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Abstract

Spooky action at distance
alse for neutral kaons?
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The nonlocal property of quantum mechanics can be nicely tested in high
energy physics; in particular, the neutral kaon pairs as produced at DAPNE,
Frascati, are very well suited. The analogies of kaons as compared to polarized
photons or spinf% particles —the kaonic qubit feature— are reviewed. How-
ever, there are also fundamental differences which occur due to the kaon time
evolution and due to internal symmetries; in particular, the violation of CP
symmetry is related to the violation of Bell inequalities. Two type of Bell in-
equalities for kaons are presented, one for the variation of the “quasi—spin” and
the other for different detection times of the kaon.

1 Introduction

The nonlocality feature of quantum mechanics (QM), as discovered by John Bell
in his work “On the Einstein—Podolsky—Rosen Paradox” (EPR) 1)7 does not
conflict with Einstein’s relativity, thus it cannot be used for superluminal com-

munication. Nevertheless, Bell’s celebrated work 1, 2) initiated new physics,

like quantum cryptography 3, 4,5, 6) and quantum teleportation 7 8)7 and
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it triggered a new technology: quantum information and quantum communi-
cation % 10). More about “from Bell to quantum information” can be found
in the book 11).

Of course, it is of great interest to investigate the EPR—Bell correlations
of measurements also for massive systems in particle physics (for a review see,
e.g., Ref. 12)). One of the most exciting systems is the “strange” K°KY system
inaJPC =1~ state 13 14, 15, 16)7 where the quantum number strangeness
S = +, — plays the role of spin {} and |} of spinf% particles or of polarization
V and H of photons. In fact, in comparison to quantum information the
kaon can be considered as a “kaonic qubit” 17) but due to its specific internal
particle properties (particle—antiparticle oscillation and decay characteristics,
symmetry violation) additional fundamental quantum features —not occurring
in photon systems— are seen.

Several authors 18> 19, 20, 21, 22, 23, 24, 25, 26)

suggested already to
investigate the K°K" pairs which are produced at the & resonance, for in-
stance in the e e —machine DA®NE at Frascati. There is the great chance to
test many different aspects of QM, for instance, Bell inequalities and decoher-

ence models (see, e.g., Ref. 12))7 the quantum eraser phenomenon 27, 28, 29)

30)

and symmetry violation . In particular, local realistic theories (LRT) have

been constructed, which describe the K°K" pairs, as tests versus quantum

mechanics 31, 32, 33, 34)

. However, a general test of LRT versus QM is usu-
ally performed via Bell inequalities, where —as we shall see— we have more
options. We may choose either different “quasi—spins” of the kaon or different
kaon detection times (or both); they play the role of the different angles in the
photon or spinf% case. Due to the kaon decay we have in addition to the active
measurement procedure the passive measurement. Furthermore, an interest-
ing feature of kaons is C'P violation in the mixing of particle—antiparticle and
indeed it is related to the violation of Bell inequalities.

Besides the kaon system which is an ideal tool to test the amazing features
of QM, there is the BB system which is produced to an enormous amount at
the asymmetric B—factories at KEK-B 35) and at PEP-1136). A Bell inequality
(BI) for this system 37) faces, however, with difficulties so that it cannot be
considered as a Bell test refuting local realism. The two main drawbacks are:
Firstly, “active” measurements —a nhecessary requirement for the validity of
a BI— are missing, therefore one can construct a local realistic model; and
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secondly, the unitary time evolution of the unstable quantum state —the decay
property of the meson, which is part of its nature— has been ignored (for more
detailed criticism, see Refs. 38, 39, 40)). Nevertheless, the BYBY events, the
asymmetry of like— and unlike—flavor events for several different times, at KEK-
B 41) are ideal to test the validity of the quantum mechanical wavefunction or
to confirm the corresponding time dependence of possible decoherence effects,
see Refs. 12, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51)

Finally, we want to mention quite different attempts to test QM versus
LRT, these are the positron annihilation experiments 52, 53, 54, 55, 56, 57)7
the proton—proton scattering experiments 58) and the AA 59 60) and 717

61, 62)

pair productions Unfortunately, all these reactions suffer by loopholes

and are not conclusive as Bell tests (for a detailed discussion, see Ref. 32)).

2 Kaons as qubits

Kaons are fantastic quantum systems, we could even say they are selected by
Nature to demonstrate fundamental quantum principles such as:

e superposition principle
¢ oscillation and decay property
e quasi-spin property.

