

Let us now apply this procedure to the system in question. We form the Liouville

measure Ω = dPφ∧dφ∧db∧dν. Recall that we have a single Hamiltonian constraint

to satisfy and from our equations of motion b is monotonic decreasing on any open

interval in time with no fixed points on the interval (0, π/λ) and hence for any b0

in this interval every solution crosses b = b0 exactly once. In particular, since we

are interested in knowing probabilities for numbers of efolds after the bounce, we

can pick the bounce point, b = π/2λ to define our surface.

S = {H = 0} ∩ {b =
π

2λ
} (4.41)

Note that this choice for b is made purely for ease of calculation. The results

obtained are independent of this choice due to the invariance of the Liouville

measure. We further solve the Hamiltonian constraint to eliminate Pφ leaving the

measure on this surface:
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Ωs =

√
3π

λ2
− 8π2γ2V (φ)dν ∧ dφ (4.42)

In the above expression the square root is necessarily real on the set of solu-

tions to the Hamiltonian constraint, since the potential cannot exceed the critical

density. We are now in a position to calculate the total measure

N =

∫
S

Ωs (4.43)

Here we notice that the surface S is non-compact and therefore the total mea-

sure is in fact infinite. The problem arises because we are considering the space

of all possible volumes, ν at the bounce point. However, as has been previously

mentioned, there is no physical meaning to this quantity in the k = 0 case, as

choice of volume at a given point can be considered gauge. Therefore, since our

task is to count the number of physically distinct solutions, we should take the

further step of eliminating this choice. This can be done in a number of ways;

One can perform a group-averaging procedure under the action of rescaling the

volume, place a cut-off on any integral over volume and take the limit as we relax

this cut-off, or declare the fiducial cell used to be that which gives the volume at

the bounce to be a fixed value, say νb = 1. Performing any one of these leaves the

same result in terms of a priori probability of physical events, since we have fixed

this gauge degree of freedom leaving us with a system entirely determined by the

value of the inflaton at the bounce point, φb. Thus we derive the probability that

the value of the scalar field lies in a set A at the bounce point to be

P (φb ∈ A) =
1

N

∫
φ∈A

√
3π

λ2
− 8π2γ2V (φ)dφ (4.44)

wherein N is the total measure on this space:

N =

∫
S

√
3π

λ2
− 8π2γ2V (φ)dφ (4.45)

and S the region V (φ) < ρc (in which the square root takes real values). The

total measure is finite if we enforce weak restrictions on V (φ): that it be bounded
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below and the region V (φ) < ρcrit is compact3 we have a finite total measure, and

well defined notion of probability.

4.6.4 The Quadratic Potential

Let us now focus our attention on the quadratic potential V (φ) = m2φ2/2. This

potential satisfies all the requirements outlined above, namely it is bounded below

and the region in which the energy density is less than the critical density is

compact. In particular the value of the inflaton at the bounce must be in the

region S = [−
√

2ρcrit/m,
√

2ρcrit/m].

The procedures outlined above now yield a finite total measure N given by

N =

∫
S

√
3π

λ2
− 4π2γ2m2φ2dφ =

3π

4γλ2m
(4.46)

We are now in a position to calculate the a priori probability of the inflaton

being in a certain region at the bounce point, whose relationship to the number of

efolds a solution will undergo has been previously established.

We can state the cumulative distribution function, P (φb) ∈ [0, fφmax], where

φmax is the value of φ such that V (φ) = ρcrit, as

2

π
(f
√

1− f 2 + sin−1(f)) (4.47)

From the details of 4.4 we see that the only cases in which we do not see

68 efolds of inflation is that of strong kinetic domination with f in the range

[−3.5∗10−7, 6.6∗10−7]. From our cumulative distribution function we find that the

probability that we are indeed on one of these trajectories is 6.4 ∗ 10−6. Therefore

the a priori probability that we see 68 efolds of inflation in LQC coupled to a

massive scalar field is very high meaning that in this system it would take a great

deal of fine tuning to avoid inflation.

