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Abstract. In the context of the periastron advance as a fundamental test for gravity theories,
we show an approach to deduce constraints on the sizes of the new forces arising in the weak
field limit of the Extended Theories of Gravity (ETG). It is also studied the force motivated by
Quintessence Fields deforming the Schwarzschild geometry and associated to the Dark Energy,
responsible of the acceleration of the Universe. As for the ETG, we consider the more general
Scalar-Tensor Fourth Order Gravity (STFOG) and the NonCommutative Spectral Gravity
(NCSG) as a special case. The solutions of the linearized field equations provide corrections

to the Newtonian potential in the Yukawa-like form V (r) = α e−βr

r
, where α is the parameter

related to the strength of the potential and β to the range of the force. Quintessence Fields
lead to a power-law correction with parameters related to the Dark Energy. By analysing the
periastron advance with the use of the current data, we find improvements on the parameters
of the gravitational models as well as on the bounds of the parameter β by several orders of
magnitude.

1. Introduction
We report here the results presented on Ref. [82]. In the last decades, observational
investigations concerning the motion of objects in galaxy clusters at extra-galactic scales have
clearly highlighted how the matter present in the Universe is dominated by an invisible dark
component, denominated dark matter. In particular we observe that the effects of dark matter
act at galactic scales giving rise to rotation curves characterized by a flat behavior, differently
from what we should expect from Newtonian gravity. In addition to the dark matter, the
discovery that the Universe is currently accelerating allowed to realize that it is also dominated
by an unknown form of energy, supposed to be responsible of this relevant phenomenon, i.e. the
dark energy [1, 2, 3, 4, 5, 6]. However, up to now there is no result coming from experimental
projects finalised to detect particles that might constitute the dark matter. If we relax the
assumption that it is only a form of matter not emitting light responsible of the observed
gravitational effects on galaxies and clusters, it is possible to take into consideration many other
theoretical proposals. Another approach to understand the nature of dark matter is represented
by the Extended Theories of Gravity (ETG), which have captured an ever increasing interest
in the scientific community. The interest resides in the fact that it is possible to explain the
dark matter and dark energy in a pure gravitational setting based on curvature fields. The
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starting idea is that there is no fundamental reason for assuming the gravitational action (from
which we derive the field equations) to be just a linear function of the Ricci scalar minimally
coupled to matter, namely the Hilbert Einstein action as it occurs in General Relativity [8]. In
this framework, if we introduce in the action higher order terms expressed by scalar curvature
invariants, we can literally extend the theory of gravity and General Relativity is recovered as a
special case of Extended Gravity. Thanks to a more general action, the effects attributed to the
presence of dark matter and dark energy are thus interpreted as results of the extra-curvature
terms. Linked to this, there is the fundamental property that ETG conduct to a gravitational
law which acts differently at different scales. More specifically the results of General Relativity
at Solar System scales are preserved, while at galactic and extra-galactic scales the gravitational
pull has an growing contribution due to the extra-curvature terms.

We emphasize that modifications of General Relativity are suggested also by the fact that
Einstein’s theory of gravity breaks down in the UV [9]. The deviations from General Relativity
are already present in several frameworks, such as Brans-Dicke and scalar-tensor (ST) theories
[10, 11, 12], braneworld theories [13, 14], and finally higher order invariants such as f(R)
and f(ϕ, R, R2, RµνR

µν), corresponding to an Einstein’s gravity plus one or multiple coupled
scalar fields [15, 16, 17, 18]) [19, 20, 21, 22], Non-Commutative Spectral Geometry [23], and
compactified extra dimension/Kaluza-Klein models [26]. Moreover, they can also be generated
from higher-order terms in the curvature invariants, nonminimal couplings to the background
geometry in the Hilbert-Einstein Lagrangian [27]. Additional terms into the action of gravity
may also come from string loop effects [28], dilaton fields in string cosmology [29], and nonlocally
modified gravity induced by quantum loop corrections [30].

