CERN 78-08

Data Handling Division and
Theoretical Physics Division
4 September 1978

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SIGMA WITHOUT EFFORT

(An interactive tutorial for on-line SIGMA learning)

R. Hagedorn and J. Reinfelds

GENEVA
1978

© Copyright CERN, Genéve, 1978

Propriété littéraire et scientifique réservée pour
tous les pays du monde. Ce document ne peut
étre reproduit ou traduit en tout ou en partie
sans |’autorisation écrite du Directeur général
du CERN, titulaire du droit d’auteur. Dans
les cas appropriés, et s’il s’agit d’utiliser le
document a des fins non commerciales, cette
autorisation sera volontiers accordée.

Le CERN ne revendique pas la propriété des
inventions brevetables et dessins ou modéles
susceptibles de dépot qui pourraient étre décrits
dans le présent document; ceux-ci peuvent étre
librement utilisés par les instituts de recherche,
les industriels et autres intéressés. Cependant,
le CERN se réserve le droit de s’opposer a
toute revendication qu’un usager pourrait faire
de la propriété scientifique ou industrielle de
toute invention et tout dessin ou modele dé-
crits dans le présent document.

Literary and scientific copyrights reserved in
all countries of the world. This report, or
any part of it, may not be reprinted or trans-
lated without written permission of the
copyright holder, the Director-General of
CERN. However, permission will be freely
granted for appropriate non-commercial use.

If any patentable invention or registrable
design is described in the report, CERN makes
no claim to property rights in it but offers it
for the free use of research institutions, manu-
facturers and others. CERN, however, may
oppose any attempt by a user to claim any
proprietary or patent rights in such inventions
or designs as may be described in the present
document.

CERN - Service d'information scientifique - RD/349 - 2000 - septembre 1978

CERN 78-08

Data Handling Division and
Theoretical Physics Division
4 September 1978

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SIGMA WITHOUT EFFORT

(An interactive tutorial for on-line SIGMA learning)

R. Hagedorn and J. Reinfelds*)

1978

*) The University of Wollongong, Wollongong N.S.W. 2500, Australia.

ABSTRACT

SIGMA (System for Interactive Graphical Analysis) is an interactive
computing language with automatic array handling and graphical facilities.
It is designed as a tool for mathematical problem solving. The SIGMA
language is simple, almost obvious, yet flexible and powerful.

This tutorial introduces the begimner to SIGMA. It is supposed to
be used at a graphics terminal having access to SIGMA. The user will
learn the language in dialogue with the system in sixteen sessions of
about one hour. The first session enables him already to compute and
display functions of one or two variables.

Contents Page

INTRODUCTION 1
SESSION 1: SOME BASIC NOTIONS 4
1.1 Arrays and displays 4
1.2 Function definition 6
1.3 Functions of two independent variables 7
1.4 String arrays 9
SESSION 2: FUNCTIONS, SUBROUTINES AND MACROS 12
SESSION 3: STRUCTURAL ORGANIZATION 17
3.1 Levels of operation 17
3.2 Protection of names 17
3.3 Scope of names 19
SESSION 4: MORE ON STRUCTURAL ORGANIZATION 24
4.1 Control structures 24
4.2 Conditional statements, logical operators 24
4.3 Loops 28
4.4 Labels and jumps 29
INTERLUDE 32
SESSION 5: MULTIDIMENSIONAL ARRAYS : 35
5.1 Concatenation 35
5.2 The NCO vector 35
5.3 Constructing multidimensional arrays 36
5.4 The transpose operator 39
5.5 Trace 39
5.6 Indexing 41
SESSION 6: PROGRAM EDITING 45
SESSION 7: SOME FUN WITH SPECIAL ARRAY OPERATORS 50
7.1 General operators 50
7.2 Random numbers and histograms, ordering 50
7.3 Integration 52

