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Preface

The Fourth International Workshop Group Analysis of Differential Equations
and Integrable Systems GADEIS-IV took place in Protaras, Cyprus, from Sunday,
October 26, to Thursday, October 30, 2008.

The aim of the meeting was to bring together leading scientists in group analy-
sis, integrability and mathematical modelling. The main emphasis of the workshop
was be on applications of group methods in investigating nonlinear wave and dif-
fusion phenomena, integrability theory, the modern theory of Lie groups and Lie
algebras as well as the classical heritage, historical aspects and new theoretical
developments in group analysis.

The series of Workshops is organized by the Department of Mathematics and
Statistics of the University of Cyprus and the Department of Applied Research
of the Institute of Mathematics of the National Academy of Science of Ukraine.
The theme of the series is concentrated on recent developments in Lie theory
of differential equations and integrability. It was initiated in 2005 as a meeting
for discussion of results obtained due to intensive cooperation between teams of
Cyprian and Ukrainian scientists. The workshop is held annually. The three pre-
vious Workshops took place in the new Campus of the University of Cyprus near
Nicosia, October 27 (2005), September 25-28 (2006) and October 4-5 (2007). Ev-
ery year the Workshops attract an increasing number of specialists in the themes
of the series and related fields. The range of problems discussed on the Workshops
also is continuously extended.

Forty scientists from fifteen different countries participated in the Fourth Work-
shop. Thirty one lectures on recent developments in traditional and modern as-
pects of group analysis and integrability and their applications were presented.

This book consists of twenty selected papers presented at the conference. All
papers have been reviewed by two independent referees. We are grateful to the
contributors for preparing their manuscripts promptly and furthermore we ex-
press our gratitude to all anonymous referees for their constructive suggestions
for improvement of the papers that appear in this book.
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Symmetries in atmospheric sciences

Alexander BIHLO

Faculty of Mathematics, University of Vienna, Nordbergstrafe 15,
A-1090 Vienna, Austria
E-mail: alexander.bihlo@Qunivie.ac.at

Selected applications of symmetry methods in the atmospheric sciences are
reviewed briefly. In particular the focus is put on the utilisation of the classical
Lie symmetry approach to derive classes of closed-form solutions in from
atmospheric models. This is illustrated with the barotropic vorticity equation.
Moreover the possibility for construction of partially-invariant solutions is
discussed for this model. A further point is a discussion of using symmetries for
relating different classes of differential equations. This is illustrated with the
spherical and the potential vorticity equation. Finally discrete symmetries are
used to derive the minimal finite-mode version of the vorticity equation first
discussed by E. Lorenz [Tellus, 1960, V.12, 243-254] in a sound mathematical
fashion.

1 Introduction

Dynamic meteorology is concerned with the mathematical theory of atmospheric
motion. It lies the cornerstone for daily weather prediction as it prepares the
grounds for numerical computer models, without which reliable forecasts are
hardly imaginable. However, since the advent of capable supercomputers and
the accompanying shift towards methods for exhausting their capacities, analyti-
cal investigations of the governing equations have somewhat taken a back seat.

However, as is evident, numerical models need benchmark tests to check their
reliability and hence closed-form solutions of the underlying mathematical models
are still of great value. Testing whether a forecast model is able to reproduce a
known closed-form solution of the original equation may serve as a first consistency
check. It follows that techniques for obtaining such solutions in a systematic way
are of rather pretty importance. For this purpose the classical Lie symmetry
methods are well-suited.

Many dynamical models in use in the atmospheric sciences are adapted forms
of the Navier—Stokes or the ideal Euler equations, taking into account both the
rotation of the earth and the anisotropy of the atmosphere (the region of interest
for weather prediction extends about 10 km in the vertical but several thousands
of kilometers in the horizontal direction). For large-scale dynamics (i.e., horizontal
length scale about some 1000 km) or for sake of conceptual simplicity, it is possible
to restrict oneself to two-dimensional models. The most relevant example of such
a model in dynamic meteorology is the barotropic vorticity equation. It is derived
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from the incompressible Euler equations in a rotating reference frame by using
the stream function (or vorticity) as dynamic variable.

In this contribution, we discuss symmetries and group-invariant solutions of
the barotropic vorticity equation. Moreover the construction of partially-invariant
solutions is shown. These issues are addressed in Section 2. Subsequently, in Sec-
tion 3 the usage of symmetries for finding related differential equations is demon-
strated using the potential and the spherical vorticity equation. It is shown that
in both cases the rotational term in the equation can be canceled using suitable
point transformations. In Section 4 discrete symmetries of the vorticity equation
are used systematically to rederive the Lorenz (1960) model. This contribution
ends with a short summary and discussion of future research plans, which can be
found in the final section.

2 Group-invariant solutions and barotropic vorticity
equation

It is worth considering the Lie symmetry problem of the barotropic vorticity
equation since to the best of our knowledge this equation has not been investigated
thoroughly in the light of symmetries before. KEither only the symmetries and
some closed-form solutions were computed without reference to classification of
inequivalent subgroups [5,8,9] or the classification itself was not done in the most
complete fashion [1].

We use the stream function—vorticity notation. The barotropic vorticity equa-
tion in Cartesian coordinates reads:

Ct + %Cy - wny + 5% =0, C = wxx + wyya (1)

where ( stands for the vorticity, ¢ is the stream function and 8 = const is a
parameter controlling the North—South variation of the Earth’s angular rotation.
It can be expressed as the North—South change of the vertical Coriolis parameter
f=2Qsinp via = df/dy, where  is the absolute value of the Earth’s angular
rotation vector and ¢ denotes the latitude.

Equation (1) admits the infinite-dimensional maximal Lie invariance alge-
bra B3 generated by the operators [5,9]

D =10y — 20, — yOy — 390y, O, Oy,

X(f) = f(t)0z — f'(t)ydy, Z(g) = g(t)y,
where f and ¢ are arbitrary real-valued time-dependent functions. For a system-
atic group-invariant reduction of the vorticity equation by means of using subal-

gebras of BEO it is necessary first to compute the corresponding optimal system of
inequivalent subalgebras [11]. For one-dimensional subalgebras they are [1,4]

(D), (Otcdy), Gy +X(f),  (X(f)+Z(9)
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where ¢ = {0,41}. The optimal system of two-dimensional subalgebras is [4]

(D, &), (D, 8, +aX(1)), (D, X(|t|") +cZ(|t|]""*)), (D, Z(|t|*™?)),
(0, + b0y, X(e™)+ Z((abt +c)e™)), (8, +bdy, Z((abt + c)e™)),

8y +X(f1), X))+ Z(g%), (9 +X(f1), Z(¢%)),

(XY + 29D, X(f*) + Z(47)),

with a,b, ¢ being arbitrary constants and f? and ¢*, i = 1,2, being arbitrary
real-valued functions of time. In the fifth and sixth subalgebra additionally the
condition abc = 0 has to hold. In the last subalgebra the pairs of functions (f!, g')
and (f2,¢%) have to be linearly independent. Using the above two-dimensional
subalgebras allows one to reduce (1) to ODEs. Moreover it is straightforward
to show that the third and the fourth case of one-dimensional subalgebras lead
to completely integrable PDEs. Hence, since all but the first two-dimensional
subalgebra are extensions of special forms of the third or fourth one-dimensional
subalgebras, only reduction by means of the first two-dimensional subalgebra may
give an essentially new result.

Based on the above classification, it is possible to derive classes of inequivalent
group-invariant solutions [4]. As a notable example we investigate reduction by
means of (0y + X(f)). The invariant functions of this subalgebra are

1
p=x—fy, q=t, v=w+§f’y2,

which allows one to reduce (1) to the classical Klein-Gordon equation 9553430 = 0,
where

_ dg . S k() (A
/—1+f2’ p =D, V=" ﬁp+ 3 + 2 .

For the meteorological application the case f = const and making a harmonic
ansatz for v is the most relevant: The corresponding solution represents the clas-
sical Rossby wave, which to a large extend governs the weather regimes in the
mid-latitudes.

Considering (1) as a system of two equations using ¢ and ¢ as dependent vari-
ables, it is possible to compute partially-invariant solutions [12]. This should be
illustrated using the subalgebra (X' (1), Z(g)). Due to the presence of the second
basis element, Z(g), no ansatz for ¢ can be chosen. However, it is still possible
to make an ansatz for (. Because of the joint invariance under X' (1) and Z(g) we
have ¢ = ((t,y) and thus (1) is transformed to

Gt + (G + B) =0, C =Yz + yy.

Introducing the absolute vorticity n = ¢ + Sy we have to distinguish two cases.
For n, = 0 the solution of the vorticiy equation is

1

1
TIZ) = \I’(t,l',y) - Eﬁyg + 577@)?/2,
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where W satisfies the Laplace equation W, + ¥,, = 0. For n, # 0 the solution is

1 1 gty +gf
zp:WF(w)—éﬁy?’—%x—i—fly—kfo,

where w = gly + ¢° and ¢', ¢°, f1, f¥ are all real-valued functions of time.

3 Symmetries and the ineffective earth rotation

3.1 The spherical vorticity equation

Although the vorticity equation in Cartesian coordinates allows one to study some
prominent features of large-scale geophysical fluid dynamics, it does not take into
account the Earth’s sphericity. For this purpose it is necessary to study vorticity
dynamics in a rotating spherical coordinate system. The corresponding equation
then is [14]:

1 2Q
Gt =3 (G = uQa) + —59a =0, (2)
where 9 is the (spherical) stream function and ¢ the (spherical) vorticity,
1 1

<'_

T a1 2

P+ ((1 - N2)¢u)“ .

Rather than using A (longitude) and ¢ (latitude) as spatial variables, it is advan-
tageous to use A and p = sin . The mean radius of the earth is denoted by a.
The maximal Lie invariance algebra gq, of (2) is generated by the basis operators

D = t0; — (w - Qﬂ)aw - Qta}n ata Z(g) = g(t)aw7 Jh = a)n

) (= u2)0,+ 90y)

7 Msin(A + Q1) 9y 4+ cos(A + Qt
2 = A
/1 — /‘2 /1 — N2
= MCOS()\ + Qt)8 sin(A + Q) ((1— 12), + Qd,) .

A
V1 — p? 1 — p?
where g runs through the set of smooth functions of ¢. It is straightforward to
map the algebra go with 2 # 0 to the algebra gg by means of the transformation

Moreover this transformation also maps the equation (2) with © # 0 to the
equation of the same form with 2 = 0, that is, it is possible to disregard the
rotational term by setting 2 = 0 for all practical calculations and finally obtain
the corresponding results for the case €2 # 0 by applying the above transformation.
We note in passing that this transformation was already used by Platzman [14] to
transform the vorticity equation to a zero angular momentum coordinate system.

For optimal systems of one- and two-dimensional subalgebras of gg and the
computation of group-invariant solutions of (2) in a fashion similar to the previous
section, see [4].
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3.2 The potential vorticity equation

An extension of the classical barotropic vorticity equation is given through the
potential vorticity equation. For flat topography the equation is

Ct - Fwt + way - %Cz + 67/}90 = 07 < = wxx + wyy7 (3)

where F' is the ratio of the characteristic length scale to the Rossby radius of
deformation [13]. In the Lagrangian view the above equation can be understood
as individual conservation of the potential vorticity ¢ = ¢ + f — F. In this
light the extension to the barotropic vorticity equation, which in turn states the
individual conservation of absolute vorticity n = ¢ 4+ f, becomes most obvious:
While barotropic dynamics takes place solely in two dimensions, the additional
term — F'y accounts for a variation of the fluid height in the vertical. In this respect
the potential vorticity equation is especially suited for shallow water theory.

Determining the symmetries for the case § = 0 and 5 # 0 shows that both
algebras and hence also the two corresponding equations are mapped to each other
by applying the transformation [3]

t~:ta .fi':l'—F%t, g:yv 1&:1}[)—

éy
7Y
Again this shows that there are models in the atmospheric sciences, in which the
rotational terms are apparently not of prime importance.

4 Symmetries and finite-mode models

There is a long history in dynamic meteorology to convert the governing nonlinear
PDEs to systems of coupled ODEs by means of series expansions, followed by a
reasonable truncation of the series in use. Among one of the first models that was
analyzed in this way again was the barotropic vorticity equation in Cartesian co-
ordinates. This was done by Lorenz [10] in an adhoc fashion: He firstly expanded
the vorticity in a a double Fourier series on the torus

(= Cmexp(ith - x),

where x = xi + yj, m = mqi + moj, M = mqki + molj, k = const, [ = const, i =
(1,0,0)T, j = (0,1,0)T, m; and ms run through the integers and the coefficient Cq
vanishes. Afterwards he substituted this expansion into (1) for § = 0 obtaining
the spectral form of the vorticity equation, namely

dC Cm’Cm—m’ ~ -
= X e e ), g

where k = (0,0, 1)T. Finally, he restricted the indices of the Fourier coefficients
Cm = 1/2(Am — iBp) to only run through the indices {—1,0,1}, leading to an
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eight-component initial model. He then noted that, if the imaginary parts By, of
the coefficients at hand vanish initially, they remain zero for all times. Moreover,
if the real coefficient A1; = —A; _; initially, this equality is also preserved under
the finite-mode dynamics. These observations allow to reduce (4) to the following
three-component model

& = (- mym) wrFe

dt B2+ 12

dF 1 1

== <1_2 s z2> kIAG, (5)
dG 1/1 1

where, A := A, F = A19,G := A1 1.

Now it is instructive to see, whether it is possible to give a more rigorous
justification of the two observations by Lorenz [2]. The key for this investigation
is to start with the generators of admitted mirror symmetries of (1) for 3 =0

€1: (l‘,y,t,ﬂ}) = (l'a —y,t,—@b),

e2: (2,y,t,0) = (—x,y,t, =),

es:  (z,y,8,9) = (z,y,—t, ).
and induce them in the space of Fourier coefficients by means of series expansion.
The induced symmetries are

€1: lemz = _le,—mz’
€9 Cm1m2 — —C—mlmzy
ezt Chmims — —Cmymy, t— —t.

Moreover the translations with the values 7/k and 7/l in directions of z and y,
respectively, induce proper transformations of the Fourier coefficients:

p: Cm1m2 = (_1)mlcm1m27 q: Cm1m2 = (_1)m2Cm1m2'

The transformations eq, es, p and g act on the dependent variable and thus may
be useful for reducing the number of Fourier coefficients at hand. Therefore the
finite-dimensional symmetry group that is relevant for us is generated by these
four elements and has the structure G ~ Zo @ Zo ® Zy P Zo. Selecting various
subgroups of G allows one to reduce the eight-component initial model to five-,
four- and three-component submodels, respectively. The three-component sub-
model by Lorenz is derived upon using the subgroup S = {1,pge1,pges,eiea}.
The transformation ejes accounts for his first observation, i.e. By, m, = 0, while
the transformation pge; yields the identification A1; = —A; _1, which justifies the
second observation. In this way (5) is derived merely using symmetry techniques.

This example shows that it is possible to derive a consistent finite-mode model
by means of a sound mathematical method. Having such a method at ones disposal
is especially useful since up to now there are only few criteria for the selection of
modes in finite-mode models.
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5 Conclusion and future plans

In this paper we have reviewed some possible applications of well-established
symmetry methods in the atmospheric sciences. The technique of constructing
group-invariant solutions allows one to systematically rederive the well-known
Rossby wave solution of the barotropic vorticity equation. Moreover relating
differential equations by mapping their Lie algebras to each other enables one to
cancel the terms due to the earth’s angular rotation in both the potential and
spherical vorticity equation. From the physical viewpoint this result is somewhat
astonishing since these rotational terms are in fact to a great extend responsible
for the overall complexity in formation of weather pattern.

In future works the classical method of Lie reduction should be applied to
more sophisticated models of geophysical fluid dynamics, including the quasi-
geostrophic model [7] and some classical convection model [6]. Moreover the usage
of symmetries for a systematic determination of conservation laws in atmospheric
science should be examined. This again has potential application in providing
consistency checks for schemes of numerical integration.
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This paper shows how to construct directly the local conservation laws for
essentially any given DE system. This comprehensive treatment is based on
first finding conservation law multipliers. It is clearly shown how this treatment
is related to and subsumes the classical Noether’s theorem (which only holds for
variational systems). In particular, multipliers are symmetries of a given PDE
system only when the system is variational as written. The work presented in
this paper amplifies and clarifies earlier work by the first and third authors.

1 Introduction

A conservation law of a non-degenerate DE system is a divergence expression that
vanishes on all solutions of the DE system. In general, any such nontrivial expres-
sion that yields a local conservation law of a given DE system arises from a linear
combination formed by local multipliers (characteristics) with each DE in the sys-
tem, where the multipliers depend on the independent and dependent variables
as well as at most a finite number of derivatives of the dependent variables of the
given DE system. It turns out that a divergence expression depending on inde-
pendent variables, dependent variables and their derivatives to some finite order
is annihilated by the Euler operators associated with each of its dependent vari-
ables; conversely, if the Euler operators, associated with each dependent variable
in an expression involving independent variables, dependent variables and their
derivatives to some finite order, annihilate the expression, then the expression is
a divergence expression. From this it follows that a given DE system has a local
conservation law if and only if there exists a set of local multipliers whose scalar
product with each DE in the system is identically annihilated without restrict-
ing the dependent variables in the scalar product to solutions of the DE system,
i.e., the dependent variables, as well as each of their derivatives, are treated as
arbitrary functions.
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Thus the problem of finding local conservation laws of a given DE system
reduces to the problem of finding sets of local multipliers whose scalar product
with each DE in the system is annihilated by the Euler operators associated with
each dependent variable where the dependent variables and their derivatives in
the given DE system are replaced by arbitrary functions. Each such set of local
multipliers yields a local conservation law of the given DE system. Moreover, for
any given set of local conservation law multipliers, there is an integral formula to
obtain the fluxes of the local conservation law [1-3]. Often it is straightforward to
obtain the conservation law by direct calculation after its multipliers are known [4].
What has been outlined here is the direct method for obtaining local conservation
laws.

For a given DE system, Lie’s algorithm yields an over-determined set of linear
determining equations whose solutions yield local symmetries. This set of linear
PDEs arises from the linearization of the given DE system (Fréchet derivative)
about an arbitrary solution of the given DE system, i.e., the resulting set of linear
PDEs must hold for each solution of the given DE system. After the given DE
system and its differential consequences are substituted into its linearization, the
resulting linear PDE system yielding local symmetries must hold with the remain-
ing dependent variables and their derivatives of the given DE system replaced by
arbitrary functions.

In contrast, for a given DE system, sets of local conservation law multipliers are
solutions of an over-determined set of linear determining equations arising from
annihilations by Euler operators. It turns out that the set of linear multiplier
determining equations for local conservation law multipliers includes the adjoint
of the set of linear PDEs arising from the linearization of the given PDE system
about an arbitrary solution of the given DE system [1].

It follows that in the situation when the set of linearized equations of a given
DE system (Fréchet derivative) is self-adjoint, the set of multiplier determining
equations includes the set of local symmetry determining equations. Consequently,
here each set of local conservation law multipliers yields a local symmetry of the
given DE system. In particular, the local conservation law multipliers are also
components of the infinitesimal generators of local symmetries in evolutionary
form. However, in the self-adjoint case, the set of linear determining equations
for local conservation law multipliers is more over-determined than those for local
symmetries since here the set of linear determining equations for local conservation
law multipliers includes additional linear PDEs as well as the set of linear PDEs
for local symmetries. Consequently, in the self-adjoint case, there can exist local
symmetries that do not yield local conservation law multipliers.

Noether [5] showed that if a given system of DEs admits a variational principle,
then any one-parameter Lie group of point transformations that leaves invariant
the action functional yields a local conservation law. In particular, she gave an
explicit formula for the fluxes of the local conservation law. Noether’s theorem
was extended by Bessel-Hagen [6] to allow the one-parameter Lie group of point
transformations to leave invariant the action functional to within a divergence
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term. As presented, their results depend on Lie groups of point transformations
used in their canonical form, i.e., not in evolutionary form. Boyer [7] showed
how all such local conservation laws could be obtained from Lie groups of point
transformations used in evolutionary form. From this point of view, it is straight-
forward to apply Noether’s theorem to obtain a local conservation law for any
for any one-parameter higher-order local transformation leaving invariant the ac-
tion functional to within a divergence term. Such a higher-order transformation
that leaves invariant an action functional to within a divergence term is called a
variational symmetry.

As might be expected, Noether’s explicit formula for a local conservation law
arises from sets of local multipliers that yield components of local symmetries in
evolutionary form. From this point of view, it follows that all local conservation
laws arising from Noether’s theorem are obtained by the direct method. Moreover,
one can see that a variational symmetry must map an extremal of the action
functional to another extremal. Since an extremal of an action functional is a
solution of the DE system arising from the variational principle, it follows that a
variational symmetry must be a local symmetry of the given DE system arising
from the variational principle.

A system of DEs (as written) has a variational principle if and only if its
linearized system (Fréchet derivative) is self-adjoint [8-10]. From this point of
view, it also follows that all conservation laws obtained by Noether’s theorem
must arise from the direct method.

The direct method supersedes Noether’s theorem. In particular, for Noether’s
theorem, including its generalizations by Bessel-Hagen and Boyer, to be directly
applicable to a given DE system, the following must hold:

e The linearized system of the given DE system is self-adjoint.
e One has an explicit action functional.

e One has a one-parameter local transformation that leaves the action func-
tional invariant to within a divergence. In order to find such a variational
symmetry systematically, one first finds local symmetries (solutions) of the
linearized system and then checks whether or not such local symmetries
leave the action functional invariant to within a divergence.

On the other hand, the direct method is applicable to any given DE system,
whether or not its linearized system is self-adjoint. No functional needs to be
determined. Moreover, a set of local conservation law multipliers is represented
by any solution of an over-determined linear PDE system satisfied by the mul-
tipliers and this over-determined linear PDE system is obtained directly from
the given DE system. As mentioned above, in the case when the linearized sys-
tem is self-adjoint, the local symmetry determining equations are a subset of this
over-determined linear PDE system.

In the study of DEs, conservation laws have many significant uses. They de-
scribe physically conserved quantities such as mass, energy, momentum and an-
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gular momentum, as well as charge and other constants of motion. They are
important for investigating integrability and linearization mappings and for es-
tablishing existence and uniqueness of solutions. They are also used in stability
analysis and the global behavior of solutions. In addition, they play an essential
role in the development of numerical methods and provide an essential starting
point for finding potential variables and nonlocally related systems. In particu-
lar, a conservation law is fundamental in studying a given DE in the sense that
it holds for any posed data (initial and/or boundary conditions). Moreover, the
structure of conservation laws is coordinate-independent since a point (contact)
transformation maps a conservation law to a conservation law.

The rest of this paper is organized as follows. In Section 2, the direct method is
presented with a nonlinear telegraph system and the Korteweg-de Vries equation
used as examples. Noether’s theorem is presented in Section 3. In Section 4,
there is a discussion of the limitations of Noether’s theorem and the consequent
advantages of the direct method.

2 The direct method

Consider a system R{x;u} of N differential equations of order k with n indepen-
dent variables z = (2!,..., 2") and m dependent variables u(z) = (u'(x),..., u™(z)),
given by

R°[u] = R (z,u,0u,...,0%u) =0, o=1,...,N. (1)

Definition 2.1. A local conservation law of the DE system (1) is a divergence
expression

D;®[u] = D1®u] + ...+ D, ®"[u] =0 (2)

holding for all solutions of the DE system (1).
In (2), D; and ®‘[u] = ®*(z,u,du,...,0"u), i = 1,...,n, respectively are total
derivative operators and the fluzes of the conservation law.

Definition 2.2. A DE system R{z;u} (1) is non-degenerate if (1) can be written
in Cauchy-Kovalevskaya form [3,10] after a point (contact) transformation, if
necessary.

In general, for a given non-degenerate DE system (1), nontrivial local conser-
vation laws arise from seeking scalar products that involve linear combinations of
the equations of the DE system (1) with multipliers (factors) that yield nontrivial
divergence expressions. In seeking such expressions, the dependent variables and
each of their derivatives that appear in the DE system (1) or in the multipliers,
are replaced by arbitrary functions. Such divergence expressions vanish on all
solutions of the DE system (1) provided the multipliers are non-singular.
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In particular a set of multipliers {A,[U]})_; = {Ay(x,U,0U,...,0'U)}_,
yields a divergence expression for the DE system R{x;u} (1) if the identity

Ao [U]R?[U] = D;®'[U] (3)

holds for arbitrary functions U(z). Then on the solutions U(z) = u(x) of the DE
system (1), if Ay [u] is non-singular, one has a local conservation law

Ag[u] R [u] = D;®[u] = 0.

[A multiplier A,[U] is singular if it is a singular function when computed on
solutions U(x) = u(x) of the given DE system (1) (e.g., if A;[U] = F[U]/R?[U)).
One is only interested in non-singular sets of multipliers, since the consideration
of singular multipliers can lead to arbitrary divergence expressions that are not
conservation laws of a given DE system.|

Definition 2.3. The FEuler operator with respect to U* is the operator defined
by

P P P
DL 4. 4(-1)°D; Dy ——m
aur ~ Piggs T T (D Dy “9U”

11...05

EU;L: 4+ ... . (4)

By direct calculation, one can show that the Euler operators (4) annihilate
any divergence expression D;®(z,U,dU, ...,0"U) for any r. In particular, the
following identities hold for arbitrary U(z):

Eyu(D;®'(2,U,0U,...,0"U)) =0, p=1,...,m.

It is straightforward to show that the converse also holds. Namely, the only
scalar expressions annihilated by Euler operators are divergence expressions. This
establishes the following theorem.

Theorem 2.1. The equations Eyu F(z,U,0U,...,0°U) =0, p = 1,...,m hold
for arbitrary U(x) if and only if F(x,U,0U,...,0°U) = D;¥i(x,U,dU,...,0° 1U)
for some functions Wi (x,U,0U,...,0°"U), i=1,...,n.

From Theorem 2.1, the proof of the following theorem that connects local
multipliers and local conservation laws is immediate.

Theorem 2.2. A set of non-singular local multipliers {A,(z,U,0U, ..., 0'U)} Y

o=1

yields a divergence expression for a DE system R{x;u} (1) if and only if the set
of equations

Evu(Ag(x,U,0U,...,0'U)R° (x,U,dU,...,0*U)) =0, p=1,...,m, (5)

holds for arbitrary functions U(x).
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The set of equations (5) yields the set of linear determining equations to find
all sets of local conservation law multipliers of a given DE system R{xz;u} (1) by
letting I = 1,2, ... in (5). Since the equations (1) hold for arbitrary U(z), it follows
that they also hold for each derivative of U(x) replaced by an arbitrary function.
In particular, since derivatives of U(z) of orders higher than [ can be replaced
by arbitrary functions, it follows that the linear PDE system (1) splits into an
over-determined linear system of determining equations whose solutions are the
sets of local multipliers {A, (z, U, dU, ..., 0'U)})_; of the DE system R{xz;u} (1).

One can show the following [11]: Suppose each DE of a given kth order DE
system R{x;u} (1) can be written in a solved form

Ra[u]:uj” —G"(m,u,au,...,(‘)ku)zo, c=1,...,N, (6)

11 iso

where 1 < j, <mand 1 <4i15,...,i50 <nforeachoc=1,...,N; {uz;lw} is a
set of N linearly independent sth order leading (partial) derivatives, with the prop-
erty that none of them or their differential consequences appears in {G[u]}2_;.
Then, to within equivalence, all local conservation laws of the DE system R{x ; u}
(1) arise from sets of local multipliers that are solutions of the determining equa-
tions (5). [It should be noted that the assumption that a given DE system R{z ; u}
(1) can be written in a solved form (6) is the same assumption that is required

when one is finding the local symmetries of R{x;u} (1).]

Remark 2.1. In the situation when a given DE system R{x;u} (1) cannot be
written in a solved form (6), the multiplier approach still can be used to see local
conservation laws of (1). However, here it is possible that some local conservation
laws are missed since the corresponding divergence expressions may not satisfy
(3), since they could involve differential consequences of R{x;u} (1).

Following from the above, a systematic procedure for the construction of local
conservation laws of a given DE system R{x;u} (1), referred to as the direct
method, is now outlined.

e For a given kth order DE system R{xz;u} (1), seek sets of multipliers of
the form {A,(z,U,0U,...,0'U)})_, to some specified order I. Choose the
dependence of multipliers on their arguments so that singular multipliers
do not arise. [In particular, if the given DE system is written in a solved
form (6) and is non-degenerate, the multipliers can be assumed to have
no dependence on the leading derivatives {uffalw} and their differential
consequences. |

e Solve the set of determining equations (5) for arbitrary U(z) to find all such
sets of multipliers.

e Find the corresponding fluxes ®‘(z, U, dU, ...,d"U) satisfying the identity
Ao(z,U,0U,...,08'U)R° (x,U,dU, ... ,08U) = D;® (2, U,dU,...,0"U).

e Each set of multipliers and resulting fluxes yields a local conservation law
holding for all solutions u(x) of the given DE system R{z;u} (1).
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2.1 Examples

The direct method to obtain local conservation laws is now illustrated through
two examples.

2.1.1 A nonlinear telegraph system

As a first example, consider a nonlinear telegraph system (u' = u, u? = v) given

by
RYu,v] = vy — (u? + Nuy —u =0, R%u,v]=u —v, =0. (7)

This is a first order PDE system with leading derivatives v; and uy.
We seek all local conservation law multipliers of the form

Al = £($,t, Ua V)7 A2 = ¢($7t7U7 V) (8)

of the PDE system (7). In terms of Euler operators

0 Dxi—Dti Ey 0 Dxi—Dti

b =55~ ou, U, v toav, v’

the determining equations (5) for the multipliers (8) become

EU[§($,t, U7 V)(V;f - (U2 + 1)U:c - U) + ¢(x7t7 U7 V)(Ut - Vx)]

0,
Ev[§($7 t, U7 V)(V;f - (U2 + 1)U:c - U) + (25(:6, t? U7 V)(Ut - Vx)] 07 (9)

where U(z,t) and V(z,t) are arbitrary differentiable functions. Equations (9)
split with respect to Uy, V4, U, V.. to yield the over-determined linear PDE system
given by

ov —E&u =0, oy — (U?+1)& =0,

(10)
o — & —Uly =0, (U2 + 1) — ¢ —Uly —€=0.

The solutions of (10) are the five sets of local conservation multipliers given by
(1,61) = (0,1), (&2, ¢2) = (t,x — %),
(&3, 83) = (1, —1), (£, a) = (eHaUHV UertiUP+V),
(&5, 05) = (e”%UZ—V’ _U€$+%U2—V)'

Each set (£, ¢) determines a nontrivial local conservation law D;W(x,t,u,v) +
D, ®(z,t,u,v) = 0 with the characteristic form

D, U(z,t,U, V) + D, ®(z,t,U,V)

(11)
= ¢(2,t,U,V)RYU, V] + ¢(x,t,U, V)R2[U, V].



G.W. Bluman, A.F. Cheviakov and S.C. Anco

In particular, after equating like derivative terms of (11), one has the relations
Vy=¢, y=¢ Qu=—(U2+1)E @v=—¢ ¥ +& =-Ut (12)

For each set of local multipliers, it is straightforward to integrate equations (12)
to obtain the following five linearly independent local conservation laws of the
PDE system (7):

Dyu+ D,[—v] =0,
Dy[(z — 3t*)u + tv] + Dy [(3t2 — 2)v — t(Fud + u)] = 0,
Dy[v — tu] + Dy [tv — (3u3 + u)] =0,
Dt[egc—i-%uz—l—v] + Dx[_ue:c—l-%uz—l—v] —0,
1,2

Dt[e”%“z_”] + Dy [ue® 2% Y] = 0.

2.1.2 Korteweg-de Vries equation
As a second example, consider the KdV equation
Rlu] = uy + vy + ugge = 0. (13)

Since PDE (13) can be directly expressed in the solved form u; = glu] =
—(uty + Uggs ), without loss of generality, it follows that local multipliers yielding
local conservation laws of PDE (13) are of the form A = A(t,z,U,d,U,...,0LU),
[=1,2,...,1ie., multipliers can be assumed to depend on at most on x-derivatives
of U. This follows from the observation that through PDE (13), all ¢-derivatives
of u appearing in the fluxes of any local conservation law D;¥[u] + D, ®[u] = 0
of PDE (13) can be expressed in terms of z-derivatives of u. It is then easy
to show [3] that the resulting multipliers for the fluxes ¥(¢,z,U,d,U,...,0LU)
and ®(t,x,U,0,U,...,0LU) must have no dependence on U; and its derivatives.
Consequently, A(t,z,U,d,U,...,0LU) is a local conservation law multiplier of the
PDE (13) if and only if

Ev(A(t,2,U,0,U,...,0LU) (U + UUyg + Upgs)) =
—DiA — UD A —D3A + (U + UU, + Upys) Avs
—D (Ut + UUy + Ugz) Nov)

4+ (=1)'DL((Ur + UUyp + Upae) Mgy = 0

(14)

holds for an arbitrary U(z,t) where here the Euler operator

9 P P 9
— — (Dj— + D, D2
ga ~ Pigp, T Pegp) + Degp—

truncates after max(3,!/) z-derivatives of U. Note that the linear determining
equation (14) is of the form

Oél[U] + Oéz[U]Ut + 043[U]axUt + .- Oq_,_g[U]aiUt =0 (15)

Ey = ..
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where each o;[U] depends at most on ¢, x, U and a-derivatives of U. Since U(z,t)
is an arbitrary function, in equation (15) each of Uy, 9,Uy, . .., 0LU; can be treated
as independent variables, and hence «;[U] = 0, i = 1,...,l 4+ 2. Furthermore,
there is a further splitting of these [ + 2 determining equations with respect to
each z-derivative of U.

Now suppose A = A(t,z,U). Then from equations (14) and (15), it follows that

(A¢ + UAg + Apaz) + 3000 Us + 3Mpp U2 + Apypp U3

(16)
+3ASCUU:L‘:L‘ + 3AUUUSCUSCSC =0.

Equation (16) is a polynomial identity in the variables U, U,,. Hence equation
(16) splits into the three equations (the other three equations are differential
consequences)

At+UAm+AmmmZOa AwUZOa AUUZO,
whose solution yields the three local conservation law multipliers
Alzl, AQZU, AthU—l'.

It is easy to check that these three multipliers respectively yield the divergence
expressions

Ut + UUp + Ugze = DyU + Do (3U? + Usg),
U(Ui + UUyg + Upgz) = Dy(5U%) + Do (3U° + UUy, — 3U7),
(tU — 2)(Up + UUy + Ugyy) = Di(5tU% — 2U)
+D,(—52U% + tUU,y — $5tU2 — 2Usy + Uy),
and consequently, one obtains the local conservation laws
Diu + Dy (2u + Upg) =0,
Dy(3u?) + Dy (3u® + uugy — u?) =0,
Dt( tu? — zu) + Dy (— xu + tutlyy — %tu% — TUgzy + uyz) = 0,

of the KdV equation (13).

From equations (14) and (15), it is easy to see that PDE (13) has no additional
multipliers of the form A = A(t,z,U,U,) with an essential dependence on U,.
Moreover, one can show that there is only one additional local multiplier of the
form A = A(t,z,U, Uy, Uy,y), given by

1
A4 == wa + §U2
Furthermore, one can show that in terms of the recursion operator

1.1
R*[U] = D2 + U+ ngl oU oDy,
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the KdV equation (13) has an infinite sequence of local conservation law multi-
pliers given by

Ao, = (R¥[UD"U, n=1,2,...,
with the first two multipliers in this sequence exhibited above.

2.2 Linearizing operators and adjoint equations

Consider a given DE system R{x ;u} (1). The linearizing operator L[U] associated
with the DE system R{z;u} (1) is given by

OR°[U]  0OR°[U] OR°[U]
a P = : — D Dy p
Lg[U]V o5e gy Dt g Da o Dal V)
c=1,...,N,
in terms of an arbitrary function V(x) = (V(x),...,V™(z)). The adjoint operator
L*[U] associated with the DE system R{z;u} (1) is given by
‘o _ OR°[U] OR°[U]
Ly 7[U]Wy = 5z Wo = D, <TU[,WC, .
(18)

OR°[U
+(=1)*D;, ... Dy, (WHW(,) . p=1,...,m,

11...0k

in terms of an arbitrary function W(z) = (W1 (z),..., Wx(z)).
In particular, one can show that the linearizing and adjoint operators, defined
respectively through (17) and (18), satisfy the divergence relation

W,LS[UIVP=VPL? [UIW, = Dy W' [U]

with

k
DU =Y Y D, [(—1)’”—1 (Diyy - Dy, V) x

q=1141...iq

Dy -D;. . (Wg OR’[U] )}

ou’

11...0q

where the second sum is taken over all ordered sets of indices 1 < i1 < ... <4, <
... <, < n of independent variables = = (z1,... 2").

Now let W, = Ao[U] = Ay (2,U,0U,...,0'U), 0 = 1,...,N. By direct calcula-
tion, in terms of the Euler operators defined by (4), one can show that

Eyr (Ao [UIR?[U]) = L7 [UJAG[U] + F,(R[U]) (19)

with
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A, (U]
our

A, U]
o0?

F,(RIU]) = R°[U] - D; ( R"[U]) .

oA, (U] (20)

07

—l—(—l)lDZ‘l...Dil ( RU[U]> , p=1...,m.

oy

From expression (19), it immediately follows that {A,[U]})_; yields a set of
local conservation law multipliers of the DE system R{z;u} (1) if and only if the
right hand side of (19) vanishes for arbitrary U(z). Now suppose each multiplier
is nonsingular for each solution U(x) = u(z) of the DE system (1). Since then
the expression (20) vanishes for each solution U(z) = u(x) of DE system R{x;u}
(1), it follows that every set of nonsingular multipliers {A,[U]}N_; of R{xz;u} is
a solution of its adjoint linearizing DE system when U(z) = u(x) is a solution of
the DE system R{z;u}, i.e.,

Lo 7uAs[u] =0, p=1,...,m. (21)
In particular, the following two results have been proved.

Theorem 2.3. For a given DE system R{x;u} (1), each set of local conservation
law multipliers {As[U] = Ay (2, U,0U, ..., 0'U)}N_, satisfies the identity

o=1
L0 (0]+ 5 reto] - s (2o o)

oA, (U] (22)

oul

i1

—|——|—(—1)ZD“D”< RJ[U])E()’ p=1...,m,

holding for arbitrary functions U(x) = (U(z),...,U™(z)) where the components
{L; U]} of the adjoint operator of the linearizing operator (Fréchet derivative)
for the DE system (1) are given by expressions (18).

Corollary 2.1. For any solution U(z) = u(z) = (u'(z),...,u™(x)) of a given
DE system R{xz;u} (1), each set of local conservation law multipliers {A,[U]}Y_,
satisfies the adjoint linearizing system (21), where {L,°[U]} is given by the com-
ponents of the adjoint operator (18).

The identity (22) provides the explicit general form of the multiplier determin-
ing system (5) in Theorem 2.2. In general, the adjoint system (21) is strictly a
subset of system (5) after one takes into account the splitting of (22) with respect
to a set of leading derivatives for R°[U], 0 = 1,...,N.

2.3 Determination of fluxes of conservation laws from multipliers

There are several ways of finding the fluxes of local conservation laws from a
known set of multipliers.
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A first method is a direct method that has been illustrated through the nonlin-
ear telegraph system considered in Section 2.1.1 where one converts (3) directly
into the set of determining equations to be solved for the fluxes ®?[U]. This method
is easy to implement for simple types of conservation laws.

A second method is another direct method that has been illustrated through
the KdV equation considered in Section 2.1.2 where one simply manipulates (3)
to find the fluxes ®¢[U].

A third method [1-3] is now presented that allows one to find the fluxes in the
case of complicated forms of multipliers and/or DE systems through an integral
(homotopy) formula:

For each multiplier A,[U] = Ay (z,U,0U,...,0'U), one introduces the corre-
sponding linearization operator

e aAa [U] 8AO’ [U] 8AO’ [U] 17
LA)o P = D; D;,...D;, | V7,
a)eUWV =170 gup Pt F g P P V0 )
c=1,...,N,
and its adjoint
. ~_ 0N U], 0N [U] =,
077 = 22l b, (2l "
24
ON,[U]
k (]
+ +( 1) Dll Dll <8UZP1HW ) bl _17 7m7

acting respectively on arbitrary functions V (z) = (V(x),..., V™ (x)) and W (z) =
(W (@), ..., WY (2).

It is straightforward to show that the operators defined by (17), (18), (23), and
(24) satisfy the following divergence identities:

W,LI[UV? — VPL:? [UIW, = Dy S* [V, W; R[UJ], (25)
W (Ly)op[UIVF — VP(LZ)ap[U]W" = D,S' [V, W; A[U]], (26)

with S¢[V,W; R[U]] and S*[V,W;A[U]] defined by corresponding terms in the

expressions

k
D, SV, W; U] Z Z b | (1) (D - D3, V) X
a=1 (27)
OR°[U]
l
DSV, WAL] = 3037 Dy, [(=1) 7 (D D V)
g=l11...74 (28)

DD (7 L)

11...0q
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In equations (27) and (28), k is the order of the given DE system (1), [ is the
maximal order of the derivatives appearing in the multipliers, and the second

sums are taken over all ordered sets of indices 1 <47 < ... <14, <... <, <n
of independent variables = = (z!,..., 2").

Let Uy = U(z) + (A= 1)V (z), where U(z) = (U'(z),...,U™(x)) and V(z) =
(Vi(x),...,V™(x)) are arbitrary functions, and ) is a scalar parameter. Replacing
U by U(y) in the conservation law identity (3), one obtains

3} o 0 ; 0
S Aol U] = 2D U] = Ds (0 0] ) (29)

The left-hand side of (29) can then be expressed in terms of the linearizing oper-
ators (17) and (23) as follows:

0

X

From (25) and (26) with W, = A,[U(y)] and Weo = R?[U(y)], respectively, one
obtains

9

O\

+VP(LY)oplUn)R? (U] + DiS* [V, R[U )5 AU ] (30)

(AU R [Un]) = AU Lo [U VP + R [Uy [(La) op[Uny VP

(AlUnR[Un]) = VPLET Uy A6 (U] + DiS [V, AU ]; RIU )]

=D; <5i[V,A[U(A)];R[U(A)H + gi[V7R[U(A)]§A[U(A)H> ,

where the last equality follows from the identity (22) holding for local conservation
law multipliers in Theorem 2.3.
Comparing (29) and (30), one finds that

D; (50101 ) = i (S'1V,AlUiJ: RV 1] + STV: R AU )

leading to

@ (U] = SV, AU RIU)) + 81V, RV AUy ) (31)

up to fluxes of a trivial conservation law. Now let V(z) = U(z) — Ulx), for an
arbitrary function U(z) = (U'(x),...,U™(x)). Then Uy = AU(z) +(1-=NU(z).
Integrating (31) with respect to A from 0 to 1, one finds that

1
U] = B[0T] + / AU + (1= MU RAU + (1 = M)T]]

0 . . (32)
YSIU — U, RAU + (1 — N AU + (1 — NT])) dn,

1=1,...,n.

In summary, the following theorem has been proven.
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Theorem 2.4. For a set of local conservation law multipliers {A,[U]}Y_; of a
DE system R{z;u} (1), the corresponding fluzes are given by the integral for-
mula (32).

In (32), U(x)is an arbitrary function of z, chosen so that the integral converges.
Different choices of U(x) yield fluxes of equivalent conservation laws, i.e., conser-
vation laws that differ by trivial divergences. One commonly chooses U (x) =0
(provided that the integral (32) converges). Once U(z) has been chosen, the
corresponding fluxes {®[U]}Y, can be found by direct integration through the
divergence relation D;®*[U] = A,[U]R’[U] = F(z). For example, one may choose
U] = [ F(x)da', ®*[U] = ... = ®"[U] = 0.

Finally, a fourth method [12] replaces the integral formula (32) by a simpler
algebraic formula that applies to DE systems R{x ;u} that have scaling symme-

tries.

2.4 Self-adjoint DE systems

An especially interesting situation arises when the linearizing operator (Fréchet
derivative) L[U] of a given DE system (1) is self-adjoint.

Definition 2.4. Let L[U], with its components L [U] given by (17), be the lin-
earizing operator associated with a DE system (1). The adjoint operator of L[U]
is L*[U], with its components L} °[U] given by (18). L[U] is a self-adjoint operator
if and only if L[U] = L*[U], i.e., LO[U] = L7°[U], 0,p = 1,...,m.

It is straightforward to see that if a DE system, as written, has a self-adjoint
linearizing operator, then

e the number of dependent variables appearing in the system must equal the
number of equations appearing in the system, i.e., N = m;

e if the given DE system is a scalar equation, the highest-order derivative
appearing in it must be of even order.

The converse of this statement is false. For example, consider the linear heat
equation u; — gz, = 0. The linearizing operator of this PDE is obviously given by
L = D; — D2, with adjoint operator L* = —D; — D2 AL.

Most importantly, one can show that a given DE system, as written, has a
variational formulation if and only if its associated linearizing operator is self-
adjoint [8-10].

If the linearizing operator associated with a given DE system is self-adjoint,
then each set of local conservation law multipliers yields a local symmetry of the
given DE system. In particular, one has the following theorem.

Theorem 2.5. Consider a given DE system R{x;u} (1) with N = m. Sup-
pose its associated linearizing operator L[U], with components (17), is self-adjoint.
Suppose {A,(x,U,0U,...,0') M. is a set of local conservation law multi-

pliers of the DE system (1). Let n°(x,u,0u,...,0) = Ay(z,u,0u,...,0),
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o=1,....,m, where U(z) = u(x) is any solution of the DE system R{z;u} (1).
Then
0
ou’
is a local symmetry of the DE system R{x;u} (1).

n° (z,u,du, . .., 0) (33)

Proof. From equations (21) with L[U] = L*[U], it follows that in terms of the
components (17) of the associated linearizing operator L[U], one has

LZ[u]AJ(aE,u,au,...,ﬁlu) =0,p=1,...,m, (34)
where u = O(z) is any solution of the DE system R{z;u} (1). But the set of
equations (34) is the set of determining equations for a local symmetry

0
ous
of the DE system R{z;u} (1). Hence, it follows that (33) is a local symmetry of
the DE system R{z;u} (1). ]

Ag(x,u,0u, ..., 0%)

The converse of Theorem 2.5 is false. In particular, suppose

0

ou®

is a local symmetry of a given DE system R{z; u} (1) with a self-adjoint linearizing
operator L[U]. Let A,(z,U,0U,...,0'U) = n°(x,U,0U,...,0'U), ¢ = 1,...,m,
where U(z) = (U'(x),...,U™(x)) is an arbitrary function. Then it does not
necessarily follow that {A,(z,U,dU,...,0'U)}™ , is a set of local conservation
law multipliers of the DE system (1). This can be seen as follows: in the self-
adjoint case, the set of local symmetry determining equations is a subset of the
set of local multiplier determining equations. Here each local symmetry yields a
set of local conservation law multipliers if and only each solution of the set of local
symmetry determining equations also solves the remaining set of local multiplier
determining equations.

n° (z,u,0u, . .. ,8lu)

3 Noether’s theorem

In 1918, Noether [5] presented her celebrated procedure (Noether’s theorem) to
find local conservation laws for systems of DEs that admit a variational principle.
When a given DE system admits a variational principle, then the extremals of an
action functional yield the given DE system (the Euler—Lagrange equations). In
this case, Noether showed that if one has a point symmetry of the action functional
(action integral), then one obtains the fluxes of a local conservation law through
an explicit formula that involves the infinitesimals of the point symmetry and the
Lagrangian (Lagrangian density) of the action functional.
We now present Noether’s theorem and its generalizations due to Bessel-Hagen [6]

and Boyer [7].
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3.1 Euler-Lagrange equations

Consider a functional J[U] in terms of n independent variables x = (z1,...,2")

and m arbitrary functions U = (U'(z),...,U™(z)) and their derivatives to order
k, defined on a domain €2,

J[U] = /Q L[U)dz = /Q L{(z,U,0U, ... 0"U)da. (35)

The function L[U] = L[(x,U,dU,...,0%U) is called a Lagrangian and the func-
tional J[U] is called an action integral. Consider an infinitesimal change of U
given by U(x) — U(z) + ev(x) where v(z) is any function such that v(z) and
its derivatives to order k£ — 1 vanish on the boundary 92 of the domain €. The
corresponding change (variation) in the Lagrangian L[U] is given by

SL = L|(z,U +ev,0U + €dv, ..., 0"U + ed*v) — L|(z,U,dU,...,0kU)

aL[U] o oL [U] o aL[U] o 2
=é& ( BTt V7 + E?U]" vj s Wvﬁ.,,jk +O(€ )
k
Then after repeatedly using integration by parts, one can show that

6L = e(v"Eyo (L[U]) + D;WHU, v]) + O(e?), (36)

where Ey- is the Euler operator with respect to U? and

OL[U _ OL[U
WZ[U, v] = v° ( (‘)U['J] 4+t (_1)k 1Dj1 R Djk18U04>
l lj1-jr—1
OL[U] k2 OL[U]
_H)‘.Tl ~ _|_..._|_(_1) D""D',Ui (37)
’ (anll ” o 18Uj11j2~'jk71

4+ 4 e L[U]

P OUT

The corresponding variation in the action integral J[U] is given by
6J = JU +ev] — J[U] = [, 0Ldx
=¢ [ (WWEy+ (L[U]) + D;W'U,v])dz + O(e?) (38)
= e( [ v"Eye (LIU))dz + [0, WU, v]n!dS) + O(e?)

where | s Tepresents the surface integral over the boundary 0f2 of the domain (2

with n = (n!,...n") being the unit outward normal vector to 9. From (37), it

is evident that each W'[U,v] vanishes on 02, and hence [,, W'[U,v]n'dS = 0.
Hence if U = u(x) extremizes the action integral J[U], then the O(e) term of

6J must vanish so that [ v"Eye (L[u])dx = 0 for an arbitrary v(z) defined on the
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domain Q. Thus if U = u(z) extremizes the action integral (35), then u(z) must
satisfy the Fuler—Lagrange equations

OLu] 5 OL[u]
Eye (L[u)) = — 4+ (-1)"Dj, - Djy 57— =0, 0 =1,...,m. (39)
du " " auh'"jk

Hence, the following theorem has been proved.

Theorem 3.1. If a smooth function U(z) = u(z) is an extremum of an action
integral J{U] = [, LU]dz with LU] = L(z,U,dU,...,08U), then u(z) satisfies
the Euler-Lagrange equations (39).

3.2 Noether’s formulation of Noether’s theorem

We now present Noether’s formulation of her famous theorem. In this formulation,
the action integral J[U] (35) is required to be invariant under the one-parameter
Lie group of point transformations

(¢) =2 +e€'(@,U) + O(e?), i=1,...,n,

(U = Uk 4 enf(2.U) + O(2), p=1,...,m, (40)
with corresponding infinitesimal generator given by
- 0 0

Ozt ouv’

Invariance holds if and only if [,. L[U*]dz* = [, L[U]dz where Q* is the image of
2 under the point transformation (40). The Jacobian J of the transformation (40)
is given by J = det(D;(2*)) = 14+eD;¢(x, U)+O(g?). Then dz* = Jdx. Moreover,
since (40) is a Lie group of transformations, it follows that L[U*] = eaX(ML[U ] in
terms of the kth extension of the infinitesimal generator (41). Consequently, in
Noether’s formulation, the one-parameter Lie group of point transformations (40)
is a point symmetry of J[U] (35) if and only if

/ (JeXY _ ) L[U]ds = ¢ / (LIUIDE (2, U) + XB LU))dz + O(e?)  (42)
Q Q

holds for arbitrary U(z) where X(*) is the kth extended infinitesimal generator
with U replacing u. Hence, if J[U] (35) has the point symmetry (40), then the
O(e) term in (42) vanishes, and thus one obtains the identity

LIUDE (z,U) + XP L[U] = 0. (43)

The one-parameter Lie group of point transformations (40) is equivalent to the
one-parameter family of transformations

(x*) =2, i=1,...,n,

(U = Ut 4 el (2,U) — UPE (@, U)] + O(D), p=1,..com. D)
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Under the transformation (44), the corresponding infinitesimal change U(x) —
U(x) + ev(x) has components v¥(z) = f*[U] = n(x,U) — U!'¢ (z,U) in terms of
the transformations (44). Moreover, from the group property of (44), it follows
that

6L = eXW L[U] + O(e?) (45)

where X(*) is the kth extension of the infinitesimal generator X = U ]%
yielding the transformation (44). Thus

/ SLdz = ¢ / X L[U])dz + O(2). (46)
Q Q

Consequently, after comparing expression (46) and expression (38) with v#(z) =
U] =n#(z,U) — Ul (z,U), it follows that

XOLU] = i UIEyx (LIU]) + DWW U, 4{U]] (47)
where WU, #[U]] is given by expression (37) with the obvious substitutions.
The proof of the following theorem is obtained by direct calculation.

Theorem 3.2. Let X¥) be the kth extended infinitesimal generator of the one-
parameter Lie group of point transformations (40) and let X*) be the kth extended
infinitesimal generator of the equivalent one-parameter family of transformations
(44). Let F[U] = F(z,U,0U,...,0FU) be an arbitrary function of its arguments.
Then the following identity holds:

X® FU] + FIUID;E (2, U) = XP FIU] + Dy(F[U)E (2, U)). (48)
Putting all of the above together, one obtains the following theorem.

Theorem 3.3 (Noether’s formulation of Noether’s theorem). Suppose a
given DE system R{x;u} (1) is derivable from a variational principle, i.e., the
given DE system is a set of Euler—Lagrange equations (39) whose solutions u(x)
are extrema U(z) = u(x) of an action integral J[U| (35) with Lagrangian L[U].
Suppose the one-parameter Lie group of point transformations (40) is a point sym-
metry of J[U]. Let WU, ] be defined by (37) for arbitrary functions U(z),v(z).
Then

(1) The identity
I [U]Eus (L[U]) = =Dy (&' (z, U)L[U] + WU, 4[U])) (49)

holds for arbitrary functions U(x), i.e.,{n*[U] i1 s a set of local conser-

vation law multipliers of the Euler-Lagrange system (39);
(2) The local conservation law
D; (€' (, u)Llu] + W'[u, j[u]]) = 0 (50)

holds for any solution w = ©(x) of the Euler-Lagrange system (39).
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Proof. Let F[U] = L[U] in the identity (48). Then from the identity (43), one
obtains

XOLU] +Dyi(LU)E (2, U)) = 0 (51)
holding for arbitrary functions U(z). Substitution for X(®)L[U] in (51) through

(47) yields (49). If U(x) = u(z) solves the Euler-Lagrange system (39), then the
left-hand side of equation (49) vanishes. This yields the conservation law (50). W

3.3 Boyer’s formulation of Noether’s theorem

Boyer [7] extended Noether’s theorem to enable one to conveniently find conser-
vation laws arising from invariance under higher-order transformations by gen-
eralizing Noether’s definition of invariance of an action integral J[U] (35). In
particular, under the following definition, an action integral J[U] (35) is invariant
under a one-parameter higher-order local transformation if its integrand L[U] is
invariant to within a divergence under under such a transformation.

Definition 3.1. Let

X = iz, U,0U, ... ﬁsU)a%u (52)

be the infinitesimal generator of a one-parameter higher-order local transformation

(x*) =2, i=1,...,n,

(U = UP 4 e (2,U,0U, ..., 0°U) + O(2), p=1,....m, (53)
with its extension to all derivatives denoted by X, Let
AU = iz, U, 00, ..., 0°U).
The transformation (53) is a local symmetry of J[U] (35) if and only if
X®L[U] = D; AU] (54)

holds for some set of functions A‘[U] = A*(z,U,dU,...,0"U),i=1,...,n.

Definition 3.2. A local transformation with infinitesimal generator (52) that is
a local symmetry of J[U] (35) is called a variational symmetry of J[U].

The proof of the following theorem follows from the property of Euler operators
annihilating divergences.

Theorem 3.4. A variational symmetry with infinitesimal generator (52) of the

action integral J[U] (35) yields a local symmetry with infinitesimal generator X =
" (z,u, du, . .. ,(‘9su)i of the corresponding FEuler-Lagrange system (39).

ouM

The following theorem generalizes Noether’s formulation of her theorem.
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Theorem 3.5 (Boyer’s generalization of Noether’s theorem). Suppose a
given DE system R{x;u} (1) is derivable from a variational principle, i.e., the
given DE system is a set of Euler—Lagrange equations (39) whose solutions u(x)
are extrema U(z) = u(z) of an action integral J[U] (85) with Lagrangian L[U].
Suppose a local transformation with infinitesimal generator (52) yields a varia-
tional symmetry of J[U]. Let W'[U,v] be defined by (37) for arbitrary functions
U(x),v(x). Then

(1) The identity
i [U]Ey (LIU]) = Di(A'[U] = W' [U,5[U])) (55)

holds for arbitrary functions U(x), i.e., {n*[U]}]L, is a set of local conser-
vation law multipliers of the Euler-Lagrange system (39);

(2) The local conservation law
Dy (W'{u, j[u]] — A'[u]) = 0 (56)

holds for any solution w = ©(x) of the Euler-Lagrange system (39).
Proof. For a local transformation with infinitesimal generator (52), it follows
that the corresponding infinitesimal change U(z) — U(z)+ev(x) has components
v (x) = n*[U]. Consequently, equation (45) becomes

OL = eX*®L[U] 4+ O(?).
But from (36) it follows that

L = e(7"[U)Ey« (LIU]) + Dy(W'[U, 7 [U]))) + O(£?).
Hence it immediately follows that

X L[U] = 7 [U)Ev« (L[UY) + Di(W'[U, A[U])) (57)

holds for arbitrary functions U(z). Since the local transformation with infinitesi-
mal generator (52) is a variational symmetry of J[U] (35), it follows that equation
(54) holds. Substitution for X*°L[U] in (57) through (54) yields the identity (55).
If U(z) = u(z) solves the Euler-Lagrange system (39), then the left-hand side of
equation (55) vanishes. This yields the conservation law (56). [ |

Theorem 3.6. If a conservation law is obtained through Noether’s formulation
(Theorem 3.3), then the conservation law can be obtained through Boyer’s formu-
lation (Theorem 3.5).