Let us focus on the quantum features which we need in our discussion.

2.1 Quantum states of kaons

Quantum—mechanically we can describe the kaons in the following way. Kaons
are characterized by their strangeness quantum number +1, —1

SIK®) = +|K®%,  S|K%) = —|K"), (1)
and the combined operation CP gives
CPIK% = —|K",  CPIK% =—|K"). (2)
It is straightforward to construct the CP eigenstates

|KY) = K%}, 1K) =

) -
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a quantum number conserved in strong interactions
CP|K{) = +|K{),  CP|K3)=—|Ky). (4)

However, due to weak interactions C P symmetry is violated and the kaons
decay in physical states, the short— and long—lived states, |Kgs), |K 1), which
differ slightly in mass, Am = my — mg = 3.49 x 107° eV, but immensely in
their lifetimes and decay modes

Ks) = pIK%) —alK%} 1K) = <KD 1K) ()

The weights p = 1+¢, ¢ = 1—¢, with N? = |p|> +|q|? contain the complex C P
violating parameter £ with |g| ~ 1073, CPT invariance is assumed. The short—
lived K—meson decays dominantly into Kg — 27 with a width or lifetime
Fgl ~ 7g = 0.89 x 10719 5 and the long-lived K-meson decays dominantly into
K7 — 37 with Fgl ~ 7L =517T%x 1078 s. However, due to CP violation we
observe a small amount Ky — 27 .

In this description the superpositions (3) and (5) —or quite generally any
vector in the 2—dimensional complex Hilbert space of kaons— represent kaonic
qubit states in analogy to the qubit states in quantum information.

2.2 Strangeness oscillation

Kg, K1, are eigenstates of a non—Hermitian “effective mass” Hamiltonian

H:M—%F (6)

satisfying
i
2

Both mesons K and K° have transitions to common states (due to weak

H|KS7L> = )\S,L |KS,L> With )\S,L = mS7L — FS,L . (7)

interactions) therefore they mix, that means they oscillate between K° and K°
before decaying. Since the decaying states evolve —according to the Wigner—
Weisskopf approximation— exponentially in time

|Ks,1(t)) = e 52 Ks 1), (8)
the subsequent time evolution for K° and K° is given by

[K°(8)) = g+ ()| K°) + %gf(t)lf(% . 1K) = ggf(t)lK% +a+IK) (9)
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with

1 . .
g+(t) = 5 R L (10)

Supposing that a K° beam is produced at t = 0, e.g. by strong interactions,
then the probability for finding a K° or K° in the beam is calculated to be

‘(KO|KO(t)>‘2 = i{eilﬂsthe*FLtJFZe*Ft(zos(Amt)}7

1 gl

- 2
(OB = G

{etstpe et —2¢ Meos(Amt)},  (11)
with Am = my —mg and I' = %(FL —+ Fs).

The K beam oscillates with frequency Am/2m, where Am7g = 0.47.
The oscillation is clearly visible at times of the order of a few 74, before all
Kg’s have died out leaving only the K;’s in the beam. So in a beam which
contains only K° mesons at the beginning ¢ = 0 there will occur K° far from
the production source through its presence in the K, meson.

2.3 Quasi—spin of kaons and analogy to photons

In comparison with spinf% particles, or with photons having the polarization
directions V (vertical) and H (horizontal), it is very instructive to characterize
the kaons by a quasi—spin (for details see Ref. 63)). We can regard the two
states |K") and |K°) as the quasi-spin states up |{) and down ||) and can
express the operators acting in this quasi—spin space by Pauli matrices. So we
identify the strangeness operator S with the Pauli matrix o3, the C'P operator
with (—o1) and for describing C'P violation we also need o5. In fact, the
Hamiltonian (6) then has the form

H=a-1+b-¢, (12)
with
by =bcosa, byg=bsina, b3=0,
a:%()‘L+)\S)7 b:%(AL—)\s% (13)

and the angle « is related to the C'P violating parameter £ by

. 1—¢
e . 14
e T (14)
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Summarizing, we have the following kaonic—photonic analogy:

neutral kaon | quasi-spin photon
|K°) | 1) V)
|K°) | 1) |H)
|KT) N | —45%) = S5(IV) — )
|K3) /) | +45%) = (V) + |H))
|Ks) | =)y L) = (V) —ilH))
|Kr) | =)y |R) = (V) +ilH))

A good optical analogy to the phenomenon of strangeness oscillation can
be achieved by using the physical effect of birefringence in optical fibers which
leads to the rotation of polarization directions. Thus H (horizontal) polarized
light is rotated after some distance into V (vertical) polarized light, and so
on. On the other hand, the decay of kaons can be simulated by polarization
dependent losses in optical fibres, where one state has lower losses than its

orthogonal state 64).

