

## Core Excitation in $^{12}\text{C}(^{23}\text{Al}, ^{22}\text{Mg})\text{X}$ at energy 74 MeV/n

Sarla Devi<sup>1</sup> and Ravinder Kumar<sup>1\*</sup>

<sup>1</sup>Department of Physics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat-131039 Haryana, INDIA

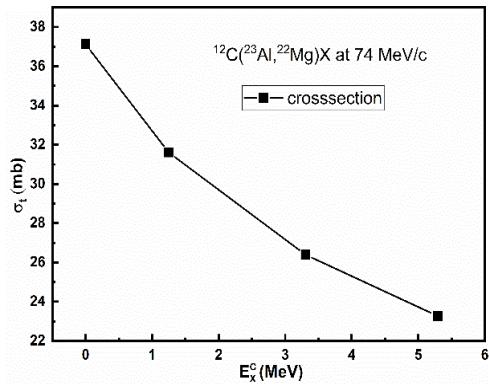
### Introduction

A lot of attention from experimentalists and physicists has been carried out by the novel structure named ‘halo’. Halo contains a two or three-body system with a “core+ valence nucleon(s)” structure where valence nucleon(s) have a low binding energy [1]. Neutron halos are larger in numbers than proton halos due to the existence of the Coulomb Barrier in the proton halo. Besides this, some proton halos are discovered like  $^8\text{B}$ ,  $^{26-28}\text{P}$ ,  $^{17}\text{Ne}$ ,  $^{17}\text{F}$  [2-3], and many are under investigation.  $^{23}\text{Al}$  plays a vital role in  $^{22}\text{Mg}(p,\gamma)^{23}\text{Al}$  astrophysical reaction and has been studied by many researchers to find more clear structural information in past years [4-7]. In the study by R. N. Panda et. al. [6], the reaction cross-section of  $^{23}\text{Al}$  at carbon target at 30 MeV/n and 74 MeV/n beam energy is produced theoretically by using diffusion parameter value  $a_0=0.6$  fm, but this value is unable to produce the LMD (Longitudinal Momentum Distribution) data rather  $a_0=2.0$  fm provides a more accurate picture of momentum distribution. On the other hand, a study carried out by A. Banu et. al. at 50 MeV/n (using  $a_0=0.6$  fm) provided a good interpretation of these observables [7]. Also, the binding energy used in both studies is different. Also, in Ref. [6], the core excitation is not taken into account but must be taken as the core  $^{22}\text{Mg}$  is supposed to be highly deformed, and the ground state of  $^{23}\text{Al}$  is supposed to have core excited components [7] and many studies revealed the significance of excitation in reaction mechanisms for a clear interpretation of the experimental data [8-11].

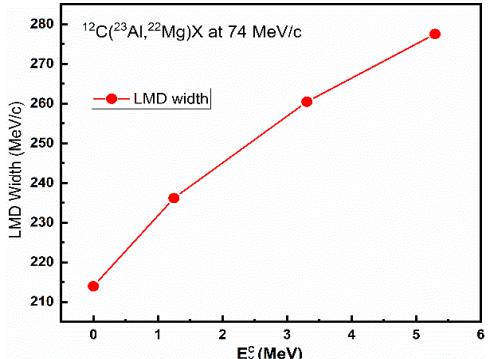
So, here we studied the nuclear breakup reaction  $^{12}\text{C}(^{23}\text{Al}, ^{22}\text{Mg})\text{X}$  at 74 MeV/n beam states. The  $^{23}\text{Al}$  is supposed to have in its ground state with  $J^\pi=5/2^+$ , which is produced by coupling

core states ( $I_c$ ) and valance proton state ( $2s_{1/2}$  or  $1d_{5/2}$ ). The core is assumed in states  $0^+(E_x^c = 0.0)$ ,  $2_1^+(E_x^c = 1.247)$ ,  $4_1^+(E_x^c = 3.308)$ , and  $4_2^+(E_x^c = 5.293)$  [7]. The well-known Glauber Eikonal model-based code MOMDIS for the knockout reaction has been used for the calculations [12]. The parameters used for the wavefunction calculations are taken the same from Ref. [7], which are  $a_0 = 0.6$  fm and  $r_0 = 1.18$  fm. The effective binding energy  $S_p^{\text{eff}} = E_x^c + S_p$  is produced keeping all parameters fixed where  $S_p = 0.141$  MeV. The Hartree-Fock densities of  $^{22}\text{Mg}$  (core) and  $^{12}\text{C}$  (target) are used for calculating S-matrix using t-pp formalism. The Spectroscopic Factor (SF) is taken as unity throughout the calculations.

