application/xmlSearch for charged Higgs bosons in top quark decaysDØ CollaborationV.M. AbazovB. AbbottM. AbolinsB.S. AcharyaM. AdamsT. AdamsE. AguiloM. AhsanG.D. AlexeevG. AlkhazovA. AltonG. AlversonG.A. AlvesL.S. AncuM.S. AnzelcM. AokiY. ArnoudM. ArovM. ArthaudA. AskewB. ÅsmanO. AtramentovC. AvilaJ. BackusMayesF. BadaudL. BagbyB. BaldinD.V. BandurinS. BanerjeeE. BarberisA.-F. BarfussP. BargassaP. BaringerJ. BarretoJ.F. BartlettU. BasslerD. BauerS. BealeA. BeanM. BegalliM. BegelC. Belanger-ChampagneL. BellantoniA. BellavanceJ.A. BenitezS.B. BeriG. BernardiR. BernhardI. BertramM. BesançonR. BeuselinckV.A. BezzubovP.C. BhatV. BhatnagarG. BlazeyS. BlessingK. BloomA. BoehnleinD. BolineT.A. BoltonE.E. BoosG. BorissovT. BoseA. BrandtR. BrockG. BrooijmansA. BrossD. BrownX.B. BuD. BuchholzM. BuehlerV. BuescherV. BunichevS. BurdinT.H. BurnettC.P. BuszelloP. CalfayanB. CalpasS. CalvetJ. CamminM.A. Carrasco-LizarragaE. CarreraW. CarvalhoB.C.K. CaseyH. Castilla-ValdezS. ChakrabartiD. ChakrabortyK.M. ChanA. ChandraE. CheuD.K. ChoS.W. ChoS. ChoiB. ChoudharyT. ChristoudiasS. CihangirD. ClaesJ. ClutterM. CookeW.E. CooperM. CorcoranF. CoudercM.-C. CousinouD. CuttsM. ĆwiokA. DasG. DaviesK. DeS.J. de JongE. De La Cruz-BureloK. DeVaughanF. DéliotM. DemarteauR. DeminaD. DenisovS.P. DenisovS. DesaiH.T. DiehlM. DiesburgA. DominguezT. DorlandA. DubeyL.V. DudkoL. DuflotD. DugganA. DuperrinS. DuttA. DyshkantM. EadsD. EdmundsJ. EllisonV.D. ElviraY. EnariS. EnoM. EscalierH. EvansA. EvdokimovV.N. EvdokimovG. FaciniA.V. FerapontovT. FerbelF. FiedlerF. FilthautW. FisherH.E. FiskM. FortnerH. FoxS. FuS. FuessT. GadfortC.F. GaleaA. Garcia-BellidoV. GavrilovP. GayW. GeistW. GengC.E. GerberY. GershteinD. GillbergG. GintherB. GómezA. GoussiouP.D. GrannisS. GrederH. GreenleeZ.D. GreenwoodE.M. GregoresG. GrenierPh. GrisJ.-F. GrivazA. GrohsjeanS. GrünendahlM.W. GrünewaldF. GuoJ. GuoG. GutierrezP. GutierrezA. HaasP. HaefnerS. HagopianJ. HaleyI. HallR.E. HallL. HanK. HarderA. HarelJ.M. HauptmanJ. HaysT. HebbekerD. HedinJ.G. HegemanA.P. HeinsonU. HeintzC. HenselI. Heredia-De La CruzK. HernerG. HeskethM.D. HildrethR. HiroskyT. HoangJ.D. HobbsB. HoeneisenM. HohlfeldS. HossainP. HoubenY. HuZ. HubacekN. HuskeV. HynekI. IashviliR. IllingworthA.S. ItoS. JabeenM. JaffréS. JainK. JakobsD. JaminR. JesikK. JohnsC. JohnsonM. JohnsonD. JohnstonA. JonckheereP. JonssonA. JusteE. KajfaszD. KarmanovP.A. KasperI. KatsanosV. KaushikR. KehoeS. KermicheN. KhalatyanA. KhanovA. KharchilavaY.N. KharzheevD. KhatidzeM.H. KirbyM. KirschB. KlimaJ.M. KohliJ.-P. KonrathA.V. KozelovJ. KrausT. KuhlA. KumarA. KupcoT. KurčaV.A. KuzminJ. KvitaF. LacroixD. LamS. LammersG. LandsbergP. LebrunH.S. LeeW.M. LeeA. LeflatJ. LellouchL. LiQ.Z. LiS.M. LiettiJ.K. LimD. LincolnJ. LinnemannV.V. LipaevR. LiptonY. LiuZ. LiuA. LobodenkoM. LokajicekP. LoveH.J. LubattiR. Luna-GarciaA.L. LyonA.K.A. MacielD. MackinP. MättigR. Magaña-VillalbaP.K. MalS. MalikV.L. MalyshevY. MaravinB. MartinR. McCarthyC.L. McGivernM.M. MeijerA. MelnitchoukL. MendozaD. MenezesP.G. MercadanteM. MerkinK.W. MerrittA. MeyerJ. MeyerN.K. MondalR.W. MooreT. MoulikG.S. MuanzaM. MulhearnO. MundalL. MundimE. NagyM. NaimuddinM. NarainH.A. NealJ.P. NegretP. NeustroevH. NilsenH. NogimaS.F. NovaesT. NunnemannG. ObrantC. OchandoD. OnoprienkoJ. OrdunaN. OshimaN. OsmanJ. OstaR. OtecG.J. Otero y GarzónM. OwenM. PadillaP. PadleyM. PangilinanN. ParasharS.-J. ParkS.K. ParkJ. ParsonsR. PartridgeN. ParuaA. PatwaB. PenningM. PerfilovK. PetersY. PetersP. PétroffR. PiegaiaJ. PiperM.-A. PleierP.L.M. Podesta-LermaV.M. PodstavkovY. PogorelovM.-E. PolP. PolozovA.V. PopovM. PrewittS. ProtopopescuJ. QianA. QuadtB. QuinnA. RakitineM.S. RangelK. RanjanP.N. RatoffP. RenkelP. RichM. RijssenbeekI. Ripp-BaudotF. RizatdinovaS. RobinsonM. RominskyC. RoyonP. RubinovR. RuchtiG. SafronovG. SajotA. Sánchez-HernándezM.P. SandersB. SanghiG. SavageL. SawyerT. ScanlonD. SchaileR.D. SchambergerY. ScheglovH. SchellmanT. SchliephakeS. SchlobohmC. SchwanenbergerR. SchwienhorstJ. SekaricH. SeveriniE. ShabalinaM. ShamimV. SharyA.A. ShchukinR.K. ShivpuriV. SiccardiV. SimakV. SirotenkoP. SkubicP. SlatteryD. SmirnovG.R. SnowJ. SnowS. SnyderS. Söldner-RemboldL. SonnenscheinA. SopczakM. SosebeeK. SoustruznikB. SpurlockJ. StarkV. StolinD.A. StoyanovaJ. StrandbergM.A. StrangE. StraussM. StraussR. StröhmerD. StromL. StutteS. SumowidagdoP. SvoiskyM. TakahashiA. TanasijczukW. TaylorB. TillerM. TitovV.V. TokmeninI. TorchianiD. TsybychevB. TuchmingC. TullyP.M. TutsR. UnalanL. UvarovS. UvarovS. UzunyanP.J. van den BergR. Van KootenW.M. van LeeuwenN. VarelasE.W. VarnesI.A. VasilyevP. VerdierL.S. VertogradovM. VerzocchiM. VesterinenD. VilanovaP. VintP. VokacR. WagnerH.D. WahlM.H.L.S. WangJ. WarcholG. WattsM. WayneG. WeberM. WeberL. Welty-RiegerA. WengerM. WetsteinA. WhiteD. WickeM.R.J. WilliamsG.W. WilsonS.J. WimpennyM. WobischD.R. WoodT.R. WyattY. XieC. XuS. YacoobR. YamadaW.-C. YangT. YasudaY.A. YatsunenkoZ. YeH. YinK. YipH.D. YooS.W. YounJ. YuC. ZeitnitzS. ZelitchT. ZhaoB. ZhouJ. ZhuM. ZielinskiD. ZieminskaL. ZivkovicV. ZutshiE.G. ZverevPhysics Letters B 682 (2009) 278-286. doi:10.1016/j.physletb.2009.11.016journalPhysics Letters BCopyright © 2009 Elsevier B.V. All rights reserved.Elsevier B.V.0370-269368237 December 20092009-12-07278-28627828610.1016/j.physletb.2009.11.016http://dx.doi.org/10.1016/j.physletb.2009.11.016doi:10.1016/j.physletb.2009.11.016http://vtw.elsevier.com/data/voc/oa/OpenAccessStatus#Full2014-01-01T00:14:32ZSCOAP3 - Sponsoring Consortium for Open Access Publishing in Particle Physicshttp://vtw.elsevier.com/data/voc/oa/SponsorType#FundingBodyhttp://creativecommons.org/licenses/by/3.0/JournalsS300.2PLB26321S0370-2693(09)01349-510.1016/j.physletb.2009.11.016Elsevier B.V.ExperimentsFig. 