Table of Contents I

Contents

SESSION 8: MORE FUN WITH SPECIAL ARRAY OPERATORS:
INTERPOLATION AND FUNCTION INVERSION
8.1 Interpolation
8.2 Function inversion
8.3 Finding zeros of functions

SESSION 9: MATRIX OPERATIONS

SESSION 10: DIALOGUE WITH SIGMA
10.1 Modes of operation
10.2 Copying information from another SIGMA user
10.3 The SIGMA Library Workspace

SESSION 11: MORE ON DIALOGUE WITH SIGMA; DISPLAY
MODES

SESSION 12: TOPOLOGICAL ARITHMETIC
SESSION 13: COMPLEX NUMBERS AND FUNCTIONS
SESSION 14: MORE COMPLEX MAPPING

SESSION 15: INPUT AND OUTPUT OF DATA; COMMUNICATION
WITH THE MAIN COMPUTING CENTRE VIA FILES.
15.1 Input from files
15.1.1 Communication with a running SIGMA
program; (the terminal as file)
15.2 Output of data to a file
15.3 Output of a program to a file
15.4 Input of programs from files
15.5 General comments

SESSION 16: CONCLUDING SESSION

APPENDIX 1: AVAILABLE FUNCTIONS

II Table of Contents

Page

53

53
53
54

56

59
59
63
63

ol

68
72
76
79

79
83

84
86
87
88

90

92

Contents Page

APPENDIX 2: THE SIGMA LIBRARY WORKSPACE 96
APPENDIX 3: SOME USEFUL SIGMA PROGRAMS 98
APPENDIX Y4: ORGANIZATION OF USER’S PRIVATE DATA AND 110

PROGRAM LIBRARY

Table of Contents III

INTRODUCTION

This booklet is an on-line SIGMA teacher. SIGMA (= System for
Interactive Graphical Mathematical Analysis) is designed to be a
powerful, yet easy to learn, language for direct conversation with a

computer.

Access to SIGMA, where it exists, is different from place to place
and therefore not discussed here. This tutorial supposes that you can
find somebody who is familiar with SIGMA and who teaches you how to use
a terminal, how to get into SIGMA, and how to get out at the end of each

session. Here are a few of the main features of this bocklet:

- No experience in programming required.

- Sessions last from about 1 to about 2 hours.

- After the first session (60 min) you can already compute and display a
function of one or two variables.

- Sessions proceed from simple to advanced; before !SAVE and !LOAD is
introduced, each session is self-contained; after that, your data and
programs are accumulated through all further sessions to be available
at any later session.

- At any time during this course you can -- and should -- try to solve

your own problems.

The present tutorial cannot replace the CERN SIGMA USER'S MANUAL as a
source of further information.

If you work with a SIGMA version not identical with the CERN
version, you may experience unpredictable difficulties in going through
the sessions. This should, however, not sensibly diminish the usefulness
of this tutorial because any version of SIGMA supplies many error
messages to guide the user back to the correct statement after a
mistake; furthermore, a mistake will, in general, not have any
disastrous consequences, since commands are executed one by one as you
type them in and most mistakes can be corrected by the next statement.
Therefore this tutorial will help you to learn SIGMA even if the version
available to you is not the one which we assumed in writing this text.

In the following teaching sessions you are supposed to type in all
those statements (=commands) which are marked by a vertical line on the
left.

After each statement you must push the RETURN key in order to
indicate to SIGMA that the statement is complete and should be executed.
This will not be mentioned in the text any more.

The answers of SIGMA to your statements are not given here; you
will see what happens and you should try to understand SIGMA ‘s responses
before proceeding.

Often you will receive "error messages" telling you that you made a
mistake. In most cases the error message gives you some information
about the nature of the mistake; normally the erroneous statement is not
executed and you can simply type its corrected version as the next
statement.

