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1. Introduction 

The discovem by Green and Schwarz 111 of consistent theories of supersym- 

metric strings, endowed with a phenomenologically relevant gauge symmetry and 

yet free of gauge and gravitational anomalies, has caused an .explosion of inter- 

est in the subject of string theories. This discovery provides the latest link in 

a remarkable chain of mathematical properties which these string theories pos- 

sess. Other such properties are the automatic appearance of gauge particles and 

gravitons (2’31 and, for the appropriately truncated spinning string, the automatic 

appearance of supersymmetry M and the cancellation of divergences, at least at 

one 100~~~‘~~ . The whole theory provides a formal structure of great coherence 

and power, one which it seems important to understand more deeply. 

One particularly puzzling aspect of this structure is the appearance of scat- 

tering amplitudes which are automatically gauge-invariant. This behavior was 

first noted by Neveu and Scherk12] , who studied the low-energy limit of the scat- 

tering of zerc+mass open strings and found exactly the scattering amplitude of 

gauge bosons in Yang-Mills theory. Scherk and Schwarz PI performed a similar 

analysis of the low-energy scattering of closed strings and found the graviton- 

graviton scattering amplitude. In neither case did the result seem to follow from 

some higher principle; rather it appeared magically from the string formalism. 

A more recent development, however, has provided a clue to the origin of 

these gauge-theory results. Though a field theory of strings was formulated long 

ago in the transverse gauge P-91 , the corresponding covariant treatment was 

discovered only a year ago, when Siegel[‘“‘lll wrote down a transcription in field 

theory of the covariant and BRST-invariant first quantization of the string WI , 

Examining his formulation of the covariant string field theory mass level by mass 

level, Siegel found a rich structure of BRST-invariant particle theories, including 

the covariantly gauge-fixed versions of Yang-Mills theory and gravity. 

Motivated by this discovery, we set out to understand this structure further by 

identifing the gauge-invariant string field theory from which Siegel’s formulation 
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might arise by gauge-fixing. In this paper, we would like to present a proposal for 

the linearized version of that theory. The action we will present is invariant under 

a huge group of gauge symmetries which arise naturally from the mathematical 

structure of the string. These gauge symmetries contain linearized Yang-Mills 

and general coordinate invariance as proper subgroups. 

The plan of this paper is as follows. The bulk of our analysis will concern the 

simple, purely bosonic open string theory. In Section 2, we will review some basic 

formalism and apply this formalism to construct a suitably reparametrization- 

invariant kinetic energy term for string fields. In Section 3, we will study the 

symmetries of this action and recognize, in particular, an enormous group of 

gauge invariances. In Section 4, we will present a relatively explicit form of the 

kinetic energy term for strings which respects these symmetries. Our construc- 

tion, however, yields an action which is nonlocal when considered as an action for 

fields on coordinate space. To define a proper quantum theory, we must remove 

this nonlocality by introducing Stueckelberg fields. As an introduction to this 

procedure, we show explcitly how to do this at the spin-2 mass level. We also 

present a simple construction which brings the action into a local form at all 

levels. 

The set of Stueckelberg fields presented at the end of Section 4 is unsatis- 

factory, however, for two reasons. First, it leads to an action with 4-derivative 

_ terms, and, secondly, it yields a larger number of degrees of freedom than appear 

in the conventional quantized string theory. To solve these problems, we must 

seek the minimal set of Stueckelberg fields necessary to make the action local in 

the critical dimension, d = 26. We will present this set of Stueckelberg fields in 

Section 6. In Section 5, we will present a mathematical development which is 

useful in this analysis, a theory of differential forms on the space of strings. In 

Section 7, we will discuss the quantization of this action by gauge-fixing. We 

will present the quantization using two different gauge-fixing procedures and, in 

this way, connect our formalism with the earlier string field theories of Kaku and 

Kikkawa17] and Siegell’“‘“l . The analysis will provide a confirmation of the set 
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of Stueckelberg fields found in Section 6. 

The remainder of the paper will discuss some generalizations of this construc- 

tion. In Section 8, we will discuss the extension of our analysis to closed strings. 

In Section 9, we will discuss the extension of our analysis to the case of super- 

strings. (These sections do not depend on the relatively technical arguments of 

Sections 5 - 7.) 

The covariant formulation of the string field theory has also been studied 

recently by Kaku and Lykken 1131 ; working from a rather different viewpoint, 

these authors have also arrived at an action similar to the one we will present in 

Section 4. Between the time of the first announcement of our results1141 and the 

completion of this paper, Friedan I151 has developed our proposal in some new 

directions. Thorn[“] has discussed the gauge fixing to the transverse gauge. 

As we were completing this paper, we received a preprint by Neveu and 

West [171 in which the structure discussed in Section 6 was built up through the 

first five excited mass levels by explicit rearrangements of the nonlocal string 

action. We have also learned that Siegel and Zweibach[r8] have derived the 

complete action which we present in Section 6, using a technique very different 

from the one explained here. 

2. Reparametrization Invariance 

We begin our analysis from the case of bosonic open strings. These strings 

describe two-dimensional world sheets as they move through space-time. The 

mechanics of strings is defined by the condition that the evolution of these world 

sheets is determined purely geometrically and does not depend on the coordinate 

system used to parametrize the sheet. This means that the transformations 

which generate reparametrizations of an individual sheet must be symmetries of 

the equations of motion. The quantization of the theory should respect these 

symmetries. Of course, quantization procedures for a single string which deal 

4 



properly with the reparametrization invariance are well known PI . But we 

would like to address this question at a somewhat different level; we ask, how 

does the reparametrization invariance of individual world sheets manifest itself 

in the field theory of strings? 

To pose this question more carefully, let us introduce some notation* . We 

choose units in which the Regge slope is given by 2d = 1. For a single string, 

the coordinate and momentum variables may be expanded in normal modes: 

z+) =zp + c $x+OBM 

n>O 
(2.1) 

pqu) =i{ p” + c fiP~eo.s?+ 
n>O 

0 5 u 2 A, and [X,, Pm] = iii,,,. It is convenient to replace 

xn = - i (a, -a! 2fi -n) , Pn = $(a + a-,) , n 

and to set a: = $‘; then the LY,, have the commutation relations: 

(2.2) 

p(a) and z’(a) are especially simple functions of the (Y,,: 

(7rp f ZI) = 2 cY,e’iV 
n=-00 

(2.4 

The generators of reparametrizations of the string are the local Hamiltonian and 

* For a review of string technology, see ref. 20. 
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momentum densities: 

Jw = 5 l (ir2p2 + (2)2), P(u) = p * 2’. 

These quantities are summarized as: 

f(?rp*zg2 
co 

= c 
LneFinu , 

--oo 

where the L, are the Virasoro operators I211 

These operators satisfy the algebra: 

[Ln, LJ = (n - m)L,+, + $n(n2 

(2.7) 

l)J(n + 4, P-8) 

in which the central charge depends on d, the dimensionality of space. 

The Virasoro operators summarize much of the dynamical content of the 

theory of a single string. Lo contains the string mass operator, so that 

2(Lo-l)=p2+2{Ca-..a.-l}=p2+M2 
n>O 

P-9) 

gives the equation of motion of physical states. Reparametrizations of the evolv- 

ing string surface, local shifts of both o and r, may be expressed as transforma- 

t ions 
00 

6 p> = i c bnL-n I@) (b-n = b;) (2.10) 
n=-00 

of the string wave function IQ). Note that it is reasonable to discuss local shifts of 

coordinate time r on the evolving surface even though the wavefunction depends 

only on #(a), the string location at one fixed time; this is done here in the same 

way one discusses the symmetry with respect to local shifts of coordinate time 

in quantum gravity WI . 
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To go from the quantization of a single string to the field theory of strings, we 

should reinterpret the string wavefunction I@) as a string field functional @[z(o)]. 

Let us write the linearized action for the string field schematically as 

SR = -;(a 1 &a). (2.11) 

The inner product involves an integral over string configurations z(a). We would 

like to arrange that S is invariant to the transformations (2.10) and thus inherits 

the reparametrization invariance of the single string. To see how this might work, 

insert (2.10) into the expression for S; one obtains; 

bsR = -i Cbn(@ 1 [KR,L-n]@). 
n 

(2.12) 

We must, then, construct a kinetic energy operator KR which commutes with all 

the Ln. 

Before beginning that construction, however, it is useful to recall that repara- 

metrization invariance is actually implemented in a rather different way in the 

standard covariant (first) quantization of the string due to Goddard, Goldstone, 

Rebbi, and Thorn[“] . In that formalism, one restricts one’s attention to the 

subspace of a’s which satisfy the condition: 

LniP[Z(0)] = 0 (n ’ 0) (2.13) 

and implements reparametrization invariance on this subspace. In the literature 

on dual models, states satisfying (2.13) are called physical states. We find it less 

confusing to call them simply states at level 0. (We will define the higher levels 

in a moment.) 

It is possible to set up an analogue of this restricted invariance for the string 

field theory by the following construction: Let us define a kinetic energy operator 

K which is proportional to a projector onto the subspace of states at level 0. 
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Let Qo denote the projection of @  onto this subspace. The action of a general 

reparametrization on 00 is: 

&h&j = i c WL% 

nz0 

The motions (2.14) will be symmetries of 

(2.14) 

S (2.15) 

if (1) [&LO] = 0 and (2) KL-, = 0 for n > 0. Condition (1) is generally 

straightforward to arrange. Condition (2) is actually implied by the statement 

that K contains the projector. Thus, S can readily be made invariant to (2.14). 

