
UNIVERSITY OF UDINE - ITALY

Department of Mathematics and Computer Science

Ph.D. Thesis

REAL AND CONVENTIONAL

ANISOTROPY, GENERALIZED

LORENTZ TRANSFORMATIONS AND

PHYSICAL EFFECTS

Supervisors: Candidate:
Prof. ALESSANDRO DE ANGELIS MASSIMO PIN

Doctorate of Philosophy in Mathematics

XVII cycle

AY 2004/2005





Contents

Contents 3

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The GZK Cutoff . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Anisotropy of The Relic Background Radiation and Pre-

ferred Reference Frame . . . . . . . . . . . . . . . . . . . 3
1.2 Spatial Isotropy and Related Topics . . . . . . . . . . . . . . . . 5
1.3 Conventionality of Synchronization . . . . . . . . . . . . . . . . 5
1.4 The Conventionalist Thesis . . . . . . . . . . . . . . . . . . . . . 7
1.5 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Reichenbach’s Special Theory of Relativity . . . . . . . . 9
1.6 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 The Role of Light in Special Relativity . . . . . . . . . . . . . . 12
1.8 Test-Theories of Relativity . . . . . . . . . . . . . . . . . . . . . 13
1.9 Goal of the Present Doctoral Work . . . . . . . . . . . . . . . . 14

2 Mathematical Tools 17
2.1 Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Bernhard Riemann: the First Idea of “Finsler” Geometry 17
2.2 From B. Riemann to P. Finsler . . . . . . . . . . . . . . . . . . 19
2.3 Tensor Calculus and L. Berwald . . . . . . . . . . . . . . . . . . 20
2.4 E. Cartan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Modern Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Finsler Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Minkowski Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1 Euler’s Theorem . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 A Fundamental Inequality . . . . . . . . . . . . . . . . . 27

2.8 Minkowski and Locally Minkowski Spaces . . . . . . . . . . . . 30
2.9 Riemannian Manifolds From the Point of View of Finsler Geo-

metry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



2.10 Connection and Geodesics . . . . . . . . . . . . . . . . . . . . . 31

2.11 Non-Riemannian Curvatures . . . . . . . . . . . . . . . . . . . . 32

2.12 Riemann Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Pseudo-Finsler Manifold . . . . . . . . . . . . . . . . . . . . . . 35

3 Generalized Lorentz Transformations 37

3.1 Generalized Lorentz Transformation:
Geometrical Approach . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Group Properties . . . . . . . . . . . . . . . . . . . . . . 43

3.2 First Possible Kinematics . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Second Possible Kinematics . . . . . . . . . . . . . . . . . . . . 47

3.4 Third Possible Kinematics . . . . . . . . . . . . . . . . . . . . . 48

3.5 Pre-Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Generalized One Dimensional Composition Law: Properties . . 49

3.7 Conventional and Non Conventional Anisotropy . . . . . . . . . 53

3.8 What we Really Mean by Isotropy? . . . . . . . . . . . . . . . . 58

3.8.1 One Special Case . . . . . . . . . . . . . . . . . . . . . . 60

3.8.2 Four Dimensional Generalization . . . . . . . . . . . . . 63

3.8.3 Further Generalization: Curved Spacetime . . . . . . . . 66

4 Single Particle Generalised Dynamics and Dispersion Relation 69

4.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . 74

4.3 Three-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Relation Between Physical “Anisotropic” Energy-Momentum
and Special Relativistic Observables . . . . . . . . . . . . . . . . 77

4.5 More About Dispersion Relation and Momentum One-Form . . 84

4.6 Transformation Law of Energy and Momentum . . . . . . . . . 87

5 Threshold Conditions 89

5.1 Possible Values for the Parameter σ . . . . . . . . . . . . . . . . 89

5.2 Application to the Cosmic Ray Spectrum:
The GZK Cut-Off . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Two Particle Dynamics: Threshold Energies . . . . . . . . . . . 93

5.3.1 Resonant Production p+ γ → ∆ . . . . . . . . . . . . . 94

5.3.2 Pions Photo-Production . . . . . . . . . . . . . . . . . . 97

5.3.3 Pair Creation γ → e+ + e− . . . . . . . . . . . . . . . . . 97



6 Conclusion 99
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 103





Chapter 1

Introduction

1.1 Motivations

At present, there exist, apart from general relativity theory, a number of al-
ternative metric theories of gravitation [1]. They all employ the Riemannian
geometric model of spacetime borrowed from general relativity, and differ only
by the field equations which describe the self consistent dynamics of spacetime
and matter. Common feature to them is the fact that spacetime is Riemannian.

Rimannian space is locally isotropic in the sense that, at each point, its
tangent space is a Minkowski space, that is a 4-dimensional pseudo-Euclidean
manifold1. These theories assume spacetime to be locally isotropic everywhere
and at any time.

Indeed, the following recent experimental discoveries:

• the absence of the the so called GZK cutoff in the spectrum of primary
ultra-high energy cosmic protons [2, 3, 4, 5];

• an anisotropy of the relic background radiation filling the universe;

can find, to my opinion, a common explanation on the assumption that space-
time has a weak local anisotropy. Let us discuss these two experimental issues
in some detail.

1.1.1 The GZK Cutoff

During the 1960’s the primary cosmic-ray spectrum has been measured up to
an energy of 1020eV [6] and it was predicted [2, 3] that above this energy the
primary spectrum will steepen abruptly, so the new generation of experiments

1This differ from the notion of isotropy based on Killing vectors field-isometry.
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will at least observe it to have a cosmologically meaningful termination called
GZK cutoff.

The cause of the catastrophic cutoff is due to the interactions of protons of
extragalactic origin (as it is suggested by the apparently uniform distribution
of their directions) with the photons of the cosmic microwave background
radiation detected by Penzias and Wilson [7].

From the theoretical point of view, such result relies on the assumptions
that the usual Lorentz transformations apply between inertial frames for all
admissible velocities. In the case of uniformly distributed sources, the en-
ergy spectrum of primary cosmic protons should show a cutoff at an energy
threshold of about 5× 1019eV, due to the inelastic collision of the protons with
cosmic background radiations photons: protons colliding with these photons
reach the threshold for pion photoproduction and cannot cover a long inter-
galactic distance without loosing most of their energy. Since isotropy of space
is an essential assumption behind Lorentz transformations [8, 9], it is essential
also for the existence of GZK cutoff.

Actually, it should be pointed out that one of the experiments measuring
the ultra high energy cosmic ray spectrum, the AGASA experiment, has not
seen the cutoff [4], while another experiment, HiRes, is consistent with the
cutoff but a lower confidence level [5]. It is, of course, premature to speak
in this situation of a real discrepancy between theory and experiment. The
question should be answered in the near future by the AUGER observatory
[10], GLAST space telescope [11] and MAGIC telescope [12].

Anyway several authors discuss the possibility of explaining the (few) ob-
servation of ultra-high-energy cosmic rays with energy above the GZK cutoff,
keeping the relativity principle and introducing a “deformation” in the Lorentz
transformation [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

We remark that Lorentz invariance imply that spacetime structure is the
same at all scales; that is, Lorentz symmetry assumes a scale-free nature of
spacetime. A departure from Lorentz invariance can therefore lead to discon-
tinuous spacetime framework. Some authors study the implications of Ein-
stein’s principle of relativity when both a fundamental velocity scale and a
fundamental length scale are postulated. Hence, in these framework there is a
spacetime with a short-distance structure governed by an observer-independent
length scale2, these models are called double special relativity theories (DSR)
[18, 19, 20, 21, 22, 23, 24, 25]. Along this line of thought the consistency
of these postulates proves incorrect the expectation that modifications of the
rules of kinematics involving the Planck length would necessarily require the

2It should be noted that the existence of a minimum length does not imply local Lorentz
invariance violation [26]



introduction of preferred class of inertial observers [27, 28]. Indeed, DSR has
not been shown to be consistent yet [29, 30].

Apart from the violation of Lorentz transformations, there exist also others
possible causes of the absence of the GZK cutoff [25]. For example, cosmic rays
might not come from the far intergalactic space or it may happen that collisions
of the cosmic rays with the nuclei in the high terrestrial atmosphere, which
have a center of mass energy much larger than the collisions studied in the
terrestrial laboratories, have unexpected features, possibly a breakdown of the
conservation laws. Obviously it is also possible that the relativity principle is
not valid and there are privileged inertial frames. The fundamental laws may
still be Lorentz covariant, but some long-range vector or tensor field may have
a non vanishing expectation value that singles out the privileged frames.

Nevertheless, the assumption that the inertial frames could be linked by
some new “generalized Lorentz transformations” markedly different from the
usual Lorentz ones only at relative velocities extremely close to the velocity of
light is in our opinion, the most fruitful. Thus, in what follow we will require
that all the relativistic equations must be invariant with respect to the new
transformations; that is, we will implement Einstein’s principle of relativity
with the generalized Lorentz transformations.

1.1.2 Anisotropy of The Relic Background Radiation
and Preferred Reference Frame

According to the model of the hot Universe the temperature of relic radiation
should not depend on the direction in which it is being measured. At the same
time the temperature anisotropy, with dipole component, of relic radiation is
already an experimental fact [31].

On the other hand, experiments looking for a preferred reference frame
search for an anisotropy of physical processes; so the observed anisotropy of
the cosmic background radiation have led to a renaissance of interest for this
type of theories [32, 33].

In such models the old idea of an absolute “aether” is exploited with the
only difference that the preferred frame is now identified with one in which
the cosmic background radiation is locally isotropic. In fact, there is only
one frame with this property, being all other frames experiencing the dipole
anisotropy, and therefore distinguishable.

With respect to this reference frame the standard physical laws hold. In this
way, attempts are sometimes undertaken to explain the experimental results
by an ad hoc breaking of Lorentz invariance when going from the preferred
frame to another (laboratory) inertial frame.



Investigators usually do not express a fundamental interest in such a dipole
anisotropy because they believe that it arises from the fact that our laboratory
frame accidentally moves at a certain velocity relative to the cosmic microwave
background. This velocity w has been determined to be w/c ≈ 1.23 · 10−3 by
the measurement of the dipole term in the cosmic microvawe radiation by
COBE [34].

Such an explanation would be more satisfactory if the corresponding aniso-
tropy were also observed in the Hubble constant. Until now, studies of the
angular dependence of the Hubble constant are neither precise enough nor cov-
ering a larger section of the sky. If a special analysis will show that there is no
correlated dipole anisotropy in the Hubble constant then the dipole anisotropy
of relic radiation might be an indication of a strong local anisotropy of space-
time at an early stage of the evolution of the Universe. The point is that in a
space with strong anisotropy there indeed exists a physically preferred frame.

With respect to this frame the hot background radiation was isotropic while
the velocity distribution of massive relativistic particles was anisotropic. As
a result, the Hubble constant became anisotropic. Therefore, by passage to
another frame, a reversed situation becomes possible: the Hubble constant
looses its dipole anisotropy while the background radiation picks it up.

The concept of a privileged reference frame grows up not only in the context
of anisotropic propagation of light [33] or in the context of test theory of special
relativity [32]. More recently, a new approach to the testing of quantum gravity
effects was introduced. Based on the fact that the dispersion relations of
photons in the vacuum does not have the usual covariant form, but the photon
propagate with an energy dependent velocity [35]. This implies a breakdown

of Lorentz invariance (since the statement Eγ = c ||~k|| can be valid at most in
a single reference frame), in this way a privileged reference frame is introduced
in the theory [36, 37]. Indeed in [18] a dispersion relation which implies a
wavelength dependence of the speed of light is described, but in this model
such feature is not a manifestation of the existence of a preferred class of
inertial observer.

The existence of a privileged reference frame can be a possible common
explanation of both the experimental facts mentioned in the first section of
this chapter.

The conclusion of these remarks seems to be that special relativity is not
an ultimate theory and that some modification of it is needed. Einstein [38]
stated as basis for his theory the following two postulates:

• The principle of relativity; that is, the existence and the equivalence of
all inertial frames.

• The principle of constancy of light velocity: light always propagates



isotropically in empty space with a definite (one-way) velocity, indepen-
dent of the state of motion of the emitting body.

Besides the two postulates, special relativity also uses other assumptions,
concerning the Euclidean structure of gravity-free space and the homogeneity
of gravity-free time.

By my opinion a generalization of special relativity to a relativistic the-
ory of locally anisotropic spacetime, could be interesting to study. Indeed
in this Ph.D. thesis we will relax only the spatial isotropy hypothesis. As
demonstrated in [39] in such a situation the correct mathematical theory to
use in building up a relativistic theory is Finslerian geometry [40], rather than
Riemannian geometry.

1.2 Spatial Isotropy and Related Topics

In special relativity theory the spatial isotropy become a crucial issue in the
synchronization procedure of two distant clocks. Einstein stressed [41] that
the choice that light travels at equal speeds along the opposite directions of a
particular path was “neither a supposition nor a hypothesis about the physical
nature of light, but a stipulation” that can be freely made so as to arrive at a
definition of simultaneity.

Let us briefly review this topic which leads us to the long standing de-
bate between conventionalist and anticonventionalist thesis about the physical
meaning of one-way speed, and to the test-theories of special relativity.

It is now useful to remember that Michelson-Morley like experiments [42,
43] ensure the constancy and isotropy only of the round-trip velocity of light,
and only for light with wavelength much larger than Planck length. So is not
avoid a possible dependence of velocity of light in vacuum from its wavelength
[18], dependence experimental accessible only at large energy.

1.3 Conventionality of Synchronization

A critical point in Einstein’s theory is the synchronization of distant clocks
in an inertial reference system. Indeed, the definition of simultaneity, being
intertwined with the concept of speed, became an issue some years before
Einstein’s work with the attempts to measure the one-way speed of light as a
means to verify the existence of the aether [44].

The reanalysis of the concept of simultaneity formed one of the crucial
and distinguishing elements of Einstein’s special theory of relativity. Einstein



deserves our admiration for recognizing that simultaneity is relative, an insight
that lies at the foundations of his theory.

The absence of an absolute notion of simultaneity, has as consequence that
the synchronization of distant clocks, the definition of 3-space, the spatial
distance between events (at space-like separation) and the one-way velocity
are all frame-dependent concepts.

The operational procedure adopted by Einstein was described some years
before by H. Poincaré in several papers [44, 45, 46], and it is known that
Einstein discussed these papers with his friends. Furthermore, Poincaré’s pro-
cedure for synchronization was by no means original. The need for a precise
procedure for the synchronization of clocks at different locations was recognized
in antiquity in the context of the problem of the determination of geographical
longitude (even today the precise determination of geographical position, by
GPS, remains an important practical application of synchronization [47]).

Einstein proposed in the kinematic section of his paper [38] what is known
as the “Einstein Synchronization”, by which a global time can be defined
relative to any inertial frame. This procedure is equivalent to assume that
the clocks can be adjusted in such a way that the propagation (one-way)
velocity of every light ray in vacuum, measured by means of the clocks, becomes
everywhere equal to a universal constant. Hence, this operational method
associates the synchronization within the frame with the velocity of light in
the frame.

Using the “Einstein Synchronization method” the conventional nature of
one-way velocity is manifest: one is prevented from measuring the one-way
speed of light in a given direction because that would require the prior syn-
chronization of clocks, and thus a prior knowledge of the speed to be mea-
sured. A persistent controversy surrounds the question of the synchronization
of clocks at different locations, and the related question of whether an unam-
biguous and logically noncircular meaning can be attached to measurement
of the one-way speed of light between two points (see for example [44] and
references therein).

The controversy over the logical and physical significance of Einstein’s syn-
chronization began in the 1920’s with H. Reichenbach [48] who introduced the
debate between conventionalist and anticonventionalist thesis. The possibility
in principle of postulating an anisotropic synchronization has been discussed
extensively both in philosophical and physical contexts.



1.4 The Conventionalist Thesis

H. Reichenbach’s contribution has been most significant in the history of
the debate. He brought out and defended the definitionary nature of Ein-
stein’s treatment of simultaneity, and established a notation for expressing an
anisotropy in the one-way speed of light.

The conventionalist thesis proposed by Reichenbach, states that quantities
as the one-way speed of light are inherently conventional, and that do recognize
this aspect is to recognize a profound feature of nature. Only proper time has
“objective status in special relativity”[49]. This is because, one-way velocity’s
value for example, it is not a statement about the pattern of coincidences of
events at a given space locations, but refers to the comparison of remote events,
and so is inevitably conventional.

Following Reichenbach’s viewpoint, it is possible to relax the second Ein-
stein’s postulate, abandoning the constancy of the one-way speed of light for
the more realistic hyphotesis asserting the constancy of the round-trip speed of
light. This results is an extension of the special theory of relativity, in which
the two one-way speeds of light in the two senses of a round trip in empty
space, respectively c+ and c−, are arbitrarily selected in such a way that their
harmonic mean is the experimentally measurable round trip speed of light c.

Obviously, if one-way velocity is really a conventional quantity, all speed-
dependent expressions, including the parameters of the Lorentz transformation
and so time dilation factors and length contraction effects of a moving body as
seen from an inertial frame, have irreducibly conventional elements and they
are not directly observable formulas.

1.5 Physics

In order to determine the simultaneity of two events which take place at distant
points A and B in an inertial frame, it is necessary to have a clock located
at A and another identical clock at B, both at rest in the inertial frame. In
addition, there must be a procedure to synchronize the two clocks so that
the time coordinate of events occurring at A can be compared to the time
coordinate of events occurring at B.

Let us consider a light signal, emitted from A at time t1 and reflected at B,
returning at time t3 to clock A. Reichenbach said that clock B is synchronous
with clock A if the arrival time t2 of the light signal at B as registered by the
clock is:

t2 = t1 + εr (t3 − t1) (1.5.1)



where εr ∈ (0, 1), is called Reichenbach’s synchrony parameter.
This is the Reichenbach’s (non-standard) definition of simultaneity of dis-

tant events. The Reichenbach thesis of conventionality of simultaneity states
that any choice for εr between 0 and 1 is equally valid. More precisely, Re-
ichenbach claims that in the absence of any physical reason for choosing any
particular value of εr, this choice is purely a matter of convention. Thus, syn-
chronization is a matter of convention, and so is the value of any one-way speed
and all related physical quantities.

Having a procedure to synchronize distant clocks, we can measure one-way
velocities, and we can now see how the “measured” one-way velocities involve
an element of convention (the synchrony parameter εr). If the one-way speed
of light from A to B is c+, by equation (1.5.1) we have

c+ =
d

t2 − t1
=

c

1 − ε
, (1.5.2)

where d is the spatial distance from A to B, c is the isotropic two-way speed of
light, for latter convenience we have defined ε = 1− 2εr, so |ε| < 1. Similarly,
the one-way speed of light c− from B to A is:

c− = − d

t3 − t2
=

− c
(1 + ε)

. (1.5.3)

According to the Michelson-Morely experiment we have:

1

2

( 1

c+
+

1

− c−

)
=

1

c
. (1.5.4)

We stress that the one-way speeds c+ and c− satisfying the conditions in
(1.5.4), are determined by convention due to the arbitrarily fixed value of εr.

Some observations are useful. First of all the restriction on εr ensures the
validity of the causality condition according to which the light signal arrives
at B after it was emitted from A and before it arrives again at A. Secondly
Reichenbach’s definition of simultaneity reduces to the standard one of Einstein
when εr = 1

2
or equivalently ε = 0. But as we already said every choices εr 6= 1

2

give an equally viable non-standard synchronization.
We also note that non-standard synchronization is anisotropic, since it iden-

tifies a preferred direction in which the one-way speed of light has a maximum
value; however, since this anisotropy is merely the result of the choice of time
coordinate, it is no more objectionable that the anisotropy that results when
we adopt, say, cylindrical coordinates in space. Although such cylindrical co-
ordinates identify a preferred direction in space (the direction of the cylindrical



axis), this anisotropy is merely an artifact, and it leads to no demonstrably
erroneous experimental consequences. Cylindrical coordinates permit a con-
sistent description of physical phenomena (although in some respects more
complicated than the description in rectangular coordinates). Likewise, Re-
ichenbach’s non-standard synchronization permits a consistent description of
physical phenomena (although more complicated than the description in stan-
dard synchronization).

As we will see in the following chapters, in a more general framework this
is what we will call conventional anisotropy to distinguish it from a physical
anisotropy which we can not gauged away by a stipulation.

Finally the spatial distance from A to B can be measured either by a rod or
by the travel time of a light signal emitted from A, reflected at B and returned
to A. This measurement is based on the constancy of the round trip speed of
light, and is performed by a single clock so that no clock synchronization is
needed. Since the two-way speed of light is direction independent, so is the
distance from A to B. Thus, the distance from A to B equals the distance
from B to A and space appears isotropic.

1.5.1 Reichenbach’s Special Theory of Relativity

J.A. Winnie in his paper [50] formulated relativity in the non-standard Re-
ichenbach synchronization, and he constructed the “one-way velocity Lorentz
transformations” between two reference frames in motion with each other, the
explicit expression are

X ′ = Γ (X − V T )

T ′ = Γ [T (1 + P V ) − Q2 V X]
(1.5.5)

where V is the one-way velocity of the primed reference system S ′ with respect
S, and we have defined 

P = −
( 1

c+
+

1

c−

)
Q2 = − 1

c− c+

(1.5.6)

and

Γ =
1√(

1 − V

c+

)(
1 − V

c−

) . (1.5.7)



Equation (1.5.5) form in the (1 + 1) dimensional case a one parameter
transformation group that keeps invariant the following anisotropic relativistic
pseudo-norm

S2 = T 2 −
( 1

c+
+

1

c−

)
X T +

1

c− c+
X2 . (1.5.8)

As a consequence of the group structure, from equation (1.5.5) it is a simple
matter to gain the velocity V− of S with respect S ′ reference frame

V− =
−V

1 + P V
, (1.5.9)

this equation states the one-way velocity reciprocity principle.