The Newtonian limit of some models of ETG have been studied in [31], while the Minkowskian
limit in [32]. Natural candidates for experimentally testing ETG are the galactic rotation
curves, stellar systems and gravitational lensing [33, 34, 35] (see also [36]). In this perspective,
corrections to GR were already considered by several authors [37, 38, 39, 40]. Due to the
large amount of possible models, an important issue is to select viable ones by experiments and
observations. Therefore, the new bornmultimessenger astronomy is giving important constraints
to admit or exclude gravitational theories (see e.g. [42, 43]). However, also fine experiments can
be conceived and realized in order to fix possible deviations and extensions with respect to GR.
They can involve space-based setups like satellites and precise electromagnetic measurements
[44]. The Yukawa-like potential potentials occur in ETG and in Non-Commutative Spectral
Geometry, and Quintessence field surrounding a massive gravitational source provide a Power
Law potential. We shall infer the corrections to periastron advance for Solar Planets, referring in
particular to Mercury, Mars, Jupiter and Saturn, as well as to S2 star orbiting around Sagittarius
A∗.

In Sec. 2 we introduce the Scalar-Tensor Fourth Order Gravity (STFOG), the particular class
of the NonCommutative Spectral Geometry (NCSG) and the solutions in the weak field limit
of STFOG and NCSG. Then the Quintessence Field reproducing the Dark Energy is discussed.
In Sec. 3, we study the effects of these corrections to the periastron advance of Planets as well
as the effects of the Quintessence field present around a Schwarzschild Black Hole, and derive a
lower bound on the adiabatic index of equation of state. Finally, conclusions are drawn in the
last Section.

2. Extended Gravity and Quintessence Fields
The action for the ETG is given by (see for example [7])

S =

∫
d4x

√
−g

[
f(R,RµνR

µν , ϕ) + ω(ϕ)ϕ;αϕ
;α + XLm

]
, (1)
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where f is a generic function of the invariant R (the Ricci scalar ), the invariant RµνR
µν = Y

(Rµν is the Ricci tensor), the scalar field ϕ, g is the determinant of metric tensor gµν and
X = 8πG. The Lagrangian density Lm is the minimally coupled ordinary matter Lagrangian
density, ω(ϕ) is a generic function of the scalar field.

The field equations obtained by varying the action (1) with respect to gµν and ϕ, In the
metric approach, are1:

fRRµν −
f + ω(ϕ)ϕ;αϕ

;α

2
gµν − fR;µν + gµν□fR + 2fYRµ

αRαν + (2)

−2[fYR
α
(µ];ν)α +□[fYRµν ] + [fYRαβ]

;αβgµν + ω(ϕ)ϕ;µϕ;ν = X Tµν ,

2ω(ϕ)□ϕ+ ωϕ(ϕ)ϕ;αϕ
;α − fϕ = 0 . (3)

where:

fR =
∂f

∂R
, fY =

∂f

∂Y
, ωϕ =

dω

dϕ
, fϕ =

df

dϕ
,

and Tµν = − 1√
−g

δ(
√
−gLm)
δgµν is the the energy-momentum tensor of matter. We confine ourselves

to the case in which the generic function f can be expanded as follows (notice that the all other
possible contributions in f are negligible [31, 40, 41])

f(R,RαβR
αβ, ϕ) = fR(0, 0, ϕ

(0))R+
fRR(0, 0, ϕ

(0))

2
R2 +

fϕϕ(0, 0, ϕ
(0))

2
(ϕ− ϕ(0))2

(4)

+fRϕ(0, 0, ϕ
(0))Rϕ+ fY (0, 0, ϕ

(0))RαβR
αβ .

To study the weak-field approximation, we perturb Eqs.(2) and (3) in a Minkowski background
ηµν [31], i.e. we look for perturbed solutions of the form

gµν ≃
(
−1− 2Φ 2A

2A (1− 2Ψ)δij

)
. (5)

and

ϕ ∼ ϕ(0) + ϕ(2) + . . . = ϕ(0) + φ.

