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Abstract
There is a well-known asymmetry in classical electromagnetism, apparent inMaxwell’s equations,
that arises from the existence of electric but notmagnetic charge. This hasmotivated numerous
experimental searches formagneticmonopoles which have, to date, not been found. To address this
asymmetry, the research reported here generalizes these equations to accommodate complex-valued
electromagnetic fields, therebymakingMaxwell’s equationsmore symmetric. The resulting general-
ized equations remain consistent with the experimental predictions of the originalMaxwell equations,
and they are shown to continue to exhibit conservation of charge. The increased symmetry of the
complex-valued equations is demonstrated via a duality transformation that is derived and verified
here. Importantly, the generalized theory implies that a novel type ofmagneticmonopoles exists while
simultaneously explaining why their detection has eluded previous experimental searches. Further
study of the possibility that electromagnetic fields include imaginary-valued components is clearly
merited because of the implications it could have for the foundations of classical electrodynamics.

1. Introduction

The core laws governing classical electrodynamics,Maxwell’s equations, are given by
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where E (B) is the 3-component electric (magnetic)field, ρ is the electric charge density, J is the volume electric
current density, 0 ( 0m ) is the permittivity (permeability) of free space, and c is the speed of light.1 There is a
striking andwidely recognized asymmetry in these equations: while there are electric charge and current
densities ρ and J, there are no correspondingmagnetic charge and current densities ρm and Jm, reflecting the fact
that extensive experimental investigations over the years have consistently failed to detect the existence of
magneticmonopoles (reviews in [1–4]). In this context, some theoreticians have argued thatmagnetic
monopoles cannot exist. However, based on symmetry considerations, arguments such asDirac’s quantization
condition [5], theoretical analysis in grand unified theories [6], and for other reasons [3, 7], many physicists
today continue to believe thatmagneticmonopoles probably exist, and a rich variety of potential types of
magneticmonopoles have been proposed (Diracmonopoles [5], ′tHooft-Polyakovmonopoles [8, 9], etc;
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reviewed in [2, 10]. The active interest in this topic has, if anything, been increasing, with a continuing streamof
very creative experimental searches and theoretical ideas appearing in the recent literature [6, 11–18].

Contemporary articles and textbooks on electrodynamics often illustrate the idea ofmagneticmonopoles
within classical electrodynamics by showing a version ofMaxwell’s equations where the hypothetically ‘missing’
magnetic charge and current terms mr and Jm have been added, as in
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to demonstrate the elegant symmetry thatwould exist in this case and the invariance of these extended equations
under an electromagnetic duality transformation, e.g., [15, 19–23]. In short, the dilemma is that there are very
good theoretical reasons to expectmagneticmonopoles to exist, but experimental search for themovermany
years has consistently failed to detect them in cosmic rays, accelerator experiments, etc. It is frequently suggested
that our inability to detectmagneticmonopoles in such experiments arises because they are either very rare and/
or they are verymassive.

In this paperwe consider an alternative possible explanation forwhy existingmonopoles have not been
detected experimentally, cast solely within the scope of classical electrodynamics. The explanation given here
differs fundamentally frompast explanations based onmonopoleflux ormass in that it is based on the premise
that our existing concept of electromagnetic fields in general is incomplete. The idea is that this incompleteness
is responsible for the asymmetries that aremanifest inMaxwell’s equations. Specifically, the central hypothesis
considered here is that the components of electromagnetic fieldsE andB are complex valued rather than being
restricted to having real values as has generally been assumed. Implicit in this hypothesis is the recognition that
the imaginary portions of suchfield components are currently unobservable by us, accounting forwhy their
existence has not been recognized.

In the following, we first consider a generalization ofMaxwell’s equations that accommodates complex-
valued field vectorsE andB and thereby allows amore symmetric statement of the laws of classical
electrodynamics. Creating this generalization ismore challenging than onemight anticipate at first because the
generalized equationsmust remain consistent with the existingMaxwell’s equations and existing experimental
results, and because any predictions that theymake about novel electromagnetic phenomenamust not already
be known to be non-existent. The implications of these generalized andmore symmetric laws of
electrodynamics and of duality transformations associatedwith them are derived, including the existence of
electromagnetic waves that have imaginary-valued components. The generalized equations are found to remain
consistent with the conservation of charge. Importantly, themore symmetric generalized equations predict that
magneticmonopoles exist and are widespread, while providing a novel explanation forwhy they have not been
detected by existing experimentalmethods.

2.GeneralizingMaxwell’s equations to complex-valuedfields

In this section a set ofmore generalized equations for classical electrodynamics is described based on extending
Maxwell’s equations toC3, 3D complex-valued space, rather than the customary 3D real-valued spaceR3, while
remaining consistent withMaxwell’s original equations inR3.We start by defining the electric andmagnetic
fields inC3 to be
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respectively, where
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all lie inR3. Here Ex andBx are the conventional electric andmagnetic fields that correspond toE andB,
respectively, as they are currently used inMaxwell’s equations (equations (1.1)). In contrast, Et andBt, both in
R3, represent the central hypothesis of this paper that electromagnetic fields exist in the larger spaceC3 and have
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unobservable imaginary-valued portions of their components. It is implicit in these definitions that thefield
vectors are functions of location in space r x i t ,= + where x and t are both 3D real-valued vectors relating to
the real and imaginary aspects of space, respectively. Thefield vectors are also functions of time t.