A specific choice of K which satisfies these requirements and reduces to (2.9) on 

states at level 0 is: 

K = 2(Lo - l)P, (2.16) 

where P is the projector onto level 0. 

At this point, it is worth discussing further the nature of the projection we 

require. Given a state at level 0, we can form states at higher levels by applying 

operators L-n. Let us label the products of L- n’s which raise the mass level of 

the string state by n units as tpj: 

tl”i’ E {L-ln,L-2L-1”-2,L-22L-?-4,. . . ,L+} (2.17) 

-Call (l(“!)+ = lt”). -a a We may then define the states at level n to be the states 

created from level 0 by the application of the ZF/. The whole tower of states 

arising from a particular level 0 state is called a Verma module PI . States at 

different levels are orthogonal; for example, if @po and Cpr are at level 0 and 1, 

respectively, 

(a?, 1 a,) = (!Do 1 L-&J = (LI@O I ok) = 0. (2.18) 

It is known that the fZ?j create linearly independent vectors in level n, except at 

a discrete set of values of p (which enters the L, as a parameter) 124’251 . Since we 
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will work off-shell, it suffices to establish the properties of K for generic p. Note 

that L-, raises the level; hence the projector onto level 0 annihilates L-,. 

Given this structure, we can now explain how to construct KR. KR will 

commute with all of the generators of the Virasoro algebra if it takes the same 

value on all states of a Verma module. Therefore, let KR be equal to K on level 

0. On higher levels, define KR as the value of K on the level 0 state in the same 

Verma module. We will give a more explicit form of KR in Section 4. 

3. Gauge Invariance 

We have now sketched the construction of a completely reparametrization- 

invariant string kinetic energy term. Its construction involved an auxiliary object 

K, which contained a projector onto level 0 states. This auxilary object is, 

however, interesting in its own right. In this section, we will study it further. We 

will present evidence that it is this K, and not KR, which is in fact the correct 

kinetic energy term for strings. 

The remarkable property of K, not shared by KR, is its invariance under an 

enormous group of additional symmetries. We constructed K to preserve a part 

of the homogeneous transformations (2.10) which implement reparametrization 

invariance. However, K is also invariant to the corresponding inhomogeneous 

transformations, the shifts: 

SO[x(cT)] = d”h,i[X(c7)], -a (3.1) 

where 9,i is at level 0, or, equivalently (with some double-counting), 

W(Q)1 = LA[X(~>], (3.2) 

where XDm is unconstrained. These motions are symmetries of K because P an- 

nihilates the L-,. Eq. (3.2) is very similar in structure to the invariance of the 
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string field theory proposed by Siegel in ref. 10. Transformations of this form 

stand at a level of a hierarchy above global gauge transformations, in which one 

shifts by a constant, and local gauge transformation, in which one shifts by a 

function of x. Here one shifts by a function on the space of strings, and so we 

should refer to (3.2) as a chordal gauge transformation. 

What is the content of this huge group of invariances? To analyze ,this 

question, it is useful to expand 0 in eigenstates of the mass operator M2, eq. 

(2.9). Let @ lo) be the state annihilated by all of the cy,,, n > 0. (Explicitly, 

do) = exp(- C Xz).) A b asis for the space of functionals of x(a) is formed by 

applying the (Y-,, to @co). The center-of-mass position x does not appear in O(O); 

we will retain the dependence on this variable in the coefficient functions. Then 

an arbitrary @[x(a)] may be expanded* : 

@[x(a)] = {4(x) - iACL(z)~fl - ~W’(z)a’la’l - iupa’L2 + . . . }d”) (3.3) 

The gauge motion of @  is given by applying L-, to new string functionals. The 

first such motion is given by 

L-lQ[x(a)] = (pa CL1 + a-2 l a1 + . . . - iA;(x)af, + . . . do) 

= - 1 iap~bp(x) * al, + . . . > do) 
(3.4 

We find, then, that 4(z) in (3.3) is gauge-invariant but that Ap(x) is translated 

by: 

6AP = abpl& (3.5) 

The shift (3.4) thus contains linearized Yang-Mills gauge invariance. 

* Observe from the definition (2.2) and the representation P,, = GalaX,, that Q,, is pure 
imaginary; we construct @  as a real string field. 
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The fields at the second mass level are transformed both by L-rQ[x(a)] and 

by a second transformation L_2E[x(a)]. One finds the transformation laws: 

At each higher level,-one finds a system of fields of increasing spin; the string 

gauge invariance (3.2) reduces in each system to a gauge invariance of the coupled 

equations for these fields. 

The superiority of the kinetic energy term K to KR is now apparent. Since 

the gauge degrees of freedom are fields at higher levels of Verma modules, they 

are not annilated by KR. From the viewpoint of string geometry, the action 

derived from KR is a particular gauge-fixing of the action derived from K. It is 

certainly preferable to retain the maximum amount of symmetry in defining the 

classical string theory, especially when this symmetry has the power apparent 

in eqs. (3.5) and (3.6). We therefore propose K as the correct form of the 

reparametrization-invariant string kinetic energy. 

Before continuing, let us note one generalization of this construction. The 

gauge invariance we have discussed reduces on the first mass Ievel to an Abelian 

gauge symmetry; however, it is easily generalized to yield the linearized version 

of a gauge invariance under any of the classical groups, by the standard Chan- 

-Paton procedure of attaching quantum numbers to the ends of the string. If, 

instead of a scalar string field @[x(o)], we introduce a string field with SU(n) 

indices @![~(a)], the vector field A” will become an SU(n) gauge field with the 

correct (linearized) transformation law. Removing the string orientation by a 

restriction: 

Qabwl = ffDba[x(7r - o)] P-7) 
puts Ap into the correct representation to be an O(n) (Sp(n)) gauge field, and, 

again, the gauge invariances of the action contain the proper linearized gauge 

transformation. 
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4. The Gauge-Invariant Action 

We have now set up the requirements for the kinetic energy term of the string 

field theory and solved them formally by requiring: 

K = 2(Lo - I)P, (4.1) 

where P is the projector onto level 0. In this section, we will find an explicit form 

for this object and study its properties on the lowest few mass levels. 

The projector onto level 0 was actually introduced long ago by Brower and 

Thorn (261 in their work on ghost elimination in dual resonance models. They also 

introduced the essential mathematical objects necessary to study the properties 

of P. This technology was later developed by the mathematicians Kac i241 md 

Feigin and Fuks [251 . The central object of their study was the contrauariant form 

J$‘, defined as follows: Let Ih) be a state at level 0 which is also an eigenstate 

of LO with eigenvalue h. Then 

J&‘)(h) 0 = (hi d”)L(“! Ih) . 8 f (4.2) 

The indicated matrix element can be evaluated by commuting the Z!“’ to the 

right and annihilating them against Ih); thus M(“) is completely determined by 

the commutation relations of the-Virasoro algebra and is independent of the de- 

tailed properties of Ih). K ac and Feigin and Fuks have computed the determinant 

of At(“) and show it to be nonvanishing except on a specific set of values of p. 

For generic p, then, MC”) is invertible. 

Now define 

If ip, denotes a state at level m, II(n) satisfies the identities 

I-I@ ) @  m = !Bp, for m < n, n(n)o, = l$+$Bo = 0. (4.4 
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Then the projector onto level 0 is given by 

p f n(‘)rp) . . . n(n) . . . . (4.5) 

When P acts on a state at level n, all the projectors to the right of II(“) reduce 

to 1; then IItn) can project this state away. As defined in eq. (4.5), P is not 

manifestly Hermitian. However, its Hermiticity is clear from the fact that it is a 

projector. Note also that [P, LO] = 0. P is, then, exactly the object we need to 

complete the construction of the kinetic energy operator K, eq. (2.16)* . 

We may note parenthetically that the mathematical apparatus we have just 

presented allows one to write explicitly the construction of KR presented intu- 

itively at the end of Section 2. The requirements set out there are satisfied 
by [27,151 

KR = K - ~t(_“,)KM{;)-‘(Lo)@). w-9 
ijn 

The terms added to K are explicitly gauge motions. 

It is instructive to examine the properties of K explicitly at the lowest few 

mass levels. Noting that IItnl re d uces to 1 on all states below the nth mass level, 

one can easily find the explicit formula: 

K = 2(Lo - 1) - LwlL1+L:, 
4Lo+$-sL2 

B(Lo) l 
(4.7) 

2 6Lo+6 
+L-1 B(jro) 2 * . - 

L + hc -L 2(4Lo+2)t2Lo+2)L + 
B&d 

2 . . . . 

where d is the dimension of space-time, 

B(Lo) = 16L;+(2d- lo)Lo+d, (44 

and the omitted terms annihilate all states below the third mass level. We can 

use this formula to the quadratic action S = f(@ 1 KQ) in terms of component 

* A form for S similar to this one haa been constructed by Kaku and Lykken I131 . Their 
action contains an extra term (a/&), whose origin we do not understand. 

13 



fields. Combining (4.7) with (3.3), we find at the zeroth mass level, 

-. 
/ 

ddx ;q$(p2 - w, (4-g) 

a Klein-Gordon equation with m2 = -2, as expected. At the first level, we find, 

using L1 = pa al + . -., 

- 
/ 

ddx ;Ar(rf”p2 - p”p”)Ay = / ddx (-;I$,). (4.10) 

Since our action S is gauge-invariant, a properly gauge-invariant kinetic-energy 

term for A, should emerge, and it does. 