For matter described as a perfect fluid, hence T00 = ρ and Tij = 0, one gets that, for a ball-like
source with radius R, the gravitational potentials {Φ,Ψ, Ai} and the scalar field φ take the form

1 We use, for the Ricci tensor, the convention Rµν = Rσ
µσν , whilst for the Riemann tensor we define

Rα
βµν = Γα

βν,µ + · · · . The affine connections are the Christoffel symbols of the metric, namely Γµ
αβ =

1
2
gµσ(gασ,β + gβσ,α − gαβ,σ), and we adopt the signature is (−,+,+,+).
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(c = 1) [40, 41]

Φ(x) = −GM
|x|

[
1 + ζ(|x|)

]
, (6)

ζ(|x|) ≡ g(ξ, η)F (m+R) e−m+|x| +
[1
3
− g(ξ, η)

]
F (m−R) e−m−|x| − 4F (mY R)

3
e−mY |x| ,(7)

Ψ(x) = −GM
|x|

[
1− ψ(|x|)

]
, (8)

ψ(|x|) ≡ g(ξ, η)F (m+R) e−m+|x| +
[1
3
− g(ξ, η)

]
F (m−R) e−m−|x| +

2F (mY R)

3
e−mY |x| ,(9)

A(x) = −
2G

[
1−A(|x|)

]
|x|2

x× J , (10)

A(|x|) ≡ (1 +mY |x|) e−mY |x| , (11)

φ(x) =
GM

|x|

√
ξ

3

2

ω+ − ω−

[
F (m+R) e−m+ |x| − F (m−R) e−m− |x|

]
, (12)

where J = 2MR2Ω0/5 is the angular momentum of the ball, fR(0, 0, ϕ
(0)) = 1, ω(ϕ(0)) = 1/2,

and

g(ξ, η) =
1− η2 + ξ +

√
η4 + (ξ − 1)2 − 2η2(ξ + 1)

6
√
η4 + (ξ − 1)2 − 2η2(ξ + 1)

, (13)

F (mR) = 3
mR coshmR− sinhmR

m3R3
, (14)

ξ = 3fRϕ(0, 0, ϕ
(0))

2
, η =

mϕ

mR
, (15)

m2
± = m2

R ω± , (16)

ω± =
1− ξ + η2 ±

√
(1− ξ + η2)2 − 4η2

2
, (17)

mR
2 .

= − fR(0, 0, ϕ
(0))

3fRR(0, 0, ϕ(0)) + 2fY (0, 0, ϕ(0))
, (18)

mY
2 .

=
fR(0, 0, ϕ

(0))

fY (0, 0, ϕ(0))
, mϕ

2 .
= −

fϕϕ(0, 0, ϕ
(0))

2ω(ϕ(0))
. (19)

Some ETG models studied in literature and reported in Table 1 (see [40] for further details).
Another possibility we want to discuss is related to the Quintessence Field, invoked to explain

the speed-up of the present Universe [63]. Quintessence may generate a negative pressure,
and, since it is diffuse everywhere in the Universe, it can be the responsible of the observed
accelerated phase, as well as it is present around a massive astrophysical object deforming the
spacetime around it [64]. The studies of quintessential black holes are also motivated from M-
theory/superstring inspired models [65] (see [66, 67, 68, 63] for applications). The solution of
Einstein’s field equations for a static spherically symmetric quintessence surrounding a black
hole in 4 dimension is given by [64, 66]

gµν = diag
(
−f(r), f−1(r), r2, r2 sin2 θ

)
, (20)

with

f(r) = 1− 2M

r
− c

r3ωQ+1 , (21)
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Table 1. We report different cases of Extended Theories of Gravity including a scalar field
and higher-order curvature terms. The free parameters are given as effective masses with their
asymptotic behavior. Here, we assume fR(0, 0, ϕ

(0)) = 1, ω(ϕ(0)) = 1/2.

Case ETG Parameters

m2
R m2

Y m2
ϕ m2

+ m2
−

A f(R) − fR(0)

3fRR(0)
∞ 0 m2

R ∞
B f(R,RαβRαβ) − f(0)

3fRR(0)+2fY (0)

fR(0)

fY (0)
0 m2

R ∞
C f(R, ϕ) + ω(ϕ)ϕ;αϕ;α − fR(0)

3fRR(0)
∞ −

fϕϕ(0)

2ω(ϕ(0))
m2

Rw+ m2
Rw−

D f(R,RαβRαβ , ϕ) + ω(ϕ)ϕ;αϕ;α − f(0)
3fRR(0)+2fY (0)

fR(0)

fY (0)
−

fϕϕ(0)