By analogy with equation (1.5.4) we define the round trip velocity, v, as-
sociated with the one-way velocity V = V+, by the equation

1

v
=

1

2

( 1

V+

+
1

−V−

)
. (1.5.10)

From equations (1.5.5) and (1.5.9), if we call respectively U ′ and U the
one-way velocities of a body with respect S ′ and S we can write the one-way
velocity composition law as follow

U ′ =
U + V− + P U V−

1 + Q2 U V−
. (1.5.11)

One important feature in this theory is that expressions which represent
observable effects are independent of the anisotropy parameter, εr, and are
identical with their counterparts in special relativity when espressed in terms
of associated round-trip velocities. In the Reichenbach theory the presence
of the anisotropy parameter, εr, distinguishes between physically significant
effects and physically insignificants ones: only effects independent of εr are
synchrony free; hence the anisotropy parameter, εr, acts as a marker.

The independence of Reichenbach special relativity expressions represent-
ing observables of the anisotropy parameter, εr has a nice geometrical interpre-
tation: it is straightforward to demonstrate that the one-way Lorentz trans-
formation (1.5.5), with its associated nonstandard synchronization, is not a
new transformation. It is merely the standard Lorentz transformation, with
its associated Einstein synchronization, expressed in oblique spacetime coordi-
nates (T,X). The anisotropy parameter εr, is a parameter that measures the



“amount” of nonorthogonality of the oblique coordinates according to equa-
tions 

T = t − ε

c
x

X = x

(1.5.12)

substituting this equations and their primed counterparts in equations (1.5.5),
we obtain these transformations in the variables t, x and v

t′ = γ (t − v

c2
x)

x′ = γ (x − v t)

(1.5.13)

where

γ = Γ
(
1 +

ε

c
V
)

. (1.5.14)

They have a form identical with that of the usual Lorentz transformation
of special relativity. Indeed, quantities that appear in this equations have dif-
ferent interpretation in special relativity than in Reichenbach relativity: in
Einstein theory parameters v and c are one-way velocities which are, by con-
vention isotropic; while in Reichenbach theory they are round-trip velocities
of equations (1.5.4) and (1.5.10), which are isotropic as an experimental fact.

Equivalently we can say that in Reichenbach framework Lorentz transfor-
mation (1.5.13) are obtained from the one-way Lorentz transformation (1.5.5)
by expressing one-way quantities in terms of associated round-trip ones, while
Lorentz transformation of Einstein theory are obtained from equations (1.5.13)
by adopting Einstein’s convention, ε = 0.

1.6 Philosophy

In the context of philosophy, many authors centre the discussion on the grounds
upon which the natural choice of isotropy may be regarded as obligatory; that
is, synchronization is not simply a physically meaningless gauge to be applied
to clock settings, but is constrained by nature to be unique for inertial frames.

These authors state that theoretical considerations based on the context
and symmetries of the causal structure of Minkowski spacetime are sufficient
to force the choice of Einstein synchronization upon any reasonable theoreti-
cal formulation [49, 51, 52, 53]. Readhead [54] and Havas [55] criticized this



approach and infer that their result does not confer any compelling status to
Einstein synchronization, and therefore does not challenge the essential point
of the conventionalist thesis.

Those who believe that Einstein’s isotropy “convention” is not a matter of
convention but rather a matter of experimental fact will have to find an ex-
periment distinguishing between the Reichenbach theory and special relativity
that fix the value of εr.

A.A. Ungar in his article [56] demonstrated that such an experiment does
not exist if special relativity is a coordinate independent theory. As a conse-
quence, from the experimental point of view, Reichenbach’s theory and special
relativity are indistinguishable and, hence, represent the same physical theory.
From this point of view the value of εr is a gauge choice.

The conventionalist thesis in the Reichenbach theory of relativity, implies
besides the well known notion of the relativity of simultaneity between two
different inertial frames, the conventionality of simultaneity in one inertial
frame of reference3 [48, 58].

Following the conventionalist thesis, one-way speed of light and clock syn-
chronization presuppose each other, this creates a circularity which does not
allow any escape at the kinematical level.

H.C. Ohanian [45] claims that an examination of the laws of dynamics
resolves all ambiguities in synchronization: the nonstandard Reichenbach syn-
chronization introduces into the equation of motion extra terms that can be
interpreted as pseudoforces, and these pseudoforces are fingerprints of the non
Einstein synchronization. However, this approach was convincingly refused by
R.D. Klauber [59].

1.7 The Role of Light in Special Relativity

We have to observe that in what we have explained above, having light a central
role in the expositions (for example in establishing a convention for the syn-
chronization, or determining the rate of moving clocks or the length of moving
rigid rods), one seems to link special relativity to a restricted class of natu-
ral phenomena, namely, electromagnetism. But relativity can be developed
without any reference to light or electromagnetic radiation. This theory does
not derive from the use of electromagnetic signals for synchronizing clocks. It
was proved in [9, 39] that the existence of an invariant speed actually follows

3Tangherlini [57], Grünbaum [58] and Mansouri and Sexl exploited the Reichenbach syn-
chronization to modify the Lorentz transformation so as to eliminate the relativity of syn-
chronization, that is, the term −V x

c2 that appears in the standard Lorentz equation for the
time coordinate.



from the relativity principle and from a few and very general hypotheses about
spacetime, and does not require an independent postulate. The actual value of
such a speed is thus an experimental issue as its identification with the speed
of light in vacuum. So we can build up special relativity also if there are no
real-world effects that travel at the invariant speed4.

The lessons to be drawn from almost a century is that special relativity
up to now seems to rule all classes of natural phenomena, special relativity at
present time stands as a universal theory describing the structure of a common
spacetime arena in which all fundamental processes take place.

1.8 Test-Theories of Relativity

One generally has the feeling that Einstein’s theory is in agreement with ex-
periment to a high degree of accuracy, but it is difficult to express this “high
degree” in specific numbers. This can be made with a “test theory”, by which
one means a theoretical framework which contains a continuum of theories, in
which a particular set of parameter values specify a theory to be tested; all
other parameter combinations give rise to alternative rival theories.

Special relativity theory was formulated before the theory of general rela-
tivity, and is assumed within the latter to be valid in the limit of negligible
gravitational effects. Nevertheless the experimental testing of special relativity
with test-theories is not as extensive as in the situation of general relativity,
and none of the corresponding test-theories enjoy the same status as the PPN
test-theory used in discussing general relativity [1].

Although the assumptions and postulates used in the theoretical derivation
of the Lorentz transformation are based on experimental evidence, there has
been great interest in performing further experiments devoted to test directly
the Lorentz transformation. The two separate considerations of synchroniza-
tion procedure and the validity of special relativity, which are involved in this
area, are often confused. Formulations of special relativity usually begin with
the invocation of the Lorentz transformation to relate any two frames in rela-
tive motion. It then follows that the Minkowski metric is an invariant in every
frame and is the chosen spacetime metric.

The most popular test-theories of special relativity, the one formulated by
Mansouri and Sexl [32], concentrates on kinematical considerations and the

4Using this approach to special relativity it is possible to demonstrate that faster than
light signals are kinematically compatible with special relativity, because the latter requires
only the existence of an invariant speed, not necessarily a maximum one. They do not
lead to causal paradoxes, which can arise only from “particle” whose speed has no fixed
(maximum) value in a given reference frame [60]



structure of spacetime, reflecting the importance of both these properties in
the foundational aspects of special relativity.

In Mansouri and Sexl test-theory, a parameterised deviation from special
relativity was postulated by relaxing the constraint that it is the standard
Lorentz transformation which links any two reference frames. Departing from
this standard is to deny the invariance of the Minkowski metric under a boost.
This arbitrariness must be constrained in some way by imposing enough struc-
ture on the theory to allow useful experimental predictions to be made. Em-
pirical conclusions must be draw only within the context of these initial as-
sumptions and these set constrains the possible parameter’s value.

Mansouri and Sexl discussed the debated question of the equivalence of
special relativity and aether theories, this aether system is defined by the
requirements that the Einstein and the transport synchronization of clocks
agree and that light propagation is isotropic with respect the aether. In the
framework of Mansouri and Sexl’s test theory it is possible to demonstrate
that a theory that maintain absolute simultaneity is kinematically equivalent
to Einstein theory.

1.9 Goal of the Present Doctoral Work

In this Ph.D. thesis we consider the situation in which matter is so diluted that
gravitational effects can be ignored, and deal with the problem of a possible
connections in relativistic theories between:

• the role of convention in the definitions of clock synchronization and
simultaneity (we had explain above that this item is inestricably linked
with the long-standing debate whether the one-way velocity of light is a
physically meaningful quantity or merely a conventional one [44, 45, 48,
56, 58, 59, 61]);

• a model of spacetime with a “real” spatial anisotropy and how we can
grasp a clear distinction between conventional and real anisotropy;

• the approach where there is a preferred reference frame [32, 62, 63, 64].

Our task is to demonstrate that Finsler geometry is the correct mathemati-
cal language by which we can link all these physical issues in a common frame-
work. If this is the case, from the mathematical point of view the Poincaré
group, that is the group of isometry of usual Minkowskian spacetime, is no
longer the isometry group: the Poincaré symmetry is only approximate.



As a consequence the space of events has a geometry different from that of
Minkowski space even at the level of special relativity. This is equivalent to
giving up the hypothesis of pseudo-euclidean geometry of gravity-free space-
time.

We also noted that being an intrinsic property of spacetime, anisotropy
is independent of the magnitude of relative velocities. Therefore also non
relativistic physics as a whole is different from the Newtonian case. Obvi-
ously either the anisotropic Newtonian dynamics and the anisotropic special
relativistic one become the usual well known dynamics when the anisotropy
vanishes [65].

Non-Lorentzian transformations were considered in several works. The
Lorentz transformations and their modifications have been used over the last
century to work-up the high-energy phenomenology, derive the fundamental
physical field equations, and predict new relativistic effects.

Despite the general feeling of a high degree of accuracy between predictions
and measurements, various modifications, including Mansouri-Sexl transfor-
mations and Tangherlini transformations, have been used. Really, in a sharp
contrast to the approach followed in Einstein’s work [38], in which the special
theory of relativity began with two fundamental invariance principles to derive
the required transformations, a lack of profound invariance motivation is a com-
mon feature for the approaches based on the non-Lorentzian transformations
mentioned above. In fact, this transformations have been introduced primari-
ly to reanalyze the role of synchronization procedure [44, 48, 58]. No metric
function invariant under these non-Lorentzian transformations is known.

Since the alternative to a local anisotropy is a strict local isotropy of space-
time, and since in nature the validity of any strict symmetry can be established
only to some degree of approximation, it seems reasonable to continue inve-
stigations into the physical manifestations of local anisotropy. This is not only
equivalent to studying a possible violation of the Lorentz transformation: fol-
lowing this line of research we can generalize the Mansouri and Sexl test theory
of special relativity and of Lorentz invariance.

The present work is structured in the following chapters. In chapter 2 we
introduce the mathematical tools we need to depict a differentiable manifold
which models an anisotropic spacetime: we begin with a brief historical in-
troduction of the genesis of Finsler geometry, then we explain the concept of
Finsler structure and the associated Minkowski norm to arrive at the funda-
mental physical notion of locally Minkowskian spaces. Finally we examine the
connection and geodesics of a Finsler manifold and we study the problems, that
are usually skipped over the literature, that arise in defining a pseudo-Finsler
structure.



In chapter 3, postulating some general properties for spacetime and re-
laxing only the usual hypothesis of isotropy of space, we infer the so called
“generalized Lorentz transformation”. As a consequence, we provide a kine-
matical basis for a new physics which is not Lorentz invariant but for which
the difference between special relativity and the anisotropic model become
marked only at high energies. We stress that in our approach, following the
pioneering work of Ignatowsky, we have no need to postulate the invariance of
the velocity of light. The main result of this chapter is inspired to the work by
Lalan [39], who demonstrated that the metric invariant under such generalized
Lorentz transformations is of pseudo-Finsler type. By this approach we can
also make a clear distinction between “conventional” and “real” anisotropy:
this is linked, among others, to the debate about whether one way speed has
a physical meaning, or only a conventional one.

In chapter 4 we introduce the anisotropic dynamics for one particle: we
gather the new dispersion relation and the conservation law for an elastic
scattering. Then we deduce the relation between the anisotropic energy and
momentum variable (which in our interpretation are the real energy and mo-
mentum) with the isotropic analogue used in special relativity; we find that
the physical energy and momentum are nonlinear functions of the fictitious
pseudo-momentum one-form whose components transform linearly under the
action of the Lorentz group.

Then, in chapter 5, with the aid of this new framework we will examine
the problem of the observed absence of the GZK cutoff and we show how the
threshold energy, for example in the first pion-nucleon resonance p + γ → ∆,
which is the main channel involved in the photopion production, is modified
with respect the special relativistic case.

Finally, in chapter 6 we will summarize the conclusions and the main results
and we will give some remark about the future perspectives for this area of
research.



Chapter 2

Mathematical Tools

In this chapter we are going to introduce all the mathematical tools about
Finsler geometry that we will need in our effort to generalizing the Lorentz
transformation to the case in which spacetime is not isotropic.

From now on we assume that the reader knows a small amount of tensor
analysis and had some exposure to differentiable manifolds, connections on a
manifold (that is, the notion of parallelism on a manifold with respect to a
path), and Riemannian geometry, see for example [66, 67]

2.1 Historical Review

2.1.1 Bernhard Riemann: the First Idea of “Finsler”
Geometry

The fundamental idea of a Finsler space can be traced back to the famous
lecture of Riemann’s 1854 habilitation address, “Ueber die Hypothesen, welche
der Geometrie zu Grunde liegen”, in which Riemann aimed to introduce the
notion of a manifold and its structures.

Traditionally, the structure being focused on is the Riemannian metric,
which is a quadratic differential form; put another way, it is a smoothly varying
family of inner products, one on each tangent space.

The choice of a quadratic form is essentially due to the fact that the modern
theory of Riemannian geometry developed from the elementary differential
geometry of surfaces in Euclidean space, by the usual mathematical process
of abstraction. Riemann proposed to study the geometry of spaces where
points are characterized by n coordinates xi (i = 1, 2, .., n) varying in a given
range, and in which the “infinitesimal distance” ds between two points with
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coordinate difference dxi is given by the formula

ds2 = gik(x
1, .., xn) dxi dxk . (2.1.1)

Here gik(x
1, .., xn) are arbitrarily prescribed functions of the coordinates

xi. However, once being given and thus determining a geometry of the space,
they are assumed to transform, under a transformation xi ↔ yi of coordinates
in such a way as to make ds2 independent of the choice of coordinates used.

Riemann showed that the Gaussian differential geometry of surfaces could
be extended in unchanged form and that concepts like curvature could be
carried over into such general geometries. He also pointed out that the classical
Euclidean geometry was a special case of the general theory, namely, that in
which there exist coordinates such that

ds2 = δik du
i duk (2.1.2)

where δik is the usual Kronecker delta. Special non-Euclidean geometries,
discovered by Bolyai and Lobachevsky, entered into his larger framework as
well.

Once we have recognized the logical possibility of replacing the Pythagorean
formula (2.1.2) by the much more general formula (2.1.1) and of developing a
consistent differential geometry in such spaces, we are led necessarily to the
question: what it determines the functions gik(x

1, .., x2) of our experience?
Riemann conjectured that the particular choice of geometry in nature depend
on the reality which created or determined space; that is, the distribution of
matter and the forces acting through space should determine geometry. He
ended his thesis with the statement that, at this stage, we are crossing from
the field of geometry into the field of physics.

The problems raised by these deep considerations of Riemann were faced
by Einstein in his development of the general theory of relativity and given a
solution which is logically and aesthetically satisfactory. But from the above
it seems justified to consider Riemann as one of the most important precursors
of modern relativity.

After Riemann had shown that the metric (2.1.2) of Euclidean geometry is a
very special one and may be replaced by the more general equation (2.1.1), the
question arose whether even this general form could not be further generalized.
Indeed, the quadratic form on the right-hand side of equation (2.1.1) arose,
in the Gaussian theory of surfaces, only from the fact that a two-dimensional
surface had been embedded in a three-dimensional space in which a quadratic
metric form (2.1.2) was assumed to be valid. This argument does not hold for
a general space.



During his research work, Riemann discusses various possibilities by means
of which an n-dimensional manifold may be endowed with a metric, and payed
particular attention to a metric defined by the positive square root of a posi-
tive definite quadratic differential form. Thus the foundations of Riemannian
geometry are laid; nevertheless, it is also suggested that the positive fourth
root of a fourth order differential form might serve as a metric function.

These functions have three properties in common: they are positive, homo-
geneous of the first degree in the differentials, and are also convex in the latter.
It would seem natural, therefore, to introduce a further generalization to the
effect that the distance ds between two neighboring points represented by the
coordinates xi and xi +dxi be defined by some functions F (xi, dxi). This leads
us to Finsler spaces, in which at every point of the space with coordinates (xi),
the length and the differential increments are related by

ds = F (xi, dxi) , (2.1.3)

where F is an arbitrary function, subjected only to some natural request which
we are going to explain later in the chapter.

It is remarkable that the first systematic study of manifolds endowed with
such a metric was delayed by more than 60 years. It was an investigation of
this kind which formed the subject matter of the thesis of Paul Finsler in 1918,
after whom such spaces were eventually named.

2.2 From B. Riemann to P. Finsler

Riemann saw the difference between the quadratic case and the general case;
however, the latter had no choice but to lay dormant when he remarked that:
“...The next case in simplicity includes those manifoldnesses in which the line-
element may be expressed as the fourth root of a quartic differential expression.
The investigation of this more general kind would require no really different
principles, but would take considerable time and throw little new light on the
theory of space, especially as the results cannot be geometrically expressed....”

Happily, interest in the general case was revived in 1918 by Paul Finsler’s
thesis, written under the direction of Carathéodory.

It would appear that this new impulse was derived almost directly from the
calculus of variations, with particular reference to the new geometrical back-
ground which was introduced by Caratheodory in connection with problems
in parametric form. The kernel of these methods is the so-called indicatrix,
while the property of convexity is of fundamental importance with regard to
the necessary conditions for a minimum in the calculus of variations. Indeed,



the remarkable affinity between some aspects of differential geometry and the
calculus of variations had been noticed some years prior to the publication of
Finsler’s thesis, in particular by Bliss, Landsberg, and Blaschke.

Being Finsler geometry closely related to the calculus of variations, as such
its deeper study went back at least to Jacobi and Adolf Kneser; it has its
genesis in integrals of the form∫ b

a

F
(
x1, .., xn,

dx1

dt
, ..,

dxn

dt

)
dt , (2.2.1)

where the function F (x1, .., xn, y1, .., yn) is positive unless all the yi are zero,
and is also homogeneous of degree one in y. Let us single out some contexts
in which this integral arises.

• In certain physical examples, x stands for position, y for velocity, t would
plays the role of time, F has the meaning of speed. In these cases, the
above integral measures distance traveled.

• Another physical application originates in optics, because in anisotropic
media the speed of light depends on its direction of travel. In this case
F (x, dx) is the amount of time it takes light to travel from the point
with coordinates x to the point with coordinates x + dx. The integral∫ b

a
F (x, dx) represents the total time it takes light to traverse a given,

possibly curved, path in this medium.

• Other contexts in which this integral arises is in the framework of math-
ematical ecology [68], where for instance x stands for the state of a coral
reef, and y is the displacement vector from the state x to a new state. The
quantity F (x, dx) represents the energy one needs in order to evolve from

state x to the neighboring state x + dx. Hence the integral
∫ b

a
F (x, dx)

is the total energy cost of a given path of evolution.

2.3 Tensor Calculus and L. Berwald

A few years after Finsler’s work, the general development took a curious turn
away from the basic aspects and methods of the theory as developed by him.
Finsler did not make use of tensor calculus, being guided by the notions of the
calculus of variations; but in 1925 the methods of tensor calculus were applied
to the theory independently but almost simultaneously by Synge, Taylor, and
Berwald. It was found that the second derivatives of the half of the square of



F (x, dx) with respect to the differentials served as components of a metric ten-
sor in analogy with Riemannian geometry, and from the differential equations
of the geodesics, connection coefficients could be derived by means of which a
generalization of Levi-Civita’s parallel displacement could be defined.

In particular, Berwald’s work stemmed from the study of differential equa-
tions, and was deeply rooted in the calculus of variations. Nevertheless, he
introduced a connection and two curvature tensors: the Berwald connection is
torsion free, but is (necessarily) not metric-compatible.

Berwald developed his theory with particular reference to the theory of
curvature as well as to two-dimensional spaces. The significance of his work
was enhanced by the advent of the general geometry of paths (a generalization
of the so-called Non-Riemannian geometry) due to Douglas and Knebelman;
for the initial approach of Berwald was such as to establish a close affinity
between these branches of metric and non-metric differential geometry.

2.4 E. Cartan

Again, the theory took a new and unexpected turn in 1934 when E. Cartan
published his work on Finsler spaces. He showed that it was indeed possible
to define connection coefficients and hence a covariant derivative, such that
the preservation of Ricci’s lemma1 was ensured, so his connection is metric-
compatible but has torsion. On this basis Cartan developed a theory of cur-
vature, and practically all subsequent investigations concerning the geometry
of Finsler spaces were dominated by this approach. Several mathematicians
expressed the opinion that the theory had thus attained its final form. To a
certain extent this was correct, but not altogether so, as we shall now indicate.

The above-mentioned theories make use of a certain device which basically
involves the consideration of a space whose elements are not the points of
the underlying manifold, but the “line-elements” of the latter, which form a
(2n− 1)-dimensional variety. This facilitates the introduction of what Cartan
calls the “Euclidean connection” which, by means of certain postulates, may
be derived uniquely from the fundamental metric function F (x, dx).

The method also depends on the introduction of a so-called “element of
support”; namely, that at each point a previously assigned direction must be
given, which then serves as directional argument in all functions depending on
direction as well as position. Thus, for instance, the length of a vector and
the vector obtained from it by an infinitesimal parallel displacement depend
on the arbitrary choice of the element of support. It is this device which led to

1In Riemannian geometry it implies the vanishing of the covariant derivative of the metric
tensor.



the development of Finsler geometry in terms of direct generalizations of the
methods of Riemannian geometry.