Using these complex-valued fields,Maxwell’s equations can nowbe revised to be bothmore general and
more symmetric. The generalized electrodynamics equations proposed here are:
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These generalized equations look superficially very similar toMaxwell’s equationsmodified to include
hypothesizedmagnetic charge terms as given earlier in equations (1.2). However, there are four fundamental
differences. First, both of the fieldsE andB in these equations (2.2) have components inC3, rather than inR3. In
otherwords, thefields involved are E E Eix t= + and B B Bi ,x t= + unlikewith classical electromagnetism.
Second, themagnetic charge and current density terms on the right sides of equations (2.2b) and (2.2c) are
imaginary valued. Third, the separatemagnetic charge mr and current Jm densities that appear in equations (1.2)
are now taken instead to be associatedwith the usual electric charge and current densities r and J, respectively,
rather than introducing new physical entities to represent distinctmagnetic charges. Fourth, the divergence and
curl operators have been extended toC3 in away that remains consistent with their existing definitions inR3.We
elaborate on these differences in the rest of this section.

The complex fieldsE andB each have six components, raising the issue of howwe can conceptually visualize
thesefields which effectively exist in a 6D space. To address this issue, equation (2.1) has beenwritten to
emphasize that we can think offields inC3 in two different but equivalent ways. First, conventionally, we can
think of eachfield component as lying in the complex plane (Argand plane), as illustrated on the left in figure 1.
Alternatively, we can view the real and imaginary portions of electromagnetic field vectors as lying in two 3D
spaces, as shownon the right infigure 1. It is the latter viewpoint thatwill be emphasized in the following because
itmakes the observable/unobservable distinctionmore explicit. For clarity, in the followingwewill refer to the
real portionsEx andBx of the complexfieldsE andB as lying in real-valued space, or r-space, which corresponds
to our current familiar notion of the 3D space inwhich experimental physics takes place and is what is assumed
by the classicalMaxwell equations. Physical quantities in familiar 3D r-space are observable (measurable
experimentally). In contrast, wewill refer to the imaginary portions Et andBt of the complex fieldsE andB as
lying in a separate imaginary-valued transcendent space, or t-space. The term ‘transcendent’ heremeans solely
that this aspect of space goes beyond (transcends) our routine experience of space. Based on this separated
r-space/t-space viewpoint, we can clarify that the hypothesis considered here only states that electromagnetic
fields extend into t-space. It does not state that other physical entities such asmatter or charge extend into
t-space.

Another difference between the equations (1.2) and the generalized equations introduced here is that the
magnetic charge and current density terms on the right sides of equations (2.2b) and (2.2c) are imaginary valued,
unlike in equation (1.2). They thus not onlymake these generalized equationsmore symmetric thanMaxwell’s
original equations (like equation (1.2) does), but they also indicate explicitly that the electromagnetic fieldsE and
B have imaginary components. The imaginary-valued quantities on the right side of these two equations are

Figure 1.Two complementary geometric conceptions of a complex-valued vector E inC3.Left: Sliced horizontally, we can view each
of the three components ofE as lying in a complex-valued (Argand) plane.Right: Sliced vertically, E can be viewed as the sumof a 3D
real-valued vector Ex in r-space and a 3Dpurely imaginary-valued vector iEt in t-space, where Et itself has real-valued components.
Similar comments apply toB. Use of red font and arrows indicates imaginary-valued components and axes.▢
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based on the usual electric charge and current densities r and J, respectively, rather than being novelmagnetic
charge mr and current Jm densities that have not been observed experimentally in the past. Some implications of
this latter difference between the generalized equations equations (2.2) and equations (1.2) are examined below
in later sections.

Finally, we need to define the divergence and curl operations used in the generalized equations (2.2). For
convenience and simplicity, we take a non-standard approach to defining these and related operations inC3

whereby vector product operations inC3 are ‘reduced’ to a linear sumof the standard correspondingR3

operations in r-space and t-space.Hence, we refer to theseC3 vector products as reduction vector products, and
their definitions can be viewed as just convenient notational abbreviations. First, we consider the generalC3 dot
and cross product notation used in the rest of this paper.

Let C C Cix t= + and C C Cix t¢ ¢= + ¢ be two arbitrary continuous vector fields inC3 where, as above,
C C, ,x t Cx¢ and Ct¢ each lie inR

3. Define the reduction dot product ·of C and C¢ inC3 to be

C C C C C Ci 2.3x x t t¢ = ¢ + ¢· · · ( )

where the dot products on the right side of this equation are both the usual inner product inR3. The dot product
being defined on the left side of this equation acts on vectors inC3 and in general returns a complex number. It
should always be apparent in the followingwhichmeaning of the dot product is intended from the context, i.e.,
fromwhether the vectors being operated on are inC3 orR3. If C and C¢ are purely real-valued vectors inC3

C C 0 ,t t= ¢ =( ) then C C¢· inC3 corresponds to the standard dot product inR3.While C C¢· defined in
equation (2.3) is commutative and distributive over addition, it does notmeet the full definition of an inner
product like the standard dot product inC3 does (for example, C C¢· in equation (2.3) is a complex value in
general).