2ω(ϕ(0))
m2

Rw+ m2
Rw−

where ωQ is the adiabtic index (the parameter of equation of state), −1 ⩽ ωQ ⩽ −1
3 , and c the

quintessence parameter. The cosmological constant (ΛCMD model) follows from (20) and (21)
with ωQ = −1 and c = Λ/3,

f(r) = 1− 2M

r
− Λr2

3
. (22)

3. The periastron advance and inference of the theoretical bounds
In this section, we proceed to evaluate the contraints on the sizes of new gravitational forces
(inferred in ETG or other scenarios) by making use the data coming from the precession of
Planets. For this purpose, we follow the paper by Adkins and McDonnell [45] (see also [46, 47]),
where it is calculated the precession of Keplerian orbits under the influence of arbitrary central-
force perturbations. In the limit of nearly circular orbits, the perturbed orbit equation takes the
form (u = 1/r)

d2u

dφ2
+ u =

GM

h2
− g(u)

h2
(23)

where g(u) = r2 F (r)
m |r=1/u ( Fm = −∇V ) and h2 = GMa. g(u) = 0 corresponds to the

unperturbed solution. We refer to the corrections to the Planets precession induced by the

Yukawa-like potential, VY (r) = α e−βr

r , and power law (PL) potentials, VPL(r) = αnr
n.

In GR, the first post-Newtonian correction is a perturbing potential given by

V (r)
∣∣∣
GR

= −GMh2

c2r3
,

which corresponds the precession

∆θp

∣∣∣
GR

=
6πGM

c2a
.

This gives the well known 43 arcsec per century when applied to the orbit of Mercury. The
correction to the Planet precessions induced by a generic perturbing force F (z) and perturbing
potential V (z) is [45]

∆θp = − 2a2

GMϵ

∫ 1

−1

dz z√
1− z2

F (z)

(1 + ϵz)2
(24)

= − 2a

GMϵ2

∫ 1

−1

dz z√
1− z2

dV (z)

dz
, (25)
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where, for the sake of convenience, the correction ∆θp is written in terms of the dimensionless
integration variable z with a fixed range, while ϵ is the eccentricity (ϵ < 1). The perturbing
force F (z) and V (z) are evaluated at radius r = a/(1 + ϵz). In the following we refer to the
Yukawa-like and power-law potentials following from different gravitational theories of gravity.

• The Yukawa force - The Yukawa potential (as a correction to the Newtonian potential
VN = GM/r) is of the form [48, 49]

VY (r) = α
e−r/λ

r
≡ α

e−βr

r
(26)

where α and λ ≡ 1/β are the strength and the range of the interaction, respectively. As we
will see, such a potential occurs in several modified theories of gravity. The precession due
to a Yukawa perturbation depends on two parameters: a range parameter κ = a/λ = βa
and the eccentricity ϵ, i.e. ∆θp(κ, ϵ), where a is the semi-major axis. According to [45], the
correction to the precession is of the integral form

∆θp(κ, ϵ) = − 2α

GMϵ
Iϵ,β , (27)

where

Iϵ,β ≡
∫ 1

−1

dz z√
1− z2

(
1 +

κ

1 + ϵz

)
e−

κ
1+ϵz . (28)

The behavior of the integral (28) is represented in Fig. 1 for several Planets.

• Power Law potential - The power law potential is of the form

VPL(r) = αq r
q , (29)

where the parameter q assume arbitrary values. The precession (24) can be exactly
integrated, and leads to [45]

∆θp(q) =
−παq

GM
aq+1

√
1− ϵ2χq(ϵ) , (30)

where χq(ϵ) is written in terms of the Hypergeometric function

χq(ϵ) = q(q + 1) 2F1

(
1

2
− q

2
, 1− q

2
; 2 ; ϵ2

)
. (31)

3.1. Planet precession in Scalar Tensor Fourth Order Gravity
In this Section we study the periastron shift of the orbital period of objects, both astrophysical
and Solar System, in Scalar Tensor Fourth Order Gravity (STFOG). As seen before, the
linearised STFOG field equations lead to a gravitational potential of the Yukawa-like form
(r = |x|)

V (r) =
GM

r

1 +
∑

i=±,Y

Fie
−βir

 , (32)

where Fi and β are the strength and range of the interaction corresponding to each mode
i = +,−, Y . Comparing (32) with (26), it follows the correspondence (referring to (6) and (7))

α→ GMFi , β → βi , i = ±, Y . (33)
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Table 2. Values of periastron advance for the first six planets of the Solar System. In the table
we present the values of the eccentricity ϵ, semi-major axis a in meters, the orbital period P in
years, the periastron advance predicted in General Relativity (GR).