It was felt, however, that the introduction of the element of support was
undesirable from a geometrical point of view, while the natural link with the
calculus of variations was seriously weakened. The rejection of the use of the
element of support, desirable from a geometrical point of view, led to new
difficulties: for instance, the natural orthogonality between two vectors is not
in general symmetric, while the analytical difficulties are certainly enhanced,
particularly since Ricci’s lemma cannot be generalized as before.

2.5 Modern Perspectives

The fundamental problem in local Finsler geometry, just like Riemannian ge-
ometry, is the equivalence problem, that is, to find a complete system of in-
variants or to decide when two Finsler metrics differ by a coordinate trans-
formation. In the Riemannian case this problem was solved in 1870 by E. B.
Christoffel and R. Lipschitz. In his solution Christoffel introduced a covari-
ant differentiation, which Ricci developed into his tensor analysis, making it a
fundamental tool in classical differential geometry.

It is not unreasonable to expect that the solution of the equivalence problem
will again involve a connection and its curvature, together with the proper
space on which these objects live.

The geometrical data in Finsler geometry consist of a smoothly varying
family of Minkowski norms, one on each tangent space, rather than a family
of inner products. This family of Minkowski norms is known as a Finsler
structure. It is an amusing irony that although Finsler geometry starts with
only a norm in any given tangent space, it regains an entire family of inner
products, one for each direction in that tangent space. This is why one can
still make sense of metric-compatibility in the Finsler setting.

Back in the torsion-free camp, the next progress came in 1948, when the
Chern connection was discovered. In the generic Finsler case, none of the
connection we mentioned operates directly on the tangent bundle TM over
M . Chern realized in his solution of the equivalence problem that, by pulling
back TM so that it sits over the manifolds of rays2 SM rather than M , one
provides a natural vector bundle on which these connections may operate.

2 SM is defined as the quotient of TM\{0} under the following equivalence relation:
(x, y) ∼ (x, ỹ) if and only if y and ỹ are positive multiples of each other, that is, every
ray {(x, λy)|λ > 0} is treated as a single point. In other words, SM is the bundle of all
directions or rays, and is called the projective sphere bundle. Moreover it is diffeomorphic
to the indicatrix bundle {(x, y) ∈ TM : F (x, y) = 1}, which is a subbundle of TM\{0}.



Although Finsler geometry is widely considered as the most natural gener-
alization of Riemannian geometry it would be more appropriate to describe it
as Riemannian geometry, without the quadratic restriction [69].

In a certain sense Finsler geometry has originated from two simple innova-
tions in Riemannian geometry, namely:

• Supplementing the position parameter in geometric quantities with a
new independent vector variable. Here, this is given the name “Finsler
parameter”.

• Using a of a norm, here called “Finsler fundamental function” (a scalar
distance function of position and the Finsler parameter).

The range of Finsler parameter is usually assumed to be all non-zero tan-
gent vectors and skipped over quickly. However, the subject merits more
attention, particularly in the case of metrics with indefinite signature. The
Finsler parameter can be present in geometric quantities such as connections
components, which in a differential geometric context, all need to be differ-
entiable, albeit, not infinitely. It is therefore necessary that this parameter
takes only values for which all such quantities are well-behaved. The most
natural and practical way to determine the range of Finsler parameter is ev-
idently through Finsler fundamental function. Domain of differentiability of
this function seems the best (and the only available) candidate for the purpose.

The range of Finsler parameter has to be a fibre bundle in order to obtain
a vertical bundle, absolutely necessary in the modern formulation3. When
the metric is positive definite this requirement is easily satisfied because the
corresponding fundamental function is differentiable for all non-zero tangent
vectors, which form a fibre bundle. However, for an indefinite metric, domain
of differentiability of the fundamental function is more restricted and it is not
clear if it forms a fibre bundle in general.

2.6 Finsler Structure

Let M be a n-dimensional C∞ manifold, TpM is the tangent space at p ∈ M
and TM := ∪p∈MTpM together with an appropriate differentiable structure
which will be explained in detail in this section, is called the tangent bundle
of M . Each element of TM has the form (p, v), where p ∈M and v ∈ TpM .

3 modern formulation of Finsler geometry of a manifold M utilizes the equivalence be-
tween this geometry and the Riemannian geometry of V TM , the vertical bundle over the
tangent bundle of M , treating TM as the base space.



The natural projection π : TM →M is given by π(p, v) := p, the dual space
of TpM is T ∗

pM , called the cotangent space at p. The union T ∗M := ∪p∈MT
∗
pM

is the cotangent bundle of M .
A Finsler structure globally defined on M is a function

F : TM → [0,+∞)

with the following properties:

1. Regularity of the Finsler structure: having defined the slit tangent
bundle of M as TM\{0} := ∪p∈MTpM\{0}, the function F must be:
F ∈ C∞(TM\{0},R).

2. Positive homogeneity: F (p, λv) = λF (p, v) for all positive λ. We are
requiring that F is a positive homogeneous function of first degree.

3. Strong convexity: The n x n Hessian matrix called Finsler metric

(gij(x, y)) :=

(
1

2

∂F 2

∂yi∂yj
(x, y)

)

is positive definite at every point of TM\{0}.

Here x = (x1, .., xn) are the coordinates assigned in a given chart to point
p of M , and y = (y1, .., yn) are coordinates of v ∈ TpM defined as follows: fix
any basis ei with i = 1, ..n for TpM , indeed we will always choose ei = ∂

∂xi |p
although this restriction is not necessary, and express v as v = yiei. In the last
equality the summation convention was adopted: whenever an index appears
once as a subscript and once as a superscript in the same expression, it is
automatically summed over all the values from 1 to n.

The lowering and the raising of indices are carried out by the Finsler metric
gij(x, y) defined above, and its matrix inverse gij(x, y). We also observe that
the fundamental tensor gij(x, y) defined at all (x, y) ∈ TM\{0} is invariant
under positive rescaling in y.

However, it must be remembered that different unlike for Riemannian met-
ric, the Finsler metric gij(x, y) depends also on velocity vector v = yiei.

Let ϕ = (x1, .., xn) : U ⊂ M → Rn be a local coordinate system on an
open subset U of M (that is a chart on M); as usual, { ∂

∂xi} and {dxi} are
respectively, the induced coordinate bases for TxM and T ∗

xM . The xi give rise
to local coordinates (xi, yi) on π−1(U) ⊂ TM through the law

y = yi ∂

∂xi
.



In the future we will make no distinction between the point (x, y) ∈
TM\{0} and its coordinate representation (xi, yi). So, when we fix a chart on
M , the Finsler structure F can be locally expressed as a function of the 2n
real variables (x1, .., yn).

Indeed we have also seen that TM is itself a 2n-dimensional differentiable
manifold [70]. An atlas for TM may be constructed out of an atlas for M as

follows: for a chart (O,ϕ) on M , let Ô be the subset of TM consisting of those

tangent vectors whose point of tangency lie in O, thus Ô := ∪p∈OTpM . Then

if v ∈ Ô it may be expressed in the form v = vi ∂
∂xi where ∂

∂xi are the coordi-
nate vector fields associated with the coordinates on O. The coordinates of a
tangent vector v are taken to be the coordinates (xi) of its point of tangency,
as given by the chart (O,ϕ) on M , and the components (vi) of v, that is we
have the map

ϕ̂ : Ô ⊂ TM → R2n

such that ϕ̂(x, v) = (x1, .., xn, v1, .., vn). It is a straightforward matter to check
that all possible charts on TM constructed in this way form an atlas for TM .

At this point we have to do a cautionary remark about our notation: when
evaluating at the point x ∈ M , the symbol ∂

∂xi refers to a coordinate vector
on M ; when evaluated at the point (x, y) ∈ TM , the same notation ∂

∂xi stands
for a coordinate vector on TM . As such, it would be on the same footing as
the ∂

∂yi , which are also coordinate vectors on the tangent bundle TM .

In short, we are using the same symbol ∂
∂xi to denote objects that belong to

two different spaces, and obviously they do not obey the same transformation
law: let xi = xi(x′1, .., x′n) be a local change of coordinates on M

• As a coordinate vector fields on M , the { ∂
∂xi} transform like

∂

∂x′k
=

∂xi

∂x′k
∂

∂xi
. (2.6.1)

• As a coordinate vector fields on TM , the { ∂
∂xi} transform like

∂

∂x′k
=

∂xi

∂x′k
∂

∂xi
+

∂2xi

∂x′k∂x′r
yr ∂

∂yi
. (2.6.2)

Every function F : TM → [0,+∞) which satisfies the second and the third
condition listed above is said a Minkowski functional on TxM for every x ∈M
[71].

We close this section by observing that the tangent spaces at different
points of M are identical, in the sense that each is isomorphic to Rn and hence
to every other. On the other hand, the realisation of such an isomorphism



between two tangent spaces depends on the choice of a basis for each space,
and in general there will be no obvious candidates to choose: in this sense, the
tangent spaces are distinct.

2.7 Minkowski Norms

The entity (M,F ) where M is C∞ finite dimensional manifold and F is a
Finsler structure is called a Finsler manifold. In a Finsler manifold, the re-
striction of a Finsler structure F to any specific tangent space TxM gives what
is known as a Minkowski norm on TxM . Thus a Finsler structure of M may
be viewed as a smoothly varying family of Minkowski norms.

Every n-dimensional vector space is linearly isomorphic to Rn, whose ele-
ments y have the form (y1, .., yn). We can confine our discussion to Minkowski
norm on Rn without loss of generality. We point out that the notion of a
Minkowski norm, common in the studies about Finsler geometry, has nothing
to do with Minkowski spacetime of special relativity theory and is also a dif-
ferent concept from the usual norm studied in functional analisys. We warn
the reader about this potentially confusing terminology, which is however well-
established in mathematics.

2.7.1 Euler’s Theorem

First of all we dispense a technical ingredient we will use in the following, it is
known as Euler’s theorem for homogeneous functions.

Theorem 2.1 (Euler’s theorem). Let G ∈ C1(Rn\{0},R) and let α be a
positive real number. Then the following two statements are equivalent:

• G is positively homogeneous of degree α. That is,

G(λ y) = λαG(y) for all λ > 0

• the radial directional derivative of G is α times G. Namely

yi ∂G

∂yi
(y) = αG(y) .

In particular, if G is positively homogeneous of degree 1, as in the physical
case we will study in next chapter, then it holds

yi ∂G

∂yi
(y) = G(y) (2.7.1)



and as a direct consequence

yi ∂2G

∂yi ∂yk
(y) = 0 . (2.7.2)

Using this theorem in Finsler structure’s framework, we can deduce from
the definition of the Finsler metric gij(x, y) the following equality:

gij(x, y) =
[
F

∂2 F

∂yi∂yj
+
∂ F

∂yi

∂ F

∂yj

]
(x, y) (2.7.3)

a straightforward result of these three last equation is

yi gij(x, y) = F (x, y)
∂F (x, y)

∂yj
(2.7.4)

and from equation (2.7.1) we obtain the fundamental property which hold for
every Finsler structure

gij(x, y) y
i yj = F 2(x, y) . (2.7.5)

In next chapter’s physical application, we will put ds = F (x, y) where ds
will be the infinitesimal spacetime distance between two event p (with coordi-
nate representation x) and q such that the tangent vector v = yi ∂

∂xi ∈ TpM
“has his tip on q”; equally, we will write ds2 = gij(x, y) y

i yj.
Indeed, in the following we will be interested to the case in which gij(x, y)

will be a pseudo-Finsler metric, to this purpose we will have to change the
first and the third properties we had required for a Finsler structure. We will
study this issue in the last section of this chapter.

2.7.2 A Fundamental Inequality

We will see in this section that positivity of F and the triangle inequality are
actually consequences of the defining properties of Minkowski norms, moreover
the hypotheses of the following theorem define what one means by Minkowski
norm on Rn.

Theorem 2.2. Let G be a nonnegative real-valued function on Rn with the
properties:

• G ∈ C∞(Rn\{0},R).

• G(λ y) = λG(y) for all λ > 0.



• The n x n matrix (gij(y)) := [1
2

∂G2

∂yi∂yj (y)], is positive definite at all y 6= 0.

Then we have the following conclusions:

• Positivity: G(y) > 0 whenever y 6= 0.

• Triangle inequality: G(y1 + y2) ≤ G(y1) + G(y2), equality holds if and
only if y2 = α y1 for some α ≥ 0

• Fundamental inequality: wi ∂ G
∂ yi (y) ≤ G(w) at all y 6= 0 and equality

holds if and only if w = α y for some α ≥ 0.

The hypotheses of the above theorem define what one means by a Minkowski
norm on Rn: according to this theorem, there is no need to assume that G be
positive at y 6= 0; it is necessarily so.

We point out here, that every absolutely homogeneous Minkowski norm on
Rn (that is the second hypothesis of the above theorem is replaced by the more
restrictive G(λ y) = |λ|G(y) for all λ ∈ R) is a norm in the sense of functional
analysis (it is a simple matter to demonstrate that G(0) = 0). The simplest
example of an absolutely homogeneous Minkowski norm on Rn is

G(y) =
√
δij yi yj

where δij is the usual Kronecker delta. This norm is called the Euclidean norm
of Rn.

Moreover, at each point (x, y) ∈ TM\{0}, the matrix (gij(x, y)) define an
inner product on TxM in this way:

(w | v)(x,y) = gij(x, y)w
i vj (2.7.6)

with w, v ∈ TxM or equivalently, using the Finsler structure

(w | v)(x,y) =
1

2

∂2

∂s∂t
[F 2(x, y + sw + t v)]|s=t=0 (2.7.7)

so it verifies the Cauchy-Schwarz inequality

| gij(x, y)w
i vj | ≤

√
[gij(x, y)wiwj] [grs(x, y) vr vs] . (2.7.8)

Indeed, we can write for the Finsler structure a generalization of the Chauchy-
Schwarz inequality: since we know that F (x, y) > 0 for y 6= 0, from the fun-
damental inequality we gain

wi F (x, y)
∂F (x, y)

∂yi
≤ F (x,w)F (x, y) (2.7.9)



if we now use equation (2.7.4) we have

gij(x, y) y
iwj ≤ F (x,w)F (x, y) (2.7.10)

and finally, with a straightforward calculation

| gij(x, y) y
iwj | ≤ F (w)F (y) (2.7.11)

so, in the general case, we may view the fundamental inequality as a general-
ization of the Cauchy-Schwartz inequality, from inner products to Minkowski
norms.

Note however that, when spelled out, equation (2.7.11) implies that

| gij(x, y) y
iwj | ≤

√
gpq(x,w)wpwq

√
gmn(x, y) yn ym (2.7.12)

we emphasize that in the first term on the right, it is gpq(x,w)wpwq and not
gpq(x, y)w

pwq. As such, this last inequality is distinctly different from, and
much more subtle than, the Chauchy-Schwarz inequality written in equation
(2.7.8).

About equation (2.7.6) we have to point out the following observation: since
gpq(x, y) is invariant under the positive rescaling y → λy, the inner products
we assigned to the points (x, λy) for all λ > 0 are identical, that is

(w | v)(x,y) = (w | v)(x,λ y) (2.7.13)

with w, v ∈ TxM , as we already say, although Finsler geometry starts with only
a norm in any given tangent space, it regains an entire family of inner products,
one for each direction in that tangent space. So we have a redundancy in the
above scheme, there is a simple way to restore economy: we can treat the
ray {(x, λ y)|λ > 0} as a single point in the projective sphere bundle as we
mentioned above in footnote (2).

Different from Riemannian geometry where the metric tensor field can be
use to establish a one-to-one correspondence between vectors and dual vectors,
in Finsler geometry this identification can be made only if we also specify a
“privileged direction” ν, a vector field on M (M 3 p→ νp ∈ TpM\{0}):

TpM 3 v = vα∂/∂xα → gαβ(p, νp)v
αdxβ ∈ T ∗

pM .

In physical application this “privileged direction” will be a time-light vector.



2.8 Minkowski and Locally Minkowski Spaces

Minkowski spaces are finite dimensional vector spaces equipped with a Finsler
structure F invariant under translations: that is, given any tangent vector
v based at an arbitrary y ∈ Rn (obviously now we are regarding Rn as a
manifold, albeit a linear one), we can slide it without twisting (we are using
the usual affine structure of the vector space), until it emanates from the origin
O instead. Then we can evaluate F at the tip of this translated vector and it
must hold

F (y, vi ∂

∂yi
|y) := F (0, vi ∂

∂yi
|0) . (2.8.1)

For a general Finsler space (M,F ), each tangent space TxM with F (x, ·) :=
F |TxM is a Minkowski space. Thus to study the geometric structure of a Finsler
space, we need to study Minkowski spaces first. A Finsler manifold (M,F )
is said to be a locally Minkowskian space if, at every point x ∈ M , there is
a local coordinate system (x1, .., xn), with induced tangent space coordinates
(y1, .., yn), such that F has no dependence on the (xi). Physically this is
assured if we assume the homogeneity of spacetime.

In such a situation and with pseudo-Finsler metric (see the last section of
this chapter), from the equality

gαβ(v)vαvβ = F 2(v) (2.8.2)

we obtain the generalization to the pseudo Finslerian case of the Special rela-
tivistic 4-velocity

yα = vα/F (v) . (2.8.3)

The one-form components are

yα := gαβ(v)yβ

=
∂

∂vα
F (v) (2.8.4)

in the last equality we have used equation (2.7.4).



2.9 Riemannian Manifolds From the Point of

View of Finsler Geometry

Let M be an n-dimensional C∞ (smooth) manifold. A smooth Riemannian
metric g on M is a family {gx}x∈M of inner products, one for each tangent
space TxM , such that the functions gij(x) := gx(

∂
∂xi ,

∂
∂xj ) are C∞.

Since gx is an inner product, the matrix (gij(x)) is positive definite at every
x ∈M . We can write

gx = gij(x) dx
i|x ⊗ dxj|x . (2.9.1)

This g defines a symmetric Finsler structure F on TM by the law

F (x, y) :=
√
gx(y, y) . (2.9.2)

So we can say that every Riemannian manifold (M, g) is a Finsler manifold.
A Finsler structure F is said to be Riemannian if it arises from a Riemannian
metric g in the manner we just described.

2.10 Connection and Geodesics

Now we consider general Finsler spaces. Geodesics are the first objects coming
to a geometer’s sight when he walks into an inner metric space. By definition,
geodesics are locally length-minimizing constant speed curves which are char-
acterized locally by a system of second order ordinary differential equations.
Let (M,F ) be a n-dimensional Finsler space.

For a C1 curve c : [a, b] →M , the length of c is given by

l(c) =

∫ b

a

F (c(t), ċ(t)) dt . (2.10.1)

A direct computation yields the Euler-Lagrange equations for a geodesic
c(t)

d2 xi

dt2
+ 2Gi(x(t), ẋ(t)) = 0 (2.10.2)

where x(t) = (xi(t)), i = 1, .., n denote the coordinates of c(t) in a given chart,
ẋ(t) = (ẋi(t)) are the coordinates of ċ(t) induced by the chart on M and Gi



is a globally defined vector field on TM that in the standard local coordinate
system (xi, yi) in TM is given by

Gi(x, y) :=
1

4
gil(x, y)

[
2
∂gil

∂xk
(x, y) − ∂gjk

∂xl
(x, y)

]
yj yk (2.10.3)

where

gij(x, y) = g(x, y)[
∂

∂xi
,
∂

∂xj
] (2.10.4)

and

g(x, y) = gij(x, y) dx
i ⊗ dxj . (2.10.5)

With the geodesic coefficients Gi in equation (2.10.3), we define a map
Dy : C∞(TM) → TxM for each y ∈ TxM by

DyU(x) :=

{
dU i(x)[y] + U j(x)

∂Gi

∂yk
(x, y)

}
∂

∂xi
|x (2.10.6)

where U(x) = U i(x) ∂
∂xi |x ∈ C∞(TM). DyU(x) is called the covariant deriva-

tive of U in the direction y. We call the family D := {Dy}y∈TM the canonical
connection of F .

With this connection D, we can define the covariant derivative DċU(t) of a
vector field U(t) along a curve c(t), a ≤ t ≤ b. U(t) is said to be parallel along
c if DċU(t) = 0. Clearly, a curve c is a geodesic if and only if the tangent vector
field ċ(t) is parallel along c . The parallel translation Pc : Tc(a)M → Tc(b)M is
defined by

P (U(a)) = U(b)

where U(t) is parallel along c. From the definition, we see that Pc is a linear
transformation preserving the inner products g(c, ċ). In general, Pc does not
preserve the Minkowski functionals.

2.11 Non-Riemannian Curvatures

The canonical connectionD has all the properties of an affine connection except
for the linearity in y. Namely, Dy1+y2 6= Dy1 +Dy2 in general. To measure the
non-linearity, it is natural to introduce the following quantity

By(u, v, w) :=
∂2

∂s∂t
[Dy + s v + t w U ]|s=t=0 (2.11.1)



where U ∈ C∞(TM) with U(x) = u. One can easily verify that By is a
symmetric multi-linear form on TxM . We call the family B := {B}y∈TM\0
the Berwald curvature. A Finsler metric is called a Berwald metric if B = 0.
L. Berwald proved the simple fact that B = 0 if and only if D is an affine
connection.

For Riemannian metrics, B = 0 and D is just the Levi-Civita connec-
tion. There are non-Riemannian Berwald metrics with B = 0. Consider the
following type of Finsler metric:

F (x, y) := a(x, y) + b(x, y) (2.11.2)

where a(x, y) =
√
ãij(x)yiyj is a Riemannian metric and b(y) := b̃i(x)y

i is a

one-form with length ‖b‖ =
√
ãijbibj < 1. F is called a Randers metric.

M. Hashiguchi and Y. Ichiiyō first noticed that if b is parallel with respect
to a, then F = a + b is a Berwald metric. Later, they proved that if db = 0,
then F = a+ b has the same geodesics as a and vice versa.