At the second mass level, though, we meet a problem. Evaluating (4.7) on the 

second mass level turns the denominator B(Lo) into a factor (4p’+(d-5)p2+d)-’ 

which makes the action S nonlocal. One can check, in fact, that there is no local 

action second order in derivatives containing only the fields hpv and up which is 

invariant to the gauge symmetries (3.6). One can, however, convert the action 

to a local form by introducing Stueckelberg 12*] fields. Let us examine how this 

works at the second mass level. In a general dimension d we would need two 

scalar fields, with masses given by the zeros of the denominator of (4.7): 

rng = i{(d-5)+((d-l)(d-25))t}. (4.11) 

The field corresponding to my is a ghost when d > 26, decouples at d = 26, and 

can be considered a physical boson when d < 26, in accord with the old results 

of Brower and Thorn1261 . 

The form of this action simplifies greatly when d = 26. In that case, (Lo + 1) 

is a common factor of B(L 0 and all of the numerators shown in (4.7). Dividing ) 

through by this factor yields a simpler expression for K. For future reference, we 
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quote the complete expression through the level 3 components: 

K = 2(Lo - I) - LelL1 - fLL24 

- iLw3L3 

12Lo + 37 
(4.12) 

-(3L-2 + 2L:,)L-1 
48(3Lo + 7)(Lo + 4)(8Lo + 21) 

L#Lz + 2L;) 

-(3L-2 + 2La1)L-146(3Lo +;)(Lo + 4) (8L3 + 3&&t) + h.c. 

+(8L-3 + 3L-2L-q) 
4Lo+7 

48(3Lo + 7)(Lo + 4) 
(8L3 + 3L&2) + . . . . 

The denominator of the level 2 term is now a quadratic form, and the numer- 

ator has simplified in such a way that one Stueckelberg field with mass rn$ = y 

now suffices to remove the nonlocality at this level. (4.12) leads to the following 

expression for the quadratic action on the fields of the second mass level: 

- up [-a2?y + aw] uy + s [-a2 + y] s 

+ s [&3”h,, - ; h; - 5Wup] } . 
(4.13) 

In this expression .s(x) is the Stueckelberg field. This action is invariant under 

(3.6)) supplemented by the transformation 

6s = a,A”, - 34~. (4.14) 
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The simplest way to analyze (4.13) is to use the vector and scalar gauge trans- 

formations to set both up(z) and s(x) to zero; then one may use the equations 

of motion to set the unwanted components of h,, to zero and arrive at a theory 

containing only a massive tensor field. This is, of course, the correct content for 

the string at this level. 

At the second mass level, then, one finds nonlocal terms in the string action 

which force one to introduce an extra scalar field, exactly the field needed to 

remove the extra scalar gauge invariance found at the end of the previous section. 

The necessity of adding such additional fields was already noted by Siegell”] . 

In his covariant-gauge quantization of the string (restricted to d = 26), Siegel 

also found an extra scalar field at the second mass level. He found, together with 

the (commuting) ghosts of the ghost fields, one field which he thought natural 

to include with the physical fields arising directly from the string. He concluded 

that the fields contained in @[z(a)] are insufficient to describe the full content 

of the classical string theory. We will see the connection between this viewpoint 

and ours in Section 7. 

At higher mass levels, our formula for K contains higher-order polynomials in 

Lo in the denominator, and, therefore, more formidable nonlocalities. We would 

like to be able to remove all of these nonlocalities by introducting Stueckelberg 

auxiliary fields. We will present several different sets of Stueckelberg fields which 

accomplish this goal, closing in, eventually, on the minimal set which leads to 

the standard quantum theory of the string in 26 dimensions. Let us begin which 

the most simple example. It is of interest because it is the only one of these 

constructions which works in a general space-time dimension, and because its 

weaknesses will make the requirements for the correct set of Stueckelberg fields 

more clear. 

To render the action derived from K local, one requires fields of successively 

higher spin at higher mass levels. It is natural to expect that these fields can be 

assembled into string fields Sn[z(a)] and, therefore, to search for a string action 
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which contains Stueckelberg string fields in addition to the fundamental string 

field Cp. We will now prove that our action (2.15), (2.16) is obtained (at the 

classical level) from the following manifestly local action PI . . 

S +-c L-n& 1 2(LO - 1) 1 Q - C L-n&)9 (4.15) 
n n 

by integrating out the Stueckelberg string fields Sn. 

Define the projector onto levels N and lower as 

and define 

where 

pN = l-p+q-p+2). . . , 

SN = -f(@N 12(‘30 - 1)pN 1 @N)r 

(4.16) 

(4.17) 

@N = @ - PN c L-n&. (4.18) 
n 

If we can show that SN is equivalent to SN-1, the equivalence of (4.15) and (2.15) 

follows by induction. Let us, then, separate out of (4.18) the Stueckelberg fields 

at level N: 

ipN = @N-l - c 
t W) s(O) -i i 9 (4.19) 

i 
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where Sp) are fields at level 0. Then (4.17) takes the form 

SN=- z -i i l (&N)sb(o) 1 2(Lo - 1) I dpi’“‘) 

+(~'_f'si(o) I2(LO- l)pN 1 @N-l) - ;(@&I I2(L() - 1) 1 @N-l) 

= - ;(Sy) 1 2(L; - 1+ N)hti;) 1 Sj(‘)) 

+ (S/O) 1 2(~0 - 1 + N)fTiN)P~ I @N-I) - ~(@N-I I 2(Lo - 1) I @N-I) 

= - ;(S!o)' 1 2(Lo - 1+ N)@) 1 Sj(o)‘) 

= - ;(s!o]' 1 ~(LI-J - l+N)Mi;) 1 sj(')') + SN-1, 
(4.20) 

where S,!o)’ is a shift of Si(o) . Integrating over Si(o) removes the first term in 

the last line and proves the classical equivalence. Our expression for the string 

action, then, can be made completely local in terms of the component fields, 

in any space-time dimension, by introducing a sufficient number of Stueckelberg 

auxiliary fields. 

The action (4.15) h as, however, several notable defects. In this formalism, we 

introduce Stueckelberg fields even at the massless level. Maxwell’s action arises 

from integrating out x in the action S = s f(Ap - d,x)d2(Aj - 9‘~). This 

implies that, first, we have more Stueckelberg fields than are strictly necessary 

to render the original action local. More importantly, it shows explicitly that the 

component-field action derived from (4.15) contains terms with 4 derivatives. 

The example does make clear the necessity of finding the correct set of Stueck- 

elberg fields. Though (4.15) is equivalent to the nonlocal action for <p at the 

classical level, it differs at the quantum level precisely by the determinants ob- 
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tained when the Stueckelberg fields Sj(o)’ are integrated out. Only one choice of 

Stueckelberg fields, then, can reproduce the conventional quantum theory of the 

string, even at the level of the counting of states. 

Eq. (4.15) has a further property which one should keep in mind as we 

discuss more refined sets of Stueckelberg fields. The Stueckelberg fields contained 

in (4.15) are redundant, in the sense that there exist transformations of, the 

Stueckelberg fields alone, not involving a, which leave the action invariant. An 

example of such a transformation is 

“a = - C L-dmn + f C (k - t)g,,, 
m k+kn 

(4.21) 

for $mn antisymmetric in its indices. Because of the non-Abelian nature of the 

Virasoro algebra, such redundancies are inevitable in any formulation in which 

Stueckelberg fields are unconstrained. We must try to turn this puzzling feature 

to our advantage. 

5. Differential Forms on the Space of Strings 

The presence of redundant gauge transformations of the structure of eq. 

(4.21) has a natural interpretation in the language of differential forms. In our 

discussion of chordal gauge transformations, we considered the L-n’s as differen- 

tial operators on the space of strings. It is not unreasonable, then, to consider the 

term c L-n& as the divergence of a l-form. This quantity must then be zero if 

Sn is the divergence of a 2-form. That is precisely the structure displayed in eq. 

(4.21); the only unfamiliar piece is the last term, which compensates the struc- 

ture constants of the Virasoro algebra. It is clearly of interest to flesh out this 

analogy, both to discover new invariance principles which generalize (4.21) and, 

perhaps, to illuminate some of the differential geometry of the space of strings. 

In this section, then, we will digress to discuss this issue. We apologize that 

much of our development is purely formal and is not physically well motivated. 
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We believe it is a very important problem to find a geometrical interpretation 

for the construction we will now present. We find it remarkable that one of the 

central identities of our construction is valid only in 26 dimensions. 

The algebra of differential forms which we will present is closely connected to 

the algebra of Siegel’s BRST-invariant string quantization llo1 . We were, in fact, 

led to consider relations of this form by our attempts to derive this gauge-fixed 

action from a gauge-invariant viewpoint. Many of the basic relations we will 

present-in particular, the gauge transformations and the gauge fixing terms for 

the basic fields-an be read directly from the BRST charge presented in ref. 10. 

Let us begin by defining our notation. We construct differential forms as 

tensors whose components are string fields, functionals of x(a). We will consider 

these tensors to have two different types of indices, covariant and contravariant, 

each of which may appear either raised or lowered. It is most convenient to 

think of covariant indices as lowered and contravariant indices as raised; how- 

ever, lowering a contravariant index does not automatically make it transform 

as a covariant index, or vice versa. An index of either type takes as its value 

any positive integer. The derivatives Ln and L-n carry n as a covariant index. 