1Number of expected and observed events versus final state for MH+=80 GeV assuming either exclusive τ+ν (a) or exclusive cs¯ (b) decays of the charged Higgs boson.Fig. 2Upper limit on B(tH+b) for the tauonic (a) and leptophobic (b) model versus MH+. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 3Upper limits on B(tH+b) parametrized as function of B(H+cs¯) for different assumed MH+. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 4Upper limit on B(tH+b) for the simultaneous fit of B(tH+b) and σtt¯ versus MH+. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 5Excluded regions of [tanβ,MH+] parameter space for leptophobic model. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 6Excluded region of [tanβ,MH+] parameter space in the MSSM for the CPXgh scenario with generation hierarchy such that B(H+cs¯)+B(H+τ+ν)1. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 7Excluded region of [tanβ,MH+] parameter space in the MSSM for the no-mixing scenario. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Fig. 8Excluded region of [tanβ,MH+] parameter space in the MSSM for the mh-max scenario. The yellow band shows the ±1 SD band around the expected limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)Table 1Uncertainties on B(tH+b) for the leptophobic and tauonic model, assuming MH+=80 GeV.SourceLeptophobicTauonic+1 SD−1 SD+1 SD−1 SDStatistical uncertainty0.057−0.0580.047−0.046Lepton identification0.017−0.0170.010−0.010Tau identification0.004−0.0040.006−0.006Jet identification0.009−0.0090.010−0.010b jet identification0.031−0.0300.030−0.030Jet energy scale0.016−0.0190.020−0.020Tau energy scale0.004−0.0040.004−0.004Trigger modeling0.007−0.0110.007−0.006Signal modeling0.023−0.0240.010−0.010Background estimation0.013−0.0140.011−0.010Multijet background0.014−0.0160.019−0.017σtt¯0.059−0.0850.040−0.054Luminosity0.056−0.0600.035−0.036Other0.017−0.0170.010−0.010Total systematic uncertainty0.097−0.1180.071−0.079Table 2Expected and observed upper limits on the branching ratio B(tH+b) for each generated H+ mass.MH+ (GeV)LeptophobicTauonicTauonic from simultaneous fitexpobsexpobsexpobsσtt¯ (pb)800.250.210.180.160.140.138.071.04+1.171000.250.220.170.150.130.128.111.00+1.131200.250.220.180.170.150.148.121.05+1.201400.240.210.190.180.180.198.261.20+1.391500.220.200.190.190.210.258.631.38+1.651550.220.190.190.180.240.268.491.45+1.75Table 3Uncertainties on B(tH+b) and σtt¯ for the simultaneous fit in the tauonic model, assuming MH+=80 GeV.SourceB(tH+b)σtt¯ (pb)+1 SD−1 SD+1 SD−1 SDStatistical uncertainty0.067−0.0660.68−0.64Lepton identification0.001−0.0010.16−0.13Tau identification0.014−0.0140.12−0.13Jet identification0.005−0.0050.07−0.07b jet identification0.003−0.0030.31−0.29Jet energy scale0.014−0.0140.10−0.09Tau energy scale0.011−0.0100.10−0.08Trigger modeling0.009−0.0000.12−0.11Signal modeling0.014−0.0160.23−0.23Background estimation0.003−0.0030.15−0.14Multijet background0.036−0.0330.31−0.34Luminosity0.002−0.0020.57−0.48Other0.006−0.0060.17−0.17Total systematic uncertainty0.047−0.0440.84−0.77Table 4Summary of the most important SUSY parameter values (in GeV) for different MSSM benchmark scenarios.ParameterCPXghmh-maxNo-mixingμ2000200200MSUSY50010002000A1000⋅exp(/2)Xt20000M2200200200M31000⋅exp()8001600Search for charged Higgs bosons in top quark decaysDØ CollaborationV.M.AbazovakB.AbbottbwM.AbolinsbmB.S.AcharyaadM.AdamsayT.AdamsawE.AguilofM.AhsanbgG.D.AlexeevakG.AlkhazovaoA.Altonbl1G.AlversonbkG.A.AlvesbL.S.AncuajM.S.AnzelcbaM.AokiaxY.ArnoudnM.ArovbhM.ArthaudrA.Askewaw2B.ÅsmanapO.Atramentovaw2C.AvilahJ.BackusMayescdF.BadaudmL.BagbyaxB.BaldinaxD.V.BandurinbgS.BanerjeeadE.BarberisbkA.-F.BarfussoP.BargassacbP.BaringerbfJ.BarretobJ.F.BartlettaxU.BasslerrD.BauerarS.BealefA.BeanbfM.BegallicM.BegelbuC.Belanger-ChampagneapL.BellantoniaxA.BellavanceaxJ.A.BenitezbmS.B.BeriabG.BernardiqR.BernhardwI.BertramaqM.BesançonrR.BeuselinckarV.A.BezzubovanP.C.BhataxV.BhatnagarabG.BlazeyazS.BlessingawK.BloomboA.BoehnleinaxD.BolinebjT.A.BoltonbgE.E.BoosamG.BorissovaqT.BosebjA.BrandtbzR.BrockbmG.BrooijmansbrA.BrossaxD.BrownsX.B.BugD.BuchholzbaM.BuehlerccV.BueschervV.BunichevamS.Burdinaq3T.H.BurnettcdC.P.BuszelloarP.CalfayanzB.CalpasoS.CalvetpJ.CamminbsM.A.Carrasco-LizarragaahE.CarreraawW.CarvalhocB.C.K.CaseyaxH.Castilla-ValdezahS.ChakrabartibtD.ChakrabortyazK.M.ChanbcA.ChandraavE.CheuatD.K.ChobjS.W.ChoafS.ChoiagB.ChoudharyacT.ChristoudiasarS.CihangiraxD.ClaesboJ.ClutterbfM.CookeaxW.E.CooperaxM.CorcorancbF.CoudercrM.-C.CousinouoD.CuttsbyM.ĆwiokaeA.DasatG.DaviesarK.DebzS.J.de JongajE.De La Cruz-BureloahK.DeVaughanboF.DéliotrM.DemarteauaxR.DeminabsD.DenisovaxS.P.DenisovanS.DesaiaxH.T.DiehlaxM.DiesburgaxA.DominguezboT.DorlandcdA.DubeyacL.V.DudkoamL.DuflotpD.DugganawA.DuperrinoS.DuttabA.DyshkantazM.EadsboD.EdmundsbmJ.EllisonavV.D.ElviraaxY.EnaribyS.EnobiM.EscalieroH.EvansbbA.EvdokimovbuV.N.EvdokimovanG.FacinibkA.V.FerapontovbgT.FerbelbibsF.FiedleryF.FilthautajW.FisheraxH.E.FiskaxM.FortnerazH.FoxaqS.FuaxS.FuessaxT.GadfortbrC.F.GaleaajA.Garcia-BellidobsV.GavrilovalP.GaymW.GeistsW.GengobmC.E.GerberayY.Gershteinaw2D.GillbergfG.GintheraxbsB.GómezhA.GoussioucdP.D.GrannisbtS.GredersH.GreenleeaxZ.D.GreenwoodbhE.M.GregoresdG.GreniertPh.GrismJ.