2.12 Riemann Curvature

In the context of Riemann’s lecture, the restriction to a quadratic differential
form constitutes only a special case. Nevertheless, Riemann saw the great merit
of this special case, and he introduced for it the curvature tensor. The Riemann
curvature tensor plays a major role in the “fundamental equivalence problem”;
namely: how does one decide, in principle, whether two given Riemannian
structures differ only by a coordinate transformation? This was solved in
1870, independently by Christoffel and Lipschitz, using different methods and
without the benefit of tensor calculus. It was only 50 years later, in 1917, that
Levi-Civita introduced his notion of parallelism (equivalent to a connection),
thereby giving the solution a simple geometrical interpretation.

A. Einstein used Riemannian geometry to describe his general relativity
theory, assuming that a spacetime is always Riemannian. For Riemannian
spaces, there is only one notion of curvature: the Riemann curvature, that was
introduced by B. Riemann in 1854 as a generalization of the Gauss curvature
for surfaces. Since then, the Riemann curvature became the central concept in
Riemannian geometry. Due to the efforts by L. Berwald in 1920’s, the Riemann
curvature can be extended to the Finslerian case.

Let (M, g) be a Riemannian space and D denote the Levi-Civita connection



of g. The Riemann curvature tensor is defined by

R(u, v)w := {DU DVW − DVDUW − D[U,V ]W}|x (2.12.1)

where U, V,W are local vector fields with U(x) = u, V (x) = v, W (x) = w and
[U, V ] = UV − V U .

The core part of the Riemann curvature tensor is the following quantity:

Ry(u) := R(u, y) y .

The Riemann curvature Ry : TxM → TxM is a self-adjoint linear trans-
formation with respect to g and it satisfies Ry(y) = 0. The family R =
{Ry∈TM\{0}} is called the Riemann curvature.

Let (M,F ) be a Finsler space. Given a vector y ∈ TxM\0, extend it to a
local nowhere zero geodesic field Y (i.e., all integral curves of Y are geodesics).
Y induces a Riemannian metric

ĝ := gY .

Let R̂ denote the Riemannian curvature of ĝ as defined above. Define

Ry := R̂y .

One can verify that R̂y is independent of the geodesic extension Y of y.
Moreover, Ry is self-adjoint with respect to gy, that is

gy(Ry(u), v) = gy(u,Ry(v)) (2.12.2)

and it satisfies Ry(y) = 0. Let Wy := {u ∈ TxM | gy(y, u) = 0}. Then
Ry|Wy : Wy → Wy is again a self-adjoint linear transformation with respect to
gy. Denote the eigenvalues of Ry|Wy by

k1(y) ≤ ... ≤ kn−1(y) .

They are the most important intrinsic invariants of the Finsler metric. We
call ki(y) the i-th principal curvature in the direction y. The trace of Ry is
denoted by Ric(y) which is called the Ricci curvature. Ry is given by

Ry :=
n∑

ij=1

gij(y) gy(Ry(ei), ej) =
n−1∑
i=1

ki(y) . (2.12.3)



2.13 Pseudo-Finsler Manifold

In this last section we want to study the general properties of “Finsler struc-
ture” we will use in the following chapters. More precisely we want to quit the
strong convexity property of a generic Finsler structure, that is, we want to
work with “Finsler structure” which give rise to a possible indefinite “Finsler-
metric” as it is request in a relativistic physical framework.

In this case some problems arise because when there is an indefinite met-
ric on M , the corresponding “Finsler structure”, that from now on we call
pseudo-Finsler structure, would not be differentiable over TM\{0} but on a
proper subset of TM . We want to investigate the property of such a subset,
more precisely: for an indefinite metric, domain of differentiability of the fun-
damental function is restricted with respect TM\{0} and it is not clear if it
forms a fibre bundle or not.

First of all we give the following definitions: Let N be some open submani-
fold of tangent bundle TM . A pseudo-Finsler fundamental function is defined
as a map F : N → R , satisfying a varying set of conditions. Naturally,
first-degree homogeneity in y is nearly always among these conditions,

F (x, k y) = k F (x, y), ∀k > 0, ∀(x, y) ∈ N (2.13.1)

where, it is implicitly assumed that if (x, y) ∈ N then so is (x, ky) ∈ N, ∀k > 0.
Applying Euler theorem on homogeneous functions to F yields:

F 2(x, y) =
1

2

∂2 F 2

∂yi∂yj
(x, y) yi yj (2.13.2)

the Finsler pseudo-metric tensor is defined as usual by:

gij(x, y) =
1

2

∂2 F 2

∂yi∂yj
(x, y) (2.13.3)

where, the y-Hessian of F 2 is assumed to be of maximal rank and hence of
fixed signature. The pseudo-metric gij(x, y) may be definable only on a subset
of N because F may be not differentiable on the whole of N.

Combining equations (2.13.2) and (2.13.3) yields the important relation

F 2(x, y) = gij(x, y) y
i yj . (2.13.4)

If from the Finsler structure we obtain a metric tensor which has q negative
eigenvalues and m−q positive eigenvalues for all (x, y) ∈ TM\{0}, then we say
that (M,F ) is a pseudo-Finsler manifold of index q, here m is the dimension of



the manifold M . If, in particular, q = 0, (M,F ) becomes a Finsler manifold,
and if m− q = 1 we have a Lorentzian-Finsler manifold.

Alternative to the classical approach, given any arbitrary zero-degree y-ho-
mogeneous Finsler (or pseudo-Finsler) metric tensor, we can consider equation
(2.13.4) as the definition of the Finsler (pseudo-Finsler) fundamental function
corresponding to the given metric. We can now state an intriguing results [72]:

Theorem 2.3. Given any differentiable Lorentzian metric gαβ on a smooth
spacetime, the corresponding Finsler fundamental function is differentiable
exactly on a fibre bundle over the spacetime defined by LM := {(x, y) ∈
TM | gαβ y

αyβ > 0}.



Chapter 3

Generalized Lorentz
Transformations

In this chapter we provide a kinematical basis for a new physics which is not
Lorentz invariant at least at high energies. This might be needed in order to
account for the overabundance of cosmic-ray TeV protons observed by HiRes,
and for the missing GZK cutoff. We shall deduce the general form, and study-
ing the mathematical properties, of what we have previously called “generali-
zed Lorentz transformation”, and indeed we will see that Lorentz invariance
is (weakly) violated also at low energy scale due to a local space anisotropy.
We will also see, as a consequence of the low level of space anisotropy, that
testable non-Lorentz invariant effects are possible only at high energy scales.

From now on we consider the situation in which matter is so diluted that
gravitational effects can be ignored. In such a situation, it is well known that
Lorentz transformations can be derived imposing the constancy and invariance
of the speed of light in every inertial frame, together with the linearity of the
sought transformations [38, 73, 74].

The Lorentz transformation can be obtained using another original and
more general approach. The alternative derivation of the Lorentz transfor-
mation, first discussed by the Russian mathematical physicist W. von Igna-
towsky in 1910 [9], and later rediscovered and refined by numerous authors
[8, 75, 76, 77] is based on the following hypotheses: the principle of relativity;
the assumption that in every inertial frame space is homogeneous, isotropic,
and euclidean and time is homogeneous; and the pre-causality condition must
holds. The pre-causality conditions states that that if an event A takes place
before an event B at a given point of an inertial frame, A takes place before B
in every inertial frame [8, 39, 76].

We point out that following this approach the Lorentz transformation can
be derived without assuming anything about the velocity of light or any other
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specific phenomenon. The parameter which occurs in the equations represents
an invariant speed. Having demonstrated that there must be an invariant
velocity, one can build up the rest of special relativity.

Our attempt is to generalized special relativity maintaining the relativity
principle and the usual description with classical configuration variables such
as position and velocity (in contrast with alternative approaches as doubly
special relativity, in which the central role is played by energy-momentum
space [18, 21, 22, 23, 24, 25, 81]). To this purpose we must relax one or more
of the above hypotheses in the essay to construct a group of transformations
that generalise Lorentz group. But in this effort very little freedom is allowed
because of homogeneity of space and time is crucial in order to set up the
fundamental notion of reference frame, and pre-causality condition is a funda-
mental requirement for causality to be defined. So our task is to demonstrate
that if we assume to hold the following physical postulates [39]:

• The physical entity called spacetime is a metrically1 structured four di-
mensional differentiable manifold. As a consequence we are not assuming
the existence of a fundamental length scale, in contrast with double spe-
cial relativity. Also, we assume the flatness of gravity free-spacetime. A
point of the manifold is called “event”, and it represents every “location”
available for instantaneous punctual physical phenomenas.

• Homogeneity of spacetime: in particular this assumption imply homo-
geneity of space and time separately, they are crucial in order to define
the fundamental notion of reference frame.

• Validity of the pre-causality principle: this is a minimal request if we
want to build up a physical theory.

• Validity of the relativity principle.

From all these assumptions we can extract a new type of coordinate trans-
formations which satisfies the following mathematical properties:

• linearity, so the principle of inertia holds good in all inertial frames2;

1We will see in the following that by metrically structured manifold we mean in general
a Finsler manifold. As we said in the previous chapter, Riemannian geometry is a “special
case” of it.

2We know that the most general class of transformations which preserve the inertia
principle are the group of projective transformations (affine maps belong on this group) [8].
One property of these transformations is that if two particles move with constant velocities
v1 and v2 such that v1 = v2 in an inertial frame, applying a projective transformation they
move in any other inertial frame yet along a straight line but in general with different, still
constant velocities.



• possess group properties, we will see that this is a consequence of the
implementation of the relativity principle at a kinematical level;

• they have a different geometrical meaning from the Lorentz ones: they
serve as relativistic transformations of a flat anisotropic pseudo-Finslerian
event space rather than of the Minkowski spacetime. So it is possible to
conceive physical experiments imposing constrains to the parameters of
the models (test-theory). Obviously they contain as particular cases both
Galilei and Lorentz transformations.

• they lead to a generalized addition law of three velocities. This addition
law is of Reichenbach’s type (1.5.11).

We note that with respect the usual approach to the Einstein theory of special
relativity we have dropped only the requirement of isotropy of space, and
we have changed the hypotheses of homogeneity of space and time, with the
request of homogeneity of spacetime.

3.1 Generalized Lorentz Transformation:

Geometrical Approach

The two fundamental postulates stated by Einstein [38] as basis for his theory
are:

1. The principle of relativity.

2. The constancy of the speed of light in all inertial reference frames.

Besides this two postulates, special relativity also uses additional implicit
hypotheses: these other assumption concerns the homogeneity and Euclidean
structure of gravity-free space and the homogeneity of gravity-free time [78].

In special relativity theory in a given inertial reference frame, spatial co-
ordinates means the results of certain measurements with “rigid” motionless
rods. A clock at rest relative to the inertial reference frame defines a local time
and the local time at all points of space, indicated by synchronized clocks and
taken together, give the global time of this inertial reference frame .

As a consequence each inertial reference frame is supplied in every space
points with motionless, rigid, unit rods of equal length and motionless, syn-
chronized clocks of equal running rate, then in each inertial reference frame an
observer employ his own rigid rods and synchronized clocks to measure space
and time intervals. With this method the observer can set up his own usual
inertial coordinate system (t, xi), i = 1, 2, 3, x1 = x, x2 = y, x3 = z.



In the usual inertial coordinate system we can draw homogeneity of space
and time, the isotropy and the Euclidean structure of space in the following
way:

dL2 = δrs dx
r dxs (3.1.1)

dT 2 = dt2 (3.1.2)

everywhere and every time where dL and dT are respectively the spatial dis-
tance and time separation between two events with usual coordinates (t, xi)
and (t+ dt, xi + dxi) and r, s = 1, 2, 3.

We define a “Lorentz chart” as a differentiable function from the four di-
mensional differentiable manifold to the normed vector space R4 such that at
each events it assigns a quadruple of real number which agrees with measure-
ments performed using natural clocks and unstressed rods at rest in the frame
to which the chart is adapted. Obviously for a given inertial frame these charts
differ from each other at most by spatial rotations and translations and time
translations.

The principle of relativity is a statement about formulae that express the
laws of nature in terms of coordinate systems of a special kind (Lorentz charts).
Such formulae represent the properties and relations of physical events by prop-
erties and relations of the real number quadruples assigned to the events by
the said charts. It ensures that there exists an infinite continuous class of refe-
rence frames in spacetime which are physically equivalent, that is all laws of
physics take the same form when referred to any one of these frames supplied
with the adapted Lorentz chart, so no physical effects can distinguish between
them. These reference frames are called “inertial frame” and a generic trans-
formations connecting two arbitrarily inertial frame is called “inertial trans-
formations”. We stress that Einstein’s relativity principle concerns Lorentz
charts: the laws of physics are invariant when one such chart is substituted for
another one; that is, in special relativity, when the formulae are subjected to
a Lorentz transformation.

The existence of such equivalent reference frames corresponds to the validi-
ty of the principle of inertia, namely, that a physical object has no absolute
state of motion. We observe that usual textbooks formulation of inertia’s
principle, that is the statement according to in an inertial frame, a force-free
particle moves along a straight line at a constant speed contains, actually
two implications very different in nature. One, that the motion takes place



along a straight line, is a physically testable prediction, since the notion of a
straight line is well defined in the Euclidean geometry that one presupposes
when discussing the principle: this is the geometric content of the principle.
The other, that motion is uniform, is a matter of convention. Of course, one
could choose the “time” variable in such a way that motion is not uniform
(this is the analogue of choosing a synchronisation different from Einstein’s,
or more generally different from Reichenbach’s type synchronization), but this
generalization will lead to no new physical phenomena only to a complication
in the formulation of the laws of mechanics.

The main goal of this section is understanding whether or not the local
structures of gravity-free space are Euclidean; let us consider for simplicity’s
sake the two dimensional case. Following Lalan [39], we are looking for the
more general kinematics satisfying the postulates we made, that is we are going
to gain the esplicity expression of the generalized Lorentz transformations.

After, we will prove that these new transformations are isometry of a
pseudo-Finsler space rather than a Minkowski one. We point out that for
the sake of generalization in what follows we do not specify what prescription
has been adopted for the synchronization of distant clocks, we only require it
to be compatible with the inertia and relativity principles.

We called “generalizzed Lorentz chart any differentiable function from the
four dimensional differentiable manifold to the normed vector space R4 such
that at each events it assigns a quadruple of real number which agrees with
measurements performed using natural clocks and unstressed rods at rest in
the frame to which the chart is adapted. The adjective generalized is added
because we do not know if the time we are using agrees with Einstein time.

3.1.1 Linearity

First of all we have to explain what we exactly means by homogeneity of space-
time: physically we mean that the results of scientific experiments performed
on isolated systems can be set up anywhere in an inertial frame (space homo-
geneity), be repeated at any time (temporal homogeneity) and the outcome
should not depend both on experimental setup specific location and from the
begining and finishing instants of the experiment. The mathematical content
of spacetime’s homogeneity is expressed requiring that the common domain
of all Lorentz charts is a manifold transitively acted on by the additive group
of R ⊕ R3, that is we appeal to the existence of two special classes of iner-
tial transformation, namely space and time translations. This implies that no
point of the manifold is special; however, it is compatible with a structure in
which certain directions are favored over others.

Amounting to a simple displacement in space and time, they are supposed



to leave the laws of physics invariant; using this freedom, we restrict our atten-
tion from now on to the class of inertial frames with common spacetime origins.
More over we require that spacetime translations are an invariant abelian sub-
group of the full relativity group we are looking for. If (M,φ1) and (M,φ2)
are two global charts on the manifold M , we wish to know whether φ2 ◦ φ−1

1

is a linear permutation of R4. We will see that homogeneity of spacetime as
defined above is a sufficient condition.

If we consider two arbitrarily inertial frames, spacetime homogeneity re-
quirement implies that all points of an inertial frame S ′ stand at all times
in one and the same relation to another inertial frame3 S. If all points of
S always move in S ′ with the same velocity, the coordinate transformations
must be indifferent to the choice of the particular origin and must be invariant
if that origin is changed. In other words if before performing a change L of
reference system from S to S ′ by which the origin of spacetime is conserved
we made a translation, it is always possible to recover the original form L by
choosing an appropriate translation in S ′. In formulae:

∀ T0, L, ∃ T ′
0 | T ′

0 LT0 = L (3.1.3)

where T ′
0 and T0 are two translations, the first made with respect the system

S ′ and the second made with respect the system S.

We can express this property using a coordinate language in this way:
because of translations in two dimensional spacetime form an Abelian group
with two parameters [79], it is always possible to choose a generalized Lorentz
chart on the differentiable manifold M (by which we describe the spacetime),
such that the coordinates (t, x) transform under an arbitrary change of origin
of spacetime in the following way:

t′ = t− t0

x′ = x− x0 .
(3.1.4)

Using these coordinates we can write the operation L as:

t′ = g(t, x), x′ = f(t, x) (3.1.5)

3Obviously this does not follow from the homogeneity of the spaces and the times associ-
ated at each inertial frame alone, but also depends on the way how the inertial frames move
in each other; thus the linearity of the sought for coordinate transformations, as in the case
of Lorentz transformation, is essentially a question of kinematics.



and equation (3.1.3) becomes:
f(t− t0, x− x0)− x′0 = f(t, x)

g(t− t0, x− x0)− t′0 = g(t, x) .
(3.1.6)

From equation (3.1.6), that is, from the required homogeneity and from
the continuity of f and g at (0, 0), we immediately deduce the linearity of the
two functions with respect both variables x and t; so the generic change of
reference system which preserve the origin of spacetime can be written

t′ = a(v)x+ b(v) t, x′ = d(v) (x− vt) (3.1.7)

where v is the velocity of the origin O′ of the reference system S ′ measured
by two observers in S. The coefficients b(v) and d(v) are pure numbers, the
coefficient a(v) has physical dimension as an inverse of velocity. Different
values of these coefficients are obtained from different clock-synchronization
conventions.

To conclude this subsection it is useful emphasizing the stringency of the
homogeneity of spacetime hypothesis, especially as it concerns time, it does
not hold in every physical theory, a simple example about evolutionary models
of the universe (de Sitter spacetime) is given in [76].

3.1.2 Group Properties

Next step is to establish the explicit mathematical form of the functions
a(v), b(v) and d(v). This will be done by imposing that equations (3.1.7)
are those of a group, in fact the physical equivalence of the inertial frames
stated by the principle of relativity implies a group structure for the set of
transformations we are looking for. In this way Lalan demonstrated in his
article [39] the existence of three admissible kinematics, we report here the
main results found by him.

First of all he imposed the natural condition that equations (3.1.7) for v = 0
were group’s identity transformation, so transformation’s coefficients can be
expanded for low velocity in the following Maclaurin series:

d(v) = 1 + λ v + o(v)

a(v) = µ v + o(v)

b(v) = 1 + ρ v + o(v)

(3.1.8)

with λ, µ, ρ real constant numbers. Dimensionally λ and µ are inverse of
velocity, and µ is an inverse of a square velocity.



He constructed the group’s generator: by straightforward calculation this
is equivalent to impose the following algebraic equation:

r2 − (λ+ ρ) r + µ+ λ ρ = 0 . (3.1.9)

At this point Lalan distinguished three cases according to equations’s root, in
this way he found the three following admissible classes of kinematics (for the
time being with respect relativity principle only).

3.2 First Possible Kinematics

The first kinematics we can obtain is characterized by two, distinct, real roots
r1 and r2 of equation (3.1.9). It is straightforward, albeit with some tedium,
to show that this kinematics has the following velocity addition law:

u′ =
u+ v′ − (λ− ρ)u v′

1− µu v′
(3.2.1)

where v′ is the velocity of S with respect the reference system S ′.
We note that this is the same law, equation (1.5.11), found by Ungar in

the framework of Reichenbach’s special theory of relativity [56]. It seems that
the composition velocity law is not able to single out real anisotropy from
conventional one.

The most important feature of this addition velocity law is that there are
some “notable” velocities: they satisfy the property that compose with any
other velocity they still remain invariant. These invariant velocities are:

c1 =
1

λ− r1
(3.2.2)

and

c2 =
1

λ− r2
(3.2.3)

it is a simple matter to show that

c1 + c2 =
λ− ρ

µ

c1 c2 =
1

µ

(3.2.4)

physically this means that as in special relativity there is still an invariant



speed, but its value can be different along different directions (in fact we will
see in next subsection that if pre-causality principle holds, it must be c1 c2 < 0,
so we can consider for example the case with c2 > 0 and c1 < 0. We also
observe that we have a constrain on µ parameter).

If both c1 and c2 are finite, real number the only admissible values of the
parameter v are those that satisfy:

(1 − v

c1
)(1 − v

c2
) > 0 . (3.2.5)

The transformations coefficients are:

d(v) =

(
1 − v

c1

)− r2
r2 − r1

(
1 − v

c2

) r1
r2 − r1

a(v) =
v

c1 c2
d(v)

b(v) = d(v)
[
1 − v

(c1 + c2
c1 c2

)]
.

(3.2.6)

Obviously, in contrast with Lorentz transformations, the generalized Lorentz
transformations we can now write, that is

x′ = d(v) (x − v t)

t′ = d(v)
[ 1

c1 c2
v x +

(
1 − v

(c1 + c2
c1 c2

))
t
] (3.2.7)

do not leave invariant the Minkowsky pseudo-Euclidean metric. Therefore, the
question arises as to what the metric invariant under such generalized Lorentz
transformations is.

The rigorous solution to this problem is not a quadratic form but a homo-
geneous function of the coordinate differentials of degree one:

ds = (dx − c1 dt)
− r1

r2−r1 (c2 dt− dx)
r2

r2−r1 . (3.2.8)

The structure (3.2.8) falls into the category of pseudo-Finsler metrics. This
is one of our model crucial point, indeed we have demonstrated that removing
the isotropy space hypothesis, spacetime is representable as a pseudo-Finsler
space and not as a pseudo-Riemannian manifold.

The metric (3.2.8) describes a flat but anisotropic event space, so in our
model, at every length scale we have a different geometrical interpretation from
special relativity.