Planet ϵ a (1011m) P (yrs) ∆ϕGR (′′/century) ∆ϕobs

Mercury 0.205 0.578 0.24 43.125 42.989± 0.500
Venus 0.007 1.077 0.62 8.62 8.000± 5.000
Earth 0.017 1.496 1.00 3.87 5.000± 1.000
Mars 0.093 2.273 1.88 1.36 1.362± 0.0005
Jupiter 0.048 7.779 11.86 0.0628 0.070± 0.004
Saturn 0.056 14.272 29.46 0.0138 0.014± 0.002

Table 3. Bounds on Fi, i = ±, Y obtained from (36) using the values of periastron advance for
planets of the Solar System.

Planet |η| Imax
ϵ,β βmax

i ≃ |Fi| ≲

Mercury 0.5 0.18 4× 10−11m−1 0.28
Mars 5× 10−4 0.08 1.1× 10−11m−1 2.9× 10−4

Jupiter 4× 10−3 0.04 2.5× 10−12m−1 2.4× 10−3

Saturn 2× 10−3 0.05 2× 10−13m−1 1.1× 10−3

with

F+ = g(ξ, η)F (m+R) , F− =
[1
3
− g(ξ, η)

]
F (m−R) , FY = −4

3
F (mY R) , (34)

β± = mR
√
ω± , βY = mY . (35)

We impose that the periastron shift ∆θp(κ, ϵ) = − 2α
GMϵ Iϵ,β given by (27), where Iϵ,β is defined

in (28), is lesser than the error η. Fixing Iϵ,β to the maximum values, one gets the bounds on
the parameters Fi:

|∆θp(κ, ϵ)| ≲ η → |Fi| ≲
ηϵ

2Iϵ,βi

, i = ±, Y . (36)

In Fig. 1 are plotted the function Iϵ,β for the Mercury, Mars, Jupiter and Saturn planets.
In Table 3 are reported the corresponding bounds on Fi. As an illustrative example, we plot
|F±(ξ, η)| in Fig. 2, for mR = R−1. The available values of the parameters {ξ, η} allow to fix
the masses, via Eqs. (13) , (14), (15), (18), of extra modes arising in Scalar Tensor Fourth Order
Gravity. The analysis of Yukawa gravitational potential for f(R) has been carried out in [50].

3.2. Non-Commutative Spectral Geometry
Following the previous section, Eqs. (27) (36), the periastron advance in NCSG for planets is
given by

|∆θp(β, ϵ)| ≲ η → |Iϵ,β| ≲ I0 , I0 ≡
3ηϵ

8
, (37)

where Iϵ,β is defined in (28). From Eq, (37) one infers the bounds on β, or equivalently an upper
bound on λ. Results are reported in Table 4 (see also Fig. 3). These results show that the
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Figure 1. (a) Iϵ,β vs β for Mercury. (b) Iϵ,β vs β for Mars. (c) Iϵ,β vs β for Jupiter. (d) Iϵ,β vs
β for Saturn.

Figure 2. (a) F+ vs {ξ, η} for Mercury (|F+| ≤ 0.28), with mR = 1
R . (b) F− vs {ξ, η} for

Mercury (|F−| ≲ 0.28) with mR = 1
R .

bounds on β improve several order of magnitude as compared with ones obtained using recent
observations of pulsar timing, β ≥ 7.55 × 10−13m−1 [58, 59]. Bounds on the parameter β have
been obtained in different frameworks. From Gravity Probe B experiment one gets β > 10−6m−1

[54]. A more stringent constraint on β can be obtained from laboratory experiments designed to
test the fifth force, that is, by constraining λ through torsion balance experiments which implies
to obtain a stronger lower bound on β (or equivalently an upper bound to the momentum f0 in
NCSG theory). The test masses have a typical size of ∼ 10mm and their separation is smaller
than their size. As we have already mentioned above, in NCSG one has |α| ∼ O(1), so that the
tightest constraint on λ = β−1 provided by Eöt-Wash [60] and Irvine [61] experiments is [62]
λ ≲ 10−4m, or equivalently β ≳ 104m−1.