Proof. Suppose the one-parameter Lie group of point transformations (40) yields
a conservation law. Then the identity (51) holds. Consequently,

XM L[U] = X®L[U] = D; A'[U] (58)

where A'[U] = —D;(L[U)¢!(x,U). But equation (58) is just the condition for
the one-parameter Lie group of point transformations (40) to be a variational
symmetry of J[U] (35). Consequently, one obtains the same conservation law
from Boyer’s formulation. |
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4 Limitations of Noether’s theorem and consequent
advantages of the direct method

There are several limitations inherent in using Noether’s theorem to find local
conservation laws for a given DE system R{z;u}. First of all, it is restricted to
variational systems. Consequently, the linearizing operator (Fréchet derivative)
for R{x;u}, as written, must be self-adjoint, which implies that R{z ;u} must be
of even order ( if it is a scalar PDE), and the number of PDEs must be the same
as the number of dependent variables appearing in R{x;u}. [In particular, this
can be seen from comparing expressions (17) and (18).] In addition, one must
find an explicit Lagrangian L[U] whose Euler-Lagrange equations yield R{x ;u}.

There is also the difficulty of finding the variational symmetries for a given
variational DE system R{z;u}. First, for the given DE system, one must de-
termine local symmetries depending on derivatives of dependent variables up to
some chosen order. Second, one must find an explicit Lagrangian L[U] and check
if each symmetry of the given DE system leaves invariant the Lagrangian L[U] to
within a divergence, i.e., if a symmetry is indeed a variational symmetry.

Finally, the use of Noether’s theorem to find local conservation laws is coordi-
nate dependent since the action of a point (contact) transformation can transform
a DE having a variational principle to one that does not have one. On the other
hand, it is known that conservation laws are coordinate-independent in the sense
that a point (contact) transformation maps a conservation law into a conservation
law [13], and therefore it follows that an ideal method for finding conservation laws
should be coordinate-independent.

Artifices may make a given DE system variational. Such artifices include:

o The use of multipliers. As an example, the PDE uy + 2uzug, + u% =0, as
written, does not admit a variational principle since its linearized equation
Vgt 42Uz Uy + (2Ugy + 2u, )v, = 0 is not self-adjoint. However, the equivalent
PDE e*[uy + 2ugptg, + u2] = 0, as written, is self-adjoint!

e The use of a contact transformation of the variables. As an example, the
PDE

e uy — e?’x(u + ux)2(u + 2uy + Ugy) =0, (59)

as written, does not admit a variational principle, since its linearized PDE
and the adjoint PDE are different. But the point transformation z* =
x, t* =t, u*(x* t*) =y(x,t) = e"u(x,t), maps the PDE (59) into the self-
adjoint PDE v — (y2)?Yze = 0, which is the Euler-Lagrange equation for an

extremum Y = y of the action integral with Lagrangian L[Y] = V> — LV

o The use of a differential substitution. As an example, the KAV equation
(13) as written, obviously does not admit a variational principle since it is
of odd order. But the well-known differential substitution v = v, yields the
related transformed KdV equation v, + 0,00 + Vgger = 0, which arises from
the Lagrangian L[V] = 1V2 — 1v3 — 1V, V.

2 Vxx
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e The use of an artificial additional equation. For example, the linear heat
equation us — uy,; = 0 is not self-adjoint since its adjoint equation is given by
wy+ Wz, = 0. However the decoupled PDE system u; — g, = 0, %+ Uz, =0
is evidently self-adjoint! [In general, the formal system, obtained through
appending any given DE system by the adjoint of its linearized system, is
self-adjoint.

The direct method for finding local conservation laws is free of all of the above
problems. It is directly applicable to any DE system, whether or not it is varia-
tional. Moreover, it does not require the knowledge of a Lagrangian, whether or
not one exists. Indeed, under the direct method, variational and non-variational
DE systems are treated in the same manner.

The direct method is naturally coordinate-independent. This follows from
the fact that a point (contact) transformation maps a conservation law into a
conservation law, and hence either form of a conservation law (in original or
transformed variables) will arise from corresponding sets of multipliers, which can
be found by the direct method in either coordinate system.

Finding conservation laws through the direct method is computationally more
straightforward than through Noether’s theorem even when a given DE system is
variational. One simply writes down the set of linear determining equations (5)
holding for arbitrary functions U(z), which in the case of a variational system,
include the symmetry determining equations as a subset of the multiplier de-
termining equations. Hence, the resulting linear determining equations for local
multipliers are usually not as difficult to solve as those for local symmetries since
this determining system is more over-determined in the variational case.

On the other hand, if a given DE system is variational and one has obtained the
Lagrangian for the DE system, then it is worthwhile to combine the direct method
with Noether’s theorem as follows. First, use the direct method to find the local
conservation law multipliers and hence the corresponding variational symmetries.
Second, for each variational symmetry, find the corresponding divergence term
D; A'[U] that arises from the use of Boyer’s formulation of the extended Noether’s
theorem. Third, use expression (37) in conjunction with Boyer’s formula (56) to
find the resulting local conservation law.

Many examples illustrating the use of the direct method to find local conser-
vation laws, including examples that compare the use of Noether’s theorem and
the direct method (for PDE systems that admit a variational formulation) appear
in [11]. A comparison of the local symmetry and local conservation law structure
for non-variational PDE systems appears in [11,14].
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A purely algebraic algorithm for computation of invariants (generalized Casimir
operators) of Lie algebras by means of moving frames is discussed. Results on
the application of the method to computation of invariants of low-dimensional
Lie algebras and series of solvable Lie algebras restricted only by a required
structure of the nilradical are reviewed.

1 Introduction

The invariants of Lie algebras are one of their defining characteristics. They have
numerous applications in different fields of mathematics and physics, in which
Lie algebras arise (representation theory, integrability of Hamiltonian differential
equations, quantum numbers etc). In particular, the polynomial invariants of
a Lie algebra exhaust its set of Casimir operators, i.e., the center of its universal
enveloping algebra. This is why non-polynomial invariants are also called gener-
alized Casimir operators, and the usual Casimir operators are seen as ‘specific’
generalized Casimir operators. Since the structure of invariants strongly depends
on the structure of the algebra and the classification of all (finite-dimensional)
Lie algebras is an inherently difficult problem (actually unsolvable!), it seems to
be impossible to elaborate a complete theory for generalized Casimir operators
in the general case. Moreover, if the classification of a class of Lie algebras is
known, then the invariants of such algebras can be described exhaustively. These
problems have already been solved for the semi-simple and low-dimensional Lie
algebras, and also for the physically relevant Lie algebras of fixed dimensions.
The standard method of construction of generalized Casimir operators consists
of integration of overdetermined systems of first-order linear partial differential

IThe problem of classification of Lie algebras is wild since it includes, as a subproblem, the
problem on reduction of pairs of matrices to a canonical form [10]. For a detailed review on
classification of Lie algebras we refer to [17].
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equations. It turns out to be rather cumbersome calculations, once the dimension
of Lie algebra is not one of the lowest few. Alternative methods use matrix rep-
resentations of Lie algebras. They are not much easier and are valid for a limited
class of representations.

In our recent papers [3—7] we have developed the purely algebraic algorithm for
computation of invariants (generalized Casimir operators) of Lie algebras. The
suggested approach is simpler and generally valid. It extends to our problem the
exploitation of the Cartan’s method of moving frames in Fels—Olver version [9].
(For modern development of the moving frames method and more references see
also [14,15].)

2 Preliminaries

Consider a Lie algebra g of dimension dimg = n < oo over the complex or real
field F (either F = C or F = R) and the corresponding connected Lie group G.
Let g* be the dual space of the vector space g. The map Ad*: G — GL(g*) defined
for any g € G by the relation

(Adgz,u) = (v,Adg1u) forallz€g”anducg

is called the coadjoint representation of the Lie group G. Here Ad: G — GL(g)
is the usual adjoint representation of G in g, and the image Adg of G under Ad
is the inner automorphism group Int(g) of the Lie algebra g. The image of G
under Ad* is a subgroup of GL(g*) and is denoted by Adg;.

The maximal dimension of orbits of Adg, is called the rank of the coadjoint
representation of G (and g) and denoted by rankAdg. It is a basis independent
characteristic of the algebra g. Orbits of this dimension are called regular ones.

A function F' € C*°(Q), where  is a domain in g*, is called a (global in )
invariant of Adg, if F(Adyz) = F(z) for all g € G and = € 2 such that Ad > € Q.
The set of invariants of Adgy on 2 is denoted by Inv(Adg) without an explicit
indication of the domain 2. Let below 2 is a neighborhood of a point from
a regular orbit. It can always be chosen in such a way that the group Adg
acts regularly on €2. Then the maximal number Ny of functionally independent
invariants in Inv(Adg;) coincides with the codimension of the regular orbits of Adg;,
i.e., it is given by the difference Ny = dim g — rank Adg,.

To calculate the invariants explicitly, one should fix a basis &€ = {e1,...,e,}
of the algebra g. It leads to fixing the dual basis £* = {e],...,e}} in the dual
space g* and to the identification of Int(g) and Adg, with the associated matrix
groups. The basis elements ey, ..., e, satisfy the commutation relations [e;, e;] =
cfjek, where cfj are components of the tensor of structure constants of g in the
basis £. Here and in what follows the indices 4, 7 and k run from 1 to n and the
summation convention over repeated indices is used. Let x — & = (x1,...,x,) be
the coordinates in g* associated with £*.

It is well known that there exists a bijection between elements of the universal
enveloping algebra (i.e., Casimir operators) of g and polynomial invariants of g
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(which can be assumed defined globally on g*). See, e.g., [1]. Such a bijection is
established, e.g., by the symmetrization operator Sym which acts on monomials
by the formula

1
Sym(ei, ---€;,) = - D Ciny i
’ ogESy

where i1,...,4, take values from 1 to n, r € N. The symbol S, denotes the
permutation group consisting of r elements. The symmetrization also can be
correctly defined for rational invariants [1]. If Int(Adg;) has no a functional basis
consisting of only rational invariants, the correctness of the symmetrization needs
an additional investigation for each fixed algebra g since general results on this
subject do not exist. After symmetrized, elements from Int(Ad;) are naturally
called invariants or generalized Casimir operators of g. The set of invariants of g
is denoted by Inv(g).

Functionally independent invariants F'(zy,...,2,), | = 1,... ,Ng, forms a
functional basis (fundamental invariant) of Inv(Adf) since any element from
Inv(Adg;) can be (uniquely) represented as a function of these invariants. Ac-
cordingly the set of Sym Fl(ey,...,e,), l=1,... , g, is called a basis of Inv(g).

In framework of the infinitesimal approach any invariant F(z1,...,z,) of Adg
is a solution of the linear system of first-order partial differential equations [1,2,16]
X, F =0, ie., ci-“ja:kaj = 0, where X; = ci?jznkamj is the infinitesimal generator
of the one-parameter group {Adf;(expee;)} corresponding to e;. The mapping
e; — X; gives a representation of the Lie algebra g.

3 The algorithm

Let G = Adg; x g* denote the trivial left principal Adg-bundle over g*. The right
regularization R of the coadjoint action of G on g* is the diagonal action of Adg,
on G = Adg; x g*. It is provided by the map

~

Ry(Adj,z) = (Ady, - Ady-.,Adgz), ¢g,h€G, zegh

The action R on the bundle G = Adg x g* is regular and free. We call R the
lifted coadjoint action of G. It projects back to the coadjoint action on g* via
the Adg-equivariant projection 7g-: G — g*. Any lifted invariant of Adg is
a (locally defined) smooth function from G to a manifold, which is invariant with
respect to the lifted coadjoint action of G. The function Z: G — g* given by
T = I(Ady,x) = Adgz is the fundamental lifted invariant of Adg, ie., T is
a lifted invariant and any lifted invariant can be locally written as a function of 7
in a unique way. Using an arbitrary function F(z) on g*, we can produce the
lifted invariant F' o Z of Adg; by replacing x with Z = Adjx in the expression
for F. Ordinary invariants are particular cases of lifted invariants, where one
identifies any invariant formed as its composition with the standard projection 7 4.
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Therefore, ordinary invariants are particular functional combinations of lifted ones
that happen to be independent of the group parameters of Adg,.

The essence of the normalization procedure by Fels and Olver can be presented
in the form of on the following statement.

Proposition 1. Suppose that T = (Z1,...,Z,) is a fundamental lifted invariant,
for the lifted invariants L, ..., I;, and some constants ci, ..., c, the system
I, = c1, ..., Lj, = c, is solvable with respect to the parameters O, ..., O,
and substitution of the found values of Oy, .., Ok, into the other lifted invariants
results in m = n — p expressions L;, | = 1,...,m, depending only on x’s. Then
p =rank Adg, m = Ny and Iy, ..., I form a basis of Inv(Adg).

The algebraic algorithm for finding invariants of the Lie algebra g is briefly
formulated in the following four steps.

1. Construction of the generic matriz B(0) of Ady. B(#) is the matrix of
an inner automorphism of the Lie algebra g in the given basis ey, ..., e,, 0 =
(01,...,0,) is a complete tuple of group parameters (coordinates) of Int(g), and
r = dim Adg; = dim Int(g) = n — dim Z(g), where Z(g) is the center of g.

2. Representation of the fundamental lifted invariant. The explicit form of
the fundamental lifted invariant Z = (Z3,...,Z,) of Ad{, in the chosen coordi-
nates (6,%) in Adg; x g* isZ =& - B(6), i.e.,

(Il,...,In) == (1'1,...,11,‘”) 'B(Ql,...,gr).

3. Elimination of parameters by normalization. We choose the maximum pos-

sible number p of lifted invariants Zj,, ..., Z;, , constants ci, ..., ¢, and group
parameters 0y, ..., 0, such that the equations Z;, = c1, ..., Z;, = c, are solvable
with respect to O, ..., Ok,. After substituting the found values of Oy, ..., Ok,
into the other lifted invariants, we obtain Ny = n — p expressions Fl(acl, ceeyTy)
without 6’s.

4. Symmetrization. The functions F!(x1,...,x,) necessarily form a basis of
Inv(Ad},). They are symmetrized to Sym Fl(eq,...,e,). It is the desired basis
of Inv(g).

Our experience on the calculation of invariants of a wide range of Lie algebras
shows that the version of the algebraic method, which is based on Proposition 1,
is most effective. In particular, it provides finding the cardinality of the invariant
basis in the process of construction of the invariants. The algorithm can in fact
involve different kinds of coordinate in the inner automorphism groups (the first
canonical, the second canonical or special one) and different techniques of elim-
ination of parameters (empiric techniques, with additional combining of lifted
invariants, using a floating system of normalization equations etc).

Let us underline that the search of invariants of a Lie algebra g, which has been
done by solving a linear system of first-order partial differential equations under
the conventional infinitesimal approach, is replaced here by the construction of
the matrix B(6) of inner automorphisms and by excluding the parameters 6 from
the fundamental lifted invariant Z = & - B(6) in some way.
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4 Illustrative example

The four-dimensional solvable Lie algebra g} ¢ has the following non-zero commu-
tation relations

le,e3] =e1, [er,eq] = (L+bler, [ea,eq] =€z, [e3,eq] =beg, [b] <1

Its nilradical is three-dimensional and isomorphic to the Weil-Heisenberg alge-
bra gs.1. (Here we use the notations of low-dimensional Lie algebras according to
Mubarakzyanov’s classification [11].)

We construct a presentation of the inner automorphism matrix B(6) of the Lie
algebra g, involving second canonical coordinates on Adg as group parameters 6.
The matrices aaei, 1=1,...,4, of the adjoint representation of the basis elements
e1, ez, ez and ey respectively have the form

0 00 1+0 0010
000 O 00 01
000 O ’ 0000 [
000 O 0000

0 -1 00 -1-5 0 0 0
0 0 0O 0 -1 0 0
0 0 0 b |’ 0 0 —-b 0
0 0 0O 0 0 0 O

The inner automorphisms of g ¢ are then described by the triangular matrix

3
B(0) = Hexp(eiaAdei) : exp(—04aae4)
i=1
e(1+b)94 _03694 926604 b0263 + (1 +b)91
_ 0 664 0 02
0 0 e bos
0 0 0 1

Therefore, a functional basis of lifted invariants is formed by
Ty = (1400 g,
Ty = €% (=321 + 22),
T3 = "1 (0g21 + 23),
Zy = (b0203 + (1 + b)01)z1 + 029 + bO3x3 + 24.
Further the cases b = —1 and b # —1 should be considered separately.
There are no invariants in case b # —1 since in view of Proposition 1 the number

of functionally independent invariants is equal to zero. Indeed, the system Z; = 1,
Iy =13 =14 = 0 is solvable with respect to the whole set of the parameters 6.
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It is obvious that in the case b = —1 the element e; generating the center Z (g;é)
is an invariant. (The corresponding lifted invariant Z; = x; does not depend on
the parameters #.) Another invariant is easily found via combining the lifted
invariants: 7174 — ZoZ3 = w114 — Tox3. After the symmetrization procedure we
obtain the following polynomial basis of the invariant set of this algebra

€2e3 + e3e9
5 .

The second basis invariant can be also constructed by the normalization technique.
We solve the equations Zo = Z3 = 0 with respect to the parameters 65 and 63 and
substitute the expressions for them into the lifted invariant Z,. The obtained
expression x4 — xoxs/x; does not contain the parameters 6 and, therefore, is
an invariant of the coadjoint representation. For the basis of invariants to be
polynomial, we multiply this invariant by the invariant x;. It is the technique
that is applied below for the general case of the Lie algebras under consideration.

Note that in the above example the symmetrization procedure can be assumed
trivial since the symmetrized invariant ejeq — %(6263 + e3eg) differs from the non-
symmetrized version ejeq — eges (resp. ejeq — eszez) on the invariant %el (resp.
—%el). If we take the rational invariant eq — egeg/e; (resp. egq — esea/eq), the
symmetrization is equivalent to the addition of the constant % (resp. —%)

Invariants of g4 ; were first described in [16] within the framework of the in-
finitesimal approach.

€1, €164 —

5 Review of obtained results

Using the moving frames approach, we recalculated invariant bases and, in a
number of cases, enhanced their representation for the following Lie algebras (in
additional brackets we cite the papers where invariants bases of the same algebras
were computed by the infinitesimal method):

e the complex and real Lie algebras up to dimension 6 [3] ( [8,12,16]);
e the complex and real Lie algebras with Abelian nilradicals of codimension

one [4] ( [18]);

e the complex indecomposable solvable Lie algebras with the nilradicals iso-
morphic to J§, n = 3,4,... (the nonzero commutation relations between
the basis elements e, ..., e, of Jj are exhausted by [ex,e,] = ep_1,

k=2,...,n—1) [4] ( [13]);

e the nilpotent Lie algebra to(n) of n x n strictly upper triangular matri-
ces [4,5] ([20));

e the solvable Lie algebra t(n) of n x n upper triangular matrices and the
solvable Lie algebras st(n) of n x n special upper triangular matrices [5-7]
( [200);

e the solvable Lie algebras with nilradicals isomorphic to to(n) and diagonal
nilindependent elements [5-7] ( [20]).
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Note that earlier only conjectures on invariants of two latter families of Lie
algebras were known. Moreover, for the last family the conjecture was formulated
only for the particular case of a single nilindependent element. Here we present
the exhaustive statement on invariants of this series of Lie algebras, obtained
in [7].

Consider the solvable Lie algebra t,(n) with the nilradical NR(ty(n)) isomor-

phic to tg(n) and s nilindependent element f,, p =1,...,s, which act on elements
of the nilradical in the way as the diagonal matrices I'), = diag(vp1, ..., Vpn) act on
strictly triangular matrices. The matrices I'y,, p = 1,...,s, and the unity matrix

are linear independent since otherwise NR(t,(n)) # to(n). The parameter matrix
v = (vpi) is defined up to nonsingular s x s matrix multiplier and homogeneous
shift in rows. In other words, the algebras t,(n) and t,/(n) are isomorphic iff there
exist A € M, 4(FF), det A # 0, and p € F® such that

s
/VIIJZ'ZZ)\PP”VP’Z'_‘_MP? p=1....s1=1...,n
p=1

The parameter matrix v and ' are assumed equivalent. Up to the equivalence
the additional condition TrI', = > .7, = 0 can be imposed on the algebra
parameters. Therefore, the algebra t,(n) is naturally embedded into st(n) as a
(mega)ideal under identification of NR(ty(n)) with to(n) and of f, with T').

We choose the union of the canonical basis of NR(t,(n)) and the s-element
set {fp,p =1,...,s} as the canonical basis of t,(n). In the basis of NR(t,(n)) we
use ‘matrix’ enumeration of basis elements e;;, i < j, with the ‘increasing’ pair
of indices similarly to the canonical basis {EZ, i < j} of the isomorphic matrix
algebra to(n).

Hereafter E7; (for the fixed values i and j) denotes the n x n matrix (J;;0;;)
with ¢/ and j’ running the numbers of rows and column correspondingly, i.e., the
n X n matrix with the unit on the cross of the i-th row and the j-th column and the
zero otherwise. The indices 4, j, k and [ run at most from 1 to n. Only additional
constraints on the indices are indicated. The subscript p runs from 1 to s, the
subscript ¢ runs from 1 to s’. The summation convention over repeated indices p
and ¢ is used unless otherwise stated. The number s is in the range 0,...,n — 1.
In the case s = 0 we assume v = 0, and all terms with the subscript p should be
omitted from consideration. The value s’ (s’ < s) is defined below.

Thus, the basis elements e;; ~ E%, i@ < j, and f, ~ > Vi Bl satisfy the
commutation relations [e;;, ey/] = dii€ijr — dijreij, [fp,€ijl = (Ypi — Vpj)€ij, where
0;; is the Kronecker delta.

The Lie algebra t,(n) can be considered as the Lie algebra of the Lie subgroup
Ty(n) ={B €T(n)|3e, € F: by = e™»} of the Lie group T'(n) of non-singular
upper triangular n X n matrices. S

Below A;llz, where i1 < 19, j1 < j2, denotes the submatrix (a,j);::?lzjz of a
matrix A = (aj;). The conjugate value of k with respect to n is denoted by s,
i.e., x =n — k+ 1. The standard notation |A| = det A is used.
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Proposition 2. Up to the equivalence relation on algebra parameters, the follow-
ing conditions can be assumed satisfied for some s’ € {0,... ,min(s,[n/2])} and
kgygq=1,...,8, 1<k <ky<---<ky<[n/2:

/

Yak = Vqse» k< ktp Yaseqg — Vqkqg = 17 Vpkq = Vpseg» p#Q? q= 17"'757
Yok = Vpze p>5/7 k’Zl,,[TL/2]

We will say that the parameter matrix v has a reduced form if it satisfies the
conditions of Proposition 2.

Theorem 1. Let the parameter matriz vy have a reduced form. A basis of Inv(t,(n))
is formed by the expressions

LRI TT 16, ke {1, . /23 \ Tk, ko,
q=1

5] 1 Lk olk
(—1 522 gx,n ’
fP—I_ZT(VPk_IYP,k-i-l) Z il p:S+17"'a57
k=1 |5"7" k<i<se 0 &ém
where . :=n—k+1, gji,ji? i1 < d2, J1 < Jjo, denotes the matriz (e,-j)j:jll’mj2 and
k
Qg = — Z('Vq%’ - 'qu’)'
k=1

We use the short ‘non-symmetrized’ form for basis invariants, where it is uni-
formly assumed that in all monomials elements of 52-1;-k is placed before (or after)
elements of E,an

6 Conclusion

The main advantage of the proposed method is in that it is purely algebraic. Un-
like the conventional infinitesimal method, it eliminates the need to solve systems
of partial differential equations, replaced in our approach by the construction of
the matrix B(6) of inner automorphisms and by excluding the parameters 6 from
the fundamental lifted invariant Z = & - B(6) in some way.

The efficient exploitation of the method imposes certain constraints on the
choice of bases of the Lie algebras. See, e.g., Proposition 2 and Theorem 1. That
then automatically yields simpler expressions for the invariants. In some cases
the simplification is considerable.

Possibilities on the usage of the approach and directions for further investiga-
tion were outlined in our previous papers [3—7]. Recently advantages of the moving
frames approach for computation of generalized Casimir operators were demon-
strated in [19] with a new series of solvable Lie algebras. The problem on optimal
ways of applications of this approach to unsolvable Lie algebras is still open.
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We consider a generalized Benjamin-Bona-Mahony-Burgers equation. The
functional forms, for which the equation can be reduced to ordinary differ-
ential equations by classical Lie symmetries, are obtained. In order to obtain
travelling wave solutions two procedures are applied: a direct method and the
G’ /G-expansion method. A catalogue of symmetry reductions and a catalogue
of exact solutions are given. A set of solitons, kinks, antikinks and compactons
are derived.

1 Introduction

In [11], Khaled, Momani and Alawneh implemented the Adomian’s decomposi-
tion method for obtaining explicit and numerical solutions of the Benjamin-Bona-
Mahony-Burgers (BBMB) equation

A = Uy — Uggr — QUgy + Pug + (9(u)), =0, (1)

where u(x,t) represents the fluid velocity in the horizontal direction x, « is a posi-
tive constant, 8 € R and g(u) is a C2-smooth nonlinear function [11]. Equation (1)
is the alternative regularized long-wave equation proposed by Peregrine [17] and
Benjamin [2]. In the physical sense, equation (1) with the dissipative term aw .,
is proposed if the good predictive power is desired, such problem arises in the
phenomena for both the bore propagation and the water waves.

Tari and Ganji, [19], in order to derive approximate explicit solutions for (1)
with g(u) = “72 have applied two methods for solving nonlinear differential equa-
tions. These methods are known as variational iteration method and homotopy
perturbation method.

El-Wakil, Abdou and Hendi [8] to obtain the generalized solitary solutions and
periodic solutions for (1) with g(u) = “72 has used the exp-function method with
the aid of symbolic computational system. In [9] Fakhari et al. to evaluate the
nonlinear equation (1) with g(u) = “72, a = 0 and 8 = 1 solved the resulting
nonlinear differential equation by homotopy analysis methods.

By applying the classical Lie method of infinitesimals Bruzén and Gandarias [4]
obtained, for a generalization of a family of Benjamin-Bona-Mahony equations,
many exact solutions expressed by various single and combined nondegenerative
Jacobi elliptic functions. In [5,6] we studied similarity reductions of the BBMB
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equation (1) and a set of new solitons, kinks, antikinks, compactons and Wadati
solitons were derived.

The classical method for finding symmetry reductions of partial differential
equations is the Lie group method [10, 15, 16]. The fundamental basis of this
method is that, when a differential equation is invariant under a Lie group of
transformations, a reduction transformation exists. For partial differential equa-
tions (PDEs) with two independent variables a single group reduction transforms
the PDE into an ordinary differential equations (ODEs), which in general are
easier to solve. Since the relevant calculations are usually rather laborious, they
can be conveniently carried out by means of symbolic computations. In our work,
we used the MACSYMA program symmgrp.max [7]. Most of the required theory
and description of the method can be found in [15,16].

In the last years a great progress was made in the development of methods for
finding exact solutions of nonlinear differential equations.

In [12] Kudryashov presented a new method to look for exact solutions of
nonlinear differential equations. This method is based in two ideas: The first idea
is to apply the simplest nonlinear differential equations (the Riccati equation, the
equation for the Jacobi elliptic function, the equation for the Weierstrass ellipic
function and so on) that have lesser order than the studied equation. The second
idea is to use all possible singularities of the studied equation.

Recently Wang et al [20] introduced a method which is called the %l -expansion
method to look for travelling wave solutions of nonlinear evolution equations. The
main ideas of the proposed method are that the travelling wave solutions of a
nonlinear evolution equation can be expressed by a polynomial in %, where G =
G(z) satisfies the linear second order ordinary differential equation (ODE) G”(z)+
wG' (2)+(G(z) = 0, the degree of the polynomial can be determined by considering
the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in a given nonlinear evolution equation, and the coefficients of
the polynomial can be obtained by solving a set of algebraic equations resulted
from the process of using the proposed method.

In [13] Kudryashov and Loguinova introduced the modified simplest equation
method. By this method the exact solutions are expressed by a polynomial in %/,
where the unknown function ¢ = 1(z) satisfies the third order linear ODE

"+ o’ + B +y1p =0, a, 3,7 = const.

To determine the degree of the polynomial the authors concentrate their attention
on the leading terms of the ODE. The homogeneous balance between the leading
terms provides the polynomial degree value.

The aim of this paper is to study the functional forms g(u) for which equa-
tion (1) admits a classical symmetry group. By using the symmetry reductions,
we derive the reduced form of the original nonlinear PDE as a nonlinear ODE.
We determine travelling wave solutions. We also find the functions g(h) = h™
for which we can apply the % -expansion method. For these functions we obtain
exact solutions of equation (1).
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2 Classical symmetries

To apply the Lie classical method to equation (1) we consider the one-parameter
Lie group of infinitesimal transformations in (z,¢,u) given by

¥ = x4+ ef(x,t,u) + O(2), t* =t+er(z,t,u) + O(?),
u* = u+ en(z,t,u) + O(?), (2)

where € is the group parameter. We require that this transformation leaves invari-
ant the set of solutions of equation (1). This yields to an overdetermined, linear
system of equations for the infinitesimals &(z,t,w), 7(x,t,u) and n(x,t,u). The
associated Lie algebra of infinitesimal symmetries is the set of vector fields of the
form

0 0 0
v=¢(x,t,u)— T, t,u)— z,t,u)—. 3
(ot )5 70t w0) 2+ () 3)
Having determined the infinitesimals, the symmetry variables are found by solving
characteristic equation which is equivalent to solving invariant surface condition
ou
ot

The set of solutions of equation (1) is invariant under the transformation (2)
provided that

n(x,t,u) — &(x, t, u)% —7(x,t,u) 0. (4)

pr®v(A) =0 when A =0,

where pr®)v is the third prolongation of the vector field (3) given by
prv = v+ ZJ: n’ (z,t, u(?’))aiuj, where
(2, t,u®) = Dy(n — Euy — Tup) + Euge + nue,

with J = (j1,...,Jk), 1 < jr <2y 1 <k < 3. Hence we obtain the following ten
determining equations for the infinitesimals:

Ty = 07 Ty = 07 fu - 07 Et - 07 Nuu = 07 QT + Ttu = 07
277u:c - ga::(: = 07 Nuxx — 2590 = 07 NeGu — QMg + 5% — Mgz + M = 07
_agsc:c - gugx - 6&0 — GuTt — 6Tt — NGy + 207y + 2Ny = 0. (5)

From system (5) £ = &(x), 7 = 7(t) and n = y(x, t)u + 6(x,t) where o, 3, £, T, 7,
0 and g satisfy

Yt+ar =0, 27 —&au=0, Yoz —2§ =0,

207 + 2%z — Guuy — 0&zx — Guba — B — guTt — BTt — dguu = 0,

—QUYzz + GuUYz + BuVz — Wtzx + UVt + Oz Gu — Qg

+B0z — Otza + 0p = 0. (6)
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From (6) we obtain

6—290

((k’4 + 2]{73) et + (4k1 — 80(7’) e — ky + 2k3) ,

(k4 + 2]€3) e n (]C4 — 2k3) e 2 B k4 — 4ko
8 8 4 7

’7:

&=

and «, 8, 7, d and g are related by the following conditions:

((gu + B — 20) kg + (290 + 28 — 40) k3) ue™ + (—4ariu + 65 (4gy + 405)
—4abyy — 40tzq + 4 64) 2" + ((gu+B+2a) ky

+(=2g94 — 28 —4a) k3) u=0,

((Guu ka +2 guu k3) u+ (290 +28) ks + (4gy +48) k3) e**

+ ((4guukr — 8aguuT) U+ 89yt + 8 BT + 86guu) €% + (2 Guuks — Guuks) u
+(—2gu —203) ks + (4gy +43) k3 = 0.

Solving system (2) we obtain that if ¢ is an arbitrary function the only symmetries
admitted by (1) are

E=ki, 7=k, n=0. (7)

The generators of this are vi = 8% (corresponding to space translational invari-
ance) and vp = % (time translational invariance). By substituting (7) into the
invariant surface condition (4) we obtain the similarity variable and the similarity
solution

z = px — N, u(z,t) = h(z). (])
Substituting (8) into (1) we obtain
MR — ap?h! + (B — M)A + ph' g (h) = 0. (9)
Integrating (9) once we get
M2 — aph + (B — Nh 4 pg(h) + k= 0. (10)
In the following cases equation (1) have extra symmetries:

(1) If a = Oa g(u) = —BU—F ﬁ(au+b)n+l7 a 7é 07
ko

E=ki, T=kot+ks, n=—-——(au+b).
an

Besides vy and v, we obtain the infinitesimal generator vy = t0; — “Z#’E?u.

(ii) fa#0, 8 # 0and g(u) = au+0b, £ = k1, T = ko, n = 6(x,t), where &
satisfy ady, — gudr — B0z + Stzx — 6t = 0.
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We do not considerer case (ii) because in this case equation (1) is a linear PDE.

In order to determine solutions of PDE (1) that are not equivalent by the
group action, we must calculate the one-dimensional optimal system [15]. The
generators of the nontrivial one-dimensional optimal system are the set

UVi 4+ Ave, V3, V]+ V3.

Since equation (1) has additional symmetries and the reductions that correspond
to vi and vo have already been derived, we must determine the similarity variables
and similarity solutions corresponding to the generators vs and v + vs.

e v3: We obtain the reduction

z =z, u:t_%h(w)—a, (11)

where h(t) satisfies the Lienard equation
Ay =1+ kna"h*h — h = 0. (12)
By substituting w(h) = h/(z) into (12) leads to the second kind Abel equation
ww' + kna™h"w — h = 0. (13)

In [18] the authors present a large number of solutions to the Abel equation of the
second kind. Consequently, from (11) one can obtain solutions of equation (1).

The problem of finding Lie symmetries for the first-order ODE is equivalent to
finding solutions for these equations, and for this reason the direct application of
the Lie method is complicated in the general case [3]. In [3] the author applied
an approach for description of integrable cases of the Abel equations using the
procedure of increasing the order and equivalence transformations for the induced
second-order equations.

Let us now prove that the Lienard equation (12) has no nontrivial point sym-
metries. Indeed, let

S= €(th)3z +77(Zah)ah (14)

denote a symmetry vector of (12). The necessary and sufficient condition for this
is [10,15,16] is

prdv(A;) =0 when A; =0,

where pr®8 is the second prolongation of the vector field S. This yields to an
overdetermined system of equations for the infinitesimals &(z,¢,u) and n(z,t,u).
Solving this system we obtain that & = k; and = 0 with k; arbitrary constant.
To conclude this case, let us summarize our findings in a theorem:

Theorem 1. The Lienard equation (12) admits no nontrivial symmetries, but it
is nevertheless reduced to an Abel equation.
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e vi + v3: The reduction is

z=ux—1Inlt|, u:t_%h(z)—g. (15)

The reduced ODE is
nh"” + b —nh' + nka™h"h — h = 0. (16)

Invariance of equation (16) under a Lie group of point transformations with in-
finitesimal generator (14) leads to a set of five determining equations. Solving
this system we obtain that & = k1 and n = 0 with k; arbitrary constant.

We can observe that, for reduction (15), we have

u(z,t) = t_%h(:n —Inlt|) — S.

This solution describes if n > 0 a travelling wave with decaying velocity v = %

and decaying amplitude t
On the other hand by making w(h) = h’ into (16), equation (16) can be reduced
to
(wHh? 1w 1 r™ h
- 7 + [

— — 4+ kna"— — — =0. (17)

Vi
w' + 5
w nw o w w w

Let us summarize our findings in a theorem:

Theorem 2. The third-order differential equation (16) admits no nontrivial sym-
metries, but it is nevertheless reduced to equation (17) which does not admit any
Lie symmetries.

3 Travelling wave solutions

In the last years a great progress has been made in the development of methods
and their applications to nonlinear ODEs for finding exact solutions [13,20].

In this section, in order to obtain travelling wave solutions we apply two proce-
dures: a direct method and the % -expansion method. These class of solutions has
physical interest because they yield to compactons, kins, anti-kinks and solitons.

We write equation (10) in the form

W'+ AW + F(h) =0, (18)

where A = —§ and
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Let us assume that equation (18) has solution of the form h = aH"(z), where
a, b are parameters and H(z) can be: a solution of the Jacobi equation

(H')? =r+pH? +qH", (20)

with r, p and ¢ constants; an exponential function or a polynomial function.

Case 1: If H is solution of equation (20) we can distinguish three subcases:
(i) H is the Jacobi elliptic sine function, sn(z,m), (it) H is the Jacobi elliptic
cosine function, cn(z,m), (i1i) H is the Jacobi elliptic function of the third kind
dn(z,m).

Subcase (i): If H(z) = sn(z,m),
h(z) = asn’(z,m). (21)
By substituting (21) into (18) we obtain
—abmJ3J? + a®bJoJ3 J0 N 4 ab? J3 T2 — abJiJE T2
—abJiJ? + F =0, (22)
where J; = sn(z,m), J» = cn(z,m) and J3 = dn(z,m). Taking into account
that cn®(z,m) = 1 —sn?(z,m) = 1 — (£)? and dn?(z,m) = 1 — msn®(z,m) =

L—m (£)° [,

a

F(h) = 041h%Jrl + a2h_%+1 + Oé?,h_%Jr1 + auh, (23)
where
b(b+1
o=t m o -1,
ab
bAVat —hiyab —him )
ag = — , oy =0b"(m+1). (24)

o=

a

Substituting (23)—(24) into (19) we obtain the function F'(h) for which (21) is a
solution of equation (18). Consequently, an exact solution of equation (1) is

u(z,t) = asn®(ux — Xt,m), (25)

where g(u) = AuF(u) — (6 - %) uw and F'(u) is obtained substituting h by u in
(23)—(24).
In the following we show three examples of equations which have solutions with

physical interest:
e Setting m =0, a =1 and b =4 in (23)(24) we get

1 .
F(h) = —12h% +16h — 4 A (1—h%>2 hi,
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where h(z) = sn(z,0) is a solution of (18). Taking into account that sn(z,0) =

. . k 5
sin(z), we obtain that for y = A = 5 and k = /5
in [E — — 27
_J sin® [ S(2 t)] , |z —t] < =F,
ww)={ & T IsE (26)

is a solution of equation (1) with

g(u) = —fu + §u+ \/gaui\/ 1—uz —

In Fig. 1 we plot solution (26) which is a sine-type double compacton.

N=

uz.

W~ Ot

Figure 1. Solution (26)

e Setting m =1, a= 7 and b =1 in (23)—(24) we get
1
F(h) = —32h% — 4A (1—6 - h2) + 2h,

where h(z) = Isn(z,1) is a solution of (18). Taking into account that sn(z,1) =
tanh(z), we obtain that for g =1 and A = 3

w(z, ) = itanh (a: _ %) (27)

is a solution of equation (1) with

g(u) = —16u> + 4« (1_16 —u2) + (g —ﬁ) u.

In Fig. 2 we plot solution (27) which describes a kink solution.
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-20
0.1

0.05

-0.05
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1
20 -20 20 0

Figure 2. Solution (27) Figure 3. Solution (28)
e Settingm =1, a=1and b =3 in (23)—(24) we get
F(h) = —12h5 +18h — 3 A (1 - h§) h3 — 63,

where h(z) = sn3(z,1) is a solution of (18). Taking into account that sn(z,1) =
tanh(z), we obtain that for 4 =1 and A = 3

u(z,t) = tanh? (a; — %) (28)

is a solution of equation (1) with

19
g(u) = —6us + Tu + 3a(1 —u%)u% — 3us — Bu.

In Fig. 3 we plot solution (28) which describes an anti-kink solution.
Subcase (i1): If H(z) = cn(z,m),

h(z) = acn®(z,m). (29)
By substituting (29) into (18) we obtain

ab®> JE 22 TR — abJe T2 I3 TR 4 abmJSJE — a*bJi 7 T30y
—abJbJ? + F =0, (30)

where J; = sn(z,m), Jo = cn(z,m) and J3 = dn(z,m). Taking into account that

1
dn®(z,m) = 1 — msn?(z,m), sn?(z,m) = 1 — ecn?(z,m) and cn(z,m) = (£)? [1]
we obtain

F(h) = Biht ! 4 Boh™ 5+ 4 Bsh™ 87 4+ Byh, (31)
where

Bi=a5b(b+1)m, Ba=at (b—1)bm—1),

ﬂgza_%b/l\/a% — hb \/(hg —a%> m+at, fy=—b (2m—1). (32)
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Substituting (31)—(32) into (19) we obtain the function F'(h) for which (29) is a
solution of equation (18). Consequently, an exact solution of equation (1), where

g(u) = AuF(u) — (ﬁ - ﬁ) u and F'(u) is obtained via substituting h by u into
(31)—(32), is

u(x,t) = acn®(ua — At,m). (33)
In the following we give two examples of equations which are solutions with phys-

ical interest:
e Setting m =0, a =1 and b =4 in (31)—(32) we get

F(h) = 16h — 12h2 + 4Ahi\/1 — h2,

where h(z) = ecnt(2,0) is a solution of (18). Taking into account that cn(z,0) =

cos(z), we obtain that for y =\ =% and k = /3
cos* [&(z — )] |z —t| < T

is a solution of equation (1) with

0

-5

Figure 4. Solution (34) Figure 5. Solution (35)

e Setting m=1,a=1and b= 2 in (31)-(32) we get
F(h) =h*+ (2AV1—h—4)h,

where h(z) = cn?(z,0) is a solution of (18). Taking into account that cn(z,0) =
sech(z), we obtain that for A = p =1,

u(z,t) = sech?(z — t) (35)
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is a solution of equation (1) with g(u) = 6u? — (2ay/1—u — 3 — 3)u. In Fig. 5
we plot solution (35) which describes a soliton.
Case 2: If H(z) = exp(z)

h(z) = aexp(bz). (36)

By substituting (36) into (18) we obtain ab?eb? + a?beb? + F = 0. Taking into

account that exp(bz) = % we obtain

F(h) = —b (b+a) h. (37)

Substituting (37) into (19) we obtain the function g(h) for which (36) is solution
of equation (10). Consequently, an exact solution of equation (1), where g(u) =

AF (u) — (ﬂ - %) u and F'(u) is obtained substituting h by u in (37), is
u(z,t) = aexplb(px — At)).
Case 3: If H(z) =az + b,
h(z) = (az +b)". (38)
By substituting (38) into (18) we obtain
a®n(az+0)"" +a?n® (az+b)""2=d’n (az+b)" 2+ F=0.
Taking into account that az 4+ b = h we obtain
F(h) = —a® (n— 1) nh™ =t — a2 ph~wtL, (39)

Substituting (39) into (19) we obtain the function g(h) for which (38) is solution
of equation (10). Consequently, an exact solution of equation (1), where g(u) =

AF (u) — (ﬂ - %) u and F(u) is obtained substituting h by u in (39), is
u(z,t) = [a(px — \t) + b)" .

In the same way, we can obtain functions g(h) for which functions dn(z,m),
cd(z,m), sd(z,m), nd(z,m), de(z,m), nc(z,m), sc(z,m), ns(z,m), ds(z,m) and
cs(z,m) (see [1]), are solutions of equation (1).

3.1 G’/G-expansion method

We consider the generalized Benjamin-Bona-Mahony-Burgers equation (1) and
we look for travelling wave solutions of this equation. In this case the reduced
equation becomes

MR — W+ (B — N)h + pg(h) +k = 0. (40)
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To apply the % -expansion method to equation (40) we suppose that the solutions

can be expressed by a polynomial in %l in the form

- ; (%) (41)

where G = G(z) satisfies the linear second order ODE

G"(2) + wG'(2) + (G(2) = 0, (42)
a;, 1=0,...,n, « and @ are constants to be determined later, a,, # 0.
The general solutions of equation (42) are:
o If w? —4¢ >0,
1 1
G(z) = ¢1 cosh <27w - 5% w? — 4C> + ¢5 cosh <%Z + 5\/w2 — 4Cz>
— ¢y sinh (%d - %z w? — 4C> — cgsinh (%Z + %\/uﬂ - 4Cz> . (43)

o If w2 — 4C < 0,

6(2) = [eacos (/I —2) +ensin (oI )]

X (cosh (%d) — sinh <%>) . (44)

o If w? = 4¢,

G(z) = (ca + 12) (cosh (%) — sinh (%d)) . (45)

In order to determine the positive number n in (41) we concentrate our at-
tention on the leading terms of (40). These are the terms that lead to the least
positive p when substituting a monomial h = 5 in all the items of this equa-
tion, [14]. The homogeneous balance between the leading terms provides us with
the value of n. To find them we substitute h = 5 in all the items of this equation.

We compare g(h) =h™ and h”: p+2=mp=m =2 or m = 3.

3.2 G'’/G-expansion method for g(h) = h?
By using (41) and (42) we obtain

B G/ n 2_ 2 G/ 2n
h_an<a> _‘_’ h _an<6> _1_7

: G\
h" =n(n+1)ay, el +--- (46)
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Considering the homogeneous balance between h” and h? in (40), based on
(46), we require that n + 2 = 2n = n = 2, we can write (41) as

G’ G’ 2
h=ap+a; <6>+a2 <6> , ag #0. (47)

Substituting the general solutions of (42) in (47), we respectively obtain from
(43), (44) and (45):

2 2_4
hi(z) = e, ag + Ve o4& (—4asw + 4aq) Hy
4 2 8
w? —4
+ 3  (2a2) ()7, (48)
asw?  ajw
ha(z) = == = == Fao + 7 (46 — o) (H)?
+ BEEEVAC (1) (49)
2 2
Gaw a1w ascy (—agw +ay) 1
h — _ L
3(2) 4 2 + a0 (012 + 62)2 (012 + ¢2) ’ (50)
where
Hy(2) ¢z cosh(3v/w? — 4(z) + c; sinh(3 w2 —4¢z)
z - )
! ¢y cosh($v/w? — 4¢z) + ez sinh(3 /w? — 4¢2)
CQCOS( 2/4¢ — w2> +clsln< 24/4¢ — w?
Hy(z) =
1 cos ( 20/4¢ — w2> — e sm( 2/4¢ — wz)

In the following we determine a;, i = 0,1,2. From (47) we calculate h?, b and
h;’ , j =1,2,3, and we substitute this expression in equation (40). Equating each
coefficient of (G’/G)" to zero, yields a set of simultaneous algebraic equations for
a;,a, B, \, i, w, ¢ and k. Solving this system, we obtain the set of solutions:

L e 25X
Miw? — 258 + 22
do = 50( ) ad 5ﬁ+”>
6 o
ay —_g#(a+5)\w)a ag = —6Ap, C_Z_W’

_ _9#3044 BA 62M A2 (51)

+ )
62502 2 | 4 4pu

where a, 8, A, p and w are arbitr%ry constants.
Due to fact that 4¢ —w? = 525 > 0, substituting (51) in (48) we obtain the
following solution of equation (40)

252 — 258u) + 3a2u? — 6a%u X Fy(2) — 32 u? F2(2)
50A

hl (z) = ) (52)
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where g(h) = h? and k given by (51),
¢y cosh (ﬁz) + ¢1 sinh (ﬁz)
c1 cosh (%z) + ¢o sinh (%z) ’

Fl(Z) =

Substituting h; into (8) we have travelling wave solutions of the generalized
Benjamin-Bona-Mahony-Burgers equation (1) with g(u) = u?:
2572 — 258u\ + 3a2pu? — 602 u? )\ Hy (z,t) — 3a?u? H?(x,t)
uy(x,t) = 50N

where

, (53)

¢ cosh (125 (uz — At)) + ¢ sinh (135 (uz — At))
c1 cosh (185 (na — At)) + co sinh (755 (ux — At))
From (53) for different values of o and A we can obtain solutions of equation (1)
which do not appear in [8].
If w? = 4¢, then a = 0. In this case equation (40) is
MR + (B — Nh + ph® +k = 0. (54)

Comparing our results and Kudryashov’s results [12] for equation (54) then all
solutions of equation (54) can be obtained from solutions obtained by Kudryashov
if we use different values of the constant and some additional transformations.

Hl(x,t) =

3.3 G’/G -expansion method for g(h) = h?
By using (41) and (42) we obtain

- G/ n 3_ 3 G/ 3n
h—an<6> +, h —an<5> +,

, G\
h" =n(n+1)a, el +.... (55)

Considering the homogeneous balance between h” and h® in (40), based on
(55), we require that n 4+ 2 = 3n = n = 1, we can write (41) as

!

h=ap+ a1 (%), ay; # 0. (56)

Substituting the general solutions of (42) in (56) we respectively obtain from
(43), (44) and (45):
a1w

ha(z) = —— ta

n w? —4Ca1 ) cosh(%\/ofél@ ) + c1 sinh(3 /w2 — 4¢z) (57)
2 a1 cosh(%ﬁz + co sinh( %\/74,2

ho(2) = —25= + a0 + 5 V/AC —w? (H2)*, (58)

he(z) = — 22 4 ap 4 —1 (59)

2 (c1z +c2)’
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where

C2 COS (%zW) + ¢1 sin (%z\/m)
C1 COS (%«A/W) — co 8in <%z\/m) .

In order to determine ag and aq we consider h;, i = 4,5, 6, we calculate h?, I
and h} and we substitute this expression in equation (40). Equating each coeffi-

HQ(Z) =

A\
cient of (%) ,n=0,1 to zero, yields a set of simultaneous algebraic equations
for a;, o, B, \, i, w, ¢ and k. Solving this system, we obtain the set of solutions:

iy/I(o 4 3 w) .
ap= Y70 a4 =iV2VA/L, 60
0 3v2VA ! Vi (60)
3w\ + 602 — 66u\ + o u?
L i 2ﬂu v (61)
120
iv2a/i (9N — 98uA + 207 1?)
A , (62)
27)\3/2

where «, 8, A, p and w are arbitrary constants.

Substituting (60)—(61) in (57)—(59) we obtain the following solutions for equa-
tion (40) with g(h) = h3 and k given by (62):

If w? —4¢ > 0:

()= 5ofs (o VOO I )

where
Fi(z) = co cosh (2\/25)\ —a2— 6>\(i‘;5N)) +¢q sinh (2\;3/\ _a2— 6)\();;5“))
c1 cosh (2\/25)\ —a2— 6>\(i‘;5N)) +cz sinh (2\;3/\ a2 — ﬁx(t;ﬁu))
If v — 4¢ < 0:
4 A2— A2 2
hs(z) = % (a—{— ﬁA\/%E;(z)) |
where
F5(z) _ c1 COS (2\/23/\ a2+ W) — c9sin (2\%)\ a? + 6)\();;;5“))
Co COS (2\/23/\ o2+ W) + ¢ sin (2\%)\ a? + 6)\();;;5“))

If w? = 4¢, then 6% — 68 \u + a?p? = 0:

i(c2a + clza + 6¢1N) /1

ho(z) = 3v2(c2 + clz)VA
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Substituting h4, hs and hg into (8) we have three classes of travelling wave
solutions of the generalized Benjamin-Bona-Mahony-Burgers equation (1) with

g(u) = u*
If w? —4¢ > 0:
us(e,t) = ol (ot VBN TR (1 1)) (63)
where
pr=Xt | o  6AA=fp) . pr=Xt | o  6AA=fp)
H4($t):c2(:osh<2\/§)\\/ af — = )—i—clslnh(%/g)\\/ a — = )
’ pr=Xxt [ o 6A(D—Bp) . pz=Xt [ 5 6AA—Bw) )
clcosh<2\/§)\\/ « .z )—i—czsmh<2\/§>\\/ « — )
If w? —4¢ < 0:
v 622 — 68u\ + a2 p?
us(x,t) = a+V3\ Hs(x,t) |,
5(,1) wm( \/ o 5(,1)
where

¢y cos (“I‘M a? + MZM) — ¢y sin (“w—M 02+ M)

Hs(z,t) = 2V/3) u 2V/3) u
’ - A(A— . — AO— ’
cacos (550 o2 + SO ) o ersin (553 o + B2

If 6A2 — 68\ + ap? = 0:

i(coor + crapr — At) + 6c1 M) /1
3V2(ca +cr(px — M)V

ug(x,t) =

4 Conclusions

In this paper, the complete Lie group classification for a generalized Benjamin—
Bona—Mahony-Burgers equation (1) has been obtained. The corresponding re-
duced equations have been derived from the optimal system of subalgebras.

We consider ODE (18) and we determine the functional forms F'(u) for which
this equation admits solutions in terms of the Jacobi elliptic functions. From this
equation, we have derived travelling wave solutions for equation (1). Among them
we found solitons, kinks, anti-kinks and compactons.

We also determine the functions g(h) = A" for which we can apply the %—
expansion method. By using this method we obtain more exact solutions of equa-
tion (1) with g(u) = u? and g(u) = u3.
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Exact solutions of the dispersive water wave and modified Boussinesq equations
are expressed in terms of special polynomials associated with rational solutions
of the fourth Painlevé equation, which arises as generalized scaling reductions
of these equations. Generalized solutions that involve an infinite sequence of
arbitrary constants are also derived which are analogues of generalized ratio-
nal solutions for the Korteweg-de Vries, Boussinesq and nonlinear Schrédinger
equations.

1 Introduction

In this paper we are concerned with special polynomials associated with exact
solutions of the dispersive water wave (DWW) equation

Utt + 2UtUxx + 4Uxet + 6Um2U:c:c - Uxxxx - 07 (1)

which is a soliton equation solvable by inverse scattering [38,39], sometimes known
as “Kaup’s higher-order wave equation” (cf. [50]), and the modified Boussinesq
equation

%Utt - 2UtUmm - 6Um2Umm + Ummmm = 07 (2)

which also is a soliton equation solvable by inverse scattering [51]. These equations
may be written in the non-local form (by setting U, = u)

Ut — 2um8;1(ut) + duug + buzup + 2(u3)m — Ugzzs = 0, (3)

%utt — 2upuy + 2umma;1(ut) - 2(u3)mm + Upggr = 07 (4)

where (9,1 f)(z) = [° f(y) dy, respectively, which is the form in which they arise
in physical applications.
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The DWW equation (1) can be derived from the classical Boussinesq system

N+ Vp + 1Mz = 07 v+ (777)):0 + Nzzz = 07 (5)

which arise in the description of surface waves propagating in shallow water [14,38,
39,56]. Indeed Broer [14] called the system “the oldest, simplest and most widely
known set of equations ... which are the Boussinesq equations proper”. Hirota
and Satsuma [32] showed that there is a “Miura type” transformation relating
solutions of the modified Boussinesq equation (2) to solutions of the Boussinesq
equation

Ut + Ugy + (u2)mm + Upgze = 0. (6)

There has been considerable interest in partial differential equations solvable by
inverse scattering, the soliton equations, since the discovery in 1967 by Gardner,
Greene, Kruskal and Miura [29] of the method for solving the initial value problem
for the Korteweg-de Vries (KdV) equation

up + 6uUy + Uyppr = 0. (7)
Clarkson and Ludlow [24] show that the generalized Boussinesq equation
Utt + pUtUxx + qU:cU:ct + TUq%Uxx + U:c:c:c:c - 07 (8)

with p, ¢ and r constants, satisfies the necessary conditions of the Painlevé conjec-
ture due to Ablowitz, Ramani and Segur [2,3] to be solvable by inverse scattering
in two cases: (i), if ¢ =2p and r = %p2, when (8) is equivalent to the DWW equa-
tion (1), and (i), if ¢ = 0 and r = —1p?, when (8) is equivalent to the modified
Boussinesq equation (2).

During the past thirty years or so there has been much interest in rational
solutions of the soliton equations. Further applications of rational solutions to
soliton equations include the description of explode-decay waves [43] and vortex
solutions of the complex sine-Gordon equation [10,47]. The idea of studying the
motion of poles of solutions of the KAV equation (7) is attributed to Kruskal [40].
Airault, McKean and Moser [8] studied the motion of the poles of rational solutions
of the KdV equation (7) and the Boussinesq equation (6). Further they related
the motion to an integrable many-body problem, the Calogero-Moser system with
constraints; see also [7,16]. Ablowitz and Satsuma [4] derived some rational
solutions of the KdV equation (7) and the Boussinesq equation (6) by finding a
long-wave limit of the known N-soliton solutions of these equations. Studies of
rational solutions of other soliton equations include for the Boussinesq equation
[22,28,49] and for the nonlinear Schrédinger (NLS) equation [21,33,43]

iy + Uy £ 2|ul?u = 0. 9)

Ablowitz and Segur [5] demonstrated a close relationship between completely
integrable partial differential equations solvable by inverse scattering and the
Painlevé equations. For example the second Painlevé equation (Prp),

w" = 2w + 2w + a, (10)
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where ' = d/dz and « is an arbitrary constant, arises as a scaling reduction of the
KdV equation (7), see [5], and the fourth Painlevé equation (Prv),

N2
w_ (W) 3 3 2 2 p
= — 4 2(2° — — 11
w 5g T g Tzt + (2 a)w—l—w, (11)

where o and 3 are arbitrary constants, arises as scaling reductions of the Boussi-
nesq equation (6) and the NLS equation (9). Consequently special solutions of
these equations can be expressed in terms of solutions of Py and Pry.