We also observe that the only difference between equations (3.2.7) and
(1.5.5), found in Reichenbach theory framework, that is a purely conventional
theory, is contained only in the difference between multiplicative coefficients
d(v) and Γ(V ) of equations (3.2.7) and (1.5.7) respectively; or better it seems
that the quantities

r1
r2 − r1

and
r2

r2 − r1
can capture the difference between real and conventional anisotropy. This ob-
servation explain our comment to equation (3.2.1), because in the construction
of the velocity composition law, from equation (3.2.7) the factor d(v) disappear.
Indeed we will see that to grasp, in an easy way, this difference between real
and conventional anisotropy we will have to introduce three new parameters
linked to (λ, ρ, µ).

3.2.1 Special Cases

• Minkowski spacetime and Lorentz transformation

For the first special case we require that:{
r2 + r1 = 0
c1 + c2 = 0

(3.2.9)

this case is particularly important because we recover Minkowski space-
time and Lorentz transformations as we easily verify replacing in equa-
tions (3.2.8) and (3.2.7) the above values.

Using equations (3.1.9) and (3.2.3) we are able to express these occur-
rences imposing a condition on parameters λ and ρ{

λ + ρ = 0
λ − ρ = 0

(3.2.10)

this linear system has only one solution λ = ρ = 0. As a consequence
we can interpreter the parameters λ and ρ as anisotropy’s parameters
because when λ = ρ = 0, we have seen that we reobtain special rela-
tivistic theory for which space’s isotropy is an essential requirement. It
is a simple matter and a useful task to see in a 3D parameters space
(λ, ρ, µ) which points correspond to special relativity: (0 , 0 ,− 1/c2),
where we have defined c2 = c.

• The case with c2 = ∞, that is µ = 0 is also admissible if

1− v

c1
≥ 0. (3.2.11)



where c1 = 1
λ− ρ

, the group coordinates transformations are



x′ =
(x − v t)(
1 − v

c

)λ c

t′ =
t(

1 − v

c

)ρ c .

(3.2.12)

Note that the second equation implies the existence of the absolute si-
multaneity that is, two events occurring in different spatial points and at
the same instant with respect S reference frame are view as simultaneous
in every reference frame S ′, since ∆ t′ = 0 implies ∆ t = 0.

3.3 Second Possible Kinematics

The second possible kinematics, is given when the equation (3.1.9) has two
equal real roots r = r2 = r1. There is only one invariant velocity c = 1

λ−r
= 2

λ−ρ

not neccesary infinite (as in Newtonian physics), and the parameter v can vary
all over the real numbers different from c. The coordinates transformations
are those with the following coefficients:

d(v) =
er v / (1− v

c
)

1 − v
c

a(v) =
v d(v)

c2

b(v) = d(v)

(
1 − 2 v

c

)
.

(3.3.1)

The invariant pseudo-Finsler metric is in this case:

ds = (c dt − dx) ec r dx
c dt− dx . (3.3.2)

The case with λ = ρ and µ = 0 that is c = ∞ become:
x′ = ev λ (x − vt)

t′ = ev λ t
(3.3.3)



the corresponding Finsler metric is

ds = dt eλ dx
c dt . (3.3.4)

Also for this kinematics time possess the absolute simultaneity and the
principle of reciprocity hold true, but we reobtain the Galileo’s kinematics and
so the spatially isotropy only for λ = 0 ( or equivalently λ + ρ = 0, as we see
in the following). We note that this last observation confirm our previously
physical interpretation for parameters λ and ρ.

3.4 Third Possible Kinematics

The last admissible kinematics obtained when equation (3.1.9) has two complex
coniugate roots and as a consequence there are no admissible real invariant
velocity, they are complex conjugate. In this case every velocity’s values is
permitted.

In these three last sections we saw that thee are three allowable group trans-
formation’s coordinate, for every one of these we can say that equation (3.1.3)
or (3.1.6) imply that the group of change of origin is invariant under trans-
lations, or equivalently that spacetime translations are an invariant abelian
subgroup of the full relativity group we have constructed, as it is required in
a theory with homogeneity of spacetime.

3.5 Pre-Causality

Applying the pre-causality postulate, that is we require that if an event A takes
place before an event B at a given point of an inertial frame, A takes place
before B in every inertial frame (this is equivalent to impose that coordinates
transformations satisfy ∂ t′

∂ t
> 0) we obtain that the only kinematics we can

retain if c1 and c2 are finite, distinct, real or complex conjugates, are those
that satisfy the conditions c1 c2 < 0, that is µ < 0. So we can drop out the
third kinematic; in the first this condition imposes that there are two invariant
velocities, one positive say c2 the other c1 negative, equation (3.2.5) states that
they are also limiting velocities.

Indeed in the first kinematics also the case with c2 = ∞ and c1 real is
acceptable. In the second kinematics the only admissible situation is the one
with c = ∞, that is the “Galileo anisotropic case” (3.3.3).

We observe here, for future convenience, that if equation (3.1.9) has two
real distinct roots, the pre-causality condition for two events A and B occurred



in the origin of the reference system S at a different time tA < tB can be write
in a second inertial frame S ′ in the following way:

T ′2 − X ′ T ′ c1 + c2
c1 c2

+
X ′2

c1 c2
> 0 (3.5.1)

where (T ′, X ′) are values assigned to event B from a generalized Lorentz chart
adapted to reference frame S ′, whereas the first event A is realized in spacetime
origin of both coordinate reference systems.

This “anisotropic relativistic pseudo-norm” is the same found by Ungar as
the invariant quantity for the one-way Lorentz group in Reichenbach special
theory of relativity. It is easy to see that the anisotropic relativistic pseudo-
norm (3.5.1) become the usual Minkowski pseudo-Euclidean metric if c1 + c2 =
0.

We conclude this section to point out that linearity of the laws that link ar-
bitrarily inertial reference frame are consequence of homogeneity of spacetime
only; the existences of invariant velocities is a consequence of homogeneity of
spacetime and group properties of the generalized Lorentz transformations.
Also we notice that in our derivation we have not appeal to any physical phe-
nomenae, but only to a general spacetime’s properties.

3.6 Generalized One Dimensional Composition

Law: Properties

What we said in the three previous sections has as consequence that the most
general velocity composition law compatible with spacetime homogeneity, rel-
ativity principle and pre-causality principle has the following form

Φ(u, v′) =
u + v′ + b u v′

1 + a u v′
, (3.6.1)

where a and b are arbitrary real constants, they encode the convention adopted
in both reference frames for synchronising clocks, u is the velocity of a particle
with respect to the reference frame S, v′ is the velocity of S reference system
with respect S ′ and Φ(u, v′) is the particle velocity with respect to S ′.

We may express the coefficients a and b using invariant velocities defined
by the

Φ(c, v) = c (3.6.2)



for every admissible values of velocity v, so we obtain the followings two equal-
ities

a = − 1

c1 c2
(3.6.3)

b = − c1 + c2
c1 c2

. (3.6.4)

Equation (3.6.1) can be rewritten as

Φ(u, v′) =
u + v′ + (c1 + c2)u v

′ / c1 c2
1 − u v′ / c1 c2

. (3.6.5)

Obviously, using equations (3.2.2) and (3.2.3) we obtain again the formula
(3.2.1).

Now we want to list some general features of the one-dimensional genera-
lized composition law in (1 + 1) dimension:

it is a real function of two real variables Φ : I× I → I; this function satisfy
the following properties:

• existence of a neutal element:

Φ(u, 0) = Φ(0, u) = u , ∀u ∈ I ; (3.6.6)

• existence of the inverse element:

∀u ∈ I, ∃u′ ∈ I such that Φ(u′, u) = Φ(u, u′) = 0 ; (3.6.7)

The inverse velocity is

u′ =
−u

1 − (λ − ρ)u
. (3.6.8)

Note that u′ is not necessarily equal to −u; we recover the so call “prin-
ciple of reciprocity” [8] only if λ − ρ = 0.

It is nice noting that once again quantities involving the two parameters
λ and ρ as in this case λ − ρ are strictly related to space’s isotropy;
this is due to Berzi and Gorini’s paper [80] in which they stated that
the principle of reciprocity derived from the principle of spatial isotropy.
Indeed in the following we have to distinguish between conventional (we



see later that this is a case) and non conventional anisotropy. By con-
ventional anisotropy we mean an anisotropy that is gauge eliminable or
equivalently eliminable by a stipulation.

If we read the velocity in equation (3.6.8) as one-way velocity and use
the notation v+ = v, then from equation (3.2.1) the velocity v− inverse
to v+ is given by the equation

v− =
− v+

1 + (λ − ρ) v+

. (3.6.9)

Equation (3.6.9) states the one-way velocity reciprocity principle in Re-
ichenbach’s special theory of relativity, as a consequence we can inter-
preter the quantity λ − ρ as a conventional one.

Obviously, in this framework the round-trip velocity v, associated with
the one-way velocity v+ is defined by the equation

1

v
=

1

2

(
1

v+

+
1

− v−

)
(3.6.10)

• associative rule:

Φ(Φ(u, v), w) = Φ(u,Φ(v, w)) , ∀u, v, w ∈ I (3.6.11)

• commutative rule

Φ(u,w) = Φ(w, u) , ∀u,w ∈ I . (3.6.12)

This equation states that the composition law among collinear velocities
is commutative. This property is valid only in (1+1) dimensions, it does
not hold in general for the composition law of velocities along arbitrary
directions in more than one spatial dimension [77]. In (1+3) dimensions
also in special relativistic theory this feature is false.

Hence, on writing u ⊕ v := Φ(u, v), ∀u, v ∈ I, equation (3.6.1) defines the
composition law of an Abelian group (I,⊕), with neutral element 0 and inverse
u′ of a generic element u ∈ I defined by equation (3.6.8). We point out that the
group structure is a consequence only of the relativity principle and the real
form of equation (3.6.1) is a consequence of spacetime homogeneity. As Mermin
demonstrated in [75] for such a composition law, there exists a differentiable
real function h of a single variable defined on I, such that

h(0) = 0 (3.6.13)



Φ(u, v) = h−1 (h(u) + h(v)) . (3.6.14)

or equivalently

h(Φ(u, v)) = h(u) + h(v) . (3.6.15)

From the last equation written, we see that h function is not defined uni-
vocally, as a matter of fact if α is a real number and α 6= 1 , 0, we can define a
new function

H(u) =
1

α
h(u) (3.6.16)

such that
H(Φ(u, v)) = H(u) + H(v) . (3.6.17)

We point out, as discussed by Mermin [75], the principle of relativity is
compatible with a generalised kinematics, characterised by the function h that
defines the composition law for velocities. Let us now define the function

ϕ(u) :=
∂Φ(u, v)

∂v

∣∣∣∣
v=0

(3.6.18)

on differentiating equation (3.6.14) with respect to v, and setting v = 0, we
obtain

ϕ(u)
dh(u)

du
=

(
dh

du

)
u=0

. (3.6.19)

Since we can choose (dh/du)u=0 = 1 without loss of generality (this is a
straightforward consequence of equations (3.6.16) and (3.6.17)), the function
ϕ contains all the information needed to specify Φ.

The meaning of ϕ can be found by expanding u′ to the first order in v:

u′ = u+ ϕ(u) v +O(v2) (3.6.20)

this is the composition law between an arbitrary velocity u and a velocity
v with small magnitude. Since equation (3.6.6) or equation (3.6.19) implies
ϕ(0) = 1, at very small speeds one recovers Galilean kinematics.

The importance of the function ϕ(u) is that if we assume only the relativity
principle and the existence of a conserved total energy in elastic collision be-
tween asymptotically free particles, we are able to construct another conserved
quantity

p(u) = η ϕ(u)
d T (u)

du
+ τ T (u) + ν (3.6.21)



where T (u) is the kinetic energy of a particle with velocity u in an inertial
frame and coefficients η, τ and ν are real constant. To avoid triviality we
impose also η 6= 0.

In classical physics and special relativity theory if we choose the set of
parameter 

η = 1

τ = 0

ν = 0

(3.6.22)

the left hand member in equation (3.6.21) coincide respectively with momen-
tum and spatial component of energy-momentum one-form. As a consequence
we can identify this new physical observable as the “momentum” in a more
general framework [82, 83].

Another interesting property of ϕ is that if some velocity, say C, is invari-
ant, then ϕ(C) = 0. This follows immediately by applying equation (3.6.18)
to the condition

Φ(C, v) = C , ∀v ∈ I , (3.6.23)

which expresses the invariance of C.
Indeed C might not belong to I, so, if for example C = sup I we define

Φ(C, v) = limu→C− Φ(C, u) and ϕ(C) = limu→C− ϕ(u).
In the following we restrict ourselves to the case with c1 and c2 distinct

real numbers such that c1 c2 = 1/µ < 0. We assume c1 < 0 so we have c2 > 0
and the only admissible values for parameter v are those in the open interval
I := (c1, c2) ⊂ R.

3.7 Conventional and Non Conventional

Anisotropy

We know experimentally that the (two-way) speed of light (at least with wave-
length much larger than Planck length scale) measured in a round trip does not
depend on direction. However, this is not in contradiction with the possibil-
ity of having anisotropic propagation, provided one assumes that the one-way
speeds of light are different, namely that the (one-way) speed of light when
propagating from point P to point Q, say, differs from the one associated with
propagation from Q to P .



Whether the one-way speed of light is a physically meaningful quantity or
merely a conventional one, is the matter of a long-standing debate. We saw in
chapter 1 that this issue is inextricably linked to another one, concerning the
conventionality of clock synchronisation in special relativity. This creates a
circularity which does not allow any escape at the kinematical level. However,
Ohanian [45] claims that the dynamics of theories with different one-way speeds
of light are not equivalent (we will deal with this problem in a way which is
very different in nature from the approach of Ohanian in his article. Moreover
Ohanian’s point of view was convincingly criticized by Klauber [59] employing
arguments that translated in our model language, are due to the fact that
postulating, as in Reichenbach theory, the existence of anisotropic one-way
speed one introduce a conventional anisotropy and not a physical real one).
So no new physics can arise in such a model, but only more complicated (and
equivalent) equations both in kinematics than in dynamics. Different from
these assumptions, are the following two cases, the first with the existence of
a preferred reference frame and so a preferred directions in velocity space; in
the second we have to introduce a real anisotropy4, thus we have a chance to
test isotropy by means of dynamical experiments.

In this section we want to investigate this issue; to this aim it is convenient
to introduce three new parameters instead of λ, ρ and µ. The first new param-
eter is the two-way velocity of light: in our anisotropic kinematics model we
saw that there is still an invariant speed, but its value can be different along
different directions. Although there is no fundamental reason why light should
propagate at the invariant speed, there is excellent experimental evidence that
any difference is very small. If as usual we identify both our one-way invariant
speeds with the one-way speed of light in vacuum, it follows that consistency
with experimental evidence requires

1

c
=

1

2

(
1

c2
− 1

c1

)
(3.7.1)

where c represent round trip light velocity’s experimental value.
This equation allow us to introduce a second addimentional parameter: the

so called “Reichenbach’s conventional5 parameter” ε defined by
c1 =

− c
1 − ε

c2 =
c

1 + ε

(3.7.2)

4We will see in the later what we mathematically mean by “real” anisotropy
5Conventional only for physicists which agree with the conventionalist thesis, of course!



with | ε | < 1.
It is now useful and instructive to understand the relations between old

parameters (λ, ρ, µ) and the two new parameter c and ε. From second equation
of (3.2.4) and definitions (3.7.1) we can easily find the relation between µ
parameter and the two new variables ε and c (indeed, the value of this quantity
is fixed by Michelson-Morely experiment; c different from ε is a fundamental
physical constant of nature), so we have

µ =
ε2 − 1

c2
. (3.7.3)

We can now rewrite the two real roots of equation (3.1.9): from equations
(3.2.2) and (3.2.3) and using equation (3.7.3), we obtain

r1 =
1 + λ c + ε

c
(3.7.4)

and

r2 =
−1 + λ c + ε

c
. (3.7.5)

If we compute the quantity r2 − r1 using equations (3.7.5) and (3.7.4) we
find

r2 − r1 = − 2

c
. (3.7.6)

The Finsler structure (3.2.8) can be written as follows:

ds =

√( c

1 + ε
dt + dx

)( c

1 − ε
dt − dx

)( c
1+ ε

dt + dx
c

1− ε
dt − dx

)λ c + ε
2

. (3.7.7)

From equation (3.1.9), (3.7.4) and (3.7.5) we have

r1 + r2 =
2

c
(λ c + ε) = λ + ρ (3.7.8)

that is

λ − ρ = − 2 ε

c
(3.7.9)

so the linear combination λ− ρ is proportional to a conventional parameter. As



a consequence the anisotropy it lead in equation (3.6.8) is purely conventional
even if in our model there is a real anisotropy.

Summarizing we have this situation
µ =

ε2 − 1

c2

λ − ρ = − 2 ε

c

(3.7.10)

so we can introduce a third new (addinensional) parameter σ linked with pa-
rameters λ and ρ in a compatible way with the second of the above equation,
for example we can put 

λ =
σ − ε

c

ρ =
σ + ε

c
.

(3.7.11)

We can definitely write the change in parameters as follows:

µ =
ε2 − 1

c2

λ =
σ − ε

c

ρ =
σ + ε

c

(3.7.12)

and the inverse relations 

c =
2√
∆

ε =
ρ − λ√

∆

σ =
ρ + λ√

∆

(3.7.13)

where ∆ = (λ − ρ)2 − 4µ, that is the discriminant of equation (3.1.9) which
control coordinate transformations’group structure.

We observed that, if we read c parameter as round-trip velocity of light,
then first equation in (3.7.13) is a relation by which we are able to express



the fundamental c constant using the “old” three parameters related with
coordinate transformation. As a consequence of the fixed experimental value
of constant c, parameters (λ , ρ , µ) are not three independent number because
they have to satisfy

(λ − ρ)2 − 4µ =
4

c2
. (3.7.14)

Really this is not surprising if we remember that by our approach “à la
Ygnatowsky” to pick out coordinates transformations, the existence of a in-
variant speed is a direct consequence of the hypothesis made about spacetime
structure. So we can argue the existence of a relation between parameter
related with coordinate transformation and the value of the invariant speed.
We have only deduced the explicit form of this relation. Indeed we can also
conclude that quantity (λ − ρ)2 − 4µ is synchrony free because c is.

Moreover, from the second equation in (3.7.10), the usual Einstein synchro-
nization procedure is expressed by old parameters imposing λ − ρ = 0. If we
note that from equation (3.7.11) we deduce σ = λ c + ε

2
, we can now write in a

handled way the Finsler pseudo-metric (3.7.7)

ds =

√( c

1 + ε
dt + dx

)( c

1 − ε
dt − dx

)( c
1+ ε

dt + dx
c

1− ε
dt − dx

)σ

(3.7.15)

Note that, even if σ = 0, this is not just Minkowski spacetime in funny
coordinates. In fact, we must keep in mind that t and x are directly related
to outcomes of measurements. Otherwise, for the case σ = 0, c+ = c

1−ε
and

c− = −c
1+ε

would be mere metric coefficients, devoid of any operational meaning.

We may equivalently write equation (3.7.16)

ds = c

(
1 − ε

)(σ− 1
2
)(

1 + ε
)(σ + 1

2
)

√(
dt2 +

2 ε

c
dt dx − 1 − ε2

c2
dx2
)(dt + 1+ ε

c
dx

dt − 1− ε
c
dx

)σ

.

(3.7.16)

The quantity under the square root is positive by pre-causality condition of
equation (3.5.1) and we also observe that it is nothing else that the anisotropy
pseudo-norm of equation (1.5.8) found by Winnie in Reichembach framework.
As a consequence the difference between a purely conventional anisotropy theo-
ry from one which contains also a physical anisotropy is expressed in ds by the
factor which contains the parameter σ. So we can interpreter this parameter
as the parameter which measure real anisotropy.



If we perform the following change in coordinates variables{
T = t +

ε

c
x

X = x
(3.7.17)

the Finsler pseudo-norm (3.7.16) can be rewritten in a more easy way

ds =

(
1 − ε

)(σ− 1
2
)(

1 + ε
)(σ + 1

2
)

√(
c2 dT 2 − dX2

)(c dT + dX

c dT − dX

)σ

. (3.7.18)

A minimum request we have to do, is that the pseudo-Finsler metric is a
continuous function on the entire slit tangent bundle TM \0, where zero here
reppresents the zero-section of TM . According to this, the parameter σ is
limited by the condition |σ| < 1

2
or equivalently, using the old parameters we

have to force the condition |λ + ρ| < 1
c
.

First of all we observe that special relativity theory is a particular case of
our model: it is reacquire if we put both in (3.7.16) and in (3.7.18) ε = 0
and σ = 0. In these new coordinates the quantity ε appear only in a function
which is a Finsler metric’s conformal factor: as it must be if we remember that
restriction | ε | < 1 was made to ensure a globally causal ordering of events.
So we must have the same conformal structure in Finsler manifold for every
arbitrary value of the Reichenbach’s conventional parameter.

We conclude this section saying that the most general spacetime struc-
ture compatible with relativity principle is a pseudo-Finslerian, not a pseudo-
Riemannian, one. What is really important in equation (3.7.18) is that the
pseudo-Finslerian character is unavoidable when one wants to incorporate,
through the parameter σ, a real physical space anisotropy. The other kind of
anisotropy, linked to the parameter ε, is a matter of convention rather than
a physical feature. One can always eliminate such an anisotropy by synchro-
nising clocks according to the Einstein procedure (we can eliminate it by a
stipulation, putting ε = 0, that is, we can always choose that light propagate
isotropically in space even if there is a privileged direction!). On the other
hand, a nonzero σ implies true chronogeometric effects (anisotropic time di-
lation and length contraction, modified dispersion relation), that cannot be
gauged away by a stipulation, as we will see in next section.

3.8 What we Really Mean by Isotropy?

What happens if one ignores the possibility that there is anisotropy? That
is, suppose one synchronises clocks according to the Einstein procedure, so



ε = 0, regardless of the fact that space might be kinematically anisotropic.
Is not one “forcing” isotropy upon the theory? But then, in which sense can
we claim that isotropy is a physical property, if one can implement it just by
a stipulation?