### Results


We have calculated the proton removal breakup cross-section and Full Width at Half Maxima (or width) of LMD for the breakup reaction of halo  $^{23}\text{Al}$  on target  $^{12}\text{C}$  at 74 MeV/n incident beam energy. Table 1 shows all the assumed configurations as well as the calculated results for the nuclear breakup (both stripping and diffraction contribution).

**Table 1: Breakup cross-section and width of LMD corresponding to different core excited states for  $^{23}\text{Al}$  ( $J^\pi=5/2^+$ ).**


| $E_x^c$ (MeV) | $I_c \otimes$ proton Configuration | $\sigma_{\text{total}}$ (mb) | FWHM (MeV/c) |
|---------------|------------------------------------|------------------------------|--------------|
| 0.0           | $0^+ \otimes 1d_{5/2}$             | 37.13                        | 213.97       |
| 1.247         | $2_1^+ \otimes 1d_{5/2}$           | 31.61                        | 236.17       |
| 3.308         | $4_1^+ \otimes 1d_{5/2}$           | 26.39                        | 260.47       |
| 5.293         | $4_2^+ \otimes 1d_{5/2}$           | 23.27                        | 277.53       |
| 1.247         | $2_1^+ \otimes 2s_{1/2}$           | 56.79                        | 80.77        |

\*Electronic address: [dravinderkumar.phy@dcrustm.org](mailto:dravinderkumar.phy@dcrustm.org)

The observed pattern in cross-section and LMD width with core excitation energy are plotted in Fig. 1 and Fig. 2 for  $1d_{5/2}$  configurations. The decrease (increase) in the cross-section (width of LMD) is observed. The variations are per the uncertainty principle i.e. effective binding energy increases with excitation which results in decreasing halo character.



**Fig 1. Breakup cross-section variation with core excitation energy for d-state.**



**Fig 2. LMD width variation with core excitation energy for d-state.**

Here, it can be seen that the LMD width for all the d-configurations lies in the range of experimental data i.e.  $232 \pm 28$  MeV/c, ranges between 204 to 260 MeV/c (expect  $4_2^+ \otimes 1d_{5/2}$  gives 270 MeV/c). But  $2_1^+ \otimes 1d_{5/2}$  configuration shows the LMD width closer (236 MeV/c) to the mean exp. value (232 MeV/c) as seen in Ref. [7] (the inclusive mean value of LMD width is 180 MeV/c which matches for  $2_1^+ \otimes 1d_{5/2}$  value).

## Conclusion

The core excitation is included in  $^{12}\text{C}(^{23}\text{Al},^{22}\text{Mg})\text{X}$  reaction at incident energy 74 MeV/n. The excitation effect of the core states on single proton breakup cross-section and width of LMD has been found. It has been observed that the cross-section decreases with increasing core excitation energy while the LMD width increases as in Ref. [13]. The observed changes for d-state in cross-section are  $\sim 37\%$  however in LMD width is  $\sim 30\%$ . The changes are 7.05% and 5.6%, respectively, with per MeV change in core excitation energy. Thus, core excitation amended the results in a significant way.

**Acknowledgment:** S. Devi wants to express gratitude for the financial support from CSIR, New Delhi getting as SRF (09/1063(0029)/2019-EMR-I).

## References

- [1] Tanihata et al., Phys. Lett. B 160, 380 (1985).
- [2] R. Morlock et al., Phys. Rev. Lett., 79, 3837 (1997).
- [3] A. Navin et al., Phys. Rev. Lett., 81, 5089 (1998).
- [4] D. Q. Fang et al., Chin. Phys. Lett., 22, 572 (2005).
- [5] B. Longfellow et al., Phys. Rev. C, 101, 031303 (2020).
- [6] R. N. Panda et al., Phys. Atom. Nucl., 81, 417 (2018).
- [7] A. Banu et al., Phys. Rev. C, 84, 015803 (2011).
- [8] A. M. Moro and R. Crespo, Phys. Rev. C, 85, 054613 (2012).
- [9] A. M. Moro and J. A. Lay, Phys. Rev. C, 109, 232502 (2012).
- [10] S. Devi and R. Kumar, Phys. Part. Nucl. Lett., 20, 17 (2023).
- [11] S. Devi and R. Kumar, Indian J. Pure Appl. Phys., 62, 682 (2024).
- [12] C. Bertulani, A. Gade, Comp. Phys. Comm. 175, 5 (2006).
- [13] S. Devi and R. Kumar, Proceedings of the DAE Symp. on Nucl. Phys. 64, 551 (2019).