The six Painlevé equations (P;—Pyq) are nonlinear ordinary differential equa-
tions, the solutions of which are called the Painlevé transcendents, were discovered
about a hundred years ago by Painlevé, Gambier and their colleagues whilst study-
ing which second-order ordinary differential equations have the property that the
solutions have no movable branch points, i.e. the locations of multi-valued singu-
larities of any of the solutions are independent of the particular solution chosen
and so are dependent only on the equation; this is now known as the Painlevé
property. Painlevé, Gambier et al. showed that there were fifty canonical equations
with this property, forty four are either integrable in terms of previously known
functions, such as elliptic functions or are equivalent to linear equations, or are
reducible to one of six new nonlinear ordinary differential equations, which define
new transcendental functions (cf. [34]). The Painlevé equations can be thought of
as nonlinear analogues of the classical special functions (cf. [20,26,35,53]). Indeed
Iwasaki, Kimura, Shimomura and Yoshida [35] characterize the Painlevé equations
as “the most important nonlinear ordinary differential equations” and state that
“many specialists believe that during the twenty-first century the Painlevé func-
tions will become new members of the community of special functions”. Further
Umemura [53] states that “Kazuo Okamoto and his circle predict that in the 21st
century a new chapter on Painlevé equations will be added to Whittaker and
Watson’s book”.

Vorob’ev [55] and Yablonskii [57] expressed the rational solutions of Py (10)
in terms of certain special polynomials, which are now known as the Yablonskii—
Vorob’ev polynomials. Okamoto [46] derived analogous special polynomials, which
are now known as the Okamoto polynomials, related to some of the rational solu-
tions of Pry (11). Subsequently Okamoto’s results were generalized by Noumi and
Yamada [45] who showed that all rational solutions of Py can be expressed in
terms of logarithmic derivatives of two sets of special polynomials, called the gen-
eralized Hermite polynomials and the generalized Okamoto polynomials (see Sec-
tion 2 below). Clarkson and Mansfield [25] investigated the locations of the roots
of the Yablonskii—Vorob’ev polynomials in the complex plane and showed that
these roots have a very regular, approximately triangular structure. The struc-
ture of the (complex) roots of the generalized Hermite and generalized Okamoto
polynomials is described in [18], which respectively have an approximate rect-
angular structure and a combination of approximate rectangular and triangular
structures. The term “approximate” is used since the patterns are not exact
triangles and rectangles as the roots lie on arcs rather than straight lines.
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In this paper our interest is in exact solutions and associated polynomials of the
special case of the DWW equation (1) and the modified Boussinesq equation (2),
both of which have generalized scaling reductions to Ppy (11). Consequently
solutions of (1) and (2) can be obtained in terms the generalized Hermite and
generalized Okamoto polynomials. Further some of these solutions whose deriva-
tives decay as * — oo, are generalized to give more general solutions of the
DWW equation (1) and the modified Boussinesq equation (2). These solutions
are analogues of the rational solutions of the KdV equation [4,7,8,16], the Boussi-
nesq equation [22,28,49] and the NLS equation [21,33]; see also [19]. This paper
is organized as follows. In Section 2 we review the special polynomials associ-
ated with rational solutions of Py (11). In Sections 3 and 4 we use the special
polynomials discussed in Section 2 to derive special polynomials and associated
solutions of the DWW equation (1) and the modified Boussinesq equation (2),
respectively. We also derive generalized solutions which involve an infinite num-
ber of arbitrary constants. All exact solutions of equations (1) and (2), which are
rational solutions of equations (3) and (4), which are described here are expressed
as Wronskians of polynomials. Finally in Section 5 we discuss our results.

2 Rational solutions of Py
Simple rational solutions of Py (11) are
wi(z;£2,-2) = £1/2z, wa(20,-2) = =2z, ws(20,—2%)=—2z.  (12)

It is known that there are three sets of rational solutions of Ppy, which have
the solutions (12) as the simplest members. These sets are known as the “—1/z
hierarchy”, the “—2z hierarchy” and the “—2z hierarchy”, respectively (cf. [9]).
The “—1/z hierarchy” and the “—2z hierarchy” form the set of rational solutions
of Pry (11) with parameters given by (13a) and the “—%z hierarchy” forms the
set with parameters given by (13b). The rational solutions of Py (11) with
parameters given by (13a) lie at the vertexes of the “Weyl chambers” and those
with parameters given by (13b) lie at the centres of the “Weyl chamber” [54].

Theorem 1. Py (11) has rational solutions if and only if the parameters « and
0B are given by either

a=m, B=-202n—m+1)% (13a)
or
a=m, B=-22n—-—m+ %)2, (13b)

with m,n € Z. For each given m and n there exists only one rational solution of
Pry with parameters given by (13).
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Proof. See Lukashevich [41], Gromak [30] and Murata [42]; also Bassom, Clark-
son and Hicks [9], Gromak, Laine and Shimomura [31, §26], Umemura and Watan-
abe [54]. |

In a comprehensive study of properties of solutions of Py (11), Okamoto [46]
introduced two sets of polynomials associated with rational solutions of Py (11),
analogous to the Yablonskii—Vorob’ev polynomials associated with rational so-
lutions of Py. Noumi and Yamada [45] generalized Okamoto’s results and in-
troduced the generalized Hermite polynomials, which are defined in Definition
1, and the generalized Okamoto polynomials, which are defined in Definition 2;
see also [18,19]. Kajiwara and Ohta [36] expressed the generalized Hermite and
generalized Okamoto polynomials in terms of Schur functions in the form of de-
terminants, which is how they are defined below.

Definition 1. The generalized Hermite polynomial H,, (%) is defined by
Hpn(2) =W (Hp(2), Hnt1(2), ..., Hpgn—1(2)) (14)
and Hy, 0(2) = Hon(2) =1, for m,n > 1, with Hy(z) the kth Hermite polynomial.

The polynomials, H,, » (%), defined by (14) are called the generalized Hermite
polynomials since Hy, 1(2) = Hp(2) and Hy ., (2) = i7" Hpy(iz), where Hy,(2) is
the standard Hermite polynomial defined by

Hy(2) = (=1)" exp(2) 7 {exp(=2%)}
or alternatively through the generating function

o0

Z Hmizl) fm _ exp(2§Z _ 52) (15)

m=0

Examples of generalized Hermite polynomials and plots of the locations of their
roots in the complex plane are given by Clarkson [18]; see also [19,21,22]. The
roots take the form of m x n “rectangles”, which are only approximate rectangles
since the roots lie on arcs rather than straight lines. The generalized Hermite
polynomial H,, ,(z) can be expressed as the multiple integral

m/2 H k!
A 1lkg=1"" ?
Hm,n(z) om(m+2n—1)/2 / / 1 1 R xj)
i=1j= z+

H z —xp)™ exp (—xi) dzidzs...dx,,

which arises in random matrix theory [13,27,37]. The generalized Hermite poly-
nomials also arise in the theory of orthogonal polynomials [15].
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Theorem 2. Suppose H,, (%) is the generalized Hermite polynomial, then

d H (2)
(1] - = Imtlni®) 1
ull(0) = o { Gl (161)
d Hpn(2)
[2] - — pd —mn\t) 16b
ufla(o) = o { ) (16b)
d H (2)
(3] - _ = Imnt1\%e) 1
W (2) 22 + P In { Hootn(?) } , (16¢)
where wgln = w(z; a[#;ln, r[,]ln), 7 =1,2,3, are solutions of Py, respectively for
O‘le],n =2m+n+1, ﬁmn = —2n2,
agL],n = _(m + 2n + 1)7 7[r2L],n = —2’/TL2,
aEr)L],n =n—-m, Br[g]m = _2(m+n+1)2

Proof. See Theorem 4.4 in Noumi and Yamada [45]; also Theorem 3.1 in [18]. W

The rational solutions of Pyy defined by (16) include all solutions in the “—1/2”
and “—2z” hierarchies, i.e. the set of rational solutions of Py with parameters
given by (13a). In fact these rational solutions of Py (11) are special cases of
the special function solutions which are expressible in terms of parabolic cylinder
functions D, (§).

Definition 2. The generalized Okamoto polynomial 2, n(z) is defined by

W(§01 (z)a 304('2)? cee a@3m—2(z)a ®2 (z)7 905(z)7 s 7‘;03n—1(z))7 (17&)
Qm,o(z) = W(Spl (Z), 804(2)3 ce a903m—2(z))7 (17b)
W(pa(2), 05(2),- - - P3n-1(2)), (17¢c)

for m,n > 1, and Qo o(2) = 1, where ¢, (2) = 3¥/2e=Fm/2 1, (3V/3iz), with Hy(2)
the kth Hermite polynomial.

The generalized Okamoto polynomial €, ,(z) defined here have been reindexed
in comparison to the generalized Okamoto polynomial @, »(z) defined in [18,19]
by setting Qm.n(2) = Qmin—1,n—1(2) and Q—_pm —n(2) = Qn—1m4n(2), form,n > 1.
The polynomials introduced by Okamoto [46] are given by Qn,(2) = Qm—_1,0(2)
and Ry, (z) = Q,1(2). Further the generalized Okamoto polynomial introduced
by Noumi and Yamada [45] is given by @mn(z) = Qm_1n-1(2).

Examples of generalized Okamoto polynomials and plots of the locations of
their roots in the complex plane are given by Clarkson [18,19]. The roots of
the polynomial Qp,,(2) = Qmin—1n-1(z) with m,n > 1 take the form of an
m x n “rectangle” with an “equilateral triangle”, which have either 1m(m —1) or
tn(n — 1) roots, on each of its sides. The roots of the polynomial Q_p, _n(2) =
Qy—1,m+n(2) with m,n > 1 take the form of an m x n “rectangle” with an “equi-
lateral triangle”, which now have either $m(m + 1) or 2n(n + 1) roots, on each
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of its sides. Again these are only approximate rectangles and equilateral triangles
since the roots lie on arcs rather than straight lines.

Theorem 3. Suppose Qm n(2) is the generalized Okamoto polynomial, then

il (2) = {Qg“" } (184)
ﬁn(f«*) — _g ln{ chn":l B } (18b)
@l (2) = ln { g:figj } (18¢)

~[5] ( ~[j] 7l ), j

where Wyy.n = W(2; Wnin, Bran =1,2,3, are solutions of Py, respectively for

&le],n =2m +n, @ﬂn =—2(n— %)2,
ag},n = _(m =+ 2”)7 gr[g],n = —2(771 - %)27
&E’L]’n =n-—m, Ei?;ln =—2(m+n+3)%

Proof. See Theorem 4.3 in Noumi and Yamada [45]; also Theorem 4.1 in [18]. W

3 Exact solutions of the dispersive water
wave equation
3.1 Exact solutions from the scaling reduction

The DWW equation (1) has the generalized scaling reduction [24]
Uz,t) =V(z) — kx — k*t — plnt, z = (z + 2kt) /V4t, (19)

with £ and p arbitrary constants, which is a classical symmetry reduction [24],
and where v(z) = V'(z) satisfies

"= v — 12200 + (422 — Spu)v’ — 8v? + 1220 + 16 (20)

Then letting v(z) = w(z) + 2z in (20) and integrating yields Pry (11) and so we
can obtain exact solutions of the DWW equation (1) from the rational solutions of
Prv given in Section 2. However, it is possible to generate these solutions directly,
i.e. without having to consider the generalized Hermite and generalized Okamoto
polynomials, by extending the representations of these polynomials in terms of
the determinants given in Definitions 1 and 2.

Theorem 4. Consider the polynomials p,(x,t; k) defined by

Z Pn x’t’*‘ " exp {4 2600 — 102, (21)
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50 n(z,t; k) = t"2H, (v + 2kt)/V/4t), with H,(z) the Hermite polynomial, and
then let

(I)m,n(l‘, ty k) = We(@ms Pmats - Prmn—1)- (22)

where Wy (©ms ©mt1s -« s Pmin—1) 1S the Wronskian with respect to x. Then the
DWW equation (1) has exact solutions in the form

® (x,t; k) x?
1] . _ m+1,n\L, b,
Upn(2,t;5) = In {—(I)m,n(w7 Fr) } t —(m+n+1)nt, (23a)

D, (2, t; K) x? 1
- — =)Int 23b
®m,n+1(x,t;ﬁ)}+ tlmtnt gt (235)

1t
® (z,t; k)
UBl (2t k) = In d 2t 5B L ¢ 23
Bl ti) = in { GREREREN g ), (230)

U[z] (Tt R) = ln{

Proof. The polynomials ¢, (z,t; k) defined by (21) are obtained by z = (z +
Kt)/V4t and € = A\V/t in (15). Then (22) follows from the definition of H,, ()
given by (14). Finally substitution of these expressions into (19) yields the desired
result. [ |

Theorem 5. Consider the polynomials ¥, (x,t; k) defined by
n ) t?
Z Yn(@, 85 1)) = exp {(z + 2Kt)\ + 3t/\2} , (24)

50 Yn(x, ;1) = (3t)"/2e~"™/2 [, (i(z + 2rt) /V/3t), with Hy(z) the Hermite poly-
nomial, and then let
\I/m7n(w7 ta H) - WZ‘ (¢17 1/}47 e 7¢3m+3n—57 ¢27 1/}57 e 7¢3n—4) )
\Il—m7—n(x7t) = WZ‘ (¢17 1/}47 o 7¢3n—27 ¢27 1/}57 o 7¢3m+3n—1) )

form,n > 1, where Wy (Y1, 2, ..., 1¥m) is the Wronskian with respect to x. Then
the DWW equation (1) has exact solutions in the form

(25)

U i1n(@,t ’
U“] ozt k) =1n {%}+%—%ﬁ(w+nt)—(2m+n)lnt,
(26a)
U (@, 15 ?
Up] (Tt k) = ln{%} —I—% — 3k(z + Kt) 4+ (m + 2n) Int,
(26b)
Vi1 (2, ’
U[?’] (x,t,/i) ln{ﬁm}‘ka—g (IL""/ﬁJt) ( —n)lnt.
(26¢)

Proof. The proof is similar to that for Theorem 4 above and so is left to the
reader. [ ]
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3.2 Generalized solutions

Here we discuss possible generalizations of the rational solutions obtained above.
Motivated by the structure of the generalized exact solutions of the KdV equation
[7,8], the Boussinesq equation [22,28], and the NLS equation [21], the idea is to
replace the exponent of the exponentials (21) and (24) by the infinite series

o
(@ + 26X+ B2 + > &N, (27)
j=3
with b = —1 and b = 3, respectively, where &;, for j > 3, are arbitrary parameters.

These give generalizations of the polynomials (22) and (25) which in turn give
generalizations of (23) and (26). However, when we substitute the generalizations
of (23) and (26) into the DWW equation (1), it can be shown that necessarily
k=0and §; =0 for j > 3 except for the generalization of (23c), and is described
in the following theorem.

Theorem 6. Consider the polynomials 6, (x,t; &) defined by
Z Un(@, 6 A" =exp [ z) — A2 + Z &GN |, (28)

n!
n=0 j=3

where § = (§3,€4,...), with & arbitrary constants and then let

Gm,n(w7 t, E) = Wx(ﬁm, §m+1, e ,19m+n_1). (29)
where Wy (0, Oma1y - - - Ompn—1) is the Wronskian with respect to x. Then the
DWW equation (1) has exact solutions in the form

U,[f;’]n(x, t:€) =In {@m,n-i-l(wv t; E)/@m-i-l,n(xa L E)} ) (30)

The polynomials (29) and associated solutions (30) are analogous to the poly-
nomials and associated rational solutions of the KdV equation (7) derived by
Airault, McKean and Moser [8] and Adler and Moser [7]; see also [4,16]. Further
we conclude that generalized solutions, i.e. solutions which depend on an infinite
number of arbitrary parameters, of the DWW equation (1) exist only if the deriva-
tive of the solution, which is a decaying rational solution of (3), obtained through
the scaling reduction to a Painlevé equation decays as |x| — oo. This is analogous
to the situation for generalized rational solutions of the KdV equation [7,8, 16],
the Boussinesq equation [22,28,49], and the NLS equation [33]; see also [19].

4 Exact solutions of the modified Boussinesq equation

4.1 Exact solutions from the scaling reduction
The modified Boussinesq equation (2) has the generalized scaling reduction [17]

U(z,t) =V(z) + ket — plnt, z = (x + 3kt?) /\/4t, (31)
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with k and p arbitrary constants and where v(z) = V/(2) satisfies
" =600 + dzvv’ — (32° + 8p)v — dav + LBy (32)

In the case when k # 0, the generalized scaling reduction (31) is a nonclassical
symmetry reduction that is derived either using the nonclassical method [11] or
the direct method [23] — see [17] for details. Letting V(z) = w(z)+ %z in (32) and
integrating yields Pry (11) and so we can obtain exact solutions of the modified
Boussinesq equation (2) from the rational solutions of Py given in Section 2.
As for the DWW equation (1), it is possible to generate these solutions directly,
i.e. without having to consider the generalized Hermite and generalized Okamoto
polynomials, by extending the representations of these polynomials in terms of
the determinants given in Definitions 1 and 2.

Theorem 7. Consider the polynomials p,(x,t; k) defined by
n 7t7
Z en(@ WA {(x + 3612\ — A2}, (33)

s0 pn(v,t;k) = tV2H, ((x + 3xt2)/V4t), with H,(z) the Hermite polynomial,
and then let

(I)m,n(l‘, ty k) = We(@ms @mats - Prmin—1)- (34)

where Wy (©ms ©mt1s -« s Pmin—1) 1S the Wronskian with respect to x. Then the
modified Boussinesq equation (2) has exact solutions in the form

Pt 10(, 1 ?
Um (Tt k) = ID{M}—F:E——I— Skat+ 3% + (m+ ) Int,

Dy (2,85 K) 12t
(35a)
D, n(z,t; K) 2
U[Q] t: Ind —mn\ ™ = t Nint
Wzt k) = n{q)m,n+1(x,t;/i)}+12t+ Skat+ 3 —(n+ 5)Int,
(35b)

o (x,t; k) z?
U[?»] t: Ind —mnt W 5B 2 3,2,3 Int
(x, e =l { (I)m-l-l,n(xa t; k) 6t 2/1 (m = n)lnt, (35C)

Theorem 8. Consider the polynomials ¥, (x,t; k) defined by
n b t?
Z Unl@ GRN o 4 3Rt + 32} (36)

50y (z,t; k) = (3t)"/2e /2 H,, (i(z + 3kt?)/V/3t), with H,(z) the Hermite poly-
nomial, and then let

\Ijm,n(x7 t, ’{') = W:E (¢17 ¢47 s 717Z)3m+3n—57 ¢27 ¢57 cee a¢3n—4) 3

37
\Ij—m,—n(x7t;’{') = W:E (¢17w47"'7w3n—27¢27¢57"'7¢3m+3n—1)7 ( )
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form,n > 1, where Wy (Y1, 2, ..., 1¥m) is the Wronskian with respect to x. Then
the modified Boussinesq equation (2) has exact solutions in the form

U,[}Jn(x, tik) =In{V i1 0(x, t;6) /U n(x,t; k) } + Kat, (38a)
U,[?Jn(x, tik) =In{Vp, (2, t;K) /Uy nt1(x, t; k) } + Kat, (38b)
U,[r?ﬂn(x, tik) =In{Vp, n1(x, 6 K) /g1 n(x, t; k) } + Kat. (38¢)

4.2 Generalized solutions

Here we discuss possible generalizations of the exact solutions obtained above. As
for the DWW equation, the idea is to replace the exponent of the exponentials (21)
and (36) by the infinite series

o0
(@ + 36N+ BEAZ + D &N, (39)
j=3
with b = —1 and b = 3, respectively, where &;, for j > 3, are arbitrary parameters.

However, when we substitute the generalizations of (35) and (38) into the modified
Boussinesq equation (2), it can be shown that necessarily x = 0 and §; = 0 for
j > 3 except for the generalization of (38) with k = 0, the derivatives of which
decay as |z| — oo and are decaying rational solutions of (4), and are described in
the following theorem.

Theorem 9. Consider the polynomials 9, (xz,t;€) defined by

Z Un(, ;A" =exp | o\ +3tA% + Z§j)\j , (40)

|
n:
n=0 j=3

where & = (€3,&4, . ..), with & arbitrary constants and then let

@m,n(xy t, S) — W"E(ﬂly 1947 cee 3193m+3n—57 1927 1957 cee 719311—1)7

41
@—m,—n(xy t; S) = W{E(ﬂly 1947 cee 3193n—27 1927 1957 cee 7193m+3n—1), ( )

for m,n > 1, where Wy (61,02, ...,60y) is the Wronskian with respect to x. Then
modified Boussinesq equation (2) has exact solutions in the form

Urgﬂn(l" t;€) =In {@m—i-l,n(l"a t; 5)/@m,n($a t;€)}, (42a)
UR),(2,4:€) = 0 {O0 (2, ;) /O n i1 (2,1 €)}, (42b)
Ur[r%!n(x’ t;€) =In {@m,n—l-l(l"a t; E)/@m—i-l,n(l‘, t€)}. (42c¢)

5 Discussion

In this paper we have studied exact solutions of the DWW equation (1) and the
modified Boussinesq equation (2) through rational solutions of Py (11), which
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arises as a scaling reduction of these equations. Further we have derived some
generalized solutions of the DWW equation (1) and the modified Boussinesq equa-
tion (2) which are analogues of the generalized rational solutions of the KdV
equation (7), the Boussinesq equation (6) and the NLS equation (9). The DWW
equation (1) and the modified Boussinesq equation (2) also possess the accelerat-
ing wave reductions

Uz, t) = W(z) + pat — 2p°t°, z=x—pt?, (43)
Uz, t) =W(z) — %uxt, 2=z — ut? (44)

respectively, where p is an arbitrary constant and W (z) is solvable in terms of
solutions of Py (10). Since Pyp has rational solutions expressed in terms of the
Yablonskii—Vorob’ev polynomials [55,57], then we can derive another class of exact
solutions of (1) and (2) in terms of these special polynomials. We remark that the
reduction (43) is obtained using classical Lie group method [12,48] whereas the
reduction (44) is a nonclassical symmetry reduction that is derived either using
the nonclassical method [11] or the direct method [23] — see [17,24] for details.

However, there are further exact solutions of the DWW equation (1) and the
modified Boussinesq equation (2), which are not special cases of the solutions
discussed in Section 3 and Section 4 above, or through the accelerating wave
reductions (43) and (44). For example, the DWW equation (1) has the exact
solutions

T+t t
u1(fL’,t> =In <m> - 5, (45&)

(x+1)3 —3(x +1)? —6t t
(m+t)3+3(m+t)2—6t}_§’

ug(x,t) = ln{ (45b)

and the modified Boussinesq equation (2) has the exact solutions

x+t t
Ul(l’,t) =1In <m> — 6, (46&)

(z4+1)° +9(x+1)* + 240 +42¢ — 144 ¢t
(x+1t)3 —9(x + t)? + 24x + 42t + 144 6’

ug(x,t) =In { (46b)
which are not obtained by the procedure described above. These are analogous to
the rational solutions of the classical Boussinesq equation (5) derived by Sachs [52]
by applying the limiting procedure in [4] to N-soliton solutions of (5).

The classical orthogonal polynomials, such as Hermite, Laguerre, Legendre,
and Tchebychev polynomials which are associated with rational solutions of the
classical special functions, play an important role in a variety of applications
(cf. [6]). Hence it seems likely that the special polynomials discussed here which
are associated with rational solutions of nonlinear special functions, i.e. the soliton
and Painlevé equations, also arise in a variety of applications such as in numerical
analysis.
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The Type-II hidden symmetries are extra symmetries in addition to the inher-
ited symmetries of the differential equations when the number of independent
and dependent variables is reduced by a Lie point symmetry.

In this paper we analyze the connection between one of the methods analyzed
in [2] and the weak symmetries of the partial differential equation in order
to determine the source of these hidden symmetries. We have considered the
shallow water wave (SWW) equation presented in [7], and the second heavenly
equation [1], which reduces, in the case of three fields, to a single second order
equation of Monge-Ampere type.

1 Introduction

There is no existing general theory for solving nonlinear partial differential equa-
tions (PDE’s) and it happens that many PDE’s of physical importance are nonlin-
ear. Lie classical symmetries admitted by nonlinear PDE’s are useful for finding
invariant solutions.

If a PDE is invariant under a Lie group, the number of independent variables
can be reduced by one. The reduced equation loses the symmetry used to reduce
the number of variables and may lose other Lie symmetries depending on the
structure of the associated Lie algebra. If a PDE loses (gains) a symmetry in
addition to the one used to reduce the number of independent variables of the
PDE, the PDE possesses a Type I (Type II) hidden symmetry [2].

It has been noted [3] that these Type IT hidden symmetries do not arise from
contact symmetries or nonlocal symmetries since the transformations to reduce
the number of variables involve only variables. Thus the origin of these hidden
symmetries must be in point symmetries [2]. In [2] B. Abraham-Shrauner and K.S.
Govinder have identified a common provenance for the Type IT hidden symmetries
of differential equations reduced from PDE’s that covers the PDE’s studied. In [2]
it was pointed out that the crucial point is that the differential equation that is
reduced from a PDE and possesses a Type II hidden symmetry is also a reduced
differential equation from one or more other PDE’s. The inherited symmetries
from these other PDE’s are a larger class of Lie point symmetries that includes the
Type IT hidden symmetries. The Type II hidden symmetries are actually inherited
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symmetries from one or more of the other PDE’s. The crucial question [2] is
whether we can identify the PDE’s from which the Type II hidden symmetries
are inherited. In [2] two methods were proposed: some PDE’s may be constructed
by calculating the invariants by reverse transformations and some PDE’s may be
identified by inspection.

The weak symmetries were introduced in Olver and Rosenau [10]. Their ap-
proach consists in calculating the symmetries of the basic equation supplemented
by certain differential constraints, chosen in order to weaken the invariance cri-
terion of the basic system and to provide us with the larger Lie-point symmetry
groups for the augmented system. In this way one obtains an overdetermined
nonlinear system of equations and the solution set is, in this case, quite larger
than the corresponding to classical symmetries. In [5] and [6] we have analyzed
the connection between one of these methods and weak symmetries of the PDE
with special differential constraints in order to determine the source of the Type-I1
hidden symmetries.

In this work we consider weak symmetries of the SWW equation presented
in [7], and the second heavenly equation [1], which reduces, in the case of three
fields, to a single second order equation of Monge-Ampere type, as well as of
the homogeneous Monge-Ampere equation. The weak symmetries of these PDE’s
with special differential constraint are derived in order to determine the source of
the Type II hidden symmetries. The main result is that we can identify the PDE
from which the Type II hidden symmetries are inherited by using as differential
constraint the side condition from which the reduction has been derived.

2 Weak symmetries for a shallow water wave (SWW)
equation

We begin by considering the SWW equation presented in [7]
Uggrt T QUL Uzt + ﬂutuazxt — Ugt — Ugz = 07 (1)

where the subscripts denote differentiation with respect to the variable indicated.
The Lie point symmetries of (1), which appeared in [4] are represented by the Lie
group generators:
vy =20, — <u— %C - %) Ouy Vo = Oz, V3 =0y, Vg = g(t) <(9t + %C%) )
If we reduce equation (1) by using the generator vo + vy we get u = w(z) + %,
z=z— [ Tlt) and the reduced ODE is

Wyzzy (Oé + B)wzwzz —w,, =0, (2)

which admits a three-parameter Lie group. The associated Lie algebra can be
represented by the following generators

2
W1 :az, WQZaw, W3:Z§Z— <’UJ— a—fﬂ) aw. (3)
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The inherited symmetries are vo — w1, v — wo. The other symmetry ws is
a Type II symmetries [7]. In [2] it was shown that hidden symmetries of PDE’s
arise from point symmetries of another PDE. A PDE that reduce to (2) by using
the variables z and w and was proposed, by guessing, in [7] is

We propose to have as differential constraint the side condition from which the
reduction has been derived and to derive weak symmetries, that is, Lie classical
symmetries of the original equation and the side condition. The PDE from which
the hidden symmetries are inherited is the original PDE in which we substitute
the side condition from which the reduction has been derived.

We are going to derive some weak symmetries of the SWW equation (1), choos-
ing as side condition the differential constraint

Uy + g(t)uy — 9t) =0, (5)
6
which is associated to the generator vo + v4 that has been used to derive the re-
duction. Applying Lie classical method to equation (1) with the side condition (5)
we get the following generators

w = f1(t)0z, uz = f2(t)0, uz = f3(t)0w,
wi = u0) (0.~ (w- 55 ) o). )

with f;(t), ¢ = 1,...,4, arbitrary functions. However, by appropriate choice of
fi(t) = 1 we recover the group generators (3). These generators (2) have been
derived in [7] and it was pointed out in [7] that symmetry w3 is a hidden symmetry.
We prove that ws is inherited as a weak symmetry of equations (1) with the side
condition (5). The crucial point is that ug is a Lie symmetry of equation (1) in
which we have substituted the side condition (5), and this equation is precisely (4).

3 Monge-Ampere equation
The second heavenly equation is
Ozalyy — 02y + Oz + Oyz = 0, (7)

where 6(z,y,w, z) is a holomorphic complex-valued function of four complex vari-
ables in some local coordinate system. The Lie point symmetries of (7) have been
reported in [9] and [1].

The second heavenly equation (7) has been reduced in [1] by the translation
symmetry in w. By using v = 0, the second heavenly equation has been re-
duced [1] to

Uz Uyy — uiy + uy, = 0. (8)
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where u(z,y, z) replaces . The Lie point symmetries were computed by the
computer program LIE and reported in [1]

2

x

vi=0,, Vo= f10y, V3=0;, V4= f2ay + 7f2zauy V5 = YOy,
x3

Ve = Tf30y, V7=1x0;+220.,, vg= I’f48y + €f4zaua

vg = —220, + xy@qﬂ Vig = yay + u(‘)u, Vi1 = —20, + ud,
Vig = —4.%'26;(; + 2y2(9y - 42282 + (2ZU + x2y)8u’

where f;(z), j = 1,...,4 are arbitrary functions. The symmetries represented
by vi1 through vi; are all inherited from the Lie point symmetries of the second
heavenly equation which appear in [1], v12 is not an inherited symmetry and is a
Type II Lie point hidden symmetry.

The new similarity variables and solution for vis were derived in [1] and are

2
r:%, S:y\/g, UZ%G(TVS)_%' (9)
The substitution of (9) into (8) leads to the homogeneous Monge-Ampere equation
GrrGss — G2, = 0. (10)

The Lie point symmetries of the homogeneous Monge-Ampere equation have been
found in [8] and are

u =0, uy=0s, uz=09g, uy=r0, us=sds, ug=GIg,

u; = s0,, ug=10ds, uUg=rdg, uyy=s0q, u; = GO,

g = GO, Wiy =120, +rsds +rGdg, w4 = rsd, + s20, + sGog,

uys = rGO, + sGIs + G*0g. (11)

In (11) [1] there are nine inherited symmetries from (8) and six Type-II hidden
Lie point symmetries. In [1] the provenance of Type II hidden symmetries of the
target PDE (8) has been investigated.

In this work we are considering the provenance of Type II hidden symmetries
of the homogeneous Monge-Ampére equation (10).

In order to determine the other possible PDE’s with three independent vari-
ables the inherited symmetries of which include all the symmetries in (10) we
consider the PDE equation obtained considering the target PDE (8) and the side
condition from which the reduction was derived. This side condition associated
to generator vyg is

—dxzuy, + 2yzu, — 4220, — 2z2u — 2%y = 0. (12)
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Applying the classical method to equation (8) with the side condition (12), we
get the following generators:

wi = Fi(2) (8, - %au), Wa = Fg(z)<8y - x—zau),

wy = Fy(2) (0, + %c‘h), wy = Fy(2)u, jVS = Fy(z)(u+ %)8’“
we = Fy(2) ((mu + %y)am + (yu + %)% - < - xjﬁ“ - izy;)a“) ’
wr= (0 (04 52)an - (2 + 25)a,),

wg = Fy(2) <<u+ %)ay _ (‘% + fgj@)au) ,

z
2,2
Wio = FIO(Z) <$yax + yzay - <:E 2yz oo yu) au) )
x3 2y
w1 = Fi1(2) (way — 4—5u), wiz = F1a(2) (yay Eau)a

x Y z?

Uy — Uny — Sy T 5 Uy — e =
from which the hidden symmetries are inherited is the original PDE in which we
substitute the side condition (12), and some differential consequences.
We show which weak symmetries of the reduced second heavenly equation (8)
reduce to the symmetries of (10). Taking into account that

1 Ty 1 7S x?

Op = -0+ ——=0g = -0, + =0 Oy = V20, 0y = /20s + —=0

x Zr+2\/EG Zr+2G7 U \/EGa y \/ES+4\/EG7
the inherited symmetries are wi; — uy if F} = z, wo — ug if Fp = %, W4 — Uj

ifF4 = %, Wi4 — U4, W12 — U5, W5 — Ug ifF5 = 1, W9 — ury if Fg = 2’3/2,

W11 — usg if Fi1 = 2_3/2, Wi5 — Ujg if Fis = 1,

The symmetries ws, wg, Wy, Wg, Wig and wjg are not inherited symmetries.
these are Type II hidden symmetries.

Now we consider the reduction of the homogeneous Monge-Ampere equa-
tion (10) through the generator —au; + bus + cug + duyg that leads to

B o c d ac) ,
w = br+ as, G__b_28w+<2_b_ﬁ> + o(w),
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where ¢ satisfies the autonomous and linear ODE (b3d — ab?c)” — ¢? = 0. Setting
F’d%b% = k the ODE can be written as ¢” —k = 0 with b3d—ab?c # 0, and admits
an eight-parameter Lie group. The associated Lie algebra can be represented by

the following generators

3kw?
Wi =0, Wo=0, Ws=uwd,+ (g n : )a@, Wi = wi,,
R w? wY kw3 . k s k20t
W5:78w+<7+7>8¢, Wg — (—gw +w<p>8w—T&p,
3k ]{72 3 ]{72 2
W7 = pdy + <7W + Tw)agp, Wy = —T”aw. (13)

The inherited symmetries are u; — Wi, ug — Wo, ug — Wy. W3, W5, Wg and wr
are Type IT hidden symmetries. We now consider weak symmetries of (10) with
the following side condition

—aG, +bGs = cr +ds (14)

corresponding to the generator —au; + bus + cug + duyg. Applying the classical
method to equation (10), with the side condition (14) we get:

7‘2
V1= f1(8)0,, V2= fa(s)dg, V3= f3(s) <T87’ + (% + 3]1 )8G> ,

2 3
Vi = fa(s)rdg, Vs = f5(s) (%37« + (ﬁ + kL)@G> ;

2 4
. k 5 k2rd
V6 = fo(s) <( — 5 1G)0, - T8G> :
. 3k k23 . k22
V7 = fa(s) <G3r + (37“04- T>8G> , Y8 =—fs(s) 50,
with f;(s),i = 1,...,8, arbitrary functions. However, by appropriate choice of

polynomials in s for f;(s) the group generators reduce to the eight generators (13).

The PDEs the inherited symmetries of which include all the symmetries in
(13) are G, = M, G55 = N, where M = deTQaC for b 2 0 and N = bddTQac for
d # 0. These two equations can be easily derived by substituting some differential
consequences of the side condition (14) into (10).

4 Conclusions

The Type-II hidden symmetries are extra symmetries that appear when the num-
ber of variables of a PDE is reduced by a variable transformation found from a Lie
symmetry of the PDE. In [2] two methods were presented for finding one or more
PDE’s from which the Type-II hidden symmetries are inherited. In [5] and [6] we
have analyzed the connection between one of these methods and weak symmetries
of the PDE with special differential constraints in order to determine the source
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of the Type-II hidden symmetries. In this work we have considered the SWW
equation presented in [7], and the second heavenly equation [1], which reduces, in
the case of three fields, to a single second order equation of Monge-Ampere type.

We can identify the PDE’s, which has been found previously by guessing, by
using as differential constraint the side condition from which the reduction has
been derived. The significance of these Type-II hidden symmetries is that there
may be more symmetries in the subsequent reduced differential equations than
can be predicted from the Lie algebra of the original PDE.
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Complete group classification of a class of reaction-diffusion equations of form
Up = Ugy + k(2)u?(1 — u) is given. Lie symmetries are used to reduce these
reaction-diffusion equations to ordinary differential equations.

We consider reaction-diffusion equation of the form
Up = Ugg + k(2)u?(1 — u), (1)

where k(x) # 0. This equation models many phenomena that occur in different
areas of mathematical physics and biology. In particular, it can be used to describe
the spread of a recessive advantageous allele through a population in which there
are only two possible alleles at the locus in question. Equation (1) is interesting
also in the area of nerve axon potentials [5]. For more details about application
see [1,2] and references therein.

Motivated by this, Bradshaw-Hajek at al [1,2] started studying of class (1) from
the symmetry point of view. More precisely, they found some cases of equations (1)
admitting Lie and/or nonclassical symmetries. Our intention is to complete this
analysis of nonclassical symmetries and construct a list of new exact solutions of
the equations under consideration. Since classification of nonclassical symmetries
is impossible without detailed knowledge of Lie invariance properties, in this short
note we restrict ourselves to study classical Lie symmetries of equations from
class (1). Detailed investigation of nonclassical symmetries for class (1) will form
a subject of a sequel paper.

In the classical Ovsiannikov’s formulation [4] exhaustive consideration of the
problem of group classification for a class of systems of differential equations
includes the following steps: construction of the equivalence group; finding the
kernel of maximal invariance groups of local transformations that are symmetries
for all equations from the given class and description of all possible inequivalent
(with respect to equivalence group) values of parameters that admit maximal
invariance groups wider than the kernel group. Following S. Lie, one usually
considers infinitesimal transformations instead of finite ones. This approach es-
sentially simplifies the problem of group classification, reducing it to problems for
Lie algebras of vector fields.
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Group classification of class (1) will be performed up to equivalence transforma-
tion group G™ containing scaling and translation transformations of independent
variables t and .

We look for infinitesimal generators of maximal Lie groups of equations from
class (1) in form

Q= 7(t,z,u)0 + &(t, x,u)0y + n(t, 2, u)0y.

Substituting the coefficients of operator () into the Lie—Ovsiannikov infinitesimal
invariance criterium [3, 4] and splitting the obtained equation with respect to
unconstrained derivatives u,, and powers of u,, we obtain a system of determining
equations. Integrating them give immediately that

T:T(t)v fzf(t,iﬂ), 77:771(75,95)U+770(ta$)-

Then, the rest of equations take form

28, =7, 2 + & — & =0,
Ehy + 20"k + 7k =0, —Eky — 'k + 3kn° — 1k = 0,
—npe — 2%k + 0} =0, 7 —nl =0.

From the first and second equation we have that &,, = 0 and 7' is at most
quadratic with respect to . From the third and fourth equations we obtain that
n = —n'/3. Then, from the last two equations we derive kn® = 0. Since k # 0, we
have n = ' = 0. Finally, we get very simple system for coefficients of symmetry
generator:

26, =7, &z =0, & =0, Cky+7k=0.

The last equation depends explicitly on k and is called classifying equation. With
respect to k and x it looks like (a1 + ag)k, + 2a1k = 0. Considering all possible
cases of integration of this equation (up to transformations from G™) we obtain
the complete group classification of class (1).

Theorem 1. The kernel Lie algebra of class (7) is (0¢). There exists two G™ -
inequivalent cases of extension of the maximal Lie invariance algebra (the values
of k are given together with the corresponding mazximal Lie invariance algebras):

1: k=c, (0 0s);
2: k=cz2 (O, 2t0y + x0,).
Here ¢ = const.

Lie symmetries can be used for construction of exact solutions of the partial
differential equations. However, the obtained maximal Lie invariance algebras are
not very wide and give rise to limited classes of exact invariant solutions.
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Thus, e.g., besides the solution u = const, equation u; = gz, + cu?(1 — u)
admits only one family of invariant solutions, namely invariant travelling wave
solution u = v(z — at) being solution of the ordinary differential equation v” +
av' + cv?(1 —v) = 0.

Optimal system of one-dimensional subalgebras of Lie symmetry algebra of
equation us = Uz, +cx~2u?(1—u) consists of (9;) and (2t0; +x0,). Reduction with
respect to (9;) gives stationary solution u = v(x), where v + cx~2v%(1 —v) = 0.
Reduction with respect to (2td; + 20,) has the form u = v(w), w = /22 and
202" + W' + 2c0?(1 — v) = 0.
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For the root system of each semi-simple complex Lie algebra of rank two and
for the associated 2D Toda chain € = {u,, = exp(Kwu)}, we calculate the first
integrals of the characteristic equation D, (w) = 0 on £. Using the integrals,
we reconstruct and make coordinate-independent the (2 x 2)-matrix opera-
tors OJ in total derivatives that generate symmetries of the chains. Writing
other factorizations that involve the operators [, we obtain pairs of compat-
ible Hamiltonian operators that produce KdV-type hierarchies of symmetries
for £. Having thus reduced the problem to the Hamiltonian case, we calculate
the Lie-type brackets, which are transferred from the commutators of the sym-
metries in the images of the operators [J onto their domains. With all this, we
describe the generators and derive the commutation relations in the symmetry
algebras of the 2D Toda chains, which serve here as an illustration for a much
more general algebraic and geometric setup.

Introduction

In the paper [12] we introduced a well-defined notion of linear matrix operators
in total derivatives, whose images in the Lie algebras of evolutionary vector fields
on the jet spaces are closed with respect to the commutation. This yields a gener-
alization for the classical theory of recursion operators and Poisson structures for
integrable systems. We explained how each operator transfers the commutation
of the vector fields to the Lie brackets with bi-differential structural constants on
the quotient of its domain by the kernel.
Second, in [9,10] we associated such operators with the 2D Toda chains

Eroan = {uhy =exp(3 Ky?), 1< < m} (1)

related to semi-simple complex Lie algebras [14,15]. We derived an explicit for-
mula for the operators that determine higher symmetries of these chains. Using
the auxiliary Hamiltonian matrix operators, we elaborated a procedure that yields
all the commutation relations in the symmetry Lie algebras sym Eog, (naturally,
these symmetry algebras are not commutative). This solved a long-standing prob-
lem in geometry of differential equations and completed previously known results
by Leznov, Meshkov, Shabat, Sokolov, and others (see [15,17,21,25] and references
therein).



88 A.V. Kiselev and J.W. van de Leur

Actually, the general scheme of [10] is applicable to the description of symmetry
algebras for a wider class of the Euler-Lagrange hyperbolic systems of Liouville
type [21,25]. Moreover, the group analysis of integrable systems, as a motivation,
results in the well-defined concept [12] of operators whose images span involutive
distributions on the jet spaces, but not on differential equations, which is of an
independent interest.

In this note we illustrate the reasonings of [10] using the root systems of the
semi-simple complex Lie algebras of rank two. Among all two-component expo-
nential nonlinear systems (1), these 2D Toda chains with Cartan matrices K admit
the largest groups of conservation laws [21] and are integrable in quadratures [14].

The equality of the rank to two means the following:

1

e The hyperbolic Toda chains (1) upon u!, u? are, we repeat, two-component.

e The number of vector fields Y; that generate the characteristic Lie algebra
through commutators (see section 2.1 below and [15]) equals two. Also, the
numbers of linear independent iterated commutators Y, . )
i, [... [Yi,_,, Y] ...]] for fixed k is at most two. This number drops at
most twice, and Yz = 0 for k large. Thence, by the Frobenius theorem,
two invariants w', w? appear.! Using the characteristic Lie algebras, we
introduce two finite sequences of the adapted coordinates; this choice sim-
plifies the description of these invariants. On the other hand, we use the
two invariants to replace the derivatives of the two dependent variables at
all sufficiently high differential orders.

e Conservation laws for Toda system (1) are differentially generated (up to
x < y) by these two invariants, which are solutions of the characteristic
equation Dy(w) = 0 on Eroda-

e Higher symmetries of the Toda chain (1) have a functional freedom and are
parameterized by two functions ¢', $? that depend on x and any derivatives
of the integrals w" up to a certain differential order.

e The differential operators O that yield symmetries of (1), when applied to
the tuples t(qbl, ¢2), are (2 X 2)-matrices.

e The Lie algebra structures transferred from sym Eroq, to the domains of [J
are described by the bi-differential brackets {{, }}g that contain two com-
ponents.

e The Hamiltonian structures A that are defined on the domains of the op-
erators O but take values elsewhere (in the Lie algebra of velocities of the
integrals w’, see [25] and [10]), are also (2 x 2)-matrices. Likewise, the brack-
ets {{, J}4, transferred onto the domains of Ay from the commutators of
Hamiltonian vector fields in their images are also two-component (thence

the equality {{, Jo = {{, }} 4, makes sense).

'For example, the paper [24] contains a brute force classification of integrable one-component
hyperbolic equations with respect to the low-dimensional characteristic Lie algebras.
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e The KdV-type hierarchies of velocities of w’ and the modified KdV-type
hierarchies of commuting Noether symmetries of E1,qa, Which are related
by two-component Miura’s substitutions with the former, are composed by
the (right-hand sides of) two-component evolutionary systems.

We use the constructions and follow the notation of [9,10,12] except for the
characteristic Lie algebras that were introduced in [15] and were discussed in detail
n [20]. All notions from the geometry of PDE are standard (see [2,13,18]). All
extensive calculations were performed using the software [16].
To begin with, we recall that in the fundamental paper [21] A. B. Shabat et
al. proved the existence of maximal (r = 7 = m) sets of conserved densities
Wiy ew., Wy € kerDy‘gT

)
oda

wl,...7wf€keer|€TOda. (2)

for E1oda if and only if the matrix K in (1) is the Cartan matrix of a root system
for a semi-simple complex Lie algebra of rank 7, which is always the case in what
follows with » = 2. Note that the integrals (2) allow to replace the derivatives
of unknown functions of any sufficiently high order using the derivatives of the
integrals. In [20] A. B. Shabat proposed an iterative procedure that specifies an
adapted system of the remaining lower-order coordinates and that makes linear
the coefficients of the linear first-order characteristic equation Dy (w) = 0 on Exgda-
That algorithm is self-starting; it considerably simplifies the search for the first
integrals of the characteristic equation and gives the estimate for the differential
orders of solutions.

Another method (which we do not use here) for finding the first integrals is
based on the use of Laplace’s invariants, see [6,25]. The authors of [25] investigated
(primarily, in the case of one unknown function and one equation £ upon it) the
operators that factor symmetries of £. Also there, the pioneering idea to study
the operators whose images are closed under the commutation was proposed. We
indicate further the papers [4,9,10,22,23] that address the problem of construction
of such operators for multi-component hyperbolic systems of the Liouville type.

In [9] and [10] we obtained explicit formulas for the operators O that yield
higher symmetries of the Euler—Lagrange Liouville-type systems and for the bi-
differential brackets on their domains, respectively. The former construction yields
the generators of the symmetry algebras for such systems and the latter describes
the commutation relations. The general concept of total differential operators
whose images determine involutive distributions on the infinite jet spaces has
been elaborated in [12].

This paper is structured as follows. First we outline our basic concept using the
scalar Liouville equation ug, = exp(2u) as the motivating example. This covers
the case of the root system A;. The following fact, which holds true for any rank
r > 1, is very convenient in practice: the differential orders of the r integrals w!,
..., w" for the 2D Toda systems (1) associated with the semi-simple complex Lie
algebras g are equal (up to a shift by +1) to the exponents of g, see [21]; the table
of values for the respective orders is given in [8, §14.2].
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Then we realize the geometric scheme
Dy(w)i() — w17w2 — O Ak — {{, }}D; Ak — A()7

for the simple complex rank two Lie algebras (for the root systems Ag, By ~ Co,
and Gg). In other words, we associate the operators to invariants, the brackets to
operators, and find the deformations of the Poisson structures. Only once, for the
root system As, we calculate the characteristic Lie algebra for the corresponding
2D Toda chain (1) and obtain the integrals w!, w? using the adapted system of
coordinates. We modify the scheme of [20] such that, first, the two-component
Toda chain is not represented as a reduction of the infinite chain and, second,
we do not introduce an excessive third field which is compensated by using a
constraint (as in [20]).

Remark 1. We do not of course re-derive the structures for the algebra Dy =
A1 ® A; that is not simple, since the operator [J and KdV’s second Hamiltonian
structure Ay are known for each of the two uncoupled components of the chain (1)
with K = (29), see Example 1 below. However, the “z-component” of the full
symmetry algebra with the generators

B (D#l 0 > <¢1 (, [w#], [w#z])>
P00 0% \2(a, [, [wh?)
is not just the direct sum of the two symmetry subalgebras for the two Liouville
equations. Indeed, this formula shows that the integrals can be intertwined in the

generators, although the fields are not coupled in system (1) with the choice of K
as above. This proves that the symmetries intertwine the fields.

Remark 2. Each of the operators [J, which we obtain from the r integrals,
consists of r columns, one column for each integral. In the » = 2 case, only the
respective first columns were specified in the encyclopaedia [1], see also [17]. Here
we complete the description of the symmetry generators.

1 Basic concept

Let us begin with a motivating example.

Example 1 (The Liouville equation). Consider the scalar Liouville equation
ELiow = {ugy = exp(2u)}. The differential generators w, w of its conservation
laws [n] = [ f(z,[w])dz + [ f(y,[@])dy are w = uZ — ugy and © = ul — uy,
such that Dy(w) = 0 and D, (w) = 0 by virtue (=) of ELiou and its differential
consequences. The operators 1 = u,; + %Dz and O = Uy + %Dy determine higher
(¢, @) and Noether (resp., ¢, ¢, ) symmetries of the Liouville equation as follows,

o =0(e(, [w]), o= <5H(§z;)[w]))’
¢ =0(o(y, [@])), ¢c= E<5H(§/£D[w]))
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for any smooth ¢, ¢ and H,H. Note that the operator O = %D;l o (&(ﬁ))* is
obtained using the adjoint linearization of w, and similarly for .

Each of the images of [J and [J is closed w.r.t. the commutation such that, in
particular,

[Op).0()] =0(p,do),  p=p(z,[w]), ¢=q(z, [w]),

where the bracket [, |g on the domain of O admits the standard decomposition
(the vector field 0, = 3", D¥(y) - 0/0uy, is the evolutionary derivation),

[p, 4o = 0oy (4) — 9o (p) + {{p: d}}
For the operator O on the Liouville equation, the bi-differential bracket {{, }} o is

{r,a}}o = Dx(p) - ¢ —p- Dx(q),

and similar formulas hold for the operator [J. The symmetry algebra sym & iou ~
imO + im [ is the sum of images of these operators, and the two summands
commute between each other. [im[J,im O] = 0 on Epiou.

The operator [J also gives higher symmetries of the potential modified KdV
equation Epmkav = {u = —%umx + 42 = O(w)}, whose commutative hierarchy
is composed by Noether symmetries ¢, € im(do §/dw) of the Liouville equation.
The operator [J factors the second Hamiltonian structure By = [ o A o O*
for Emkav, here A1 = D 1 = 1211_1 is the first Hamiltonian operator for the
potential KAV equation and equals the inverse of the first Hamiltonian operator
for KdV.

The generator w of conservation laws for &0, provides the Miura substitution
from E,miay to the Korteweg-de Vries equation Exqy = {w; = —%wmm + 3ww, }.
The second Hamiltonian structure for £xqyv is factored to the product Ay =0%o
Bio O, where By = D, is the first Hamiltonian structure for the modified KdV.
The bracket {{, }} on the domain of O is equal to the bracket {{, }} 4, induced on
the domain of the operator Ay (which is Hamiltonian and hence its image is closed
under commutation) for Ekqy. In what follows, we refer to these correlations as
standard, see [9].

Definition 1 ([25]). A Liouville-type system? & is a system {ug, =
F(u,ugz,uy;x, y)} of hyperbolic equations which admits nontrivial first integrals,
see (2), for the linear first order characteristic equations D,| & (w;) = 0 and

Dw‘EL (w;) = 0 that hold by virtue (=) of &..

Example 2. The m-component 2D Toda chains (1) associated with semi-simple
complex Lie algebras [14] constitute an important class of Liouville-type systems,
here v = (u',...,u™). Further on, we consider these exactly solvable systems,
bearing in mind that the reasonings remain applicable to a wider class of the
Fuler-Lagrange Liouville-type systems £1,. We also note that all conservation laws
for the 2D Toda systems &, at hand are of the form [ f(z, [w])dz® [ g(y, [@]) dy.

2There exist other, non-equivalent definitions of the Liouville type systems.



92 A.V. Kiselev and J.W. van de Leur

Remark 3. The 2D Toda systems (1) are Euler-Lagrange with the Lagrangian
density L = —3(kug, uy) — H,(u;z,y). The (m x m)-matrix & with the entries
Kij = 2{ai, a5) - |72 || 72 = K?/\ailz is determined by the simple roots oy,
of the semi-simple Lie algebra. Let m = 0L/0u, be the momenta, then it can
be readily seen that the integrals w!, ..., w™ of the characteristic equation are
differential functions w® = w*[m] in m.

Proposition 1 ( [21]). The differential orders of the integrals w® with respect to
the momenta m for the 2D Toda chains (1) associated with semi-simple complex
Lie algebras g coincide with the exponents of g.

The following theorem is an adaptation of the main result in [10] to the ex-
ponential 2D Toda chains &, associated with semi-simple complex Lie algebras.
The integrals w® for such nonlinear Liouville-type hyperbolic system can be ob-
tained using an iterative procedure that is illustrated in section 2.1 below. In the
meantime, we assume that the integrals are already known. Let them be minimal,
meaning that f € ker D,)| g, implies f = f(z, [w]).

Theorem 1. Let the above assumptions and notation hold. Introduce the operator

0= (V)" (3)

w

which is the operator adjoint to the linearization (the Frechét derivative) of the
integrals w w.r.t. the momenta m. Then we claim the following:

i. Up to x < y, Noether symmetries wr of the Lagrangial L for the 2D Toda
chain &, are

M) for any 'H.

(’%:D( dw

it. Up to x < y, symmetries @ of the system &, are ¢ = D(qb(:n, [w])) for any
p="¢ ..., 0").

iii. Under a diffeomorphism w = wlw]|, the r-tuples ¢ are transformed by

o 0= [(t5")] (@)

Therefore, under any reparametrization @ = ulu| of the dependent variables
i = tub,...,u™) in equation &, and under a simultaneous change W =
wlw], the operator O obeys the transformation rule

O~ 0= 000 (%)

w w=wlu]"

u=u[t]

w. The operator
flk:D*o(ﬁgﬁ))*oD (4)

is Hamiltonian.
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v. The image of the operator O is closed with respect to the commutation in the
Lie algebra sym Ey,. Consequently, the operator [ is a Frobenius operator
of the second kind, see [12].

vi. The bracket {{, }}g on the domain of the operator O satisfies the equality

{{7 }}D = {{7 }}Ak (5)

Its right-hand side is calculated explicitly by using the formula ( [13], see
also [11]) that is valid for Hamiltonian operators Ay = || >._A? - D],

Wy, = X S 17 (Do > S D.)- %z])(qi) (6)

o >0 i=1 7|>0 j=1

This yields the commutation relations in the Lie algebra sym &y,.

vii. All coefficients of the operator Ay, and of the bracket {{, Yo are differential
functions of the minimal conserved densities w for £y,.

The above theorem is our main instrument that describes the symmetry generators
for 2D Toda chains and calculates the commutation relations in the symmetry
algebras.

2 The root system A,

Consider the Euler-Lagrange 2D Toda system associated with the simple Lie
algebra sl3(C), see [14,15,20],

gToda = {u:cy = eXp(Qu - 1)), Vzy = exp(—u + 21})7 K = (—% _% ) } (7)

2.1 The characteristic Lie algebra

We first realize two iterations of the self-adaptive method from [20], which is based
on the use of the characteristic Lie algebra, and we obtain two integrals w?, w?
of the characteristic equation Dy(w) = 0 on (7). Our reasonings differ from the
original approach of [20]: we do not introduce excessive dependent variables and
hence do not need to compensate their presence with auxiliary constraints.

Our remote goal is a choice of three layers of the adapted variables b(l], bg,
bl, b3, and bl such that all the coefficients of the linear characteristic equation
also become linear. Then all the integrals will be found easily, expressed in these
variables. The number of the adapted variables is specified by the problem, and
we have to admit that, actually, b% will be redundant a posteriori because it will
be replaced using the integral w! in the end.

Step 1. Regarding the exponential functions ¢(i) := exp (Z] Kguj) in the
right-hand sides of the Toda equations (1) as linear independent, collect the coef-
ficients Y; of ¢(4) in the total derivative Dy, = >~ ¢(i)-Y;. Clearly, the solution of
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the characteristic equation Dy (w) = 0 on the Toda chain is equivalent to solution
of the system {Yl(w) =0,1<:i< m}.
For system (7), we obtain the vector fields

0
_ _ —_ )2 _ ...
Y| = i + (2uy — vy) D + ((2ug — v2)” + (2Uaz — Vaa)) I +--, .
0 ) 9

The underlined terms are quadratic in derivatives of the fields, and it is our task
to make them linear by introducing a convenient system of local coordinates (see
take 2 of step 3 below).

Calculating the iterated commutators Y(;, ;) = Yo [ Vi, Vi) )] of
the basic vector fields Y;, we generate the characteristic Lie algebra [15,20] for
the Toda chain. If this algebra is finite dimensional (which is the case here), then
the exponential-nonlinear system (1) is exactly solvable in quadratures; if the
characteristic algebra admits a finite dimensional representation, system (1) is
integrable by the inverse scattering (ibid). For any root system and the Chevalley
generators ey, f,, and b, of the semi-simple Lie algebra g, see [7], the characteristic
Lie algebra is isomorphic to the Lie subalgebra of g generated by the Chevalley
generators f,, see [15].