-F.GrivazpA.GrohsjeanrS.GrünendahlaxM.W.GrünewaldaeF.GuobtJ.GuobtG.GutierrezaxP.GutierrezbwA.HaasbrP.HaefnerzS.HagopianawJ.HaleybpI.HallbmR.E.HallauL.HangK.HarderasA.HarelbsJ.M.HauptmanbeJ.HaysarT.HebbekeruD.HedinazJ.G.HegemanaiA.P.HeinsonavU.HeintzbjC.HenselxI. Heredia-DeLa CruzahK.HernerblG.HeskethbkM.D.HildrethbcR.HiroskyccT.HoangawJ.D.HobbsbtB.HoeneisenlM.HohlfeldvS.HossainbwP.HoubenaiY.HubtZ.HubacekjN.HuskeqV.HynekjI.IashvilibqR.IllingworthaxA.S.ItoaxS.JabeenbjM.JaffrépS.JainbwK.JakobswD.JaminoR.JesikarK.JohnsatC.JohnsonbrM.JohnsonaxD.JohnstonboA.JonckheereaxP.JonssonarA.JusteaxE.KajfaszoD.KarmanovamP.A.KasperaxI.KatsanosboV.KaushikbzR.KehoecaS.KermicheoN.KhalatyanaxA.KhanovbxA.KharchilavabqY.N.KharzheevakD.KhatidzebyM.H.KirbybaM.KirschuB.KlimaaxJ.M.KohliabJ.-P.KonrathwA.V.KozelovanJ.KrausbmT.KuhlyA.KumarbqA.KupcokT.KurčatV.A.KuzminamJ.KvitaiF.LacroixmD.LambcS.LammersbbG.LandsbergbyP.LebruntH.S.LeeafW.M.LeeaxA.LeflatamJ.LellouchqL.LiavQ.Z.LiaxS.M.LiettieJ.K.LimafD.LincolnaxJ.LinnemannbmV.V.LipaevanR.LiptonaxY.LiugZ.LiufA.LobodenkoaoM.LokajicekkP.LoveaqH.J.LubatticdR.Luna-Garciaah4A.L.LyonaxA.K.A.MacielbD.MackincbP.MättigaaR.Magaña-VillalbaahP.K.MalatS.MalikboV.L.MalyshevakY.MaravinbgB.MartinnR.McCarthybtC.L.McGivernbfM.M.MeijerajA.MelnitchoukbnL.MendozahD.MenezesazP.G.MercadanteeM.MerkinamK.W.MerrittaxA.MeyeruJ.MeyerxN.K.MondaladR.W.MoorefT.MoulikbfG.S.MuanzaoM.MulhearnbrO.MundalvL.MundimcE.NagyoM.NaimuddinaxM.NarainbyH.A.NealblJ.P.NegrethP.NeustroevaoH.NilsenwH.NogimacS.F.NovaeseT.NunnemannzG.ObrantaoC.OchandopD.OnoprienkobgJ.OrdunaahN.OshimaaxN.OsmanarJ.OstabcR.OtecjG.J.Otero y GarzónaM.OwenasM.PadillaavP.PadleycbM.PangilinanbyN.ParasharbdS.-J.ParkxS.K.ParkafJ.ParsonsbrR.PartridgebyN.ParuabbA.PatwabuB.PenningwM.PerfilovamK.PetersasY.Petersaspeters@fnal.govP.PétroffpR.PiegaiaaJ.PiperbmM.-A.PleiervP.L.M.Podesta-Lermaah5V.M.PodstavkovaxY.PogorelovbcM.-E.PolbP.PolozovalA.V.PopovanM.PrewittcbS.ProtopopescubuJ.QianblA.QuadtxB.QuinnbnA.RakitineaqM.S.RangelpK.RanjanacP.N.RatoffaqP.RenkelcaP.RichasM.RijssenbeekbtI.Ripp-BaudotsF.RizatdinovabxS.RobinsonarM.RominskybwC.RoyonrP.RubinovaxR.RuchtibcG.SafronovalG.SajotnA.Sánchez-HernándezahM.P.SanderszB.SanghiaxG.SavageaxL.SawyerbhT.ScanlonarD.SchailezR.D.SchambergerbtY.ScheglovaoH.SchellmanbaT.SchliephakeaaS.SchlobohmcdC.SchwanenbergerasR.SchwienhorstbmJ.SekaricawH.SeverinibwE.ShabalinaxM.ShamimbgV.SharyrA.A.ShchukinanR.K.ShivpuriacV.SiccardisV.SimakjV.SirotenkoaxP.SkubicbwP.SlatterybsD.SmirnovbcG.R.SnowboJ.SnowbvS.SnyderbuS.Söldner-RemboldasL.SonnenscheinuA.SopczakaqM.SosebeebzK.SoustruznikiB.SpurlockbzJ.StarknV.StolinalD.A.StoyanovaanJ.StrandbergblM.A.StrangbqE.StraussbtM.StraussbwR.StröhmerzD.StromayL.StutteaxS.SumowidagdoawP.SvoiskyajM.TakahashiasA.TanasijczukaW.TaylorfB.TillerzM.TitovrV.V.TokmeninakI.TorchianiwD.TsybychevbtB.TuchmingrC.TullybpP.M.TutsbrR.UnalanbmL.UvarovaoS.UvarovaoS.UzunyanazP.J.van den BergaiR.Van KootenbbW.M.van LeeuwenaiN.VarelasayE.W.VarnesatI.A.VasilyevanP.VerdiertL.S.VertogradovakM.VerzocchiaxM.VesterinenasD.VilanovarP.VintarP.VokacjR.WagnerbpH.D.WahlawM.H.L.S.WangbsJ.WarcholbcG.WattscdM.WaynebcG.WeberyM.Weberax6L.Welty-RiegerbbA.Wengerw7M.WetsteinbiA.WhitebzD.WickeyM.R.J.WilliamsaqG.W.WilsonbfS.J.WimpennyavM.WobischbhD.R.WoodbkT.R.WyattasY.XiebyC.XublS.YacoobbaR.YamadaaxW.-C.YangasT.YasudaaxY.A.YatsunenkoakZ.YeaxH.YingK.YipbuH.D.YoobyS.W.YounaxJ.YubzC.ZeitnitzaaS.ZelitchccT.ZhaocdB.ZhoublJ.ZhubtM.ZielinskibsD.ZieminskabbL.ZivkovicbrV.ZutshiazE.G.ZverevamaUniversidad de Buenos Aires, Buenos Aires, ArgentinabLAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, BrazilcUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, BrazildUniversidade Federal do ABC, Santo André, BrazileInstituto de Física Teórica, Universidade Estadual Paulista, São Paulo, BrazilfUniversity of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec, CanadagUniversity of Science and Technology of China, Hefei, People's Republic of ChinahUniversidad de los Andes, Bogotá, ColombiaiCenter for Particle Physics, Charles University, Faculty of Mathematics and Physics, Prague, Czech RepublicjCzech Technical University in Prague, Prague, Czech RepublickCenter for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech RepubliclUniversidad San Francisco de Quito, Quito, EcuadormLPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, FrancenLPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, FranceoCPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, FrancepLAL, Université Paris-Sud, IN2P3/CNRS, Orsay, FranceqLPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, FrancerCEA, Irfu, SPP, Saclay, FrancesIPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, FrancetIPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, and Université de Lyon, Lyon, FranceuIII. Physikalisches Institut A, RWTH Aachen University, Aachen, GermanyvPhysikalisches Institut, Universität Bonn, Bonn, GermanywPhysikalisches Institut, Universität Freiburg, Freiburg, GermanyxII. