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Abstract. In 2012 CMS evaluated which underlying concurrency technology would be the best 
to use for its multi-threaded framework. The available technologies were evaluated on the high 
throughput  computing  systems  dominating  the  resources  in  use  at  that  time.  A skeleton 
framework benchmarking suite that emulates the tasks performed within a CMSSW application 
was used to select Intel's Thread Building Block library, based on the measured overheads in 
both memory and CPU on the different  technologies benchmarked.  In 2016 CMS will  get 
access  to  high  performance  computing  resources  that  use  new  many  core  architectures; 
machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 
benchmark to test it’s performance and conclusions on these new architectures. This talk will 
discuss the results of this exercise.

1. Motivation 

CMS has been continuously improving the thread efficiency of its multi-threaded applications.  Since 
the time of our first report at ACAT in 2014[1] there has been significant improvements achieved by 
fixing concurrency issues in our legacy code and migrating it to the thread-friendly requirements of 
our  multi-threaded  framework.   To  see  how  this  has  improved  our  efficiency  on   conventional 
processors,  see the contribution to the proceedings of this conference[2].   In 2016 CMS acquired 
access to a number of high-performance computing (HPC) systems.  HPCs are a window into future 
computing architectures. CMS wanted to be sure that the our framework strategy based on Intel’s 
Thread Building Blocks (TBB)[3] still worked on these systems.  This paper reports on work done to 
evaluate our application performance on advanced many core architectures made available to CMS in 
2016.   In the future, these machines may dominate our production resources.

2. Methodology chosen: emulation

In order to emulate how the fully ported, or fully thread friendly, CMSSW applications would perform 
on these HPC architectures, we’ve used a simplified multithreaded framework[4] which implements 
the full framework’s capabilities and features but does not depend on potentially thread unsafe user 
code.  Instead the user code is emulated by integrating  sin(float x) for enough loops to match the time 
spent in the original algorithm.  The benchmark application chosen had 489 Producers  and both the 1

times and dependencies of the algorithms were taking from the full reconstruction of 2011 on data that 
contained about 30 interactions per crossing.  That data complexity matches the average complexity of 
data taken in LHC run 2 so far.  This is important since it is known that the more complex a problem, 
the more it benefits from increasing the parallel resources used to solve that problem[5].
Once  the  above  data  from  the  full  application  is  fed  into  the  emulation  of  the  multi-threaded 
framework, execution of the emulation on the different architectures can be compared for performance 

 Producers as explained in reference 1, are algorithms that produce event data model objects1

mailto:sexton@fnal.gov
http://creativecommons.org/licenses/by/3.0


2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045  doi :10.1088/1742-6596/898/4/042045

measurements when giving the emulation different amounts of concurrent resources.  In the results 
plots of section 4, the emulation is run varying the amount of computing resources allocated to the 
problem.  More details will be given in that section.

3. Measurement machines

In 2016 CMS was granted access to the following machines in order to conduct this study:
1. KNL from Fermilab’s scientific computing division: Xeon Phi 7210: 1.3GHz with 64 cores and 

256 hardware threads. per node, 96GB Memory/node or 1.5GB/core.  The batch system is PBS.
2. ALCF BG/Q: It uses a PowerPC A2 1.6GHz with 16 cores and 64 hardware threads per node, 

16GB Memory/node or 0.25GB/thread. The batch system is COBALT.
3. NERSC Edison: It uses an Ivy Bridge, 2.4GHz chip with 24 cores per node, 64GB Memory/node 

or 2.67GB/core.  The batch system is SLURM.
CMS was also granted access to NERSC Cori Phase 1. It uses Haswell 2.3 GHz with 32 cores per 
node, 128GB Memory/node.  It’s batch system is also SLURM.  Unfortunately Cori was taken down 
for it’s upgrade to Cori Phase 2 before the measurements could be completed.  Ivy Bridge and Haswell 
are in the same tick-tock Intel cycle and have comparable single threaded performance.  The major 
difference between the two are performance per watt.  Because of this we didn’t aggressively pursue 
finding another source for the Haswell chip set.   

4. Results

4.1. KNL results

On the KNL machine, 3 different resource configurations are measured as a function of the number of 
concurrent TBB threads or processes.  The red curve of Figure 1 gives the resulting throughput as a 
function of the number of concurrent processes.  The blue curve gives the resulting throughput as a 
function  of  the  number  of  concurrent  threads  when the  number  of  threads  equals  the  number  of 
concurrent event streams fed to the emulation.  On the KNL you can see that there is no threading 
penalty relative to heavy weight processes, out to 64 cores, very little penalty (~2%) out to 128, and 
still acceptable losses (5%) out to 256.  These numbers match the architecture descriptions of the KNL 
in section 3.  The green curve measures throughput when the emulation is given additional threading 
resources beyond the number of events it is fed, in the ratio of 5 threads for every 4 events.  Notice 
that  the  CMS multithreaded  framework  is  able  to  use  the  additional  resources  to  increase  event 
throughput relative to the full process measurement.  The limitation on the number of threads useable 
by  one  event  comes  from  the  data  dependencies  between  algorithms  and  is  not  inherent  in  the 
framework itself.



3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045  doi :10.1088/1742-6596/898/4/042045

4.2. ALCF BG/Q results

On the ALCF BG/Q machine, one can see from Figure 2 that it is clear that only the c16 mode is 
relevant for our application. The mode parameter is specified on the batch submission command line, 
and specifies the number of MPI ranks per node.  In that mode we see perfect throughput agreement 
whether one process is using 16 threads or there is 16 concurrently running processes.  At higher 
thread counts it is still possible to gain throughput by adding additional event streams.  The green 
curve again measures throughput when the emulation is given additional threading resources beyond 
the number of events it is fed; and again the framework is able to use those additional resources.

4.3. NERSC edison results

On the Edison machine at NERSC multiple concurrent process throughput matches single process 
multiple  event  threads  out  to  20  simultaneous  events.   Beyond  that  there  is  some  infrastructure 

Figure 1. Total Throughput vs. N Processors or N Streams on KNL
�

Figure 2. Total Throughput vs. N Processors or N Streams on ALCF BG/Q
!
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limitation that would have to be tracked down and fixed or we would restrict our application to lower 
stream counts on this machine.  Also note that out to 20 simultaneous streams when 25 threads are 
used, the green curve shows a ~15% improvement over the simultaneous multi-process case.

5. Conclusions and plans 

The TBB technology underlying the  CMS multi-threaded framework has  been shown to  scale  to 
supercomputing architectures.  Allocating more then one thread per event results in a 15% throughput 
benefit.  Work has begun to test the functioning and scalability of the full CMSSW stack working on 
the KNL system.  Once this is done we can investigate the optimal balance of memory consumption 
vs. throughput on this architecture.
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