For Ao, we obtain the commutator

0 0 0 0

Yigp) = ——0— — Uy ——— + Bvy ———
@D = " ue T Gume " Duges " Ovnes

R

(This manifests a general fact that is always true: the leading terms of the (k+1)-
st iterated commutators are the derivations w.r.t. some derivatives u% 41, Whose
order is higher than in the leading terms of the preceding, k-th, iterated commu-
tators.) We finally note that both triple commutators Y(; 5 ;) and Y{9 2 1) vanish.

By the Frobenius theorem, a drop of the number of linear independent iterated
commutators at the i-th step is equal to the number of first integrals of the
characteristic equation that appear at this step. The differential order of these
new integrals for the Toda chains will be ¢ + 1.

For the system (7), there appears one (1 = dim(Y;) — dim(Y(;, ;,))) integral,
w', of order 2. The second and last one (1 = dim(Y(;, 1)) — (Yi1,inii) = 0)),
the integral w?, has order 3. For arbitrary root systems, the differential orders
(shifted by +1) of the integrals are described by the proposition in the previous
section.

Step 2. Our remote goal, see above, will be achieved when the expansion
m i m—1 i
Dy =3 BVt Y B Yigus - mod 3t ker Dyl — ker Dyl

is found for the other total derivative, D,. Here the vector field 3 contains only
the derivations w.r.t. the (yet unknown) integrals and their derivatives, and the
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dots stand for finitely many summands provided that the characteristic algebra is
finite dimensional. The former idea exprimes the replacement of the higher order
field derivatives, “2 with k£ > 1, using the integrals, while the latter assumption
is again based on the fact that there are as many integrals as fields whenever K
is a Cartan matrix.

By definition, put b} := u’. Substituting the vector fields Y; contained in (8)
for 8/0ul, in D,, we obtain the expansion D, =ty Y7 + Vgz Y2 + - - -, where the
dots stand for the derivations w.r.t. second and higher order derivatives of the
dependent variables. Consequently, we set b} := ul_.

Step 3. Using the four adapted coordinates b} and b{, we rewrite the basic
vector fields Y}, as follows,

0

- ob

25 —b3) = +--- and Yo =

0
1 2

Y
! bl

0
a2
Solving now the system Yi(w!) = 0, Ya(w!) = 0 for w'(b}, b3, b1, b?), we obtain
the integral w! = Uy + Vpr — ui + UpVy — v%. We note that, from now on, the

coordinate v,, and its descendants can be replaced using w®, 4, and first order
derivatives.

Step 1, take 2. Within the second iteration of the algorithm, we repeat
steps 1 through 3 advancing one term farther in the expansions.

Let us indeed replace v, (although it remains an adapted coordinate) with w!.
Therefore we expand the vector field D, as

— 0,

Dy=c(1)-Y1+¢(2)- ai mod 3: keery|6L

Vg

where the derivations w.r.t. w! and its descendants cut off the ‘v-part’ of the total
derivative D,. This yields

0
}/—(271):—8,“—”—’—7

but now the commutator does not contain any derivations w.r.t. the derivatives
of v.

Step 2, take 2. Using the three vector fields, Y1, Y2, and Y(3 1), we rewrite

Dy =upe Y1 + 050 Yo + ((2um - Ux)umm - uwxw) : YV(271) +--- mod 3:
kerDy‘(gL — kerDy‘gL.

Consequently, we set bl 1= (2uy — Vg )Uzz — Usee-

Step 3, take 2. Calculating the derivative Dy‘gL(bé), we substitute it in D,
and collect the coefficients Y; of the exponential nonlinearities ¢(i) in this total
derivative.
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The result is beyond all hopes: the coefficients of both fields, Y7 and Y5, are
linear in the adapted coordinates,

9 9 9
vi= L @h o) ol
1= gpr (o —b)  gpr F b
9
Vo= Lo (o) ot O
2= g+ (Tl 20) g by

In other words, the quadratic terms, which were underlined in (8), are transformed
into the linear ones. This is due to the quadratic nonlinearity in the new adapted
variable bl.

Finally, we solve the characteristic equation Y;(w?) = 0, Ya(w!) = 0 for
w?(b§, b3, b1, b2, b)) under the assumption® Ow?/9b} # 0. We find the solution
w? = —b — bZbl +bib? + (66)21)3 — bé(b8)2. Returning to the original notation, we

obtain w? = Uypy — 2Uptpy + UpUpy + u%vm — uwv%. Obviously, the integral w? can
be used to replace the derivative u,,, and its differential consequences.

We conclude that now, at the endpoint of the algorithm, both total derivatives,
D, and D,, contain finitely many terms modulo the vector fields that preserve
(respectively, annihilate) the kernel ker Dy| £

In what follows, we do not repeat similar iterative reasonings for the root
systems Bo (see (12)) and Gg (see p. 100), but write down at once the integrals
of orders 2, 4 and 2, 6, respectively. The second integral w? for By (with a minor
misprint in the last term) and the higher order ‘top’ for w? for Gy are available in
the encyclopaedia [1].

2.2 The symmetry algebra: operators and brackets

From the previous section we know the minimal integrals
1 2 2
W' = Ugy + Uz — Uy + UgVz — Uy,

2

2 2
W = Uggy — 2UgUgy + UgUgy + UV — Ug Uy,

for the 2D Toda chain (7) associated with the root system Ay. Hence we are at
the starting point for the description of its symmetry algebra and construction
of Hamiltonian operators for the corresponding KdV-type hierarchies. Let us
introduce the momenta m' := 2u, — v,, m? := 2v, — u,, whence we express the
integrals as follows,

w' = 3ml +3m2 — (mH?2 —m'm? — (m?)?
w? =2m}, +mZ, — 2m'm; — m*m; + Z(m

+ %(m1)2m2 _ %ml(m2)2 _ %(m2)3‘

1)3

3 A practically convenient feature of the algorithm is that it allows to fix the ‘top’ (the higher
order terms) of the first integrals in advance, whence the redundant freedom in adding derivatives
of the previously found lower order solutions is eliminated.
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By the general scheme of [9,10], the symmetries (up to z <> y) of (7) are of the
form ¢ = O(¢(z, [w'], [w?])), where ¢ = (¢', ¢?) is a pair of arbitrary functions
and the (2 x 2)-matrix operator in total derivatives is given by formula (3),
_ <um + D, —%D% —uzDy — %u% — %uwi + %v% + %um - %vm> )
Vg + Dy —%D% + %um — %vm — %u?c + %uxvx + %v%

Next, we calculate the Hamiltonian operator (4), Ay, = <ﬁ; 2;2 >, where for the

root system Ay we have that*

Ay =2D2 +2w' D, + w!,

Ay = =D —w' D} + (3u® — 2w}) - Dy + (20} — w},),

Ast = DY+ w' D2 + 302D, + w?

Az = —3D] — qw' D} — 2w, DI + (2w} — 2wy, — 3(w')?) - Dy

+ %(311)92“ — 2wglcm — 2w1w916).

The bracket (6) for Aj, equals

= 1 1.1 1.1 1 2 2.1
{pahs, =|ped — P G|+ [Prad — P 0]
+ 30 G — Prawt®) + 30 (007 — P20%), (10a)
{5, a0, = [Phd' —p'ad + 200" — P°00)] + PPady — Phad’. (10b)

Consequently, not only the image of the entire operator (9) is closed under the
commutation, but the image of the first column, of first order, is itself closed under
commutation (see, e.g., [9] or the encyclopaedia [1], where only the first column
of (9) is presented). However, the image of the second column of O = (0y,y) is
not closed under the commutation. Indeed, we box the individual bracket {{, }} o,
for the (2 x 1)-matrix operator [J;, and we underline the couplings of components
in the domain of [Os; under commutation, they hit both images of the first and
second columns.

Performing the shift w? ~— w?+ X\ of the second integral, and taking the velocity
of the operator flk,

. d .
A&Q) SN ‘,\zo (Ak)’

we obtain the ‘junior’ Hamiltonian operator fl?) = ( 310)30 3% z) that is compatible

with the former. Obviously, the bracket {{, }} ;2 on the domain of fl?) vanishes
1

identically. (We note that the analogous operator Agl) = % =0 (flk), where

4For any root system of any rank, the upper-left corner A1 of the operator (4) is the second
Hamiltonian structure for the KdV equation. The leading coefficient 8 at D2 depends on the
root system, see [9].



98 A.V. Kiselev and J.W. van de Leur

wh + w! + p, is not Hamiltonian at all.) Reciprocally, this ‘senior’ Hamiltonian

operator A can be obtained by taking the Lie derivative of the variational Poisson
bi-vector that corresponds to Agz) along a suitable evolutionary vector field [3].

The pair (A§2),Ak) is the well-known bi-Hamiltonian structure for the Boussi-
nesq equation (e.g., see [18])
wf =2w2 —wh,, w;=—32w, 2wl + w2, (11)

Tx) zrr ~ 3

Indeed, we have that
- ; 2 2 2 .0
;=AY f/%[wlwi 3w’ - B!+ (?)?] dz = Ak%/uﬂdx.

Both densities, w! and w?, are conserved on system (11). The symmetry w, =
Ay, % J w! dz starts the second sequence of Hamiltonian flows in the Boussinesq
hierarchy 2, see [9] and references therein.

The modified Boussinesq hierarchy 9B shares the two sequences of Hamiltonians
with the Boussinesq hierarchy itself by virtue of the Miura substitution w = w[m]|
with m = m[u]. Namely, for any Hamiltonian H[w], the flows

u; = 6H[m]/om, m, = —6H [m[u]] /ou

belong to the modified hierarchy B. The correlation between the two hierarchies,
2 and B, and the Hamiltonian structures,

Akv 12152) = (Al)_17 Aka and Bl = (El(‘:))* = Bl_17 Bk’v Bk’7

for their potential and nonpotential components are standard, see the diagram
in [9]. The velocities u, constitute the commutative subalgebra of Noether sym-
metries of the 2D Toda chain (7).

3 The root system B,

The Toda system is specified by the Cartan matrix K = (_% _3):
Ugy = exp(2u — 2v), vy = exp(—u + 20).
The integrals for it are of orders 1 and 3 with respect to the momenta:

w' = gy + 204, — 21}920 + 2upuy — ui, (12a)
w? = vy, + Vg (Uggr — 2Vp00) + Ugz Uz (Vy — 2uy) (12b)
+ Vg (dvuy — 211:% — ui) + Vg (Ugy — Vgz)

+ b + 0202 — 203u,. (12¢)

Hence the Frobenius operator (3) is

|:|11 \:‘12 1 Uy + 2Dx
0= (0,0%) = ( > , where O'= 5 and
Uor Do vz + 5D,
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g = ch + (um — ui) - D, + (27}%% — 4V U + 2Upp Uy — 2vxu§ + 21}:{;:{;:{;),
Loy = Dg + ’Ung + (2Ugcugc - 'Ug; - Ui + Vga + Umc) Dy,

+ (4@%% — 2052V + 2Ugr Uy — QUxui + 2Vp00 — 2113).

The Hamiltonian operator Ay = (ﬁ; ﬁ;g) has the components

Aqp = 10D? + 4w' D, + 2wy,
Ayg = 3D5 + 3w' D3 + 6wlD? + (3wl, + 8w?) - D, + 6w?,
Aoy = 3D2 + 3w D2 4 3wlD? 4 8w’ D, + 2w?,
Agg = DI + 2w' D2 + 5wl D3 + (6w}, + 6w? + (w')?) - D2
+ (4wl + 3wlw! + 9w?) - D?
+ (i + Tw?, + (wh)? + dw'w? + wlwy,) - D,
+ 2 (wiw?® + wl,, + wiwh).
Therefore the components of the brackets (5) for both A, and O are
{p. Wt = 200" a; — p3d") + 3(padi — Prds) + (P05 — PIGE,)
+w! (P22 — Padzs) + 20 (0705 — P20%),
{7, Bt = 60" ez — p2d®) + 2062 — P2a") + 200 Grow — Pinad’)
+ (Phati — Padze) + 20" (P°F — P2G°).
Similar to the case of (10), the commutation of symmetries that belong to the

image of the second column [J? of the operator [ = (Dl, Dz) for By hits the

image of the first column .
The ‘junior’ Hamiltonian operator fl?) = % | )\ZOAIC is again obtained by taking

the shift w? — w? 4+ X in A

A® _ 0 8D,
1 7 \8D, 6D3+4w'D, +2wl)"

The new Hamiltonian operator is compatible with Aj.. The bracket on the domain

~2) . . L oo o
of A is given by {7, WL, = 2(p3a® — p?¢2), {F.q% e = 0. Likewise to the

1 1

root system Asg, the shift w! — w! + u produces the operator Agl) = % u:oA’f
which is not Hamiltonian.

The pair (A§2)7 Ak) determines the hierarchy of the KdV-type system

wi = 6w?, w? = D, (2“’92@9@ + 2w1w2).
Here we have again that w; = Ak% f w? dz, and the translation
~ 0
Wy = Ap— /wl dz
ow

starts the auxiliary sequence of flows. The construction of the modified hierarchy
is analogous to the previous case of the root system Asg, see [9] for details.
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4 The root system G

The Toda system for K = ( ?,’ _%)
Uzy = exp(2u — v), Vgy = exp(—3u + 2v). (13)

The differential orders of the integrals w.r.t. m’/ equal 1 and 5, respectively:
1 1 2 1,2

W = Ugy + Uzg — Uy + Up Uy — 53Uz,

2 2 7 2 7

W = Ugy — 2UgUsy + UpVsy + 10UgzUp Uy — BUgruy — FUALVE + §UAL Vs

- 3'04:(;“:07):0 + %U4Z‘u§,‘ - %'04:(;7)925 + %'04:(;7):0:0 + %'04:0“9090 + %u:c:c:cvxxux
+ 20uxxxu:c:cvx - 40“:0:(::(;“9090“:0 + %ux:c:cvxxx - %u:c:cxvxxvx

+ 16uxmvu 18uxxwu2 Vg — éumvxv + ummmuxv2 139 VpzgUza Uz
+ %'Ummmuxwux - 8Umvxui - §Uxmv'ummvm - %'Ummmvxxux + %'Ummmuivx

2 2
- 27}:0:(::0“:07) + 27}37}:{::{::{; + %U;px;p - 13771/:0:(:7) + 40uwxu:c - 28U 2 Uz Vs

— 2umvmv + £ 25 ?m vy — 16um + umv 5umuxv + 15umu2fu2
— 12umu§vm + 538umvmuwi — 34umvmu + 49u92mvm + %vmvgum
— 2—871)293 + 12Umku3 3;vmv2u2 Svmv +3 2 92” Uy — 4U92mumvw
+ 3 22 02 — Bugpult — 3uxv+ v6+3uv +1324 3udv
The Frobenius operator [ is
0= (Dl,Dz) = (gll 512> , where 0! = (uz + 3Dx> and (14)
21 22 Vg + 5D,

Oy = 2D° + u, DY + (15%% ~ 1402 — 502 + 1dug, + 5vm) . D}

+ <8vxm — 16,0, + 10u:2cvw + %vmum — 44ty

130 uxv + 24Uy p Uy — 8u§2 + 26u;c:c:c) : Dgzc
+ <12u‘2vw — 160402V — 38Uzrrly — 4u92£v926 + 4umv£ + 24Uy 00 Vs
+ 44Upp Ve + 2vmui + ?vxmux + 10umu:20 + 21uyy + Suyy

— 1602

e — 14U uyvy + %vmuwi — 51u:2m — 9ui) - D,

+ <15u‘21)§ — 23umuxvg2ﬂ — %vxmuxvx + %uxvi + 18umuivx
— 12vmu:2cvm + %vmuxzﬂ + 28Upp Vg Uy — AUppVpr Vs + 10ULpp UL Vs
+ 12us,; + 3vus, + umwv — 20u4uy + 4Umvx + %mzum — 6V Vs
+ QugpVy — 2UprrUzr — 20Vp22Vze + 26Vpp0Uss — 8u2 1)3 + 6umv§
— 8u92m 4vmv + 26UpppVpe + 2vxmv 8uxmu2 %0 112 2Uz
— 9uivw — BUixvx + 14Ummmug2c)7

Cay = 3D7 + (20%% — 2002 + By, — Bo2 4 20um) . D}
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+ <40uwm — 2uxv — 80Uty — ?vmvm + 2u:2cvw + 40V, Uy

+ 3371)“:0 + 38Upr Uy — % ) D2

+ <38umwi — 2511:%1, — ?vmzvm — 68UgppUy — 23u:20v92c + 36u§vw
+ 9umv2 + 66U Vpr + 2vmui + 34V Uy + 36umu:20 — 86u92m

— 18u + 3duy, + 371)490 AU U Vg + 2052 U Vg
- gvx + 5uxvx> - Dy
+ (36umui1}x — 220002 UgVy — %U?C + 36u —|— 7ux 46umuxv2

2 2
— 18vyuy vx + 23V2Uz Uy + 40UzpVpp Uy — 6UppVerVs + AUpza Us Vs
+ 20us,; + 3 ’st + 3uxmv — 40uguy + 6fumfux + 20V45 Uy — V4V,
+ 18ug,vy — 120Uppp sy — %vxmvm + 40V 00 Ugy — 25u:20v2

+ 12umv — 6Umv + 40UpprVay + 3%“1} 201; — 18uivw
— 14umvw + 20vmzu§>.

Using the fact that the coefficients A;; of the Hamiltonian operator
2 An A12>
AL =
F <A21 Agg
are differential functions of the integrals w, we deduce for Gy that®

A = 14D3 +2w' D, +w1
Agp = 3D7 + Gw' D + 2wy Dy + ((w 1)2 +Bw,,) - D}
+ (6w? +@w4x—62w w' — 62(w})?) - D,

Wy

5

1 1
TTT 96w:{::c w:c)

+ (38l —28wlwl) - D2 + (5uw? ; Hwh, — 32w'w
Az = 3D + B! DS 4+ Bl D 4 ((w!)? + Fwas) - Ds
(wam + 3dwlw ) D? + 6w’D, + w2,
Ay = 2D 4 30w' D + 135wl DS + (414w, + 33 (w')?) - DI
+ (819w}, + 23§6w wy) - Dy
+ (1119wl + 4w? + 4837°wmw + 186 ()2 + 8(w')?) - D}

+ (1065ws,, + 10w} + FPwhwy,, + 1220wy, w; + 60w, (w')?) - D;

TTT
1 1

(699% + 2602, + 22y} w4 36w w? + 1961 !

— 852 (gl )2 — 428w! (wh)? — 88(w)2w! + 54(w )).Dg

(303w7m +20w2,, + 39200 ! 4 5dwlw! — Bl w! 4 5w’

®Here part (vii) of our main theorem reveals its true power: a verification for Gz that the
bracket {{, }g, which depends on the fields u through the integrals w®, satisfies equality (15),
see below, results in a 50 Mb size expression.
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— 5224} — 702w,

+ 324wl (w!) ) . D2

w 12 — 1908w’ wlw' — 252(wl)3

Trxr fE"E Txrxr ( Txr T

+ <78wéx + 15w?, + 328w, w' 4 58w w' — %wmw + 36w2w;
-~ @wix W — 514w4x( 1)2 + 5dww,, — 36w’ (w')? — 1086(wy,, )?

— 2000w}, wiw' —1652(wl,)?w' — 1120w}, (wh)* + 396w’ (w')?
+540(w?) (w1)2> . D,
+ <9wéz + 3w§z %whwl + 20wimw1 — %wmwl + 20w§$wi

- 708w4xw wl 4 18w?w xm - xm- (1424w w —1—524( 1)2

— 144(w")?) = 36w wyw' — 680(wl, ) w) + 648wy, wy(w')?
+216(w’ Pw 1)

Next, we calculate the bracket (5) on the domain of (14) using formula (6):

{3t = [ped' —p'a] + (303,47 — P’63.) + 5 (0@ — Paaiy)
+ 3 4 (pxmv%vx pwammm) + g(pixeim - pzlnmqgmv) + 32w1 (p2Qixx - p}vqu2)
+ 34w (P25, — Pradd)] +9(08,4° — P°65,) + 30345 — PaE,)

140 2 2 2 2 2 2
+ 3w (p'?:(;q —-p q?:c) + 3(p7qux pqu7x) + 6(pxqu6:c - pquxxx)
2 2 1/,2 2 2 2
+ 376w (pﬁxq -p q6:c) (p:cQG:c p6:(;qx) + Qw (prqxx - pquSx)
+ 3 304 (p5m%v pmqu) wwmm(pf)wq -Pp Q5x)

+ 138( D2(0°@3, — p3.0°) + Pwy (.40, — Poadiy)
+ 80w, (1,42 — Piai,) + 22w}, (03,0 _p2(ﬁx)

+ 44w (2,03, — Pieies) + 672w wy (p°¢3, — P14
+176(w' )? (D3, — PL@) + 252ws, (DrsCor — Pralires)

+ 1036°wm(pmqm Pres) + ‘mgﬂwzm(pmq — P’ Coa)

+ 452(w})* (P*Core — Poad’) + 144(w0" ) (03000 — P*G)
+ 180 (210 @” — PP o) + 26(w" ) (D200 — Porals)

+ 1352w, ' (P*Goye — Prgad”) + D760 Wy (D207 0y — Porady)
+ 3B wy, (p7.47 — piqg%m) + 1360w wy,, (p°¢5, — Pr.q”)

+ 1592wy, w} (p° g, — Pard”) + 648w, (w')* (p3.4" — P*d5s)
+68(wy ) (D205, — Pagds) + TT203, (P2,0° — P*02r)

+ 36w} (p3,4° — P°qr,) + 36(w" ) (03,43 — Py

+ 584wy, w' (D3 s, — Predy) + Hwh, (P20 — P°3)
+1020(wy, )2 (p°q% — p2q®) + 38wl (p2q° — p°q2)

+ 1360w, w (P22 — p2¢?) + 680w, w' (P*2 — p2g?)
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+ 36w’ w? (p*q} — prq®) + 648wy, (w')*(phg” — P*@3)
+648(wy,)*w! (phg® — p*2);
{p,. Wt =raq" —p'@s + 5(prd” — P°q) + 3(03.4° — P°a3,)
+ (Poalors — Pranlas) + 200N (D3,00° — PP @he) + 40wy (P2,0° — P*¢5s)
+ 2w (p2,05 — PaGl.) + 38wy, (P24 — P°¢3) + 18(w")*(P°¢2 — pid?).

The equalities

[Ak(), Ar(@)] = A (04, 5@ — 04,00 ) + {7 TH 4, )
and
06, 0@)] = B(803(@ — 90 (7) + {7, o) (15)

hold, where {{p ¢to = {{F, ¢}} 4, for any p. ¢(w, [w]). This yields the commutation
relations between symmetries ¢ = [J(+) of the 2D Toda chain (13) associated with
the root system Go.

Finally, we pass to the KdV-type hierarchy. The deformation % ‘ A:oAk under

w? — w? 4+ \ determines the ‘junior’ Hamiltonian operator

0 6D,
ADS + 36w D3 + 54wk D? + (54wl — 36(w")?) - D,
18wk — 36wlw!

rxrxr

i(2) _
A= 6D,

It is compatible with the ‘senior’ operator flk; the bracket on its domain is given
through

{{ﬁ, J}}z?) = 3671)1 (piq2 - p2q3;) + 18(172%%:(;:(: - piqu2)7 {{ﬁv (T}}?@?) = 0.

Applying the Hamiltonian operator Ay to % f w?de = ((1)), we obtain the KdV-
type system

w! = D, (%wix — 32wlwl, — 32(w!)? + 5w2>, (16a)
w? = D, (3wix + 9w, + 20w'w?, + 18wk w® — 18(11;1)211)2 + %wéxwl
- 96wémwi - %wixwim - %(wimm)z - 138w}1x (w1)2 - 432w}vxww}vw1
— 496(w’ ) w! — 92wl (w!)? + 144w’ (w")® + 108(w;)2(w1)2). (16b)
(The second equation in this system can be simplified by adding to w? a scaling-
homogeneous differential polynomial in w! and thus cancelling some irrelevant
terms.) The Hamiltonian [ w! dz starts the auxiliary sequence of flows by the
translation along xz. The corresponding modified KdV-type hierarchy, and the

Hamiltonian structures By = B} L Bk/, and By, for it, are introduced in a standard
way [9].
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Discussion

The geometric method for the derivation of completely integrable KdV-type hier-
archies, which is illustrated in this note, is the most straightforward and efficient,
to the best of our knowledge. Of course, the three two-component KdV-type
systems which we re-derived in this paper are well known from [5] (e.g., the Bous-
sinesq equation (11), see [18], although the system (16) does not often appear in
the literature). At the same time, we emphasize that the use of Liouville-type
systems is the generator of infinitely many completely integrable bi-Hamiltonian
hierarchies. In [10] we specified the natural requirements on the Liouville-type
Fuler-Lagrange systems &£, and their integrals that ensure the existence of the
characteristic Lie algebras and the applicability of Theorem 1. Since the 2D Toda
chains are only particular examples of such hyperbolic systems, an overwhelming
majority of the arising KdV-type equations have never been explored.

Unlike in the fundamental paper [5], which is based on algebraic considera-
tions, the KdV-type systems are derived here, from the very beginning, in the
bi-Hamiltonian but not in the Lax form. Second, the formalism of pseudodiffer-
ential operators is not required. Indeed, we arrive from the root systems directly
to the 2D Toda chains and then to the Poisson structures, bypassing the ma-
trix representations of the semi-simple Lie algebras g. A posteriori the Lax form
R+ [R,{F] = 0 of the KdV-type system w; = F, which is bi—Hamiltonian6 w.r.t.
the operators Ay and Ak, is obtained using the recursion R = Ay o A and the
linearization £ of the right-hand side F'.

On the other hand, the use of Liouville-type systems allows to regard the
auxiliary linear problems, which are specified by the Lax pairs, from a nontrivial
viewpoint. Namely, for g semi-simple, the ambient r-component 2D Toda chain
is exactly solvable. Therefore, in principle, the modified KdV-type flows should
be lifted first to the bundles with 2r-dimensional fibres, whose sections f(x) =
(f1i,---s fr), g(y) = (91,-..,97) determine the general solutions of the 2D Toda
chains. We see that the liftings of the mKdV-type hierarchies determine the
evolution of these Cauchy data. It is well known that the Krichever—Novikov
equation appears in this context for the root system A;. Simultaneously, the
linear problem vy = (L3/ 2) . (1) for the KdV leads to the evolution equation close
to KN (there is a Bécklund transformation between them). In our opinion, further
analysis of such symmetry liftings for the 2D Toda chains will contribute to the
IST theory of the associated KdV-type systems constructed in [5].

The Lax approach of [5] becomes inevitable if g is a Kac-Moody algebra and
its Cartan matrix K becomes degenerate. In this case our cut-through does not
work without serious modifications. This will be discussed elsewhere.

There is one more thing that we lack. Namely, it is an explanation of the
way the ‘junior’ Hamiltonian operators are obtained through the deformations
of the canonical operators Ak, see (4). In all the cases the operators A, are

SLet us finally remark that k may be greater than 2: for instance, we have that k = 3 for the
Kaup-Boussinesq system, see [10], and two ‘junior’ structures precede it.
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obtained by using the Lie derivatives Lsp(flk) of the ‘senior’ variational Poisson
bi-vectors Ay, along certain evolutionary vector fields 0, (and even vice versa [3],
Ay = [[1211,8@/]]50]“ for some ¢'), see [19] and references therein. However, the
Poisson cohomology theory for Hamiltonian operators on jet spaces is still far
from complete, although its finite-dimensional counterpart is well-established. To
begin with, the preference of certain shift directions for the operator (4) is hard
to predict [B. A. Dubrovin, private communication]. We conjecture that it has
an explanation in terms of the cohomology of the W-algebras for the KdV-type
equations at hand.

Moreover, the resolvability of the Magri schemes, that is, the existence of the
next Hamiltonian at each step (equivalently, the vanishing of the first Poisson
cohomology with respect to the differential [[1211, -]8¢") is not proved. This is a dif-
ficulty of the theory because the differential Hamiltonian operators A are higher
order and thus exceed the frames of rigirous results for the Dubrovin—Novikov
structures. Besides, the symbols of the junior operators Ay are degenerate in
most cases. Therefore the nondegeneracy assumptions are needed to prove the
uniqueness of the trivial solutions for linear homogeneous equations that arise in
the deformation cohomology theory for total differential operators. Two known
and two new non-equivalent definitions of the nondegeneracy of the operators
have been formulated in [10]. Using them simultaneously, we found the natural
conditions upon &y, that guarantee the validity of our main Theorem 1.
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Various versions of the definition of nonclassical symmetries existing in the lit-
erature are analyzed. Comparing properties of Lie and nonclassical symmetries
leads to the conclusion that in fact a nonclassical symmetry is not a symmetry
in the usual sense. Hence the term “reduction operator” is suggested instead of
the name “operator of nonclassical symmetries”. It is shown that in contrast
to the case of single partial differential equations a satisfactory definition of
nonclassical symmetries for systems of such equations has not been proposed
up to now. Moreover, the cardinality of essential nonclassical symmetries is
discussed, taking into account equivalence relations on the entire set of non-
classical symmetries.

1 Introduction

The “nonclassical” method of finding similarity solutions was introduced by Blu-
man and Cole in 1969 [3]. In fact, the method was first appeared in [2] in terms
of “nonclassical group” but the terminology was changed in [3]. Over the years
the “nonclassical” method began to be associated with the term nonclassical sym-
metry [13] (also called @-conditional [8] or, simply, conditional symmetry [6,10]).
In the past two decades, the theoretical background of nonclassical symmetry was
intensively investigated and nonclassical symmetry techniques were effectively ap-
plied to finding exact solutions of many partial differential equations arising in
physics, biology, financial mathematics, etc. See, e.g., the review on investigations
of nonclassical symmetries in [18].

Here we mention only works which are directly connected with the subject of
our paper. In the pioneering paper [3] the “nonclassical” method was described
by means of the example of the (1 + 1)-dimensional linear heat equation. It was
emphasized that any solution of the corresponding (nonlinear) determining equa-
tions gives the coefficients of an operator such that an ansatz based on it reduces
the heat equation to an ordinary differential equation. A veritable surge of inter-
est in nonclassical symmetry was triggered by the papers [9,16,17]. In [16] the
“nonclassical” method was considered in the course of a comprehensive analysis
of a wide range of methods for constructing exact solutions. The concept of weak
symmetry of a system of partial differential equations, generalizing the “nonclas-
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sical” method, was introduced in [17], where also the reduction procedure was
discussed. Moreover, fundamental identities [17, eq. (23)] crucially important for
the theory of nonclassical symmetries were derived (see Myth 3 below). The first
version of the conditional invariance criterion explicitly taking into account dif-
ferential consequences was proposed in [9]. Generalizing results of [7,9] and other
previous papers, in [6] Fushchych introduced the notion of general conditional
invariance. From the collection of papers containing [6] it becomes apparent that
around this time a number of authors began to regularly use the terms “condi-
tional invariance” and “@-conditional invariance” in connection with the method
of Bluman and Cole. The direct (ansatz) method closely related to this method
was explicitly formulated in [4]. To the best of our knowledge, the name “nonclas-
sical symmetry” was first used in [13]. Before this, there was no special name for
operators calculated in this approach and the existing terminology on the subject
emphasized characteristics of the method or invariance. The involution condition
for families of operators was first considered in the formulation of the conditional
invariance criterion in [10,25]. The relations between nonclassical symmetries, re-
duction and formal compatibility of the combined system consisting of the initial
equation and the invariant surface equation were discovered in [23] and were also
studied in [15]. The problem of the algorithmization of calculating nonclassical
symmetries was posed in [5]. Furthermore, the equivalence of the non-classical
(conditional symmetry) and direct (ansatz) approaches to the reduction of partial
differential equations was established in general form in [26], making use of the
precise definition of reduction of differential equations.

In spite of the long history of nonclassical symmetry and the encouraging
results in its applications, a number of basic problems of this theory are still
open. Moreover, there exists a variety of non-rigorous definitions of related key
notions and heuristic results on fundamental properties of nonclassical symmetry
in the literature, which are used up to now and form what we would like to call
the “mythology” of nonclassical symmetry. These definitions and results require
particular care and presuppose the tacit assumption of a number of conventions in
order to correctly apply them. Otherwise, certain contradictions and inaccurate
statements may be obtained. Note that mythology interpreted in the above sense
is an unavoidable and necessary step in the development of any subject.

Basic myths on nonclassical symmetries presented in the literature are dis-
cussed in this paper. We try to answer, in particular, the following questions.

e Is a nonclassical symmetry a Lie symmetry of the united system of the initial
equation and the corresponding invariant surface condition? Can a nonclas-
sical symmetry be viewed as a conditional symmetry of the initial equation
if the corresponding invariant surface condition is taken as the additional
constraint? Is nonclassical symmetry a kind of symmetry in general? Does
there exist a more appropriate name for this notion?

e What is a rigorous definition of nonclassical symmetry for systems of differ-
ential equations? Can such a definition be formulated as a straightforward
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extension of the definition of nonclassical symmetry for single partial differ-
ential equations?

e Is the number of nonclassical symmetries essentially greater than the number
of classical symmetries?

2 Definition of nonclassical symmetry

Following [9, 10, 22, 26|, in this section we briefly recall some basic notions and
results on nonclassical (conditional) symmetries of partial differential equations.
This will form the basis for our discussion of myths in the next sections.

Consider an involutive family Q@ = {Q"',...,Q"} of I (I < n) first order differ-
ential operators (vector fields)

Q° = & (x,u)0; +n°(x,u)dy, s=1,...,1,

in the space of the variables z and u, satisfying the condition rank || (z, u)| = L.

Here and in what follows z is the n-tuple of independent variables (z1, ..., z,),
n > 1, and u is treated as the unknown function. The indices i and j run from 1
to n, the indices s and o run from 1 to [, and we use the summation convention for
repeated indices. Subscripts of functions denote differentiation with respect to the
corresponding variables, 0; = 9/0x; and 9, = 0/0u. Any function is considered
as its zero-order derivative. All our considerations are in the local setting.

The requirement of involution for the family ) means that the commutator of
any pair of operators from @) belongs to the span of Q) over the ring of smooth
functions of the variables x and wu, i.e.,

VS78/ E]CSSIU _ CSSIU(I’7U)Z [QS)QSI] — CSSIUQU-

The set of such families will be denoted by QF.

Consider an rth-order differential equation £ of the form L[u] := L(z,u() = 0
for the unknown function u of the independent variables x. Here, (. denotes
the set of all derivatives of the function v with respect to x of order not greater
than r, including v as the derivative of order zero. Within the local approach the
equation L is treated as an algebraic equation in the jet space J" of the order r
and is identified with the manifold of its solutions in J”. Denote this manifold
by the same symbol £ and the manifold defined by the set of all the differential
consequences of the characteristic system Q[u] =0 in J" by Qs e,

Q) = {(w,ug) € J'| D§* ... D3 Q*lu] = 0, a; € NU{0}, |a] <},

where D; = 0y, + U450y, is the operator of total differentiation with respect
to the variable z;, Q*[u] := n°® — £%u; is the characteristic of the operator Q,
a = (aq,...,ay) is an arbitrary multi-index, |a| := a3 + -+ + ay, §; is the
multiindex whose ith entry equals 1 and whose other entries are zero. The variable
g of the jet space J” corresponds to the derivative dl®lu/ Ozt ... 0xh.
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Definition 1. The differential equation L is called conditionally invariant with
respect to the involutive family @ if the relation

Q?r)L(x7u(r))‘£mQ(r): 0 (1)

holds, which is called the conditional invariance criterion. Then @ is called an in-
volutive family of conditional symmetry (or @-conditional symmetry, nonclassical
symmetry, etc.) operators of the equation L.

Here the symbol er) stands for the standard rth prolongation of the opera-
tor Q° [14,19]:

Qiy = Q"+ > (DI D Q] + € tars,)Oue.

0<|a|<r

3 Myths on name and definition

We restrict our consideration mainly to the case of families consisting of single
operators (I = 1) for simplicity and since mostly this case is investigated in the
literature. Then the involution condition degenerates to an identity and we can
omit the words “involutive family” and talk only about operators.

Myth 1. A nonclassical symmetry operator Q of an equation L is a vector field Q)
which is a Lie symmetry operator of the united system of the equation L and the
invariant surface condition Qu] = 0 corresponding to Q.

This is the conventional non-rigorous way in order to quickly define nonclas-
sical symmetry (see, e.g., [10,11]). It becomes rigorous only after a special in-
terpretation of the notions of system of differential equations and Lie symmetry.
Otherwise, using the empiric definition leads to a number of inconsistencies.

A closer look reveals that the above definition is a tautology. Indeed, the
invariant surface condition Q[u] = 0 means that the function u is a fixed point
of the one-parametric local group G of local transformations generated by the
operator ). Therefore, we can reformulate the definition in the following way.

Reformulation. If the set of those solutions of the equation £ which are fixed
points of G, is invariant with respect to Gg, then @ is called a nonclassical
symmetry operator () of the equation L.

The tautology of the reformulation is obvious. If each element of the set is
invariant then the whole set is necessarily invariant. The definition of nonclassi-
cal symmetry according to Myth 1 leads to the conclusion that any differential
equation is invariant, in the nonclassical sense, with respect to any vector field in
the corresponding space of dependent and independent variables.

The case when the equation £ has no Q-invariant solutions fits well into the
non-rigorous approach in the sense that the empty set is a particularly symmet-
ric set.
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Therefore, uncritically following the non-rigorous approach, we would get no ef-
fective methods for constructing exact solutions and no information on the partial
differential equations under consideration.

There exist a number reformulations of Myth 1 in the literature in different
terms. The first one is in terms of conditional symmetry.

Myth 2. A nonclassical symmetry operator Q of an equation L is a conditional
symmetry operator of the equation L under the auxiliary condition Qu] = 0.

The association of nonclassical symmetries (under the name Q-conditional sym-
metries) with conditional ones can be traced back to [7] (see also [8] and earlier
papers of the same authors). Here the term conditional symmetry is understood
in the following sense [6] (it can easily be defined for the case of a general system
of differential equations).

Definition 2. A vector field Q is called a conditional symmetry operator of a
system L of differential equations under an auxiliary condition £’ (which is another
system of differential equations in the same variables) if @) is a Lie symmetry
operator of the united system of £ and £’.

Conditional symmetries defined in this way essentially differ from nonclassi-
cal symmetries. In particular, auxiliary conditions for conditional symmetries
do not involve any associated conditional symmetry operators. The conditional
symmetry operators of a system £ under an auxiliary condition £’ form a Lie
algebra. Conditional symmetry indeed is a kind of symmetry and can be applied
to generate new solutions from known ones. At the same time, in contrast to
the case of nonclassical symmetries, finding auxiliary conditions associated with
nontrivial conditional symmetries is an art rather than an algorithmic procedure.
This is why sometimes nonclassical symmetries are called either Q-conditional
symmetries, where the prefix “Q)” is used to emphasize the differences between
nonclassical and conditional symmetries, or conditional symmetries without any
connection with Definition 2.

The second reformulation of Myth 1 is in infinitesimal terms. Note that in-
finitesimal criteria lie at the basis of Lie symmetry theory since they allow one
to study linear problems for infinitesimal transformations instead of nonlinear
problems for finite transformations.

Myth 3. The conditional invariance criterion for an equation £ and an oper-
ator Q) coincides with the infinitesimal Lie invariance criterion for the united
system {L, Q[u] = 0} with respect to the same operator, i.e.,

QuyLlu] =0 if  LluJ=0 and Q[u]=0.

The infinitesimal Lie invariance criterion for the invariant surface condition
Q[u] = 0 with respect to the operator @ is identically satisfied as an algebraic
consequence of this condition since

QQlu) = Q)Q[ul = (nu — &uy)Qu] =0 if Q[u] = 0.



112 M. Kunzinger and R.O. Popovych

We also have

QL] = &' DiLlul + > Ly, [ulDf* ... DI Qlul, (2)

o <r
i.e., the equation Q(T)L[u] = 0 is a differential consequence of the equations
L[u] =0 and Q[u] = 0 and, therefore, becomes an identity on the set of their

common solutions. This tautology was first observed in [17].

In the local approach to group analysis of differential equations, a system
of differential equations is associated with the infinite tuple of systems of alge-
braic equations defined by this system and its differential consequences in the
infinite tower of the corresponding jet spaces. The exclusion of the differential
consequence Q(,)L[u] when considering the system L[u] = 0 and Q[u] = 0 seems
unnatural from the viewpoint of group analysis.

A variation of Myth 3 is to replace, due to the Hadamard lemma, the “invari-
ance condition” holding on the solution set of the system L[u] = 0 and Q[u] = 0
by the associated multiplier-condition, to be satisfied on the entire jet space J".

Myth 4. An operator Q) is a nonclassical symmetry of an equation L if there
exist A\' and A% such that

QryL[u] = A L[u] + X*Q[u]. (3)

The problem is to precisely define the nature of the multipliers A! and A2.
A number of different conditions on the multipliers have been put forward in the
literature. The simplest version is to prescribe no conditions at all on A! and A2,
which is obviously unacceptable.

Sometimes A\! and A\? are assumed to be differential functions. This condition
is natural for \! but overly restrictive for A2. In fact, if only such A\? are allowed,
the equivalence relation of nonclassical symmetries up to nonvanishing functional
multipliers will be broken. Moreover, in this case the associated invariance cri-
terion will become merely a sufficient condition for an ansatz constructed with
the operator @ to reduce the equation L£. As a result, a number of well-defined
reductions may be lost.

On the other hand, requiring that both the multipliers A' and A% are polyno-
mials of total differentiation operators with respect to the independent variables,
whose coefficients are differential functions, is too weak an assumption. It arises
from the association of nonclassical symmetries with conditional symmetries for
which such multipliers are admissible. If we choose

A'=¢D; and M=) Ly, [uD ... D,

laf<r

condition (3) obviously becomes an identity for any operator Q). In other words,
condition (3) reduces to the tautology (2) if both A! and A\? are treated as differ-
ential operators of the above kind.
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Comparing Definition 1 and Myth 4 shows that A! should be a differential
function (i.e., a zeroth order operator) and A? should be an order (r — 1) operator.
These conditions for the multipliers can be weakened. Thus, bounding the order
of total differentiations in A2 is not essential. If A\! is a differential function,
condition (3) implies that A? cannot include total differentiations of orders greater
than » — 1. At the same time, explicitly prescribing the bound allows one to fix
the order of the jet space under consideration.

Myth 5 (The main myth of the theory). Nonclassical symmetry is a kind of
symmetry of differential equations.

Any kind of symmetry of differential equations (Lie, contact, hidden, con-
ditional, approximate, generalized, potential, nonlocal etc.) has the invariance
property, i.e., symmetries transform solutions to solutions in an appropriate sense.

The basic prerequisite of the definition of nonclassical symmetry is the consid-
eration of only the set of solutions invariant under the associated finite transfor-
mations. It is impossible to use nonclassical symmetries in order to generate new
solutions from known ones. A nonclassical symmetry operator () of £ represents
only a symmetry of

e cach Q-invariant solution of £ (as a weak symmetry [17]) and

e the manifold £N Q(T) in J", where r = ord L.

The manifold £NQy, is properly related to the joint system L[u] = 0 and Q[u] = 0
of differential equations only if the operator () and the equation L satisfy the
conditional invariance criterion.

At the same time, properties of the set of nonclassical symmetries and proper-
ties of the set of Q-invariant solutions for each nonclassical symmetry operator @)
characterize the equation L.

Since a nonclassical symmetry is not in fact a kind of symmetry of differential
equations, it is of utmost importance to discuss possibilities for replacing the name
by one not involving the word “symmetry”.

4 Nonclassical symmetry, compatibility and reduction

To understand the real nature of nonclassical symmetry, we discuss properties
and applications of Lie symmetries and single out those of them which carry over
to nonclassical symmetries.

Properties of Lie symmetries:

Invariance. Any Lie symmetry (in the form of a parameterized family of finite
transformations) locally maps the solution set of the corresponding system of
differential equations onto itself. This is the main characteristic of any kind
of symmetry. It gives rise to the possibility of generating new solutions from
known ones.
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Formal compatibility. Attaching the invariant surface conditions associated with
a Lie invariance algebra to the initial system of differential equations results
in a system having no nontrivial differential consequences. In other words,
the invariant surface conditions forms a class of proper universal differential
constraints and, therefore, is appropriate for finding subsets of solutions of the
initial system.

Reduction. Each Lie invariance algebra satisfying the infinitesimal transversality
condition leads to an ansatz reducing the initial system to a system with a
smaller number of independent variables, i.e., the reduced system is more easily
solvable than the initial one.

Conditional compatibility. There exists a bijection between solutions of the ini-
tial system which satisfy the invariant surface conditions, and solutions of the
corresponding reduced system. This means that all solutions of the initial sys-
tem invariant with respect to a Lie invariance algebra, can be constructed via
solving the corresponding reduced system.

For nonclassical symmetries, the property of invariance is broken but the other
properties (formal compatibility, reduction, conditional compatibility) are pre-
served. In fact, the conditional invariance criterion (1) is the condition of formal
compatibility of the joint system L[u] = 0 and Q[u] = 0 [23]. We can identify
nonclassical symmetries of L with first-order quasilinear differential constraints
which are formally compatible with L.

Definition 3. The differential equation L is called conditionally invariant with
respect to the involutive family of operators @ if the joint system of £ with the
characteristic system Q[u] = 0 is formally compatible.

What is the main property that adequately represents the essence of nonclas-
sical symmetry?

The fact that the characteristic equations Q*[u] = 0 are quasilinear and of first
order implies the possibility of integrating them explicitly, i.e., an ansatz associ-
ated with the characteristic system Q[u] = 0 can be constructed. In view of the
Frobenius theorem, the involution and transversality conditions for the family @
(together with the fact that the operators from @ are of first order) imply that
the ansatz involves one new unknown function of n — [ new independent vari-
ables. Then the formal compatibility of the joint system L[u| = 0 and Q[u] = 0
guaranties the reduction of £ by the ansatz to a single differential equations £’
in n — [ independent variables. Thus, the number of dependent variables and
equations are preserved under the reduction with @@ and the number of indepen-
dent variables decreases by the cardinality of @), i.e., similarly to Lie symmetries
nonclassical symmetries lead to the conventional reduction of the number of in-
dependent variables.

There exist integrable differential constraints which are not formally compat-
ible with the initial system. Differential constraints can be formally compatible
with the initial system and, at the same time, non-integrable in an explicit form.
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An ansatz constructed with a general integrable differential constraint may involve
a number of new unknown functions depending on different variables. Therefore,
only all the above properties combined (first order, quasilinearity, formal compat-
ibility, transversality and involution) result in the classical reduction procedure.!

The conditional invariance of the equation £ with respect to the family @ is
equivalent to the ansatz constructed with this family reducing £ to a differential
equation with n — [ independent variables [26]. Moreover, reducing the number
of independent variables in partial differential equations is the main goal in the
study of nonclassical symmetries. Since the reduction by the associated ansatz
is the quintessence of nonclassical symmetries, it was proposed in [21,22,24] to
call involutive families of nonclassical symmetry operators families of reduction
operators of L.

Another important property holding for Lie symmetries is broken for nonclas-
sical symmetries. Let the equation £ be of order r and

Denote by L) a maximal set of algebraically independent differential conse-
quences of £ that have, as differential equations, orders not greater than k. We
identify L) with the corresponding system of algebraic equations in J F(z|u) and
associate it with the manifold L ;) determined by this system. For Lie symmetries
we have the following properties.

L. If @ is a Lie symmetry operator of L,y then @ is a Lie symmetry operator of
L, for any p > .

2. If Q is a Lie symmetry operator of L, for some p > r then @ is a Lie symmetry
of E(r)
The first of these properties extends to nonclassical symmetries but this is not
the case for the second one. In fact:

L. If @ is a Lie symmetry operator of L(,yNQ,) then () is a Lie symmetry operator
of E(p) N Q(p) for any p > r.

2. The fact that () is a Lie symmetry operator of L, N Q) for some p > r does
not imply that £,y N Q) admits the operator Q.

Example 1. Let L[u] = up + ugy + tuy, L£: Llu] = 0 and Q = 9;. Then the
manifold L) N Q(y) is determined in J 2 by the equations u; = uy = ug = 0 and
Uge = —tu,. Since Q(Q)L|£(2)QQ(2) = u, # 0, the operator J; is not a reduction
operator of £. Substituting the corresponding ansatz u = ¢(w), where the invari-
ant independent variable is w = x, into £ results in the equation ¢, + ty, = 0,

'Extended notions of reduction are also used. Thus, weak symmetries imply reductions de-
creasing the number of independent variables, preserving the number of unknown functions and
increasing the number of equations [17]. The reduced system can be much more overdeter-
mined than the initial one. The reductions associated with higher-order nonclassical symmetries
preserve the determinacy type of systems, simultaneously increasing the numbers of unknown
functions and equations [15].
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in which the “parametric” variable ¢ cannot be excluded via multiplying by a
nonvanishing differential function. As expected, the ansatz does not reduce the
equation L.

Consider the same operator () and the first prolongation L3y of £, which is
determined by the equations L[u] = 0, D;L[u] = 0 and D,L[u] = 0. The manifold
L3) N Q(3) is singled out from J 3 by the equations

Ut = Ut = Ut = Uttt = Utte = Utzx = 07 Uy = Ugy = Uggx = 0.

The conditional invariance criterion is satisfied for the prolonged system L3, and
the operator Q:

Q(z)L‘E(S)ﬁQ(S): Q(3)DtL‘E(3)ﬂQ(3): Q(3)DIL‘E(3)QQ(3): 0’

i.e.,, @ is a nonclassical symmetry operator of the system L) and the above
ansatz reduces L3 to the system of three ordinary differential equations ¢, = 0,
Yuw = 0 and @, = 0 since

Puw T Py t 10 () t 1 0
Pu =100 Pow =0 and |1 0 O |#0.
Puwww T TPuw 0 ¢ 1 Puwww 0 ¢t 1

Note 1. In general, for any system £ and any involutive family ) there exists
an order 7 such that £,y N Q(, is invariant with respect to Q). This gives the
theoretical background of the notion of weak symmetry [17].

5 Definition of nonclassical symmetries for systems

Myth 6. The definition of nonclassical symmetry for systems of differential equa-
tions is a simple extension of the definition of nonclassical symmetry for single
partial differential equations to the case of systems.

FExample 1 and Note 1 indicate problems arising in attempts of defining non-
classical symmetries for systems of partial differential equations.

Let £ denote a system L(z,u(,) = 0 of | differential equations L'=o, ...,
L' = 0 for m unknown functions v = (u',...,u™) of n independent variables
x = (x1,...,2,). It is always assumed that the set of differential equations form-
ing the system under consideration canonically represents this system and is min-
imal. The minimality of a set of equations means that no equation from this set
is a differential consequence of the other equations. By L) we will denote a
maximal set of algebraically independent differential consequences of £ that have,
as differential equations, orders not greater than k. We identify L, with the
corresponding system of algebraic equations in the jet space J* and associate it
with the manifold L) determined by this system. Let Ly = {Lv,v=1,...,I}.
Note that the general system includes equations of different orders.
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What is the correct conditional invariance criterion for the system L£?

Q(T)L/J‘[,[']Q(T): 07 /J:l”l‘?
u _ _ 0
QL n0y, =0 B=1- 17

[ v=1,...,17

QerL”

=0
LeynQuy 7

All of the above candidates for the criterion are not satisfactory. The second
candidate is not a good choice since it neglects the equations having lower or-
ders than the order of the whole system. Taking the third candidate, we obtain
nonclassical symmetries of a prolongation of the system. As shown by Exam-
ple 1, these may be weakly related to nonclassical symmetries of the system. It
is not well understood what differential consequences are really essential. Thus,
elements of L) whose trivial differential consequences also belong to L) are
neglected by this candidate.

Although all operators satisfying the first of the above criteria give proper
reductions, it is overly restrictive and in fact is only a sufficient condition for
nonclassical symmetries. Even Lie symmetries can be lost when employing it.

The above discussion is illustrated by the following example.

Example 2. Consider the system
iy + (@- V)i — Ai+Vp+ T x Vdivi =0, divd = 0. (4)

which is obviously equivalent to the system of Navier—Stokes equations describing
the motion of an incompressible fluid. (The additional term # x V(div#) van-
ishes if divet = 0.) If we do not take into account differential consequences of
system (4), we derive the unnatural claim that this system is not conditionally
invariant with respect to translations of the space variables x;. At the same time,
the infinitesimal generators of these translations belong to the maximal Lie invari-
ance algebra of the Navier—Stokes equations. A maximal set L) of algebraically
independent differential consequences of £ that have, as differential equations,
orders not greater than 2 is formed by the equations

G+ (- V)i—Ad+Vp=0, divi=0,
dividy =0, Vdivd=0, uéug—i-Ap:O.

Here the indices 7 and j run from 1 to 3. The equation Q (3) divd = 0 is identically
satisfied on the set L(3) N Q). Therefore, the application of the second or third
candidate for the conditional invariance criterion to the equation diva@ = 0 gives
no equations for nonclassical symmetries of the system (4).

Definition 3 can also not be extended to the case of systems in an easy way.
The problem again is to define what set of differential consequences of the initial
system should be chosen for testing formal compatibility with the appropriate
characteristic system.
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The notions of nonclassical symmetry and reduction are strongly related in the
case of single partial differential equations. It therefore seems natural for these
notions to also be closely related in the case of systems. Hence the problem of
rigorously defining nonclassical symmetries for systems is additionally complicated
by the absence of a canonical extension of the classical reduction to the case
of systems. A chain of simple examples can be presented to illustrate possible
features of such an extension.

6 Myths on number of nonclassical symmetries

Myth 7. The number of nonclassical symmetries is essentially greater than the
number of classical symmetries.

At first sight this statement seems obviously true. There exist classes of par-
tial differential equations whose maximal Lie invariance algebra is zero and which
admit large sets of reduction operators. This is the case, e.g., for general (1 + 1)-
dimensional evolution equations. At the same time, certain circumstances signif-
icantly reduce the number of essential nonclassical symmetries. We briefly list
them below.

e The usual equivalence of families of reduction operators. Involutive fami-
lies @ and @ of | operators are called equivalent if st = A%7Q° for some
A7 = A9 (z,u) with det [[A\57]] # 0.

e Nonclassical symmetries equivalent to Lie symmetries.

e The equivalence of nonclassical symmetries with respect to Lie symmetry
groups of single differential equations [13,20] and equivalence groups of
classes of such equations [22].

e No-go cases. The problem of finding certain wide subsets of reduction oper-
ators may turn out to be equivalent to solving the initial equation [12,21].

e Non-Lie reductions leading to Lie invariant solutions.

Thus, the existence of a wide Lie symmetry group for a partial differential
equation £ complicates, in a certain sense, finding nonclassical symmetries of L.
Indeed, any subalgebra of the corresponding maximal Lie invariance algebra, sat-
isfying the transversality condition, generates a class of equivalent Lie families of
reduction operators. If a non-Lie family of reduction operators exists, the action of
symmetry transformations on it results in a series of non-Lie families of reduction
operators, which are inequivalent in the usual sense. Therefore, for any fixed value
of [ the system of determining equations for the coefficients of operators from the
set Q'(L) of families of [ reduction operators is not sufficiently overdetermined to
be completely integrated in an easy way, even after factorizing with respect to the
equivalence relation in Ql(ﬁ). To produce essentially different non-Lie reductions,
one has to exclude the solutions of the determining equations which give Lie fam-
ilies of reduction operators and non-Lie families which are equivalent to others
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with respect to the Lie symmetry group of £. As a result, the ratio of efficiency
of such reductions to the expended efforts can become vanishingly small.

7 Conclusion

Although the name “nonclassical symmetry” and other analogous names for re-
duction operators, which refer to symmetry or invariance, do not reflect actual
properties of these objects, the usage of such names is justified by historical con-
ventions and additionally supported by the terminology of related fields of group
analysis of differential equations. It is a quite common situation for different fields
of human activity that a modifier completely changes the meaning of the initial
notion (think of terms like “negative growth”, “military intelligence”, etc.). Em-
piric definitions of nonclassical symmetry can be used in a consistent way if all
involved terms and notions are properly interpreted. Nevertheless, as we have
argued, the term reduction operator more adequately captures the underlying
mathematical content.

In this paper we discussed certain basic myths of the theory of nonclassical
symmetries, pertaining to different versions of their definition and the estimation
of their cardinality. Over and above these, there are a number of more sophis-
ticated myths concerning, among others, the factorization of sets of nonclassical
symmetries, involutive families of reduction operators in the multidimensional
case, and singular sets of reduction operators. A discussion of such myths re-
quires a careful theoretical analysis substantiated by nontrivial examples and will
be the subject of a forthcoming paper.
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The problem of group classification of quasi-linear elliptic type equations in
two-dimensional space is considered. The list of all equations of this type,
which admit solvable Lie algebras of symmetry operators of dimension up to
five is obtained.

1 Introduction

The problem of group classification of quasi-linear elliptic type equations

Au = f(z,y,u, ug, uy) (1)

in two-dimensional space is considered. The list of all equations of this type,
which admit solvable Lie algebras of symmetry operators is obtained.

Note that the problem of classification of equations of form (1), which admit Lie
algebras of symmetry operators with non-trivial Levi factor, is solved completely
in [1]. Furthermore, we are interested in essentially nonlinear equations that can
not be reduced to linear ones with use of local or nonlocal transformations. For
example, the first of these equations

Au=fu)(ul+uy), f#0;  Au=Ar" A\yeR, A y#0,

is equivalent to the linear equation Au = Au by the local transformation, and the
second one is equivalent to Laplace equation by the Bécklund transformation [2].