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, GermanyyInstitut für Physik, Universität Mainz, Mainz, GermanyzLudwig-Maximilians-Universität München, München, GermanyaaFachbereich Physik, University of Wuppertal, Wuppertal, GermanyabPanjab University, Chandigarh, IndiaacDelhi University, Delhi, IndiaadTata Institute of Fundamental Research, Mumbai, IndiaaeUniversity College Dublin, Dublin, IrelandafKorea Detector Laboratory, Korea University, Seoul, Republic of KoreaagSungKyunKwan University, Suwon, Republic of KoreaahCINVESTAV, Mexico City, MexicoaiFOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The NetherlandsajRadboud University Nijmegen/NIKHEF, Nijmegen, The NetherlandsakJoint Institute for Nuclear Research, Dubna, RussiaalInstitute for Theoretical and Experimental Physics, Moscow, RussiaamMoscow State University, Moscow, RussiaanInstitute for High Energy Physics, Protvino, RussiaaoPetersburg Nuclear Physics Institute, St. Petersburg, RussiaapStockholm University, Stockholm, and Uppsala University, Uppsala, SwedenaqLancaster University, Lancaster, United KingdomarImperial College, London, United KingdomasUniversity of Manchester, Manchester, United KingdomatUniversity of Arizona, Tucson, AZ 85721, USAauCalifornia State University, Fresno, CA 93740, USAavUniversity of California, Riverside, CA 92521, USAawFlorida State University, Tallahassee, FL 32306, USAaxFermi National Accelerator Laboratory, Batavia, IL 60510, USAayUniversity of Illinois at Chicago, Chicago, IL 60607, USAazNorthern Illinois University, DeKalb, IL 60115, USAbaNorthwestern University, Evanston, IL 60208, USAbbIndiana University, Bloomington, IN 47405, USAbcUniversity of Notre Dame, Notre Dame, IN 46556, USAbdPurdue University Calumet, Hammond, IN 46323, USAbeIowa State University, Ames, IA 50011, USAbfUniversity of Kansas, Lawrence, KS 66045, USAbgKansas State University, Manhattan, KS 66506, USAbhLouisiana Tech University, Ruston, LA 71272, USAbiUniversity of Maryland, College Park, MD 20742, USAbjBoston University, Boston, MA 02215, USAbkNortheastern University, Boston, MA 02115, USAblUniversity of Michigan, Ann Arbor, MI 48109, USAbmMichigan State University, East Lansing, MI 48824, USAbnUniversity of Mississippi, University, MS 38677, USAboUniversity of Nebraska, Lincoln, NE 68588, USAbpPrinceton University, Princeton, NJ 08544, USAbqState University of New York, Buffalo, NY 14260, USAbrColumbia University, New York, NY 10027, USAbsUniversity of Rochester, Rochester, NY 14627, USAbtState University of New York, Stony Brook, NY 11794, USAbuBrookhaven National Laboratory, Upton, NY 11973, USAbvLangston University, Langston, OK 73050, USAbwUniversity of Oklahoma, Norman, OK 73019, USAbxOklahoma State University, Stillwater, OK 74078, USAbyBrown University, Providence, RI 02912, USAbzUniversity of Texas, Arlington, TX 76019, USAcaSouthern Methodist University, Dallas, TX 75275, USAcbRice University, Houston, TX 77005, USAccUniversity of Virginia, Charlottesville, VA 22901, USAcdUniversity of Washington, Seattle, WA 98195, USACorresponding author.1Visitor from Augustana College, Sioux Falls, SD, USA.2Visitor from Rutgers University, Piscataway, NJ, USA.3Visitor from The University of Liverpool, Liverpool, UK.4Visitor from Centro de Investigacion en Computacion – IPN, Mexico City, Mexico.5Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.6Visitor from Universität Bern, Bern, Switzerland.7Visitor from Universität Zürich, Zürich, Switzerland.Editor: H. WeertsAbstractWe present a search for charged Higgs bosons in top quark decays. We analyze the e+jets, μ+jets, ee, , μμ, τe and τμ final states from top quark pair production events, using data from about 1 fb−1 of integrated luminosity recorded by the DØ experiment at the Fermilab Tevatron Collider. We consider different scenarios of possible charged Higgs boson decays, one where the charged Higgs boson decays purely hadronically into a charm and a strange quark, another where it decays into a τ lepton and a τ neutrino and a third one where both decays appear. We extract limits on the branching ratio B(tH+b) for all these models. We use two methods, one where the tt¯ production cross section is fixed, and one where the cross section is fitted simultaneously with B(tH+b). Based on the extracted limits, we exclude regions in the charged Higgs boson mass and tanβ parameter space for different scenarios of the minimal supersymmetric standard model.PACS13.85.Lg13.85.Qk13.85.Rm14.65.Ha14.80.Cp1IntroductionIn many extensions of the standard model (SM), including supersymmetry (SUSY) and grand unified theories, the existence of an additional Higgs doublet is required. Such models predict multiple physical Higgs particles, including three neutral and two charged Higgs bosons (H±) [1]. If the charged Higgs boson is sufficiently light, it can appear in top quark decays tH+b.88Throughout the Letter, H+ and W+ also refer to the charge conjugate state.Within the SM, the top quark decay into a W boson and a b quark occurs with almost 100% probability. The tt¯ final state signatures are fully determined by the W boson decay modes. Measurements of top quark pair production cross sections σtt¯ in various channels [2] are potentially sensitive to the decay of top quarks to charged Higgs bosons. The presence of a light charged Higgs boson would result in a different distribution of tt¯ events between different final states than expected in the SM.In this Letter we compare the number of predicted and observed events in various tt¯ final states and derive 95% confidence level (CL) limits on the production of charged Higgs bosons from top quark decays. The analysis is based on data collected with the DØ detector between August 2002 and February 2006 at the Fermilab Tevatron pp¯ Collider at s=1.96 TeV. The analyzed datasets correspond to an integrated luminosity of about 1 fb1.The decay modes of the charged