Similarly, we define a non-standard reduction cross product´of C and C¢ inC3 to be

C C C C C Ci 2.4x x t t´ ¢ = ´ ¢ + ´ ¢ ( )

where the symbols´on the right side of this equation are both the usual cross product inR3. Defining the
reduction cross product inC3 in terms of conventional cross products inR3 avoids the complexities confronted
in extending the curl to spaces other thanR3 [24–27]. Again, if C and C¢ are purely real-valued vectors, then
C C´ ¢ inC3 corresponds to the standard cross product inR3.

With the above notation, we can now characterize the divergence and curl operators that appear in
equations (2.2) inC3 in a similar fashion. Specifically, we define a reduction differential operator

ix t  = + inC3, where
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are the usualR3 del operators, here applied separately in r-space and t-space, respectively.With these definitions,
if C C Cix t= + is an arbitrary continuous and differentiable vector field inC3 (such asE orB), and if
T T iTx t= + is an arbitrary continuous and differentiable scalar field inC3, then the reduction gradient,
divergence, and curl are defined as

T T i T a2.6x tx t  = + ( )

C i bC C 2.6x x t t  = +· · · ( )

C Ci cC 2.6x x t t  ´ = ´ + ´ ( )

respectively. It is straightforward but tedious to show thatmany of the usual relations for del inR3 hold for  in
C3 as the latter is defined here. For example, the above definitions and some simple algebra confirm that the
familiar second derivative identities

aC 0 2.7  ´ =· ( ) ( )

0 bT 2.7 ´ =( ) ( )

C cC C 2.72    ´ ´ = -( ) ( · ) ( )
all hold inC3, where ix t

2 2 2= +   is the reduction Laplacian operator.
Example: Here we consider an example both to illustrate the use of the reduction vector operations defined

above as well as to illustrate the derivation of one of the second derivative identities, equation (2.7c), that is based
on these definitions andwell known identities inR3, as follows.

C ´ ´( )

4

Phys. Scr. 99 (2024) 015513 J AReggia
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With the above descriptions, the generalization ofMaxwell’s equations toC3 as given in equations (2.2) is
now fully defined.Wenext turn to addressing several questions. Do the charge r and current J densities in these
equations also extend into t-space? Are the generalized equations consistent with the originalMaxwell
equations?Do they obey a duality transform, and if so, what does that transform look like?What does thewave
equation look like? Is the expansion of electromagnetic fields to have imaginary valued components still
consistent with the conservation of charge? The answers to these questions are derived from equations (2.2) in
the following sections.

3. Basic properties of the generalized equations

Allowing thefieldsE andB to extend into imaginary valued t-space in the generalized equations (2.2) raises the
issue of whether charge r and current J densitiesmight also do so.While itmay not be apparent onfirst glance,
the equations (2.2) imply that, unlike electromagnetic fields, charge and current in equations (2.2) cannot have
imaginary valued components. To see this, suppose that ix tr r r= + where 0;tr ¹ in other words, suppose
that charge has an imaginary component. Then according to equation (2.2c),

B Bi ic i c ic 3.1x x t t x t t x0 0 0m r r m r m r +  = + = - +· · ( ) ( )

and B cx x t0= m r -· would follow from equating the real parts of this, something that is inconsistent with
past experimental results showing that always B 0.x x = · It follows that tr must be zero. Similarly, if J= Jx+ i
Jtwhere J 0,t ¹ then it would follow from equation (2.2b) that
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B

t
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¶
so itmust be that Jt= 0.

To summarize, while the theory presented here postulates that the fieldsE andB extend into imaginary valued
t-space, this hypothesized extension does not includematerial charge/current.2 Accordingly, in the followingwe
will continue to use the symbol r to represent real-valued charge density, and to use J for current density, where J
can be thought of as representing either Jx+ i 0 inC3 (as in equations (2.2)) or just Jx inR

3 unambiguously as
determined by context.

Each of the four generalized electrodynamics equations, equations (2.2), involve complex-valued fields in
C3, so they each represent two equations, one in r-space and one in t-space. For example, writing out
equation (2.2c) using the definitions above gives

B B B B Bi i i ic . 3.3x t x t x x t t 0m r    = + + = + =· ( ) · ( ) · · ( )

Equating the real and imaginary parts of the rightmost equality of equation (3.3) to each other gives two
separate equations, each inR3,

B a0 3.4x x =· ( )

B c b3.4t t 0m r =· ( )

thefirst involving r-space, and the second involving t-space (in otherwords, there is an implicit i on both sides of
equation (3.4b)). Similarly, writing out equation (2.2b) gives

E E E E Ei i i 3.5x t x t x x t t    ´ = + ´ + = ´ + ´( ) ( ) ( )

2
Since electric charge is always associatedwithmatter (particles) havingmass, it seems reasonable to conjecture that allmatter havingmass

does not extend into t-space. Since the photons composing electromagnetic fields aremassless and do not carry a charge, theywould be an
exception to this conjectured rule and can extend into t-space as is hypothesized to occur here.
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for the right side. Equating the real parts of the rightmost portions of equations (3.5) and (3.6) to each other, and
the corresponding imaginary portions to each other, gives two separate equations
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thefirst in r-space and the second in t-space.
Extending this process to all four of the generalized equations (2.2) indicates that they can be partitioned into

two separate sets of equations corresponding to r-space and imaginary-valued t-space. The four r-space
electrodynamics equations are
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These are exactly the familiarMaxwell’s equations, equations (1.1), withoutmagnetic charge (with the
symbolsE andB there replaced by the equivalent Ex andBx here, respectively). It is important to recognize this
equivalencewith equations (1.1) because it shows that the equations (2.2) are a true generalization ofMaxwell’s
equations and thus consistent with classical electrodynamics. The generalized equations encompass all of the
experimental results that the originalMaxwell’s equations encompass in observable physical space (r-space),
including prediction of the absence ofmagnetic charge that is detectable in r-space, and they do not predict
additional electromagnetic phenomena that have not been observed in r-space.