Theorem 1. The invariance group of the equation (1) is generated by the in-
finitesimal operator

v =a(x,y)0y + b(z,y)0y + c(x,y,u)0,, (2)
where functions a,b, c, F' satisfy the following system of equations:

ay +b; =0, a;—b, =0,

Caz + Cyy + 2UgCry + 2uyCyy + (u?c + uz)cuu + (cy — 2a,)F =

=alF, + bF, + cFy, + [c; + ug(cy — az) — uyby|Fy, (3)

ey +uy(cy — by) — ugay]Fy, .
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It is easy to see that the two first equations are Cauchy—Riemann conditions,
that means that functions a and b are harmonic functions.
The equivalence group £ is formed by those transformations

D(z,y,v)

D, ga) 7

j:a($’y’u)7 g:/g(':[:’y?u)? U:7($7yau)7

that preserve differential structure of the equation (1), i.e. transform it to an
equation of the form

Vzz + Vyy = (I)(jv Y,v,Vz, Ug)-
Theorem 2. The group £ of the equation (1) is formed by the transformations

:E:oz(m,y), g:ﬁ(l',y), Uzv(m,y,u), (4)

ap =By, ay=—€B (e=%£1), ol+al=pr+082#0, v #0.

Theorem 3. There exist such transformations from the group £ that reduce op-
erator (2) to one of the following operators

V=0 V=0
The corresponding classes of invariant equations are

Au = F(y,u,um,uy) : A% = (Ou), (5)
Au = F(z,y,uyz,uy) : AT = (0y).

2 General method of classification

Let A, = (e1,...,e,) be a Lie algebra of dimension n, with basic elements

€; = az(wvy)ax + bl(wvy)ay + ci(x7y7u)aua i = 17n7 (6)

where each pair of functions a;(x,y), b;(z,y) satisfies the Cauchy-Riemann con-
ditions (3) (first two non-classifying equations).

Definition 1. Representation (6) of the algebra A, is called admissible if there ex-
ist such functions F'(x,y, u, ug, u,) for which the three functions a;(z, ), bi(z,y),
¢i(x,y,u) are solutions of the determining equations (3) and corresponding invari-
ant equations (1) are nonlinear and can not be linearized.

Definition 2. Two representations of the algebra A, with functions a;(z,y),
bi(x,y), ci(z,y,u) and a;(x,y), Z;i(x,y), ¢i(x,y,u) are called equivalent if any op-
erator e; of form (6) can be reduced to the operator &; = a;(,y)d, + bi(z,y)d, +
¢i(x,y,u)d, using the equivalence group €. Denote the set of all inequivalent and
admissible representations (possibly, isomorphic) of k-dimensional algebra Ay ; as

MA,; (I is numbering index of an algebra).
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Definition 3. T'wo representations of an algebra are called isomorphic if the set
of basis operators of one algebra can be obtained as linear combination of basis
operators of the second algebra.

Definition 4. Two representations of an algebra are called different if operators
of one of them can not be obtained with use of superposition of equivalence trans-
formations £ and linear transformations of basis elements of the second algebra.
Denote the set of all different admissible representations of k-dimensional algebra
Ak.l as QAk.l'

Examples for the algebra As; = (e1,e2), [e1,e2] = 0:

1. The representations (95, 9,) and (0, 0,) are isomorphic and equivalent.

2. The representations (9,,d,) and (9, 0;) are isomorphic but not equivalent.
3. The representations {0y, 0, ) and (J,,yd,) are equivalent but not isomorphic.
4. The representations (0, 0,) and (0y,x0,) are different.

The general inductive algorithm of construction of representations ® Ay ;, and
of corresponding classes of invariant equations is the following (see also [3,4]).

e According to Theorem 3 for 1-dimensional algebra A;; we have MtA;, =
DA 1 = {Al A2} = {(9,), (0,)} and obtain corresponding classes of invari-
ant equations (5).

e Suppose we constructed the sets of representations MAy ;, ® A and corre-
sponding classes of invariant equations for all algebras Ay ; of dimension k.

e Consider k 4 1-dimensional algebras Ajy1;. Each of them has a k-dimen-
sional ideal Ay, (this is true for any solvable algebra). Then, using se-
quentially a constructed representation, from the set 1A, for algebra
Ag.m = (€e1,...,ex) we obtain an additional operator e, so that all oper-
ators satisfy commutating relationships of the algebra Ax,1;. Using equiv-
alence transformations group £ we simplify a form of the operators (4).

e We verify if the obtained representation is admissible, namely if the corre-
sponding class of nonlinear equations exists. If so, then we include it to
the set MAx11, otherwise we exclude it from the further consideration.
From the constructed set MAx1; we choose the maximal set D Apy1; of
non-isomorphic representations.

e When the set © A4 of all different representations of 4-dimensional algebras
and corresponding classes of invariant equations are constructed we use the
direct Ovsiannikov’s classification method [5] to obtain a list of concrete
equations invariant under 5-dimensional Lie algebras.

For illustration of the above algorithm we construct a set of different repre-
sentations of the 3-dimensional Abelian algebra As; = (e1,e2,€3). So, the ideal
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of this algebra is As; = (e1,e2). We found that MA2 = {43, A3, A3, A3},

where

AL = (00, M0 + X20,) (Mo #0), A3y = (Ou, F(2,y)00), (7
A2 1= <8:L‘7)\18x +8u>7 A2 1= <8u,8x>

Here A1, Ay are constants and f(z,y) is arbitrary function. It clear that inequiv-
alent representations (7) are isomorphic to one of the following:

©A2.1 = {<axaay>§ <ax,au>a <au7f($ y) > f 7é CORSt}

However, for construction of representations of 3-dimensional algebras including
Ao as an ideal it is necessary to consider all representations (7) with parameters
A1, A2 (see below representations A3 ; and A3, for example).

Then each representation (7) is expanded by operator es so that it commutes
with others. After simplification all three operators e1, es, e3 by means of equiv-
alence transformations group we get all inequivalent representations:

AL = (D2, MOy + A0y, N30 + Mgy + D), (Mg #0),

AZ 1 = (02, M0s + Oy Aadi + M), (Mg #0),

A3 1 <8ZL‘7 )‘1896 + 81“ )‘3850 + f(y)au>7 (f/(y) 7é 0)7

3 1— <au7a$7)‘38 + )‘48 > ()‘4 7& 0)7

A3 1 — <8U7 8507 )‘3896 + f(y) u>7 (f/(y) 7é 0)7

AS 1 = (Ou, F(y)Ou, 0), (f'(y) #0),

A3 1 — <8u7 f(xv y)aua g('r7 y)au>
It is easily to see that for the representations A3, and A3, the operators of its
2-dimensional ideals A1 = (e1, e3) are isomorphic, but the resulting algebras are
different. Note, that the opposite case is also possible, namely that representations

of ideals are different, but its extensions are not different. Finally, it is easy to
show that representations A%, (i = 1,7) are isomorphic to one of the following:

(0,0y,0u); (02, 0u, f(¥)0u), (f'(y) #0); (Ou, f(2,y)0u, g(w,y)0u).

Here the last representation is not admissible (see below). So,

©A3.1 = {<8x7 8@/7 8u>7 <ax7au7 f(y)au>7 (f/(y) 7& O)}

Below we give the results of classification obtained using the above algorithm.
Hereinafter, the notations of algebras Ay ; (k and [ are dimension and numbering
index of an algebra respectively) are given in accordance with Mubarakzjanov’s
classification [6] of solvable Lie algebras.
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3 Invariance with respect to 2-dimensional
Lie algebras

We obtained the following representations and the corresponding forms F' of the
right hand side of equation (1).
Algebra As:

1' A%l = <aﬂc78y> : F = G(u,ux,uy);

2. A%l = (02,04) : F = G(y, uz, uy);

_ Jaug + fyuy

3. A%l = <8u,f(m,y)6u> D F = f;% + fg (fmz + fyy) + G(:anaw)a

w = fyux - fxuya fm2 + fy2 7é 0.
Algebra As:
1. AYy = (—20y — y0,,0,) : F = (u2 + ui)G(u,wl,wg), W1 = YUy, Wo = YUy;
2. A%_Q = (0p —u0y,0y) 1 F = e "Gy, wi,w2), wi = e Uy, wy = e uy;

3. A%.z = (—uy, 0y) + F = (up +uy)G(z,y,w), w= Uxugjl-

Let us note that for arbitrary forms of functions G the respective representa-
tions are maximal invariance algebras of equations.

4 Invariance with respect to 3-dimensional
Lie algebras

The solvable algebras Az; = (eq,es2,e3), i = 1,9 contain the 2-dimensional sub-
algebra As ;. Furthermore, it can be assumed for all algebras, except Aso, that
Ag1 = (e1,e9). For the algebra Az, we assume that Ay 1 = (eg, e3). We obtained
all admissible representations.

The number of different admissible representations for algebras:
— each of the algebras As; (i = 1,3,4,6,7) has two representations,

— algebras Asg and Asg have three representations,

— algebras As s and Az s have four representations.

So, we have 24 representations for three-dimensional Lie algebras.

The appearance of the representations and the corresponding forms of the right
hand side of equation (1) are the following. Bellow the parameter ¢ parametrizes
the algebras A% . and A%,

Algebra Ags:

1. A%:.l = <aﬂc7ayaau> (P = G(Uac,uy);
2. A3y = (00, 0u, FW)OW), ['(y) #0: F = Zruy + Gy, us);
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The last representation is not admissible, because either the corresponding invari-
ant equation is linear or the infinitesimal operators are linear-dependent.
Algebra As,:

1. Aéz = (—20y — Y0y, 0y, 0y) : F' = uiG(yux,yuy);

Yy

32 = (Oy — U0y, Oy, 0z) : F' = (ug + uy)G (eYuy, €¥uy) ;
32 = (Op — U0y, Ou, f(y)e “0u), f(y) #0:
e

F = 7 ug + e "Gy, e fluy + € fuy).

Algebra Ajss:

1. A%-i’» = (Ou, Oz, 0y + 20y), F = G(ug — y,uy);
2. A%.?, = <auyaxy (f(y) + $)8u>7 F= f”uac + G(yauy - f/ugc)

Algebra Asy:

1. Aé4 = <8u,8x,x8x + yﬁy + (u + l')au>, F = e—uzG(uy’ye—m);
2. A3, = (Ou, (f( ) — )0, Op + udy),

— f/uy f/l _I_e:cG(y f/e—:cu + e~ Tu )
T+ (f)? ’ ; v
Algebra Ass:
1. ALy = (85,8, 205 + yd,), F = (ug +uy)?G ( %)
Uy
2. A3 5 = (0, 0y, 205 + yOy + Ou) <e ux,—>
3. Ag5 = <8x7amx8x + yay + ud, > =y lG(ux,uy)
4o Ay = (Ous f(9)0u, On + udy), f # 0, F = S2 "+ "Gy, f'e "us);

f/
5. AS 5 = (O, f(,9)0u, udy).

The further analysis shows that for the last representation the corresponding
invariant equation is linear.

Algebra Asg:

L A = (9,020 + ydy — udl), F =y~ Gy us, v uy);
2. A% 5 = (Ou, €2 f(y)Ou, 0 +udy), f(y) #0,

M " T . —x
g U AN Gy e = 2fe ).
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Algebra Al :

L. A%)? = <8Z‘78U7x81‘ + yay + quau>, q 7é O, ZIIl,
F = yq_QG(yl_qumy yl_quy);
2. A2 = (8,, e DT £(1)Dy, Oy + udy), 0 < |q| <1,

e
"Gy, f'e Tuy + (g — 1) fe "uy).

Algebra Assg:

1. Aég = <8x,8y,y(9x - x8y>7 F = G(U, Ui + U§)7
2. A%.s = (Op, 0y, Y0y —x0y + 0y), F =G <u§ + ui,arctan <%> — u> :
y
3. A3 g = (Qu, tan(f(y) — 2)0u, 0, — utan(f(y) — )0u),
= T oy — ) tan(f — o)+
(/)2 +1 v
(f'ug + uy)G(y, cos(f — z)(fug + uy)).
Algebra Al :
1. A3 g = (02, 0y, (qz + y)0x + (qy — 2)9y), q >0,
F=(u2+ uZ)G <u, In(u? + uz) + 2g arctan Z—:) ;
2. A% = (0:,0,, (qz +v)0s + (qy — )0y + Du), q >0,
F = e 2@ <arctan <%> — u, In(u? + u?/) + 2g arctan %> ;
Uy Uy
3. Ag'g = (Ou,tan(f(y) — )0y, Or + (¢ — tan(f(y) — z))udy), q > 0,

F = %}W + 2(f/uy — ug)tan(f — x)+
(f'uz + uy)G(y, cos(f — 2)(fus + uy)e™ ™).
Summary:

1. Operators of certain representations contain arbitrary functions f(y), which
can not be reduced using the equivalence transformations group.

2. All representations of the algebra As 7 with ¢ = —1 coincide with the repre-
sentations of the algebra Asg, as well as the corresponding classes of invariant
equations.

3. The representation A}, with ¢ = 1 coincides with the representation A3 ;.

4. The representations of the algebra Az g with ¢ = 0 coincide with the represen-
tations of the algebra Asg.
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5 Invariance with respect to 4-dimensional
Lie algebras

According to our algorithm we use the obtained inequivalent and admissible rep-
resentations NAsz,; (i = 1,2,...,9)) and Az, of the algebras As; and Ao,
which are subalgebras of decomposable 4-dimensional algebras /~l4.2- = A3; ® A
and fl4_10 = Aso @ Aso, correspondingly. For the indecomposable algebras the
following subalgebraic structure exists:

1. A31 C A4y, (1 =1,6);
2. A3_3 C A4_Z’, (Z = 7,8, 9);
3. As5 C Aso-

Thus, we obtained all different and admissible representations of 4-dimensional
Lie algebras.

The number of different admissible representations for algebras:
— each of the algebras Ay; (1 =1,4,7,9) and Ay 3 has one representation;
— algebras Ay ; (i =2,4,10) and Ay; (i = 3,6) have two representations;
— algebras Ay ; (i = 2,5,10) have three representations;

— algebra A4 has four representations.

So, we have 38 representations for 4-dimensional Lie algebras.

The appearance of the representations and the corresponding forms of the right
hand side of equation (1) are listed bellow. Here ¢ and p parameterize the certain
algebras, while A\, \{ and Ao parameterize the certain representations of algebras.
In this case we can not reduce these three parameters using the equivalence trans-
formations group (4).

Decomposable algebras
Algebra A o = A35 @ Ay:

L AL, = (~udy. 0., 05) ® (9), F = (up + )G <U_> ;
2. Afy = (B — udu, 0, 00) ® (e7Y0,), F = e VG uy) — (ug +uy).
Algebra 214_3 = As3 D A;g:

L "214113 = <auyaw7xau> ©® <ay>, F = G(Uy),
2. A2 5 = (04, 0p, 0y + 10,) @ (Oy +y0u), F = G(ugz —y).
Using the change of variables v = @ + zy, £ = y, § = —x this representation is

reduced to the case 1. (This is given to illustrate the fact that expanding different
representations we can get not only different ones).
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Algebra Ay, = A3, @ Ay:
1. Ay = (Ou, 0p, 205 +y0y + (u+ 2)dy) © (y0y), F = e "G (ye™");
2. A3, = (Ou, — 10y, Oy +udy) @ (9,), F = e"Gle " uy).

Algebra A5 = Ass5 @ Ap:

2. Als = (O, 0 20p + YOy + udu) © (yOu), F =y~ Glua);
Algebra A g = As 6@ Ar:
L A} g = (O, 0y, 20y + yOy — udy) ® (y 00,
F =2y tu, +y Gy uy);
2. A2 o = (04, €20y, 0 +udy) ® (0,), F = 2uy + e"G(e "uy).
Algebra Al. = Al @ A;:
L. A7 = (02, 0u, 205 + Y0y + qudy) @ (y?8u), q # 0, £,
F=(q— D)y tuy, + 412G (y" Tuy,);
2. A} ; = (04, e 7970, 0, + udy) & (9,), 0< |q] <1,
F=(1-q)ug+e"G(e "uy).
Algebra A g = A5 @ Aq:
L /LILS = (0, Oy, YOy — 20y) ® (Ou), F = G(“gzc + u§)7
2. A3 g = (D, — tan £y, 9, + utan z9,) © (9,),
F = 2u, tan x + uyG(uy cos x).
Algebra Al = A%, @ A
1. ALy = (2, 0y, (gz + 9)0z + (qy — 7)) @ (D), 4> 0,
F=(u?+ ui)G <(u92£ + ui) exp <2q arctan u_y>> ;
2. A2y = (0y, — tanzdy, 9, + u(q + tan z)d,) ® ( Oy), ¢ >0,
F =2u, tan x + uyG(uye” * cos )
Algebra Ay o= Ayy & Agy:
L Ay = o - 09,00) @ (oo, P = g (1),

Yug Uy
A+A1)y

2. A3 10 = (0n — 0y, O0u) ® (MOy + A0y, e e %2 0,), A #0,

1 A 2 A w14 A
FZ_( + 1 )uﬁe ’ ;;G( 1;( J; 1ux+uy>>.
2
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Non-decomposable algebras
Algebra Ay q:

Aéll.l = <ay - ﬂcy&L} G:_<au7 _yaU7a:B>a F = G(y2 + 2um)
Algebra Al ,:

1. A}m = (20, + YOy + (u + ¥)0y) &(0s,04,0y), ¢ =1, F =e " G(uy);
2. AZQ = (qx0y + qyOy + udy) &(0z, Oy, —¢ 'In yOu), q # 0,
o Uy Ya TR
F= » + ) G( ux) :
3. Ay = (20, + yOy + (qu+y* 1)) €(0u,y? "0, 0) (q # 03 1),

—9
=1

Uy + Y1 2G(upy' ™1 — Iny).
Algebra A, s:

1. ALy = (20, + y0,) &(0y, 0y, —Inyd,), F = —“—; + G (yug);

2. A3 4 = (0y + (u+ 2e¥)Dy) &(Ou, Y0y, 0r), F =uy, + e?G(e Yuy, — y).
Algebra Ay 4:

A}M = (20, + Y0, + (u — xIny)0y) &(0y, —Inydy, 0:),

1
F=-24 —G(2uy +1Iny).
Y Y

Algebra A

F = (uguy)'G <%> T = 72]9 —2

Uy (p—1)
2. Azzl.5 = <$ax + yay + quau> G:_<axyauyyq_pau>a -1<p<qg<1, pg 7& 0,
—p—1
F= &uy + Y7 2G (upy' ) (8)
3. A3 5 = (qzd, + qudy + udy) & (By, Dy, y1P/19,), (9)

F= 1—;#% +yU=2/ag (g, =10y,
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Algebra A{:

L Alg = ((pr + )0 + (py — 2)0y + qud) (. 02,9y), 470, p >0,
F =exp <(q — 2p) arctan %> G <(u92£ + uz) exp <2(p — q) arctan %>> ;
Uy Uy
2. A ¢ = (qzd, + qyoy + (p + tan(¢ ! lny))ud,) &
(O O, — tan (¢~ Iny)By), ¢ # 0, p >0,

9 -1 G uxcos(q_llny)y%
F:< tan(¢~ " Iny) 1>uy+ ( )

o 29—p

7y 4 cos(g~ Iny)y 7

Algebra Ay 7

2
Al 7 = (20, + y0, + (2u - % + Axy) Ou) E(Ou, (A\y — )0y, Or),

F:—lny+G<M—)\ZIny>.
y

Algebra Al ;:

1. Ay g = (20y + y0y + 2udy) & (Dy,0r, 0y + 28y,) (q = 1),

F=G <um — y> ;
Uy
2. Azzl.s = (20, + yay + (14 qQ)udy) E(Ou, Oz, (A\y + x)0y), |q| <1,
F =y Gy (uy — Aug));
3. A% g = (0 + udy) &(Ou, —2y, 0 + Ay, (q=0),
F =exp (y — Av)G(exp (Az — y)uy);

4. Aig = (qx0y + qyOy + (1 + q)udy) &(Ou, (A\y — )0y, 0z), 0 < |q| <1,

F = y1-9/1g Ay + Uy )
yl/q

Algebra Al :

2

2
Alg = ((qz +y)0s + (qy — )0y + <2qu + % — 7) O) &

<8u78x78y + x8u>7 q >0,
F=G <((ux —y)? + uz)exp <—2q arctan <uw — y>>> )
Uy
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Algebra A4 1o:
1. A} 1o = Y0y — 20y + €dy) &(0y, By, 20y +ydy), € = 0,1,
F = (u2 4+ u2)G earctan -2 — ;
y uy
2. A% 19 = (M0 + M0y + utan(A\y 'y)dy) & (0, — tan(Ay 'y)u, s + udy),
F = 2)\; tan(\; 'y)uy + uGexp(A1y /A — 2) cos(Ay 'y)us), Ao # 0;
3. A} 1 = (y0r — 20y + \y) & (s, 0y, 20: + Yy + 0u),
F = (u? + ui)G <(u92£ + ui)ezu exp (—2)\ arctan <%>>> .

Uy

6 Invariance with respect to 5-dimensional
Lie algebras. Direct method

Below we apply the direct method (but essentially modified) to above obtained
38 classes of equations invariant under 4-dimensional solvable Lie algebras. As a
result, only 12 representations have additional operator es such that the corre-
sponding invariant equation can not be linearized, i.e. its 5-dimensional invariance
algebra is admissible. Here we give the complete list of such equations and five
operators spanning their invariance algebras.

Below, for example, notation “extension 121}"3 C AL, p = 0” means that for
operators (e1, €2, e3,e4) of the representation fl}m a fifth operator es exists, such
that the operators (ej, eq, €3, e4, €5) generate a representation of the algebra Agzo
with p = 0.

1. Extension A}, C Ao @ A%y, ¢ > 0:

u
Au = \/u2 + ug exp <—qarctan u_x> ,

Y
(—u0y, Ou) @ (O, Oy, (qz +y)0: + (qy — z)0y)

2. Extension A}, c AZ,,, p=0
Au = exp(uy), (—0u, 0, =20y, 0y, 20x + Y0y + (u — y)0y)

3. Extension A}, C A2 ., p=1

2
Au =1In(uy), (Ou, Oz, 0y, 0y, v0y + yO, + <2u + %) Ou)

4. Extension A}, Cc ALY p#£0;1, ¢=1

p—1

Au = uy” |, (Oy, 0,0y, 0y, 05 + yOy + (p + 1)udy)
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5. Extension 121}"5 Cc AL, p=0,q#0

Au = (u? + uz) exp <—q arctan Z—:) ,
<aua ama ayy 20y + yaya yam - xay + quau>
6. Extension A}, c APY, p=q=—1

Au = yu? — 2y_1uy, (—y ™10y, 04, Oy — g@u,&c, —x0,; — YOy + udy)
7. Extension A}LS C Ao @ Azg

Au = \Ju2 +u2, (—uly,0y) © (O, Oy, YOz — x0)
8. Extension A} C AL p#£0;1,¢=0

Au = (u2 +u2) PP (9, 0,,0y, 205 + ydy + pudy, YO, — xdy, )

9. Extension Azl;.g C Agjg5, §j=—-pq, p#0;1,¢>0
Au = (u? + uz)(Q—p)/Q(l—p) exp <1qp arctan %> ,

<aua ama ayy 20y + yay + puaua yam - xay - qpuauy >
10. Extension A}, C Ass @ sl(2,R)

Au =y ' u2 + uz,

(—udy, ) ® (220, + 2y0y, — (2% — y*)0y — 22y0y + Yy, O
11. Extension A3, C AL, p=1

Au = M/ 2uy £ Y2, (Oy, —yOu, £0z, Oy F xy0y, v0y + yOy + 3udy,)

12. Extension Ajs C AL, p=1

Au = ()‘Um + uy)l/2 + H1y, <aua (Ay - :E)aua

14+ ) K 2
Summary:

1. We can not reduce the parameters A and g in the cases 10, 11 and 12 using
the equivalence transformations group (4);

2. The extension A} ;, (Case 10) leads to the non-solvable 5-dimensional algebra
(with nontrivial Levi factor).
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A number of papers have been devoted to the differential equations describing
the motion of waves in shallow water as modelled by Whitham, Broer and
Kaup from some forty to thirty years ago. We examine these equations from the
viewpoint of symmetry with the explicit intention to carry those considerations
to the end whereby we see that some interesting relationships between special
functions are naturally revealed. As a subsequent exploration we look at the
model equations when two of the critical parameters are zero and explore if
there is any solution of interest.

1 Introduction

Whitham, Broer and Kaup [7,15,22] in several papers presented a system of two
equations for the motion of waves in shallow water as the 1+ 1 evolution equations

Ut = Uy + Vg + ﬂu:c:ca UVt = Uy ¥ + UV, + ﬂvx:c + QUgyy, (1)

where u(t,x) is the horizontal velocity, v(¢,z) is the vertical displacement of the
fluid from its equilibrium position and « and 3 are parameters related to the
degree of diffusion.

The system, (1), has been studied by a variety of methods [1,13,15,20,21, 23—
25]. Of particular relevance to the present work is the paper of Zhang et al [25]
which treats system (1) in terms of the optimal system of subgroups of the Lie
point symmetries of the system. Curiously the authors of that paper present a
closed-form solution in only one case. However, they do pay considerable attention
to the case that o and § are both zero, ie the problem of one-dimensional shallow-
water equations over an horizontal base.

In this paper we supplement the results in [25] with a deeper analysis of the
systems of ordinary differential equations which result from the reduction of sys-
tem (1) using the several optimal subgroups for nonzero a and 3. This leads to
a number of equations which are well known in the general literature on ordinary
differential equations. We conclude our study with a different approach to the
case of zero a and [ than that presented in [25].
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2 The case of nonzero o and (3

Without loss of generality the variables in system (1) can be rescaled so that there
is only one essential parameter. We write the system as

Up = Uy + KUp + Uz,  Vp = Uz + UV + Vgg + Ugga, (2)

where k = a/3?. The rescaling of the variables does not affect the Lie point
symmetries which are!

I'i = 8t, I'y = 690, I's =t0, — au, I'y = 2t0; + 20, — u0,, — 2v0,

for which the optimal system of one-dimensional subalgebras is composed of these
four symmetries plus

I's =11 —-1'3=0; —t0; + O,.

We consider the different possibilities for reduction in turn.

I’y and I's. Reduction under I'y leads to the trivial result that both u and v are
constants.

Although reduction under I'; implies a steady state, the reduced system is not
without interest in the light of results to be demonstrated below. Obviously u
and v are functions only of z, U(z) and V (z) respectively. The reduced system is

0=UU+kV'+U" (3)
O — U/V + Uv/ + V// + U///, (4)
where the prime denotes differentiation with respect to x. We integrate (3) to ob-

tain V = (A — U’ — U?/2) [k, where A is a constant of integration. We substitute
for V into (4) to obtain

(1-KU" +2(UU"+U"?) +3U°U" — AU =0 (5)
which can be integrated once to give

(1-KU"+20U" +iU° - AU + B =0, (6)
where B is a further constant of integration. We recognise (6) as a generalisation of

the well-known Painlevé-Ince equation?. In the case that k = 1/9 (6) is linearisable

to w"” — %w’ + ZX Bw = 0 by means of the Riccati transformation U = 4w’ /3w

and is trivially integrable. For the same value of k the equation has eight Lie

!Courtesy of the Mathematica add-on Sym [5,9,10]. Note that we adopt a different ordering
to that in [25].

2The equation, y” + 3yy’ + v = 0, appears in a bewildering array of contexts — theory of
univalent functions [14]; astrophysics [16,19]; fusion of pellets [11]; mechanics [6,17]; motion on a
geodesic in a space of constant curvature [8]; a painful paradigm for some singularity analysts [3]
— not to mention the context of the present paper.
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point symmetries independently of the values of the constants of integration, A
and B. In the case of the Painlevé-Ince equation for general values of k there are
always two Lie point symmetries [18]. However, in the case of (6) this is not the
case if both of A and B not zero. When one or both are nonzero, there is only
the obvious symmetry, 0,.

From (5) it is obvious that the case k = 1 is special. The solution can be
reduced to the inversion of the quadrature

/ AUAU e -
U3 — 240 +2B ' * ="

where x is the third constant of integration. Indeed the degeneracy is obvious by
a comparison of (3) and (4) when k = 1 for then the system reduces from a fourth-
order system to a third-order system. In general the inversion of the quadrature
depends upon the coefficients of the expansion in terms of partial fractions of the
integrand in (7). The division into partial fractions gives

4N 1 N 49 1
A =A)A3=A)U+M (A1 —A2)(A2—A3) U + Ao
43 1
A2 —A3)(A3 — A1) U + A3’

where the denominator factors as (U 4+ A1)(U + A2)(U + As3), and it is highly
unlikely that the integral could be inverted to give U as an explicit function of
x — xo for general values of the constants of integration A and B. An obvious
exception to this occurs when the initial conditions are such that B = 0. For then
the integral is easily inverted to give the solution

T

U(r) = V2Atanh | 1V2A(z - :co)] .

A more profitable line of investigation is to take the combination I'y+cI'y, where
c is an arbitrary constant?, to obtain a travelling-wave solution. In terms of the
independent variable, y = x — c¢t, and the dependent variables W (y) = U(y) + ¢
and V(y) system (2) becomes

KV +WW' +W" =0 (8)
W'V +WV + V" +W" =0, (9)

where now the prime denotes differentiation with respect to y. In terms of the
current dependent variables, V' (y) and W (y), system (8)—(9) is the same as system
(3,4) and consequently the treatment is the same. One integrates (8) and uses the
integral to eliminate V from the second equation and integrates again to obtain
a second-order equation for W, namely

W'(1—k)+2WW' + sW? — AW + B =0 (10)

3In [25] the constant, ¢, is written as the coefficient of 9; which gives it the unusual dimensions
of L7IT.
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which has the same structure as (6). Consequently there is no need to repeat the
discussion already given above.

As a final point to be made in the treatment of this case one should note that
the transformation U = 4w’/3w is not the only linearising transformation. The
analysis to find the numerical coefficient in the Riccati transformation also gives
the possibility U = 8w’ /3w. In this case the third-order equation is

m 9 ;27
(w?)" — §A (w?) + o) (w?) = 0.

When one looks at the transformations, the resultant equation after the second
transformation is not surprising. However, if one examines (6) with £ = 1/9 in
terms of the singularity analysis the former transformation, which is consistent
with the solution of (6) in terms of a Right Painlevé Series, whereas the latter
transformation, which generates a Left Painlevé Series, is not consistent with
the nondominant terms in (6). Nevertheless one must bear in mind that (6)
possesses eight Lie point symmetries and so is linearisable by means of a point
transformation to the simplest second-order equation, namely ¢”(p) = 0, which
certainly satisfies the requirements of the singularity analysis. One recalls that the
singularity analysis is very much dependent upon representation and the present
situation may simply be a reflection of that. However, this is a curious result and
may be worthy of further investigation from a theoretical approach.

I'y —T's. In terms of the independent variable y = z-+t2/2 and dependent variables
U=u—tand V = v system (2) becomes
vv' +kV'+U"—-1=0, (UV)Y+V"4+U"=0.

Both equations can be integrated and V' eliminated using the integral of the first
equation. We obtain

(k—DU" —20U" - iU+ (y— AU+ B+1=0, (11)

where A and B/k are the respective constants of integration.

In (11) we recognise a generalisation of (10). The possibility that k& = 1 reduces
the order of the system from four to three and gives an Abel’s equation of the
second kind which is not variables separable. For k = 1/9 the same Riccati
transformation gives the linear third-order equation

w”+§@—Amﬂ+%B+Uw=0

For general values of the parameters the solution of this equation can be expressed
in terms of hypergeometric functions as

m 1 2 a3 1 m 2 4 a3

w—COF[{g}’{m}*?]*Cle[{§+§}={§=§}"ﬂ
2p[[2, m) [45] o
+C2$F|:{3+3}7{3737 9 )
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where Cj, C7 and Cy constants of integration, and in the specific case that B =
—1/2 (A remains a free parameter) the solution can be written in terms of products
of Airy functions as

2
. (—1)1/3:5 . (_1)1/3x . (_1)1/3x
w= K Ai s + Ky Ai 5273 Bi 5273
2
[
+K3BZ W s

where the K7, K9 and K3 are constants of integration. The difference in the
expressions for the solution can be attributed to the fact that for general values
of the parameters the equation has only four Lie point symmetries whereas, when
the parameters are related by the specific expression, the equation possesses the
full seven. Then it can be integrated using the integrating factor w to give an
FErmakov-Pinney equation, the solutions of which are given by Pinney’s formula
from the solutions of the equivalent linear equation, ie Airy’s equation.

I's. This is a somewhat trivial case. The invariants of I's are ¢, u + x/t and v.
The solutions are easily found to be
Cs

u:%(Cl—x) and v=—"

2 (12)

where C7 and C5 are the constants of integration.

T'4. The invariants of I'y are y = 2?/t, U = zu and V = tv. System (2) becomes*
0 =432U" 4+ 29UU’ + y(y — U’ +2U — U? 4 2ky*V’ (13)
0 =8y3U" — 6yU’ — 6U + 433V" + (2U + y + 2)y*V’
+(2yU" = U +y)yV, (14)

where the prime denotes differentiation with respect to y. As Zhang et al [25]
observe, this system is quite nonlinear. A modicum of simplification is obtained
when one observes that (13) becomes exact on the introduction of the integrating
factor y~2. From this integral it follows that

V = (my+2U —yU — U? — 4yU") /(2ky),

where m is the constant of integration. Then (14) becomes a nonlinear third-order
ordinary differential equation for the single variable U(y) given by
16(k — 1)y2U" — 162UU" — 8y3U" — 16y*U"? — 6yUU’ + 6y(4 — y)UU’
—12 [y® — 2(m — 2)y* + 12(k + 1)y| U' + 3U° + (y — 12)U?
- (y2 +my + 12k) U + my* = 0. (15)

“Note that the coefficient of U” in (14) differs from that to be found in the corresponding
equation in [25] by a factor of 4.
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Although some parts of (15) are reminiscent of structures found in elements of
the Riccati sequence [4,12], there does not appear to be sufficient similarity in the
different parts of the equation for a linearising transformation such as one had for
the special cases above for which & = 1/9. It is evident that, when k = 1, the
equation does reduce to a second-order equation.

3 Thecasea=0and 8=0

In this case the system (1) becomes

Up = Ully + Vg (16)

Vi = UgV + UV, (17)

If we define u in terms of a potential function, w(t,x), as u = w,, (16) may be
integrated to give

v =wg — %wi (18)
in which the arbitrary function of time of integration can be incorporated into w
without loss of generality. We substitute for v and v into (17) to obtain a single
equation for w. It is

Wit — 2w W + Wea (3wl — wy) =0 (19)
which has the Lie point symmetries

Fl = &B, FQ = aw, F3 = 8t, F4 = ZL'am — 2w0w,
F5 = t@m — l‘aw, FG = t@t — w@w.

The similarity solutions of (19) corresponding to I'y and I's are trivial being A+ Bt
and A 4+ Bz respectively.

A travelling-wave solution of system (16,17), equally (19), is even more trivial
in that both u and v are constants.

T'4. The invariants for I'y are t and w/z?. We write w = z2f(t). The resulting
ordinary differential equation for f is

f—10ff+125% =0, (20)

where the overdot denotes differentiation with respect to the variable t. Equa-
tion (20) is an instance of the generalised Painlevé-Ince equation with the generic
two symmetries of invariance under translation in ¢ and rescaling. If one in-
vestigates (20) using the techniques of singularity analysis, one finds that the
leading-order term is a simple pole with coefficient either —% or —%. For the
former both resonances are at —1 and the analysis fails. For the latter the sec-

ond resonance is at % and the expansion about the movable singularity is in the
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powers of (t — t9)%/3, where tq is the location of the movable singularity. Since
the equation has the two Lie point symmetries, it can be reduced to a variables
separable ﬁrst—ordel_" equation which can be integrated. In terms of the variables
x =log f and y = f/f? the solution can be written as

(y —3)°

W22 = K exp[—2z].

['s. The invariants are ¢ and w + 2% /2t. We write w = f(t) — /2t and obtain
the equation for f to be ¢ f — f = 0 which has the easily obtained solution

f=A+ Bt%

I'g. For this symmetry the invariants are x and tw. In terms of w = f(x)/t the
reduced ordinary differential equation is

32"+ 2f f +4f% +4f =0. (21)

This also possesses the two symmetries of invariance under translation in the in-
dependent variable and rescaling. It is not in a satisfactory form for singularity
analysis since the exponent of the leading-order term is 2. This is rectified by
means of the replacement f — 1/q so that the exponent is now —2. The coef-
ficient of the leading-order term is either —2 or —3. The former gives a double
—1 resonance whereas the latter gives —1 and 2 and thereby constitutes a viable
principal branch. In terms of the variables x = log f and y = f’/f the separable
first-order equation has the solution

3 4
bk 5 = Ke".
(y +2)

An alternate route is to use a potential representation of (17) by setting v = w,.
Then (17) can be solved to give u = w;/w, and (16) becomes

2

Wiy — 2w W W + Wag (W] — W) =0, (22)

which apart from the ultimate term is a two-dimensional Bateman equation. The
Lie point symmetries of (22) are

E1 = aty 22 = awy Z3 = awa Z4 = ta{ﬂv
Y5 = t0y — 2w0y, g = x0y + 3wdy,.

Reduction using the first four symmetries leads to no result.
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5. We write (22) in terms of the reduction w = f(z)/t* as f” (4f* — f'3) —
2f f'? = 0 which has two Lie point symmetries and so can be reduced to a variables
separable first-order equation. This can be integrated to give

f2(f = 6) = C1 exp[-3f].

This can be integrated to give x in terms of f, but the expression is so complicated
that it is pointless to list it here and one could not expect to be able to invert it.

Y. The invariants are ¢ and w/z3 so that we write w = 23 f(t). Equation (22)
becomes ff — % f? —18f3 = 0 which takes the more transparent form

under the change of dependent variable f — h~3. Equation (23) is an Emden-
Fowler equation of index (0,—2) and the solution can be expressed in terms of
Jacobi elliptic functions.

4 Discussion

We have considered in some detail the two cases, @ # 0 and 8 # 0, and o = 0
and 8 = 0. For completeness we provide a brief summary of the results for the
two cases in which one of the parameters is zero and the other is nonzero.

a # 0 and B8 = 0. Without loss of generality the value of a can be taken as
unity. System (1) is now
Ut = Uy + Vg (24)
Vg = UypV + UVy + Upag- (25)
We write u in terms of a potential function as w,. As in the previous section we

may integrate (24) to obtain (18) and substitute for v in (25). The equation for
w is

Wyt — 2Wa Wyt + %wiwmm — WiWag — Waggy = 0 (26)
which has the Lie point symmetries
Ay =0, Ag=0;, A3=0y, A4=20+z0;

so that there has been a noticeable decrease in symmetry by comparison with
systems (2) and (16)—(17).

We note that the alternate reduction using the second equation as for (16)—(17)
is not feasible for this system.

A; and A,. In the case of Aj we can write w = f(x) so that (26) becomes f"" —
%f’2f” = 0 which can be integrated to give f”(z) in terms of an elliptic function,
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the precise nature of which depends upon the precise values of the constants of
integration. We note that the equation in f’(x) passes the Painlevé Test.
Reduction by As leads to the trivial solution A + Bt.
Of greater potential interest is the possibility of a travelling-wave solution
generated by reduction using Aj + cAy. We write w = f(z — c¢t). Then (26) is

£ — (%f,2 +3ef + 02) Ja (27)

Despite the fact that (27) has only two Lie point symmetries its solution can be
reduced to the integral of an elliptic function containing three constants of inte-
gration for general values of those parameters. Simpler solutions are available for
specific values of the parameters. For example, if the two constants of integration
from the double integration of (27) written as an equation in g = f’ are set to
zero, the solution of (27) is

flx) = \/garcsin [\/Eexp[c(m —x0)]| + Ky,

where K3 and K4 are the constants of integration from the third and fourth
quadratures respectively. Equation (27) possesses just three Lie point symmetries
and so its reducibility to a quadrature in general indicates the existence of nonlocal
symmetries of the useful variety®.

Ay. This is the worst symmetry of the four to use to perform a reduction of (26) as
both Ay and As are lost as point symmetries of the reduced equation. Although it
is possible for a partial differential equation to gain point symmetries on reduction
due to parallel equations leading to the same reduced equation [2], this is not one
of them and the reduced equation is

16p4f//// + 48p3f/// + 12p2f// _ 24p4f/2f// _ 12p4f/f// _ p4f//
_12p3f/3 _ 10p3f/2 . 2p3f/ — 0,

where p = 22/t and f(p) = w(t,z). There seems to be no further obvious route to
reduction apart from the one consequent upon the existence of the symmetry J;.

a = 0 and 8 # 0. Now system (1) is
Up = UUg + Vp + Ugz, Up = Ug¥ + UVz + Vg, (28)

where 3 may be set at unity without loss of generality.
The Lie point symmetries of system (28) are

Y1 =0, Yo=0, X3=10;— 0y, X4 =2t0; + x0; —ud, — 200,.

®An ordinary differential equation possesses an infinite number of symmetries when there is
no restriction placed upon the variable dependence in the coefficient functions. Such symmetries
as can be used for reduction of the equation are termed useful.
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Y14 c¥g = 3¢+ cO5. One seeks a travelling-wave solution by setting y = x —ct,
u(t,x) = U(y) and v(t,z) = V(y). The resulting pair of ordinary differential
equations may each be integrated once to give the first-order system

U'+V+iUP+cU+A=0, V' +UV+cV+B=0.

So far no useful further reduction of this system has been found.

33 = tO0y — Oy. System (28) can be reduced to a pair of elementary quadratures
in terms of the variables w = U(t) — z/t and v = V(t). The solutions

A+x B
= and v=—
t t

u

are perhaps not the most exciting.

34 = 2t0; + £y — Uy — 2v8,. In terms of the variables u = x~1U(y) and
v =t"'V(y), where y = 22 /t, system (28) reduces to

WPU" +y(y — DU + LyuU’ — U? +2U + 24V’ =0,
42V" 4 y(y + 2V +2»(UV) — UV 4+ 4V = 0.

So far no further reduction of this system has been obtained.
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We study the equivalence of linear differential operators on the Schwartz space
using the isomorphism between this space and the sequence space of rapidly
decreasing sequences.

1 Introduction

Sequences of polynomials play a fundamental role in applied mathematics and
physics. An important class is formed by the Hermite polynomials, h,,(z), which
are a classical orthogonal polynomial sequence that arise in physics, as the eigen-
states of the quantum harmonic oscillator are Hermite functions, associated with
Hermite polynomials; in probability, such as the Edgeworth series; in combina-
torics, as an example of an Appell sequence. Also they play a key role in the
Brownian motion and the Schrodinger wave equation.
They can be described in various ways, for example,

1. as solutions to the series of differential equations y” — 2zy’ + 2ny = 0

2. by the generating function exp(2tx — t?) expanded about zero as a Taylor
series in ¢

3. by a differential recurrence solution, in fact h!, = 2nh,_4

4. by the formulae

hote) = (e () o

It is very well-known that this class of polynomials is a powerful tool in the
solution of many problems. The Hermite functions, intimately related to Hermite
polynomials, given by

2

H,(z) = (2"n!ﬁ)_% e~ 7 hy(2)

form an orthonormal basis for the space L?(R) and this fact allows us to use a
method that would help to solve, at least in some concrete examples, a problem
which is described below.
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One problem that has long been of interest is that of the “equivalence” of dif-
ferential operators in any of the meanings of that word. In the sense adopted
in the present paper the idea is due to Delsarte, in [1], where he introduced the
notion of “opérateur of transmutation”.

Given two differential operators A and B on a space H, an operator X is
called an “operateur de transmutation” (transformation operator) if X is an iso-
morphism and BX = X A. This notion depends, obviously, on the two operators
and the space. The first result in this direction is due to Delsarte, taking H to
be a space of functions of one variable defined for + > 0 and A and B two dif-
ferential operators of order two on H. Several generalizations and applications
can be found in [5,6]. If A and B are of order greater than two, with infinitely
differentiable coefficients, there are not, in general, transformation operators and
the problem for spaces of functions with domain in the real line seems to be a
difficult one.

The picture, though, changes completely when the domain of the functions
is complex. Then, it is always possible to transform A in B if both differential
operators are of the same order and H = H(C), the space of entire functions
of one complex variable [2]. Other results in the same direction can be found
in [9,10].

In section 3 of this paper we present our approach in the context of the space
CS2(R) of all 2m-periodic C*°-functions on R. This example has been studied for
linear differential operators with constant coefficients in [7].

In section 4 we apply the method to the space S(R) of rapidly decreasing func-
tions (Schwartz class of functions) which is a subspace of L!(R) that is invariant
under the Fourier transform, differentiation and multiplication by polynomials,
the first-named property leading to the introduction of the subspace of tempered
distributions. The Schwartz space plays a fundamental role in many branches of
science, for instance, in signal processing where Fourier transform and convolution
are essential notions.

2 The method

Assume that H is a complex linear topological space and (h,) a Schauder basis.
Then any element h € H can be represented as a series

h = Zanhn,

where (a,) is a sequence of complex numbers. If there is a sequence space A with
a topology such that the mapping

oA
h|—>(an)

is an isomorphism, that is, F' is linear, bijective and bicontinuous, then we say
that both spaces can be identified.
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Let A and B be two linear differential operators mapping the space H on H.
The following diagram

25

1]
A2Bo A

shows that the mappings A and B induce on A two mappings A and B such that
A =FAF™' B = FBF~!. As F is an isomorphism, A and B are equivalent if
and only if A and B are.

Thus we see that the transformation operator X between A an B can be
obtained by determining the transformation operator between A and B. The
advantage is that the new operators are, in many cases, much easier to deal with
that the original ones and besides the structure of sequence spaces is simple and
well-understood.

3 The space C52(R) and the sequence space s

Let us begin by explaining our approach by a simple example in the space C52(R)
of all 2m-periodic C*°-functions on R.
The space s of rapidly decreasing sequences is defined by

s={LxeCV: HxHi:Z]ijj% < oo forall ke N
jeN
We have also
Sz{xGCN: lim |xj|jk:0f0rallk‘€N}.
j—o0
The topological structure of s is given by the seminorms

]2 = 3 Jay? % for all k € N,
jeN

or equivalently

ol = sup (Jo; ) for all k€ N,
J

As is well known, C$2(R) can be identified with the sequence space s by
means of the Fourier series, that is the mapping F: C52(R) — s given by

[ (%7}17?—17?2,?_2, ...), where

neN

is the Fourier series of f, is an isomorphism [8].
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Given the linear differential operators, A; = D + I and Ay = D on C52(R),
consider the linear operators on s, A = FA;F~! and Ay = FA,F~!. If A; and
Ay are “equivalent” in the sense indicated above, so they are A; and Ay (in fact,
XAy = Ay X if and only if XA; = AoX, X = F1XF).

The operators Ay and As are given by the matrices

1 0
i+1 i
—i+1 i
2 + 1 and 9 ’
—2i+1 —9
3i+ 1 3

respectively.
It is easily seen, from the algebraic equations given by A1X = XA, that Ay
and Ay are not equivalent.

4 The Schwartz space S(R)

The space S(R) is defined as

SR)=<{ feCO®): Y /|x|20‘ f(ﬁ)(a:)‘zdx<oo,VkreN

a+p<k

All the functions in S(R), with all their derivatives, decrease faster than each
polynomial and therefore the space S(R) is called, too, the space of rapidly de-
creasing functions.

The topological structure of S(R) is given by the countable sequence of semi-
norms

Is= % [lef|P@] dn ken

a+8<k
or by the equivalent system of seminorms
£, =sup {|o* P @) s s e R @+ B<h}, ke,

The Hermite functions H,(x), n € Ng = {0,1,2,...} are elements of S(R) and
form an orthonormal basis for L2(R). Consequently the linear map

H:SR)—s

defined by H(f) = ((f, Hn))pen, is bijective and bicontinuous (H and H' are
continuous), that is an isomorphism [8].
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Recalling that the Hermite functions satisfy the following equations (with
H_1=0)

1
H, = _2(ﬁHn—1 —vn+1H, 1),

\/_
1
cH, = ﬁ(\/ﬁHn_l +vn+1Hpy1),

the operator D (respectively, xI) from S(R) to S(R) can be identified with the
operator D (respectively, zI) from s to s given by

1 1
ﬁ(\/ﬁén—l —Vvn+ 15n+1)7 (xﬂ)dn = _2(\/ﬁén—1 +vn+ 15n+1)7

where ¢, = (6y)j:0.

Therefore a linear differential operator of the form

A =po@)I +p1(2)D + - + prz(@) D™ + pyy (x) D™ 4+ D™,

Do, =

[e.e]

where pj(x) are polynomials, can be identified with a linear operator from s
to s. The formula for differential operators of order greater than two is really
cumbersome but a simple example shows how the procedure works.

Let A be a linear differential operator of second order, precisely A = I +xD +
22D?. Then

AH, = H, + zH], + 2*H/.

As
-1 1 2
xH;L:MHn_Q—lHn— (n+ )(n+ )Hn+2,
2 2 2
—1 2 1 1 2
sz;{ = wz <%Hn—2 _ TL;— Hn + (n + 2)(” + )Hn+2> 7
- 1
$2Hn=MHn_2+MHn (n + )(n+2)Hn+2,
2 2 2
it follows that
_ Vnn=1)(n —2)(n - 3) n(n— 1) on? +2n — 3
AHn - 4 Hn—4 2 Hn—Z 4 Hn
n+1)(n+2 n+1)(n+2)(n+3)(n+4
R (R PRI T (TR I CEE IR M
and A can be identified with the operator A
PPN (T P T P T PO

(n+1)(n+ 2)5 N Vin+1)(n+2)(n+3)(n+4)
2 n+2 4

Snsa.
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Example 1

We consider as our first example two operators A and B from S(R) to S(R) such
that

where p and ¢ are complex numbers, different from zero. Then we have two
operators A and B from s to s given by

n n+1

A(G) = 6o — 501, AlGw) = \/;pan_l 60—/ PO, n= ]
n In+1

IB%((S()) = (50 — % 51, B((Sn) = \/;q 5n—1 + 5n — Tq 5n+17 n Z 1.

We are looking for a transformation operator X (represented by a matrix X =
()50, that is X(0,) = > 72¢2;,0;) such that XA = BX and zop = 1,
Ton=0,n2>1

From the two previous conditions (using the program Mathematica) we get the
matrix X whose elements are

and

0 j<n,

0 j—n=2m—-1,m=0,1,2,...,
a;j,n: - T n )

\/(i)(],ﬁl)ﬁ%(f—pz)m j—n=2m,m=12...,

b j=n.

This matrix X is a lower triangular matrix and so invertible. Therefore, from the
algebraic point view, the transformation operator between A and B exists and is
a linear operator from ¢ to , where

o ={(xn) : z, € C and z,, = 0 for all n, except a finite number} .

To ensure that X is a linear continuous operator from s to s it is enough to prove
the following condition: Vk € N, IN (k) € N, 3C(k) > 0 such that

|xj,n| jk
N

sup < C(k), for all n € N. (1)

j>n n

Write the formula for j =n+2m, m=0,1,2,..., n=0,1,2,.... Then

| | (n 4 2m)*
sup ZCn—i-Zm,n nN(k.)

neN,meN
_ 2 _ 2\ym
= Sup %(mﬂ 1> ‘w‘ (2)
neN;meN | 272 (2m)! m q™m
(n+2m)" |p|"
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Assume that given k, there exists N (k) such that (2) is finite and take m
=N(k)+1—k. As
(n+2m)k _ pmtk
nN(k) - nN(k) ’
it follows that for such an m
(n + 2m)*
niV(k)

(n+1)...(n+2m)

(n+1)...(n+2m) — oo with n

and there is a contradiction unless ¢ — p?> = 0 or ‘g‘ < 1.
Suppose ¢> —p?> = 0. When p = ¢, A =B (A = B) and the matrix X =I. If
p=—q, Xis
0 Jj#n,
Tjn = 1 j =mn, n even,
-1 Jj =mn,n odd,
that is

On n even,
X6, =
—6p, n odd.

Obviously A and B (so A and B) are equivalent.
Assume now that g‘ < 1 and p # +q.

If A and B were equivalent the operator X would be an isomorphism. So X
and X~! are continuous. As the elements of the matrix of X! are obtained from
the expressions for elements of X by the permutation of p and ¢, the continuity

of X~ implies that ‘%‘ < 1 (because p # +q). Therefore |p| = |q| and if p # +q

neither X nor X~1 are continuous.

Example 2
We consider now two operators A and B from S(R) to S(R) such that
A=pl+D, B=ql+D,

where p and g are complex numbers, different from zero. Then we have two
operators A and B from s to s given by

1 n n+1
A(do) =pdo — 551, A(0,) = \/;5n—1 +pop — A/ 5 Opt1, n=>1
and
1
B(do) = qdp — —= 1,

V2

B(dn) = \/gan_l + 6, — ,/"Tﬂanﬂ, n>1.
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The matrix X = (z;,) such that XA = BX and 299 =1, 29, =0, n > 1 is

0 j <mn,
J=mn,
xjvn = . 2
AN ien .
_ > n,
(gm0 e

X is a lower triangular matrix and so invertible. Therefore, from the algebraic
point view, the transformation operator between A and B exists and is a linear
operator from ¢ to .

For the continuity of the operator X from s to s it is enough to prove the
condition (1) which, in this case, reads

) j—n ) -k
sup < (i)ﬁ ‘(P—q)ﬂ—n‘ n}z’(k)> < C(k), forallneN. (3)

i>n

Writing the formula (3) for j=n+m, m=1,2,..., n=0,1,2,..., it is easy to
see that

- n+m\ 2™ (=)™ (n +m)k
nEN,rEGN noJmt W nN ()

2% (n+ 1)%+k
> su ~ lp—qgm 1.
T neN, EeN <m! Ip=ad nV (k)

Assume that Vk, 3N (k), C(k) such that the previous condition is true. Then
taking m € N such that 5 +k = N (k) + 2 it follows that

(n+1)%+k 2% _
W‘P—(ﬂmw > m]p—q]mﬁ%oovvlthn

m
2

and a contradiction appears unless p = q.

Example 3

Consider the linear operators of order one whose coefficients are polynomial func-
tions A = zD and B = D.
The induced operators are

1 V2 1 V23
A50——§50—752, A51——§51—T537

Jnn—1 1 2
A&n:%%_r%aﬂ— (”+2>(”+ ) Gra, 2

and

1 n n+1
Bdo 251, Bd, \/;571—1 Vo On+t1, n>1
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If X = () is a matrix such that XA = BX and

Too =711 =1, won =0, n=>1,
210=0, z1,=0, n>1,

then its elements are given by the recurrence formula

\/(j—l)jl'j72,n+$j,n""'\/%$'j,n71_\/2(n+1)xj,n+1 n < j +2, j > 07
Tjton = V+DE+2)
0, n>j+2, j>0.

A careful look to the formula gives immediately that 12, = 0, when j+2 = n,
j > 0. X is not invertible and there is not an algebraic solution.

Remark 1. The solution of the problem for differential operators of order greater
than one involves quite complicated calculations but we hope to give some answers
in the future.
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Recently introduced families of special functions are recalled and their most
valuable properties are pointed out. In particular it is shown that each func-
tion is an eigenfunction of the Laplace operator appropriate for G and their
eigenvalues are known explicitly, therefore orbit functions can be applied to the
solution of the corresponding Neumann and Dirichlet boundary-value problems
on the fundamental domains of the Weyl groups.

1 Introduction

We recall three infinite families of spacial functions depending on n variables
(1 < n < o0) and emphasize some of their applications. These functions are
named C- and S- and E-functions [17] in recognition of the fact that they can be
understood as generalizations of the cosine, sine, and exponent. Corresponding
n-dimensional C-, S- and E-transforms were recently described in [7-9]. Each
transform is based on a compact semisimple Lie group of rank n [1,4, 6] and
comes in three versions: analogs of Fourier series, Fourier integrals, and Fourier
transforms on an n-dimensional lattice. Orbit functions and transforms in low-
dimensional cases were investigated, e.g. in [5,15].

The orbit functions are defined in R™ and have continuous derivatives of all
degrees. Their orthogonality, when integrated over the finite region F' appropri-
ate for each Lie group, and the discrete orthogonality was shown in [14]. Some
important aspects are also studied in a forthcoming paper [3]. The completeness
of these systems of functions directly follows from the completeness of the system
of exponential functions.

Within each family, orbit functions are described in a uniform way for semisim-
ple Lie groups of any type and rank. The price to pay for the uniformity of meth-
ods is having to work with non-orthogonal bases, but in some cases (see Section 4
and [16]) one can work with orbit functions in orthogonal basis too.
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The functions have a number of other useful properties, which can be found
in [7,8,10]. For example, the decomposition of their products into sums, the
splitting of functions into as many mutually exclusive congruence classes as is the
order of the center of the Lie group. These properties are exposed in more details
and in a more general setting in [2].

The first aim of this paper is to show the relation between orbit functions and
classical problems of mathematical physics (n-dimensional Neumann and Dirich-
let boundary-value problems for the Laplace operator on fundamental regions of
semisimple Lie groups). This connection is studied in Section 5.

Another motivation for this paper is the application of orbit functions to pro-
cessing of the rapidly increasing amount of multi-dimensional digital data gathered
today. Special functions, which serve as the kernel of our transform, have sim-
ple symmetry property under the action of the corresponding affine Weyl group.
The affine group contains as a subgroup the group of translations in R™, which
underlies the common Fourier transform. This is the primary reason for the su-
perior performance of our transforms, although detailed comparisons, rather than
examples, will have to provide quantitative content to substantiate such a claim.
The necessary information on such transforms is presented in Sections 3 and 4.