Higgs boson depend on the ratio of the vacuum expectation values of the two Higgs doublets, tanβ. For small values of tanβ it is dominated by the decay to quarks, while for larger values of tanβ it is dominated by the decay to a τ lepton and a neutrino. We consider three models for the charged Higgs boson decay: a purely leptophobic model, where the charged Higgs boson decays into a charm and a strange quark, a purely tauonic model, where the charged Higgs boson decays exclusively into a τ lepton and a neutrino, and a model where both decays can occur. In all models we fix the tt¯ cross section to the theoretical value within the SM and extract B(tH+b). In the case of the tauonic model, in addition we extract σtt¯ and B(tH+b) simultaneously, thus yielding a limit without assuming a particular value of the tt¯ cross section.A scenario in which the charged Higgs boson decays exclusively into quarks can be realized, for instance, in a general multi-Higgs-doublet model (MHDM) [3]. It has been demonstrated that such leptophobic charged Higgs bosons with a mass of about 80 GeV could lead to noticeable effects at the Tevatron if tanβ3.5[4]. Moreover, large radiative corrections from SUSY-breaking effects can lead to a suppression of H+τ+ν compared to H+cs¯[5]. In that case, for small tanβ, hadronic charged Higgs decays can become large in both the two-Higgs-doublet (2HDM) [4] and the minimal supersymmetric standard model (MSSM).For values of tanβ20 we consider different models leading to different branching ratios. Values of B(H+cs¯) close to one are predicted in specific CP-violating benchmark scenarios (CPX) with large threshold corrections [6]. For other models, the tauonic decays of the charged Higgs boson dominate at high tanβ, for example, in the mhmax benchmark scenario [7] where B(H+τ+ν) can be close to one.2Event selection and analysis methodThis search for charged Higgs bosons is based on the following tt¯ final states: the dilepton (ℓℓ) channel where both charged bosons (W+ or H+) decay into a light charged lepton (=e or μ) either directly or through the leptonic decay of a τ, the τ+lepton (τℓ) channel where one charged boson decays to a light charged lepton and the other one to a τ-lepton decaying hadronically, and the lepton plus jets (+jets) channel where one charged boson decays to a light charged lepton and the other decays into hadrons. We select events to create 14 subchannels: (i) ee (μμ) subchannel with two isolated high transverse momentum (pT) electrons (muons) and at least two high pT jets; (ii) subchannels with one isolated high pT electron and one muon and exactly one or at least two jets; (iii) τe (τμ) subchannel with one high pT hadronically decaying τ, one electron (muon) and at least two high pT jets one of which is identified as a b jet; (iv) +jets subchannels with one isolated high pT electron (muon), exactly three or at least four high pT jets, further split into subsamples with one or at least two b-tagged jets. Details of the event selection and object reconstruction in the dilepton and τℓ channels can be found in Ref. [8]; a more detailed description of the +jets channel and the combination are given in Ref. [2]. All event samples are constructed to be mutually exclusive.In the +jets channel the main background consists of W+jets production, with smaller contributions from multijet, single top quark and diboson production. The background contribution in the τℓ channel is dominated by multijet events, while the most important background in the ℓℓ channel emerges from Z+jets production. The sample composition of all 14 subchannels, assuming B(tW+b)=1 (hence B(tH+b)=0), is given in Ref. [2].The simulation of the W+jets and Z+jets backgrounds as well as the tt¯ signal with no charged Higgs boson decay is performed using alpgen[9] for the matrix element calculation, followed by pythia[10] for parton showering and hadronization. Diboson samples are generated using pythia, while single top quark events are simulated using the singletop[11] generator. The generated events are processed through a geant-based [12] simulation of the DØ detector and the same reconstruction programs used for the data.We simulate the signal containing charged Higgs bosons with the pythia Monte Carlo event generator [10], separately for the decays tt¯W+bHb¯ (and its charge conjugate) and tt¯H+bHb¯. The total signal selection efficiency is calculated as a function of BB(tH+b) as given by:(1)ϵtt¯=(1B)2ϵtt¯W+bWb¯+2B(1B)ϵtt¯W+bHb¯+B2ϵtt¯H+bHb¯, yielding the number of tt¯ events as a function of B. The efficiencies ϵtt¯W+bHb¯ and ϵtt¯H+bHb¯ are evaluated for the assumed H+ decay modes. Fig. 1 shows the number of expected events for different values of B(tH+b) assuming MH+=80 GeV and either B(H+cs¯)=1 or B(H+τ+ν)=1, compared to the number of observed events in the considered channels. The +jets entries with one and two b-tags represent the sum of four +jets subchannels each (with different light lepton flavor and =3 and ⩾4 jets). The dilepton contribution corresponds to the sum of the ee, μμ and two subchannels, and the τ+lepton one shows the sum of the τe and τμ subchannels. For a non-zero branching ratio B(tH+bcs¯b) the number of events decreases in the +jets, ℓℓ and τℓ final states. In case of a non-zero branching ratio B(tH+bτ+νb) the number of predicted events increases in the τℓ channel while it decreases in all other channels. The latter are often called disappearance