More interestingly, there is a second, new set of four t-space electrodynamics equations derived from the
generalized equations (2.2) that emerges from equating their imaginary-valued portions during the above
procedure:
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Equations (3.9) in t-space are analogous to the originalMaxwell equations (3.8) in r-space, but they now
characterize electromagnetic fieldsEt andBt that both exist in the purely imaginary-valued t-space. The
similarity toMaxwell’s equations (3.8) becomesmore evident if one notes that the roles of the electric and
magnetic fields are effectively reversed in equations (3.9) relative to (3.8). For example, in t-space there are no
electricmonopoles (equation (3.9a)), but instead there aremagneticmonopoles (equation (3.9c)), as will be
discussed in the next section.

The generalized electrodynamics equations (2.2) have a number of additional basic properties that are
reminiscent of those of the originalMaxwell’s equations, such as a continuity equation. To see this, apply the
divergence · to both sides of equation (2.2d). This gives zero on the left side (by equation (2.7a)), and
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on the right side, since
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Ex x
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 = r· by equation (3.8a) and E 0t t =· by equation (3.9a). Because the last line

of this result equals zero, and using c ,2
0 0

1m= -( ) this produces a continuity equation inC3 of
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Equation (3.10) shows that the generalized equations (2.2) continue to be consistent with experimentally
observed conservation of electric charge.

Further, the generalized equations (2.2), like themore symmetrical extendedMaxwell’s equations (1.2) that
include hypothesizedmagnetic charge in r-space, are invariant under a duality transformation between the
electric andmagnetic fields, although now these fields are complex-valued rather than real-valued. Specifically,
the duality transformation

E B B E J Jc
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when applied to equations (2.2), leaves these equations unchanged. For example, for equation (2.2a)
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since J Ji= - ¢ by the transformation equations (3.11). Equations (2.2b) and (2.2c) are analogous.
There is another type of duality transformation of interest that does not involve invariance and that, unlike

equation (3.11), does not have an analogous transformation involving the originalMaxwell equations. This
additional cross-domain duality transformationmaps the 3D r-space equations (3.8) into the 3D t-space
equations (3.9), and vice versa, both sets of equations involving real-valued vectors having three components.
This second novel type of duality transformation is given by

E B B Ec
c

1
3.12tx x t x t =  = = - ( )

Applied to the set of equations equations (3.8) as awhole, these rules produce the set equations (3.9); applied to
equations (3.9), they produce equations (3.8). For example, for equation (3.8a)wehave

  
E B Bc

c
c

1 1 1
xx t t t t

0 0 0
0r r r m r =  =  = =· ⟹ · ( ) ⟹ ·

which is equation (3.9c), and analogous substitutions in equation (3.8c) give equation (3.9a). Similarly, for
equation (3.8d)

B J E J

E J

c

c

x
E

t
B

t
B

x c t c t c t

t t

0
1 1

0
1

0

x t

t

2 2m m

m

+ - +

-

 ´ =  ´ =

 ´ = -

¶
¶

¶
¶

¶
¶

⟹

⟹

which is equation (3.9b), and analogous substitutions in equation (3.8b) give equation (3.9d). Thus, the cross-
domain duality transformation given by equation (3.12)maps the set of equations (3.8), taken as awhole, into
the set of equations (3.9). The same cross-domain transformationwithminor algebraicmanipulations
( , B E ,xt t c x

1= = and E cBt x= - ), when applied to equations (3.9) in a similar fashion, gives equations (3.8).
Note that this cross-domain transformation equation (3.12)necessarily involves switching between x and .t
Equation (3.12) indicate an additional type of symmetry in the theory developed here that ismost evident by
comparing equations (3.9) to equations (3.8)where the roles of the electric andmagnetic fields are reversed, as
mentioned earlier in this section.

4.Magneticmonopoles

The full set of generalized electrodynamics equations (equations (2.2)) represent a novel solution to the dilemma
discussed in the Introduction of having good theoretical reasons to expect thatmagneticmonopoles exist but of
not being able to detect them experimentally. Specifically, the ubiquitous existence ofmagneticmonopoles is
implied by B ctt 0m r =· (equation (3.9c))which indicates that charge serves as a source/sink for radially
directedmagnetic fieldsBt that lie solely in the imaginary-valued t-space of equations (2.2). This is illustrated in
figure 2. In classical electrodynamics, electricfieldsEx can of course originate at positive electric charges and
terminate on negative electric charges in familiar r-space only, as sketched infigures 2(a) and (c). The absence of
magnetic chargemeans thatmagnetic field lines forBx are either loops (closing on themselves) or that they
extend to infinity—there are nomagneticmonopoles. In contrast to this, with the theory presented here charges
serve as both electric andmagneticmonopoles, as caricatured infigures 2(b) and (d). These individual
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monopoles serve as sources/sinks formagnetic fields that extend radially in t-space, and at rest they do not
produce electric fields in t-space (equation (3.9a)).Magnetic field lines originate at north polesN (associated
with positive electric charges) and terminate at south poles S (associatedwith negative electric charges),
representingmagnetic fieldsBt in t-space. In otherwords, charges are conceptually sources and sinks for both
electric andmagnetic fields,makingmagneticmonopoles common rather than rare (every proton, every
electron, etc). Infigure 2(d) the+/Npole can be viewed as afield source, and the−/S pole can be viewed as a
field sink.