This result holds under an increase of the inflaton mass by up to two orders of

magnitude (ie m < 6 ∗ 10−5mpl). At this value, the range of f which leads to less

than 68 efolds is [−3.1 ∗ 10−4, 1.1 ∗ 10−4 and hence the a priori probability that we

find the inflaton in this range at the bounce is 2.7∗10−4], again giving us a greater

3This condition is non-restrictive in the sense that all polynomials with even leading powers
will satisfy it
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than 99.9% chance of seeing 68 efolds. Under a decrease in the inflaton mass, the

probability of 68 efolds increases until the inflaton mass becomes zero.

4.6.5 The Quartic Potential

As discussed above 4.5 a more generic potential for the inflaton can be considered.

In the case examined here, we see that from numerical simulations we recover 68

efolds when |φb| > 10. Hence we can repeat the process above and calculate the

probability of being in this region. There is also a region around φ = 0 which is

an unstable equilibrium point on our potential, and will contribute to the set that

leads to at least 68 e-folds. However, we can gain a crude lower bound by ignoring

this region.

To simplify the calculation, we will consider only the pure quartic contribution.

This will actually reduce our allowed range of φ contributing to our crude lower

bound. In doing this we find the probability of φb being less than some fraction f ′

of its maximum to be

P [φb < f ′φmax] =
5p ∗ Γ(7/4)2F1[−1/2, 1/4, 5/4, p4]

2
√
πΓ(9/4)

(4.48)

and we once again recover a greater than 99.9% probability of seeing 68 efolds.

4.6.6 Alternate Start Point

One can take the viewpoint that instead of beginning our count of the number of

efolds at the bounce point, one should rather begin at some point at which GR

is valid. In LQC this can be taken to correspond to the density being around

1% of the critical density. Here for simplicity we will consider only the quadratic

potential case, with analogous arguments holding for quartic potentials. Then,

following the above prescriptions, one can calculate the fraction of solutions which

undergo 68 efolds from this point forwards. There are two fundamental differences

between this formulation and that considered at the bounce point: The first is

that there will be no superinflation in this counting. Since the density is well

below the critical density the Hubble parameter H is monotonic non-increasing

from this point forward, which is a consequence of being in good agreement with
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the dynamics of GR. The second is that the allowed region on phase space is

smaller - we consider S ′ to be the region in which V (φ) < 0.01ρcrit. This in turn

reduces φmax by a factor of 10. In doing so, we recover exactly the same probability

distribution in terms of f = φ/φmax as before, however the region which leads to

more than 68 efolds has changed.

From numerical simulations we find that the region in which we do not see 68

efolds of inflation is φρ=0.01ρcrit ∈ [−5, 3]. This again corresponds to a greater than

99.9% chance of seeing at least 68 efolds of inflation forwards of this time, although

it is indeed lower than the estimate beginning at the bounce. Since the Liouville

measure is preserved under evolution, if we counted again the number of solutions

in which we see 68 efolds from the bounce point, we would indeed recover the same

result. The difference here is precisely the portion of trajectories in which we see

less than 68 efolds after reaching 1% of the critical density yet more than 68 from

the bounce point.

4.7 Discussion

Although highly successful as an explanation for physical phenomena, the infla-

tionary scenario in GR encounters a number of conceptual difficulties. Questions

about whether inflation is a generic phenomenon arise, and the framework is not

equipped with the tools to answer these questions. Similarly the total number

of efolds is an ill-defined quantity, as an expanding cosmological solution begins

with a big bang in which the Hubble parameter and matter density are infinite,

and volume zero. These importance of these issues is amplified by the success of

inflation.

In this chapter we examined the effects of the LQC corrections to GR. Expand-

ing cosmology now begins at a bounce point, with zero Hubble parameter, fixed

finite density and a non-zero volume. We have seen that LQC yields a paradigm in

which questions of inflation can be made precise: The bounce gives a clear ‘start

point’ from which to count efolds, and we can form a natural measure on phase

space which shows that in a somewhat general inflationary scenario, the a priori

probability of the universe undergoing enough efolds to solve physical problems is

very high. This in turn indicates that the inflationary scenario in LQC does not
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require ‘fine tuning’, but rather that the generic predictions of the model are in

good agreement with the observed data.

This is not to say that all the problems of inflation are addressed in LQC.