Computer failures, if and when they occur, result in unintelligible
messages and/or no answer at all (be patient; under heavy load the
computer may give you an answer only after a time which may reach the
order of a minute). If the word

COMMAND

appears, you have been thrown out of SIGMA and you must re-enter it by
typing the word SIGMA. If you are in serious trouble consult an
experienced SIGMA user or abandon the session and start again some time
later. In case of endless printing or no answer, you may "kill SIGMA" by
pushing the keys ESC A RETURN in this order and re-enter SIGMA by typing
SIGMA.

SIGMA often gives the value @ (zero) to mathematically ill-defined
or infinite quantities. Practical experience has shown that this is

convenient and without danger.

Keyboards of graphical terminals may differ from place to place.
You will become familiar with yours by trial and error in the course of
these sessions.

2

Frequently !ERASE is used to start a "new page" on the terminalj
pressing L whilst holding down the CTRL key will do the same thing.

To recall in any situation the last few statements, you push the
"add" key:

2
(followed by RETURN as usual)

This has no other effect then to erase the screen and print the last 20
statements you entered. You then proceed. The key

BACK
SPACE

may be used to correct typing errors while entering a statement; it is
useless after RETURN. Pushing the CTRL key followed by X is equivalent
to back-spacing to the beginning of the line.

LF

is line feed and may be used after BACK SPACE in order to continue on
the next line.

SESSION 1: SOME BASIC NOTIONS
(60 minutes)

1.1 Arrays and displays

Any ordered set of numbers is an array. If the numbers are equally
spaced along the real number line, they are said to span a range. A
range is described by the '"number sign" "#" so that

1420

denotes a range of numbers (as yet not specified how many) from 1 to 20
inclusive. To generate an array over a range, we have to specify how
many numbers are needed as well as what range is to be spanned. The
statement (statement = command) (type in)

PRINT ARRAY (20, 1#20)

will generate the first 20 integers and print them on your terminal.
Since PI = 3.1415926535898 is available with the name PI, a variable X
consisting of 100 numbers over the range 0 < X < 6%PI is generated by
the assignment statement- (type in)

X=ARRAY (100, O#6*PI)

Note that nothing is printed. X is generated and saved for further use:
the name X and the array of 100 numbers are assigned to each other. An
explicit print command is required to print any array (type in)

'ERASE
PRINT X

Automatic print-out after each assignment statement is switched on by
the command !PRINT and switched off by INOPRINT. Try this to see what
happens.

IPRINT
X = ARRAY (100, O#6%*PI)

Most standard functions are available in SIGMA. Their mnemonic names are

m

quite conventional and similar to FORTRAN. A few examples are (do not
type)

EXPEX; exponential function
LOG(X natural logarithm
LOG10(X) obvious

SIN COS(X), TAN(X) obvious

TAN ; obvious

SQRT(X square root.

A full 1list of available functions is found in Appendix 1. The array
Y= {y;; yi = %3 % sin(x;); 1 <1 < 100} will be generated by (type in)

] Y = X % SIN(X)

Lists of numbers are not well suited to study functions. Hence type
| INOPRINT
Then try the following command:

DISPLAY Y : X

This command displays all points (xi, yi) 1 <i< 100 and connects the

points with straight lines. All scaling and generation of axes is done
automatically. SIGMA remembers the scaling factors and the independent
variable (here: X) used by the last DISPLAY command, so that the same
curve will briefly flash if you enter simply the !incomplete display
command" :

Y (or Y : X)
and a new curve is added for each of the entries

| -5 (& 8o

The "colon" : is called the "pair-symbol", because each point is
defined by a pair of coordinates. A pair of arrays defines a sequence of
points which make up a curve. The points themselves may be made visible
by including in the display commands any symbol in brackets as for

5

instance in

DISPLAY [¥]COS(X):X or else by
DISPLAY C03(X):X, [0]COS(X)

Note that the use of the word DISPLAY erases the old picture and
rescales the new picture. If we now add y = x sin (x) to this picture,
most of the new curve will lie outside our picture area. To see this
enter