Differential forms are defined to be completely antisymmetrized in all covariant 

indices and, separately, in all contravariant indices. Indices of both types are 

raised and lowered by a metric tensor 

rlmn = T&m,. (5.1) 

Define tensors Vmnp and Wmn P to contain the structure constants of the 

Virasoro algebra, by rewriting the basic commutation relations (2.8) as follows: 

[Lm, Ln] = VmnP Lp 

[L-m, L-n] = - VmnP L-p (5.2) 

[Lm,JL] = Wmn’Lp + Wnrn’L-p + QnnL(m) 9 
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where m, n, p are positive integers. More explicitly, 

VmnP 3 6(p - (m + n))(m - n) 

wmnP = 6(m- (n+P))(m+n) (5.3) 

L(m) = 2L0 + y(m2 - l), 

the last relation evaluated in d = 26. 

Before introducing differential operators in their full generality, let us write 

the simplest exterior derivatives and divergences and compute their relations. 

Define the divergence of a contravariant l-form CP, a 2-form $P’J, and a 2-form 

with one index of each type Am, as follows: 

bC = L-,cp , sgm = L-,$Prn - fvkl”$I’ 
(5.4 

66, = L-PA’, + WnpqApq. 

The first two of these have, respectively, the structure of a chordal gauge transfor- 

mation and of the redundant transformation (4.21). Define the exterior derivative 

of a O-form @, a contravariant l-form CP, and a covariant l-form C, as follows: 

d@n = Ln@ , dCmn = LnCm +W,kmCk 3 

Then one can straightforwardly verify the relations 

S2$ = 0, d2@ = 0. (5.6) 

Using the identity 

m 
Wpm”Wqn = 6(P--tl) c (P+m)(P+4 = Pspq(;P + f,(P - 119 w 

n+n=p 
m,PB>O 
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one can also verify (but only in 26 dimensions) 

(db - 6d)Cn = qnp * 2(Lo - 1 + p)CP. (5.8) 

If we view CP as a gauge motion, the relation SC@ = L-,CP indicates that CP 

should have its lowest components at the pth mass level of @. Thus, 2(Lo - 

1 + p) is the appropriate kinetic energy operator for CP, and eq. (5.8) takes the 

conventional form 

(dc5 Ad) = A. (5.9) 

Eq. (5.8) is useful in the following context: A natural choice for a set of 

gauge fixing conditions for chordal gauge transformations is {L,@ = diDp = 0). 

However, the variation of this term with respect to 0’ is (dSC), which is not 

particularly simple. But if we add to the gauge fixing condition a Stueckelberg 

field Am, with the gauge transformation 6CAmn = -dCmn, we find 

bc (da + 6A) = (db - 6d)C = 2(Lo - 1 + p)C. (5.10) 

In the Fadde’ev-Popov formalism, this variation gives the kinetic energy of the 

ghost string fields. Apparently, the Stueckelberg field Amn allows this operator 

to take a simple form. 

Let us now generalize the relations (5.6) and (5.8) to forms of arbitrary rank. 

Let us refer to a form with a contravariant and b covariant indices as an (:)-form. 

- Define the exterior derivative and the divergence of an (:)-form C by: 

w [ml...m,] 
[(El -nb+l] = 

ml...m,] 
n~...nb+l] •+ a Wp[nl lrnl Cpma’~*ma1n2dbb+l] 

(ac)lml...m--ll[nl...nb] = L-, CIPml...m.-lllnl...nb+l) + b wfnlpq Clpml..-m,-l]Pno...nb] 

- ;(a - 1) vkl ]ml ckZm~...m,-I] 
[nl...nb]’ 

(5.11) 
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Here and henceforth, we make the convention that raised indices labeled as (mi) 

are antisymmetrized together in the indicated order and lowered indices labeled as 

(ni) are antisymmetrized together similarly. One may verify that these operators 

satisfy the fundamental identities of cohomology: 

d2C = 0 , b2c = 0, (5.12) 

and 

where 

(db - 6d) Cml”‘m’-lnl...nb+~ = K tl[nlp Cpml”.m~-lna...nb+~] 9 (5.13) 

K = 2(Lo - 1 + (sum of indices)) (5.14) 

is the natural generalization of the kinetic energy operator in (5.8). Note that 

K commutes with d, 6, and the Ln’s. To prove the relations (5.12), (5.13), one 

needs the Jacobi identities of the Virasoro algebra 

Wpm’ Wqnk - Wpn’ Wqmk + Vmnq Wpqk = 0 

and the relation (5.7). 

(5.15) 

Thus far, we have treated covariant and contravariant indices ss completely 

distinct. However, since our formalism does contain a metric qpq, we can, in 

principle, bring covariant and contravariant indices to the same level and sym- 

metrize or antisymmetrize them in pairs. This procedure decomposes a general 

(:)-form into components with definite permutation symmetry, each component 

corresponding to a given Young tableau. Because the covariant and contravariant 
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indices are (separately) antisymmetrized among themselves, only Young tableaux 

with one or two columns appear in this decomposition. For example: 

3 0 = 
1 IIF + . (5.16) 

Let us refer to a Young tableau of with columns of length k, L as a (k, e)-tableau, 

or simply as (k,t). In general, an (:)-form decomposes as follows: 

O<e<b(a+C+-cc) (a > b) 
o~c<.(b+c,a-c) (b> a) ’ 

(5.17) 

The case c = 0 is clearly special; let us, then define a maximally symmetrized 

(:)-form to be one symmetrized according to (a, b) for a 2 b or according to (b, a) 

for b 2 a. 

We will indicate the Young symmetrization of a form C by the notation 

[cl (, LI. This symmetrization bracket will be normalized in such a way that if 

the &nmetrization is automatic, the bracket can be ignored and no additional 

factors need be supplied. For example, if C is a (:)-form, as in (5.16), 

C = [cl (490) + [Cl @,I) 

If D is a (:)-form, symmetrized according to (1,3), 

D nl PI mlmm8 m2mm8 WI nl = D m mlmama C mlm2m8 nl- (5.19) 

Young symmetrization must be used sparingly, because raising and lower- 

ing of indices changes the transformation law of the form. Inserting a Young 

symmetrizer between the two operators in the any of the fundamental relations 
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(5.12), (5.13) g enerally spoils the relation. This can be easily seen in the following 

example: Let CP be a (:)-form. Then 

d(‘lpQCq)p, = --opk(dC)kr 
(5.20) 

- ‘IPk(L{k C,} + Uqkr P}, 

where 

u 
k2+r2 +4kt 

qkr = Wqkr + f Vkrq = 6(k+r - q) 
2 3 (5.21) 

and Wqkr and vkrq are defined by lowering indices of (5.3) using qpq. A crucial 

property of Uqkr is that it is symmetric in its last two indices. Eq. (5.20) indicates 

that (at least in this circumstance) raising an index anticommutes with the d 

operator only if the raised index is then re-antisymmetrized with the remaining 

covariant indices. 

Let us now discuss the generalization of eq. (5.20) to (:)-forms. We must first 

define a suitable generalization of the raising and lowering of a single index. Let fi 

denote the operation of raising the first covariant index and antisymmetrizing it, 

at the front of the line, with the contravariant indices. Let u be the corresponding 

lowering operator. Explicitly, if C is an (:)-form: 

ml-m,+1 
nl...nb-1 = q mlq C ma...mw qnl . ..nb-1 

nl...nb+l = qml...m,-1 n!k..nb+l - 

(5.22) 

By our convention, the (mi) are antisymmetrized together, and the (ni) are 

antisymmetrized together. We have encountered # implicitly already in our dis- 

cussion. Using (5.22)) we can rewrite the identity between d and 6, eq. (5.13), 

as 

d6-6d=Kl,t. (5.23) 

An important property of fi and lJ is that one or the other of these operators will 
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annihilate a maximally symmetrized (:)-form C: 

1 fi [cl,ta,*, = 0 (a 2 b) 

u M(b,a) = 0 (b 2 a) . 
(5.24) 

These relations follow from the observation that the index raised or lowered will 

always be antisymmetrized with an index with which it had previously been 

symmetrized. Conversely, the validity of (5.24) implies that C is maximally sym- 

metrized. This criterion is, in fact, quite a useful one. 

Eq. (5.24) makes clear that fi and 4J. are not in general the inverses of one 

another. It is not difficult, though, to work out from the definitions (5.22) the 

following relation between these operators: If C is an @-form, 

a@+l) tu c - b(a + 1) $U C = (a - b) C. (5.25) 

If C is maximally symmetrized, one of the two terms on the left-hand side of this 

equation vanishes. In this special circumstance, fi inverts the operation of 4 (or 

vice versa). 

We are now ready to quote the generalizations of eq. (5.20). lJ anticommutes 

with both d and 6; for example, 

((4 d + d U)C)m1”.m81nl...nb+~ = Up(nln2 Cpml.‘.m.-lna...nb+a] = ‘9 (5’26) 

-because of the symmetry of Upk(i The commutation relations of fi with d and 6 

are unfortunately quite complicated. However, for the analysis we will present 

here, the following information will suffice: If C is a maximally symmetrized 

0 t -form, with a < b, then 

($---) d fi + (b :I’ .) j’l d } C is maximally symmetrized, (5.27) - 

(E) 6 fi + (b + T _ .) fi 6) C is maximally symmetrized. (5.28) - 

To prove these identities, operate with lJ on the two quantities displayed; the 
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result is true if U annihilates these quantities. To show that this is so, use (5.25) 

to pass U through $, and apply the relations {#,d} = 0, {&S} = 0, U C = 0. 