The answer is that, although one can set ε to zero, σ is still around, and
its value does not depend on the convention chosen in order to synchronise
clocks. Now, if one considers two clocks moving at the same speed along
opposite directions, these clocks will not delay but the same amount, if σ 6= 0
as we will see in next subsection. Hence, one has that anisotropy can manifest
itself through physical effects, independent of the choice of synchronisation.

We can claim that σ is the parameter measuring the real , physical anisotropy,
whereas ε is associated to a purely conventional anisotropy: one that can be
gauged away simply by a stipulation. In fact, the value of ε merely reflects a
choice of coordinates in spacetime.

There is a geometrical analogue of this situation. Imaging that someone
wants to find out whether a two-dimensional surface is inhomogeneous. A
possible way is to construct, at different places on the surface, identical trian-
gles, measure the sum of the internal angles, and compare the results. On an
inhomogeneous surface, the outcomes should disagree. Of course, there is a
very easy way of making even a flat surface appear inhomogeneous with such
kind of measurements: It is enough to choose rulers of different length at dif-
ferent places. Hence, in general, there will be two sources of inhomogeneity: a
conventional one, linked to a funny choice of rulers, and a real one, related to
the actual properties of the surface. These are the analogs of the parameters ε
and σ, respectively. However, the conventional choice can be regarded merely
as a transformation from coordinates “adapted” to the surface to arbitrary
ones. In no way, the choice of “good” rulers (or coordinates) can affect the
geometrical properties of the underlying surface.

The fact that one may not use Einstein synchronisation is a trivial one,
and has no physical content. On the contrary, the fact that one can adopt it
in any inertial frame is physically not trivial, as it reflects the validity of the
principle of relativity.

There is another analogy: The principle of inertia. The statement that, in
an inertial frame, a force-free particle moves along a straight line at a constant
speed contains actually two implications, very different in nature. One, that
the motion takes place along a straight line, is a physically testable prediction,
since the notion of a straight line is well defined in the Euclidean geometry
that one presupposes when discussing the principle. The other, that motion
is uniform, is a matter of convention. Of course, one could choose the “time”
variable in such a way that motion is not uniform (the analogue of choosing



a synchronisation different from Einstein’s), but this generalisation will lead
to no new physical phenomena: only to a horrendous complication in the
formulation of the laws of mechanics. Again, the relevant fact is not that one
can make an absurdly complicated choice of time, but that one can make a
choice that makes life simpler. Since a change of time variable does not entail
new phenomena, we are confronted with a mere gauge, so the wisest choice is
to use the simplest possible gauge. As Wheeler concisely and effectively wrote
[1]: “Time is defined so that motion looks simple”. We could paraphrase him
saying: “Clocks are synchronised so that physics looks simple” .

3.8.1 One Special Case

We can now study the following simpler situation: we choose
λ = ρ

µ < 0
(3.8.1)

that is, we are in the usual ∆ > 0 case with c2 = − c1, so if our identification
between velocity of light and our model’s invariant speed is right, we are in
a occurrence by which light propagates isotropically; furthermore reciprocy
principle holds, as we see in section (3.6).

From equation (3.7.13) 

c =
2√
−µ

ε = 0

σ =
2λ√
−µ

(3.8.2)

the Finsler line element become

ds =

√(
c2 dT 2 − dX2

)(c dT + dX

c dT − dX

)σ

=

(
cdT + dX

cdT − dX

)σ

dssr

(3.8.3)



where dssr is the Minkowski line element; for future handling will be useful
also the following form

ds =
(
c dT − dX

) 1
2
−σ (

c dT + dX
)σ + 1

2
. (3.8.4)

Mathematically this is equivalent to say that we are working with a locally
Minkowskian pseudo-Finsler two dimensional manifold with a Finsler pseudo-
metric

F (u, v) =
(
u − v

) 1
2
−σ (

u + v
)σ + 1

2

=
√
u2 − v2

(u + v

u − v

)σ

= (u2 − v2)
1
2
−σ (u + v)2σ

(3.8.5)

where (u, v) are coordinates of a tangent vector of TpM\ 0 and p is a point
in our two dimensional manifold M with coordinates, in the fixed generalized
Lorentz chart, (c t, x).

We can now easily write the fundamental quantity

gik(u, v) =
(u + v

u − v

)2 σ

ηik (3.8.6)

we indicate by gαβ(y) the inverse matrix of gαβ(y), it is a simple matter to
calculate this inverse pseudo-Finslerian metric and obtain

gαβ(y) =
(u + v

u − v

)−2 σ

ηαβ (3.8.7)

by which, as we already saw in second chapter we can write

ds2 = F 2(y) = gi,k(y) y
i yk (3.8.8)

where we have put y = (y0 = u; y1 = v).



The coordinate transformation become

x′ =

(
1 − v

c

1 +
v

c

)σ
2
x − v t√
1 − v2

c2

t′ =

(
1 − v

c

1 +
v

c

)σ
2 t − v x

c2√
1 − v2

c2

.

(3.8.9)

As a result of these equations, the Einstein addition velocities law is reob-
tained. It is a simple matter to show that despite of isotropically propagation
of light, we are in a anisotropy framework for clocks and rods; in fact, for time
dilation we find

t′ =
(1 − β

1 + β

)σ
2 t

γ
. (3.8.10)

In a first order MacLaurin expansion in β

t′ =
(
1 − σ β + o(β)

)
t (3.8.11)

where as customary we have defined

β =
v

c

γ =
1√

1 − β2

(3.8.12)

so we have an anisotropic time dilation factor that contains a term which is
linear in v. Similarly, for rods contraction we have

l′0 =
(1 − β

1 + β

)σ
2
γ l (3.8.13)

where l′0 is rod’s length measured in rest reference frame S ′ and l is the value
measured by an observer in S reference frame. We also infer that, differently
from special relativity, the scales perpendicular to motion direction must be
deformed.



If σ 6= 0 characterizing the magnitude of space anisotropy, is sufficiently
small, then the factor, which distinguishes the generalized Lorentz transfor-
mations from the usual ones, becomes markedly different from unity only at
relative velocities of the inertial frames extremely close to the velocity of light,
as we can check from equation (3.8.11).

In the physics of ultra-high energy cosmic rays we deal with precisely such
a situation. Therefore, the use of the “generalized Lorentz transformation”
instead of the usual ones makes it possible, in principle, to remove the discrep-
ancy between theory and experiment in this field; this may be regarded as a
hint toward a local anisotropy of space.

By parallelism with pseudo-Riemannian geometry, we define in our Finsler
framework, a physical light cone in a give spacetime events as the totality of
trajectories passing through that point such that ds2 = 0, where ds is given
in equation (3.8.4). From this equation we can deduce another remarkable
property of our anisotropic event space, infact it keeps the conformal structure
(light cones) of Minkowski space, that is, light propagates according to the
equation c2 dT 2 − dX2 = 0 although we are dealing with a true anisotropic
space.

Therefore, the velocity of light is independent of the direction of its propa-
gation and is equal to c: this is not surprising because the assumption λ−ρ = 0
is equivalent to synchronize clocks using Einstein method (that is we are con-
sidering the choice ε = 0 in Reichenbach theory, as we state in equation (3.8.2).

We can conclude that light propagates along Minkowskian geodesics whereas
free bodies move along pseudo-Finslerian ones. This feature of our model al-
low us to project cosmological experiment to test spacetime’s pseudo-Finsler
geometry for massive particle in order to obtain experimental estimations on
σ.

3.8.2 Four Dimensional Generalization

Another remarkable consequence of line element (3.8.3) is that the correspond-
ing 4D Finslerian pseudo-metric can be found if we note that from the 2D
Finsler pseudo-metric (3.8.3) we can easily write

ds2 = ηαβ y
α yβ

[(ηµκ ν
µ yκ

)2
ηλτ yλ yτ

]2 σ

(3.8.14)

where from the time being all indices run from 0 to 1, (y0, y1) are coordinates in
a given chart of an arbitrary slit fiber bundle point y, ν = (1, − 1) is a constant



vector and ηαβ is the (α, β) component of Minkowski (1 + 1) pseudo-metric

η =

(
1 0
0 − 1

)
(3.8.15)

we note that in this simple model the slit tangent bundle vector ν is light-like,
that is

ν2 = gαβ ν
α νβ = 0 . (3.8.16)

The four dimensional pseudo-Finsler metric is still equation (3.8.14) but
with all indices running from 0 to 3; if equation (3.8.16) is still true in 4D we
can write

ds2 = (c2 dt2 − d~x2)

[
(c dt − ~ν · d~x)2

c2 dt2 − d~x2

]2 σ

. (3.8.17)

Spatial anisotropy is characterized by this pseudo-Finslerian metric which
depends on two constant parameters, the scalar σ and the dimensionless unit
vector ~ν. Equation (3.8.17) describes a flat spacetime with partially broken ro-
tational symmetry. Instead of the 3-parameter group of rotations of Minkowski
space, the spacetime (3.8.17) admits only the 1-parameter group of rotations
about the unit vector ~ν, which indicates a preferred direction in 3D space. Of
course, by our model construction, no changes occur for translational symme-
try: spacetime translations leave the metric (3.8.17) invariant.

About σ parameter we can say that its value should characterize the degree
to which Lorentz invariance is broken in nature. It seems that σ is not a
combination of well-known fundamental physical constants, but instead, is
meant to be a dimensionless fundamental one. This parameter is universal
in the sense that it is of pure geometrical origin, that is, the corrections to
the pseudo-Riemannian geometry of spacetime are introduced through this
parameter. Merely, the parameter σ evaluates the degree of Finslerian non-
Riemannianity of spacetime.

We also note that ds2 is a regular and vanishing quantity in the limit
c2 dt2 − d~x2 → 0 because of the condition |σ| < 1

2
.

Moreover, since we already kwon that light propagates according to equa-
tion

c2 dt2 − d~x2 = 0 (3.8.18)

that is, light velocity is independent of the direction of its propagation and
is equal to c, it thus appears that the square of the distance dl2 between



adjacent points of 3D space, determined by means of exchange of light signals,
is expressed by the formula dl2 = d~x2.

Thus, although in the 3D space there is a preferred direction, its geometry
remains Euclidean. But, what does the anisotropy physically manifest itself
in? For example, as we saw previously, it affects the dependence of proper
time of a moving clock by including the direction of its velocity in addition to
the magnitude.

Indeed, in four dimensional case, equation ds2 = 0 has also solutions dif-
ferent from which define the usual light cone, these are

c dt − ~ν · d~x = 0 (3.8.19)

these solutions describe the trajectory with velocity such that ~ν · ~v = c, as a
consequence ‖~v‖ ≥ c, so they can violate conditions (3.2.5) and we have to
reject they. We also observe that this solutions are the only solutions of equa-
tion ds2 = 0 when σ = 1

2
and as a consequence the notion of spatial extension

disappearres. This is due to the absence of a light cone and, consequently,
of the possibility of determining spatial distances using the exchange of light
signals. According to (3.8.17), the interval dτ of proper time read by the clock
moving with a velocity ~v, is related to the time interval dt read by clocks at
rest by the relation

dτ =
dt

γ

[(
1 − ~ν · ~v

c

)
γ

]2 σ

(3.8.20)

in contrast to Minkowski space (for which the moving clock is always slow in
comparison with the clock at rest), in the anisotropic space the time dilatation
factor can take on values greater than unity. Therefore, at some of its velocities
the clock moving in the anisotropic space is fast in comparison with the clock
at rest. However, having returned to its starting point, it will necessarily run
behind the clock at rest. Consequently, inertial motion is still uniform and
along a straight line.

We stress that in this model, due to the presence of σ 6= 0 parameter, the
possibility of a time contraction is a consequence of the existence of a real
anisotropy; differently in Reichenbach theory it is merely a matter of conven-
tion (that is quantity has an ε-dependence) whether or not clocks moving along
a one-way path go slower or faster.

Our last observation concern equation (3.8.14) when it is referred to the
4D case: we gain it by a straightforward generalization of 2D’s case. With the
aid of Euler’s Theorem is easy to demonstrate that such an equation is not



the more general we can work with using only ηαβ y
α yβ and ηµκ ν

α yβ. Every
Finsler pseudo-metric of the form

ds2 = ηαβ y
α yβ F

( [ηµκ ν
µ yκ]2

ηαβ yα yβ

)
(3.8.21)

where F is an arbitrary real function, is an equally well defined homogeneous
of degree two pseudo-Finsler metric.

3.8.3 Further Generalization: Curved Spacetime

One of the possible mechanisms of the appearance of a local anisotropy in
spacetime is the induced phase transition in its geometric structure, caused by
the breakdown of higher gauge symmetries and by the appearance of masses
in fundamental fields of matter. This involves changes in the metric properties
of spacetime manifold and it goes over from a state described by pseudo-
Riemann geometry into a state described by Finsler geometry. Since Finslerian
spacetime differs from pseudo-Riemannian spacetime by the anisotropy of its
tangent spaces, in such a transition there occurs a violation of the local Lorentz
symmetry. In the course of subsequent expansion of the Universe the initial
strong local anisotropy of the Finslerian spacetime monotonically decreases
and, on the average, tends to zero together with its curvature. Gradually the
local Lorentz symmetry of spacetime is also restored.

In our framework scheme it is interesting to note, first of all, that we can
generalize equation (3.8.14) in a easy way also to a curved spacetime. We
should consider the parameters σ and ~ν not as constants but as fields over
spacetime with the matter-energy distribution as their source (this point of
view produce a completely Machian theory, we stress here that such a result
cannot be obtained if σ = 0).

So spacetime acquires a local anisotropy varying from point to point and
we can straightforwardly generalize equation (3.8.14) in this way:

ds2 = gαβ y
α yβ

[(
gµκ ν

µ yκ
)2

gλτ yλ yτ

]2 σ

(3.8.22)

the given pseudo-Finsler metric is a function of three fields: σ = σ(x), a scalar
field determining the magnitude of local spatial anisotropy, gαβ = gαβ(x), the
field of a Riemannian metric tensor and finally να = να(x) (α = 0, .., 3), a
vector field of locally preferred directions in spacetime satisfying the condition
gα,β(x) να(x)νβ(x) = 0. Here x = (x0, .., x3) are the coordinates of an event



P in a fixed arbitrary chart and y = (y0, .., y3) is the induced coordinate
representation of a tangent vector in TPM\{0}.

This Finsler pseudo-metric supply two significant properties: first of all at
each manifold points, the curved pseudo-Finslerian spacetime (3.8.22) has its
own locally anisotropic tangent space with a pseudo-Finsler metric given by
equation(3.8.17) with its own values of the parameters σ and ~ν which determine
the local anisotropy. These values of the parameters are none others than the
local values of the corresponding fields να(x) with α = 0, .., 3 and σ(x); that
is at different manifold point we have different tangent spaces which differ by
the values of σ(x) and ~ν.

Secondly, the principle of correspondence with the pseudo-Riemannian met-
ric of the curved locally isotropic spacetime of general relativity is satisfied,
because when σ = 0 Einstein’s theory of gravitation is reobtained.

We note here that equation (3.8.22) is the same law deduced by Bekenstein
[84] in a wholly different framework with two geometries in a single gravita-
tional theory: one geometry describes gravitation while the other defines the
geometry in which matter plays out its dynamics. Obviously for all these two
geometries theories the strong equivalence principle is violated, but they usu-
ally preserve weak equivalence. The analogy between our equation (3.8.22)
and equation written by Bekenstein here reported for completeness

ds2 = gαβ(x) yα yβ F (I,H, ψ)

I ≡ L2 gαβ ψα ψβ

H ≡
L2
(
ψ,α y

α
)2

− gαβ yα yβ

(3.8.23)

is clear if we consider a dimensionless scalar field ψ = ψ(x) such that

να = Lψ,α ≡ L
∂ψ

∂xα
(3.8.24)

where L is a length scale and F is a fixed, unknown, dimensionless function
one and the same for all coordinates systems. In our model we gave an explicit
mathematical form to F . In such a situation we have the appearance of a
“4-vector” which has the same form in all reference frames.

In two-geometries approach one invoke a Riemannian metric gαβ(x), then
he built the Einstein-Hilbert action. In our case according to equation (3.8.22),



the dynamics of Finslerian spacetime is completely determined by the dynam-
ics of the gravitational field gαβ(x) and of the fields σ(x) and να(x), responsible
for local anisotropy. Since these three fields interact with each other and with
matter, for a description of the dynamics it is necessary to construct equations
which generalize the corresponding Einstein equations.

Our last observation has a topological character, in fact in our model the
point H = +∞ of the geometry is to be identified with H = −∞, this is
because the passage from one to another correspond to gαβ(x)yαyβ passing
through zero from negative to positive values and the line element ds2 is con-
tinuous as we see previously (because |σ| < 1

2
), when H jumps from +∞ to

−∞.



Chapter 4

Single Particle Generalised
Dynamics and Dispersion
Relation

It is well known that in special relativity all fundamental equations are in-
variant under the transformations of the Poincaré group, the isometry group
of Minkowski space. If the event space is described by the Finslerian pseudo-
metric (3.8.17) of our simple example seen in the previous chapter, then the
complete inhomogeneous group of its isometries turns out to be an 8-parameter
group: along with spacetime translations (four parameters), the generalized
Lorentz transformations (three parameters) and the group includes only a 1-
parameter subgroup of rotations of 3D space about some preferred direction.

In this case, the fundamental relativistic equations must be modified in
accordance with the requirement of invariance under this group. The require-
ment just formulated represents a generalization of the principle of relativity
for the locally anisotropic spacetime.

4.1 General Aspects

The equations of relativistic mechanics, which satisfy the “special principle of
relativity” for the locally anisotropic space, can be obtained if in the action
integral

S = −mc

∫
ds (4.1.1)

we replace the Minkowskian expression for ds by the pseudo-Finslerian expres-
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sion (3.8.17) to obtain

S = −mc2
∫ (

1 − ~ν · ~u
c√

1 − ~u2

c2

)σ√
1 − ~u2

c2
dt (4.1.2)

more precisely we are saying that it is consistent with all our previous discus-
sion to postulate that the classical trajectory of free particles are those which
extremize the action (4.1.2).

As a result, the Lagrangian function corresponding to a free particle with
rest mass1 m in the locally anisotropic space, takes the form

L = −mcF (v)

= −mc2

(
1 − ~ν · ~u

c√
1 − ~u2

c2

)2 σ√
1 − ~u2

c2
(4.1.3)

Using the general formulas for the momentum

~p =
∂ L

∂ ~u
(4.1.4)

and energy

E = ~p · ~u − L (4.1.5)

we can build up the “anisotropic” dynamics.

1Indeed, in the following we will give some observations about what in our model is the
“rest mass” of a particle, the usual meaning we will change toward a Machian concept of
mass.



4.2 One Dimensional Case

In one dimensional case we can use equations (3.8.4) and (4.1.4) to obtain for
the momentum

p(u) = mγ(u)
(1 + u

c

1 − u
c

)σ

(u − 2σ c)

= mc

(
1 + u

c

)σ− 1
2(

1 − u
c

)σ+ 1
2

(
u

c
− 2σ)

(4.2.1)
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Figure 4.1: Plot of p/m c as a function of u/c for different values of the
anisotropic parameter σ. The special relativistic case, σ = 0, is the solid
line. The dashed line is the anisotropic case with σ = −0.1, and the dot line
is the anisotropic momentum with σ = −0.05.

From equation (4.1.5) we gain the energy

E(u) = mc2 γ(u)
(1 + u

c

1 − u
c

)σ

(1 − 2σ u

c
)

= mc2
(
1 + u

c

)σ− 1
2(

1 − u
c

)σ+ 1
2

(1 − 2σ u

c
) .

(4.2.2)
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Figure 4.2: Plot of E/mc2 as a function of u/c for different values of the
anisotropic parameter σ. The special relativistic case, σ = 0, is show as solid.
The dashed line is the anisotropic case with σ = −0.3, and the dot line is the
anisotropic energy with σ = −0.08.

Equations (4.2.1) and (4.2.2) give the new relation between energy-momentum
and velocity.

We first observe that conditions |σ| < 1
2

and |u
c
| < 1 assure positivity of

single’s particle energy. Obviously, when space is isotropic, that is when σ = 0,
we gain the usual result of special relativistic theory, and for low velocity the
Newtonian physics. Furthermore we observe that the energy is an even function
on u (as both in classical physics and in special relativity) only if σ = 0 or
for (the not permitted) values |σ| = 1

2
, in these case energy take the constant

value E = mc2.

We also observe from equations (4.2.1) and (4.2.2) that even in the case
u = 0 the momentum of a particles does not vanish if σ 6= 0, there remains a
“rest momentum” p0 := −2mσc, whereas energy reaches for every values of σ
its absolute minimum “rest energy” E0 := mc2. The difference p − p0 could
be denoted the “kinetic momentum” in analogy with the “kinetic energy”
T = E − E0.

Moreover the momentum, if σ 6= 0 is not an even function. The MacLaurin
series on u is



p(u) = − 2mσ c + mu (1 − 4σ2) +

+ m
u2

c
σ (1 − 4σ2) +

+ m
u3

c2
[
1

2
− 2σ2 (σ2 +

41

4
)] + o(u3) (4.2.3)

as we already said for the value σ = 0 we have p(u) = mu + m
2
u3 + o(u3)

which coincides with the power series of special relativity case and energy is
not an odd function, it holds

E(u) = mc2 + mu2 (
1

2
− 2σ2) +

+ m
u3

c
σ (

41

4
− σ2) + o(u3) . (4.2.4)

Therefore, from equations (4.2.3) and (4.2.4) we deduce that also nonrela-
tivistic mechanics as a whole is different from the Newtonian case, this is not
surprising because being an intrinsic property of space, anisotropy is indepen-
dent of the magnitude of relative velocities.