Equation (2.2b), E Jic ,B

t0m ´ = - -¶
¶

implies also thatmoving charge produces an imaginary-valued

electric field iEt in t-space, as indicated by the imaginary portion of this equation, E Jc .t
B

t t0
tm ´ = - -¶

¶
This

is consistent with the cross-domain duality transformwhich specifies that Et in t-space behaves likeBx in r-space,
as noted earlier.

As pointed out previously [3], the existence ofmagneticmonopoles would imply amagnetostatic analog to
the electrostatic equation


E rx

q

r

1

4 o
2=

p
ˆ for a stationary isolated charge q located at the origin in r-space (here r̂ is

a unit vector in the direction of point r). Applying the cross-domain duality transformation to this equation for
Ex results in an analogous purely imaginary valued

B
t

t
c q

4
4.1t

o
2

m
p

=
| |

ˆ ( )

for the associatedmagnetic field at location t in t-space (t̂ is a unit vector in the direction of t). The point is that,
according to the theory developed here, suchmagneticmonopoles are experimentally unobservable in our
conventionalR3 space (r-space) as their fields do not extend into r-space.

Since particles that carrymagnetic charge are the same as those that carry electric charge in the generalized
equations (2.2), according to the theory presented herewe know a priori thatmagneticmonopoles are
widespread (every proton, electron, etc) and that they are stable particles. Further, the continuity equation for
charge derived above (equation (3.10)), which indicates that the generalized electrodynamics equations (2.2)
continue to respect the conservation of electric charge, also implies thatmagnetic charge is conserved. Just as
with electric charge, two types ofmagnetic charge exist, with positive electric charges corresponding tomagnetic
north polesN, and negative electric charges corresponding tomagnetic south poles S. Put otherwise, the theory
presented here predicts that all electrically charged particles in r-space are alsomagnetically charged, but that this is
not normally evident to us because the imaginary-valuedmagnetic fields involved are solely in t-space and
unobservable. This accounts for whymagneticmonopoles have not been detected in themany careful
experiments searching for them that have been carried out previously.

The idea that charge serves as a source/sink for both electric andmagnetic radially directed fields has
occasionally been proposed previously in various contexts. However, to the author’s knowledge, such theoretical
proposals formagneticmonopoles have always involvedmagnetic fields that lie solely in r-space rather than
existing in t-space as is proposed here.While such past theoriesmay be consistent with equations (1.2), they are
not consistent with the new equations (2.2) described in this paper. Examples of such past proposals include
hypothetical particles called dyons [28] and particles that oscillate over time between carrying electric and
magnetic charge [29]. Likemagneticmonopoles, particles such as dyons have not yet been observed
experimentally in spite of some impressive recent efforts to search for them [30].

Figure 2. (a). In classical electrodynamics, electricfieldsEx (solid arrows) can originate at positive electric charges and terminate on
negative electric charges in r-space only, as with the positive electric charge sketched here. Nomagnetic fieldsBx originate/terminate
onmagnetic charges. (b). In the theory presented in this paper,magneticfield lines (red font and dashed arrows) can originate at north
polesN (positive electric charges) and terminate at south poles S (negative electric charges), producingmagnetic fieldsBt in t-space
only. (c). In existing theory, the electric fields associatedwith electric dipoles can be caricatured as sketched here in r-space. (d). In
contrast, the theory presented here predicts that electric dipoles also representmagnetic dipoles, and have both real-valued electric
fields in r-space and imaginary-valued (red)magneticfields in t-space.☐
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5.Generalizedwave equations

One of themost important implications ofMaxwell’s equations is the prediction that electromagnetic waves
exist. It is straightforward to show that the generalized electrodynamics equations (2.2) continue to imply that
electromagnetic waves exist, but that theywould be expected to propagate into t-space as well as r-space.
Specifically, one can derive wave equations inC3 in the absence of charge from equations (2.2) as

E
E

c t
a

1
5.12

2

2

2
 =

¶
¶

( )

and

B
B

c t
b

1
5.12

2

2

2
 =

¶
¶

( )

that are analogous to those for the originalMaxwell equations. For example, to derive equation (5.1a),first apply
´to the left side of equation (2.2b) to obtain

E E E i Ei E E E i Ex xx x x t t t t
2

t x
2

x t
2

t
2 2+   -  = -  +  = - ´  ´ =   -  ( ( ) ) ( )( ) ( ) ( · ) ·

because both Ex x · and Ett · are zero in the absence of charge (equations (3.8a) and (3.9a)).
Applying ´to the right side of equation (2.2b) in a vacuum (no charge/current present) gives

B Bii i i i

i i

B B B
x t

E E E E E

t x t t t t x t t

t c t t c t c t t c t

1 1 1 1x t

x t
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¶( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

where the values of Bxx ´ and Btt ´ were taken from equations (3.8d) and (3.9d), respectively. Equating (i)
and (ii) gives thewave equation (5.1a) inC3 forE. The derivation of thewave equation (5.1b) forB is similar,
starting instead from equation (2.2d).