2 Definitions of orbit functions

In this section, we define what we mean by C-, S- and E-functions, specified by a
given point A € Z™ and a chosen semisimple Lie group G with the corresponding
Weyl group W, its even subgroup W€ and fundamental region F'. We suppose
the reader to be familiar with theory of semisimple Lie groups [1,4, 6] and, in
particular, with the discretization process on a fundamental region [7-9].

The C-function C)(x) is defined as

Cy(x) == Z e2rilna), zeR?, NeZw + - +722%,, (1)
HEWX
where W)y is the Weyl group orbit generated from A and w1, ...,w, is the basis of

fundamental weights.
If in (1) we restrict ourselves to the orbit of the even subgroup Wy, then we
define E-function F)(x), A\ € Zwy + - - + Zw,, as

By(z) = Y e™wm g eR" (2)
HeEWS

The definition of an S-function Sy(z), A € Z>%; + --- + Z>%,, is almost
identical, but the sign of each summand is determined by the number p(u) of the
elementary Weyl group reflections necessary to obtain p from A

Sa(@) == Y (—ppermilnn) g e R, (3)
HEW
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In the 1-dimensional case, C-, S- and E-functions are respectively a cosine,
a sine and an exponential functions up to a constant. In general, C-, S- and
E-functions are the finite sums of exponential functions, therefore they are con-
tinuous and have continuous derivatives of all orders in R™.

All three families of orbit functions are based on compact semisimple Lie groups
and the number of variables coincides with the rank of the corresponding Lie
algebra.

The S-functions are antisymmetric with respect to (n — 1)-dimensional boun-
dary of F'. Hence they are zero on the boundary of fundamental region F'. The C-
functions are symmetric with respect to (n — 1)-dimensional boundary of F' and
their normal derivative at the boundary is equal to zero (because the normal
derivative of a C-function is an S-function). A number of other properties of
orbit functions are presented in [7-9].

The orbit functions are described in a uniform way for different semisimple Lie
groups but we have to work with non-orthogonal bases which are not normalized.
There is another useful property of orbit functions due to the isomorphism of the
Weyl group W (A,,_1) of the Lie algebra A, _; and the group S,, of permutations
of n elements (see [10-13]). The corresponding orbit functions are in one-to-one
correspondence although the function based on S, are naturally defined using
an orthonormal basis in R™ while those of W(A,_1) are define in terms of non-
orthogonal basis of simple roots.

The transformation between two these families of special functions depending
on any number of variables (1 < n < c0) allows one to work in orthonormal basis
and is made explicit in a forthcoming paper [16].

3 Continuous and discrete orthogonality

For any two squared integrable functions ¢(x) and ¢ (z) defined on the fundamen-
tal region F', we define a continuous scalar product

(6(x), (2)) == /F H(x)P@)d. (4)

Here, integration is carried out with respect to the Euclidean measure, the bar
means complex conjugation and x € F, where F' is the fundamental region of a
semisimple group G with respect to the action of either W or W€.

Any pair of orbit functions from the same family is orthogonal on the corre-
sponding fundamental region with respect to the scalar product (4), namely

(Cx(2),Cx () = W] - [F| - Sow,s (5)
(Sx(@), Sxr(x)) = [W] - [F| - bxw, (6)
(Ex(z), Ex(2)) = [WS] - |Fe| - 6, (7)

where ¢y is the Kronecker delta, |W| is the size of Weyl group, |W| and |W5]
are the sizes of Weyl group orbits, and |F'| and |Fe| are volumes of fundamental
regions.
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Proof of the relations (5), (6), (7) follows from the orthogonality of the usual
exponential functions and from the fact that a given weight p in the definitions
(1), (2), and (3) belongs to precisely one orbit function.

The families of C-, S- and E-functions are complete on the fundamental do-
main. The completeness of these systems is directly follows from the completeness
of the system of exponential functions, i.e. there does not exist a function ¢(x)
in the system of function ubder consideration, such that (¢(x),¢(z)) > 0 and at
the same time (¢(x),1(x)) = 0 for all functions ¢ (z) form the same system.

Let us denote by F)s the lattice fragment Fypy = F N (L/M) of the weight
lattice L refined by M € N. For non-simple (semisimple) G it may be determined
by more than one positive integer M

Fr for C-functions,
Fyr = Fy \ OF for S-functions,
Foum for E-functions.

A discrete scalar product of two functions ¢(x) and ¢ (z) given on Fjs (including
C-, S- and E-functions) depends on this grid and it is defined by the bilinear form

| Farl

(B(2),9(x))y = > elw)p(zi)p(zi),  xi € Fur. (8)

1=1

Here £(z;) is the number of points conjugate to z; under the action of Weyl group
W on the maximal torus of the Lie group (or even subgroup W¢ C W in the case
of E-functions).

Again, as in the continuous case, the C-, S- and E-functions are pairwise
orthogonal, i.e.

- v P
(CA(x), O (@) yy = > &(i)C () () = Dy - ﬁ JAml oAy (9)
i=1
N
(Sa(@), Sy () pp = W[ Sa(wi) S (i) = [W| - [An] - Gaw, (10)
i=1
N
(Ex(z), Ex (7)) = 26(%)%(%)@/(%) = [WX[ - [Am] - dxn. (11)

=1

Here hY = [Stab¥()\)| with StabY(A\) = {w € W|wX = A}, and Ay denotes
W -invariant Abelian subgroup of the grid points on the maximal torus T

[Fa
|AM| = Z 6(:&), z; € Fyy.
i=1

For S-functions the values of e(z;) are equal to |W|. The coefficients &(z;) for
other functions and the proof of the orthogonality relations can be found in [3].
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For different fixed m € R"™ the set of exponential functions {ezm(m’x), T €
R™} determines continuous and discrete Fourier transforms on R™. In much the
same way, the orbit functions (which are a symmetrized version of exponential
functions) determine an analogue of the Fourier transform.

4 Orbit functions transforms

It follows from Section 3 that each family of orbit functions forms an orthogonal
basis in the Hilbert space of squared integrable functions £2(F). Hence functions
given on F' can be expanded in terms of linear combinations of C-, S- or E-
functions.

In this section, we introduce the essentials of the continuous and discrete C-,
S- and FE-transforms. The discrete transform can be used for the continuous
interpolation of values of a function f(x) between its given values on a grid F,.

Each continuous function on the fundamental region with continuous deriva-
tives can be expanded as the sum of C-, S- or E-functions. Let f(z) be a function
defined on F' (or F, for E-functions), then it may be written that

f@)= > @), o= Wl FI7 (f(x), Ca(x)); (12)
Aept

f@)= > eSal@), o= [WITF[TH(f(@), Sa(x)); (13)
Aept+

f@) =Y eBEax),  cx= Wi E| T (f(x), Ea(x)). (14)
AEP:

Here (-, -) denotes the continuous scalar product of (4), P and P+ are dominant
and strictly dominant weights respectively and P, = PT UwP™+, where w € W.
Direct and inverse C-, S- and E-transforms of the function f(x) are in (12), (13)
and (14) respectively.

Let Aj; be the maximal set of points, such that for any two A\, A" € Ay the
condition of discrete orthogonality holds for any of the families of orbit functions
in (9), (10) or (11).

Then we have the following discrete transforms for the function f(z):

_ o <fa C)\> X
flz) = AGEAjM bACx(z), a € Fu, by = ﬁ (15)
f(x) = AZA bSA(@), @€ Fu,  by— gfﬁ (16)
f(x) = )\GZA:M b)\E)\({E), x € Fe M, b)\ = gfﬁ (17)

Here (-,-),, denotes the discrete scalar product given of (8).
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Once the coefficients by of the expansions (15), (16) and (17) are calculated,
discrete variables x; in F)y may be replaced by continuous variables = in F'

feomt(z) == Y _ bACi(z),  w€F;

AEA N
feomt(z) = > bASx(z), wEF;
AEA N
fcont(w) = Z bAEA(w), T € Fe.
AEA N
The function feont(z) smoothly interpolates the values of f(x;), i =1,2,...,|Fp|.

At the points z;, we have the equality feont(x;) = f(x;).

5 Orbit functions as eigenfunctions of the Laplace
operator and boundary value problems

Consider the functions Cy(z), Ex(z) and Sy(z) and suppose that the continuous
variable x is given relative to the orthogonal basis. In the case of Lie algebra
A, we use orthogonal coordinates x1,xs,...,T,+1 and coordinates x1,xs,..., T,
for B, C, and D, (the orthogonal bases for these algebras are well known,
see e.g. [1,4,6]).

The Laplace operator in orthogonal coordinates has the form

0? 0? 0?
A=—+_—+---+—, wherek=n(ork=n+1for A,).
ox1 + Oxo Tt oxy, ( + n)

For the algebras A,, B,, C, and D,, the Laplace operator gives the same
eigenvalues on every exponential function summand of an orbit function with
eigenvalue —4m (A, \).

Hence, the functions C(x), Ex(z) and S)(x) are eigenfunctions of the Laplace
operator:

C(x) C(x)
A Ex(z) | = —47*(\A) | Ex(z)
Sy (x) Sy ()

Thereby, a Laplace operator for each Lie group is given in a different set of
coordinates. The C- and S-functions are its eigenfunctions with known eigenval-
ues. On the boundary of F', the C-functions have a vanishing normal derivative,
while S-functions reach zero at the boundary. this features allow one to solve the
followig boundary value problems.

C-function is a solution of the Neumann boundary value problem on n-dimen-
sional simplex F

Af(z) = Af(x), 8‘ggjm):0 for xz € OF.
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S-function is a solution of the Dirichlet boundary value problem on n-dimen-
sional simplex F’

Af(z) =Af(x), f(z)=0 for ze€dF.

Let the continuous variable z is given relative to the w-basis and A denotes
the Laplace operator, where the differentiation 0,, is made with respect to the
direction given by w; then

n

C.

A = Z Y 02,0z, where Cj; are elements of the Cartan matrix.

= <ai7 a2> /

i,j=1
It is known in Lie theory that the matrix of scalar products of the simple roots

is positive definite, moreover our definition makes matrix <ac~’i(i symmetric, hence

7

it can be diagonalized and the Laplace operator could be transformed to the sum
of second derivatives by an appropriate change of variables.

We can write the explicit form of the Laplace operator given in the w-basis
for any semisimple Lie algebra. In particular, on figures 1, 2 and 3 we adduce
domains (fundamental regions) and the corresponding Laplace operators for three-
dimensional Neumann and Dirichlet boundary value problems are presented in the
captures.

Ly

-
853
3

-

7w,

T,
[ !

1
z
a b

Figure 1. a) the fundamental region of the Lie algebra A; x A; X A; and the corresponding
Laplace operator has the form A =92 + 02, + 92 ; b) the fundamental region of the Lie

algebra As x A; and the corresponding Laplace operator has the form A = 92 — 0y, 0., +
o2 +02..
2 x3

6 Conclusions

It was shown that recently introduced families of special functions have a number
of valuable properties. Those are the following;:
1) The functions are defined for each compact semisimple Lie group G. There are
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Figure 2. a) the fundamental region of the Lie algebra As, the corresponding Laplace
operator has the form A = 02 — 0y, 0y, + 02, — 0,05, +02,; b) the fundamental region of

the Lie algebra Bs, the corresponding Laplace operator has the form A = 92 L~ 02,0, +
02, — 20,,0., + 202,

several infinite families of functions per G. The number of continuous variables
on which the functions depend, is equal to the rank of G.

2) Orbit functions have well defined symmetries with respect to the affine Weyl
group of G and these functions (within each family) are orthogonal when inte-
grated over the fundamental region of I’ of the maximal torus T of G.

3) The functions can be sampled on the lattice fragment Fpy = F N (L/M) of the
weight lattice L refined by M € N. There is a finite subset Aj; of such ‘digital’
functions that are pairwise orthogonal when summed up over the points of Fy;.
4) Each function is an eigenfunction of the Laplace operator appropriate for G
and their eigenvalues are known explicitly. Therefore orbit functions can be ap-
plied to the solution of the corresponding Neumann and Dirichlet boundary-value
problems on the fundamental domains of the Weyl groups.
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Galilei-invariant equations for massless vector fields are obtained with using
indecomposable representations of the homogeneous Galilei group found by us
earlier. It is shown that the collection of non-equivalent Galilei-invariant wave
equations for massless fields with spin equal 1 and 0 is very rich. It describes
many physically consistent systems, e.g., those of electromagnetic fields in var-
ious media and Galilean Carrol-Field-Jackiw models. Finally, classification of
all linear and an extended group of non-linear Galilei-invariant equations for
massless fields is presented.

Introduction

In physics there are specific symmetries and fundamental ones. The specific sym-
metries (like the rotation symmetry of the Hydrogen atom) are valid for particular
systems while the fundamental ones are integral features of any physical system.

The most important examples of fundamental symmetries are relativistic in-

variance and Galilei invariance. It is the invariance w.r.t. Lorentz transformations
or Galilei ones which is a priori required in a consistent physical theory.

Relativistic invariance is treated as a more fundamental one, since Galilei-

invariant theories can be obtained as limiting case of relativistic ones. But there
are reasons to study just Galilei-invariant theories:

e The majority of physical effects are non-relativistic (i.e., they are character-

ized by velocities much smaller than the velocity of light). In fact, we never
observe directly a macroscopic body whose velocity is compatible with the
velocity of light;

Non-relativistic models in principle are simpler and more convenient than
the relativistic ones. In particular the basic equation of non-relativistic
quantum mechanics, i.e., the Schrédinger equation, includes a first order
derivation w.r.t. the time variable while the relativistic Klein-Gordon equa-
tion is a second-order partial differential equation w.r.t. all independent
variables;

A correct definition of non-relativistic limit is by no means a simple problem,
in general, and in the case of massless fields in particular. This limit is not
unique and some of limits are physically meaningless;
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e The very existence of a good non-relativistic approximation can serve as a
selection rule for consistent relativistic theories.

Relativistic theories in principle are more complicated then non-relativistic
ones. On the other hand, the structure of subgroups of the Galilei group and of
its representations are in many respects more complex than those of the Poincaré
group and therefore it is perhaps not so surprising that the representations of the
Poincaré group were described by Wigner in 1939, almost 15 years earlier than
the representations of the Galilei group (Bargman, 1954) in spite of the fact that
the relativity principle of classical physics was formulated by Galilei about three
centuries prior to that of relativistic physics formulated by Einstein.

It appears that, as opposed to the Poincaré group, the Galilei group has the
exact as well as the projective representations. Moreover, finite-dimensional inde-
composable representations 'of the homogeneous Galilei group HG(1,3) are not
classifiable. And they are the representations which play a key role in formulation
of physical models satisfying the Galilei relativity principle!

In paper [2] an important class the indecomposable finite dimensional repre-
sentations of the homogeneous Galilei group HG(1,3) was derived. Namely, all
such representations were found which when restricted to representations of the
rotation subgroup of the group HG(1,3), are decomposed to the spin 0 and spin
1 representations.

In the present paper we present a complete description of Galilei invariant
equations for vector and scalar massless fields. Namely, a complete list of relative
differential invariants for the representations found in [2] and [3] is presented
and the corresponding invariant equations are discussed. Among them there are
equations for fields with more or less components than in the Maxwell equations.

2 Galilei group
The Galilei group is a group of transformations in R3 ® Ri:
t—t =t+a, x—x =Rx+vt+b, (1)

where a,b and v are real parameters, R is a rotation matrix.

The homogeneous Galilei group HG(1,3) is a subgroup of the group G(1,3)
leaving invariant the point x = (0,0,0) at time ¢ = 0. It is formed by space
rotations and pure Galilei transformations, i.e., by the transformations (1) with
a=0and b=0.

Lie algebra hg(1,3) of the homogeneous Galilei group includes six basis el-
ements: 3 rotation generators S,,a = 1,2,3 and three generators of Galilean

Let us remind that a representation of a group & in a normalized vector space € is irreducible
if its carrier space € does not includes subspaces invariant w.r.t. &. The representation is called
indecomposable if € does not include invariant subspaces €3 which are orthogonal to €\ €5 .
Irreducible representations are indecomposable too but indecomposable representations can be
reducible in the sense that their carrier spaces can include (non-orthogonal) invariant subspaces.
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boosts 7, with the commutation relations

[Saa Sb] = igabcsa [nm Sb] = igabcnca [nm nb] =0.

This algebra is a semidirect product of a simple algebra o(3) spanned on basis
elements S1, 59,55 and an Abelian algebra whose basis elements are 11, 72, 13-

3 Vector representations

All indecomposable representations of HG(1,3) which, when restricted to the
rotation subgroup, are decomposed to direct sums of vector and scalar represen-
tations, were found in [2], [3]. These indecomposable representations (denoted as
D(m,n, \)) are labeled by triplets of numbers: n,m and A. These numbers take
the values

—1<(n—m) <2 n<3,

0if m =0, 2)
A= lifm=2orn—m=2,

0,1if m=1,n+# 3.

In accordance with (2) there exist ten non-equivalent indecomposable repre-
sentations D(m,n,\). Their carrier spaces can include three types of rotational
scalars A, B, C and five types of vectors R, U, W, K, N whose transformation laws
with respect to the Galilei boost are:

A—- A=A, B—B =B+v- R,

C—C'=C+v-U+3v2A, R—R =R,

U—-U=U+v4, W—-W =W +vxR, (3)
K—-K =K+vxR+vVvA,

NN =N+vxW+vB+v(v-R) - 3;v’R,

where v is a vector whose components are parameters of the considered Galilei
boosts, v-R and v x R are scalar and vector products of vectors v and R re-
spectively.

Carrier spaces of these indecomposable representations of the group HG(1,3)
include such sets of scalars A, B,C' and vectors R, U, W, K, N which transform
among themselves w.r.t. transformations (3) but cannot be split to a direct sum
of invariant subspaces. There exist exactly ten such sets:

{A} <= D(0,1,0), {R} <= D(1,0,0), {B,R} <= D(1,1,0),

{A,U} <= D(1,1,1), {A,U,C} = D(1,2,1), {W,R} <= D(2,0,0), ,
(R,W,B} <= D(2,1,0), {AK,R} < D(2,1,1), (4)
{A,B,K,R} < D(2,2,1), {B,N,W,R} <= D(3,1,1).

Thus, in contrary to the relativistic case, where are only three Lorentz covari-
ant quantities which transform as vectors or scalars under rotations (i.e., as a
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relativistic four-vector, antisymmetric tensor of the second order and a scalar),
there are ten indecomposable sets of the Galilei vectors and scalars which we have
enumerated in equation (4). The corresponding vectors of carrier spaces can be
one-, three-, four-, five-, six-, eight- and ten-dimensional.

4  Equations for massless fields

We say a partial differential equation is a Galilei invariant equation for massless
field if it is invariant with respect to transformations (1) and the related repre-
sentation of the inhomogeneous Galilei group is exact. Notice that in the case
of non exact but projective representations the corresponding invariant equations
describe massive fields [5].

To construct Galilei invariant equations for massless fields it is possible to use
at least three approaches:

e To start with equations invariant w.r.t. group P(1,4), i.e., the Poincaré
group in (144)-dimensional space. This group includes the Galilei group
HG(1,3) as a subgroup and so making reduction P(1,4) — HG(1,3) we
obtain Galilei-invariant equations [4,5].

e To start with equations invariant w.r.t. the Poincaré group P(1,3) and to
make a contraction to the Galilei group.

e To use our knowledge of indecomposable representations of HG(1,3) and
deduce Galilei-invariant equations using tools of Lie analysis, i.e., calculating
absolute and relative differential invariants of an appropriate order.

The first and second approaches were used by many authors. However, in this
way it is possible to obtain particular results only. The third approach is the
most powerful and just this approach is used in the present paper to describe all
Galilei-invariant equations for vector and scalar fields.

5 Covariant differential forms

To start our analysis of Galilei-invariant linear wave equations for vector and
scalar fields we present a full list of first order differential forms which transform
as indecomposable vectors sets under the Galilei transformations. In this way we
describe general linear Galilean equations of first order for scalar and vector fields.

Using exact transformation laws given by equations (1) and (3) it is not difficult
to find the corresponding transformations for derivatives of vector fields. The dif-
ferential operators % and V transform as components of four-vector from a carrier
space of the representation D(1,1,0) of the HG(1,3), thus to describe transfor-
mation properties of these derivatives it is sufficient to describe tensor products
of this representation with all representations enumerated in equation (4). It is
evident that the derivatives of vector fields can transform as scalars, vectors or
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second rank tensors under rotations. Restricting ourselves to those forms which
transform as vectors or scalars we obtain the following indecomposable sets of
them:

For D(0,1,0): {R,=VA}

For D(1,0,0): {Ry= -V x R} and {A; =V R}

For D(l,l,O) : {Rg, 9 = Bt VB} D {RQ} and {Al}

For D(1,1,1): {Bl = ( + V- U) W=V >< U 'R,l} D ({Bl,Rl},

{Wi, R1}7 {R1}), and {Ay = G — V- U};
For D(2,0,0): {U; = 8t R 1V x W, A1} D {Al}
and {Bg V-W, T\’,g} D {Rg}

For D(1,2, 1) : {Nl - VC, Wy, Rl,Bl }
D£W1, Rl, 81— at}D (5)
({B1, R1},AW1, R}, {Ra}), and{As};
For D(Q,I,O)i {WQ,RQ,BQ} D] ({BQ,RQ} {WQ,RQ} {Rg}) and{.Al}
For D(2,1,1): {K; = + V x K 'R,l =-VA, A1} D ({Rl} {A1})
and {Bg V-K- at , Rg} D {Rg}
For D(2,2, 1) : {K:l —I—V x K, Ry, .Al} D ({R1} {.Al})
and {BQ, W, Rg} D ({BQ,RQ} {WQ, RQ} {Rg});
For D(3,1,1): {Ng —I—V XN WQ, R, B2}
> {Wa, T\,’lv By =21} 5 ({B2, Ra}, {Wa, Ro}, {Ra2}),
and {C; = -V N U, A1} o {Uy, A1} D {A1}.

Transformation properties of the forms presented in equations (5) are described
by relations (3) where capital letters should be replaced by calligraphic ones. The
forms given in brackets are closed w.r.t. the Galilei transformations.

Notice that there are also tensorial differential forms, namely

Yab = VaéRb + Vme Lab = va]\[b + Vb]\[aa
Z;b = VU, + VpUs, Rap = VW, + VW, (6)
22 =VoKy+ VKo — Ry, Topy = VoKy + VK,

which transform in a covariant manner under the Galilei transformations provided
R, U, W, K and N are transformed in accordance with (3). To present invariant
sets which include (6) we need the forms given in (5) and also the following scalar
and vector forms:
G=%. D= =AY F= B P 7= -
X=VxW, S———G M =2 o R VB, J=29 5 UL vC.

The related sets indecomposable w.r.t. the Galilei transformations are enu-
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merated in the following formula:
{Yab}7 {Z;b7R1}7 {Rab7Yab7R2}7 {ZglﬁRQ}v
{M7Yab}7 {P7Yab7R2}7 {G7M7Yab}7 {D7Z;b7R17ng}7
{3,B1,R1, Z4}, {G, Rap, Yap, R, P UL}, {S, 22, R1,Us — K2, B}, (8)

ab’
{TabyRaINX?Rl}) {Tab7 Rab7XaR1}7 {TabyRabyxa SaRh ]C2 - P7[§}7
{YabyRabaLabaR27P7X}7 {YabyRabyLabyR%PaXvFaMaGaG}-

Notice that the functional invariants for the vector representations of the Galilei
group have been found in paper [3].

6 Extended Galilei electromagnetism

Equating differential forms given in (5) to vectors with the same transformation
properties or to zero we obtain systems of linear first order equations for Galilei
vector fields. Thus, starting with representation D(3, 1, 1), equating N'1, W1, R4
and B to zero and C, U7, A to components of five-current ;°,j, j* we obtain the
system

C=V-N-92B-¢j"=0, U=V xW+VB—¢j=0,
A=V - R-¢j'=0, N=ZW+VxN=0, W=ZR-VB=0, (9)
R=-VxR=0, B=V-W=0.

The system of equations (9) includes ten dependent variables, i.e., four more
than the Maxwell’s equations. It is the most extended system of first order partial
differential equations which can be defined in the carrier space of indecomposable
vector representation of the Galilei group.

Let us notice two things. First, equations (9) can be reduced to systems of
Galilei-invariant equations for the electromagnetic field discussed in paper [1]. For
example, imposing a Galilei-invariant additional conditions R =0and B = j4 =0
equation is reduced to the form

oH,, . .
VXEm—WZO, V-E,=¢ VxH,=¢j, V-H,=0, (10)

where Em = N’R:B:O and Hm = W’R:B:O-

Equations (10) are Galilei invariant and represent the so called “magnetic limit”
of the Maxwell equations [1].

Secondly, the coupled system of equations (10) can be obtained starting with
a decoupled system of relativistic wave equations and making the Inénti-Wigner
contraction [6]. The detailed analysis of this and other contractions of relativistic
equations for vector and scalar fields to Galilei-invariant equations can be found
in [7].

Using the complete list of relative differential invariants given in (5), (6) and (7)
it is possible to find a big variety of other Galilei invariant systems. An extended
list of them can be found in paper [7].
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7 Galilean Born-Infeld equations

Starting with indecomposable vector representations of the group HG(1,3) it is

possible to find out various classes of partial differential equations invariant w.r.t.

the Galilei group. In the above we have restricted ourselves to linear Galilean

equations for vector and scalar fields and now we shall present nonlinear equations,

namely, a Galilei-invariant analogue of the relativistic Born-Infeld equations [8].
The relativistic Born-Infeld equations include system

I -VxH, V-D=0,

11
9B - _VxE, V-B=0 (11)
and the constitutive equations
1 1
D:Z(E—F(B-E)B), H:Z(B—(B‘E)E), (12)

where L = (1 + B2 — E? — B - E)/2. Equations (11), (12) are Lorentz-invariant.
Making the Inonii-Wigner contraction of the related representation of the Lorentz
group we can reduce this system to the following form:

B =VxH, V-D =0,

ot
VxE =0, V-B'=0 (13)
with the constitutive equations
E’ B’ B -E)E/
/ — ! ( ) (14)

—, H' = - :
V1—E”? V1—E? 1-E?

Equations (13), (14) are Galilei-invariant. Moreover, under Galilei boosts vec-
tors D, H', B’ and E’ cotransform as

D—-D, 6 H—-H+vxD,

B -B +vxE, E -E. (15)

One more contracted version of the Born-Infeld equations looks as the system:

VxH=0 V-D=0,

B _ _gyE V-B=0, (16)
which is supplemented with the Galilei-invariant constitutive equations
p-_ 2 [ BEB gy B (17)
/irB? | B ViiBe
The corresponding transformation laws read
DD—-D' -vxH, H—-H, B —-B, E—-FE -vxB. (18)

Thus there exist two Galilei limits for the Maxwell equations in media which we
present in the above.
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8 Quasilinear wave equations
Finally, let us present a quasilinear equation for Galilean 10-vector:

2B~V -N+vW-N+AR-W +0(B? -~ R-N) +wR? + uB = ¢j°,
IR 4+ VxW+y(BW+R xN)+0(Rx W + BR) + uR = ¢j,
V-R+VvR-W+oR?2=¢j!, 2W+VxN+pN=0,
SR-VB+pW =0, -VxR+pR=0, V-W+pB=0.

(19)

Formula (19) presents the most general Galilei-invariant quasilinear system
which can be obtained from “the most extended” linear system (9) by adding
linear terms and quadratic non-linearities. It is rather interesting since includes
a number of important systems corresponding to special value of arbitrary pa-
rameters which are denoted by Greek letters. In particular it includes a Galilean
version of the Carrol-Field-Jackiw model [9].

9 Discussion

Thus, in addition to found in [2] indecomposable representations of the homo-
geneous Galilei group for vector and scalar fields we present the complete list of
relative first order differential invariants. Using this list (given by relations (5)—
(8)) it is easy to write systems of first order partial differential equations for vector
fields, invariant with respect to the Galilei group. Since higher order equations
can be reformulated as systems of first order ones, in fact we present an essential
element for description of arbitrary order Galilei invariant equations.

The number of indecomposable vector representations and of the related in-
variants as well is much more extended than in the case of Lorentz group. On the
other hand we have proved [3] that any of these representations can be obtained
via the Inoéni-Wigner contraction from representations of Lorentz group. And
there is not any contradiction between these two statements since to obtain an
indecomposable representation of the Galilei group we should contract in general
a direct sum of indecomposable representations of the Lorentz one.

Galilei-invariant equations for massless fields can find direct applications in
various physical models which are characterized by velocities much smaller than
the velocity of light. In particular, such equations are an essential part of Galilean
supersymmetric models.

Let us summarize some open questions connected with the presented results:

e Description of differential invariants of any order;
e Definition of non-equivalent Lagrangians for vector fields;

e Application of the presented results to physical models (in particular, hy-
drodynamical ones);
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We

e Construction of Galilean supersymmetric models for massless and massive
fields.

believe that some of these questions will be answered in our future publica-

tions.
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In the three dimensional flat space any classical Hamiltonian, which has five
functionally independent integrals of motion, including the Hamiltonian, is
characterized as superintegrable. Kalnins, Kress and Miller [1] have proved
that, in the case of non degenerate potentials, i.e potentials depending linearly
on four parameters, with quadratic symmetries, posses a sixth quadratic inte-
gral, which is linearly independent of the other integrals. The existence of this
sixth integral imply that the integrals of motion form a ternary parafermionic-
like quadratic Poisson algebra with five generators. The Kepler—Coulomb po-
tential that was introduced by Verrier and Evans [2] is a special case of super-
integrable system, having two independent integrals of motion of fourth order
among the remaining quadratic ones. The corresponding Poisson algebra of
integrals is a quadratic one, having the same special form, characteristic to the
non degenerate case of systems with quadratic integrals.

1 Introduction

In classical mechanics, a superintegrable or completely integrable is a Hamiltonian
system with a maximum number of integrals. Two well known examples are the
harmonic oscillator and the Coulomb potential. In the N-dimensional space the
superintegrable system has 2N — 1 integrals, one among them is the Hamiltonian.

Several cases of three dimensional superintegrable systems with quadratic in-
tegrals of motion are described and analyzed by Kalnins, Kress and Miller [1, 3].
Specifically, Kalnins, Kress and Miller studied a special case of superintegrable
systems in which the potentials depend of four free parameters, these systems are
referred as non degenerate potentials. In the case that one three dimensional po-
tential have fewer arbitrary constants than four the potential is called degenerate.
The generate and non degenerate potentials have been studied by N.W. Evans [4].
One among the degenerate systems is the so called Generalized Kepler—Coulomb
system [4, 5]

H—g(l)m‘pr—sz)——m‘i‘ﬁ‘i‘?- (1)
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This potential has four integrals of motion quadratic in momenta plus the Hamil-
tonian. These quadratic integrals of motion do not appear to close under repeated
commutation and they do not satisfy a quadratic algebra [5] as it happens for the
supeintegrable two dimensional systems [6]. Therefore one of the open problems
is to find the Poisson algebra of the integrals of motion for the superintegrable
system (1).

One of the results of the Kalnins, Kress, Miller paper [1] is the so called “5 to 6”
Theorem, which states that any three dimensional non degenerate superintegrable
system with quadratic integrals of motion has always a sixth quadratic integral
F that is linearly independent but not functionally independent regarding the set
of five integrals Ay, Ao, By, Ba, H. The last statement leads to the result that
any three dimensional superintegrable non degenarate system form a, quadratic,
ternary Poisson algebra of special character [7], whose the definition is given in
Section 2.

Verier and Evans [2] introduced a new superintegrable Hamiltonian

1 k T
H=-(p24+p?4+p?) - ———~ 2 2=, 2
(pm +py +pz) $2+y2+z2 +:E2 +y2 + 22’ ( )

2
which is the non degenerate version of the potential of the generalized Kepler—
Coulomb system (1). The above potential is indeed superintegrable with quadratic
and quartic in momenta integrals of motion. The quartic integrals are generaliza-
tions of the Laplace RungeLenz vectors of the ordinary Kepler—Coulomb poten-
tial [2].

In this paper we prove that the “5 to 6” theorem of Kalnins, Kress, Miller [1] can
be applied and the associate Poisson algebra is a ternary quadratic algebra of the
constants of motion, which are different of the Hamiltonian. This algebra is similar
to the ternary parafermionic-like algebra for the three dimensional non degenerate
potentials [7]. Therefore the algebra of the generalized Kepler—Coulomb system
is also a ternary parafermionic-like algebra.

2 Ternary Parafermionic-like Poisson Algebra

The definition of the Lie algebra g with generators x1,zs,...,z, leads to the
following relations [z;,z;] = ZCU Tm, where ¢} the structure constants. The

generators satisfy the obvious ternary (trilinear) relations
def n nom
T (x5, x5, x5) =4, [, 2k E diixTn, Where di, = E CimClk-

Generally a ternary algebra is an associative algebra A whose generators satisfy
relations like the following one

T( 1’@71'9,7319 g ddkxm
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where T : A® A® A — A is a trilinear map. If this trilinear map is defined
as in eq. (3) the corresponding algebra is an example of the triple Lie algebras,
which were introduced by Jacobson [8] in 1951. At the same time Green [9] has
introduced the parafermionic algebra as an associative algebra, whose operators
fj , [i satisfy the ternary relations:

[ o [7F ]| = 200etms [ o [#F £1]] = 200l = 280 ],
[ fis [fes fm]] = 0.

We call parafermionic Poisson algebra the Poisson algebra satisfying the ternary
relations:

{xia {wj7xk}P}P = Zc%kxm7
m

which is the classical Poisson analogue of the Lie triple algebra (3).
The quadratic parafermionic Poisson algebra is a Poisson algebra satisfying the
relations:

{wi{zj, 21} p}p = Zdz’%xm:nn + Zcznjka:m
m,n m

A classical superintegrable system with quadratic integrals of motion on a two
dimensional manifold possesses two functionally independent integrals of motion
A and B, which are in involution with the Hamiltonian H of the system:

{H7 A}P:07 {Hv B}P:07

the Poisson bracket {A, B}, is different to zero and it is generally an integral of
motion cubic in momenta, therefore it could not be in general a linear combination
of the integrals H, A, B. Generally if we the Poisson brackets of the integrals of
motion {A,{A, B}p}p, {{A, B}p,B}p are not linear functions of the integrals of
motion, therefore they don’t close in a Lie Poisson algebra with three generators.
Considering all the nested Poisson brackets of the integrals of motion, generally
they don’t close in an Lie Poisson algebra structure.

All the known two dimensional superintegrable systems with quadratic inte-
grals of motion have a common structure [6,10-13]:

{H,A}p =0, {H,B}p=0, {A B}},=2F(A H,B),

(A BY b = 50 (BAA B o= 5 (@

where F' = F(A, B, H) is a cubic function of the integrals of motion
F(A,B,H) = aA3 + 8B% + yA?B + 6 AB? 4 (o + e, H) A?
+(Co+ GH) B* + (o + mH) AB + (60 + 61H + 6,H*) A
+ (ko + k1H + ko H?) B+ (Ao + M H + Mo H? + \3H?) | (5)

where the greek letters are constants.
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3 Non degenerate three dimensional Kepler—-Coulomb
ternary parafermionic-like Poisson algebra

The non degenerate Kepler-Coulomb Hamiltonian (2) has three quadratic inte-
grals which in agreement with [4] are:

1 ki(x? 4+ 92+ 2%)  ko(a® + 92+ 22 ka(2? 4y + 22
A —Lpy 1 y ), B y ), Fsl y ),

2 T Y z

1 o k(@2 +9y?)  ke(z?+9?) 1 o k22 kga?
=it BEg it e

where J; = yp. — 2py, Jo = zp, — xp., J3 = TPy — YDs, J2=JF+ 2+ J??.

The Coulomb potential differs from the other non degenerate potentials that
described in [1] since posses one integral of fourth order in addition to above,
quadratic one which denoted by B; and have the following form:

—k b b kY
Wl +y2 422 2 yr o 2P

By = <J1py — Jops — 22(

+—5 (@ps +ypy +2p2)"

One of the general results in [1] is the so called “5 to 6” theorem:
5—6 Theorem. LetV be a nondegenerate potential (depending on 4 parameters)
corresponding to a conformally flat space in 8 dimensions

ds® = g(z,y, z)(d/az2 + dy? + dzz),

that is superintegrable and there are 5, quadratic in momenta, functionally in-
dependent constants of the motion L = {Sy : £ = 1,---5} There is always a 6th
quadratic integral Sg that is functionally dependent on L, but linearly independent

In case of Coulomb potential the sixth integral exist and is an integral fourth
order in momenta as well the By with general form given by the next expression:

kY
222 +y2 422 27 yr o 2P

F = (—lez + J3ps — 2y(

ey
+?(wpx + ypy + 2p2)2.

By studying all the known non degenerate potentials given by Kalnins, Kress,
Miller [1], we can show that:

Proposition. In case of a three dimensional, non degenerate, superintegrable
system with quadratic integrals of motion, on a conformally flat manifold, the
integrals of motion satisfy a parafermionic-like quadratic Poisson Algebra with 5
generators which described from the following:
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A detailed study of all the cases of non degenerate superintegrable systems
on a flat space can be found in ref. [7]. In all the cases (with one exception) the
Poisson algebra of the integrals of motion is a ternary quadratic parafermionic-like
Poisson algebra (6), which has a specific form.

In all the known cases (with only one exception) the non degenerate systems
we can choose beyond the Hamiltonian H four functionally independent integrals
of motion Ay, By, As, B, and one additional quadratic integral of motion F', such
that all the integrals of motion are linearly independent. These integrals satisfy a
Poisson parafermionic-like algebra (6). The “special” form of the algebra defined
by the integrals Ay, By, As, By is characterized by two cubic functions

Fl:Fl(A17A27Bl7H)7 F2:F2(A17A27B27H)

and satisfy the relations:

{A1, Ao} p = {A1, Ba}p = {A2, B1}p =0,
{4y, Bl}% = 2F(Ay, Ay, H, By) = cubic function,

{A4,, Bg}% = 2Fy(Ay, Ay, H, B3) = cubic function,
OF;
{Ai7 {Ai7Bi}P}P = Z?—B,-’ {Bm {Ai7Bi}P}p = -

{{A1, B1}p, Bo}p = {A1,{B1, B2} p}p
{{A2, Ba}p, Bi}p = —{A2,{B1, B2} p}p- (7)

If we put C1 = {A1, Bi}p, Co = {A, Bo}p, D = {B1, Ba}p, the relations
(7) imply the following ones:

oF,
0A;’

oF o OF, 0F,
B ———Cy— —D = B - —D =
{C1, B2} p C1 8A202 0B, {C2,B1}pCs 8A101 + 95, 0,
{A%’FD}P —o —% {Agf}p
e PR N2 i/ B A
’ P — -
D Co
_OF _OF
o
2
= {42, Dyp 95 and (8)
Cq
OF; OF: OF; OF: OF1 OF:
o oy — B om 1+ ox 95, %2 + 55 o5, D 9
{C1,Catp = : (9)
C1C,
Schematically the structure of the above algebra is described by the following “IT”
shape
A1 - AQ

By By
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where with line represented the vanishing of Poisson bracket whereas the other
brackets between the integrals are non vanishing Poisson brackets.

It is important to notice that the integrals Ay, By satisfy a parafermionic-like
quadratic Poisson algebra similar to the algebra as in two dimensional case (4).
The corresponding structure function to the two dimensional one (5) can be writ-
ten as:

Fi(A1, By, H, Ay) = a1 A} + 81 B} + 11 AT By + 6A1 B}
(eo1 + €11 H + e21A2) AT + (Co1 + G11 H + (a142) BY
(o1 +m1H + n21Az) A1 B1+
(001 + 011 H + 021 H? + 031 A + 041 A3 + 051 Ao H ) Ay +
+ (ko1 + K11 H + ko1 H? + kg1 Ay + ka1 A5 + k51 AyH) Bi+
01 + M1 H 4 Aot H? 4+ A3 H3 4+ Mgg Ao + A5 A3 + Ng1 AS+
A1 Ao H + Ng1 AZH + \oy Ao H. (10)

+
+
+

The pair As, By forms also a parafermionic-like algebra with the corresponding
structure function Fy(Az, B, H, A1), which has a similar form as in (10).

The non degenerate Coulomb potential obey to the above parafermionic-like
“IT” structure that characterize, almost all three dimensional superintegrable sys-
tems. Precisely the algebra needs some modifications due to the difference of
the integrals order and to one extra symmetry that appears in system. In fact,
the extra symmetries on a superintegrable system cause a number of changes to
the default “II” structure always respecting the “II” shape. The extra symmetry
that Coulomb potential have is {B2, F'} = 0 and the general structure can be
schematically represented by the following figure:

As Ao
| |
By By
|

F

The existence of one extra symmetry cause a basic difference to the general
structure; one new subalgebra arising that expands in terms of Ay, By, F integrals
that also imply the presence of one extra function F3(Ay, By, F, H) which is a
fourth order function. Particularly, the “special” form of the algebra defined by
the integrals Ay, By, Ao, B, F is characterized by two fourth order functions and
one cubic:

Fy=Fi(A1,A2,B,H), Fo = Fy(A1,A2, By, H), F3 = F3(A1,Bo, F, H)

and satisfy the relations:
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{A1, Ao} p = {A1, Ba}p = {A2, B1}p = 0,{Bs, F}p =0,
{44, Bl}% = 2F(Ay, Ay, H, By) = fourth order function,
{4y, Bg}?g = 2Fy(Ay, Ay, H, B3) = cubic function,

{Aq, F}?D = 2F3(A1, F, H, By) = fourth order function,

OF; OF;

{Ai{Ai, Bi}p}p = 0B, {Bi.{Ai,Bi}p}p = T4,
8F3 8F3
{Alv{AlvF}}Pza—F, {F’{AhF}}P:_a—AAl’

{{AlvBl}P7B2}P = {Al’ {Bl’BQ}P}Pa
{{A2,Bo}p, Bi}p = —{A2,{B1, B2} p}p-

The structure functions of the above algebra are:
Fy = 4k* A\ By — 4k* Ay By + 4ksk®By — 32ksk?A H — 4A1 B} + 16A2B H
—16A1AsB1H — 64]{2314%}12 + 16k3 A1 B1H — 4k3k74,
Fy = —4](3114% + 4A9By Ay + 8k1 Ay Ay + 4k1 By Ay — 4koBo Ay + 8k1k3Aq
—4A9B3 — 4k3 Ay By — 4A3 By — 4k A% — 4ky Ao By + 4ky Ay By — 4k3 A2
—4k1k3 By + 8koks Ao + 4koks Bo + 8k1koks — 4]{31k§ — 4]{?%1433 — 4]@%]{73,
Fy = AK* A1 F — 4k* BoF — 4k k*F + 4kok® — 32kok® F A H — 4k3k*F
—4A F? + 16AIFH — 16A1 BoFH — 16k Ay FH — 64k A2 H?
+16ke A1 FH — 16k3 Ay FH — dkok™.

The full algebra is:

{{A1, Bi}, Ao} = {A1, {Ag, Bo}} = {{A1, F'}, Bo} =0,

{A1,B},B;1} = 2—2 — 4B} + 4k*B; + 32A1HB, — 16A,HB; + 16Hk3 By
—128A, H?k3 — 32HK? k3,

{A1,{A,B1}} = g—gll = 16HA? + 4k>A; — 8B1 Ay — 16A3HA; + 16Hk3 A,
—4Aok? + 4k%ks,

{{A3, By}, By} = S—Z — —4B3 + 4A, By — 8A9 By — 4k By + 4ky By

—4k3 By + 8A1ky — 8Asky — 8Asks + 8koks,

{A9,{Ay, By}} = g—gz = —4A% + 4A; Ay — 8By Ay — 4k1 Ay + 4ko Ay
—4k3 Ay + 4A1ky — 4A ky — Ak ks + dkoks,

{{F, A}, A} = % = 16HA? 4 4k*A; — 8F Ay — 16ByHA; — 16Hk; A,
+16Hky Ay — 16Hk3 Ay — 4Bok? — 4k%ky + 4k%ky — 4K k3,

{F{F,A}} = g—f’i = —4F? + 4k*F 4+ 32A1HF — 16BoHF — 16Hk, F

+16HkoF — 16HksF — 128 A1 H?ky — 32H Kk ko,
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{A1,{B1,B2}} = {{A1, B}, Bo} = —16HA? — 4k*A; + 4B Ay + 4F Ay
+16AsHA) — 16Hk3 Ay 4 4Ask* + 4B By — 4AoF + 4B1ky — 4B ks
—4k2ks + 4B ks + 4F ks,

{{4, By}, B1} = {{B1, By}, Ay} = 16HA? + 4k*A; — 4B A — AF A,
—16AsHA, — 16BoHA — 16Hk3 A — 4Ask? — 4Bok? + 445 B; + 4B, By
+4AsF — 4k?ks + AB1 ks + 4Fks,

{Ag, {F, Al}} = {Al, {F, AQ}} = —16HA% — 4](32/11 +4B1 Ay +4F A,
+16ByHA + 16Hk1 A1 — 16 Hk9 A1 + 16 HEk3 A1 + 432]{72 —4B1By + 4AF
+4k%ky — AB1ky — 4k*ky + 4B1ky + 4k*ks — AB1 ks — 4Fks,
{{Bl,F},Al} = —164A1B1H +16B1ByH + 16A1FH — 16AsFH
+16B1]{71H — 1631]{72H + 1631k3H + 16F]{23H,

{{Ay,B1},F} = —64A2H? + 64A, Ay H? + 64A, BoH? + 64A, ks H?
—16A1k*H + 16 A9k®H + 16Bok®H + 16A, ByH — 168, BoH — 16B1 k1 H
+16B1koH + 16k*ksH — 16B1 ks H — 4B1 F,

{{A},F}, B} = —4(16A1H? — 16A1 Ay H? — 16A, BoH? — 16 A1 ks H?
+4A1K*H —4A5k*H — ABok®>H — 4AFH + 4AyFH

—4k*ksH — 4FksH + B F),

{B1,{F,A1}} = {{B1,F}, Ay} = —64A2H? + 64A, Ay H? + 64A, BoH>
+64A, ks H? — 16A1k*H + 16A3k>H + 16Byk*H + 16A1 B H — 16A2 B H
—16B1BoH + 16A1FH — 16AsFH + 16]€2k3H —16B1ksH — 16 F k3 H,
{{[-0.2ex)As, By}, F} = {By, M} = —16HA} — 4k>A; 4+ 4B1 A, +4F A,
+16A5H A, + 16ByHA; + 16Hks Ay + 4A5k? + 4Bok? — 4B By — 4AoF
—4ByF — 4Bk, — 4B1ky + 4k*ks — 4B ks — 4F ks,

{{By,Bs},F} = {{B1,F}, By} = 64A?H? — 64A, Ay H?* — 64A, B H*
—64A1ksH? +16A,k*H — 16Ask*H — 16Bok*H — 16A1B1H + 16BBoH
—16A1FH 4+ 16AsFH + 16B,FH + 16B1k1H + 16B1ko H — 16k2]€3H
+16B1ksH + 16F]{:3H,

{{By,F},F} = 64AFH? — 64Ay FH* — 64Bo FH? — 128 By ko H?
—64FksH? 4+ 16B, FH,

{{B1,F},B1} = —64A, B H? + 64A3B1 H* + 64B, By H*

+64B1 ks H? + 128Fks H> — 16 B, F H,

{F{F, Ay}} = —4F? + 4k®F — 4B, F + 16A HF + 16A;HF — 16Hk F
+16Hko F — 128 A1 H?ky — 32HK?ky + 32B1 Hky,

{Ag, {F, AQ}} = 4A2k‘2 — 4](31]{72 + 4]{32](32 — 4A2B1 — 8A2F -+ 16A1A2H
+4B1ky — 16A1Hk1 — 4B1ko + 16A1Hk‘2,

{B1,{B1,By}} = —4B? + 4k*B; — 4F By + 16 A1 HB; + 16 B, H B,
+32Hks By — 128 A1 H?ks — 32HK? ks + 32F Hks,

{Ba,{Bi, Ba}} = —4Bsk* — 8k3k® + 8 B1 By + 4By F — 16A1 Bo H
+8B1ky + 8B1ks + 8Fks — 32A1 Hks.
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4 Conclusions

The three dimensional non degenerate Kepler—-Coulomb potential [2] satisfy a
ternary parafermionic-like fourth order Poisson algebra with quartic and quadratic
integrals. The systems have three subalgebras forming a special “II” structure.
Each subalgebra coreesponds to classical superintegrable system possessing two
Hamiltonians. The example of the non degenerate Kepler—-Coulomb system indi-
cates that probably the known degenerate three dimensional potentials are related
to non degerate systems with integrals of motion of order greater than two.

There is no results yet about the quantum superintegrable systems as also there
is not a compact general classification theory for three dimensional superintegrable
potentials. The structure of the corresponding Poisson algebras for the degenarate
systems is under investigation.

[1] Kalnins E.G., Kress J. and Miller W., Jr., Nondegerate three-dimensional complex Eu-
clidean superintegrable systems and algebraic varieties, J. Math. Phys., 2007, V.48, 113518.

[2] Verrier P.E. and Evans N.W., A new superintegrable Hamiltonian, J. Math. Phys, 2008,
V.49, 022902.

[3] Kalnins E.G., J.M. Kress and Miller W., Jr., Fine structure for 3D second order superinte-
grable systems: 3-parameter potentials, J. Phys. A: Math. Theor., 2007, V.40, 5875-5892

[4] Evans N.W., Superintegrability in classical mechanics, Phys. Rev. A, 1990, V.41, 5666—
5676.

[5] Kalnins E.G., Williams G.C., Miller W., Jr. and Pogosyan G.S., Superintegrability in three-
dimensional Euclidean space, J. Math. Phys., 1999, V.40, 708-725.

[6] Daskaloyannis C., Quadratic Poisson algebras of two-dimensional classical superintegrable
systems and quadratic associative algebras of quantum superintegrable systems, J. Math.
Phys., 2001, V.42, 1100-1119.

[7] Tanoudis Y. and Daskaloyannis C., Quadratic algebras for three dimensional non degenerate
superintegrable systems with quadratic integrals of motion, XX VII Colloquium on Group
Theoretical Methods in Physics, Yerevan, Armenia, Aug. 2008, arXiv:0902.0130v1.

[8] Jacobson N., General representation theory of Jordan algebras, Trans. Amer. Math. Soc.,
1951, V.70, 509-530.

[9] Green H.S., A generalized method of field quantization, Phys. Rev., 1953, V.90, 270-273.

[10] Bonatos D., Daskaloyannis C. and Kokkotas K., Deformed oscillator algebras for two-
dimensional quantum superintegrable systems, Phys. Rev. A, 1994, V.50, 3700-3709.

[11] Daskaloyannis C., Polynomial Poisson algebras for two-dimensional classical superinte-
grable systems and polynomial associative algebras for quantum superintegrable systems,
Czech. J. Phys., 2000, V.50, 1209-1214.

[12] Daskaloyannis C. and Ypsilantis K., Unified treatment and classification of superintegrable
systems with integrals quadratic in momenta on a two dimensional manifold, J. Math.
Phys., 2006, V.47, 042904 (math-ph/0412055).

[13] Daskaloyannis C. and Tanoudis Y., Quantum superintegrable systems with quadratic inte-
grals on a two dimensional manifold, J. Math. Phys., 2007, V.48, 072108.



4th Workshop “Group Analysis of Differential Equations & Integrable Systems” 2009, 182-190

Group classification of nonlinear fourth-order
parabolic equations

Rita TRACINA

Dipartimento di Matematica e Informatica, Universita di Catania, Italy
E-mail: tracina@dmi.unict.it

The symmetry classification of a nonlinear fourth-order parabolic equation is
performed. It is showed that this equation does not admit potential symmetries
and some exact solutions are found.

1 Introduction

In this paper we consider the following fourth-order nonlinear parabolic equation
wp + (W) tgrzr + (W) uptpre — 9(W)tgr — ¢ (w)u2 =0 (1)

where f and g are smooth functions of uw with f # 0. The subscripts ¢ and
x represent the partial derivatives with respect ¢ and x respectively. Here and
afterwards we use prime to denote derivatives when the function depends on the
only one independent variable (e.g. f'(u) = fu).

The equation (1) is the one-dimensional version of

u ==V (f(w)VAu) =V (g(u)Vu) (2)

which is used to model the dynamics of a thin film of viscous liquid (for an
overview see [1] and the references therein). The air/liquid interface is at height
z = u(z,y,t) and the liquid/solid interface is at z = 0. The one-dimensional
equation applies if the liquid film is uniform in the y direction. The fourth-order
term of (1) reflects effects of surface tension and also incorporates any slippage
at the liquid/solid interface. A typical form is f(u) = u® + AuP where 0 < p < 3
and A > 0 determines a slip length. The coefficient of the second-order term can
reflect additional forces such as gravity (g(u) = u?), Van der Waals interactions
(g(u) = u™, m < 0) or thermocapillary effects (g(u) = u?/(1 % cu)?).

Also equation (1) arises in the gravity-driven Hele-Shaw cell, for which f(u) =
g(u) = u [2,3].

When f(u) = 1, the equation (1) is the extensively studied Cahn-Hilliard
equation

Ut = —Ugggr + (Q(U)Um)x

that describes phase separation in binary alloys and is very important in mate-
rials science [4-6]. Symmetry analysis for the Cahn-Hillard equation has been
performed in [7-10].
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Setting f(u) =1 and g(u) = —1 — 2u the equation (1) becomes the Childress-
Spiegel equation

Uty = _(u:c:c +u+ u2)xx7

that arises as an interface model in biofluids [11], solar convection [12] and binary
alloys [13].
When f(u) = uP and g(u) = 0, equation (1) becomes

Ur = _(upu:c:c:c):w (3)

that appears in numerous applications, for example in the description of the mo-
tion of a very thin layer of viscous in compressible fluids along an inclined plane
where the variable u represents thickness of the film [14,15]. For p = 1 this equa-
tion arises in the modeling of breakup of a droplet in a Hele-Shaw cell, where the
variable u describes the thickness of a neck between two masses of fluid. Sym-
metry reductions of a generalization of equation (3), that is of equation (1) with
g(u) =0, can be found in [16].
Equation (1) can be written in a conserved form

ug + (f(u)ummm - g(u)ux)x =0,
and the associated auxiliary system is given by
Ve =u, v = —f(W)ugge + g(u)u,. (4)

If (u(t,x), v(t,x)) satisfies system (4), then u(¢, ) solves equation (1) and v(¢,x)
solves an integrated equation of (1)

v + f(Um)Uxxxx - g(vm)vmm =0.

The paper is set out as follows: in the first part of Section 2, by using the
infinitesimal method, we get the group classification of equation (1) that it is
possible to find also in [17,18]. In the second part of Section 2, in similar way,
we obtain the group classification of system (4). Symmetry reductions and some
exact solutions for equation (1) are presented in Section 3. The conclusions are
made in Section 4.

2 Symmetry classifications

2.1 Symmetry classifications of equation (1)

We apply the classical Lie method in order to look for the infinitesimal generator
Y of Lie group of point transformations with the form

Y = &N a,t,u), + ¥ (x,t, u)dy + n(z, t, u)dy. (5)
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Then we require that equation (1) be invariant with respect the fourth prolonga-
tion of the operator (5)

YW =V + 0y, + C110u,, + 11100y + C11110usrss + 200y, (6)
where

¢1 = Dy(n) — ume(gl) - utDm(£2),
Co = Di(n) — ue Dy(€") — us Dy(€?),
11 = De(C1) = e Da(€') — uge Do (€7),
111 = Da(C11) — UaaDa(§") = Uaat D2 (€2),
G111 = Da(Ci11) — Uaawa Do (€1) — Ugga Do (€2),
and D,, D; denote the total derivatives with respect to x and t. For additional

details see e.g. [19-21].
When we apply the operator (6) to equation (1), the invariance condition is

y® (ut + (f(Wtzza)s — (9(w)uz)z) =0

under the constraint that the variable v must satisfy equation (1). In the usual
way we get the determining system in the unknown &', €2 and 7.

In order to write the classifying equations we must distinguish the case f’ =0
and f’ # 0. In the first case, if f/ = 0, that is f(u) = fo, we have

2
x
& =21 50, € = €0), 1 =uan(t) + oo
and the following classifying equations

2000 + 2uang' + &g =0, Bag.q +x&f + 461, =0,
Q2429 — a?x:c:c:cfo — Qg —UQy = 0.

In the case f’ # 0 we have £! = c3x + ¢4, €% = cs5t + 6, ) = c1u + ¢ and the
following classifying equations

cof +auf +esf —4desf =0,
aff"+auff’ —cf? —cuf? + e ff =0,

cafgd +aufg —cagf —crugf' + 2e3fg =0,
eafgd" +aufg”’ —cof' g —auf'gd +2c3fg +cifg =0.

The principal Lie algebra £ for the class (1) is obtained when we consider f
and ¢ arbitrary functions, it is two-dimensional and is spanned by

Y1 =0, Yo2=0,.
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Only when the functional forms of f and g are

f(u) = fO(u + k)k17 g(u) = gO(u + k)k27 or (7)
flu) = foe™, g(u) = goe™*
with fo, f1, 90, 91, k, k1 and ko constants we obtain extensions of the principal
Lie algebra. Without loss of generality we can take in (7) k = 0.