The description of kaons as qubits reveals close analogies to photons but also
deep physical differences. Kaons oscillate, they are massive, they decay and can
be characterized by symmetries like CP. Even though some kaon features, like
oscillation and decay, can be mimicked by photon experiments (see Ref. 64))7
they are inherently different since they are intrinsic properties of the kaon given
by Nature.

2.4  Measurement procedures

For neutral kaons there exist two physical alternative bases, accordingly we
have two observables for the kaons, namely the projectors to the two bases.
The first basis is the strangeness eigenstate basis {|K°),|K")}, it can be mea-
sured by inserting along the kaon trajectory a piece of ordinary matter, which
corresponds to an active measurement of strangeness. Due to strangeness con-
servation of the strong interactions the incoming state is projected either onto
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K%by K% — K*tn or onto K° by K% — AnT, K°% — An% or K% — K p.
Here nucleonic matter plays the same role as a two channel analyzer for polar-
ized photon beams.

Alternatively, the strangeness content of neutral kaons can be determined
by observing their semileptonic decay modes, eq.(23).

Obviously, the experimenter has no control of the kaon decay, neither of
the mode nor of the time. The experimenter can only sort at the end of the
day all observed events in proper decay modes and time intervals. We call
this procedure opposite to the active measurement described above a passive
measurement procedure of strangeness.

The second basis {Kg, K1} consists of the short— and long—lived states
having well defined masses m g(z) and decay widths I'g(7y. We have seen that it
is the appropriate basis to discuss the kaon propagation in free space, because
these states preserve their own identity in time, eq.(8). Due to the huge differ-
ence in the decay widths the Kg’s decay much faster than the K;’s. Thus in
order to observe if a propagating kaon is a Kg or K, at an instant time ¢, one
has to detect at which time it subsequently decays. Kaons which are observed
to decay before ~ ¢ + 4.8 7 have to be identified as Kg’s, while those surviving
after this time are assumed to be K’s. Misidentifications reduce only to a

few parts in 1072 (see Refs. 27, 28))

. Note that the experimenter doesn’t care
about the specific decay mode, she/he records only a decay event at a certain
time. We call this procedure an active measurement of lifetime.

Since the neutral kaon system violates the C'P symmetry (recall Section
2.1) the mass eigenstates are not strictly orthogonal, (Kg|K ) # 0. However,
neglecting CP violation —remember it is of the order of 1073— the Kg’s are
identified by a 27 final state and K ’s by a 37 final state. We call this proce-
dure a passive measurement of lifetime, since the kaon decay times and decay
channels used in the measurement are entirely determined by the quantum na-
ture of kaons and cannot be in any way influenced by the experimenter. It
is assumed that active and passive measurements have the same amount of
misidentifications.

The important message for testing Bell inequalities which we are going
to discuss in the next section is:

¢ The active measurement procedures are a necessary requirement for the
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validity of a BI.

3 Entangled kaons, Bell inequalities, C' P violation

Having discussed kaons as qubit states and their analogy to photons we consider
next two qubit states. A two qubit system of kaons is a general superposition
of the 4 states {|K% ® |K"), |[K°) @ |K°), |K®) ® |K°),|K% ® |K°)}.

3.1 Entanglement

Interestingly, also for strange mesons entangled states can be obtained, in anal-
ogy to the entangled spin up and down pairs, or H and V polarized pho-
ton pairs. Such states are produced by eTe —colliders through the reaction
ete™ - & — K°K", in particular at DA®NE in Frascati, or they are pro-
duced in pp—collisions, like, e.g., at LEAR at CERN 65). There, a K°K° pair
is created in a J¥¢ = 17~ quantum state and thus antisymmetric under C
and P, and is described at the time ¢ = 0 by the entangled state

ot =0) = % (K% ® |K%), — |K% @ |K°),}
= NS kg e (KL, — Ko e [Ks) ), (15)

V2

2

with Ng;, = &&= in complete analogy to the entangled photon case

m7
) = % (Vo [Hy — [Hy o [V),)
— L@ Ry, — Ry © L)) (16)

V2

The neutral kaons fly apart and are detected on the left (1) and right () hand
side of the source. Of course, during their propagation the K° K pairs oscillate
and the Kg, K, states decay. This is an important difference to the case of
photons which are stable.

