
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Benchmarking high performance computing
architectures with CMS’ skeleton framework
To cite this article: E Sexton-Kennedy et al 2017 J. Phys.: Conf. Ser. 898 042045

View the article online for updates and enhancements.

Related content
Benchmarking and accounting for the
(private) cloud
J Belleman and U Schwickerath

-

CMS event processing multi-core
efficiency status
C D Jones and CMS Collaboration

-

Implementation of a Multi-threaded
Framework for Large- scale Scientific
Applications
E Sexton-Kennedy, Patrick Gartung, C D
Jones et al.

-

This content was downloaded from IP address 131.169.5.251 on 23/04/2019 at 23:17

https://doi.org/10.1088/1742-6596/898/4/042045
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022035
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022035
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042008
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042008
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012034
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/521042142/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045 doi :10.1088/1742-6596/898/4/042045

Benchmarking high performance computing architectures
with CMS' skeleton framework

E Sexton-Kennedy1, P Gartung1 and C D Jones1
1Fermilab, P.O.Box 500, Batavia, IL 60510-5011, USA

E-mail: sexton@fnal.gov

Abstract. In 2012 CMS evaluated which underlying concurrency technology would be the best
to use for its multi-threaded framework. The available technologies were evaluated on the high
throughput computing systems dominating the resources in use at that time. A skeleton
framework benchmarking suite that emulates the tasks performed within a CMSSW application
was used to select Intel's Thread Building Block library, based on the measured overheads in
both memory and CPU on the different technologies benchmarked. In 2016 CMS will get
access to high performance computing resources that use new many core architectures;
machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012
benchmark to test it’s performance and conclusions on these new architectures. This talk will
discuss the results of this exercise.

1. Motivation

CMS has been continuously improving the thread efficiency of its multi-threaded applications. Since
the time of our first report at ACAT in 2014[1] there has been significant improvements achieved by
fixing concurrency issues in our legacy code and migrating it to the thread-friendly requirements of
our multi-threaded framework. To see how this has improved our efficiency on conventional
processors, see the contribution to the proceedings of this conference[2]. In 2016 CMS acquired
access to a number of high-performance computing (HPC) systems. HPCs are a window into future
computing architectures. CMS wanted to be sure that the our framework strategy based on Intel’s
Thread Building Blocks (TBB)[3] still worked on these systems. This paper reports on work done to
evaluate our application performance on advanced many core architectures made available to CMS in
2016. In the future, these machines may dominate our production resources.

2. Methodology chosen: emulation

In order to emulate how the fully ported, or fully thread friendly, CMSSW applications would perform
on these HPC architectures, we’ve used a simplified multithreaded framework[4] which implements
the full framework’s capabilities and features but does not depend on potentially thread unsafe user
code. Instead the user code is emulated by integrating sin(float x) for enough loops to match the time
spent in the original algorithm. The benchmark application chosen had 489 Producers and both the 1

times and dependencies of the algorithms were taking from the full reconstruction of 2011 on data that
contained about 30 interactions per crossing. That data complexity matches the average complexity of
data taken in LHC run 2 so far. This is important since it is known that the more complex a problem,
the more it benefits from increasing the parallel resources used to solve that problem[5].
Once the above data from the full application is fed into the emulation of the multi-threaded
framework, execution of the emulation on the different architectures can be compared for performance

 Producers as explained in reference 1, are algorithms that produce event data model objects1

mailto:sexton@fnal.gov
http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045 doi :10.1088/1742-6596/898/4/042045

measurements when giving the emulation different amounts of concurrent resources. In the results
plots of section 4, the emulation is run varying the amount of computing resources allocated to the
problem. More details will be given in that section.

3. Measurement machines

In 2016 CMS was granted access to the following machines in order to conduct this study:
1. KNL from Fermilab’s scientific computing division: Xeon Phi 7210: 1.3GHz with 64 cores and

256 hardware threads. per node, 96GB Memory/node or 1.5GB/core. The batch system is PBS.
2. ALCF BG/Q: It uses a PowerPC A2 1.6GHz with 16 cores and 64 hardware threads per node,

16GB Memory/node or 0.25GB/thread. The batch system is COBALT.
3. NERSC Edison: It uses an Ivy Bridge, 2.4GHz chip with 24 cores per node, 64GB Memory/node

or 2.67GB/core. The batch system is SLURM.
CMS was also granted access to NERSC Cori Phase 1. It uses Haswell 2.3 GHz with 32 cores per
node, 128GB Memory/node. It’s batch system is also SLURM. Unfortunately Cori was taken down
for it’s upgrade to Cori Phase 2 before the measurements could be completed. Ivy Bridge and Haswell
are in the same tick-tock Intel cycle and have comparable single threaded performance. The major
difference between the two are performance per watt. Because of this we didn’t aggressively pursue
finding another source for the Haswell chip set.