Y (or Y:X)

A common scale is established for all curves specified in one
display statement. Try the following command:

I DISPLAY X*SIN(X)*SIN(X):X, COS(X), [SISIN(X)

To summarize: The word DISPLAY starts a new picture and finds a common
scale so that all parts of all curves are displayed. A pair without the
word DISPLAY will add a curve to the existing picture according to scale
factors established by the last use of DISPLAY. It may easily happen
that the whole of the newly added curve lies outside the visible picture
area. A character in square brackets before any pair will draw each
point explicitly using the given character without any connecting lines.

1.2 Function definition

2

X sin ax + bx

To study a function, such as, for example, f(x) = e
with 0 < X < 5 and various values of the parameters a and b, it is
tedious to enter for a = 8, b = 0.01

iERAE%RAY (101, O#5)
DISPLAY EXP2—X5*SIN(8*X)+.01*X**2:X

and to repeat the lengthy display statement for each new curve. Instead,
define a function

FUNCTION F(A, B, X)
END EXP(-X) % SIN(A*X) + B * X ** 2

and use it simply as one would expect to use a function f(x):
= SQRT(X)*F 05,X%)
I DISPLAY %g 6? 9 { -]z

Note the effect of [.-]; try also [.-2], [.-3] in a DISPLAY. Any
statement which is used directly may also be used in the definition of a
function. The result of the function is the value which is assigned to
the function name; therefore the function name must appear inside the

function body at least once on the left-hand side of an assignment
statement. Type

PR oo
END

PRINT G(5)

Type the correct version of this function and try again. A
user-defined function is very similar to any other function defined in
SIGMA, such as SIN or COS for example.

To summarize: A function definition is started by the command FUNCTION
followed by a user-given function name and argument list. A function
definition is terminated by the END statement. The sequence of commands
between FUNCTION and END is called the function body.

1.3 Functions of two independent variables

The arrays defined up to now may be regarded as one-dimensional row
vectors. They span a single dimension and arithmetic operations combine
them component by component. For example, type

X = ARRAY§10, 1 # 10)

Y = ARKAY(10, 10 # 100)
then

Z=X+Y

{ERASE

PRINT X,Y,Z

A column vector may be obtained as the transpose of the row vector

1ERASE

X = ARBAY(5,.1#.5) .

Y = TP(X [TP is the "transpose" operator]
10%¥Y+X

A
PRINT X,Y,Z

What is the difference between the first and the second example? In the

first we have

Zi=Xl+Yi for i=1,.-,10

and in the second

Why? the general rule for arithmetical combination adopted for SIGMA, is
"component by component" combination: think of having put the two arrays
below each other and then carry out the required operation between
corresponding components. Obviously this is possible if and only if both
arrays have the same structure:

Yy = i

X = |__= |
] |
b1 It Y = i

possible impossible

There is one exception, namely our second example, where y is a column
vector and x a row vector; if we put them next to each other we get

X, X

and again "component by component" combination makes sense; x and y need
not even have the same number of components. Of course, Z is now a
two-dimensional array. We may thus say that z = f(y,x) is a function of
two independent variables over the rectangle spanned by the topological
(direct) product of the range of the row vector X with the range of the
column vector Y. We postpone to a later session the generalization to
more than two variables. An example is:

FUNCTION GAUSS(SIGMA,X)
GAUSS = EXPé—X X/2/S;GMA**2)
%ﬁ%ss = GAUSS/SQRT(2*PI*SIGMA¥#2)

X_= ARRAY(51,-1#1)
SIGMA = TP ARRAY310,0.1#1))
Z = GAUSS(SIGMA,X)

DISPLAY Z:X

Interpret the figure. Then

DISPLAY TP(Z):TP(SIGMA)

and interpret this also. Why TP?