Aswith the generalized equations (2.2), Equations (5.1) each represent a set of twowave equations, the usual
wave equations forEx andBx in r-space
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1
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x
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2

2
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2

2

2
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 =
¶
¶

( )

in imaginary valued t-space. According to these results, electromagnetic waves extend into t-space, not just
r-space, and they propagate at the same speed c in empty t-space as they do in empty r-space.

What do solutions to the generalizedwave equations (5.1) look like? To give an example, consider the
monochromatic sinusoidal planewave that is a simple but very important solution (linear combinations,
Fourier series, etc) to the standardwave equation (5.2) in r-space that are the same as thewave equations derived
fromMaxwell’s original equations. Even though suchwaves involving Ex andBx are considered in classical
electrodynamics to exist solely in r-space, they are often represented as complex-valued functions inC3 by using
the exponential e ,if where f is thewave phase. This ismotivated by the computational conveniences that such a
complex-valued formulation entails, and importantly, such representations are almost always accompanied by
an explicit statement that only the real parts of such equations represent actual physical fields. However, in the
context of the generalized formulation ofMaxwell’s equations considered here, it is reasonable to askwhether
the full complex-valued planewaves eif used in the past should instead be taken at face value. In other words,
does the theory introduced here in equations (2.2)mean that the imaginary parts of such complex-valuedwaves
should not be discarded as is currently done, and if so, what does that imply?

Consider a simple situationwhere a single source emits a brief electromagnetic wave pulse (e.g., aflash of
light) that travels as an expanding spherical wave through both r-space and t-space. Far from the source the
spherical wavefront can be closely approximated by a complex-valued

E E e 5.4o
i= f ( )

for amonochromatic sinusoidal planewave inC3. Here Eo is a constant real-valued vector inR
3. Quantity

k x k t tf w d= + - +· · is thewave phasewhere k is thewave propagation vector havingmagnitude k= |k|
as thewave number, x ti+ is a point inC3 space, w is thewave’s angular frequency, and real scalar d is a phase
constant. The full equation (5.4) can be shown to be a solution to the generalized equation (5.1a), as
demonstrated immediately below. This is consistent with the notion that electromagnetic waves in the theory
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studied here propagate both in r-space and in t-space. Equation (5.4) represents a solutionwhere thewave fronts
in t-space are /2p out of phasewith those in r-space.

That equation (5.4) is a solution to equation (5.1a) is shown by substituting E eo
if into both sides of thewave

equation (equation (5.1a)) and obtaining an identity. Substitution into the left side gives

E E

E

E

E

E

i i e

i sin
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Similarly, substituting E eo
if into the right side of equation (5.1a) gives
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1 1
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¶
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w
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E
c
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2

2

w
f f=- +( )

Ek eo
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where the relation /k cw= was used on the last step. Since (i)= (ii), E eo
if is a solution to equation (5.1a).

Analogous results can be obtained for equation (5.1b) involvingB.

6. Energy considerations

Extending electromagnetic fields to include imaginary-valued components Et andBt raises the issue of how that
might affect the energy of charged particles as wemeasure it in r-space. Specifically, a key question is this: Is the
generalization ofMaxwell’s equations (2.2) to complex-valued fields consistent with the conservation of energy
thatwe can observe experimentally for systems of charges and current in r-space? To examine this question, we
first need to consider how charged particles in r-space would be affected by electromagnetic fields that are now
complex valued.

Maxwell’s equations are classically complemented by the Lorentz force law, which in the notation used here
is given by

F E v Bq . 6.1x x x= + ´[ ( )] ( )

This law describes the force Fx in r-space acting on a particle having an electrical charge q= qe andmoving
with velocity v through r-space in the presence of electromagnetic fields.When hypotheticalmagnetic charge is
discussed in the literature, this law is often expanded to

⎡⎣ ⎤⎦F E v B B v Eq q 6.2x x x x xe m c

1
2= + ´ + - ´[ ( )] ( ) ( )

which includes forces that would be attributable tomagnetic charge qm [3, 19, 20]; .3 Unlike the experimentally
derived original law equation (6.1), this addition involving hypothetical qm is derived based on theoretical
considerations such as an electromagnetic duality transformation.

In the theory presented here, we proceed in a similar fashion towhat has been done in the past, but in this
case applying the cross-domain duality transformation equation (3.12) to the Lorentz force law equation (6.1),
andfind that

⎡
⎣

⎤
⎦

F B v Eq c
c

1
6.3t t t= - ´( ) ( )

would describe the additional forces occurring in t-space, so that

⎡
⎣

⎤
⎦

F F F E v B B v Ei q iq c
c

1
6.4x t x x t t= + = + ´ + - ´[ ( )] ( ) ( )

would be the full extended force equation.While this appears similar to equation (6.2), which is solely in r-space,
note that F in equation (6.4) exists inC3, that q serves to represent both qe and qm, and that the forces associated

3
Sometimes this equation is expressed as a force density rather than as a force, e.g., [23, page 49].
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withfieldsBt andEt are taken to be purely imaginary valued and thus extend only through t-space. There is a
magnetic analog toCoulomb’s law in electrostatics (based on equation (4.1)), with particles having opposite
magnetic charges attracting one another in t-space, and thosewith likemagnetic charges repelling one another
in t-space.