channels.3Extraction of limits on B(tH+b)The extraction of B(tH+b) is done by calculating the predicted number of events in 14 search subchannels for various charged Higgs boson masses and branching ratios, and performing a maximum likelihood fit to the number of observed events in data. We constrain the multijet background determined from control samples in the +jets and τℓ channels by including Poisson terms in the likelihood function. We account for systematic uncertainties in the fit by modeling each independent source of systematic uncertainty as a Gaussian probability density function G with zero mean and width corresponding to one standard deviation (SD) of the parameter representing the systematic uncertainty. Correlations of systematic uncertainties between channels are naturally taken into account by using the same parameter for the same source of systematic uncertainty. The parameter for each systematic uncertainty is allowed to float during the likelihood fit. We maximize the likelihood function(2)L=i=114P(ni,mi)×j=114P(nj,mj)×k=1KG(νk;0,SD), with P(n,m) representing the Poisson probability to observe n events when m events are expected. The product runs over the subsamples i, and multijet background samples j. K is the total number of independent sources of systematic uncertainty, with νk being the corresponding nuisance parameter. The predicted number of events in each channel is the sum of the predicted background and the expected tt¯ events, which depends on B(tH+b).During the fit, the tt¯ cross section is set to 7.480.72+0.55 pb, corresponding to an approximation to the next-to-next-to-leading-order (NNLO) QCD cross section that includes all next-to-next-to-leading logarithms (NNLL) relevant in NNLO QCD [13] at the world average top quark mass of 173.1 GeV[14]. The uncertainty on the theoretical cross section includes the uncertainty on the world average top quark mass.Since we find no evidence for a charged Higgs boson, we extract upper limits on B(tH+b), assuming that B(H+cs¯)=1, or B(H+τ+ν)=1, or a mixture of both. The limit setting procedure follows the likelihood ratio ordering principle of Feldman and Cousins [15]. The determination of the limits requires the generation of pseudo-datasets. We generate ensembles of 10,000 pseudo-datasets with B(tH+b) varied between zero and one in steps of 0.05, fully taking into account the systematic uncertainties and their correlations.Table 1 shows an example of the uncertainties on B(tH+b) for MH+=80 GeV in the tauonic and leptophobic charged Higgs boson models. We consider systematic uncertainties originating from electron, muon, τ and jet identification, τ and jet energy calibration, b-jet identification, limited statistics of data or Monte Carlo samples, modeling of triggers, signal and background, and integrated luminosity. To evaluate the signal modeling uncertainty we replace the SM tt¯ sample generated with alpgen by the one generated with pythia and take the difference in acceptance as systematic uncertainty. For both the tauonic and leptophobic model, the two main sources of systematic uncertainty on B(tH+b) are the uncertainty on the luminosity of 6.1% and the tt¯ cross section, followed by the non-negligible uncertainties on signal modeling, b jet identification and jet energy scale. The former two are approximately of the same size as the statistical uncertainty. Since in the tauonic model we consider both appearance and disappearance channels, some uncertainties affecting the signal and background normalization cancel. Therefore, uncertainties on signal modeling, the tt¯ cross section, lepton identification and luminosity are reduced in the tauonic model compared to the leptophobic model.Fig. 2 shows the expected and observed upper limits on B(tH+b) assuming B(H+cs¯)=1 or B(H+τ+ν)=1 as a function of MH+ along with the one standard deviation band around the expected limit. Table 2 lists the corresponding expected and observed upper limits on B(tH+b) for each generated MH+. In the tauonic model we exclude B(tH+b)>0.150.19 and B(tH+b)>0.190.22 in the leptophobic case.The CDF Collaboration reported a search for charged Higgs bosons using different tt¯ decay channels with a data set of about 200 pb1[16], resulting in B(tH+b)<0.4 within the tauonic model. Recently, DØ reported limits on B(tH+b) for the tauonic and leptophobic models extracted from cross section ratios [2] and for the tauonic model based on a measurement of the tt¯ cross section in the +jets channel using topological event information [17]. Exploring the full set of channels as presented here improves the limits derived in the cross section ratio method for the leptophobic and for the tauonic model in the high MH+ region.We also extract upper limits on B(tH+b) mixing the tauonic and leptophobic models under the assumption B(H+τ+ν)+B(H+cs¯)=1. We repeat the extraction of upper limits on B(tH+b) in the range of 0B(H+τ+ν)1 in steps of 0.1. For each assumed MH+ we parametrize the expected and observed limits dependent on the mixture between tauonic and leptophobic decays. Fig. 3 shows upper limits on B(tH+b) as a function of B(H+cs¯). As expected, the upper limit decreases with increasing tauonic decay fraction.4Simultaneous extraction of B(tH+b) and σtt¯The search for charged Higgs bosons in top quark decays is based on the distribution of tt¯ events between the various final states. Naturally, it is also sensitive to the total