For these forms of f and g we obtain that the admitted group of symmetries
have generators:

L f(u) = fou" and g(u) = gou*?

k1 — ko
2

Yy, Yo, V3= 0y + (k‘l — 2k2)t8t + w0y, (8)

2. f(u) = foek'" and g(u) = goe™"

k1 — ko

Yl, Yg, Yg = x@x + (kl — 2k2)t8t + 8u (9)

3. f(u) = fo and g(u) = go
Y17 Yé) Yé = u@u, Ya = O[(t,l’)au,
where the function a(t, z) satisfies equation a; + fowzrs — goQze = 0.

In all cases, when g(u) = 0, the corresponding algebra is expanded by the operator

2.2 Symmetry classifications of system (4)

A Lie point symmetry admitted by system (4) is a symmetry characterized by an
infinitesimal generator of the form

X = 7Yz, t,u,0)0, + 723z, t, u,0)0; + pt(z, t,u,v)0y + p2(z,t,u,v)0,. (10)

This group maps any solution of system (4) to another solution of (4) and hence
induces a mapping of any solution of equation (1) to another solution of (1).
Thus (10) defines a symmetry group of equation (1).

If (71)2 + (72)? + (ul)? # 0 then (10) yields a nonlocal symmetry of (1). Such
a nonlocal symmetry is called a potential symmetry of equation (1).

In the usual way we get the determining system in the unknown 71, 72, u!, 1.
If /=0, that is f(u) = fo, we have
CoT c
! = % +e, TP =cot+c3, p! =U<Co - Zz) + Be, 1* = cov + B(t, x)
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and the following classifying equations
(cou — dcou — 403;)g’ — 2029 = 0, Beag — Brawafo — B = 0.
In the case f’/ # 0 we have
mh=cix +e3, T = cot +cg, pt = (co — c1)u+ cq, p? =wvey + caz +cs

and the following classifying equations

(cq —ucy +uco)f + (co —4c1)f =0,
(cq — cru+ cou) fg' + (ucy — cou — c4)gf' + 2c1fg = 0.

Then we obtain the following group classification of the system (4):
1. f(u) and g(u) arbitrary

X1 =0z, Xo =0, X3=0,.

2. f(u) = fou!* and g(u) = gou™

X1, Xo, X3, Xy = (kl—kg)x8x+2(k:1—ng)tat—i—Qu@u—i—(k’l—k2—|—2)v81,.

3. flu) = foeF1™ and g(u) = goek2v

k1 — ko

X1, Xo, X3, Xy = 203+ (k1 — 2k2)t0; + 0y + <k1 ; kzv + :n> Oy-

4. f(u) = fo and g(u) = go
X17 X27 X37 X4 = uau + ’Uavy Xﬁ = ﬂxau + ﬂaih
where the function (¢, z) satisfies:

ﬁt + fOﬁxxx:c - gOﬁx:c =0.

In all cases, when g(u) = 0, the corresponding algebra is expanded by the operator
Xo = 20, + 4t0; + v0,,.

We can deduce easily that the point symmetries of the system (4) do not produce
any nonlocal symmetry of equation (1), that is, equation (1) does not admit
potential symmetries.
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3 Symmetry reductions and exact solutions

When f(u) and g(u) are arbitrary, the only symmetries admitted by (1) are the
group of space and time translations. In this case we obtain travelling wave
reductions,

oc=x— A, u=¢(0),

where A is an arbitrary constant and the function ¢(c), after integrating once
with respect to o, satisfies the following ODE

f(@)¢" = g(¢)d = Ap = ay (11)

where a; is a constant of integration.

Now we consider the only functional forms of f(u) and g(u) for which (1)
has extra symmetries, but we do not consider the cases where f(u) = fo or
g(u) = 0 because in these cases similarity solutions can be found in [7-10] and [16]
respectively.

3.1 Case 1: f(u) = fou* and g(u) = gou**
We suppose k; # 0 and gg # 0. In this case equation (11) becomes
fod™' 8" — god*2 ¢ — Ap = as.
If we choose a1 = 0, in the case k1 = ko = 1 we obtain the solution
(o) = ag\/Ee\/%U + a3 @e_\/%a _ A7 + au,
90 go 90

where a9, ag and a4 are arbitrary constants. Then we obtain the following trav-
elling wave solution

u(t, ) = az @e\/%(;p_m tag @6_\/%@40 Al = At) 1 ay
9o 90 90
as solution of equation
g + (foutizea)z — (goutiz)z = 0. (12)
From the generator Y3 of the algebra (8), that is

Y; = @wx + (k1 — 2k )t8; + udy,

in order to obtain the similarity variable and the similarity solutions we distinguish
two cases:
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1. In the case ki # 2ks:

_1 k—ko L
o= :Et 2 k1—2ko , u = tk172k2 QS(O-)7

where ¢(o) satisfies the ODE
2(;5 - 0'(1{21 - k‘Q)qb,

LAV ko (1N 1
If k1 = ko — 2 (k2 # —2), this equation can be integrated
o _
T o — o a1 =0

where a; is a constant of integration.

If k1 = ko equation (13) becomes

_9
ko

and in the case that k1 = k9 = 1 a particular solution is

+ (f0¢k2(25/,/), - (90¢k2¢,)/ -0

_ 3 2 1 2
(b(a) = 2goa1 + a0 6900'

with a1 arbitrary constant. Then we obtain

as solution of equation (12).
2
2. In the case k1 = 2ko, 0 =t, u = x*2¢(0), where ¢(o) satisfies the ODE

n 4fod* (kg = 2)(ka — 1) (k2 +2) 2909 (ks + 2)

= 0.
k3 k3

¢

This is a first-order equation the solution of which can be found in implicit
form. For particular cases we obtain solutions in explicit form. As examples

(a) If ko = 1, we obtain u(t, z) =
as solution of the equation

2
- . .
16901’ where aq is an arbitrary constant,

Ut + (f0u2u:c:c:c)x - (gOuu:c)x =0.

(b) If ko = 2, we obtain u(t,z) = iﬁ,
constant, as solution of the equation

where a1 is an arbitrary

U + (f0u4u:c:c:c):c - (90u2ux):c = 0.
(c) If ko = —2, we obtain u(t,z) = %, with a; an arbitrary constant, as

solution of the equation

ug + (fOu_4uxmv)x - (gOu_zux)m =0.
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3.2 Case 2: f(u) = foe"* and g(u) = goe?*

We suppose that k1 # 0 and go # 0. From the generator Y3 of the algebra (9),
that is

k1 —Ek
P

20y + (k1 — 2k2)t8; + Dy,

we have the similarity variable and the similarity solutions of the form:

L bk In(t)

L. In the case ki # 2k, 0 = ot 2Fi=%2 u = =5 + ¢(0), where ¢(0)
satisfies the ODE

2 — o(ky — ko)d'
2(ky — 2k2)

+ (f0€k1¢¢,/,)/ - (go€k2¢¢,), —0.
If k1 = ko, this equation can be integrated

k;i — foe*9¢" + goe* ¢ +a; =0
1

where a; is a constant of integration.

2. In the case k; = 2ky, 0 =, u = 2125” + ¢(0), where ¢(o) satisfies the ODE

n 4foe*™?  2ggek2?

=0. 14
T " (14)

¢

By setting ¢(s) = In(¢(s)) equation (14) becomes

)

4 fo 2%k 290
/ o+1 ko+1 —
R A Y

the solution of which can be found in implicit form.

4 Conclusions

In this paper we have performed the symmetry group classifications of the one-
dimensional equation (1) to model the dynamics of a thin film of viscous liquid.
Equation (1) can be written in a conserved form. Then by considering the asso-
ciated auxiliary system (4) we proved that equation (1) does not admit potential
symmetries.

Further by using the symmetry reductions we obtain some exact solutions for
particular forms of the arbitrary functions that appear.
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Reduction operators (called often nonclassical symmetries) of variable-
coefficient semilinear reaction—diffusion equations with power nonlinearity
f(@)ue = (9(x)ug)s + h(z)u™ (m # 0,1,2) are investigated using the algo-
rithm suggested in [O0.0. Vaneeva, R.O. Popovych and C. Sophocleous, Acta
Appl. Math., 2009, V.106, 1-46; arXiv:0708.3457].

1 Introduction

As early as in 1969 Bluman and Cole introduced a new method for finding
group-invariant (called also similarity) solutions of partial differential equations
(PDEs) [3]. It was called by the authors “non-classical” to emphasize the differ-
ence between it and the “classical” Lie reduction method described, e.g., in [16,17].
A precise and rigorous definition of nonclassical invariance was firstly formulated
in [11] as “a generalization of the Lie definition of invariance” (see also [26]). Later
operators satisfying the nonclassical invariance criterion were called, by different
authors, nonclassical symmetries, conditional symmetries and @Q-conditional sym-
metries [8,10,15]. Until now all names are in use. Following [19] we call nonclas-
sical symmetries reduction operators. The necessary definitions, including ones of
equivalence of reduction operators, and relevant statements on this subject are
collected in [22].

The problem of finding reduction operators for a PDE is more complicated
than the similar problem on Lie symmetries because the first problem is reduced
to the integration of an overdetermined system of nonlinear PDEs, whereas in
the case of Lie symmetries one deals with a more overdetermined system of linear



192 0.0. Vaneeva, R.O. Popovych and C. Sophocleous

PDEs. The complexity increases in times in the case of classification problem of
reduction operators for a class of PDEs having nonconstant arbitrary elements.

Often the usage of equivalence and gauging transformations can essentially
simplify the group classification problem. Moreover, their implementation can
appear to be a crucial point in solving the problem. This observation is justified
by a number of examples [12,21,22]. The above transformations are of major
importance for studying reduction operators since under their classification one
needs to surmount much more essential obstacles then those arising under the
classification of Lie symmetries.

In [22] simultaneous usage of equivalence transformations and mappings be-
tween classes allowed us to carry out group classification of the class of variable
coefficient semilinear reaction—diffusion equations with power nonlinearity

f@)uy = (9(x)uz)e + h(z)u™, (1)

where f = f(x), g = g(z) and h = h(z) are arbitrary smooth functions of the
variable z, f(z)g(z)h(z) # 0, m is an arbitrary constant (m # 0,1).

In the same paper an algorithm for finding reduction operators of class (1)
involving mapping between classes was proposed. Here using this algorithm we
investigate reduction operators of the equations from class (1) with m # 2. The
case m = 2 will not be systematically considered since it is singular from the Lie
symmetry point of view and needs an additional mapping between classes (see [22]
for more details). Nevertheless, all the reduction operators constructed for the
general case m # 0,1,2 are also fit for the values m =0, 1, 2.

The structure of this paper is as follows. For convenience of readers sections
2-4 contain a short review of results obtained in [22] and used here. Namely, in
section 2 all necessary information concerning equivalence transformations and
mapping of class (1) to the so-called “imaged” class is collected. Results on group
classification and additional equivalence transformations of the imaged class are
also presented. Section 3 describes the algorithm for finding reduction operators of
class (1) using mapping between classes. In section 4 known reduction operators
of constant-coefficient equations from the imaged class are considered. Their
preimages are obtained. The results of sections 5 and 6 are completely original
and concern the investigation of reduction operators for equations from the imaged
class which have at least one nonconstant arbitrary element. It appears that
application of the reduction method to equations from the imaged class with
m = 3 leads in some cases to necessity of solving first-order nonlinear ODEs of
a special form related to Jacobian elliptic functions. The table with solutions of
the ordinary differential equations (ODESs) of this kind is placed in Appendix.

2 Lie symmetries and equivalence transformations

To produce group classification of class (1), it is necessary to gauge arbitrary
elements of this class with equivalence transformations and subsequent mapping
of it to a simpler class [22].
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Theorem 1. The generalized extended equivalence group G~ of class (1) is for-
med by the transformations

t=00t+0d0, =), =),
= 0001 __ Oop 5 do N
f=0l g2y o N
P G
where ¢ is an arbitrary smooth function of x, @, # 0 and v is determined by the
formula ¥ (z) = ((53 % + 54)_1. d; (1 =0,1,2,3,4) are arbitrary constants,
5051(532 + 542) #0.
The usual equivalence group G™ of class (1) is the subgroup of the generalized
extended equivalence group G, which is singled out with the condition d3 = 0.
The presence of the arbitrary function ¢(z) in the equivalence transformations
allows us to simplify the group classification problem of class (1) via reducing
the number of arbitrary elements and making its more convenient for mapping to

another class.
Thus, the transformation from the equivalence group G™

¢ =sign(f)g)t. o = [ |f@g) | do o = 2)

maps class (1) onto its subclass f/(z")u'y = (f' (") p)p + h’(:n’)u’m/ with the
new arbitrary elements m’ = m, f'(z/) = ¢'(2’) = sign(g(z)) |f(:v)g(:n)|% and
W(x') = |g(z)f (m)_l‘% h(z). Without loss of generality, we can restrict ourselves
to study the class

f@)u = (f(@)uz)e + h(z)u™, 3)

since all results on symmetries and exact solutions for this class can be extended
to class (1) with transformation (2).

It is easy to deduce the generalized extended equivalence group for class (3)
from theorem 1 by setting f = § and f = g. See theorem 4 in [22].

The next step is to make the change of the dependent variable

o(t, ) = VI f(@)]ult, x) (4)
in class (3). As a result, we obtain the class of related equations of the form
Vp = Vg + H ()™ + F(z)v, (5)

where the new arbitrary elements F and H are connected with the old ones via
the formulas

Flo) — - T h(z)sign J (x)

|/ ()] (VIf@)hm+t
Since class (5) is an image of class (3) with respect to the family of transforma-

tions (4) parameterized by the arbitrary element f, we call them the imaged class
and the initial class, respectively.

, H(z) = (6)
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Theorem 2. The generalized extended equivalence group G’;H of class (5) coin-
cides with the usual equivalence group Gy of the same class and is formed by
the transformations

t~: 512t+52, i':511’+53, 17:5421,

F . H
F = < 20 H = T 2¢c m—1° =m,
o1 01°04™
where 05, j = 1,...,4, are arbitrary constants, 6104 # 0.

The following important proposition is proved in [22].

Proposition 1. The group classification in class (1) with respect to its generalized
extended equivalence group G~ is equivalent to the group classification in class (5)
with respect to the usual equivalence group G5y of this class. A classification list
for class (1) can be obtained from a classification list for class (5) by means of
taking a single preimage for each element of the latter list with respect to the
resulting mapping from class (1) onto class (5).

All possible G% p-inequivalent values of the parameter-functions F' and H for
which equations (5) admit extension of Lie symmetry are listed in table 1 together
with bases of the corresponding maximal Lie invariance algebras.

Table 1. The group classification of the class vy = vy, + H(z)v™ + F(z)v.
m #0,1,2; H(z) #0.

N | H(z) F(z) Basis of A™#*

0 A4 v Oy

1 ded* al O, Op + a0,

2 de?® —a? O, Oz + a0y, 2t0y + (x — 2at) 0+
(a(m —2at) + ﬁ) 00y

3 Sk asz 2 Oy, 2t0; + 0, + k+2 v0,

4 | sker™ | —322 + agr™2 4 v | By, Y010, + 2BxetP1D,—

2617 (Ba? — 22 v0),

5| dere’ —(22* + Bas Oy, €27 [0y — Pavd,]

6 | sert® —Ba? + pi=m Oy, €24 [0, — Bavd,],

e [0, + 2020, — 28 (822 — 12-) 00|

Here o, 3,7,0,k,p, q,a1,a2, a3 are constants satisfying the conditions: o = =,

6_m177—52k+5m § = £1mod Gy p # 0, a1 # —a?, k* + a3 # 0,
¢*+ai #0, a3 # =2
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The results on group classification of class (3) can be found in table 3 of [22].

Additional equivalence transformations between G'% j-inequivalent cases of Lie
symmetry extension are also constructed. The independent pairs of point-equiva-
lent cases from table 1 and the corresponding transformations are exhausted by
the following:

1— i|[j:0,&1=a1+a27 2l—>§|q:02 Ezt, rT=z+2at, v=e v;

N 1 k+2
s i=——e 0t =l b =exp <§ z? 423 ki t)”? (7)
m

wn

4 +—

4p

6 — §|q:0: the previous transformation with £ = 0.

The whole set of form-preserving [13] (also called admissible [18]) transformations
of the imaged class for the case m # 0, 1,2 is described in [22].

3 Construction of reduction operators using
mappings between classes

Here we adduce the algorithm of application of equivalence transformations, gaug-
ing of arbitrary elements and mappings between classes of equations to classifica-
tion of reduction operators.

1. Similarly to the group classification, at first we gauge class (1) to subclass (3)
constrained by the condition f = g. Then class (3) is mapped to the imaged
class (5) by transformation (4).

2. Since nonclassical symmetries of constant coefficient equations from the im-
aged classes are well investigated (see below for more details), they should be
excluded from the consideration. It also concerns variable coefficient equations
from class (5) which are point-equivalent to constant coefficient ones, namely
equations associated with cases 1|40, 2|40 and 6 of table 1 and equations re-
duced to them by transformations from the corresponding equivalence groups. As
a result, only equations from class (5) which are inequivalent with respect to all
point transformations to constant coefficient ones should be studied.

3. Reduction operators should be classified up to the equivalence relations
generated by the equivalence group or even by the whole set of admissible trans-
formations. Only the nonsingular case 7 # 0 (reduced to the case 7 = 1) should
be considered. Operators equivalent to Lie symmetry ones should be neglected.

4. Preimages of the obtained nonclassical symmetries and of equations admit-
ting them should be found using backward gauging transformations and mappings
induced by these transformations on the sets of operators.

Reduction operators of equations from class (3) are easily found from reduction
operators of corresponding equations from (5) using the formula

) — N &
Q=70 +£0, + < 72/ u>8u. (8)
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Here 7, £ and n are coefficients of 0;, 9, and 0,, respectively, in the reduction
operators of equations from class (5). The substitution v = \/m u is assumed.

There exist two ways to use mappings between classes of equations in the in-
vestigation of nonclassical symmetries. Suppose that nonclassical symmetries of
equations from the imaged class are known. The first way is to take the preimages
of both the constructed operators and the equations possessing them. Then we
can reduce the preimaged equations with respect to the corresponding preimaged
operators to find non-Lie solutions of equations from the initial class. The above
way seems to be non-optimal since the ultimate goal of the investigation of non-
classical symmetries is the construction of exact solutions. This observation is
confirmed by the fact that the equations from the imaged class and the associated
nonclassical symmetry operators have, as a rule, a simpler form and therefore, are
more suitable than their preimages. Reduced equations associated with equations
from the imaged class are also simpler to be integrated. Moreover, it happens
that preimages of uniformly parameterized similar equations do not have similar
forms and belong to different parameterized families. As a result, making re-
ductions in the initial class, we have to deal with a number of different ansitze
and reduced equations although this is equivalent to the consideration of a single
ansatz and the corresponding reduced equation within the imaged classes. This
is why the second way based on the implementation of reductions in the imaged
classes and preimaging of the obtained exact solutions instead of preimaging the
corresponding reduction operators is preferable.

4 The case of constant F' and H

Constant coefficient equations from the imaged class belong to the wider class of
a quasilinear heat equations with a source of the general form vy = vz, + q(v).
Lie and nonclassical symmetries of these equations were investigated in [5,6] and
[2,4,9,20], respectively. Their non-Lie exact solutions were constructed by the
reduction method in [2,4], see also their collection in [22]. The nonlinear equation
V¢ = VUze +q(v) possesses pure nonclassical symmetry operators with nonvanishing
coefficients of 0; if and only if ¢ is a cubic polynomial in v. Thus, in the case
q = 0v3 + ev, where § # 0, such operators are exhausted, up to the equivalence
with respect to the corresponding Lie symmetry groups, by the following:

0 <0: &g:I:% —251;8934—%(51134-611)&,,

e=0: &g—%@m—%v@v,

£<0: O+ 3utan(ux)d, — 3u?sec?(ux)vd,,

e>0: 0 — 3ptanh(ux)d, + 3u’sech?(uz)vd,,
O — 3pcoth(pz)d, — 3u?cosech?(pz)vd,,

where p = \/|e|/2. Note that the last operator was missed in [2,4].
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Finding the preimages of equations with such values of ¢ with respect to trans-
formation (4) and the preimages of the corresponding reduction operators ac-
cording to formula (8), we obtain the cases presented in table 2. In this table
A+B3#0,v>0, u=v/V2;e=0e=v2>0and e =—v?<0in cases 1, 2
and 3, respectively.

Table 2. Nonclassical symmetries of equations of the form

f(x)ut = (f(x)um)m + 6f(x)2u3, f(l‘) = C(x)z

N ¢(z) Reduction operators

O £ §V=20Cuds + §(5C%u F c1V/=20)udu,

1 cix+c
e 3 3¢y

815 — 531 — ﬁuﬁu

O + %\/ —20Cud, + %(5C2u2 FV—20Cu+ Vz)uauv

2 crsin(ve)+ 0y — 3ptanh(px)d, + 3u (<l tanh(uzx) + usechQ(,u:U)> U0y,
o cos(vx) ¢
O — 3 coth(px)0, + 3u <% coth(ux) — ucosech%ua:)) u0y,
| @ sinh(vz)+ Oy £ 3V=20Cud, + 3(6¢%u® F V—26C,u — v?)udy,
¢z cosh(va) O¢ + 3ptan(puz)0y — 3u (% tan(uz) + usec%,u:v)) Uy

5 Reduction operators for general values of m

In this section we look for G j-inequivalent reduction operators of the imaged
class (5). Here reduction operators have the general form Q = 70; + £0, + 10y,
where 7, £ and 7 are functions of ¢, x and v, and (7,&) # (0,0). Since (5) is an
evolution equation, there are two principally different cases of finding Q: 7 # 0
and 7 = 0 [10,14,25]. The singular case 7 = 0 was exhaustively investigated for
general evolution equation in [14,25].

Consider the case 7 # 0. We can assume 7 = 1 up to the usual equivalence of
reduction operators. Then the determining equations for the coefficients £ and 7
have the form

gvv - 07 T = 2(€xv - va)v

Nt — Naa + 26:(:77 =
§(Hpv™ + Fpv) + (26 — mo) (HU™ + Fo) + 1 (F 4+ Hv™ 'm),

3511 (va + FU) + 2£m£ + gt + 277wv - gmm - 251177 = 0

9)
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Integration of first two equations of system (9) gives us the following expressions
for £ and 75

E=av+b,

1, ) (10)
0= —gav + (ay — ab)v® + cv + d,

where a = a(t,z), b =b(t,x), c = ¢(t,x) and d = d(t, x).

Substituting £ and 7 from (10) into the third and forth equations of (9), we
obtain the classifying equations which include both the residuary uncertainties in
coefficients of the operator and the arbitrary elements of the class under consid-
eration.

Since the functions a, b, ¢, d, F' and H do not depend on the variable v, the
classifying equations should be split with respect to different powers of v.

Two principally different cases a = 0 and a # 0 should be considered separately.

If @ = 0 then for any m # 0,1,2 the splitting results in the system of five
equations

mHd =0, d;— dgz+2b,d— Fd=0,
by — bye + 2bb; + 2¢, = 0,
bH, + (¢c(m — 1) +2b,) H =0,
bF, + 2b, F + cpy — ¢t — 2b,c = 0.
Since mH # 0 then d = 0 and the second equation of (11) becomes identity.
Finding the general solution of the other three equations from (11) appears to
be a very difficult problem. But it is easy to construct certain particular solutions

setting, e.g., by = 0. This supposition implies that ¢; = 0. Then the integration
of (11) gives the expressions of ¢, F' and H via the function b(z) # 0

1,1
C__ib +§bm+k’17
1, L 1/b:\°  1by,
F__Zb + k1 + kob +bx+1<?> T3 (12)
H= /{:g,b_mT+3 exp [(m - 1)/ <g - %) dw] , (13)

where ki, ko and k3 are arbitrary constants, ks # 0.

Theorem 3. The equations from class (5) with the arbitrary elements given by
formulas (12) and (13) admit reduction operators of the form

Q =0 + b0, + <—%b2+ %bx“‘kl)vava (14)

where b = b(x) is an arbitrary smooth function and ky is an arbitrary constant.
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Note 1. Theorem 3 holds for any m € R, including m € {0, 1, 2}.

We present illustrative examples, by considering various forms of the func-
tion b(z).

Example 1. We take b = 22 and substitute it in formulas (12)- (14) to find that
the equations

k - 1, k
Vp = Vg + xmi—ge s (M=) +6kiz=h)m <_Zx4 + x—i + 22+ k1>v, (15)

admit the reduction operator
2 L 4
Q=0+ 170, + —533 + x4k |v0,.

. _1.3 1.
The corresponding ansatz v = zek1t=5® 2(w), where w = t + 27!, gives the

reduced ODE
Zow + kgefrm=Dw m oo — . (16)
For k1 = 0 the general solution of (16) is written in the implicit form

2k: 1
{—m—_ﬁlzm+ , m# —1,

(17)
—2k3In z, m = —1.

_1
/(Z—k‘2Z2—|—01) ldz=dw+Cy, Z=

If ko = 0 and m # —1, we are able to integrate (17). Setting C'; = 0, we obtain
a partial solution of the reduced equation in an explicit form:

1—-m
. <imT_1 _;@1w+c> , (18)

where C' is an arbitrary constant. Note that the constant C' can be canceled via
translations of w induced by translations of ¢ in the initial variables.
In the case k1 = ko = 0 and m # —1 we construct the exact solution

2
. Tom
v = ge 5% <j:mT_1\ / —Ti]fl (t + x_1)>

of the corresponding equation (15). Preimages of them with respect to transfor-
mation (4) are the equation

e_%x3x2ut = (e_%xsxzum)w + k3 265%™ (19)

and its exact solution

2

u= (gt o)
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Analogously, if ks = C; = 0 and m = —1 then integration of (17) gives

erf (V=Inz) = &,/ 2k + C, where erf(y) = \3% Iy e~dt is the error func-
tion and C' is an arbltrary constant which can be canceled by translations of w.
Therefore,

Z = exp {— [erf—1 (i@w)] 2} : (20)

where erf 7! is the inverse error function, represented by the series

00 2k+1
c
erf 1y = E K <ﬁy> , where c¢g=1,
k=0

2
sz CmCh—1—m _117127
—~ (m+1)2m+1) 7777690 [
The corresponding exact solution of equation (19) with m = —1 is

% = exp {_ [erf—l (i\/%(t%—m )>r}.

Example 2. Consider b= 27!, In view of theorem 3 the equations from class (5)
with the arbitrary elements

F=Fk +koa?—2:"2 H= kgxmﬂe%(l_m)kle (21)
admit the reduction operator

Q=0+ x_lax + (kl - 1'_2) v0y.

The ansatz constructed with this operator is v = z~lef?

22 — 2t, and the reduced equation reads

z(w), where w =

420 + kge%(l_m)klw ™+ koz=0.

If k1 = ko2 = 0, the reduced equation is integrated analogously to equation (16)
and has the similar particular solution

(imT_l\/ 2(4?11) ) o ) m # —1,
z = 2
exp{— [erf_l <:I:§\/I;:w>] }, m=—1.

Substituting the obtained z to the ansatz, we construct exact solutions of equa-
tions from class (5) with the arbitrary elements (21) for the values k1 = ko = 0.
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The preimaged equation z%u; = (w4ux)x + k3 230+ ™ has the exact solution

2
— — k- 1-m
z 3 (:l:mTl _2(mj—1) (22 — 2t)) , m# —1,

3 exp {— [erf‘l (ig\/k;s(x? - 2t)>]2} Com=—1.

In the following two examples we assume that k1 = ko = 0 in the formulas (12)—
(14) since this supposition allows us to find preimages in class (3) with arbitrary
elements being elementary functions.

u =

Example 3. Let b = e™* and k; = ko = 0. The equations of the form

Vp = Vgg + ke (ImeT"HmtB)) ym i (72" +4e™" + 1), (22)
admit the reduction operator

Q=0+ e70 5 (¢ +e7) v

The corresponding ansatz v = e3(e™—a)

reduced ODE

z(w), where w = € — t, gives the

Zww + k32™ = 0.

It coincides with the equation (16) with k1 = ko = 0, which has the particular
solution (18) (resp. (20)) for m # —1 (resp. m = —1). Substituting these solutions
to the ansatz, we obtain exact solutions of equation (22).

A preimage of (22) with respect to transformation (4) is the equation

e T— e "

_ —x
e Tug = (e “Ug)e + kz e TEU™

having the solution
2

_ . I-m
(E25ty—R(e —0) m# L

‘e exp{—[erf_l <i %(ex—t)ﬂz}’ m= -1

Example 4. Substituting b = sinz and k1 = ko = 0 to formulas (12)—(14) and
making the reduction procedure, we obtain the following results: The equation

—m

NS | 1m 1
Vp = Vg + k3(sinz) 3(m+3) g =5 coszym 4 1 (0082 T + 4cosx + cosec 2x)v,

has the exact solution
2

e%cosx\/m (imT_l _n%,]fl (t—ln!tan%‘))m, m?é_la

2
Vsinz exp{%— [erf_1 <j: %(t—lnhan%b)] }, m=—1.

v =
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The corresponding equation from class (3) is

Cos T

ST sinzuy = (e

sinx uy ), + ks cosec z €y

whose exact solution is easy to be constructed from the above one using for-
mula (4).

We have shown the applicability of theorem 3 for construction of non-Lie exact
solutions of equations from classes (5) and (3). Moreover, using these solutions
one can find exact solutions for other equations from (5) and (3) with the help of
equivalence transformations from the corresponding equivalence groups.

Note 2. In the case m = 3 we are able to construct more exact solutions of
equations from class (5) whose coefficients are given by (12)—(13) with k1 = 0,
namely, for the equations

- k 1 1/b 2 1b
_ 3 _[bdx,3 2 2 T Tx
Vg = Ugg + k3b e‘/ v° + (b—2 — Zb + b, + Z <€> — 57) v, (23)

where b = b(x), ks # 0.
According to theorem 3, equation (23) admits the reduction operator (14) (with

k1 = 0). An ansatz constructed with this operator has the form
: dz
v = z(w)\/|b] e 2/ b where w=t— / 5

and reduces (23) to the second-order ODE
Zow = —k323 — koz.

It is interesting that the reduced ODE does not depend on the function b(x).
Multiplying this equation by z, and integrating once, we obtain the equation

k
zi = —?3,24 — ko2 + O}

Its general solution is expressed via Jacobian elliptic functions depending on values
of the constants ko, k3 and Cy. See Appendix for more details.

For example, if ky = 1 + 2, k3 = —2p% and C; = 1 (0 < p < 1) we find two
exact solutions of equation (23)

d : d :

v =sn <t - / %,,u) VAl e2/ bde = cd (t — / %,,u) v |b] e 2/ bde,

where sn(w, ut), cd(w, u) are Jacobian elliptic functions [24].
The second case to be considered is a # 0. Then after substitution of £ and n

from (10) to system (9) its last equation takes the form

2

ga?’v?’ + 2a(ab — 2a;)v? + (a; + 3az; + 3aF — 2(ab); — 2ac)v +

b + 2b,b — byy — 2ad + 2¢, + 3aHv™ = 0.

It is easy to see that a # 0 if and only if m = 3. The investigation of this case is
the subject of the next section.

(24)
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6 Specific reduction operators for the cubic
nonlinearity

Splitting equation (24) in the case m = 3 and a # 0 with respect to u, we obtain
that the functions a, b ¢ and d do not depend on the variable ¢t and are expressed
via the functions F' and H in the following way

a=3VEeV=H, b=, C:%<12F_2<%>J<7>2>’ (25)

go V2 (p  LH,(H\ O L(HS )
ov—H oH\H), 6 2\H),_

where ¢ = +1. If H < 0 the corresponding reduction operators have real coeffi-
cients.

Then splitting of the third equation of system (9) for m = 3 results in the
system of two ordinary differential equations

H3H,ppw — 13H2 +2F,H3H, + 22 HH?H,, — 4 FH?>H?—
4H?H?, —6H?H,Hypp +4FH3H,, — 6 F,, H* =0,

16Fype H> + 16 H*H,H2, + 3 H?H2Hpy — 4 Fy H H,p p— (26)
6 H3HyyHypy — 18 HH2H, — 8 FE,H + 2 F, H3H2—
20 FH?H? — 12 FH*Hpp + 5H. + 32 FH3H, H,, = 0.

The following statement is true.

Theorem 4. The equations from class (5) with m = 3 and the arbitrary elements
satisfying system (26) admit reduction operators of the form

3 H,
Q:at+<§\/§e\/Wv+?>8x+
3.5 3 H, , 1 H,
[51{@ +Z\/§z—: —= +§<12F—2<F>m—<
Vae (o 1Hs (M _1(H |,
o/—H 2H\H), 2\H),

where ¢ = £1.

| &=
N————
no
~_
[
4
o
-

Let us note that system (26) can be rewritten in the simpler form in terms of
the functions F' and b

bugz = 6 Fiup — 2b,0% + b,% + 2bbyy — 2 Fyb — 4 Fby,

16 Fppw = 4by Fy + 20,20 + 6 bybyy + 202 F, + b3b,+ (28)
3b%byy + 12 Fby, + 8 FF, + 4 Fbb,.



204 0.0. Vaneeva, R.O. Popovych and C. Sophocleous

System (26) consists of two nonlinear fourth- and third-order ODEs. Unfortu-
nately we were not able to find its general solution. Nevertheless, we tested the
six pairs of functions F' and H appearing in table 1 in order to check whether they
satisfy system (26). In the case of positive answer the corresponding reduction
operator is easily constructed via formula (27). It appears that system (26) is
satisfied by F' and H from cases 1, 2 and 6 and by those from cases 3 and 4 for
special values of the constants k and ag, namely, (k,as) € {(—3, %) , (—%, 1%) }

So, we can construct preimages of these equations using formulas (6). Below
we list the pairs of the coefficients f and h for which the corresponding equations
from class (3) with m = 3 admit nontrivial reduction operators.

Hereafter b2 + b3 # 0. The numbers of cases coincide with the numbers of
the corresponding cases from table 1. (Case 5 does not appear below since the
functions F' and H from this case of table 1 do not satisfy system (26).)

1.a; =0: f=(b1x+b2)? h=0de(byx+ b)), ¢#0;
a1 >0=a;=1mod GFy: f=(bisinz+bycosa)?

h = 6e9% (by sin x + by cos x)*;

a1 < 0= a1 =—-1mod Grpy: f = (bysinhz + by cosh:n)2,

h = 6% (by sinh + by coshz)*, ¢ # £2.

2.q=0: f =1z +b2)?  h=dbix+b)h
¢#0=q=—-2mod G¥y: f = (bysinhz + bycoshz)?,
h= 56_2”(131 sinh x + by cosh m)4.

3. (kyaz) = (=3,9) : f=a2(bysin(v2In|z|) + by cos(v2In|z]))?,

= 6271 (b sin(v/21n |z|) + by cos(v21In |z]))*;
x(baf|T + balz] )2,
= 0\/[al(balo| T + bola] )%,

h
(kya2) = (=3, 15) © f
h

4. f = (M (pr?) + e Wi u(pe?))”
h = 5l'k_2€px2 (ban7p(px2) + b2WI€,/J(p$2))47

where kK = —%, =~ llj‘az‘, (k,a9) € {(—3,%), (—% i)} M, , and W,

are the Whittaker functions [24].

6. f=x" <b1M_ (pxz) + bW

h = 6z"2eP (by M

Note that in the case p > 0 the above Whittaker function is expressed via the

error function: M_1 1 (pz?) = %ﬁ / pr? egmzerf(vp$2) [1].

11
4°1
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Since the cases 1|40, 2|40 and 6 are reduced to constant-coefficient ones we
do not consider them.

Example 5. Class (5) contains equations with cubic nonlinearity, which are not
reduced to constant-coefficient ones by point transformations and admit reduction
operators of the form (27). One of them is the equation with the coefficients F'
and H presented by case 3 of table 1 with £ = —3, as = and 0 = —1, namely,

9
Vp = Vg — T 05 + Z:E_zv. (29)

According to theorem 4 this equation admits two similar reduction operators
(e = +1)

Qi:8t+g\/§<€w_%v—\/§x_l)8x—
Z\ﬁ(\/ﬁw v} — 3ex™ 30 2 V22 %0+ dex 3)5

They lead to the solutions differing only in their signs. Since equation (29) is
invariant with respect to the transformation v — —wv, we consider in detail only
the case ¢ = 1. For all expressions to be correctly defined, we have to restrict
ourself with values x > 0. (Another way is to replace = by |z|.)

For convenient reduction we apply the hodograph transformation

t=v, x=z, 0v=t

which maps equation (29) and the reduction operator @4 to the equation

o o o ~ t3 9t _
7)52 Vzz + 1)5;2 UgF — 207 Uz Uz + 1){2 + =3 7)53 ] 7)53 =0 (30)

and its reduction operator
o= VE(VEE s VR ) o
gﬂ( 3 \/izi‘1>8 + 85,
respectively. An ansatz constructed with the operator Q+ has the form

o1 ~2t+\/2gc 1 ) L ot — V2%
U= — — —i% 4+ 2(w), where w =32
2" vz 12 NG
and reduces (30) to the simple linear ODE wz,,, + 2z, = 0 whose general solution
2 = & + Gw ™! substituted to the ansatz gives the exact solution

#4246 t+V2E 1
v = — — - —ZC + Cl
2432 F_ o7 12
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of equation (30). Applying the inverse hodograph transformation and canceling
the constant ¢; by translations with respect to ¢, we construct the non-Lie solution

3zt + 24tx? + ¢
=2 31
v T 2t o (31)

of equation (29). The solution (31) with ¢ = 0 is a Lie solution invariant with re-
spect to the dilatation operator D = 4t0; + 2290, + 0, from the maximal Lie
invariance algebra of equation (29). However, it is much harder to find this
solution by the reduction with respect to the operator D. The corresponding
ansatz v = /zz(w), where w = t~'22, has a simple form but the reduced ODE
4?2 + w(w + 4)z, + 22 — 22 = 0 is nonlinear and complicated.

This example justifies the observation made by W. Fushchych [7] that “ansatzes
generated by conditional symmetry operators often reduce an initial nonlinear
equation to a linear one. As a rule, a Lie reduction does not change the non-
linear structure of an equation.” We can also formulate the more general similar
observation that a complicated non-Lie ansatz may lead to a simple reduced equa-
tion while a simple Lie ansatz may give a complicated reduced equation which is
difficult to be integrated.

One of the preimages of equation (29) with respect to transformation (4) is the
equation

zsin?(V2Inz)u; = (x sin?(v21In :z:)ux) — o sin*(V2Inz) u?,

xT

having the non-Lie exact solution

2 3at + 24ta?
u:\/j\cosec(\/ilnx)] s )
T

x4 + 24tx? — ¢y

Example 6. Consider the equation from the imaged class (5)

vy :vm—x_%v3+%% (32)
for the values x > 0 (case 3 of table 1 with m =3, k= —3, ap = 1% and 6 = —1).

It admits the reduction operator of form (27)
3 -3 -1 3 -23 -T2 -2
+ =0+ rTiv—x e — = (dz7 207 — xTAv 470 ) Oy,
Qi =0 +3 (\/5 : )a - (4 208 — 3V2r 0?4+ )a

Usage of the same technique as in the previous example gives the non-Lie exact
solution of (32)

1 1 3t + 2?2
= 25271 .
v=g5vam V(15 + 22) + ¢ (33)
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Applying the transformation v = \/E(blaji + ng_%) u to solution (33), we obtain
a non-Lie solution of the equation
x(blaz% + bgl‘_%)2ut =
(m(blx% + ng_%)%x) — \/E(bla:% + bga:_i)‘lu3

T

from class (3), where by and by are arbitrary constants, b? + b3 # 0.

The equivalence of cases 3 and 4 from table 1 with respect to the point trans-
formation (7) allows us to use solutions (31) and (33) for finding non-Lie exact
solutions of the equations

Vg = VUgp — T ( p2a? 42 x +2p) v, (34)
Vp = Uy — T 2ePT 03 +(pa: +16x2+§)v (35)
(case 4 of table 1, where m =3, (k,a2) € {(-3,3), (-3,2)} and § = —1). The

obtained solutions of (34) and (35) are respectively

. \/—3p1‘ — 622 + coe®P

vV =e€

prt — 622 — coeBrt
and
g2 1 dpa® — 3
= 5vV2e 2% p1 .
v=5v2e v 2\/x(4px? — 15) + coedPt
Appendix

After reducing an equation from class (5) with the coefficients given by (12), (13)
(m = 3 ki = 0) by means of operator (14), we need to integrate an ODE of the
form 22 = Pz* + Q2% + R, where P, Q and R are real constants (see note 1).
By scale transformations, this equation can be transformed to one from those
with righthand sides adduced in the fourth column of table 3. The corresponding
solutions are Jacobian elliptic functions [1,24]. Below

enwip) ooy Ly L
Cd(w,ﬂ) dn (w,u)v ( 7“) Sn(w,u)’ d ( ,u) cd(w”u/)’
ne(w, u) = m nd(w, p) = m, sc(w, p) = %
s ) = L ) = s ) = g

The parameter p is a real number. Without loss of generality p is supposed to be
in the closed interval [0, 1] since elliptic functions whose parameter is real can be
made to depend on elliptic functions whose parameter lies between 0 and 1 [1, §16].
If p is equal to 0 or 1, the Jacobian elliptic functions degenerate to elementary
ones.
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Table 3 ([23]). Relations between values of (P, Q, R) and corresponding
solutions z(w) of the ODE 22 = Pz* + Q2% + R.

P Q R P+ Q2+ R z(w)
W )| (1-22) (1-p22) | sn(w,p),
cd(w, )
—p? 2u? —1 1— p? (1—22) (22> +1—p?) | en(w,p)
-1 2 — p?—1 (1—2%) (2 4+p*—1) dn(w, p)
e I (1-22) (2 ~2) | ns(w.p).
de(w, )
L2 a1 | 2 | - ()2 ) | nelwp)
u?—1 2 — 2 -1 (1-2%) ((1—p*22—1) | nd(w,p)
1—p? 2 — p? 1 (142%) (A —p?)22+1) | sc(w,p)
PP =1) | 2u® -1 1 (1+122%) (1° = 1)2% +1) | sd(w,p)
1 2 — 11 1— p? (1+2%) (22 +1—p?) es(w, )
1 47 =1 | P =1) | (ZP+p®) (P +pr-1) | ds(w,p)
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We show the existence of compacton-like solutions within two hydrodynamic-
type systems taking into account effects of spatial and temporal non-localities.

1 Introduction

In this paper solutions to evolutionary equations are studied, describing wave
patterns with compact support. Different kinds of wave patterns play key rules
in natural processes [1-4]. The most complete mathematical theory dealing with
wave patterns’ formation and evolution is the soliton theory [5]. The origin of this
theory goes back to Scott Russell’s description of the solitary wave movement in
the surface of channel filled with water. It was the ability of the wave to move
quite a long distance without any change of shape which stroke the imagination
of the first chronicler of this phenomenon. In 1895 Korteveg and de Vries put
forward their famous equation

Uy + ﬂuux + Ugzr = 07 (1)

describing long waves’ evolution on a shallow water. They also obtained the
analytical solution to this equation, corresponding to the solitary wave:

L v
g

Both the already mentioned report by Scott Russell as well as the model sug-
gested to explain his observation did not involve a proper impact till the second
half of the XX century when there have been established a number of unusual fea-
tures of equation (1) finally becoming aware as the consequences of its complete
integrability [5].

In 1993 Philip Rosenau and James M. Hyman [6] put forward the following
generalization of KdV equation:

sech? [V (z — 4V?1)]. (2)

K(m,n) =uw +a (™), +6Wu"),.. =0, m>2, n>2. (3)

Txrxr
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The above family, called K(m,n) hierarchy, occurs to possess the generalized
traveling wave (TW) solutions with compact support. Forn=m =2, a=0§=1
compactly supported solution is given by the folllowing formula:

WV o0g2 € 4
u:{ 5-cos 3 if, [§] <2m, E=x—-Vt. (4)

0, if || > 2m,

Solutions of this type (referred to as compactons) attracted attention of many
scientists since they occur to inherit the main features of solitons. Thus, like the
solitons, compacton-like solutions form a one-parameter family parameterized by
the wave pack velocity V. Numerical experiments show [6-8| that any sufficiently
smooth initial data with compact support creates an ordered chain of compactons
(in agreement with the fact that the maximal amplitude of compacton is pro-
portional to its velocity). The most amazing observation concerning dynamics of
comactons is that they collide almost elastically in spite of the fact that a common
member of K(m,n) hierarchy is not completely integrable and does not possess
an infinite number of conservation laws.

A big progress in understanding properties of compacton-supporting equations
have been attained in recent decades [7-12]. Yet most papers dealing with this
subject are concerned with the compactons being the solutions to either com-
pletely integrable equations, or those which produce a completely integrable ones
when being reduced to equations or systems describing a set of TW solutions.

In this paper compacton-like solutions to the hydrodynamic-type model taking
into account non-local effects are studied. One of the peculiarities of the models in
question is that compacton-like TW solutions supporting by them exist merely for
selected values of the parameters. In spite of such restriction, the mere existence
of these solutions is significant for they appear in presence of both nonlinear and
nonlocal effects and rather cannot occur in any local hydrodynamic model. Be-
sides, compacton-like solutions associated with relaxing hydrodynamic-type model
manifest attractive features and can be treated as some universal mechanism of
the energy transfer in heterogeneous media.

The structure of the paper is the following. In Section 2 we give a geometric
insight into the soliton and compacton TW solutions, discussing the mechanism
of appearance of generalized solutions with compact supports. In Section 3 we
introduce the modeling systems taking into account non-local effects. In the
following sections we show that compacton-like TW solutions do exist within
non-local hydrodynamic-type models.

2 Solitons and compactons from the geometric
viewpoint
Let us discuss how the solitary wave solution to (1) can be obtained. Since the

function u(-) in the formula (2) depends on the specific combination of the inde-
pendent variables, we can use for this purpose the ansatz u(t,z) = U(§), with £ =
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Figure 1. Level curves of the Hamiltonian (6), representing periodic solutions and
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limiting to them homoclinic solution

x — V t. Inserting this ansatz into equation (1) we get, after one integration, the
following system of ODEs:

2V
1) = -, Wie =50 (v -2 ), 6
System (5) is a Hamiltonian system describing by the Hamilton function
_ 1 2, B
H_2<W +5U VU). (6)

Every solutions of (5) can be identified with some level curve H = C. Already
mentioned solution (2) corresponds to the value C' = 0 and is represented by the
homoclinic trajectory shown in Fig. 1 (the only trajectory in the right half-plane
going through the origin). Since the origin is an equilibrium point of system (5)
and penetration of the homoclinic loop takes an infinite “time”, then the beginning
of this trajectory corresponds to £ = —oo while its end to & = 4+o00. This assertion
is equivalent to the statement that solution (2) is nonzero for all finite values of
the argument &.

Now let us discuss the geometric structure of compactons. Like in the previous
case, we are looking for the solutions of the form wu(t,z) = U(), § = x —
V' t. Inserting this ansatz into equation (3) we obtain, after one integration, the
following dynamical system:

fl—g — _nBUW, Z—‘;/ — U | VU + mLHU“H1 U, (7)
where % = npU zd%. All the trajectories of this system are given by its first
integral

@ 5+m—n __ 14 5_n @ 2 _
m+1)(5+m—n v 5_nU + 2 (UW)* = H = const. (8)
( ) )
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Figure 2. Level curves of the Hamiltonian (8). Dashed line indicates the set of singular
points U = 0.

Phase portrait of system (7), shown in Fig. 2, is similar to some extent to that
corresponding to system (5). Yet the critical point U = W = 0 of system (7)
lies on the line of singular points U = 0. And this implies that modulus of the
tangent vector field along the homoclinic trajectory is bounded from below by a
positive constant. Consequently the homoclinic trajectory is penetrated in a finite
“time” and the corresponding generalized solution to the initial system (3) is the
compound of a function corresponding to the homoclinic loop (which now has a
compact support) and zero solution corresponding to the rest point U = W = 0.

It is quite obvious that similar mechanism of creating the compacton-like solu-
tions can be realized in case of non-Hamiltonian systems as well, but in contrast to
the Hamiltonian systems, the homoclinic solution is no more expected to form a
one-parameter family. In fact, in the modeling systems described in the following
sections, homoclinic solution appear at selected values of the parameters.

Let us note in conclusion that we do not distinguish solutions having the com-
pact supports and those which can be made so by proper change of variables.
In particular, the solutions we deal with in the following are realized as compact
perturbations evolving in a self-similar mode on the background of the stationary
(steady or inhomogeneous) solutions to corresponding systems of PDEs.

3 Non-local hydrodynamic-type models

We are going to analyze the existence of compacton-like solutions within the hy-
drodynamic-type models taking into account non-local effects. These effects are
manifested when an intense pulse loading (impact, explosion, etc.) is applied
to media possessing internal structure on mesoscale. Description of the non-
linear waves propagation in such media depends in essential way on the ratio of
a characteristic size d of elements of the medium structure to the characteristic
length A of the wave pack. If d/) is of the order O(1) then the basic concepts of
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continuum mechanics are not applicable and one should use the description based
e.g. on the element dynamics methods. The models studied in this paper apply
when the ratio d/\ is much less than unity and therefore the continual approach
is still valid, but it is not as small that we can ignore the presence of internal
structure.

As it is shown in [13], in the long wave approximation the balance equations
for momentum and mass retain their classical form, which in the one-dimensional
case can be written as follows:

U+ pe =0, pi+piuy =0. (9)

Here u is mass velocity, p is density, p is pressure, ¢ is time, z is mass (La-
grangean) coordinate. So the whole information about the presence of structure in
this approximation is contained in dynamic equation of state (DES) which should
be added to system (9) in order to make it closed.

It is of common knowledge that a unified dynamic equation of state well enough
describing the behavior of condensed media in a wide range of changes of pressure,
density and regimes of load (unload) actually does not exist. Various particular
equations of state describing dynamical behavior of structural media are derived
by means of different techniques. There exist, for example, several generally
accepted DES in mechanics of heterogeneous media, derived on pure mechanical
ground (see e.g. [14,15]). Contrary, in papers [16-19] derivations of DES are based
on the non-equilibrium thermodynamics methods. Both, mechanical and thermo-
dynamical approaches under the resembling assumptions give rise to similar DES,
stating the functional dependencies between p, p and their partial derivatives.

There is also a number of works aimed at deriving the DES on the basis of the
statistical theory of irreversible processes (see [20,21] and references therein). It
is rather firmly stated within this approach that DES for complicated condensed
media, being far from the state of thermodynamic equilibrium, takes the form
of integral equations, linking together generalized thermodynamical fluxes I, and
generalized thermodynamical forces L,,, causing these fluxes:

t +o00
I, = fn(Lk) +/ dt// Kinn (t,t’;ac,x’) Im [Lk(t/7x/)] dx’.

Here K, (t,t';2,2") is the kernel of non-locality, which can be calculated, in
principle, by solving dynamic problem of structure’s elements interaction. Yet,
such calculations are extremely difficult and very seldom are seen through to the
end. Therefore we follow a common practice [22,23] and use some model kernels
describing well enough the main properties of the non-local effects, in particular,
the fact that these effects vanish rapidly as |t — /| and |z — 2’| grow.

DES derived here are based on the following relation between the pressure and
density:

p(t,x) = flp(t,z)]+ /t {/+OOK (t—to—a)glp(t, )] dw'} dt’. (10)

—0o0 —0o0
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Let us first assume that effects of spatial non-locality are unimportant. In this
case the kernel of non-locality can be presented as K (t —t')§ (x — 2’) and the
flux-force relation (10) takes the following form:

¢
sty = Flptol+ [ K(-#)glp(t.)] dt. (11)
—00
Since we rather do not want dealing with systems of integro-differential equations,
our next step is to extract some acceptable kernels enabling to pass from (11)
to pure differential relations. Differentiating equation (11) with respect to the
temporal variable we obtain:

pe=flplpe + K(0)gp] + /t K (t—t)glp(t )] dt. (12)

—00
Equation (12) is equivalent to a pure differential one provided that function K (z)
satisfies equation K(z) = c¢K(z). In this case we obtain from (11), (12) the
following differential equation:

pe = flplpe + Aglpl +c{p — flpl}- (13)

In case when ¢ = —1/7 < 0, this equation corresponds to fading memory kernel
K(z) = Aexp[—Z]. For A=1, f [p] = xp"™,g[p] = —op™!, we get the following
DES:

T{pe = x(n+1)p"pi} = kp" " — p, (14)

where k = x — o7. Equations coinciding with (14) under certain additional as-
sumptions are widely used to describe nonlinear processes in multi-component me-
dia with one relaxing process in the elements of structure. Such constitutive equa-
tions was obtained by V.A. Danylenko with co-workers [18,19] by means of non-
equilibrium thermodynamics methods and somewhat earlier by G.M. Lyakhov
[14] on pure mechanical ground. Assuming that F' = = const, n = 1 and pass-
ing from the density to specific volume V = p~! one is able to obtain from (9)
and (14) the following closed system of PDEs:
X K
U +pz =7, Vi—uz=0, Tpt‘i'ﬁuxzv_p- (15)
In system (15) parameter 7 stands for acceleration of the external force, while
Vk and \/x/7 are interpreted as equilibrium and “frozen” sound velocities, re-
spectively [18].
Now let us address the case of pure spatial non-locality. Following [23], we

A\ 2
shall use the kernel of the form K[t —t' 2 —2'] = Gexp [— (””_lz > } <0t —t]

giving the equation

! ] glp(t,a')]da'. (16)
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Here parameter [, plays the role of characteristic length of the non-local effects,

A 2
is introduced. Since the function exp [— (x_lx > ] extremely quickly approaches

zero as |z — x| grows, then for 0 < [ << |z — 2| << 1 (which is rather a common
case) we can use the following approximation for function g [p (¢,2’)] inside the
inner integral:

g0 (t.)] = glp(ta)] + {glp(t.)]}, T2

1!
@ = )"

Holp )]}, + 0" — ). (17)

Dropping out the term O(|z’ — z|?) and integrating over dz’, we get

p=flp(t,2)] +o0glp(t,2)] + o2 {g[p(t,2)]},, (18)
where
o9 = 6/::0 e_(#) dx’', o9 = 6/_::0 %6_(%1/) dx’'.

In the simplest case analyzed e.g. by Peerlings [23] f [p(t,2)] ~ g [p (t,7)] ~ p"T2.
System of balance equations (9) closed by (18) with such a choice of functions f, g
was analyzed in [24]. It occurs to possess merely a solitary wave solution.

In order to obtain a compacton-supporting system we stop on another choice,
assuming that g(p) = 6 (p — po)"ﬂ7 and using some unspecified function f(p) =
f(p—po), where 0 < pg = const. This way we obtain system

ur + f()pe + 0 (7"P2)yy =0,  pi+ pPug = 0. (19)

In the following sections we analyze the conditions leading in both cases to the
appearance of compactly supported solutions.

3.1 Compactons in relaxing hydrodynamic-type model

We perform the factorization [25] of system (15) (or, in other words, passage to an
ODE system describing TW solutions), using its symmetry properties summarized
in the following statement.

Lemma 1. System (15) is invariant with respect to one-parameter groups of trans-
formations generated by the infinitesimal operators

A 0 A 0 A 0 0 0
Xo=— X1 =— Xo=p— — —V—. 20

= o e T Pe e TV av (20)
The above symmetry generators are composed on the following combination:

0 0 0 0
2—54‘5 (l’—l’o)%—Fpa—p—VW .
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It is obvious that operator Z belongs to the Lie algebra of the symmetry group
of (15). Therefore expressing the old variables in terms of four independent so-
lutions of equation Z.J(t,z) = 0, we gain the reduction of the initial system [25].
Solving the equivalent system

dt _d(xo—=z) dp  dV du

1 &zo—=z) & -V 07
we get the following ansatz

u=U(w), p=HWw)(wo—=), V=Rw)/(xo— 1)

w =&t + log 0

21
s (21)

leading to the reduction. In fact, inserting (21) into the second equation of sys-
tem (15), we get the quadrature

U = £R + const, (22)
and the following dynamical system:

EA(R)R' = —R[oRIl — k + 7Ry = Fi,
EARIT = {ER(RIT — k) + x(IT +v)} = Py, (23)

where (-) = d(-)/dw, A(R)=7(ER)?~x, o=1+7E

In case when v < 0, system (23) has three stationary points in the right half-
plane. One of them, having the coordinates Ry = 0, Ilg = —~, lies in the vertical
coordinate axis. Another one having the coordinates Ry = —k/vy, IIj = —v is
the only stationary point lying in the physical parameters range. The last one
having the coordinates

_ [ x k= TEY Ry
RZ — 7_&.27 H2 — O'RQ )

lies on the line of singular points 7(£R)? — x = 0.

As was announced earlier, we are looking for the homoclinic trajectory arising
as a result of a limit cycle destruction. So in the first step we should assure the
fulfillment of the Andronov—Hopf theorem statements in some stationary point.
Since the only good candidate for this purpose is the point A (R1,1I;), we put
the origin into this point by making the following change of the coordinates X =
R — Ry,Y =11 — II; which gives us the system

cam (3 > - e [(¥)+(m) (24

where

Hy =— (IL X% +20R XY + 0 X?Y),
Hy =& (ILX? 4+ 2R XY + X?Y) .
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A necessary condition for the limit cycle appearance reads as follows [26]:
spM =0 (ER1)? + xE = &, (25)
det M > 0 & Q> = k€A(Ry) > 0, (26)
where M is the linearization matrix of system (24). The inequality (26) will be
fulfilled if £ < 0 and the coordinate R; lies inside the set (0,/x/(7&?)). Note

that another option, i.e. when & > 0 and A > 0 is forbidden because of physical
reason [27]. On view of that, the critical value of & is expressed by the formula

X VX2 4RRT . (27)

gcr =
2R?