A particle having charge qwould be expected to react to these forces. It follows from equation (6.4) that such
a particle would be accelerated in both r-space and in t-space. According to equation (6.4), the forces due to
fields in r-space cause acceleration affecting v in r-space exactly aswe observe. In general, two isolated resting
charges of opposite sign that are near one anotherwould be affected by each other’s Ex andBt fields, causing
them tomove towards each other in both r-space and t-space.Wewould not expect to observe any direct impact
on a particle’smovement in r-space due to theBt andEt fields of other charges, and our observations in r-space
would remain precisely aswe observe them.

Given the force law equation (6.4), we can now askwhether complex valued electromagnetic fields governed
by the generalized electrodynamics of equations (2.2), are consistent with the conservation of energy thatwe can
observe experimentally for systems of charges and current in r-space. This provides a check that the theory
pursued here agrees with existing findings, verifying that the extended fields do not implymeasurable
phenomena that have not been observed. To address this issue, we use the same approach that is commonly
taken to assessing the energy associatedwith a systemof charged particles restricted to a volumeV in r-space (no
charge leaves/enters V fromoutside) having charge density r and current density J , but nowmodified by using
the full extended force equation (6.4) above.We only consider the behavior of charge in r-space because that is
what past studies are based on.

It is customary to define the total electromagnetic energy associatedwith isolated charge r and current J
densities in r-space as the total reversible work required to create r and J and their associated fields by bringing
charge in from infinity, e.g., [23]. Accordingly, we adopt this definitionwhere thework is assumed to be done by
the complexfields E E Eix t= + and B B Bix t= + in assembling that systemof charges in r-space from an
initial situationwhere all of the charge is located spatially at infinity. Then by equation (6.4), the rate at which the
complexfields E and B domechanical work on this charge distribution is given by

⎡⎣ ⎤⎦E v B v B v E v

E v B v

E J B J

q d x i q c d x

q d x i c q d x

d x i c d x 6.5
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3 3
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ò ò
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= +

[ ( )] · ( ) ·

· ·

· · ( )

where d3x is a volume element in r-space, andwe are integrating over V in r-space because that is what is done in
classical electrodynamics. Interestingly, work and energy in the theory given here, even though considered solely
in r-space, involve an unobservable imaginary-valued second term arising from equation (6.4) that is not present
in classical electrodynamics. This second term in equation (6.5) is always guaranteed to be purely imaginary-
valued due to the ipreceding the integral, and becauseBt and J are both 3D real-valued vectors, so B Jt · is
always real (see equation (2.1) and thefirst paragraph of Section 3). It follows that the observablemechanical
work dW/dt only involves the first real-valued integral over Ex, consistent withwhat ismeasured experimentally.
It is also interesting to note that, just as themagnetic fieldBx in r-space does nowork, the electric field Et in
t-space does nowork on charges.

Replacing J in each of the two integrals in equation (6.5) using equations (3.8d) and (3.9b) respectively,
applying an identity for the divergence of the cross-product of two vectors inR3, and then replacing Ex x ´
and Bt t ´ using equations (3.8b) and (3.9d), respectively, gives
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wherewe againmade use of the identity
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( ) in r-space on thefirst line of

equation (6.6) is Poynting’s vector, and on the second linewe define an analogous quantity S E B .t t t
1
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= ´
m
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Making these substitutions into equation (6.6) gives
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where u E Bx o x x
1

2
2 1 2

o

= +
m( ) is the familiar energy density for r-space electromagnetic fields, andwe define an

analogous imaginary-valued energy density u E Bt o t t
1

2
2 1 2

o

= +
m( ) for the t-space fields. The last line of

equation (6.7) indicates two things. First, the left-most integral shows thatwhat we currently observe for
conservation of energy in r-space is consistent with the theory presented here. Second, the right-most integral
indicates that there a purely imaginary-valued aspect of energy ut predicted by the current theory that has not
been previously recognized.

Equation (6.7) is essentially a generalization of Poynting’s theorem. The real portion corresponds to the
classical Poynting’s theorem, while the imaginary part is analogous but derived from the imaginary-valued fields
Et and B .t Additional analogies can be noted, as follows. In the case where nomechanical work is being done on
the particles inV (static situation, empty space, etc), then both the real and imaginary parts of the right side of
equation (6.7) are individually zero. SinceV is arbitrary (i.e., since these integrals hold over anyV), both

S
t

u a6.8x x x
¶
¶

= - · ( )

and

S
t

u b6.8t t t
¶
¶

= - · ( )

follow.Thefirst of these is thewell-known ‘continuity equation’ for energy in classical electrodynamics that
indicates the local conservationof energy in r-space; the second is an analogous statement of local conservationof
electromagnetic energy involving the imaginary valued t-spacefields. Re-grouping the terms in equation (6.7) gives
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wherewe define u u iux t= + and S S Six t= + as the overall energy density and generalized Poynting vector,
respectively. This provides a concise statement of the rate at which the complex-valued fields E and B do
mechanical work on a charge distribution aswewould observe it in r-space. The key point is that the real portion
of this does not contradict what we observe experimentally in r-space.

7.Discussion

The laws of classical electromagnetics incorporate a number of asymmetries [31], of which themost well-known
is the existence of electric but notmagnetic charge.Motivated by this, the central issue considered in this paper is
determining, solely within the scope of classical electromagnetism, the implications of hypothesizing complex-
valued electromagnetic fields that can accommodate a new type ofmagneticmonopoles.