number of tt¯ events. This results in a large systematic uncertainty due to the theoretical uncertainty in the tt¯ cross section calculations. If σtt¯ and B(tH+b) are measured simultaneously the limit becomes independent of the assumed theoretical tt¯ cross section. Furthermore, the luminosity uncertainty and other systematic uncertainties affecting the signal normalization are partially absorbed by the fitted cross section.We perform a simultaneous fit of σtt¯ and B(tH+b) for the tauonic model. The fitting and limit setting procedure is the same as described in Section 3, with two free parameters instead of one. Table 3 shows the uncertainties on B(tH+b) and σtt¯ for MH+=80 GeV. The correlation between the two fitted quantities is about 70% for MH+ up to 130 GeV and it reaches 90% for MH+=155 GeV. For high charged Higgs boson masses, where the correlation becomes high, the sensitivity degrades compared to the case where the tt¯ cross section is fixed.The tt¯ cross section is set to the measured value in the generation of pseudo-datasets for the limit setting procedure. For the fit to the pseudo-data, σtt¯ and B(tH+b) are allowed to float. In Table 2 the expected and observed upper limits on B(tH+b) are listed together with the simultaneous measurement of the tt¯ cross section for a top quark mass of 170 GeV. Within uncertainties, the obtained cross section for all masses of the charged Higgs boson agrees with σtt¯=8.180.87+0.98 pb, which was measured on the same data set assuming B(tW+b)=1[2].In Fig. 4 the upper limits on B(tH+b) for MH+ from 80 to 155 GeV are shown. For small MH+, the simultaneous fit provides an improvement of the sensitivity of more than 20% compared to the case where the tt¯ cross section is fixed. Furthermore, the tt¯ cross section measured here represents a measurement independent of the assumption B(tW+b)=1.The simultaneous fit requires a reasonably small correlation between the two fitted observables. Since at present we have only included disappearance channels for the leptophobic model, the correlation between B(tH+b) and σtt¯ is large (≈90%) for all charged Higgs boson masses, and thus we have not used the simultaneous fit method there.5Interpretations in supersymmetric modelsThe limits on B(tH+b) presented in Figs. 2, 3 and 4 are interpreted in different SUSY models and excluded regions of [tanβ,MH+] parameter space are derived. The investigated MSSM benchmark models [7] depend on several model parameters: μ is the strength of the supersymmetric Higgs boson mixing; MSUSY is a soft SUSY-breaking mass parameter representing a common mass for all scalar fermions (sfermions) at the electroweak scale; A=At=Ab is a common trilinear Higgs–squark coupling at the electroweak scale; Xt=Aμcotβ is the stop mixing parameter; M2 denotes a common SU(2) gaugino mass at the electroweak scale; and M3 is the gluino mass. The top quark mass, which has a significant impact on the calculations through radiative corrections, is set to the current world average of 173.1 GeV[14].Direct searches for charged Higgs bosons have been performed by the LEP experiments resulting into limits of MH+<79.3 GeV in the framework of 2HDM [18]. Indirect bounds on MH+ in the region of tanβ<40 were obtained for several MSSM scenarios [19], two of which are identical to the ones presented in Sections 5.3 and 5.4 of this Letter.5.1Leptophobic modelA leptophobic model with a branching ratio of B(H+cs¯)=1 is possible in MHDM [3,4]. Here we calculate the branching ratio B(tH+b) as a function of tanβ, and the charged Higgs boson mass including higher order QCD corrections99Since this model cannot be realized in the MSSM without further modifications, higher order SUSY corrections are not included. using FeynHiggs[20]. Fig. 5 shows the excluded region of [tanβ,MH+] parameter space. For tanβ=0.5, for example, MH+ up to 153 GeV are excluded. For low MH+, values of tanβ up to 1.7 are excluded. These are the most stringent limits on the [tanβ,MH+] plane in leptophobic charged Higgs boson models to date.5.2CPX model with generation hierarchyB(H+τ+ν)+B(H+cs¯)1 can be realized in a particular CPX benchmark scenario (CPXgh) [6] of the MSSM. This scenario is identical to the CPX scenario investigated in [19] except for a different choice of arg(A) and an additional mass hierarchy between the first two and the third generation of sfermions which is introduced as follows:(3)MX˜1,2=ρX˜MX˜3, where X˜ collectively represents the chiral multiplet for the left-handed doublet squarks Q˜, the right-handed up-type (down-type) squarks U˜ (D˜), the left-handed doublet sleptons L˜ or the right-handed charged sleptons E˜. Taking ρU˜,L˜,E˜=1, ρQ˜,D˜=0.4 and requiring that the masses of the scalar left- and right-handed quarks and leptons are large MQ˜3,D˜3=2MU˜3,L˜3,E˜3=2 TeV, we calculate the branching ratios B(tH+b) including higher order QCD and higher order MSSM corrections using the CPXgh MSSM parameters in Table 4. The calculation is performed with the program CPsuperH[21]. Fig. 6 shows the excluded region in the [tanβ,MH+] parameter space. Theoretically inaccessible regions indicate parts of the parameter space where perturbative calculations cannot be performed reliably. In the [tanβ,MH+] region analyzed here, the sum of the branching ratios was found to be B(H+τ+ν)+B(H+cs¯)>0.99 except for values very close to the blue region which indicates B(H+τ+ν)+B(H+cs¯)<0.95. The charged Higgs decay H+τ+ν