Let us measure actively at time ¢; a K° meson on the left hand side and
at time ¢, a K° or a K° on the right hand side then we find an EPR-Bell
correlation analogously to the entangled photon case with polarization V-V or
V-H. Assuming for simplicity stable kaons (I's = I', = 0) then we get the
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following result for the quantum probabilities

P(K° t;; K°t,) P(KY t;;K°t,) = i{l—cos(Am(tl—tr))}7

PK° ;K" t,) =

P(K° ;K% t,) = i{l + cos(Am(t; —tr))} ,(17)

which is the analogy to the probabilities of finding simultaneously two entangled
photons along two chosen directions & and B’

P@ViEV) = P 5 H) = 1{1—cos2(a- B},
P VA H) = P@HAV) = {1 tcos2a-p)}. (8

Thus we observe a perfect analogy between times Am(t; — t,) and angles

2a—p).

Alternatively, we also can fix the time and vary the quasi—spin of the
kaon, which corresponds to a rotation in quasi—spin space analogously to the
rotation of polarization of the photon

|y =a| K% +b| K% «—— |a,¢;V)=cosa|V)+sinae?|H). (19)

Note that the weights a, b are not independent and not all kaonic super-
positions are realized in Nature in contrast to photons.

Depicting the kaonic—photonic analogy we have:

kaon propagation photon propagation
K°/Kgs ~ K°/Kp, V/L ~ H/R
N ] ) N
left  Bell state  right Alice Bell state Bob

o KYK?Y oscillation e stable
e Kg, Ky decay
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3.2 Bell inequality for quasi—spin variation

Consequently, for establishing a BI for kaons we have the option:
¢ varying the quasi—spin — fixing time
¢ fixing the quasi—spin — varying time.

Let us begin with a BI for certain quasi—spins (first option) and demon-
strate that its violation is related to a symmetry violation in particle physics.
In Ref. 66, 67) it was shown that symmetries quite generally may constrain
local realistic theories.

For a BI we need 3 different “quasi—spins” — the “Bell angles” — and we
may choose the H, S and CP eigenstates: |Kg),|K") and |K?).

Denoting the probability of measuring the short—lived state Kg on the left
hand side and the anti-kaon K on the right hand side, both at the time ¢ = 0,
by P(Ks, K"), and analogously the probabilities P(Kgs, K) and P(K{, K°)
we can easily derive under the usual hypothesis of Bell’s locality the following

Wigner—like Bell inequality 68, 69)

P(Kgs, K% < P(Ks, K%+ P(K?,K°) . (20)

BI (20) is rather formal because it involves the unphysical C P—even state |K?),
but —and this is now important — it implies an inequality on a physical quantity,
the C'P violation parameter. Inserting the quantum amplitudes

1

7 (Ks | KY?)

" +q"),
(21)
and optimizing the inequality we can convert (20) into an inequality for the

] , 1
RO| Ks) = ——L, (K| KP) — - =

complex kaon transition coefficients p, ¢

lpl < lql. (22)

It’s amazing, inequality (22) is experimentally testable! How does it work?

3.3  Semileptonic decays

Let us consider the semileptonic decays of the kaons. The strange quark s
decays weakly as constituent of K° (see Fig.1):
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U e
W= Ve

W

Figure 1: Strange quark decays weakly.

Due to the quark content K°(5d) and K°(sd) have the following decays:

K°%ds) — 7 (da) "y,  wheae 5§ — alty
K%ds) — af(du) I” p where s — w ", (23)

with [ = u,e. When studying the leptonic charge asymmetry

F(KL — 7rfl+1/l) — F(KL — 7T+l*17l)
NKyp — mlty) + KL = nti—p)

(24)

we notice that {7 and I~ tag K” and K°, respectively, in the K, state, and
the leptonic asymmetry (24) is expressed by the probabilities |p|* and |¢|? of
finding a K° and a K°, respectively, in the K, state

lp? — lqI?