While thework described in this paper has been developed in the context of classical electrodynamics, it is
important to note that there has been significant past theoretical consideration of complex-valued
electromagnetic fields in quantum electrodynamics. For example, past work exploring the development of a
wave function for the photon—based in part on analogies betweenMaxwell’s equations andDirac’s equation for
the electron—introduced imaginary components into the electromagnetic fields [32, 33].While this work is
intriguing in that it bridges the gap between classical and quantum electrodynamics, it differs substantially from
what is done in the current paper in being based onfields having the form E Bic and using six-component

vectors of the form E
Bic

.( ) This earlier workwas alsomotivated by different considerations than those involved

here, and did not explore its potential implications for hypotheticalmagneticmonopoles. Several subsequent
studies have also proposedmodels involving complex fields [34–37]. These latter studies differ from thework
done here in thatwhenmagnetic charge has been considered, it has taken the forms ie mr r r= + and J= Je+ i
Jm , where mr and Jm are distinct entities from er and Je and related to previously proposedmagneticmonopoles
(e.g., Dirac’s), and/or in that the differential operators used aremuchmore complicated (for example, a curl
operator having 48 terms).

In the current article ,Maxwell’s equationswere generalized to accommodate complex fieldsE andBwhile
remaining consistent with the original equations. Allowing these fields to have imaginary components produced
increased symmetry in theMaxwell equations. As a consequence, it was possible to derive and verify a duality
transform for the generalized equations in away that is not possible with the originalMaxwell equations. It was
found that the complex fieldsE andB associatedwith the generalized equations can usefully be represented as
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E E Eix t= + and B B Bi ,x t= + where Ex andBx are the conventional electric andmagnetic fields that exist in
r-space (real-valued observable 3Dphysical space), andwhere Et andBt are novel aspects of electromagnetic
fields that exist in t-space (a purely imaginary-valued 3D space that is unobservable). Just as Ex andBx are
governed by the originalMaxwell equations, the analysis done here showed thatEt andBt are governed by a
complementary set of equations that characterize their behaviors in t-space, andwhere the roles of electric and
magnetic fields are reversed. A second cross-domain duality transform for converting bidirectionally between
these complementary r-space and t-space equations, and having no analog in existing classical electrodynamics,
was also derived and verified.

The complex-valued electrodynamics equations proved to be consistent with the originalMaxwell equations
and so they do not contradict past experimental observations. The complex fields they describe continue to
exhibit well known features of classical electrodynamics, such as the existence of a continuity equation that
indicates the conservation of charge. They predict the existence of electromagnetic waves that propagate through
not only r-space (whatwe currently observe) but also through t-space (imaginary valued field components that
are not observable). In spite of the imaginary-valued extensions to the electromagnetic fields, the complex-
valuedMaxwell equations continue to be consistent with our current concepts of energy conservation limited to
r-space, although they suggest that there are unobservable imaginary-valued aspects of energy that have not been
considered in the past.

Perhaps themost intriguing prediction of the extended, complex-valuedMaxwell’s equations is that
magneticmonopoles exist. Themonopoles predicted here are qualitatively different than those usually discussed
in contemporary physics. They are simpler than those predicted in past quantum theoretical work (Dirac
monopoles, ’tHooft-Polyakovmonopoles, etc), having been derivedwithin the scope of an extended classical,
non-quantumphysics. To the author’s knowledge, the explanation given here for howmagneticmonopoles can
exist in the face of the existing contrary experimental evidence is the simplest theoretical explanation for this that
has been offered to date (Occam’s razor). The prediction is that every particle carrying an electric charge, such as
a proton or an electron, is also carryingmagnetic charge, and is therefore also amagneticmonopole. The reason
that thesemagneticmonopoles have not been detected in past experimental searches formagnetic charge is that
theirmagnetic fieldsBt in t-space do not extend into observable r-space. Thus, past experimental searches,
which have generally assumed thatmagnetic fields are limited to r-space, would never recognize that these
particles aremagneticmonopoles. According to the theory presented here, we therefore already know a great
deal aboutmagneticmonopoles: they are common, they have relatively lowmass, they come in two types (north
and south poles), they are long-lived stable particles, they are not dyons, and they are consistent with energy
conservation as it ismeasured in r-space.

Thework presented here raisesmany questionsmeriting further study, such as a deeper analysis of energy
considerations and issues concerning themeaning of the imaginary-valued components of electromagnetic
fields. However, itsmost critical limitation is that it is unclear at present howone can refute or confirm the
existence of the imaginary components of electromagnetic fields. In otherwords, while themodel presented
here is supported by symmetry arguments, its ability to explainwhy potentially existingmagneticmonopoles
have not been detected experimentally, and so forth, themodel can be viewed as speculative in that so far there is
no experimental proof that it is correct. To the author’s knowledge, past work raising the possibility that
electromagnetic fieldsmight have imaginary-valued components is not widely known (e.g., not discussed in
many textbooks), and thus theoretical or experimental analysis of the challenging question of how to detect such
components has not been pursued. It is thus hoped that the basic theoretical results presented herewill
encourage futurework in this direction. Surely suchwork ismerited as it could ultimately have an enormous
impact on our fundamental understanding of electrodynamics.
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