Since within the framework of nonrelativistic mechanics the “rest mass” m
is an additive quantity, the occurrence of the constant terms mc2 and −2σmc
in the above equations does not affect the conservation laws and the equations
of motion. As a result, these terms can be omitted, and the kinetic energy and
kinetic momentum, read off from equations (4.2.3) and (4.2.4) at the lowest
order are

T (u) =
m

2
(1 − 4σ2)u2 (4.2.5)

p(u) = m (1 − 4σ2)u . (4.2.6)

Thus it seems that, by comparison with Newtonian’s counterparts equa-
tions, the inertial properties of a nonrelativistic particle in anisotropic space
is specified by the quantity m (1 − 4σ2) which depends openly on the σ pa-
rameter.

We infer that in 3D the usual Newtonian’s inertial mass will be replaced
by a “tensor of inertial mass” [13].



If now we write equation (3.6.21) of previous chapter using equations (4.2.2)
and (4.2.1) we can estimate the values for parameters η, τ and ν in our
anisotropic one dimensional model; it is straightforward to achieve

ν = 0

η = 1

τ = − 2σ

c

as a consequence the momentum p for a single particle defined in equation
(4.2.1) is an additive and conservative quantity in any theory in which there are
localised interactions between particles which do not change the total energy
and a relativity principle holds [82].

Energy’s asymptotic behavior is E ≈ 1/(1+β)1/2−σ and E ≈ 1/(1−β)1/2+σ

for β → −1+ and β → 1− respectively, different from special relativistic case.
This feature will allow us to explain the absence of the GZK cut-off, as we will
see in the following.

4.2.1 Dispersion Relation

The functional relation between kinetic energy and momentum is the particle
version of a dispersion relation. In general, such a relation takes the form
g(E, p) = 0 where g is a function that can be locally inverted to find the
particle Hamiltonian H(p).

In special relativity the dispersion relation of a particle is given by

si s
i = m2 c2 (4.2.7)

wherem is particle’s inertial mass, s0 = mγ(u) and si = muiγ(u) with ui = dxi

dt
;

these relations have been tested for Lorentz factor values γ ≤ 104, and were
found to hold with a relative precision of 5 · 10−4 [85]. However, at high γ, we
cannot exclude the possibility that this dispersion relation might be violated.

The search for observable effects of quantum gravity has led researchers
to focus mostly on modifications of the dispersion relations for elementary
particles, leading to deviations from standard Lorentz invariance. Generically
these modified dispersion relations can be cast in the form

E2

c2
− p2 + f(E, p, k) = m2 c2 (4.2.8)



where k denotes the mass scale at which the quantum gravity corrections be-
come appreciable. Normally, one assumes that k is of order the Planck mass:
k ≈ Mp ≈ 1.22 · 1019GeV/c2. Most interestingly, it was shown that several
significant constraints can be put on the intensity of the Lorentz violating term
f using current experiments and observations [86]. An open issue is the inter-
pretation of the origin of such deformed dispersion relations. DSRs (deformed
or doubly special relativity theories) attempt to “deform” special relativity
in momentum space2, by introducing non-standard “Lorentz transformations”
that leave the modified dispersion relations invariant.

On the other hand, that Lorentz violating theories should generically pre-
dict the existence of privileged reference systems can be easily inferred if propa-
gating particles have general functions of energy as dispersion relations. Con-
sider for instance a photon: if its dispersion relation does not have the usual
Lorentz covariant form, but propagate with an energy dependent velocity v(E),
the statement E = ck, can be at best valid in one specific inertial frame.

This selects a preferred frame of reference, where a particular form of the
equations of motion is valid, and one should then be able to detect the lab-
oratory velocity with respect to that frame. It is this fact that opens the
possibility of detecting tiny violations of Lorentz symmetry.

In our framework the dispersion relation we are looking for takes the form

h(pi) = m2 c2 (4.2.9)

where h(pi) is a homogeneous function of second degree in pi. This conditions
follows from the fact that the Lagrangian is a homogeneous function of first
degree in dxi/dt. We restrict ourselves to functions of the form

h(σ, pi) = f(σ, pi) [(p0)2 − (p1)2] (4.2.10)

where f(σ, pi) is a homogeneous positive function of the momenta of zero
degree; for small velocities, and with σ = 0 we must have f(0, pi) ∼= 1, as in
the usual theory.

In our model it can be verified by direct substitution that energy and

2A brief note on terminology: the claim that Lorentz invariance is deformed (and not
broken) states that the commutation relation among the boots and rotations are not altered
and the DSR group acts on the momenta in a nontrivial manner.



momentum are linked by the formula

(E2

c2
− p2

)[ E
c
− p

E
c

+ p

]2 σ

= m2 c2 (1 + 2σ)1+ 2 σ(1 − 2σ)1− 2 σ (4.2.11)

this relation determines the square of the pseudo-Finslerian length of the
(1 + 1)-momentum. So in our model, if we define for convenience

k(σ) = (1 + 2σ)1+ 2 σ(1 − 2σ)1− 2 σ (4.2.12)

the “deviation function” f is

f(σ, pi) =
1

k(σ)

(
E
c
− p

E
c

+ p

)2 σ

. (4.2.13)

We observe that the left hand members in equation (4.2.11) is well defined
even if E2

c2
− p2 = 0 by the condition |σ| < 1

2
, but in this case we must fix

m = 0. So, as in special relativity theory for massless particle we have the
usual dispersion relation

E2

c2
− p2 = 0 (4.2.14)

but here, E and p are defined in a very different way with respect their coun-
terparts in special relativity, we will investigate this issue in next section.

4.3 Three-Dimensional Case

Equations (4.1.3), (4.1.4) and (4.1.5), easily lead to the following expression
for the momentum

~p = mcγ

[
γ
(
1 − ~u · ~ν

c

)]2 σ [
(1 − 2σ)

~u

c
+

2σ ~ν

γ2 (1 − ~u ·~ν
c

)

]
(4.3.1)

and energy

E = mc2 γ

[
γ
(
1 − ~u · ~ν

c

)]2 σ [
1 − 2σ +

2σ

γ2 (1 − ~u ·~ν
c

)

]
(4.3.2)



if σ 6= 0 the directions of velocities and, hence, the tracks of particles do not
coincide with the directions of their momenta, so the conservation law of the
total momentum does not lead to the fact that in a collision between two
particles, one of which initially at rest, all the three tracks must necessarily
lie in the same plane. The anisotropy of the event space (3.8.17) leads to
nontrivial consequences even at the level of nonrelativistic physics; in fact in
the nonrelativistic limits equations (4.3.1) and (4.3.2) give for ~q := ~p− 2σmc~ν
and T = E −mc2

qi = (1 − 2σ)m
[
δi
j − 2σ νi ηjk ν

k
]
vj + o(‖~v‖) (4.3.3)

and

T =
1

2
(1 − 2σ)m

[
δij + 2σ ηik ηjp νk νp

]
vi vj + o(‖~v‖2) (4.3.4)

In particular, the effective inertness of a particle of mass m turns out to
be dependent on the quantities σ and ~ν, which characterize space anisotropy,
and is determined by a tensor of inert mass

Mαβ = m (1− 2σ) (δαβ + 2σ να νβ) (4.3.5)

thus Newton’s second law takes the form

Mαβ a
β = Fα . (4.3.6)

From this starting point it is possible, to our point of view, to build up a
completely Machian theory. Equation (4.3.5) means that at σ = 1

2
any massive

particle loses its inertness.

4.4 Relation Between Physical “Anisotropic”

Energy-Momentum and Special Relativi-

stic Observables

Let φ(t) = (ct, ϕ(t)) be the coordinate rappresentation of particle trajectory in
(1+1)-dimensional spacetime, the tangent vector at an arbitrary point φ(t) is
given by v = c ∂

∂ct
+ v1 ∂

∂x
with v1 = ϕ′(t). For simplicity, from now on, we will



use the same symbol v to denote either the geometrical tangent vector and his
space coordinate.

In special relativity usually one define the the two dimensional counterpart
of what is called the energy-momentum four vector in this way

π =
∂Lsr

∂v
(4.4.1)

where

Lsr = −mc2
√

1− v2/c2 (4.4.2)

and the energy is

ε = (π v − Lsr) (4.4.3)

finally we can summarize by

sα = (
ε

c
, π)

= (mcγ,mγ v)

(4.4.4)

and if we remember that the (1 + 1)-special relativistic velocity is defined as
uα = γ(v)(1, v/c), equation (4.4.4) can be rewritten in the following way

sα = mcuα . (4.4.5)

We can define, by analogy with special relativity, the (1 + 1)-anisotropic
velocity vector wα as follows

pα = mcwα (4.4.6)

where pα = (E
c
, p), p and E are those of equations (4.2.1) and (4.2.2) respec-

tively; the explicit expressions of wα(σ, v) are
w0 = γ(v)

(1 + v
c

1 − v
c

)σ (
1 − 2σ v

c

)
w1 = γ(v)

(1 + v
c

1 − v
c

)σ ( v
c
− 2σ

)
.

(4.4.7)



As a direct consequence we deduce the following two equalities

w0 + w1

w0 − w1
=
(1 − 2σ

1 + 2σ

)(1 +
v

c

1 − v

c

)
(4.4.8)

v

c
=

2σ w0 + w1

w0 + 2σ w1
. (4.4.9)

The (1 + 1)-anisotropic velocity one-form components are
w0 =

(w0 + w1

w0 − w1

)2σ

w0

w1 = −
(w0 + w1

w0 − w1

)2σ

w1

(4.4.10)

that is 
w0 =

(1 − 2σ

1 + 2σ

)2σ(1 + v
c

1 − v
c

)2σ

γ(v)
(
1 − 2σ v

c

)
w1 =

(1 − 2σ

1 + 2σ

)2σ(1 + v
c

1 − v
c

)2σ

γ(v)
(
2σ − v

c

)
.

(4.4.11)

The anisotropic analogue of the special relativity dispersion relation
uα uα = 1 become in our framework

wαwα = gαβ(w)wα(σ, v)wβ(σ, v)

= k(σ)
(w0 + w1

w0 − w1

)4σ
(4.4.12)

we can also write

k(σ) =
(w0 + w1

w0 − w1

)−4σ

gαβ(w)wαwβ

=
(w0 + w1

w0 − w1

)−2σ

ηαβ w
αwβ

(4.4.13)



which is equivalent to the anisotropic dispersion relation we found before in
equation (4.2.11).

From equation (4.4.12) we also deduce

F (w) =
√
k(σ)

(w0 + w1

w0 − w1

)2σ

(4.4.14)

so every admissible (1 + 1)-velocities has constant “Finsler length”(w0 + w1

w0 − w1

)−2σ

F (w) =
√
k(σ) (4.4.15)

which depends by the anisotropic parameter σ.
We found that special relativistic dispersion relation ηαβsαsβ = m2c2 be-

come the following (p0 + p1

p0 − p1

)−4σ

F 2(p0, p1) = m2 c2 k(σ) (4.4.16)

where k(σ) is defined in equation (4.2.12)
Using equations (4.2.1), (4.2.2) and (4.4.4) we can find the relation between

the anisotropic momentum vector and special relativistic analogues
p0 =

(s0 + s1

s0 − s1

)σ

(s0 − 2σ s1)

p1 =
(s0 + s1

s0 − s1

)σ

(s1 − 2σ s0)

(4.4.17)

that is, the physical energy and momentum are nonlinear functions of the
special relativistic momentum vector, whose components transform linearly
under the action of the Lorentz group. The inverse relations are

s0

s1

 =
(1 − 2σ)σ− 1

(1 + 2σ)1+ σ

(p0 + p1

p0 − p1

)−σ

 1 2σ

2σ 1

p0

p1

 (4.4.18)

obviously with the aid of this equation the modified dispersion relation (4.2.11)
or (4.4.16) can be written

m2 c2 = ηαβ s
α(σ, pν) sβ(σ, pν) . (4.4.19)



If we define a velocity vector in pseudo-Finsler spacetime as yα := dxα/ds
and by analogy with special relativity, we define a “energy-momentum” (1+1)-
vector qα := mcyα, then q1 does not coincide with the particle momentum and
q0 does not coincide with E given by equation (4.2.2). We will now find the
relations of q0 and q1 with p0 = E/c and p1. The natural realization of the
(1+1)-velocity vector for a particle in a locally Minkowskian pseudo-Finslerian
spacetime is

yα :=
vα

F (v)
(4.4.20)

from a general property of Finsler geometry holds

gij(v) y
i yj = 1 (4.4.21)

or, by the positive scale invariance of the pseudo-Finsler metric

gij(v) = gij(yF (v)) = gij(y)

we can write as in special relativity

gij(y) y
i yj = 1 (4.4.22)

where v is an physically admissible tangent vector, that is F (v) > 0 and F is
the pseudo-Finsler structure.

Now we will give some general formulas we are going to use in the following;
from the definition and equation (3.8.3), we gain

yα = γ(v)

(
1 +

v

c

1 − v

c

)−σ
vα

c
(4.4.23)

that is, writing explicitly by components
y0 = γ(v)

(
1 +

v

c

1 − v

c

)−σ

y1 = y0 v

c

(4.4.24)



We remember that the (1+1)-special relativistic velocity is uα = γ(v)(1, v/c)
then, equation (4.4.24) can be written as

yα =

(
1 +

v

c

1 − v

c

)−σ

uα (4.4.25)

we note that when σ = 0 the “anisotropic two-velocity” vector yα become the
usual special relativistic one. We can now arrive at the following equalities

y0 + y1

y0 − y1
=

1 +
v

c

1 − v

c

(4.4.26)

γ(v) = y0
(y0 + y1

y0 − y1

)σ

(4.4.27)

and as a consequence

γ(v)

(
1 +

v

c

1 − v

c

)σ

= y0
(y0 + y1

y0 − y1

)2 σ

(4.4.28)

equations (4.2.1) and (4.2.2) can be summarized byp0

p1

 =
(q0 + q1

q0 − q1

)2 σ

 1 −2σ

−2σ 1

q0

q1

 . (4.4.29)

The relation between yα and yα is yα = gαβ(y)yβ, that is
y0 =

(y0 + y1

y0 − y1

)2 σ

y0

y1 = −
(y0 + y1

y0 − y1

)2 σ

y1

(4.4.30)

or, equivalently from equation (4.4.27)
y0 = γ(v)

(
1 +

v

c

1 − v

c

)σ

y1 = − y0
v

c

(4.4.31)



from equation (4.4.30) we can straightforward infer

y0 + y1

y0 − y1

=
(y0 + y1

y0 − y1

)−1

(4.4.32)

so, the inverse transformations of equations (4.4.30) are


y0 =

(y0 + y1

y0 − y1

)2 σ

y0

y1 = −
(y0 + y1

y0 − y1

)2 σ

y1

(4.4.33)

From the usual qα = gαβ(qν)qβ using the positive scale invariance of the
pseudo-Finsler metric we obtain qα = mcgαβ(y)yβ = mcyα, in the same way,
defining pα = gαβ(y)pβ, we can find


p0 =

(
p0 + p1

p0 − p1

)2σ

p0

p1 = −

(
p0 + p1

p0 − p1

)2σ

p1

(4.4.34)

we arrive, by equations (4.4.29), at the following

p0

p1

 =
(1 − 2σ

1 + 2σ

)2 σ (q0 + q1
q0 − q1

)− 4 σ

 1 2σ

2σ 1

q0
q1

 (4.4.35)

we observe that by the aid of the “anisotropy transformation matrix”, written
in the above equation, we are able to express anisotropy dependent quantities
in terms of their “generalized special relativistic” counterparts.



4.5 More About Dispersion Relation and

Momentum One-Form

Our dispersion relation (4.2.11) can be written in the following way:

(E2

c2
− p2

)
= m2 c2 k(σ)

[
E
c

+ p
E
c
− p

]2 σ

(4.5.1)

If we expand for small σ the right hands member we obtain

E2

c2
− p2 + m2 c2 f (1)(σ,E, p) = m2 c2 + o(σ) (4.5.2)

where f (1)(σ,E, p) is the first expansion term of f(σ,E, p) for small σ:
f(σ,E, p) = 1 + f (1)(σ,E, p) + o(σ). Indeed, we can write the anisotropic
contribution to the dispersion relation in the following way

G(σ,E, p) = − 2σm2 c2 ln

(
E/c + p

E/c − p

)

= m2 c2 f (1)(σ,E, p)

= m2 c2 ln f(σ,E, p) + o(σ) .

(4.5.3)

From now on we will always use the approximate dispersion relation

E2

c2
− p2 − 2σm2 c2 ln

(
E/c + p

E/c − p

)
= m2 c2 (4.5.4)

we note that in this approximate dispersion relation we introduce a not invari-
ant term (with respect our generalized transformation law), we stress that in
our framework it appears a privileged reference frame only because we use an
approximate relation.

This “anisotropic” dispersion relation (4.5.2) belongs also to the class of
deformed dispersion relations proposed by Amelino-Camelia [18] in the context
of doubly special relativity. Indeed, in [18] was proposed a deformation term
of “power law” type f ∝ p2E instead of our transcendental function.

One of the crucial points of doubly special relativity model is the existence
of a spacetime’s fundamental length scale and a consequent dependence of



light’s velocity from wave length; this feature was based on the possibility that
Quantum Gravity effects would modify the dispersion relations for particle
propagation, such as photons so these modifications in turn would change the
propagation velocity of photons, introducing delays for particles of different
energies which could be detected if these particles would travel cosmological
distances.

Indeed, in our model photons do not feel any pseudo-Finsler metric but
for massive particles holds the special relativistic dispersion relation only if
we make a “bad” choice of physical variables in an anisotropy space: in an
anisotropic space we have not to use the “usual” (in special relativity) quanti-
ties sα, but the “new anisotropic” ones defined in equations (4.2.1) and (4.2.2),
and the “real” dispersion relation become equation (4.4.19) or equivalently
equation (4.2.11).

We also point out that if we postulate the conservation of the total energy
E = E(1) + E(2) for a two particles system, where the single particle energy
E(k) (k = 1, 2 is the numbers of particles) is defined as in equation (4.2.2),
then, as demonstrated in [65] it is the quantity p(1) + p(2) with p(k) (k = 1, 2)
defined in equation (4.2.1) and not the special relativistic s1

(1) + s1
(2) which is

conserved in elastic collision between the two particles.

Obviously also the sum of the single particle special relativistic energy s0

is not conserved in such a collision.

For future handling, we now writte the dispersion relation of equation
(4.2.11) in the following way:

h(σ, pα) := f(σ, pα)
[
(p0)2 − (p1)2

]
= m2 c2 (4.5.5)

the function f(σ, pα) is given in equation (4.2.13), if we define

z :=
p1

p0
(4.5.6)

we can rewrite equation (4.5.5) as

f(σ, z) (p0)2
(
1 − z2

)
= m2 c2 . (4.5.7)

with

f(σ, z) =
1

k(σ)

(1 + z

1 − z

)−2 σ

(4.5.8)
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Figure 4.3: Plot of k(σ)f(σ, z) as a function of z for different values of the
anisotropic parameter σ. The special relativistic case, σ = 0, is represented
by the solid line. The long-dashed line is the anisotropic case with σ = −0.05,
the dashed line correspond to σ = −0.025, and the dot line is the case with
σ = −0.01.

The implicit function theorem allow us to calculate

∂p0

∂p1
= − ∂h

∂p1
/
∂h

∂p0

=
2σ p0 + p1

p0 + 2σ p1
.

(4.5.9)

The Lagrangian formalism ensure that ∂p0/∂p1 is the velocity β = v/c, as
we can directly check by substituting equations (4.2.1) and (4.2.2) in equality
(4.5.9).

The new relation between energy-momentum and velocity is

β =
2σ p0 + p1

p0 + 2σ p1
(4.5.10)

or equivalently

β(σ, z) =
2σ + z

1 + 2σ z
. (4.5.11)



The inverse relation is

z(σ, β) =
β − 2σ

1 − 2σ β
(4.5.12)

the first derivative with respect to β is

z′(σ, β) =
1 − 4σ2

(1 − 2σ β)2
(4.5.13)

and from the condition |σ| < 1
2

we deduce that z(σ, β) is a monotonically
strictly increasing function on β, we also easily obtain

z′′(σ, β) =
z′(σ, β)

(1 − 2σ β)
4σ (4.5.14)

so the convexity-concavity is determinated by σ’s sign.
Using equation (4.5.7) we obtain an alternative expression for energy

E = c p0 and momentum p1

E =
mc2√

(1 − z2) f(σ, z)

p1 =
mc z√

(1 − z2) f(σ, z)
.

(4.5.15)

as |β| → 1 and |z| → 1 the energy and momentum tend to infinity (again
we have to use condition |σ| < 1

2
), but according to a different law than the

conventional one. This is the basis for a possible explanation of the anomalous
behavior of the cosmic-ray spectrum at ultra-high energies, that is the absence
of a cut-off of ultra-high-energy cosmic rays might be attributed to a breakdown
of conventional relativistic theory at velocities near the velocity of light.

4.6 Transformation Law of Energy and Mo-

mentum

The law of transformation of energy and momentum on going from one refer-
ence frame to another can be obtained directly from the invariance condition
of the dispersion law. By introducing the quantities p∗α := pα

√
f(σ, z) and by



considering the motion of system K ′ with velocity V along the x axis of system
K, we get for p∗α the usual Lorentz transformations

p′∗0 = γ(z∗)(p∗0 − z∗ p∗1)

p′∗1 = γ(z∗)(p∗1 − z∗ p∗0)

p′∗2 = p∗2

p′∗3 = p∗3

(4.6.1)

and obviously holds Einstein’s conventional law of addition of velocities

z′ =
z − z∗

1 − z z∗
. (4.6.2)

from the relativity principle we have to conclude that z∗ = V/c because for a
particle at rest in K ′ system must hold z′ = −2σ.

From equation (4.6.1) we obtain the following transformation law for the
4-momenta

p′α(σ, z′) = [Λ−1(z∗)]βα pβ(σ, z)

√
f(σ, z)

f(σ, z′)
(4.6.3)

where [Λ−1(z∗)]βα is the usual Lorentz transformation matrix. It is interesting to
note that within this scheme the transverse components of momentum change.

We stress that p and not p∗ are chosen as the physical variables, this choice
corresponds to the replacement of the usual pseudo-Euclidean space of the
physical coordinates by the pseudo-Finsler space.