4. Results

4.1. KNL results

On the KNL machine, 3 different resource configurations are measured as a function of the number of
concurrent TBB threads or processes. The red curve of Figure 1 gives the resulting throughput as a
function of the number of concurrent processes. The blue curve gives the resulting throughput as a
function of the number of concurrent threads when the number of threads equals the number of
concurrent event streams fed to the emulation. On the KNL you can see that there is no threading
penalty relative to heavy weight processes, out to 64 cores, very little penalty (~2%) out to 128, and
still acceptable losses (5%) out to 256. These numbers match the architecture descriptions of the KNL
in section 3. The green curve measures throughput when the emulation is given additional threading
resources beyond the number of events it is fed, in the ratio of 5 threads for every 4 events. Notice
that the CMS multithreaded framework is able to use the additional resources to increase event
throughput relative to the full process measurement. The limitation on the number of threads useable
by one event comes from the data dependencies between algorithms and is not inherent in the
framework itself.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045 doi :10.1088/1742-6596/898/4/042045

4.2. ALCF BG/Q results

On the ALCF BG/Q machine, one can see from Figure 2 that it is clear that only the c16 mode is
relevant for our application. The mode parameter is specified on the batch submission command line,
and specifies the number of MPI ranks per node. In that mode we see perfect throughput agreement
whether one process is using 16 threads or there is 16 concurrently running processes. At higher
thread counts it is still possible to gain throughput by adding additional event streams. The green
curve again measures throughput when the emulation is given additional threading resources beyond
the number of events it is fed; and again the framework is able to use those additional resources.

4.3. NERSC edison results

On the Edison machine at NERSC multiple concurrent process throughput matches single process
multiple event threads out to 20 simultaneous events. Beyond that there is some infrastructure

Figure 1. Total Throughput vs. N Processors or N Streams on KNL
�

Figure 2. Total Throughput vs. N Processors or N Streams on ALCF BG/Q
!

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042045 doi :10.1088/1742-6596/898/4/042045

limitation that would have to be tracked down and fixed or we would restrict our application to lower
stream counts on this machine. Also note that out to 20 simultaneous streams when 25 threads are
used, the green curve shows a ~15% improvement over the simultaneous multi-process case.

5. Conclusions and plans

The TBB technology underlying the CMS multi-threaded framework has been shown to scale to
supercomputing architectures. Allocating more then one thread per event results in a 15% throughput
benefit. Work has begun to test the functioning and scalability of the full CMSSW stack working on
the KNL system. Once this is done we can investigate the optimal balance of memory consumption
vs. throughput on this architecture.

6. References

[1] Elizabeth Sexton-Kennedy, et al J.Phys.Conf.Ser. 608 (2015) no.1, 012034 “Implementation of a
Multi-Threaded Framework for Large-Scale Scientific Applications" DOI:
10.1088/1742-6596/608/1/012034

[2] Chris Jones, et al “CMS Event Processing Multi-core Efficiency Status” To be published in the
proceedings of CHEP 2016, San Francisco, 2016

[3] TBB website https://www.threadingbuildingblocks.org
[4] https://github.com/Dr15Jones/toy-mt-framework
[5] Gustafson’s law: https://en.wikipedia.org/wiki/Gustafson's_law

Acknowledgments

This work was supported by Fermilab; Operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.

We would also like to thank the institutions who either loaned us or granted us time on their machines.
This includes the HPC department of the FNAL SCD for their loan of a KNL machine.

The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User
Facility, Contract No. DE-AC02-05CH11231

The Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357

Figure 3. Total Throughput vs. N Processors or N Streams on Edison at NERSC
�

https://inspirehep.net/record/1372982
https://inspirehep.net/record/1372982
https://inspirehep.net/record/1372982
http://dx.doi.org/10.1088/1742-6596/608/1/012034
https://www.threadingbuildingblocks.org
https://github.com/Dr15Jones/toy-mt-framework
https://en.wikipedia.org/wiki/Gustafson's_law