The inner product of two forms should include both the Hilbert space scalar 

product for the string coordinates and a contraction of covariant with contravari- 

ant indices. Thus, if two forms CA and Cg are to have an inner product and CA 

is an (:)-form, Cg must be a (:)-form. With this definition, 

(dCA 1 CS) = (CA 1 6Cdt (5.29) 

and fi and U are self-adjoint. In principle, one can take the inner product of CA 

with (:)-forms such that c + d = a + 6 by raising and lowering indices appropri- 

ately. We will, in fact, find such a generalized inner product useful in the next 

section. We will always be careful, though, to indicate the required raising and 

lowering explicitly. 

6. Stueckelberg Fields for the String in 26 Dimensions 

Let us now apply this formalism to the problem of finding a more compact 

set of Stueckelberg fields which render the gauge-invariant string action local. 

We will advance toward our final answer in stages. We will first examine the 

string at low mass levels, and generalize the structure we find there by intro- 

ducing Stueckelberg fields which are differential forms. This will lead us to a 

gauge-invariant local action, but with a set of Stueckelberg fields which is still 

not minimal. Clarification of this issue will then lead us to the correct set of 

Stueckelberg fields. 

To begin, let us return to the action of the fields at the second mass level, 

which we wrote in a local form in eq. (4.13). At this level, we required only one 

scalar Stueckelberg field e(z). To generalize this construction, we must identify 

s(z) as a component of some higher-level string functional. If g(z) is considered 
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as the scalar component of a string field S, its gauge transformation property, 

eq. (4.14), may be identified as the scalar component of 

6s = -L1\E - 38, (64 

where Q and B are chordal gauge parameters defined above eq. (3.6). In the 

previous section, we found it reasonable to consider SV, H, and the higher gauge 

functions as the components of a differential form 0’. Then S must also be a 

component of a form, and it is not hard to see that (6.1) is the m = 1,n = 1 

component of the transformation 

(6.2) 

(In this and the next section, transformations will be denoted by 6 with a sub- 

script; 6 without a subscript will denote the divergence operator on forms). 

The identification of S as the (1,l) component of a (:)-form is readily con- 

firmed by noting that the action, up to the second mass level, can be rewritten 

in terms of string fields as: 

s = -5 
1 

(a I2(Lo - 1) @) - (s 12(&I + 1) s) 

- (To check this, eliminate S by rearranging Lr’s to simplify the quadratic term 

in S and then completing the square. One recovers by this procedure the first 

two lines of eq. (4.12).) Note that the two terms in the first line of (6.3) contain 

the correct values of K, eq. (5.14), f or a scalar and a (:)-form. The two more 

mysterious terms in the second line may be recognized as the m = 1 and m = 2 

components of 

(dQ+6A)m 3 (6.4 

truncated to the second mass level. 
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It is now natural to guess that the complete local action is given by 

S = -f (@‘IKO)-(AmnIKAnm) 

(6.5) 
- ((da + &A), 1 tlpq (da + SA),) - 

This choice for S is gauge-invariant to the chordal transformation parametrized 

by a l-form 0’: 

SC0 = 6C, die A = -dC, (6.6) 

since, using (5.10), 

-6~ S = (a 1 K6C) - (A”, I K (-dCnm)) 

(6.7) 
- 

(W + 64, I (KC)pJ}9 

and (5.29) implies that this is zero. Since the symmetry (6.6) contains the desired 

gauge motion of 0, and since S reduces to (a 1 2(Lo - 1) a) on the level-O 

components of 0, this action must reduce to the nonlocal action constructed in 

Section 4 when the Stueckelberg fields A are eliminated. Thus, eq. (6.5) provides 

a second set of Stueckelberg fields which render the string action local. This set 

-is considerably smaller than the one presented at the end of Section 4, and its 

action is no more than second order in derivatives. 

Should we then consider eq. (6.5) to embody the minimal set of Stueckelberg 

fields? To answer this question, it is useful to study explicitly the way in which 

(6.5) leads to th e complete expression (4.12) ft a er elimination of the Stueckelberg 

fields up to the third mass level. The new terms in (4.12) contain two new poles 

in their denominators. (The term (8Lo + 21) is not a new structure, since it 

obviously arises from passing an Lr through (8&o + 13).) This would seem to 

accord well with the appearance at this level of two new Stueckelberg fields, A21 
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and Arz. However, that is not how the two new poles arise. Explicit evaluation 

shows that, up to the third mass level, (6.5) depends only on the combination 

(Al2 + 2A2r). Th e second pole -arises in the following way: To eliminate All, one 

must first project it into its level-0 and level-l components, by the replacement 

A’1 + (1 -L-1 -%A11 + (L-~: 2Lo 
2; Ll)A’l. (6.8) 

The level-l component, a scalar field, mixes with the surviving combination of 

the new A’s; the quadratic term involving these two fields is a 2 x 2 matrix whose 

determinant is proportional to (3Lo+7)(Lo+4). Thus, only one new Stueckelberg 

field is necessary to reproduce the full structure displayed in eq. (4.12). 

The combination A’2 + 2A2r is simply the symmetrization of Am, after index 

lowering. It is tempting to guess that (6.5) contains only the symmetrized form 

Aimn); however, this guess can be seen to fail at the fourth mass level. We must, 

then, ask what principle forces A to appear symmetrized at low mass levels and 

whether this principle can possibly be generalized. 

The required principle is, as one might have suspected, the invariance of 

S with respect to redundant gauge transformations. The motion of the gauge 

parameters given by 

65 cp = (6 $)P , (6.9) 

where $ is a (@-f orm, is necessarily a symmetry of S, since any possible CP is a 

symmetry. This transformation leaves @  invariant, since b2 = 0. One can check 

that it leaves the symmetric part of A invariant, up through the third mass level. 

Above this level, one can preserve the condition of symmetry by changing the 

transformation law of A under 5. Relabel the original gauge parameter C as Cl, 

let C3 be a (t)-f orm, and let A transform under C according to 

&A = -dCl + 6C3. (6.10) 
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Assign to Cr and Cs the 9 transformation laws 

65 Cl = 65, &jC3 = d& (6.11) 

Then A transforms under $ according to 

$A = (d6 - 6d)$ = Kg. (6.12) 

Since 5 is antisymmetric in its two indices, the symmetric part of A is now 

manifestly invariant to $ at all levels. 

One is thus led to modify the action (6.5) in the following way: First, replace 

A everywhere by its symmetric part. Then add terms to the action so that it 

remains Cl-invariant and becomes also Cs-invariant. A natural term to add is 

the higher rank generalization of the second line of (6.5): 

(dA + 6A4)2, (6.13) 

where A4 is a (f)-f orm. But then, just as happened with A, A4 will appear to 

be subjected to a symmetry condition. This condition is the result of a new 

redundant gauge symmetry 

65 c3 = 654 (6.14) 

which leaves A invariant. To give A4 a simple transformation law under $4, 

-introduce a new gauge symmetry Cg, and assign the transformation laws 

Then 

6~64 = -dC3 + Kg, 

65 c3 = Ss4, 65C5 = dS4. 
(6.15) 

65 A4 = (d6 - 6d)G4 = Kg4. (6.16) 

We must now determine the symmetry of the various fields in this equation. C3 is 

a @)-form and so could contain components symmetrized according to the Young 

31 



tableaux (2,l) or (3,0). However, only the (2,1) component will give a nontrivial 

shift of the symmetric part of A when inserted into (6.10). We may thus restrict 

C3 to this symmetry. But then- $4, a (3-f orm, must be symmetrized according 

to the Young tableau (3,1). A 4, a @-form, could, in principle, be symmetrized 

according to (4,0), (3,1), or (2,2). However, if the term (6.13) is to couple A4 

to the symmetrized A, A4 cannot belong to (4,0). (6.16) implies that A4 will be 

&-invariant if it contains no component with the symmetry of $4, (3,1). Thus, 

A4 should contain only the component (2,2). 

To insure the symmetry of Ad, however, one must add a new (:)-form Stueck- 

elberg field. A set of arguments similar to those just given restrict the symmetry 

of this form to the Young tableau (3,3). The process continues indefinitely. We 

find, then, that the minimal set of Stueckelberg fields for the bosonic open string 

is a set of (i)-f orms, one for each integer k, symmetrized according to 

(6.17) 

We have now established the field content of the local, gauge invariant lin- 

earized string action; we have also motivated the general form of the terms by 

which these fields couple to one another. Let us, then, present the final form of 

this action and verify that it satisfies our requirements. To prepare for this, let 

us regularize our notation in the. following way. The fields which appear in the 

-gauge-invariant string action are all elementary components of the string, in the 

sense that they participate in the classical equations of motion. Let us label all 

of these fields as Cp’s. Let @o = Q, the original string field, and label the @-form 

Stueckelberg field, symmetrized according to (k, k), as @zk. The action should 

be gauge-invariant under the chordal transformations 

6&k = -dC 2k-1 + 6 c2k+l, (6.18) 

where czk+r is a ( k+l k )- form symmetrized according to (k + 1, k). These gauge 
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transformations are themselves invariant under the redundant transformations 

6$c2k+l = dS2k + @2k+2, (6.19) 

where &$k+z is a (kf2)-f orm symmetrized according to (k + 2, k). The $ transfor- 

mation law is in turn left invariant by transformations parametrized by (2kz3)- 

forms C’, symmetrized according to (k + 3, k), and so on. Each form that we have 

introduced has the total number of indices denoted by its subscript and cannot 

appear at a mass level lower than this number. Thus, at any given mass level, 

the proliferation of Stueckelberg fields and their successive gauge transformations 

eventually terminates. The full string field theory, however, contains an infinite 

number of levels. 