Remark 1. Note that as a by-product of the inequality (26) we get the following
relations:

-1<7E<0. (28)

To accomplish the study of Andronov—Hopf bifurcation, we are going to calcu-
late the real part of the first Floquet index C; [26]. For this purpose we use the
transformation

oR?

K
—X _ _Ex_ 2%y
Y1 ) Y2 Q 0O )

enabling to pass from system (24) to the canonical one having the anti-diagonal
linearization matrix M;; = Q(d2;01; — 61;025). For this representation formulae
from [26,28] are directly applied and using them we obtain the expression:

16R2Q?ReC) = —r {3»@2 F(ER)? (3 —€7) — k (ER1)? (6 + Tf)} .
Employing (25), we get after some algebraic manipulation the following formula:

ReC) = {2n6r (€R)? = x7 (€2R1)" = 3(x&)*}

K
1692 R?
Since for £ = & < 0 expression in braces is negative, the following statement is
true:

Lemma 2. If Ry < Ry then in vicinity of the critical value € = & given by the
formula (27) a stable limit cycle appears in system (23).

We have formulated conditions assuring the appearance of periodic orbit in
proximity of stationary point A(Ry,1I1;) yet in order that the required homoclinic
bifurcation would ever take place, another condition should be fulfilled, namely
that, on the same restrictions upon the parameters, critical point B(Rq,Il3) is a
saddle. Besides, it is necessary to pose the conditions on the parameters assuring
that the stationary point B(Rg,Il3) lies in the first quadrant of the phase plane
for otherwise corresponding stationary solution which is needed to compose the
compacton would not have the physical interpretation. Below we formulate the
statement addressing both of these questions.
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Lemma 3. Stationary point B(Ra,1ls) is a saddle point lying in the first quadrant
for any & > & if the following inequalities hold:

—T8aR2 < R1 < Ra. (29)

Proof. First we are going to show that the eigenvalues A; o of the system’s (23)
Jacobi matrix

~ 8 (Fl, Fg) K :_ﬁ)g
- 0 (R, H) = &2[k(0—2)+27Ra(0—1)] _xo s (30)

taken at the rest point (Rg,Ily), are real and have different signs. Since the
eigenvalues of M are expressed by the formula

~ ~12 ~
spM + \/[SpM:| —4det M

)\1,2 = 92 ’

it is sufficient to show that det M < 0. In fact, we have

det M = X7 X [k(c —2)+27R2(0 — 1)] =
T

-
X K
= —;2’77’5 <; + R2> = 2x&y (R1 — Rg) < 0.

To finish the proof, we must show that stationary point B(R2,Ils) lies in the
first quadrant. This is equivalent to the statement that x —7&.,vRe > 0. Carrying
the first term into the RHS and dividing the inequality obtained by v < 0, we get
the inequality —7&., Ry < Rq. The latter implies inequalities —7éRs < Ry < Ry
which are valid for any £ > &,. ]

Numerical studies of system’s (23) behavior reveal the following changes of
regimes (cf. Fig. 3). When ¢ < &, A(Ry,1I1;) is a stable focus; above the crit-
ical value a stable limit cycle softly appears. Its radius grows with the growth
of parameter ¢ until it gains the second critical value &, > & for which the
homoclinic loop appears in place of the periodic trajectory. The homoclinic tra-
jectory is based upon the stationary point B(Rg,Il3) lying on the line of singular
points A(R) = 0 so it corresponds to the generalized compacton-like solution to
system (15). We obtain this solution sewing up the TW solution corresponding
to homoclinic loop with stationary inhomogeneous solution

u=0, p=TIa(xg—=z), V =Ry/(xo—x), (31)

corresponding to critical point B(Rg,1l2). So, strictly speaking it is different from
the “true” compacton, which is defined as a solution with compact support. Note,
that we can pass to the compactly supported function by the following change of
variables:

7(t,x) = p(t,z) — Ua(zo — ), v(t,x) =V(t,z) — Re/(xo — ).
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0 5 0 5

Figure 3. Changes of phase portrait of system (23): (a) A(R1,II;) is the stable focus;
(b) A(Ry,1I;) is surrounded by the stable limit cycle; (¢) A(Rq,1I1;) is surrounded by the
homoclinic loop; (d) A(R1,I1;) is the unstable focus.

4 Compactons in the spatially nonlocal
hydrodynamic-type system

Now let us consider system (19) and use the TW ansatz
ut,z) =U(x — Dt) =U(E),  plt,x) = R(E). (32)

Inserting (32) into the second equation of system (19), we get the following quadra-
ture:

D D
P %)

Constant of integration have been chosen in such a way that u(t, £00) = 0.

Inserting the ansatz (32) into the first equation of the system, using the for-
mula (33) and integrating once the expression obtained this way we pass, after
some algebraic manipulation, to the second order dynamical system

D? /
+ fIRl+ kR + o [R" R = E = =— + f[0]. 34
7o, A (R R] o+ 1D (34)

It is obvious that above equation can be re-written as an equivalent dynamical
system. To do this, we define a new function W = —R’. Next we introduce new
independent variable 7" such that £ = o R""1o[R]4L where ¢[R] is an integrating

factor which is incorporated in order to make the system Hamiltonian. With this
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notation we get the following dynamical system equivalent to (34):

dr niiy,  OH[R, W]
T = op[RIR"TW = oW
dw D2R
—— =R 1)R"W? R) — (0 ) 35
o7 ¢[R] |o(n+1) + f(R)— f(0)+~ oo (R~ 7o) (35)
_ OH[R, W]
-~ QR

Solving the first equation of system (35) with respect to function H[R, W] we
obtain:

W2
H[R,W] = o@|R|R" 1 —

5 +0IR]. (36)

Now, comparing the RHS of second equation of system (35) with partial derivative
of (36) with respect to R, we get the system

R¢/[R] = (n+ 1)g[R],

2
9’[R]zsa[R}{f(R)—f(O)JrﬁR"“— DR }

po (R + po)

The first equation is satisfied by the function ¢[R] = CR""!. For convenience
we put C' = 2. Inserting ¢[R] in the second equation we obtain the quadrature

§ § DR
9(3):2/3 +1{f(R)—f(0)+/£R +2—m}d}'{.

Since the Hamiltonian function
H[R,W] = o RH+ D2

D?R
+2/R”+1{ 0 +/€Rn+2—7}dR
A po (R + po)

is a first integral of the system (35), the set of its phase trajectories can be
presented in the form

w? = 0R2(n+1 { /RnH[ — f(0)

D2R
+rR"T? — 7] dR} , 37
po (R + po) (37)

where K is the constant value of the Hamiltonian on a particular trajectory. Now
let us analyze formula (37). If we want to have a closed trajectory approaching
the origin, then we must properly choose the constant K and ”suppress” all the
singular terms by the proper choice of function f(R). It can be easily shown by
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induction that the following decomposition for the last term inside the integral
takes place:

RTL+2 _ Rn+1 _ pORn o+ (_1)kp]8Rn+l_k T
R+ po
1 ) ) p6z+2

—1 n+1 n+ 1 n—+

+H(=1)"" g 4 (1) T
Hence
1

R — — n+1 _ n+2 _

we = o R2(n+1) {K 2/R [f(R) — f(0) + kR" "] dR

2D2 <Rn+2 Rn—i—l

o s Py Tt o) T R A (o) log (R + po)> } '

From this we conclude that the last term in (37) always produces singularities.
More precisely, singularities are connected with monomials R when m < 2(n+1)
and with the logarithmic term. Therefore the last term in (37) should be rather
removed by the proper choice of f(R).

A simple analysis shows that function

Rn+1 Rn+2

f(R) = fo+ )+91 + 92

po (R + po

with A > 0 will suppress singularity provided that D = 4++/A. In fact, in this
case

1 201R  GoR?
2 _ _ p2nt1) | 291 92

where go = go + k. With such a choice the only trajectory approaching the origin
corresponds to K = 0. If in addition g1 = —a; < 0 and ¢ = as > 0, i.e.

AR

R) = - o R"! — R”+2, 39
f(R) f0+p0(R+p0) a + (a2 — k) (39)
then
2041 (65) 9
\/_\/2n+3 n+2R (40)
2(n+2)ay

and there is the point R, =
zontal axis.

@nT3)as in which the trajectory intersects the hori-

In fact, under the above assumptions we get the geometry which is similar
to that obtained when the member of K (m,n) hierarchy is reduced to an ODE
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describing the set of TW solutions. To show that, let us consider the system
arising from (34) under the above assumptions:

dR )

20— _9gW R2(n D)

dT oWt ’

‘;— [T[ = 2(n 4 1)oW?2R**! 4 20, R?"H3 — 20 R?" T2, (41)

System (41) possesses two stationary points lying on the horizontal axis: the
point (0,0), and the point (R3,0), where Ry = «3/ay. Analysis of the Jacobi
matrix shows that (R;,0) is a center. Moreover, Ry < R, when n > —2 so
the closed trajectory corresponding to K = 0 encircles the domain filled with
the periodic trajectories. Using the asymptotic decomposition of the solution
represented by the homoclinic trajectory near the origin, it can be shown that the
trajectory reaches the stationary point (0,0) in finite “time” so it does correspond
to the compacton.

Besides, we can get more direct evidence of the existence of compacton-like
solutions by integrating equation (40). Taking in mind that W = —dR/d¢, we
obtain the following equation:

1 dR
2
R
v
where v = %, = /o(ffi-2)' Solving this equation we get:

R[f] — { vy [1 + sin (5(§ - 50))] ) if —m < 25(§ - 50) < 377, (42)

0, otherwise.

= 0dE,

5 Conclusions and discussion.

In this work we have shown that hydrodynamic system of balance equations (9)
closed by DES accounting for non-local effects possesses the compacton-like so-
lutions. In contrast to analogous solutions to most of the compacton-supporting
equations, the presented solutions do not form a one-parameter family. Concern-
ing (39), for fixed values of the parameters A,y and «q there exists exactly one
pair of compactons moving with velocity v/A in the opposite directions. Whether
these solutions are of interest from the point of view of applications or not, de-
pends on their stability and behavior during the mutual collisions. Discussion of
these topics goes beyond the scope of this paper. Let us mention, however, that
the mere fact of existence of compactons is the consequence of the non-local effects
incorporation. To our best knowledge, this type of solutions does not exist in any
local hydrodynamic-type model, i.e. the system of balance equations (9) closed by
the functional state equation p = ®(p). Let us note that invariant TW solutions
very often play rule of intermediate asymptotics [29,30], attracting near-by, not
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necessarily invariant, solutions. This feature demonstrates compacton-like solu-
tions of another non-local model obtained when the system of balance equations
(9) is closed by the DES (14), describing relaxing effects. Solutions with compact
supports appear in this model merely in presence of the mass force. Exactly one
compacton-like solution occurs to exist for the given set of the parameters, yet
this solution serves as an attractor for the wave packs created by the wide class
of the initial value problems [31]. In contrast to the above mentioned relaxing
model, incorporation of the effects of spatial non-locality leads to the existence of
a pair of compacton-like solutions in absence of an external force. In fact, it is
shown for the first time that a non-local hydrodynamic-type model possesses more
than one compacton-like solution and from now on there exists the opportunity
to investigate their behavior during the collisions.

There are some evidences in favour of the stable behavior of these compactons
and their elastic collisions. The first is connected with the fact that by proper
choice of parameters A, a1 and «», a necessary condition for stable evolution tak-
ing the form dp/dp > 0, 8?p/d*p > 0 [27] can be fulfilled for DES employed in
system (19). Besides, this system possesses at least two conservation laws. Though
actually it is not known how many conserved quantities assure the stability of the
wave patterns during the collisions, it is almost certain that this number should
not necessarily be infinite. For example, the members of the Rosenau—Hyman
K (m,n) hierarchy, possessing with certain four conserved quantities, collide al-
most elastically and so is with the compacton-compacton and kovaton-compacton
interactions in the Pikovsky—Rosenau model [8].

In conclusion, let us touch upon the interpretation of TW with compact support
(the question which was asked during the IV Workshop and was not addressed
there). We'll discuss this issue by comparing the KdV equation with a member of
K (m,n) hierarchy. So, dispersion of a wave pack is very often interpreted as the
manifestation of parabolic effects in the hyperbolic-type model [32]. And it is well
known that dispersion is caused by the presence of the terms with higher-order
spatial derivatives. In case of KdV equation this is the third-order linear term
Ugze While in case of the K (m,n)-equation the term (u");z, is responsible for
dispersion. Comparing these terms we can see that in the first case the effective
“transport coefficient” is equal to unity, whereas in the second one it is propor-
tional to u™~!. So in case of a compact initial perturbation the K (m,n)-equation’s
“conductivity” is nonzero merely at the finite domain containing the wave pack
which remains thus compact forever.
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Integrability and symmetries of difference
equations: the Adler-Bobenko—Suris case
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The integrability aspects and the symmetry analysis of the Adler-Bobenko-
Suris difference equations are presented. Using their multidimensional consis-
tency, auto-Backlund transformations and Lax pairs are constructed for each
one of them. Employing the symmetry analysis of Viallet’s equation, infinite hi-
erarchies of generalized symmetries for the Adler-Bobenko-Suris equations are
explicitly given, along with corresponding hierarchies of integrable differential—
difference equations.

1 Introduction

It is well known that, integrable differential equations, like the Korteweg-de Vries
(KdV), the sine-Gordon and the nonlinear Schrédinger, have many properties in
common. They can be written as the compatibility condition of a Lax pair, which
plays a crucial role in solving the initial value problem by the inverse scatter-
ing transform. They admit auto-Backlund transformations, which allow us to
construct new solutions from known ones [1].

Other properties arise from the symmetries of these equations. Specifically,
they admit infinite hierarchies of generalized symmetries and, consequently, infi-
nite conservation laws [23]. Also, they reduce to Painlevé equations and result
from reductions of the Yang-Mills equations [15]. All the above mentioned charac-
teristics may be considered as criteria establishing the integrability of a differential
equation.

Analogous characteristics seem to be in common among integrable difference
equations defined on an elementary square of the lattice. In the most well known
cases, these equations are characterized by their “multidimensional consistency”.
For a two dimensional equation, this means that, the equation may be imposed
in a consistent way on a three dimensional lattice, and, consequently, on a mul-
tidimensional one. This property incorporates some of the above mentioned in-
tegrability aspects. Specifically, the consistency property provides the means to
derive algorithmically a Backlund transformation and a Lax pair of the difference
equation under consideration [9,16].

Adler, Bobenko and Suris (ABS) used multidimensional consistency as the key
property characterizing integrable difference equations to classify integrable scalar
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difference equations [3,4]. The equations emerged from the classification [3] split
into the H and Q list and comprise, apart from known ones, a number of new
cases. The subsequent study of the resulting equations has led to construction
of exact solutions [7, 8], Backlund transformations [6], symmetries [24, 30] and
conservation laws [25].

In this paper, the ABS equations will be used as the illustrative example to
investigate the similarities between discrete and continuous integrable equations,
as described above. For this purpose, we will generalize some recent results and,
subsequently, we will use them to derive new integrability aspects of the ABS
equations, as well as hierarchies of integrable differential-difference equations.

Specifically, first we will introduce a new class of autonomous and affine linear
difference equations which possess the Klein symmetry. Among the members of
this class are Viallet’s equation Q5, [32], and the ABS equations. Next, the con-
sistency property will be used to derive an auto-Bécklund transformation for each
one of the ABS equations, in terms of which Lax pairs will also be constructed.

The second direction of our investigation will be the symmetries of the ABS
equations. In particular, first we will present the symmetry analysis of the class
of equations under consideration and apply it to Q5. Using the latter results, we
will prove that the ABS equations admit infinite hierarchies of generalized symme-
tries, which are determined inductively using linear differential operators. Finally,
these hierarchies will lead to corresponding hierarchies of integrable differential—
difference equations, for which auto-Backlund transformations and Lax pairs will
be explicitly constructed.

The paper is organized as follows. In Section 2 we introduce the notation
used in sections that follow, and present the background material on symmetries
of difference equations. In the next section, the class of autonomous and affine
linear difference equations possessing the Klein symmetry is presented, along with
Q5 and the ABS equations.

Section 4 deals with the integrability aspects of the ABS equations, and, in
particular, with their auto-Béacklund transformations and Lax pairs. Section 5
contains the symmetry analysis of the equations belonging in the class under
consideration, as well as the construction of infinite hierarchies of symmetries for
all of the ABS equations.

2 Notation and preliminaries on symmetries
of difference equations

We first introduce the notation that it will be used in what follows. Also, we
present those definitions on symmetries of difference equations that will be used
in the next sections. For details on the subject, we refer the reader to the clear
and extended review by Levi and Winternitz [14].

A partial difference equation is a functional relation among the values of a
function u : Z x Z — C at different points of the lattice, which may involve the
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independent variables n, m and the lattice spacings «, 3, as well, i.e. a relation
of the form

5(”7mvu(O,O)vu(l,0)7u(0,l)7'" ;aaﬂ) = 0. (1)

In this relation, u; ;) is the value of the function u at the lattice point (n+i, m+j),
e.g.

U(0,0) = u(n, m) » o U@,0) = u(n +1, m) y o U,1) = u(n, m + 1) )

and this is the notation that we will adopt for the values of the function u from
now on.

The analysis of such equations is facilitated by the introduction of two trans-
lation operators acting on functions on Z?2, defined by

k k
(S,(L )u) 00) = U(k,0) » (S,(n)u> 00) =uo,k), Wherek€eZ,

respectively.
Let G be a connected one-parameter group of transformations acting on the
dependent variable u g ) of the lattice equation (1) as follows

G: U(o,o) — a(oyo) = (I)(n,m,U(070);€), e € R.

Then, the prolongation of the group action of G on the shifted values of u is
defined by

The transformation group G is a Lie point symmetry of the lattice equation
(1) if it transforms any solution of (1) to another solution of the same equation.
Equivalently, G is a symmetry of equation (1), if the latter is not affected by
transformation (2), i.e.

g(”? m, ﬂ’(0,0)? 7:4L(l,())7 7jL(O,l)a s @ ﬂ) = 0.

In essence, the action of the transformation group G is expressed by its in-
finitesimal gemerator, i.e. the vector field

x = R(n,m,u(0))0

U(O,O) )
where R(n,m,u ) is defined by
R(n7m7u(0,0)) = d_q>(namvu(0,0);€) )
€ e=0

and is referred to as the characteristic.
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Using the latter, one defines the k-th order forward prolongation of x, namely
the vector field
k k—i
ZZ ( o SR ) (72,11, %(0,0)) Dugr -
=0 j=0
This allows one to give an infinitesimal form of the criterion for G to be a
symmetry of equation (1). It consists of the condition

X(k) (8 (TL, m, u(0,0) ) u(l,O) ) u(O,l)a - O /8)) =0 ’ (3)

which should hold for every solution of equation (1) and, therefore, the latter
should be taken into account, when condition (3) is tested out explicitly.
Equation (3) delivers the most general infinitesimal Lie point symmetry of
equation (1). The solutions of (3) determine the Lie algebra g of the corresponding
symmetry group G and the latter can be constructed by exponentiation:

q’(n,mﬂ(o,O);E) = exp(ex) U(0,0) -

On the other hand, one may consider a group of transformations I' acting, not
only on the dependent variable u, but on the lattice parameters «, § as well.
This leads to the notion of the extended Lie point symmetry. The infinitesimal
generator of the group action of I' is a vector field of the form

v = R(n?m7 u(0,0))au(oyo) + S(n7m7a7ﬂ) 805 + C(n,m,a,ﬂ) 857

and the infinitesimal criterion for a connected group I' to be an extended Lie point
symmetry of equation (1) is

v (5 (n7mau(0,0)vu(1,0) U,1)5 -+ ,5))

where

e

k k—i
Z (8(2 oSU )R> (1, m, w(0,0)) Ou
1=0 j

+ S(n7m7a75) 8& + C(n7m7a75) 85

is the k-th forward prolongation of the symmetry generator v

By extending the geometric transformations to the more general ones, which
depend, not only on n, m and uq), but also on the shifted values of u, we arrive
naturally at the notion of the generalized symmetry. For example, a five point
generalized symmetry may be given by the vector field

I
o

v = R(n,m,u,0): U(1,0), %(0,1)> U(~1,0)> 4(0,~1))Qu(q q) -
while an extended five point generalized symmetry is given by the vector field
v = R(n,m, U(0,0)> U(1,0)> U(0,1)> U(-1,0)> U(o,—l))au(o,o)
+ &(n,m, a, B) 0o + ((n,m,, 3) 03,

respectively.
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3 A class of difference equations

In this section we introduce a class of lattice equations, which contains, among
others, Viallet’s equation Q5, [32], and the ABS equations H1-H3 and Q1-Q4,
(3].

Specifically, the members of this family are equations involving the values of a
function w at the vertices of an elementary quadrilateral, as shown in Figure 1.

uo1) o, U UO1) By, UL
B B
ueo)  © U uooy M uqg)
Figure 1. Figure 2.
They are autonomous
Q(u(0,0), U(1,0)5 U(0,1)> U(1,1)) = 0, (4)

and the function () satisfies two basic requirements: it is affine linear and depends
explicitly on the four indicated values of u, i.e.

i 1y QW (0,0)5 (1,0 W(0,1)s U(1,1)) # O
and

85(@1)62(“(0,0)7u(l,o),u(m),u(m)) =0,

where 4, j = 0, 1.
Moreover, we impose that, the function ) possesses the Klein symmetry:

Q(U(O,O),U(l,O),U(o,l),u(l,l)) = TQ(U(l,O)aU(O,O)au(l,l)au(o,l))
o Q(U(O,l)au(1,1)7 U(o,o),U(Lo)) ) (5)
where 7 = £1 and 7/ = +1.
The affine linearity of ) implies that one can define six different polynomials

in terms of @) and its derivatives [3,4,30], as illustrated in Figure 2. Specifically,
a polynomial h;; is defined by

hij = hji = QQi; — Q:iQ,, i#Jj, 4,j=1,...,4,

where @ ; denotes the derivative of @) with respect to its i-th argument and @ ;;
the second order derivative of () with respect to its i-th and j-th argument. The
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hi;’s are bi-quadratic polynomials of the values of u assigned to the end-points of
the edge or diagonal at which they correspond. Finally, the relations

hi2 has = hi13hoy = hig has (6)

hold in view of the equation () = 0.
The Klein symmetry of ) implies the following.

1. The polynomials assigned to the edges read as follows.

A — hl(l‘,y), ’i_j| =1
hij(@.y) = { ha(z,y), |i—j] =2 (7)

where i # j, {i,j} # {2,3}, and hj, hy are biquadratic and symmetric
polynomials of their arguments.

2. The diagonal polynomials have the same form, i.e.

h14(x7y) = hgg(l',y) = G($7y)7 (8)
where G is symmetric.

The most generic equation belonging in this class is Viallet’s equation Q5, [32],
for which the function @ in (4) has the form

Qu,x,y, 2) = ajuzyz + a (uyz + ryz + uzz + uzy) + as (uz + yz)
+aq (uz +zy) +as (zz4+uwy) +as (u+z+y+2)+ar, (9)

where a; are free parameters.
The ABS equations H1I-H3 and Q1-Q4 follow from equation Q5 by choosing

appropriately the free parameters a;. The specific choices are presented in the
following list.

i) Equations H1-H3 and Q1-Q3 correspond to the choice a; = ay = 0, while the
rest parameters are chosen according to the next table.

as a4 as ag ay
H1 1 0 —1 0 -«
H2 1 0 -1 B -« B —a?
H3 « 0 -0 0 §(a? — 3?)
Ql « p-—a —p 0 daf(a — )
Q2 « B-—a P af(a— ) ap-o)e?-as+ s
Q3 B*-1) B -a® a(1-p) 0 —8(a®=B%) (e’ ~1)(8%~1)

4ap3
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i1) Equation Q4 is the master equation of the members of the ABS list, [5], and
corresponds to the following choices of the parameters:

ap=a+b, ay=-—af—ba,

ab(a +b) 2 2 92
st Sl s — (202 — 22
as = af? + ba?
ab(a + b) 9 9 2
it Sl _ (9232 _ 22
as 2(ﬁ—04) —I—bOZ ( B 4)(1,
2
a6 = Lay - Lay, ar=2a) — ggay
2 4% 6 ’

a®> = pla), b =pB), plx)=42"— gz —g3.

Remark 1. In the above list, a and 3 are the lattice parameters associated with
the lattice directions, cf. Figure 1. Since the ABS equations depend explicitly on
these parameters, in what follows we will denote them as

Q(U(O,O)au(l,O)au(O,l)yu(1,1)§a7ﬁ) = 0.

It turns out [3,30] that, the polynomials hq, hy in equation (7) are related to
a polynomial h as follows:

hi(z,y) = h(z,y;0,0), ha(z,y) = h(z,y; 5, ).

Remark 2. Equations H1, H3;5—( and Q1;_ are also referred to as the discrete
potential, modified and Schwarzian KdV equation, respectively, cf. review [17].
Equations Q1 and Q3;_, are related to Nijhoff-Quispel-Capel (NQC) equation,
[21], cf. also [3,8]. Equation Q4 was first presented by Adler in [2], as the
superposition principle of the auto-Béacklund transformation for the Krichever-
Novikov equation.

4 Integrability aspects of the ABS equations:
auto-Backlund transformations and Lax pairs

An important characteristic of the ABS equations is their multidimensional consis-
tency [3], which can be regarded as the discrete analog of hierarchies of commuting
flows of integrable differential equations, [22]. For the sake of self-containment,
let us first explain the consistency property.
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%(0,1,1) O "1,

%(0,0,1)

%(1,1,0)

(0,0,0) ¢ %(1,0,0)

Figure 3. Three dimensional consistency

Suppose that, the function u depends also on a third lattice variable k, with
which the parameter v is associated. Moreover, each face of the cube carries a
copy of the equation, cf. Figure 3, which involves the values of u assigned to the
vertices of the face, as well as the corresponding parameters assigned to the edges.
Now, starting with the values of u at the black vertices and using the equations
on the gray faces, one can uniquely evaluate the values of u at the gray vertices
of the cube. Next, the equations on the white faces provide three different ways
to calculate the value w1 1). The equation possesses the consistency property if
these different ways lead to the same result. Moreover, if the resulting value u(y 1 1)
is independent of u(g ), then the equation fulfills the tetrahedron property.

The ABS equations possess both of the above properties, [3]. The consistency
and the tetrahedron properties imply that, the polynomial A related to the edges
is factorized as

h(z,y;0, 8) = k(a, B) f(z,9,a),

where the function k(«, () is antisymmetric, i.e.

k(ﬂa Oé) = _k(avﬂ) :

Furthermore, the discriminant

d(l‘) = f,%/ - fo,yy

is independent of the lattice parameters. The functions f, k and G corresponding
to each one of the ABS equations are presented in Appendix A.

Identifying the shifts of u with respect to the third lattice variable k& with a
new function @, the consistency property leads to Backlund transformations for
the equations under consideration, [6,33].

Proposition 1. The system

I
o

By(u, @, ) = { Q(U(O,O),U(l,O)a720(0,0)71}(1,0);047 A)
T Q(1(0,0): U(0,1)> U(0,0), U(0,1); Bs A) = 0



234 P. Xenitidis

defines an auto-Bdcklund transformation for the ABS equation

Q(1(0,0)> U(1,0)5 U(0,1), U(1,1); @, B) = 0. (11)
ul
A1 Ao
’UO ’U12
A9 A
’U2

Figure 4. Bianchi commuting diagramm

A direct consequence of the previous result is

Proposition 2 (Superposition principle). Let u!, u? be solutions of the ABS
equation (11), generated by means of the auto-Bdcklund tranformation By from
a known solution u® via the Bédcklund parameters \i and \a, respectively. Then,
there is a third solution u'?, which is given algebraically by

Q (u°,u', u? u' A, ) = 0,
and is constructed according to Bianchi commuting diagramm, Figure 4.

Remark 3. Auto-Bécklund transformations different from the ones presented
here, as well as some hetero-Backlund transformations, were given recently by
Atkinson in [6].

The consistency property also serves in the construction of a Lax pair, through
an algorithmic procedure [9,13,16]. Alternatively, using the fact that, a Backlund
transformation may be regarded as a gauge transformation for the Lax pair, [10],
one may construct a Lax pair for the ABS equations using the equations consti-
tuting By [33]. The two approaches lead essentially to the same result, which can

be stated as

Proposition 3. The equation of the ABS class
Q(1(0,0)5 U(1,0)5 U(0,1), U(1,1); @, B) = 0

arises in the compatibility condition of the linear system

1,0y = L(w(0,0), (1,0 % N 0,00, Yo,1) = L(wo,0), 0,1): B ) ¥ 0,0, (12)
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where

1 2. _ 1 Qs —Qp34
L@, e%a, %) = \/k(a,/\)f(xl,x2,a) < Q —Q3 > ’ (13)

with Q = Q(zt, 22,23, 2% a, \) and its derivatives (Q,; = 0,:Q) being evaluated
at 3 =zt = 0.

5 Infinite hierarchies of generalized symmetries

In this section first we deal with the symmetry analysis of the equations belong-
ing in the class presented in Section 3, which generalizes the corresponding results
of [30]. Next, we apply this analysis to equation Q5 and determine its symme-
tries. Using the latter results along with the ones of [30], we explicitly construct
infinite hierarchies of generalized symmetries for all of the ABS equations. Finally,
using the correspondence of symmetry generators and group of transformations,
hierarchies of integrable differential-difference equations are presented, along with
their Lax pairs.

The symmetry analysis of the equations presented in Section 3 is contained in
the following two propositions.

Proposition 4. Fvery equation in this class admits two three point generalized
symmetries with generators the vector fields

h1(u,0), wa,0) 1
n — : 7 —sh u ) U )
¥ <u@m—W4m 2L“mw&mu“w>8“”

and

ha(w,0): U0,1)) 1
m = : 7 —sh u ) U )
¥ (“mn_Wmm 21mmemuQm>3mm

respectively.
Proposition 5. Let an equation in this class be such that, the matrices
hz(x7y) G(SC,Z) G(x,w)
G, = hio(x,y) Ga(z,2) Gz, w) , 1=1,2, (14)
hi,xx(x7y) G,xx(xyz) G,x:c(wvw) z2=0

are invertible. Then, the generator of any five point generalized symmetry of this
equation will be necessarily a vector field of the form

1
v = a(n)vy, + b(m)v,, + 3 Y(n, m, u(0,0))Ouq ) -
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where the functions a(n), b(m) and 1 (n, m,w o)) satisfy the determining equation
(a(n) —a(n+1)) hy(u u(1.0y)? 0 (70(%1,0)@(071)) >
11H(0,0)» %(1,0) U(1,0) \ h1 (U(O,O) ,u(lyo))

G(u U
+ (b(m) — b(m +1)) h2(u(070)’u(071))2 au(o,l) (M)

h2(u(0,0)7u(0,1))
+G (w(1,0), U0,1)) (1, My w,0)) + ha(u,0), wo,1))P (0 + 1,m,ug o))
+hi(u 0y, wa,0)(n,m + 1 ue1)) — Q?u(lyl)w(n +1,m+ 1Lup,)) =0.

Proof. The proofs of the above propositions follow from the corresponding ones
given in [30] by making the following changes

hu,z,a, ) — hi(u,z), h(u,z,5,a) — ho(u,x).
|

Applying the above symmetry analysis to equation Q5, one concludes that the
latter admits only the pair of three point generalized symmetries generated by v,,
and v, given in Proposition 4 with

hi(z,y) = (a3 +a1xy+ as(x +y))(ar +azzy + ag(x +y)) —
(a6 + asx + (ag + a2x)y)(ag + agz + (a5 + azx)y) ,

hao(z,y) = (a5 + a1vy + az(x +y))(ar + aszy + ag(xr +y)) —
(a6 + asx + (a3 + a2z)y)(as + azz + (ag + a2x)y) .

Furthermore, it can be shown by a direct computation that, the commutator of
these two symmetry generators is a trivial symmetry, [23], i.e. the characteristic
of the resulting vector field vanishes on solutions of equation Q5. In view of this
observation, we will write

[Vna Vm] =0. (15)

Since Q5 contains all of the ABS equations, the above result is also valid for the
corresponding symmetry generators of the latter equations.

On the other hand, [30], all of the ABS equations admit a pair of three point
generalized symmetries, as well as a pair of extended generalized symmetries, the
generators of which are the vector fields

Vp = VT[?] = RL?] au(o,o) s Vi = VT[%] - Rgg] 811,(@0) ) (16)
and
Vn =N R[T?} 8u(0’0) — T(OZ) aa ) Vm = mRLg] 8U(0,0) - T‘(ﬁ) aﬁ ) (17)
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respectively, with

f(u(0,0)a U(1,0)s a)
U(1,0) — U(-1,0)
f (0,00, 0,1 75) 1

0
Ry = Uo1) — U0-1) §f,u(o,1> (w0,0) %0,1),6) -

RL?} fu(lo)( (0,0)> U(1,0), & a),

The form of the function r appearing in (17) depends on the particular equation
and is given in the following table.

Equation H1 H2 H3 Q1 Q2 Q3 Q4
r(z) 1 1 -5 1 1 —2% — 1423 — gz —g3

The generalized symmetries have been used effectively to derive reductions of
partial difference equations to discrete analogues of the Painlevé equations. The
first result in this direction was presented by Nijhoff and Papageorgiou in [19],
where the reduction of H1 to a discrete analogue of Painlevé 11 was given.

The extended symmetries can be used effectively in two different ways. The
first way is the construction of solutions through symmetry reductions, [31, 33].
Assuming that the function u depends continuously on the lattice parameters «, 3,
one may derive solutions of the given difference equation which remain invariant
under the action of both of the extended symmetries generated by the vector
fields V,, V,,. In this fashion, one is led to a system of differential-difference
equations, which can be equivalently written as an integrable system of differential
equations. On the one hand, this differential system is related to the so called
generating partial differential equations, introduced by Nijhoff, Hone and Joshi
in [18], cf. also [28,29]. On the other hand, some of its similarity solutions reveal
new connections between discrete and continuous Painlevé equations, [31].

The other way to use the extended symmetries was suggested by Rasin and
Hydon in [24]. Specifically, it was pointed out that, the above extended gener-
alized symmetries can be regarded as master symmetries of the corresponding
generalized ones. To prove this, one has to show that the following commutation
relations hold

[Vn,vlloq #0, HV,L,VLO}} ,VLO}} =0,

[0]

as well as similar relations for the generators V,,, vy;. It should be noted that,
the commutators [Vn,v[o}] [Vm,v[o]] lead to trivial symmetries because of the
relation (15), e. [Vn,v[o]] = n[vi?],vg]

Now, Writing out explicitly the commutators [Vn,vllo}] and [Vm,vlg]], one ar-
rives at

vill = [Vn,VL?]] = Ry uo 0y » 1
N {VWVLQL]] = Rl 0u, - (19)
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Rl = ((SnRL?]) Oy ) — (57(;1)1%5)]) Ou1,0) = r(a)3a> Ry

f(uoo U(lo )f(u(oo) U(—1,0)> )(U(zo)—u(—w))

_ ’ =, 20
(U 10)) (U 2,0) — U(o, 0))( (=2,0) — U(O,O)) (20)

Rw = ((5‘ R[O > o) (3( 1) R[0> o1y — (ﬁ)aﬁ> R[ |
_ F(ue0),w01), A)F (400, v0.-1), B)(up2) — t0-2) 21)

(U(o,l) - u(o,—1))2(u(0,2) - U(o,o))(u(o,—z) - u(o,o))

Using definitions (18-19) and the Jacobi identity, it can be verified straightfor-
wardly that:

[VLH , v,[gj] = [vi}] , Vm} = |:V£,11] ) vi?]} = [VE@] ) Vn] = [vi}] , VE@]} = 0.
On the other hand, the commutators

[VL” , VLO}] = |:V7[711] , VLQ” =0

can be verified by using (16), (18-21) and the properties of polynomial f, i.e. it
is biquadratic and symmetric.

Thus, we have proven that the symmetry generators V,,, V,, are master sym-
metries of VLO I and VQ], respectively. Consequently, infinite hierarchies of gener-
alized symmetries can be constructed in this fashion, the members of which are

defined inductively:

Vz[k—i_l] = REIH_H g0y = [Vi,vgk]} , k=0,1,... and i=n,m. (22)
The characteristics ng} involve the values of u at (2k+ 3) points in the ¢ direction
of the lattice and are determined by applying successively the linear differential

operators

[e.e]

R, = Y ¢ (3;5)3;91) Duroy — () D, (23)
{=—00

R, = Z 0 (s“ ) o, — 7(8) s (24)
{=—00

on RZ[-O], i.e

R — RERW

(R A

k=01... and ¢ =mn,m. (25)
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Remark 4. The linear operators R, R,, may be regarded as recursion operators
for equations Q3 and Q4. This follows from the fact [30] that, these equations
admit only the symmetries generated by vl? | and VLOI}.

Remark 5. It is worth mentioning some previous results on higher order gener-
alized symmetries for the ABS equations. Specifically, a procedure for the con-
struction of hierarchies of generalized symmetries was presented in [13], where
the relation of the ABS equations to Yamilov’s discrete Krichever—Novikov equa-
tion (YdKN), [34,35], was explored. On the other hand, particular results about
H1 and Q15— were presented in [11] and [12], respectively, the derivation of
which based on the associated spectral problem. The advantage of our approach
compared to the above outcomes is that, it leads straightforwardly to explicit ex-
pressions for the higher order generalized symmetries for all of the ABS equations.

The correspondence of the generators vl[k} to group of transformations, [23],
leads to hierarchies of integrable differential-difference equations, the first mem-
bers of which are special cases of YAKN equation, [13], cf. also [5].

Dropping the one of the two indices corresponding to shifts with respect to n
or m, and denoting by a the corresponding lattice parameter, these hierarchies
have the form

1
du _ Rk (M _ §f,u1(u,U17a)>  k=0,1,..., (26)

deg, U] — U_1
where ¢, is the corresponding group parameter,
> 1
R = Z 1 <S(£) <M - §f,ul(u,u1,a)>) Oy, — 1(a)0q (27)

Uy —uU—
oo 1 1

and § is the shift operator in the corresponding direction.
The corresponding ABS equation, written now in the form

Q(u,u1,u,ur;a,\) = 0,

is an auto-Bécklund transformation of equations (26) [13], while the latter equa-
tions admit the following Lax pair

dv
Uy = L(u,up;a,\) ¥, E:Nk\I’, kEk=0,1,.... (28)
k

In the above relations, the matrix L(u,u1;a,\) is given by (13) and

1 1
Nk ZZRk<mX_§X,u1>7 kIO,l,..., (29)

where

X = — f(u,uy,a) (L(u,us;a, )\))_1 OuLi(u,ur;a,\). (30)
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6 Conclusions and prespectives

We have presented some recent and new results about the integrability and the
symmetries of difference equations. We have used as a representative example the
equations of the ABS classification [3]. These equations possess the consistency
property which provides the means to explore Backlund transformations and Lax
pairs for all of them. In the same fashion, Backlund transformations and Lax pairs
have been derived for systems of difference equations possessing the consistency
property, e.g. the discrete Boussinesq system [26,27].

The extended generalized symmetries play the key role of master symmetries
leading to the explicit construction of infinite hierarchies of symmetries for all
of the ABS equations. Moreover, the study of solutions of the latter equations,
which remain invariant under the action of these symmetries, reveals a new link
among the ABS and integrable differential equations, as well as among discrete
and continuous Painleve equations, [30]. It would be interesting to study systems
of difference equations, such as the Boussinesq system and the generalization of
the discrete KdV equation presented in [20], from this point of view.

Appendix. The characteristic polynomials
of the ABS equations

H1l f(u,z,a) =1, G(z,y) = ((L‘ - y)27 k(a,B) =B —«a.
H2 f(u,z,0) =2(u+z+0a), G,y =@ —-y)?—(a—7p3)>% kia,p)=08—oa.

H3 f(u,2,0) =uz+ad, G(z,y) = (ya—2B)(ys —za), kla,p)=a’® -

Q1 f(u,z,0) = ((u—2)? —a??)/a, GClr,y)=ab ((x—y)*— (a—B)*),
ka,B) = —aB(a— B).

Q2 f(u,z,a) = ((u—1x)*—2a*(u+x) + a*)/a,
Gz,y) =af ((x —y)? = 2(a— B)*(z +y) + (. — B)*),
k(a, B) = —aBla — B).

Q3 f(u,z,a) = ng_l)(éla(x — au)(ax —u) + (o — 1)25?),

G(x,y) = C=FN (4ap(ay — z)(By — az) + (a® — §2)8°),
k(. B) = (a® = F%)(a® — 1)(5” - 1).

Q4 f(u,z,a) = ((uz + a(u+ )+ g2/4)? — (u+ = + o) (douz — g3)) /a,
G(z,y) = (a1zy + az(z +y) + aq)(aszy + ag(z +y) + ar)
— (agzy + asy + asz + ag)(axy + asx + asy + ag),

ab(ab+ab” af?—gs(a —3g3|a a?— a)—
k(o B) = b(a2b+ab? +[12a8% —ga( +2izaig;)] +[12862 —g5(8+20) 3g3]b).
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We study conditions of reduction of the multidimensional wave equation Ou =
F(u) — a system of the d’Alembert and Hamilton equations: y,y, = r(y, 2);
Ypzp = q(Y, 2); 2u2u = s(y, 2); Oy = R(y, z); Oz = S(y, z). We prove necessary
conditions for compatibility of such system of the reduction conditions. Possible
types of the reduced equations represent interesting classes of two-dimensional
parabolic, hyperbolic and elliptic equations. Ansatzes and methods used for
reduction of the d’Alembert (n-dimensional wave) equation can be also used
for arbitrary Poincaré-invariant equations. This seemingly simple and partial
problem involves many important aspects in the studies of the PDE.

1 Introduction

We study conditions of reduction of the multidimensional wave equation
Ou = F(u),
55830—631—'“_8;%”7 U:U(ZL‘O,Z‘l,...,ZL‘n) (1)

by means of the ansatz with two new independent variables [1,2]

u =y, z), (2)

where y, z are new variables. Henceforth n is the number of independent space
variables in the initial d’Alembert equation.
These conditions are a system of the d’Alembert and Hamilton equations:

YulYp = T(yv 2)7 Yuzpu = Q(y72)7 Zurp = S(yv 2)7
Oy = R(y,2), Oz=S(y,z). (3)

We prove necessary conditions for compatibility of such system of the reduc-
tion conditions. This paper is a development of research started jointly with
W.I. Fushchych in 1990s [3], and we present some new results and ideas.
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Possible types of the reduced equations represent interesting classes of two-
dimensional parabolic, hyperbolic and elliptic equations. Ansatzes and methods
used for reduction of the d’Alembert (n-dimensional wave) equation can be also
used for arbitrary Poincaré-invariant equations. This seemingly simple and partial
problem involves many important aspects in the studies of the PDE.

Classes of exact solutions of non-linear equations having respective symmetry
properties can be constructed by means of symmetry reduction of these equa-
tions to equations with smaller number of independent variables or to ordinary
differential equations (for the algorithms see the books [4-7]).

Reductions and solutions of equation (1) by means of symmetry reduction or
ansatzes were considered in numerous papers [8-13]. See [14] for a review of
results related to reduction of a number of wave equations. In the paper [15] an
alternative was proposed for the method of application of ansatzes for equation (1)
with a degree nonlinearity.

The method of symmetry reduction does not give exhaustive description of
all exact solutions for an equation, so other methods for construction of exact
solutions may be expedient.

A so-called “direct method” for search of exact solutions of nonlinear partial
differential equations (giving wider classes of solutions than the symmetry reduc-
tion) was proposed by P. Clarkson and M. Kruskal [16] (see also [17,18] and the
papers cited therein). It is easy to see that this method for majority of equations
results in considerable difficulties as it requires investigation of compatibility and
solution of cumbersome reduction conditions of the initial equation. These reduc-
tion conditions are much more difficult for investigation and solution in the case
of equations containing second and/or higher derivatives for all independent vari-
ables, and for multidimensional equations — e.g. in the situation of the nonlinear
wave equations.

The direct method, if applied “completely” (with full solution of compatibility
conditions), is exhaustive to some extent — it allows obtaining all reductions of
the original equations that may be obtained from @-conditional symmetry (see
more comments on symmetry in Section 4).

In this paper we were not able to achieve such complete application of the
direct reduction to equation (1) — the presented results are only a step to such
application. To do that it is necessary to find a general solution of the reduction

Direct reduction with utilisation of ansatzes or exhaustive description of con-
ditional symmetries (even @Q-conditional symmetries) cannot be regarded as al-
gorithmic to the same extent as the standard symmetry reduction. Majority of
papers on application of the direct method are devoted to evolution equations or
other equations that contain variables of the order not higher than one for at least
one of the independent variables, with not more than three independent variables.
In such cases solution of the reduction conditions is relatively simple.

We consider general reduction conditions of equation (1) by means of a general
ansatz with two new independent variables. We found necessary compatibility
conditions for the respective reduction conditions — we developed the conditions
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found in [3]. We also describe respective possible forms of the reduced equations.
Thus we proved that the reduced equations may have only a particular form.
conditions.

A similar problem was considered by previous authors for an ansatz with one
independent variable

u = ‘P(y)v (4)

where y is a new independent variable.
Compatibility analysis of the d’Alembert—Hamilton system

Ou=F(u), wuuu, = f(u) (5)

in the three-dimensional space was done in [19]. For more detailed review of
investigation and solutions of this system see see [20,21]).

The compatibility condition of the system (5) for f(u) = 0 was found in the
paper [22].

Complete investigation of compatibility of overdetermined systems of differen-
tial equations with fixed number of independent variables may be done by means
of Cartan’s algorithm [23], however, it is very difficult for practical application
even in the case of three independent variables, and not applicable for arbitrary
number of independent variables. For this reason some ad hoc techniques for such
cases should be used even for search of necessary compatibility conditions.

It is evident that the d’Alembert—Hamilton system (5) may be reduced by local
transformations to the form

Ou= F(u), wuuu, =X\ X=0,=£1. (6)

Necessary compatibility conditions of the system (6) for four independent vari-
ables were studied in [24] (see also [21]). The necessary compatibility conditions
for the system (6) for arbitrary number of independent variables were found in [25]:

Proposition 1. For the system (6) (n is arbitrary) to be compatible it is necessary
that the function F' has the following form:

2, @
F= T?L’ oo = 0.

W.I. Fushchych, R.Z. Zhdanov and 1.V. Revenko [20, 26, 27] found a general
solution of the system (6) for three space variables (that is four independent
variables), as well as necessary and sufficient compatibility conditions for this
system [26]:

Proposition 2. For the system (6) (u = u(xg,x1,x2,23)) to be compatible it is
necessary and sufficient that the function F' has the following form:
A

F=——uw N=0123.
N(u—{—C)’ )y S
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The results presented in this papers may be regarded as a development of the
above Propositions.

Reduction of equation (1) by means of the ansatz (2) was considered in [27]
for a special case (when the second independent variable enters the reduced equa-
tion only as a parameter), described all respective ansatzes for the case of four
independent variables, and found the respective solutions. Some solutions of such
type for arbitrary n were also considered in [28].

In [29] reduction of the nonlinear d’Alembert equation by means of ansatz
u = ¢(w1,ws,ws) was considered for the case Dw; = 0, wiywi, = 0 (that is wy
entered the reduced equation only as a parameter). The respective compatibility
conditions were studied and new (non-Lie) exact solutions were found. Note that
this case does not include completely the case considered here — the case of the
ansatz with two new independent variables.

2 Necessary compatibility conditions of the system
of the d’Alembert—Hamilton equations for two
functions or for a complex-valued function.

Reduction of multidimensional equations to two-dimensional ones may be inter-
esting as solutions of two-dimensional partial differential equations, including non-
linear ones, may be investigated more comprehensively than solutions of multi-
dimensional equations,and such two-dimensional equations may have more inter-
esting properties than ordinary differential equations. Two-dimensional reduced
equations also may have interesting properties with respect to conditional sym-
metries.
Substitution of ansatz (2) equation (1) leads to the following equation:

OyyYulp + 2Py 2uYp + Pazzuzy + 00y + 902 = F(p) (7)

_ Oy 9

whence we get a system of equations:

YuYp = r(y, 2), Yuzp = q(y72)7 Zplu = 5(y, 2), (8)
Oy = R(y,2), Oz=5(y,z2).

System (8) is a reduction condition for the multidimensional wave equation (1)
to the two-dimensional equation (7) by means of ansatz (2).
The system of equations (8), depending on the sign of the expression rs — ¢2,
may be reduced by local transformations to one of the following types:
1) elliptic case: rs — ¢? > 0, v = v(y, z) is a complex-valued function,
Ov =V(v,0%), Ov*=V*(v,0v%),

v, = h(v,0"), v, =0, v, =0 9)

(the reduced equation is of the elliptic type);
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2) hyperbolic case: 7s — ¢% < 0, v = v(y, 2), w = w(y, z) are real functions,
Ov=V(v,w), Dw=W((,w),
wyw, = h(v,w), v, =0, wyw, =0 (10)
(the reduced equation is of the hyperbolic type);
3) parabolic case: rs—q? = 0, r2+s2+¢> # 0, v(y, 2), w(y, ) are real functions,
Ov=V(v,w), Dw=W(v,w),
vpw, =0, v, =X (A==%1), wuw, =0 (11)
(if W # 0, then the reduced equation is of the parabolic type);
4) first-order equations: (r=s=¢=0),y —v, z > w
VU = wywy, = vw, = 0,
Ov =V(v,w), Ow=W(v,w). (12)
Let us formulate necessary compatibility conditions for the systems (9)—(12).

Theorem 1. System (9) is compatible if and only if
o} YT Qo

where ® is an arbitrary function for which the following condition is satisfied

(hdy )" ® = 0.

V=

The function h may be represented in the form h = RL

—, where R is an arbi-
trary sufficiently smooth function, R,, R, are partial deriwatives by the respective

variables.

n+1
Then the function ® may be represented in the form ® = S fu(v)RE, where
k=0
fr(v) are arbitrary functions, and
n+1 i
Z kfk‘(v)Rv
k=1
T o4l ’
> fe(v)RY
k=0
The respective reduced equation will have the form
* 8U*¢ 61)@*
") (0 + 0,252 46,2 ) = F(o) (13)

The equation (13) may also be rewritten as an equation with two real inde-
pendent variables (v =w + 0, v* = w — 60):

20 (w, 0)(duw + do0) + Qw, 0) b + O(w, ) g = F(9). (14)

We will not adduce here cumbersome expressions for €2, ©® that may be found
from (13).
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Theorem 2. System (10) is compatible if and only if

h(v, w)0y, @ h(v, w)0, ¥
V=e—~\-— W=——"r
) ’ v ’
where the functions ®, W for which the following conditions are satisfied
(hd,)" W =0, (hd,)" ™ = 0.

The function h may be presented in the form h = R—quw’ where R is an arbi-
trary sufficiently smooth function, R,,, R, are partial derivatives by the respective
variables. Then the functions ®, ¥ may be represented in the form

n+1 n+1
®=) fulv)Ry, V= ng
k=0

where fi(v), gr(w) are arbitrary functions,

n+l n+1
> kfi(v)RY > kg (w)RE,
k= _ k=1
n+1 ’ n+1
> fu(v)RE > gr(w)RE,
k=0 k=0

The respective reduced equation will have the form

0w ® 0, ¥
biow) (6 + 0222 16,28 ) = Fio) (15)
Theorem 3. System (11) is compatible if and only if
Vz%@, te =0, W=0.

Equation (1) by means of ansatz (2) cannot be reduced to a parabolic equation
— in this case one of the variables will enter the reduced ordinary differential
equation of the first order as a parameter.

Compatibility and solutions of such system for n = 3 were considered in [27];
for this case necessary and sufficient compatibility conditions, as well as a general
solution, were found.

System (12) is compatible only in the case if V=W = 0, that is the reduced
equation may be only an algebraic equation F'(u)=0. Thus we cannot reduce
equation (1) by means of ansatz (2) to a first-order equation.

Proof of these theorems is done by means of utilisation of lemmas similar to
those adduced in [24,25], and of the well-known Hamilton—Cayley theorem, in
accordance to which a matrix is a root of its characteristic polynomial.

We will present an outline of proof of Theorem 2 for the hyperbolic case. For
other cases the proof is similar.
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We will operate with matrices of dimension (n + 1) x (n + 1) of the second
variable of the functions v and w:

V="{vw}, W={ww.}

With respect to operations with these matrices we utilise summation arrangements

customary for the Minkowsky space: vg = 10z, Va = —i0z,(a = 1,...,n), v,v, =
v —v? — =0l

Lemma 1. If the functions v and w are solutions of the system (10), then the

following relations are satisfied for them for any k:
i = 0 )00V (v, 0)
(k—1)! T

R _1\k
trWW = (]i _1)1)‘ (h(v, w)d, )W (v, w).

Lemma 2. If the functions v and w are solutions of the system (10), then det V=
0, det W = 0.

A

Lemma 3. Let M (V') be the sum of principal minors of the order k for the
matriz V. If the functions v and w are solutions of the system (10), then the
following relations are satisfied for them for any k:

(h(v, w)Dy )F® < (h(v,w)0y,)" W
pe o M =T

where the functions ®, U satisfy the following conditions

(h0,)" ™ =0, (hd,)" '@ = 0.

My(V) =

These lemmas may be proved with the method of mathematical induction
similarly to [25] with utilisation of the Hamilton—Cayley theorem (E is a unit
matrix of the dimension (n+ 1) x (n + 1)).

n—1
S (=1)FMVTTF 4 (—1)"Edet V = 0.
k=0

It is evident that the statement of Theorem 2 is a direct consequence of
Lemma 3 for k = 1.

Note 1. Equation (9) may be rewritten for a pair of real functions w = Rew,
@ = Imwv. Though in this case necessary the respective compatibility conditions
would have extremely cumbersome form.

Note 2. Transition from (8) to (9)—(12) is convenient only from the point of view
of investigation of compatibility. The sign of the expression rs—q? may change for
various ¥, z, and the transition is being considered only within the region where
this sign is constant.
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3 Examples of solutions of the system
of d’Alembert—Hamilton equations

Let us adduce explicit solutions of systems of the type (8) and the respective
reduced equations. Parameters a,,, b, ¢, d, (n = 0,1,2,3) satisfy the conditions:

== =d*=-1 ((12Ea(2)—a%—-~—a§)7
ab=ac=ad=bc=bd=cd=0;

y, z are functions of zg, x1, x9, x3.

1) y=ax, z=dz, @y —¢..=F(p);

1/2 2
2) y=az, z=((bx)*+ (cx)®+ (dx)?) R - e = Flo);

In this case the reduced equation is a so-called radial wave equation, the symmetry
and solutions of which were investigated in [38, 39).

3) y=br+Plax+dr), z=cx, —p..— @y =F(p);

1/2 1
4) y= ((bac)2 + (ca:Z)) / . z=ar+dr, —p, — ;cpy = F(p).

4 Symmetry aspects

Solutions obtained by the direct reduction are related to symmetry properties of
the equation — @-conditional symmetry of this equation [6,30,31] (symmetries of
such type are also called non-classical or non-Lie symmetries [16,32,33]). For more
theoretical background of conditional symmetry and examples see also [14,34,35].

Conditional symmetry and solutions of various non-linear two-dimensional
wave equations that may be regarded as reduced equations for equation (1) were
considered in [36-40]. It is also possible to see from these papers that symmetry of
the two-dimensional reduced equations is often wider than symmetry of the initial
equation, that is the reduction to two-dimensional equations allows to find new
non-Lie solutions and hidden symmetries of the initial equation (see e.g. [41]).

The Hamilton equation may also be considered, irrespective of the reduction
problem, as an additional condition for the d’Alembert equation that allows ex-
tending the symmetry of this equation. The symmetry of the system

Ou = F(u), wuyu, =0
was described in [42]. In [25] a conformal symmetry of the system (5) was found

that is was a new conditional symmetry for the d’Alembert equation. Conditional
symmetries of this system were also described in [27,29).
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5 Conclusions

The results of investigation of compatibility and solutions of the systems (9)—(12)
may be utilised for investigation and search of solutions also of other Poincaré—
invariant wave equations, beside the d’Alembert equation, e.g. Dirac equation,
Maxwell equations and equations for the vector potential.

Thus, in the present paper we found

1) necessary compatibility conditions for the system of the d’Alembert—Hamil-
ton equations for two dependent functions, that is reduction conditions of the
non-linear multidimensional d’Alembert equation by means of ansatz (2) to
a two-dimensional equation; such compatibility conditions for equations of
arbitrary dimensions cannot be found by means of the standard procedure.

2) possible types of the two-dimensional reduced equations that may be ob-
tained from equation (1) by means of ansatz (2).

The found reduction conditions and types of ansatzes may be also used for
arbitrary Poincaré-invariant multidimensional equation. In [43] the general form
of the scalar Poincaré-invariant multidimensional equations were described; it is
easy to prove that by means of ansatz (2) it is possible to reduce all these equations
to PDE in two independent variables.

6 Further Research

1. Study of Lie and conditional symmetry of the system of the reduction condi-
tions (symmetry of the system of the d’Alembert equations for the complex
function was investigated in [44]).

2. Investigation of Lie and conditional symmetry of the reduced equations.
Finding exact solutions of the reduced equations.

3. Relation of the equivalence group of the class of the reduced equations with
symmetry of the initial equation.

4. Group classification of the reduced equations.

5. Finding of sufficient compatibility conditions and of a general solution of
the compatibility conditions for lower dimensions (n = 2, 3).

6. Finding and investigation of compatibility conditions and classes of the re-
duced equations for other types of equations, in particular, for Poincaré—
invariant scalar equations.
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