LQC has so far put forward no candidate field to play the role of the inflaton, the

scalar field used here was added by hand for the purpose. One possible candidate

under consideration is the taking the Barbero-Immirzi parameter γ to be a field

[64]. However, in this case the dynamics of the associated quantum cosmology

have yet to be defined and would likely be different from those described here, not

least because the critical density depends directly upon this parameter. It is also

assumed that the inflaton somehow decays into other matter fields which go on

to become the constituents of our observed universe. Again there is no detailed

model for this decay, only the idea that around the minimum of the potential

this is expected to occur. The scalar field can be thought of as merely a model

for the inflaton, whose dynamics are in reality described by a more complicated

system. As was noted above, the scalar field changes equation of state across all

non-phantom matter and so is a good toy model for more complicated dynamics,

especially once more complicated potentials are considered.

A second question which arises is that of the ‘trans-planckian’ nature of a cos-

mology which undergoes a large degree of inflation. If, as is highly likely according

to our measure, the universe underwent a large number of efolds (say > 150) then

at the bounce point the entire currently observable universe would have had a

radius less than the planck length. Therefore one could argue that quantum fluc-

tuations of the fields involved, which could be large at the bounce, should still be

present and so the universe would not appear classical. This argument is some-

what vague, as in all singular cosmologies there is point beyond which the entire

observable universe would be less than a plank length in radius. Inflation does

highlight this problem as rapid expansion would cause this region to expand more

quickly, but this question appears one that should be addressed by cosmology as

a whole, not simply inflationary models.

Inflation, as was shown in chapter 3 is a generic feature of LQC. The particular

model of inflation due to a scalar field being subject to a potential has a high

probability of producing a universe which agrees with cosmological observations.

Therefore we find the opposite result to that of Gibbons and Turok - it would
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require fine tuning to have an inflationary universe which did not produce enough

inflation.



Appendix A
Numerical Details of BKL

Simulations

A.1 One point evolutions

Simulations of the BKL system for a single set of initial data described by 2.59 and

2.58 were performed in MATLAB using a Runge-Kutta (4,5) algorithm (ODE45)

[65] to numerically solve the differential equations. Both relative and absolute tol-

erances were set at 10−14 and on every solution preservation of the Hamiltonian

constraint 2.57 to this order was verified. Calculations of the u-map and Hamil-

tonian were performed on the raw output data. In both the simulations done on

the BKL conjecture and the inflationary trajectories in LQC, we are evolving a

Hamiltonian system. Numerical error in the system is not directly coupled to any

of the dynamical variables, and therefore will play the role of a cosmological con-

stant (which is pseudo-random in time). In requiring that the absolute tolerance

levels of our system are small in comparison to the timescales involved, we ensure

that the integrated effect over time of this error is small - the effective cosmolog-

ical constant created by this error plays little role in long term evolution. In also

requiring that the relative tolerance for error is low we ensure that there is little

effect played by the change of this parameter, hence our solutions do in fact well

approximate the physical systems after which they are modeled.
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A.1.1 The u-map

Through numerical simulation we are able to verify the behavior of the u-map as

state in 2.80 - we do see the signature stepping down by 1 of the u parameter

and its inversion below 2 in systems which have settled into a Bianchi I/Bianchi II

transition regime. However, at early times this behavior is not necessarily present

- it is a phenomenon which can appear in our simulations at late times, as we see

in figures A.1 and A.2

Figure A.1. The system can quickly settle into u-map behavior when starting from an
almost Kasner state

Adding a scalar field to the system stops this behavior - the u-map appears to

be no longer valid when there is matter present. This is clearly to be expected as

the presence of a strong enough scalar field, as discussed in chapter 2, causes the

Taub transitions to cease. An example of this is shown in figure A.3.

A.1.2 Function fitting

The approximation of our solutions by a sum of sech functions was also performed

numerically. For each Taub transition, the fitting was asigned two parameters
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Figure A.2. A system initially far from a Kasner state can require some initial ‘settling’
before the u-map behavior emerges

corresponding to the amplitude and time of the sech function used in the approxi-

mation. The initial positions for the search on the space of functions were the peak

points of the transitions. These were then fit to the data using an multivariate

linear fitting program (nlinfit).