The gauge-invariant action for the !& can be written compactly using the 

notation introduced in Section 5: 

(-Ilk (@2k 1 -2k) 

- (-l)k (k + 1j2 (d&k + 6@2k+2 Ift (d@2k + 6@2k+2)) . 

(6.20) 

(The coefficient of the second term must grows with k to compensate the fact 

that, in our conventions, as k increases, fi comes increasingly closer to annihilating 

the highly symmetrized forms.) -As with our previous choices for a local string 

-action, this expression is set up so that @  decouples from its Stueckelberg fields if 

Lnip = 0 for all positive n. In this case, the action reduces, at the classical level, 

to -$(a 1 2(Lo-1)Q). Ifth is action were also invariant to all C-transformations, 

that would imply that the action which results from eliminating the Stueckelberg 

fields must be invariant to the basic chordal gauge transformations (3.2). These 

two requirements imply that S reduces to exactly the form -i (a I 2(Lo - 1)P a) 

presented in Section 4. To establish the classical equivalence of (6.20) and our 

original nonlocal action, then, we need only prove that (6.20) is invariant to 

C-transformations. 
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Let us, then, study the variation of S under a C-transformation. Since the @zk 

are projected onto representations of definite symmetry, their C transformation 

laws must be explicitly symmetrized by operators. We indicate this symmetriza- 

tion using the bracket defined above eq. (5.18). Then 

SC s = t-1)’ (@2k 1 K [bCZk+l - dctk-I] (k,k)) 

+ (-l)k k2 (b&k Ifi d [6c2k-1 - dC2k--9](k-1,k-l) 

+ 6 [6c2k+l - dC2k-‘](k,k) ) 
) 

(6.21) 

- (-l)k (k + 1)’ (d%k I$ (d [bCZk+l - dC2k-l](k,k) 

+ 6 [bc2k+3 - dC2k+l] (k+l,k+l) )* 
> 

We will prove that (6.21) equals 0 in two stages. First, we will assume that 

every symmetrization bracket in (6.21) can be dropped and evaluate 6cS with 

this simplification. Then we will prove that it is valid to ignore the explicit 

symmetrization in this way. 

Setting [fic2k-l] (kml,kml) = 6&-r, etc., and then using 8 = b2 = 0, we can 

rearrange (6.21) as follows: 

_ 6c s = (-l)k (d%k 1 K czk+l)- - t-1)’ (b@2k 1 K CZk-1) 

+ (-l)k k2 (bask Ifi d6c2k--1 - b&k--l > ) (6.22) 

- (-l)k (k + 1)’ (d@zk Ifi (d&+r - 6&r++. 

Now note that 

$ (ds - ~d)Cw-l = K lt’u c2k-1 = K kz 2k 5 - 1; (6.23) 

we have used the representation (5.23) in the first step, and (5.25) and the 
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(k, k - 1) (maximal) symmetrization of C Sk-1 in the second step. Inserting (6.23) 

and the corresponding identity for Czk+r into (6.22), one finds that everything 

cancels. 

Now we must prove that it was valid to ignore the symmetrizers. The bracket 

in the first term of (6.21) is obviously superfluous, since it contracts directly with 

@Sk. In the remaining terms, we must integrate by parts, moving fi and d or 6 

to the left side of the inner product. In the piece of the second term involving 

6Czk-r, we find the structure 6 fi (6&). Let us rewrite this using 

k26 fi= {k26 fi + (k ; II2 fi 6) _ (k ; II2 * 6 . (6.24) 

The last term on the right leads to b2@p2k = 0. The term in braces is the combi- 

nation of 6 and fi which appears in eq. (5.28). 6@zk is annihilated by U (since 4 

anticommutes with 6) and is therefore maximally symmetrized; then, by (5.28), 

the term in braces acting on 6@zk is maximally symmetrized. We have thus 

proved that 6 fi b@zk has the symmetrization (k - 1, k - 1); thus the sym- 

metrization bracket on the right-hand side of the inner product is superfluous 

and can be dropped. A parallel argument, using eq. (5.27), allows us to drop 

the symmetrization bracket in the last term of (6.21), the term involving b&+3. 

Finally, we may apply this argument to the two remaining terms. After passing d 

and 6 through fi by the use of (5.27) and (5.28), we find two terms which combine 

into the structure 

(-lJk ; (fi (db - 6d)@zk 1 [- s-1 (k,k)) - (6.25) 

But (db - bd)&k = K 4 @Sk = 0, by eq. (5.24). We have now rearranged 

(6.21) in such a way that every nonzero term is automatically projected onto 

the appropriate Young symmetrization. This completes the proof of the gauge- 

invariance of (6.20). 
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Eq. (6.20) is our final result for the action of the free string field theory, made 

local by the addition of Stueckelberg fields. Its field content is highly restricted 

by a web of gauge invariances. ‘We must now check that this content reproduces 

that of more conventional approaches to the string theory. 

7. Gauge-Fixing and Quantization 

Having now constructed a plausible form for the quadratic action of string 

fields, we must demonstrate its equivalence to other forms of this action which 

have been presented previously. In this section, we will present gauge-fixing 

prescriptions for our action which reduce it to the forms constructed by Kaku 

and Kikkawa[‘l and by Siegell”] . 

Kaku and Kikkawa made their construction in the transverse gauge. To enter 

this gauge, let us specialize our fields @[s(a)] on the whole of string configuration 

space to their values on the subspace for which z+(a) = r, independently of cr, 

and to that subset of functions annihilated by nonzero Fourier components of 

P+(a): 

Pz@[r,z-(u),Z(u)] = 0 (n # 0). (7-l) 

-On such functions, the Ln take the form: 

Ln = Lt,r-p+$, (7.2) 

where Lt,' is given by eq. (2.7), with p summed over transverse directions only. 

We can then solve the level 0 condition explicitly: The action of CX; on Q must 

be exactly that of Lg/p+. We can restrict the space of a’s to those which satisfy 

this condition; such a’s depend only on the transverse coordinates of the string 

Z(a), since the dependence on z-(a) is specified through the action of cy;. On 
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this subspace, K simplifies to 2(& - 1). Further, 

2(Lo - 1) = 2(Lr - 1) - 2p+p-. (7.3) 

Now p- = --ia/dr, so we find, finally, 

S = - f (@[s(o)] 1 [Zp+i-$- + IA2 + C z-n ’ Gb] @ [z(a)l>a (7.4 
n>O 

This is precisely the quadratic term in the action of Kaku and Kikkawa. 

It is not obvious from this discussion that the gauge symmetries of our ac- 

tion (6.20) suffice to eliminate two coordinate degrees of freedom plus all of the 

Stueckelberg auxilliary fields. Thorn”‘] has studied the counting of degrees of 

freedom in the transverse gauge, but only far enough to show that two coordinate 

degrees of freedom can be gauged away. It is possible, by refining this argument, 

to shown that all of the Stueckelberg fields can also be removed, leaving precisely 

the states associated with 24 transverse degrees of freedom. This argument re- 

quires, however, some additional technical methods; it will be given elsewhere PI 

. Here, we will argue to this conclusion in another way, by verifying that the 

counting of states in our formulation reproduces exactly that which Siegel has 

-found in the covariant gauge. 

Siegell’o1 discovered a gauge-fixed form of the string field theory in which 

every component field has as its free-field action precisely K, with no gauge or 

spin projection. It is appropriate to call this the Feynman-Siegel gauge. To 

accomplish this, Siegel introduced a string field which depends also on two an- 

ticommuting ghost coordinates: @[z(o), 0 (0)) 6 (o)]. For the open string, 0 (0) 

has a zero mode, but the coefficients of this zero mode are auxiliary fields with 

trivial kinetic energy terms which we may ignore in this discussion. The expan- 

sion of Siegel’s field in the nonzero modes of O(o) and d(a) yields a sum of terms 
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of the form 

the coefficient functions in this expansion, which are the component fields of 

Siegel’s theory, are in l-to-l correspondence with our string-field differential 

forms, before Young symmetrization has been performed. These fields are com- 

muting or anticommuting according to whether the total number of indices is 

even or odd. Siegel has shown that adding two additional ghost coordinates in 

this way produces a number of new states which, if anticommuting fields are 

counted with a negative sign, is exactly equal and opposite to the number of 

states in the original string theory which involve excitations of oscillators in the 

two last spatial directions [311 . Thus, the counting of states in Siegel’s formula- 

tion reproduces exactly that of the transverse gauge, with no additional degrees 

of freedom. 

Our gauge-invariant action (6.20) contains only a small subset of Siegel’s 

fields, the commuting (i)-f orms with indices symmetrized according to the Young 

tableaux shown in (6.17). The rest of Siegel’s fields must then appear as ghost 

fields in the Fadde’ev-Popov gauge-fixing procedure. Let us now explain how 

that procedure works here. 

Notice that the action (6.20) has the form: 

s = SF@] + (-1)‘k2 (&k--1 It &k-l), (7.6) 

where SFS is the Feynman-Siegel gauge action for the physical fields @zk and 

&km1 is a gauge-fixing term: 

&k-l = (dh-2 + 6%) . (7.7) 

We may thus convert (7.6) to SFS[@] by subtracting the squares of the &k-r; the 

price of this is that we must add an appropriate ghost Lagrangian. The ghosts C 
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must transform as the gauge parameters of (6.20); that is, they must be &tr)- 

forms symmetrized according to (k, k - 1). The antighosts c will be (kcl)-forms 

with the same symmetrization.. 

