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Fig. 1. Pulse sequence for dynamical decoupling, state evol-

ution and control function in the case of a three-level sys-
tem: (a) The pulse sequence; m pulses are applied at time
ti,ta, -+ ,te, to,te are the start and end moments of the
whole sequence; (b) evolution of different initial states; each
state is sequentially flipped into all other states by the =
pulses in the sequence; (c), (d) plot the control functions
linking states |0), |1) and |0), |2), respectively.
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Fig. 3. Periodicity of the Ramsey filter function: (a) The filter function without the attenuation term; (b) noise period during opera-

tion time.
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Fig. 5. Filter function with and without correlation.
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Fig. 7. Periodicity of filter functions for repeated sequences with different m: (a) m = 1; (b) m = 2; (c) m = 3.
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Abstract

Dynamical decoupling refers to a family of techniques that are widely used to suppress decoherence in
various quantum systems, caused by quasi-static environmental noise. They have broad applications in the field
of quantum information processing. Conventional dynamical decoupling targets at noise in two-level system
such as qubits and often consists of specifically engineered sequences of n pulses that swap between two
different states. On the other hand, researchers do not limit their study within simple two-levels systems any
more, but go and seek for even more efficient quantum hardware. A variety of quantum algorithms and schemes
of quantum control using multi-level systems, such as qutrits and qudits, for quantum information processing
have been proposed and implemented successfully. However, decoherence in such a multi-level system is
inherently more sophisticated than that in two-level systems. So far there has been little systematic research on
how to tackle decoherence problems in such systems.

In this work, we propose several sequences of dynamical decoupling for multi-level systems that only rely
on n pulses linking neighboring levels, which is easy to implement experimentally. Our results show that these
sequences can efficiently suppress quasi-static noise presented in multi-level systems. In addition, by calculating
the corresponding filter functions of these sequences, we are able to further analyze their effect on generic
Gaussian noise that may not be quasi-static. We also give a physical explanation of the noise filtering
mechanism of these sequences by considering their control functions. Other topics discussed in our work include
power spectral density and correlation of noise in multi-level systems. Our work may be regarded as a first step

towards a more systematic investigation of dynamical decoupling techniques applicable to multi-level systems.
Keywords: multi-level system, noise, decoherence, dynamic decoupling, filter function
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