= . (25)
pl* + lql?
Returning to inequality (22) we find consequently the bound
6 < 0 (26)
for the leptonic charge asymmetry which measures C'P violation.
Experimentally, however, the asymmetry is nonvanishing 70)
§=(32740.12)-1073. (27)

What we find is that bound (26), dictated by BI (20), is in contradiction to
the experimental value (27) which is definitely positive.

On the other hand, we can replace K° by K" in the BI (20) and obtain
the reversed inequality § > 0 so that respecting all possible BI's leads to strict
equality § = 0, C'P conservation, in contradiction to experiment.
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Conclusion: The premises of LRT are only compatible with strict CP
conservation in K°K° mixing. Conversely, CP violation in K°K° mixing, no
matter which sign the experimental asymmetry (24) actually has, always leads
to a wiolation of a Bl and in consequence rules out a local realistic theory for
the description of a K"K° system!

Remark: We believe that this connection between symmetry violation
and BI violation is not just accidental for the C'P symmetry case but is more
fundamental and should be observed in case of other symmetries as well.

3.4 Bell inequality for time variation

Bell inequalities by fixing the quasi—spin and varying the time we have studied

already in detail in Refs. 63, 38, 71, 72)

. As we emphasized in a unitary time
evolution also the decay states are involved, in fact, in the following way.
The complete time evolution of the kaon states is given by a wnitary

operator U(t,0) whose effect can be written as 73, 74)

Ut,0) |Ks,) = e 8 |Ksp)+ [Qs,0(t)), (28)

where |Qg 7.(£)) denotes the state of all decay products. The norm decrease of
the state | Ks 1,(¢)) must be compensated by the increase of the norm of the final
states7 1.6.7 <QS7L(t)|QS7L(t)> =1- 67FS’L ¢ and <QL(t)|Qs(t)> = <KL|K5>(1 —
cAmte ) (Ks,0]Qs(t)) = (Ks,LQL(t)) = 0.
Let us start at time ¢ = 0 with an entangled state of kaon pairs given in
the KgKj, basis choice (recall eq.15)
Nsi,

[t =0)) = W{|Ks>l<x>|KL>r—|KL>1®|KS>T}. (29)

Then we get the state at time ¢ from (29) by applying the unitary operator
U(t70) = Ul(t70) : U’r’(t70) ’ (30)

where the operators U;(¢,0) and U, (¢,0) act on the space of the left and of the
right mesons according to the time evolution (28).

For the quantum mechanical probabilities for detecting, or not detecting,
a specific quasi-spin state on the left side, say |K");, and on the right side
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| K, of the source we need the projection operators
Py(K%) = |[K°)(K°),  and Qi (K°) = 1- P, (K°). (31)

Starting from the initial state (29) the unitary time evolution (30) provides the
state at a time ¢,

[%(t)) = Ultr,0)|(t =0)) = Ui(ty,0)Ur (&, 0)|(t=0)).  (32)

Measuring now K° at ¢, on the right side means that we project onto the state

|1;(tr)> - PT(KO)|¢(tr)> ) (33)

and state (33) evolves until ¢, when we measure next a K° on the left side

|Q;(tl7tr)> - B(KO)Ul(thtr)Pr(KO)|¢(tr)> ¢ (34)

The probability of the joint measurement is given by the squared norm of the
state (34) and coincides with the norm of the state

[t t)) = PUK")P (KUt 0)U; (&, 0)[4(t = 0)) (35)

which corresponds to a factorization of the eigentimes ¢; and %,.

We calculate the quantum mechanical probability Pro go (Y,t;;Y,t,) for
finding a K° at #; on the left side and a K° at ¢, on the right side, and the
probability Pgo o (N, t;; N, ;) for finding no such kaons by the following norms
(and similarly the probability Pgo go(Y,t; N,t,))

Pgo go(Y,t5;Y,tr) = [|[P(E")P(K°)Ui(t:,0)U. (¢, 0)|o(t = 0))]I* (36)
Pgo go(N, iy Nyty) = [|Qu(K®)Qr (K°)Ui(t1, 0)Uy (£, 0)] (= 0))]*(37)
Pgo go(Yit;Nyt:) = [|P(K®)Qy (K*)Ui(te, 0)Uy (8, 0)|5p(t = 0))|[” (38)

Then the expectation value for measuring the antikaons is expressed by
Ego golti,tr) = =1+ 2 {Pgo go(Y,t; Y, t:) + Pro go(N, t1; N, )}, (39)

and with expression (39) Bell inequalities are constructed.
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For our purpose we use a Bl in the familiar expression of Clauser, Horne,
Shimony, Holt (CHSH) 75) which in terms of time variation can be formulated

in the following way 63, 74). Defining the function
S(t1,t2,t3,t4) = |Ego golti,ta) — Ego go(t1,t3)]
+|Ef(0,f(0(t47t2)+Ef(0,f(0(t47t3)|7 (40)

the CHSH—Bell inequality is given by
S(t1,to, s, tg) < 2, (41)

where the value 2 is the maximum satisfied by any LRT.