The ghost action is given by: 

SC = Wkk2 (C2k-1 Ifi Wh-1) 

= (-l)k k2 (&-1 h 
’ 0 

d bczk-1 - dczk-s (k-l,k-l) 3 V-8) 

The factor (-1) k k2 in front of each term is arbitrarily chosen and can be absorbed 

into the normalization of &-r. To simplify this, note that dC2k-r has only two 

possible Young-symmetrized components, those with (k, k) and (k + 1, k - 1) 

symmetrization. Thus 

d&k-1 = kk-d (k,,) + [dc2k-ll(k+l,k-l) . (7.9) 

Similarly 6&k-1 contains only (k - 1, k - 1) and (k, k - 2), and so a similar 

identity holds for this quantity. Use these identities, and d2 = b2 = 0, to write 

the eq. (7.8) as 

SC = (_1)L k2 (&km1 I$ (d6 - bd)&-l 

- c-i [6C2k--1 - dC2k-3] (k,k-2) + 6 [bc2k+l - dC2k-l] (k+l,k-1) 
> 

)’ 

(7.10) 

Rearrange the first term on the right using (5.23) and (5.25): 

fi (d6 - 6d)&-l = fiu c2k-1 = f K c2k-1. (7.11) 

To rearrange the last two terms, note that the quantities 

(kd fi +(k+21)2 fi d&.-l, (&+I)6 fi +; fi 6)&.-l (7.12) 

are restricted by (5.27) and (5.28), respectively, to belong to the fully sym- 
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metrized Young tableaux (k, k) and (k - l), (k - 1); thus, they are annihilated by 

the explicit Young symmetrizers. Use this property to integrate these two terms 

by parts, passing ii and 6 through fi. After this manipulation has been performed, 

the explicit Young symmetrizers are superfluous, because fi annihilates the only 

alternative structures which could appear on the right, (k, k) and (k - 1, k - 1). 

The ghost action has now become: 

SC = (-1)L (c2k--1 1 KCnk-1) 

(7.13) 
k(k + 1) - 

2 CC 6 2k+l - &k-l I$ (=Zk+l - dC2k-1)) 

> 
* 

This is now exactly of the form 

SC = sFs - (-l)k k(k + ‘1 - 2 (H2k Ifi x2k) 3 (7.14) 

where &s[C] is the Feynman-Siegel gauge action for the ghosts and antighosts, 

and 

H2k = 6&k-1 - dC2k+l . (7.15) 

The action (7.13) is invariant to the second-level gauge symmetries (6.19). This 

-must be true on general principles, because the gauge-fixing term which we added 

to the original action was &invariant. The invariance can also be checked directly 

by the method we used to verify the gauge-invariance of (6.20). The proof requires 

the identity 

which follows from (5.25) by the (k + 1, k - 1) maximal SymmetriZatiOn Of &k. 

&k has the form of gauge-fixing term for the $-symmetry. By subtracting 

the square of &, appropriately, we can convert SC to &s[C], at the price of 



adding ghost-of-ghost fields 8. One can work out the action for these fields by 

following, step by step, the methods used to derive (7.13). The result is 

s5 = k-1)” ($2k 1 K&k) 

> 

(7.17) 
k(k + 2) - 

cdG2k + @2k+2 1 ft (@2k + @2k+2)) , . 3 

which is again of the form of a Feynman-Siegel gauge action and sum of squares of 

gauge-fixing terms. (7.13) can in turn be gauge-fixed, at the price of introducing 

higher level ghosts. The process continues indefinitely. For example, labeling 

the &k as the first level of commuting ghosts, the action at the nth level of 

commuting ghosts is 

Sk’ = (-1)’ (&’ 1 Kg!;)) 

(k+l-n)(k+l+n) - 
2n+l (47;;) + 4;!, 1-h wl;) + &;!J) * 

(7.18) 

This action is invariant to gauge transformations generated by C’s which are 

( k-n )- k+n+l forms. as before, the proof follows exactly the method set out at the ’ 

-end of Section 6. At each level of the hierarachy of gauge transformations, one 

finds the Feynman-Siegel gauge action for the (ghost-of-)nghost fields, plus a 

gauge-fixing term for the residual gauge symmetry at that level. 

We have now shown how the form of the Feynman-Siegel gauge action arises 

for each component field. It still remains to count the various component fields 

and confirm that each field generated by our procedure corresponds to a com- 

ponent of Siegel’s master field. To do this, we must recall a result P-W from 

the theory of antisymmetric tensor fields, the simplest context in which gauge 

symmetries have gauge symmetries. Naively, one might suspect that one needs 
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four ghosts-of-ghosts: Since the higher-level gauge transformation may be applied 

either to the ghost or of the antighost, we have two symmetries and thus we re- 

quire two ghosts-of-ghosts and two antighosts-of-ghosts (all commuting fields). 

However, when proper account is taken of the fact that the gauge-fixing term at 

the first level has its own gauge invariance, one finds at the second level an extra 

square root of the Fadde’ev-Popov determinant for each gauge-fixing condition 

at the first level. This effect (called by Siegel [32l ‘hidden ghosts’) causes one 

anticommuting ghost to be added, or one commuting ghost to be subtracted, at 

the second level. Continuing in this way, one finds that the quantum theory of 

a p-form requires 2 ghosts, 3 ghosts-of-ghosts, 4 (ghosts-of-)2ghosts, . . ., (n + 2) 

(ghosts-of-)nghosts; these fields are commuting when n is even and anticommut- 

ing when n is odd. 

Using this method of counting, we can work out the content of our gauge- 

-fixed theory. Let us first count the fields which are (2k - 1)-forms. We require 2k 

fields which are the (ghosts-of-) 2k-2ghosts of 90; these are symmetrized accord- 

ing to (2k - l,O). We require (2k - 2) fields which are the (ghosts-of-)2k-4ghosts 

of 92; these are symmetrized according to (2k - 3,2). There are two fewer 

(ghosts-of-) 2k-6ghosts of 96, and these have the next higher Young symmetriza- 

tion (2k - 5,4). The process continues in this way until we reach the simple 

ghosts Czk-1 of @?zk. This content can be partitioned as follows: 
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(2k - 1,0) 

+ (2k-1,O) + -(2k-3,2) . 

+ . . . 

+(2k-1,O) + (2k-3,2) + . . . + (k+l,k-3) 

+ (2k-l,o) + (2k-3,2) + . . . + (k+l,k-3) + (k,k-1) 

+ (2k-l,O) + (2k-3,2) + . . . + (k+l,k-3) + (k,k-1) 

+(2k-1,O) + (2k-3,2) + . . . + (k+l,k-3) 

+ . . . 

+ (2k - 1,0) + (2k - 3,2) 

(7.19) 

+ (2k-l,O). 

The nth line of this display gives the decomposition of a general (“,k_i”)-form 

into Young-symmetrized components. Thus, the full content of (7.19) can be 

assembled into a set of (2iIr) -forms of general symmetry, one such form for 

every n. This is precisely the content found by Siegel at the anticommuting 

levels. 

At the commuting levels, the counting of ghosts works in the same way. Con- 

sidering fields with 2k indices, the ghosts account for the entire content of Siegel’s 

theory except for one component of the (i) -f orm which is symmetrized according 

to (k, k). But this is precisely the physical field Q zk. Thus our formulations agree 

exactly in the form of the action and in the counting of states. The field which 

Siegel originally noticed must be added to the content of @O to define the classical 

string theory was the lowest component of @z. We have realized his conjecture 

that the classical free string theory can be completed by adding this and a set of 

additional compensating fields. 
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8. Closed-String Fields 

Now that we have worked out the full structure of the gauge-invariant quadra- 

tic action for open strings, we should indicate how this analysis generalizes to 

closed strings. We will work only up to the first excited level, the one which 

contains the graviton. We will find that the dilaton arises as a Stueckelberg field, 

in close correspondence to the way that this field arises in Siegel’s formalism WI . 

Let us first review the basic kinematics. The closed string has twice as many 

modes as the open string. These can be parametrized by separate sets of am 

corresponding to right- and left-moving modes on the string. For example, J+‘(O) 

should now be expanded as: 

pqa) = i g [a,P + tincinu], 
n=-00 

(84 

where the cy,, and tiin commute with one another and have, among themselves, 

the commutation relations (2.3). The n = 0 components must be given by 

QO = & = ip. Virasoro operators L, and L, can be defined from the cy,, and a,, 

according to (2.7). The operator giving the equation of motion of free strings is: 

4 { (Lo -1)+(L)- l)} = P2+4{C(~-~.a,+a-,.a,)-2}. (8.2) 
n>O 

To generalize the operator (8.2) to a reparametrization-invariant form, we 

should multiply it by the projector onto level 0. Now, however, we have two 

independent Virasoro algebras, generated by the Ln’s and the En’s, so we must 

make two level 0 projections, corresponding to the conditions 

An@=0 En@ = 0 (n > 0). (8.3) 

The two projectors onto level 0, which we will call P and P, are built from the 

corresponding L’s according to the prescription (4.5). The reparametrization- 
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invariant action for closed string fields must then be 

S = -;(a ~4[(Lf3-l)+(Lo-l)]PPq. (8.4) 

We must also impose from outside the constraint that the coordinate system on 

the string not undergo an overall rotation: 

(Lo -Lo)@ = 0. (8.5) 

Let us now consider a string field, subject to the constraint (8.5), expanded 

in eigenstates of the mass operator. If 9(O) is the state annihilated by the on and 

fin, for n > 0, we may expand 

@[s(a)] = {qz) - t~“(z)cu~llifl~ + + . . . }dO). (8.6) 

PY is a tensor field of indefinite symmetry. The action of the kinetic energy 

operator on Cp can be represented as 

K = 4[(Lo - 1) + (Z, - l)] [1 - L-&] [1 - L&L1] + . . .; P-7) 
0 0 

the omitted terms annihilate the first mass level. 