3.3. Quintessence Fields related to the Dark Energy
The Quintessential potential reads VQ = − c

r
3ωQ+1 , so that comparing with (29) one gets

q → −(3ωQ + 1) αq → c .
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Table 4. Lower bounds on β obtained from (37) using the values of periastron advance for
planets of the Solar System.

Planet η I0 ≡ 3ηϵ
8 β(m−1) >

Mercury 0.5 0.038 1.0× 10−10

Mars 5× 10−4 1.36 7.8× 10−11

Jupiter 4× 10−3 0.0628 2.1× 10−11

Saturn 2× 10−3 0.0138 8.5× 10−12
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Figure 3. (a) Iϵ,β vs β for Mercury. (b) Iϵ,β vs β for Mars. (c) Iϵ,β vs β for Jupiter. (d) Iϵ,β vs
β for Saturn.

The precession (30) leads to

|∆θp(ωQ, ϵ)| =
πc

GM
a−3ωQ

√
1− ϵ2χωQ(ϵ) , (38)

with

χωQ(ϵ) = 3ωQ(1 + 3ωQ) 2F1

(
2 + 3ωQ

2
,
3 + 3ωQ

2
; 2 ; ϵ2

)
. (39)

By requiring |∆θp(ωQ, ϵ)| ≲ η one gets the bounds on the parameters {ωQ, c}. Results are
reported in Table 5 and Fig. 4 for fixed values of c.

4. Test on S2 Star
Finally, we shortly conclude our analysis testing the modified gravity predictions for S2 Star
orbiting around Sagittarius A*, the Supermassive Black Hole at the center of the Milky
Way, which has got a mass equal to M = (4.5 ± 0.6) × 106M⊙ and a Schwarzschild radius
RS = 2GM = 1.27 × 1010m. The S2 Star orbit has an eccentrity ϵ = 0.88 and a semi-major
axis a = 1.52917 × 1014m. According to Ref. [75], the periastron advance is (0.2 ± 0.57) deg,
hence η = 0.57 (it is expected that the interferometer GRAVITY may improve such an accuracy
level). We discuss the periastron advance for the gravitational models above discussed:
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Table 5. Values of the parameter ωQ obtained from (38) using the values of periastron advance
for planets of the Solar System.

Planet η c(m3ωQ+1) ∼ ωQ ≳

Mercury 0.5 10−25 -0.86
Mars 5× 10−4 10−30 -0.88
Jupiter 4× 10−3 10−30 -0.84
Saturn 2× 10−3 10−30 -0.82

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4
ωQ

0.2

0.4

0.6

0.8
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Figure 4. (a) |∆θ(ωQ, ϵ)| vs ωQ for Mercury. (b) |∆θ(ωQ, ϵ)| vs ωQ for Mars. (c) |∆θ(ωQ, ϵ)|
vs ωQ for Jupiter. (d) |∆θ(ωQ, ϵ)| vs ωQ for Saturn.

• STFOG - Referring to Scalar-Tensor Fourth Order Gravity, from Eq. (36) one gets

|∆θp(κ, ϵ)| ≲ η → |Fi| ≲
ηϵ

2Iϵ,βi

∼ 0.36 , i = ±, Y . (40)

where in Fig. 5(a) is plotted the function Iϵ,β for the S2 star. We ave taken the maximum
value of Iϵ,β corresponding to β ∼ 2 × 10−14m−1 (see Fig. 5(a)). The analysis of S2 star
orbit around the Galactic Centre in f(ϕ,R) and f(R,□R) has been investigated in [76].