Chapter 5

Threshold Conditions

5.1 Possible Values for the Parameter σ

The first indication that nowadays the local Lorentz symmetry still remains
slightly broken was obtained from the investigation of the spectrum of pri-
mary cosmic superhigh-energy protons. The point is that according to the
calculations [2, 3], which substantially employ the local Lorentz symmetry of
spacetime, the proton energy spectrum should be cutoff (due to the intense pro-
duction of pions on relic radiation photons) at proton energies Ep ≈ 5 ·1019eV.

The experimental data, however, are most likely indicative of the absence
of such an effect. This situation induced the investigators to assume that
the conventional Lorentz transformations become invalid for the Lorentz fac-
tors γ > 5 · 1010 and the correct relation between the various inertial reference
frames at any values of γ is provided by other, so-called generalized Lorentz
transformations.

Our generalized Lorentz transformations of equation (3.8.9), belong to a
group of local relativistic symmetry of Finslerian spacetime, in which case the
smaller the local anisotropy of pseudo-Finslerian spacetime, that is the closer
is it to Riemannian one, the closer to the velocity of light tend the generalized
Lorentz transformations to be markedly different from the conventional ones.

Therefore the use of these transformations in calculating the cut-off point
of the primary cosmic proton spectrum enables one, in principle, to remove the
emerged discrepancy between the theoretical predictions and the experimental
data pertaining to the superhigh energy region. Taking into account that the
conventional kinematics is correct with a relative precision of 5 · 10−4 up to
γ ≈ 104 [64], one can conclude that the function f in equation (4.2.13) differs
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from unity by not more than 10−4 if γ(β) ≤ 104, that is, we must impose

|f(σ, z(β)) − 1| ≤ 10−4 (5.1.1)

in this way we have a constrain on possibles values for σ: if γ(β) ≤ 104 then
|β| ≤ 1 − 1

2
10−8 and if we assume that |σ| << 1 and for example σ < 0 (that

is f(σ, z) is a monotonically increasing function) we can write

f(σ, z(β)) =
1

1 − 4σ2

(1 + β

1 − β

)− 2 σ

∼=
(1 + β

1 − β

)− 2 σ

by the monotonicity of f(σ, z(β)), and observing that

f(σ, z) f(σ,−z) =
1

k(σ)2
(5.1.2)

we have only to impose the following inequality(
1+ βs

1−βs

)− 2 σ

≤ 1 + 10− 4 (5.1.3)

where βs = 1− 1
2
10−8 with straightforward calculation we obtain |σ| ≤ 2, 5 · 10−6.

5.2 Application To The Cosmic Ray Spectrum:

The GZK Cut-Off

Let us investigate the influence of the correction term f(σ, pα) in our dispersion
relation on the computation of the stopping of ultra-high-energy protons by
the background radiation.

Primary protons with energies greater than 5 · 1019eV are expected to by
strongly slowed down by interaction with the background thermal radiation,
the origin of this cut-off comes from several processes that eat up the energy of
primary cosmic rays, such as inverse Compton effect by the Cosmic Microwave
Background photons. In spite of the theoretical prediction, quite a few cosmic
rays of energies greater than the GZK cut-off have been found in several cosmic
ray observatories, mainly AGASA. This is usually called the GZK anomaly.



Although it is premature to speak in this situation of a real discrepancy
between theory and experiment, the absence of a convincing explanation of this
complex situation justifies the question of whether the energy of the primary
protons is not already large enough so that the observed discrepancy might be
due to the breakdown of our present concepts. The essential point is that the
primary protons have a uniquely large Lorentz factor γ(β) & 5 · 1010, larger
by many orders of magnitude than in any other experiment. At the same time
γ enters in an essential way into the calculation of proton stopping. From
this it follows that if models existed in which the deviation from conventional
theory were determined by the product of γ−1 by some dimensionless critical
parameter, one could hope to avoid contradictions with present data.

In the conventional theory the cut-off of the cosmic ray spectrum due to
intense photoproduction of pions starts at proton energies for which the back-
ground photon has in the rest system of the proton an energy of the order
of the pion mass (in the case of central collisions). Most important for the
computation of the proton lifetime with respect to photoproduction is the sta-
tistical factor represented by the Planck distribution of background photons
H = exp(−ω/kBT ), where ω is the energy of photons in the earth reference
frame (supposed to be closed to the frame suggested by the microwave back-
ground radiation spectrum) kB = 8, 6 ·10−5eV K−1 is the Boltzmann constant
and T is the temperature of background radiation.

This factor, for a central collision, written in the proton rest frame, takes
the form H = exp(−ωc/2γpKBT ), where γp is the Lorentz factor of the proton
and ωc is the photon energy in this system (ωc ≥ mπc

2 ≈ 140)MeV. For
γp ≥ ωc/2KBT this factor rise sharply, leading to a rapid decrease in the
proton lifetime.

If we want to attribute the absence of a break in the spectrum of the
cosmic rays at an energy Ek ≈ 5 · 1019eV to the deviation of f from unity,
we have to assume that the difference |f − 1| becomes of the order of the
unity at this energy; we shall now repeat the above computation within the
new scheme, restricting ourselves to corrections in only the statistical factor
H, which contains the strongest (exponential) dependence upon the Lorentz
factor. Taking into account the fact that in the earth system the photon
distribution is again of the Planck type, we have to find the expression for
the factor H in the rest system of the proton. To this purpose we have only
to remember that the quantities p∗α,proton and p∗α,photon transform according to
the conventional law, so that p∗α,proton p

∗α
photon is an invariant. By writing this

invariant in the two reference systems, we obtain the following relation between



the photon energy in the earth system and in the proton system

ωc = 2 γp

√
f(σ, zk)ω (5.2.1)

where zk is the value of z variable at the GZK cut-off. If
√
f(σ, zk) < 1,

the presence of the supplementary factor in the argument of the exponential
function leads to a decrease in the effective temperature of photons and hence
to an increase in the proton lifetime. In order to eliminate completely the
cut-off in the cosmic-ray spectrum, it is necessary to have

e−ωc /2 γp KB T
√

f(σ,zk) << e−1 (5.2.2)

this inequality is satisfiable if f(σ, zk) ≈ 0, 1 − 0, 01 (we used T = 2.7◦K and
γp ≈ 5 · 1010), but within our framework of our generalized relativistic theory
we have only f(σ, zk) ≈ 1− 2.46 · 10−4: for cosmic-ray protons moving toward
the earth holds z ≈ −1 so condition

lim
z→−1+

f(σ, z) = 0

imply σ < 0. The first equation (4.5.15) can be written as

γ(zk)√
f(σ, zk)

=
Ek

mc2
(5.2.3)

and being

f(σ, zk) ≈ [γ(zk) (1 + |zk|)]− 4 |σ| (5.2.4)

we infer

γ(zk) ≈
( Ek

mc2

) 1
1 + 2 |σ|

(5.2.5)

inserting in equation (5.2.4) and assuming |σ| = 2.5 · 10−6, it holds

f(σ, zk) ≈
( Ek

mc2

) − 4 |σ|
1 + 2 |σ| ≈ 1− 2.46 · 10−4 (5.2.6)

so within our framework the GZK cut-off does not disappear, but it is only
a few attenuate.



5.3 Two Particle Dynamics: Threshold Ener-

gies

The conservation law of total momentum manifests itself differently in isotropic
and anisotropic spaces. As an elementary example, consider the elastic colli-
sion of two particles in isotropic space, one of which at first was at rest. The
conservation law of total momentum then makes the tracks of the particle
coplanar. For the same process but now in anisotropic space, where the direc-
tions of velocities and, hence, of the tracks of particles do not coincide with
the directions of their momenta (see equation (4.3.1)), the conservation law
of total momentum does not lead to the fact that all the three tracks must
necessarily lie in the same plane.

However, since the amount of the deviation from coplanarity is a function of
the magnitude of space anisotropy, possible effects of noncoplanarity should be
searched for in regions where the magnitude of local anisotropy is significantly
greater than its mean value. Such a situation may obtain in the vicinity of
very large masses, for example, near the Sun. It seems reasonable to test this
assumption with a corresponding detector on a space vehicle able to identify
elementary events with nonstandard kinematics.

Moreover, if Lorentz symmetry is really violated the possible change for
the dispersion relation can significantly modify the kinematical conditions for
a reaction to take place, that is, the energy threshold for any reaction could be
lowered, raised, or removed entirely, or an upper threshold where the reaction
cuts off could even be introduced

If the law of energy-momentum conservation is valid then with the aid of
the dispersion relation we can analyzing many Lorentz-violating phenomena,
specially those related to threshold modifications. More precisely, conservation
laws and dispersion relation are the basis of threshold analysis: the very power-
ful tool to discuss many astrophysical phenomena in the presence of (possible)
Lorentz violation.

There is a host of phenomena which can be used to detect Lorentz Invari-
ance violation. Among them, let us mention

• Breakdown of local rotational symmetry: “Aether wind effects”.

• Breakdown of Lorentz Boost Invariance “Kennedy-Thorndike experi-
ments”.

• Dispersive processes in vacuum (such as energy dependent velocities or
birefringence).

• Occurrence of “forbidden process” such as photon decay in vacuum.



There is a main group of observations with high enough sensitivity to probe
a possible Lorentz invariance violation: cosmological or astrophysical tests of
threshold analysis type, based on the modification of the dispersion relations
of particles (the sensitivity requirements are indeed very strict).

5.3.1 Resonant Production p+ γ → ∆

The most important reactions taking place in the description of ultra-high-
energy cosmic ray propagation (and which produce the release of energy in the
form of particles) are the pair creation p+ γ → p+ e+ + e− and the photopion
production p+γ → p+π. This last reaction happens through several channels
(for example, the baryonic ∆ and N and mesonic ρ and ω resonance channels,
just to mention some of them) and is the main reason for the appearance of
the GZK cutoff.

These processes degrades the initial proton energy with an attenuation
length of about 50 Mpc. Since plausible astrophysical sources for ultra-high-
energy particles are located at distances larger than 50 Mpc, one expects a
cutoff in the cosmic ray proton energy spectrum, which occurs at around 5 ·
1019eV, depending on the distribution of sources.

All these processes have the same general structure in a Lorentz invariant
picture: these reactions would be examples of a very low energy processes in
the center of mass reference frame that appear boosted to very large Lorentz
factors in the laboratory frame.

Many ideas have been put forward to explain the possible absence of the
GZK cutoff [5, 24]. For example the cosmic rays might originate closer, in
some unexpected way, by astrophysical acceleration or by decay of ultra-heavy
exotic particles, or they may be produced by collisions with ultra high energy
cosmic neutrinos. Indeed all of these explanations have problems.

Our interest in the following is to study the reactions involved in high en-
ergy cosmic ray phenomena through the threshold conditions because a change
with respect the special relativity case in threshold energy offer a measure of
how modified the kinematics is.

We now study the resonant production p+ γ → ∆, the threshold energy is
gained when the resonance ∆ is created at rest with respect the center of mass
reference frame; we have now to stress that in our anisotropic framework, in the
reference system where p = 0 the particle will not be at rest. To understand
this it is sufficient to verify that in general (different from the special relativistic
case) the velocity follows

v =
∂E

∂p
6= c2 p

E
(5.3.1)



and therefore does not generally vanish at p = 0, more simply we can check this
property directly from equation (4.2.1). There emerges, then, an important
distinction between the “phase” velocity c2p/E and the “group” velocity v =
∂E/∂p of the same particle (as we already noted in equation (4.4.9).

First of all, we state that energy-momentum one-form is an conserved quan-
tity also in inelastic reaction, so the conservation energy-momentum law for
the dominant process leading to the GZK cut-off, that is p+ γ → ∆ are

E + Eγ = M c2

p + k = 2 |σ|M c
(5.3.2)

where E is the proton energy, Eγ is the photon energy, p and k are momentum
of proton and photon respectively; all this quantities are measured in the center
of mass frame and M is ∆ resonance’s rest mass. Being interested in threshold
energy we have assumed the resonance ∆ created at rest in a central collision.

From conservation law we easily obtain

M2 c2 (1 − 4σ2) =
(E2

c2
− p2

)
+ 2

(E Eγ

c2
− p k

)
(5.3.3)

we used photon dispersion relation, which is the same as in special relativity,
so ||~k|| = Eγ/c; if we now consider proton dispersion relation and in the last
equation we omit second order’s term on σ we gain

c2 (M2 − m2) = 2
(E Eγ

c2
− p k

)
− 2 |σ|m2 c2 ln

(
E
c

+ p
E
c
− p

)
(5.3.4)

in a central collision holds 0 < −pk < E Eγ (we are assuming k = Eγ/c,), as
a consequence

c2 (M2 − m2) ≤ 4
E Eγ

c2
− 2 |σ|m2 c2 ln

(
E
c

+ p
E
c
− p

)
. (5.3.5)

From the conservation law in equation (5.3.2) we have

c2 (M2 − m2) ≤ 4
E Eγ

c2
− 2 |σ|m2 c2 ln

(
E−Eγ

M c2
+ 2 |σ|

1 − 2 |σ|

)
(5.3.6)



being the logarithmic function monotonically increasing we easily obtain the
following threshold condition

c2 (M2 − m2) ≤ 4
E Eγ

c2
− 2 |σ|m2 c2 ln

(
E − Eγ

M c2

)
. (5.3.7)

We note that if σ = 0 we obtain again the special relativity threshold energy
for the resonant production we are studying and if E − Eγ < 0 the process
does not take place. As a consequence the anisotropic threshold energy Ea

given by equation

c2 (M2 − m2) = 4
EaEγ

c2
− 2 |σ|m2 c2 ln

(
Ea − Eγ

M c2

)
(5.3.8)

differ from the special relativistic one, that is

c2 (M2 − m2) = 4
EGZK Eγ

c2
(5.3.9)

and from equations (5.3.8) and (5.3.9) we can evaluate the difference

EGZK − Ea = − m2 c4 |σ|
2Eγ

ln

(
Ea − Eγ

M c2

)
(5.3.10)

so special relativistic threshold energy is greater than anisotropic threshold,
EGZK > Ea, if and only if Eγ < Ea < Eγ +Mc2, that is to say, EGZK < Ea if
and only if Ea > Eγ +Mc2.

In the same way for the case p > 0 and k < 0 we obtain for the threshold
energy

c2 (M2 − m2) = 4
EaEγ

c2
+ 2 |σ|m2 c2 ln

(
Ea − Eγ

M c2

)
(5.3.11)

and the relation with the analogue special relativistic energy is

EGZK − Ea =
m2 c4 |σ|

2Eγ

ln

(
Ea − Eγ

M c2

)
(5.3.12)



in this case special relativistic threshold energy is smaller than anisotropic
threshold if and only if Ea −Eγ > Mc2. We also note that, in our anisotropic
model, the threshold energy for one reaction realized in opposite direction are
different.

5.3.2 Pions Photo-Production

Reaction p + γ → ∆ is the dominant process leading to the GZK cutoff, as
argued by Greisen, Zatsepin and Kuz’min. However, if ∆(1232) formation
is not possible, a weakened version of the GZK cutoff may result from non-
resonant photo-production of one or more pions.

For a single pion production:

p+ γ → p+ π0 (5.3.13)

ordinarily, the threshold is EGZK = Mπ(2Mp + Mπ)/4Eγ ' MπMp/2Eγ, ac-
cording to this equation the Lorentz invariant threshold is proportional to the
proton mass. Thus any Lorentz symmetry violating term added to the special
relativistic proton dispersion relation will modify significantly the threshold if
it is comparable to or greater than M2

p at around the energy EGZK . As we
already said, modifying the proton and pion dispersion relations, the threshold
can be lowered, raised, or removed entirely.

Indeed in our framework we have only a small modification of order of
10−4M2

p c
2, increasing the threshold if the proton is moving toward the earth

and decreasing the threshold otherwise: in the first case, the anisotropic term
in proton’s dispersion relation is (at the GZK energy)

2 |σ|m2 c2 ln

(
E
c

+ p
E
c
− p

)
=

= − 4 |σ|m2 c2 ln[(1 − zk) γ(zk)] ' − 2.53 · 10−4m2 c2

(5.3.14)

5.3.3 Pair Creation γ → e+ + e−

As in special relativity, also in our model the process of photon decay in an
electron-positron pair γ → e+ + e− is forbidden by energy-momentum conser-



vation. The conservation equations (for a threshold decay) are:
Eγ = 2me c

2

k = 4 |σ|me c
(5.3.15)

and if |σ| 6= 1/2 the process does not occur.



Chapter 6

Conclusion

6.1 Conclusion

This thesis has dealt with a broad area of research developed in the recent
past year, on the subject of violation of Lorentz invariance. There are both
theoretical and experimental reasons to doubt exact Lorentz invariance.

From the experimental point of view, although no clear signal of Lorentz
violation has been found, we have to observe that special relativity has been
tested with great accuracy only at low energy [42, 87, 88, 89, 90, 91]. Since
we have observational evidence only in a small range of energies (relative to
the expected Planck energy scale of quantum gravity), it is plausible that
Lorentz invariance is broken and as yet unobserved. The investigation of such
phenomena is a new domain of physics, where astroparticle and cosmology
would play a major role.

These two branches of physics will probably be an area of further ad-
vances in the coming years. As an example one of the most puzzling current
experimental physics paradoxes is the arrival on Earth of ultra-high-energy
cosmic rays with energies above the GZK threshold. The recent observation,
by HEGRA, of 20 TeV photons from Mk 501 (a BL Lac object at a distance
of 150 Mpc) is another somewhat similar paradox [92, 93, 94].

The GZK cutoff question has generated a lot of interest, and is currently
the only observational phenomenon thought to indicate a possible violation
of Lorentz symmetry. The advent of more precise observations will probably
open the way to definitive judgments about the plethora of models proposed
for high-energy phenomenae and for the evolution of the very early universe.
Present theories make predictions but often we do not have instruments sen-
sitive enough to test them. It is conceivable that this situation will change in
the near future [10, 11, 12].
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On the theoretical side, while general relativity possesses local Lorentz
invariance, both canonical quantum gravity and string theory suggest that
Lorentz invariance may be broken at high energies. Broken Lorentz invariance
has also been postulated as an explanation for astrophysical anomalies such as
the missing GZK cutoff.

About Lorentz violation many ideas was proposed:

• DSR’s theories: in these models a Lorentz symmetry violation can be
generated at the Planck scale, or at some other fundamental length scale.
Lorentz symmetry is preserved as a low-energy limit (deformed Lorentz
symmetry) [18, 23, 24, 25, 27, 28];

• anisotropic spacetime: in this model the continuity of spacetime is man-
teined and the group of lorentz transformation is generalized [13, 14, 15,
17];

• existence of a preferred reference frame: in this models, an absolute
local rest frame exists and special relativity is a low-momentum limit
[64, 95]. The preferred frame can be a “fixed external structure”, for
instance the thermal cosmic microwave background radiation. In this
case general covariance of the theory is violated [32, 33, 62]. Lorentz
symmetry violation by preferred frame effects has been much studied in
non-gravitational physics, and is currently receiving attention as a pos-
sible window on quantum gravity. If we include gravity in a framework
with a preferred frame, we have to remember that general covariance is
a deep symmetry of general relativity. If we want to preserve general
covariance of the theory we have to consider another possibility, that is,
a inherent and unavoidable dynamical unit time-like vector field exist.
As a consequence a preferred rest frame at each spacetime point can
be defined. Local Lorentz invariance is broken while covariance of the
theory is preserved [63].

In DSR’s theories a critical distance scale, allow us to consider models,
compatible with standard tests of special relativity, where a small violation of
Lorentz symmetry leads to a deformed relativistic kinematics producing dra-
matic effects on the properties of very high-energy cosmic rays. For instance,
GZK cut-off does no longer apply and particles which are unstable at low en-
ergy (for example some hadronic resonances, possibly several nuclei) become
stable at very high energy.

Indeed, in this Ph.D. thesis, our attempt was to generalize special relativity
maintaining the relativity principle and the usual description with classical



configuration variables such as position and velocity, in contrast with DSR
approach in which the central role is played by energy-momentum space.

We descibed a pseudo-Finslerian event spaces with a partially broken local
rotational symmetry in 3D space. Since in chapter three we saw that in the
4D curved case the locally isotropic Riemannian spacetime is a special case of
our pseudo-Finslerian model, corresponding to the vanishing of the parameter
(scalar field) σ, we can speak of a joint description of these two geometric
models of spacetime. It is important to stress that each of the above-mentioned
models possesses different local relativistic invariances: local invariance may
take either the form of full Lorentz invariance (3D rotational symmetry not
broken) or in the (1+1)-dimensional model the form of generalized Lorentz
invariance, that is to say invariance under the transformations (3.2.7) (partial
breaking of isotropy).

The general lessons we can extract from this research is:

• spacetime is a pseudo-Finslerian manifold rather than a pesudo-Rieman-
nian one;

• with our approach we can work towards a generalization of the Mansouri-
Sexl test theory of special relativity;

• hopefully this research will provide a hint towards a full covariant theory
with a preferred frame.

In this thesis we demonstrated that the physical model that envisages a
“real” spatial anisotropy, provides equations for the threshold energies of the
physical processes that should cause the GZK cutoff that have only a quali-
tative correct trend. The differences on threshold energies between those cal-
culated on the anisotropic model and those calculated using special relativity
are insufficient to explain from a quantitative point of view the lack of GZK
cutoff.

Probably this problem can be cured in a a local anisotropic spacetime.
Indeed, the generalization towards a local spacetime anisotropy is the natural
continuation of this work.

Moreover Finsler’s geometry is a mathematic instrument by means of we
can treat, in an handled way, the existence of a possible “privileged” dynamic
time-like vector field. This field can be used to identify in each spacetime
point a privileged reference system. Therefore, using Finsler’s geometry, is
particularly natural to abandon relativity principle.

These observations suggest us that Finsler’s geometry seems to be the
most suitable mathematic instrument to further generalize our work towards
a theory that describes a local anisotropic spacetime where a preferred frame
is determined by the spacetime metric itself.
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