Inserting (8.6) and (8.7) into (8.4) and extracting the term involving Y, we 

find 

S(Z) = -;pz f+p - T) (p- - fq’““. (8.8) 

To understand this expression, it is useful to divide t into its symmetric and 
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antisymmetric parts: 

tC” d 
= L(hP” + p). 

For the antisymmetric field, (8.8) reduces to 

(8.9) 

(8.10) 

where HqXa = a[~&1 is the gauge-invariant field strength associated with &. 

For the symmetric part of t, this action may be written in the form 

-2(4rl'u.- $g)(qau- fg)}hau (8.11) 

+2h,, $“’ - F) (-a2) (r+’ - T 
0 I 

hAg . 

The first two lines of this expression may be recognized as the quadratic term in 

the expansion of the Einstein-Hilbert action 

J (8.12) 

obtained by replacing gP,, = qPV + h,,. Thus, the linearized theory of gravity 

comes directly out of this formalism. The last line can be written, using 

R= 8W’h,, - a2 h; + . . . , (8.13) 

as a nonlocal curvature-curvature interaction, one which would result from elim- 

inating a massless Stueckelberg field cp. If we introduce this field to render the 
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action local, we find a Lagrangian involving a massless graviton, an antisymmet- 

ric tensor field, and a massless scalar-exactly the conventional content of the 

closed string at this level. Our action is invariant to linearized general coordinate 

transformations and gauge motions of up”: 

this gauge invariance arises naturally as the zero-mass level component of the 

chordal gauge motion 
- - 

6@ = L-l\El + L-l!Pl. (8.15) 

Because we have obtained our action only at the linearized level, it is not 

clear how to complete it to a geometrically invariant form. Recently, however 

Callan, Martinet, Perry, and Friedan[351 , have studied the constraints which 

conformal invariance places on the first-quantized string theory and have shown 

that these constraints take the form of the equations of motion which follow from 

the following action principle: 

s= / ddz ee-‘a [R + 4(i3,~)~ - &H2]. (8.16) 

- Our action for the massless closed string fields agrees with this one up to the 

linearized level. The consistency of the string theory requires that the constraints 

on background fields necessary for conformal invariance be consistent with the 

equations of motion of the string component fields. Nevertheless, the agreement 

between our results seems quite miraculous, considering the very different routes 

by which these results were obtained. 
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9. Superstrings 

The analysis we have described may be generalized in a natural way to open 

and closed superstrings* . The formalism one finds is not a completely satisfac- 

tory one; in particular, it does not possess manifest supersymmetry. However, 

it does possess chordal gauge invariances which (at the linearized level) contain 

the expected local symmetries, including local supersymmetry. In this section, 

we will present that construction in enough detail to make its features and its 

problems clear. 

Because our analysis depends on the implementation of general reparametriza- 

tion invariance, we will work in the original Neveu-Schwarz-Ramond [369371 formu- 

lation of the superstring. In this formulation, the operators of the first-quantized 

string theory are bosonic and fermionic coordinate operators carrying space-time 

vector indicesI”] . The string equations of motion are invariant to a 2-dimensional 

local supersymmetry. The two possible boundary conditions for the fermionic 

coordinates define two sectors, the Ramond and Neveu-Schwarz sectors, whose 

particle states are, respectively, fermions and bosons. In each sector, one must 

impose that states be invariant to local reparametrizations and local supersym- 

metry motions. The local supersymmetry generators are called Fn in the Ramond 

sector (n is an integer) and GA: in the Neveu-Schwarz sector (k is a half-integer). 

They obey an algebra which is given, for example, in Scherk’s review articleI201 . 

To extend our construction to this context, define projection operators for 

the reparametrization algebra in each sector. PR should satisfy 

PRL-n = 0 , PRF-n = 0, (94 

for n > 0; PNS should satisfy 

PNSL-n = 0, PNSG-k = 0, (9.2) 

for n, k > 0. These projectors may be constructed by following exactly the 

* This generaliration has also been discussed by F’riedan, ref. 15, and Kaku, ref. 13. 
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prescription given in eqs. (4.3), (4.5) if one takes the fZin) to contain all (nonre- 

dundant) combinations of the Ln and Fn (or Ln and Gk) which raise the mass 

level by n units. hr the Neveu-Schwarz sector, one should also include projectors 

IIlk) which remove states at half-integer mass levels. 

From these projectors, we can form gauge-invariant kinetic energy operators: 

KR=d%OPR, KNS =(=O-1)pNS P-3) 

Let df: (b[) denote fermion coordinate operators in the Ramond (Neveu-Schwarz) 

sector; the zero mode dt is represented by 

sothatFo=~d,+k*o-k=7*p/fi+.... Then one can see that the operators 

in (9.3) reduce to the kinetic energy terms (7 -p + M) and p2 + M2, respectively, 

when acting on states at level 0. 

The fields of the string theory should be general functions of the bosonic and 

fermionic coordinates; we need a scalar and a spinor string field for the Neveu- 

Schwarz and Ramond string states. To recover a supersymmetric spectrum in 10 

dimensions, we must restrict these fields according to the prescription of Gliozzi, 

Scherk, and Olive[‘] : 

Neveu - Schwarz sector : 

Ramond sector : 

(1+ (-l)Nf)@ = 0, 
P-5) 

(l-(-1)Nf711)* = 0; 

@  should be real and Xl? Majorana. These string fields may be expanded in normal 

modes: 

(9.6) 

Q = 
1 

$(z) - i$(~)a’“~ - i@‘(s)d!$ + . . . > Xl!(‘) 
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As in eq. (3.3), th e coefficient functions belong to the Hilbert space on which 

the zero mode operators act; thus, in the Ramond case, they carry the spinor 

index of !IJ. The -component fields of $l? are Majorana-Weyl, with chirality given 

by (9.5). 

We may now write the free-field action of the superstring theory as 

S = -(U 1 diiFoP~*) - i(@ ’ @Lo - 1)pNS @)a (9.7) 

Using 

PNS = 1-G ILGI +..., 
-T2Lo 5 P-8) 

one can easily see that (9.7) re d uces on the lowest mass level to the form 

S = tJ(iy .a)$ - a(J'pv)2), 

where Fpy is the field strength of A,(z). The gauge invariance of this action is 

one component of the chordal gauge symmetry 

63 = G+A. (9.10) 

At the lowest mass level, then, we recover precisely the linearized action 

of lO-dimensional supersymmetric Yang-Mills theory. Unfortunately, the higher 

mass levels of the action (9.7) are not manifestly supersymmetric. As Friedan [I51 

has already noted, one can see the problem even in the positions of the poles of 

PR and PNS, or, equivalently, in the spectrum of Stueckelberg fields necessary 

to render (9.7) local. At the second level, for example, the Stueckelberg fields 

required in 10 dimensions are a scalar of mass m2 = 5 and a spinor of mass 

m2 = 25/8. Perhaps, though, one can cast the action into a supersymmetric 

form by adding additional Stueckelberg fields. 
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The closed superstring, like the closed bosonic string, possesses two com- 

muting sets of coordinate operators and, correspondingly, two commuting sets of 

reparametrization generators. The maximal theory, with oriented closed strings, 

contains four string fields, corresponding to the choice of Ramond or Neveu- 

Schwarz boundary conditions for each of the two sets of fermionic coordinates. 

If we constrain these fields to be annihilated by (Lo - Lo), their expansions in 

normal modes begin with: 

&, = 

(9.11) 

which is the content of the massless level of the type II closed string. The chordal 

gauge transformations relevant to the massless level are: 

6@ = G-+9 +e-;& (9.12) 

which, in precise analogy to eq. (8.15), contains linearized general coordinate 

-invariance and the gauge invariance of the antisymmetric tensor field, and 

&hl?, = 6+Ea Gaiir, = G+&, (9.13) 

which contain the linearized N = 2 local supersymmetry transformations 
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10. Conclusions 

In this paper, we have presented a formulation of string field theory which 

preserves the basic reparametrization invariance of the string. To implement this 

symmetry, we were led to an action with an enormously enlarged gauge group, 

one whose motions are parametrized by functionals on the space of strings. We 

have shown, both for the bosonic string and for the superstring, that these more 

general gauge transformations contain, at the linearized level, the local gauge 

invariances expected from the analysis of scattering amplitudes at low energy. 

Our analysis leaves many questions unanswered. There are, in particular, 

three questions which seem to us most pressing and which must be answered to 

complete and extend this formalism. The first is that of finding an interaction 

term and a nonlinear chordal gauge transformation which leaves it invariant* 

The second is that of finding a manifestly supersymmetric form of the action for 

the superstring. The third is that of finding a derivation of our action directly in 

the string field theory, from some principle which arises from the geometry of the 

space of strings and gives an interpretation to the formalism of differential forms 

which we have presented. These questions are obviously deep and difficult, but 

they point temptingly toward a new realm of mathematical physics beyond that 

describable by local fields. 
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