The question is now whether inequality (41) can be violated in the kaon
case. As we know 83 71, 74) the four Bell states (¢ 7 ~ KK+ K1 Kg, ¢T ~
KsKs F K1 K,) which are maximal entangled do not violate inequality (41).
The reason is that the internal physical parameters, the ratio oscillation to
decay, Am/T", is experimentally about 1 whereas for a violation a value of 2 is
necessary for the )™ states and a smaller value of about 1.7 for the ¢T states.

A recent investigation 72) of a quite general initial state
[0(0)) = i |Ks)i®|Ks)r + rae'®|Ks) ®|Kr),
+rae® KLY © |Ks)y + rac®|Kp)i® |Kr), ,  (42)

(with r} 473 4+ 73 + 75 = 1) providing the general expectation value

Ego golti,tr) = 1472 e Tsttrt) 4 2 ~Tsti—Trtr 4,2 —Tro-Tst,
2 e Tultittr) 2 (o Tsti g o ~Tstry 2 (o~ Tsti g o~ Trtr)
e e )

F2rr (1 — e*FStl)cos(Amtr + 1 — @) e Ttr

+27r1ry cos(Ami; + ¢ — d3) e Tl (1- e*FSt*)

+27r9ry cos(Ami; + ¢o — d4) e Tl (1- eiFLtT)

F2rgry (1 — e*FLtl) cos(Ami, + ¢3 — ¢4) e Ttr

+2rirgcos(Am(t; + 1) + ¢1 — dag) e DT

127913 cos(Am(ty —t,) + o — dg) e LT (43)
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shows that for a certain parameter choice the CHSH-Bell inequality (41) is
indeed wiolated!

The S—function value turns out to be S = 2.12 for the parameter choice:
all phases ¢; = 0 and ry = —0.834, r9 = r3 = 0.245 and times t; =#, =0, t3 =
ty = 5.67g; and S = 2.16 for the choice: ¢ = —0.275, 3 = ¢3 = —0.678 and
1 = —0.7827 9 = 13 — —0.146 and times tl = tg = 1.67’57 tg = t4 =0. (The
numerical optimization procedure does not guarantee a global maximum).

Conclusion: There exist initial states for kaons that —by respecting the
unitary time evolution, the decay property— violate a Bell inequality and are
therefore nonlocal, although not maximal entangled, which agrees with the

qutrit results of Refs. 76, T7)

. It shows that nonlocality and entanglement are
not the same features of QM. The question remains, however, how to produce

the initial state (42) with the parameter values given above, e.g., at DA®NE.

4 Conclusions

Kaons are ideal objects to test the fundamental principles of quantum mechan-
ics, in particular the entanglement or nonlocality properties of kaon pairs, which
are of great interest in connection with the physics of quantum communication
and quantum information. In fact, in analogy to polarized photons the kaons
can be considered as qubits as well but —due to their internal symmetries and
time evolution— they exhibit further exciting features as compared to photons.

One is that the violation of CP symmetry in the mixing of K°K° leads to
a violation of a Bell inequality for quasi—spin variation refuting in consequence
any local realistic theory.

Another feature is that Bell inequalities for time variations are —due
to the unitary time evolution which includes the decay states— much more
sophisticated than in the photon case. A CHSH—Bell inequality can be violated
for a certain initial state thus ruling out local realistic theories. This nonlocal
state is not maximally entangled and shows therefore the difference of the
conceptions nonlocality and entanglement. The interesting question is how
such a nonlocal state (where the KgKg and K K, parts dominate) can be
produced at DAPNE.

Furthermore, using the regeneration feature of the kaons other type of
Bell inequalities can be established. The analysis of all possible Bell inequalities
together with the choice of suitable initial states and experimental set—ups will
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be of great importance for testing quantum mechanics at DA®NE. Work in

this direction is in progress 78).
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