In this simulation we observe that even when the number of transitions is far

higher than the number of degrees of freedom in the system we still can recover

a close approximation to the dynamics. Here there are several transitions in the

highest eigenvalue of C which appear to be perturbations around the one more

long term transition which is well fit by the associated sech function.

A.2 Solutions with varying initial data

In order to investigate the presence of spikes in our system it was necessary to

perform simulations in which the initial data varied over space such that a spike

would form during a Taub transition. These simulations were run on hand writ-

ten differential equation solving code using an iterative Picard method to solve

the equations. Despite the calculational inefficiency of using superlinear methods

over increasing data points, memory limitations of the systems involved caused
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Figure A.3. The non u-map behavior in the presence of a scalar field. Here the scalar
field is not strong enough to stop transitions but does break the u-map

optimization of the grid beyond a certain point (around 106 grid points) to be

impossible. Therefore once an optimal grid was achieved the number of iterations

of the Picard algorithm was increased.

Initial data was picked by choosing the all three eigenvalues of P and one of

C. The second eigenvalue of C was varied across the allowed parameter space and

the Hamiltonian constraint applied to solve for the remaining eigenvalue. In doing

so we ensured that all our initial data satisfied the boundary conditions imposed

and that we were indeed evolving physical solutions to our theory.

In figure A.5 we see an example of the behavior of a spike in the eigenvalue of

C. Here we see that on either side of the ‘spike point’ transitions occur, one with

positive C the other negative. The spike point itself is actually stationary as no

transition occurs at this point. It is rather the nearby transitions that pick out

this point, as the nearby eigenvalues diverge.
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Figure A.4. Fit of varied C evolution by sum of sech functions
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Figure A.5. Profile view of spike in C



Appendix B
Numerical Details of LQC

Simulations

Simulations of the LQC inflationary system for a single set of initial data described

by 4.3-4.6 were performed in MATLAB using a variable order Adams-Bashforth-

Moulton PECE solver (ODE113)[66] to numerically solve the differential equations.

In the simulations for precision the natural logarithm of the volume was taken as

a fundamental variable instead of the volume itself. Both relative and absolute

tolerances were set at 10−14 and on every solution preservation of the Hamiltonian

constraint 4.1 to this order was verified. Simulations all used the choice that the

volume at the bounce point, νb was fixed to unity, and initial conditions were fixed

by choice of the value of the scalar field φ, with the Hamiltonian 4.1 being used

to calculate pφ. Since our system is symmetric under φ, pφ → −φ,−pφ we could,

without loss of generality, take the positive square root that arose from solving the

constraint.

Upon completion of a simulation the various physical quantities of interest

(in particular the number of efolds) were calculated. This was done numerically,

performing a binary search for the maxima of φ to establish turning points, and for

φ̈ for the onset of slow-roll inflation. Similarly a search of where φ exited slow-roll

was calculated numerically, with the exit point being the point where the slow roll

conditions were violated. A spot check of these results was performed by hand for

generic statements, and any individual results required were verified directly.

As a test case for every simulation, both the massless scalar field and fixed
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potential (effective cosmological constant) solutions were calculated and compared

to their known analytic solutions. In each case agreement up to one part in a

million were observed in the evolutions of the fundamental variables. Similarly

simulations in which the initial volume was varied by orders of magnitude in each

direction were performed, producing identical results to the case in which the

volume was fixed. Likewise the negative pφ solution to the Hamiltonian constraint

was checked to yield identical physical results to the positive choice. This is obvious

from a physical perspective, however from the point of view of simulations it was

necessary to establish that no artifacts of our choices of gauge were present in the

simulations themselves.

In order to establish the data for 4.1 a preliminary search on the initial param-

eter space of φ was performed with a uniform linear spacing between data points.

Once this revealed the approximate location of the minimum, a binary search on

this space was performed until the minimum of the number of efolds as a function

of initial parameter was found and verified to 3 significant figures.

Numerical simulations were used to find the number of efolds directly only

in the kinetic dominated case. Once the number of efolds grew beyond 100 the

numerical stability of the equations would break. Fortunately, at this point we

were beyond the point of interest in our paradigm, since we are interested in initial

conditions which yield less than 68 efolds. In both the intermediate and potential

dominated regimes, the numerical solutions were used to verify that this bound

was exceeded.
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