• NCSG - The S2 star values {ϵ, η, a} imply that, from (37),

|∆θp(β, ϵ)| ≲ η → |Iϵ,β| ≲ I0 , I0 ≡
3ηϵ

8
≃ 0.19 . (41)

Results are reported in Fig. 5(b). We can see that the lower bound on β is β ≳
1.1× 10−13m−1. These bounds are compatible with the astrophysical bounds [58, 59].
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Figure 5. (a) Iϵ,β vs β for S2 star in FOG theories. (b) Iϵ,β vs β for S2 star. (c) |∆θωQ, ϵ| vs
ωQ for S2 star. (c is in m3ωQ+1 units).

• Quintessence - In the case of Quintessence field deforming the Schwarzschild geometry,
Eq. (38) implies

|∆θp(ωQ, ϵ)| =
πc

GM
a−3ωQ

√
1− ϵ2χωQ(ϵ) ≲ 0.57 , (42)

χωQ(ϵ) = 3ωQ(1 + 3ωQ) 2F1

(
2 + 3ωQ

2
,
3 + 3ωQ

2
; 2 ; ϵ2

)
. (43)

Results are reported in Fig. 5(c), from which it follows that for Quintessence |∆θp(ωQ, ϵ)| ≲
0.57 provided ωQ ≳ 0.9. Therefore, the exact value ωQ = −1 corresponding to the
cosmological constant is excluded in this range of values.

5. Conclusions
In this conference we have reported the results presented on Ref. [82]. The analysis is
relative to the periastron advance of Solar system Planets in the case in which the gravitational
interactions between massive bodies is described by modified theories of gravity. In these classes
of theories, the corrections to the Newtonian gravitational interaction is of the Yukawa-like form,
V (r) = VN (1 + αe−βr), where VN = GM/r is the Newtonian potential, or the power-law form,
V (r) = VN+αqr

q. To compute the corrections to the periastron advance, we have used results of
Ref. [45] in which the general integrals are provided in terms of the central body’s mass M , and
the orbital parameters a and ϵ, the semi-major axis and eccentricity of the orbit, respectively.
This two-body system constitutes a good model for many astrophysical scenarios, such as those
at the scale of Solar System, constituted by the Sun and a planet, as well as binary system
composed by a Super Massive Black Hole and an orbiting star, which are both the most suitable
candidates to test a gravitational theory.

In the case of Scalar Tensor Fourth Order Gravity, we find that the parameters of the model
are given by (see Eqs. (35, 34, 33) α ∼ Fi, β ∼ βi, with i = ±, Y , F+ = g(ξ, η)F (m+R),

F− =
[
1
3 − g(ξ, η)

]
F (m−R), FY = −4

3 F (mY R), β± = mR
√
ω±, βY = mY . The greatest value
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of βi is βi ∼ 5 × 10−11m−1, which leads to the constraint on Fi is Fi < 10−4. This allows to
get a bound on the massive modes mi, i = ±, Y , corresponding to the extra modes presents in
ETG.

For the Non-Commutative Spectral Gravity, we have found that the perihelion’s shift of
planets allows to constrain the parameter β at β > (10−11 − 10−10)m−1 (in this theory the
parameter α is given and is of the order α ∼ O(1)). Such a constraint on the parameter β
improves several order of magnitude ones derived by using pulsar timing β ≥ 7.55× 10−13m−1

[58, 59]. These constraints, however, are weaker compared to the ones obtained from terrestrial
experimental data, Eöt-Wash [60] and Irvine [61] experiments is [62], which give β ≳ 104m−1 (a
bound on β has been derived from Gravity Probe B experiment, giving β > 10−6m−1 [54]).

We also studied the Quintessence field surrounding a massive gravitational source. Here the
parameter characterizing the gravitational field are the adiabatic index ωQ and the quintessence
parameter c. The analysis shows that c assumes tiny values, as expected, being essentially
related to the cosmological constant, while ωQ ≳ −(0.9−0.8), that is it never assumes the value
−1 corresponding to the pure cosmological constant.

The case of the S2 Star around Sagittarius A*, the Super Massive Black Hole at the center of
the Milky Way, has been also studied. In such a case, we have found that for STFOG and NCSG
β > 10−13m−1, a this bound is compatible with astrophysical constraints. For the Quintessence
Field we have inferred ωQ ≳ −0.9.
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