dominates for tanβ below 22 and above 55. For the rest of the [tanβ,MH+] parameter space both the hadronic and the tauonic decays of charged Higgs bosons are important. In the region 38tanβ40, the hadronic decays of the charged Higgs boson dominate and B(H+cs¯)>0.95. For large values of tanβ, MH+ up to 154 GeV are excluded. For low charged Higgs masses, tanβ values down to 23 are excluded. These are the first Tevatron limits on a CP-violating MSSM scenario derived from the charged Higgs sector.5.3No-mixing scenarioIn the CP-conserving no-mixing scenario, the stop mixing parameter Xt is set to zero, giving rise to a relatively restricted MSSM parameter space. In the [tanβ,MH+] parameter space analyzed here the branching ratio is B(H+τ+ν)>0.99 except for very low values of tanβ and MH+ where B(H+τ+ν)>0.95. We interpret the results derived in the tauonic model using the simultaneous fit in the framework of the no-mixing scenario. The branching ratios B(tH+b) are calculated including higher order QCD and higher order MSSM corrections using the no-mixing MSSM parameters as given in Table 4. The calculation is performed with FeynHiggs[20]. Fig. 7 presents the excluded region of [tanβ,MH+] parameter space. For large values of tanβ, MH+ up to 145 GeV are excluded. For low MH+, values of tanβ down to 27 are excluded.5.4mh-max scenarioIn the CP-conserving mh-max scenario the stop mixing parameter is set to a large value, Xt=2MSUSY. The theoretical upper bound on the lighter CP-even neutral scalar, mh, for a given value of tanβ and fixed mt and MSUSY is designed to be maximal. Therefore the model provides the largest parameter space in mh and as a consequence, less restrictive exclusion limits on tanβ than the other models. In the investigated [tanβ,MH+] parameter space, B(H+τ+ν)>0.99 holds except for low values of tanβ and MH+, where B(H+τ+ν)>0.97. Thus we use the simultaneous fit results within the tauonic model to derive constraints on the mh-max scenario. The branching ratios B(tH+b) are calculated using FeynHiggs[20] including higher order QCD and higher order MSSM corrections. The mh-max MSSM parameters are given in Table 4.Fig. 8 shows the excluded region of [tanβ,MH+] parameter space. For large values of tanβ, MH+ up to 149 GeV are excluded. These are the most stringent limits from the Tevatron to date. For low charged Higgs boson masses, values of tanβ down to 29 are excluded.6SummaryWe have performed a search for charged Higgs bosons in top quark decays. No indication for charged Higgs boson production in the tauonic or leptophobic model is found. Upper limits at 95% CL on the B(tH+b) branching ratios are derived in different scenarios depending on the values of B(H+cs¯) and B(H+τ+ν). For the leptophobic model, B(tH+b)>0.22 is excluded for the MH+ range between 80 and 155 GeV. For the tauonic model, B(tH+b)>0.150.19 are excluded depending on MH+. In this model we have also performed a model-independent measurement and excluded B(tH+b)>0.120.26 depending on MH+.We interpret the results in different models and exclude regions in [tanβ,MH+] parameter space. For the mh-max scenario, for example, MH+ values up to 149 GeV are excluded. These are the most restrictive limits to date in direct searches for charged Higgs boson production in top quark decays.AcknowledgementsWe thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). We would also like to thank J.S. Lee and A. Pilaftsis for providing us with the CPXgh model and many stimulating discussions.References[1]D.J.H.ChungL.L.EverettG.L.KaneS.F.KingJ.LykkenL.-T.WangPhys. Rep.40720051[2]V.M.AbazovDØ CollaborationPhys. Rev. D802009[3]Y.GrossmanNucl. Phys. B4261994355[4]A.G.AkeroydarXiv:hep-ph/95092031995[5]M.S.CarenaS.MrennaC.E.M.WagnerPhys. Rev. D622000055008[6]J.S.LeeY.PetersA.PilaftsisC.SchwanenbergerarXiv:0909.1749 [hep-ph][7]M.S.CarenaS.HeinemeyerC.E.M.WagnerG.WeigleinEur. Phys. J. C262003601[8]V.M.AbazovDØ CollaborationPhys. Lett. B6792009177[9]M.L.ManganoJHEP03072003001[10]T.SjöstrandComput. Phys. Commun.1352001238[11]E.E.BoosPhys. Atom. Nucl.6920061317[12]R. Brun, F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished)[13]S.MochP.UwerPhys. Rev. D782008034003S. Moch, P. Uwer, private communications[14]Tevatron Electroweak Working GroupCDF CollaborationDØ CollaborationarXiv:0903.2503 [hep-ex]2009[15]G.FeldmanR.CousinsPhys. Rev. D5719983873[16]A.AbulenciaCDF CollaborationPhys. Rev. Lett.962006042003[17]V.M.AbazovDØ CollaborationPhys. Rev. D802009051107[18]G.AbbiendiOPAL CollaborationarXiv:0812.0267 [hep-ex]A.HeisterALEPH CollaborationPhys. Lett. B54320021P.AchardL3 CollaborationPhys. Lett. B5752003208J.AbdallahDELPHI CollaborationEur. Phys. J. C342004399ALEPH CollaborationDELPHI CollaborationL3 CollaborationOPAL CollaborationLEP Working Group for Higgs Boson SearchesarXiv:hep-ex/0107031[19]S.SchaelALEPH CollaborationDELPHI CollaborationL3 CollaborationOPAL CollaborationEur. Phys. J. C472006547[20]M.FrankT.HahnS.HeinemeyerW.HollikH.RzehakG.WeigleinJHEP07022007047G.DegrassiS.HeinemeyerW.HollikP.SlavichG.WeigleinEur. Phys. J. C282003133S.HeinemeyerW.HollikG.WeigleinEur. Phys. J. C91999343S.HeinemeyerW.HollikG.WeigleinComput. Phys. Commun.124200076[21]J.S.LeeM.CarenaJ.EllisA.PilaftsisC.E.M.WagnerComput. Phys. Commun.1802009312M.S.CarenaJ.R.EllisA.PilaftsisC.E.M.WagnerNucl. Phys. B586200092M.S.CarenaJ.R.EllisA.PilaftsisC.E.M.WagnerNucl. Phys. B6252002345M.S.CarenaJ.R.EllisA.PilaftsisC.E.M.WagnerPhys. Lett. B4952000155