1.4 String arrays

String arrays contain text instead of numerical values. To inform
SIGMA that in the statement

A = GAUSS(1,5)
you do not wish A to be the numerical value of the function GAUSS with
SIGMA = 1, X = 5, but instead the sentence (= string of characters)
‘GAUSS(1,5) ", you put this string between quotation marks:
I ” ASTRING = ‘GAUSS(1,5)"

Now look at the result:

| PRINT A, ASTRING

String statements are useful in printing out tables or in
commenting displays, for instance by including a message in a program:
FUNCTION DLE&A B)

X = ARRAY(21,-1#1)

Y =TP

SADDLE = A¥X¥X-B¥Y¥Y

DISPLAY SADDLE:X ,
PRINT PICTURE QF SADDLE ", “SADDLE=A¥X¥¥2_p¥y#¥D
ES%NT ‘A ,A, B IS",B

Z = SADDLE(2,3)

Further applications will come later. In the computer the string of
characters is represented by numbers; it is possible to carry out
arithmetic operations on strings and thereby create your own secret code
or check the identity of two strings. If in a statement numerical and

string variables appear mixed, the result may appear in numerical or
string form:

IE
RASTHIS IS A STRING ARRAY’
PRINT A,A+1,1+A

Any numerical array can be translated into a string array and vice
versa:

X = NUMBER(A)

gR= STRIgG(X) (Compare with the previous print!)
'ERASE ’

Now as an example of coding:

IPRINT
SACODE = gA*3+2g**2 Eln string form)
NACODE = (2+A%¥3)%*¥2 the same in numerical form)

Now we recover the original text from the coded one:

RAS
|

(SARTRACODE) 3173

10

Both are numerical now, becaue SQRT does not give a string result.
This does not worry us, because

STRING(RAS
STRINGERANB

RAS
|

result both in recovering the original text. We could as well have typed

RA = STRING((SQRT(SACODE)-2)/3)
INOPRINT
{ERASE

We end the session with an example of comparing texts (proof
reading):

B = "THIS IS E STWING ARREY
PRINT A,B
PRINT AZA, A-B

as A 1is identical with itself, A-A is a string of blanks, while A-B
shows blanks where both are equal and some other symbol where they
differ.
C = “12345°
PRINT C,C+1
So much about strings; we do not need them here, except for

messages in programs. Further information can be found in the CERN SIGMA
USER S MANUAL.

To end the session, type
1STOP
and when you are asked whether you really mean it, type
YES

¥END OF SESSION 1%

"

SESSION 2: FUNCTIONS, SUBROUTINES AND MACROS
(50 minutes)

Suppose that we try to shorten the argument list of the function F
defined in Session 1 by defining it differently:

FUNCTION G(X)
G = EXP(-X)*SIN(A¥X)+B¥X¥*X

END
Now we try
X = ABRAY(101,0#
| Z = G?X% (>)

The function cannot be executed. So we type

N
nnn

.01
x)

The function can still not be executed because it contains two variables
A and B which are by convention local to the function body and
independent of any other variables of the same name which may occur
outside the function body. (The function body is defined to be the
sequence of statements between the command FUNCTION and the command
END.). This convention avoids a clash between the intermediate variables
used in programs and other variables with the same names used elsewhere.

The argument list is one way to connect variables used inside a
function with variables used outside. Another way to connect variables
is by using the GLOBAL command.

'ERASE

FUNCTION H(X)
GLOBAL A,B
ENB EXP (=X) ¥SIN (A¥X)+B¥X%%2

will perform correctly if we say

Z = ARRAY(101,0#5)

12

DISPLAY H(Z):Z

because the GLOBAL statement links the variables A and B in the function
body to the A and B defined previously outside the function. Note that
here the variable is called Z and not X as in the function definition: Z

is the "actual argument" of the "function call" (where it may have any

name including X) while X is the "formal argument" in the "function

definition. For a more thorough discussion see Session 3.

Functions defined by a FUNCTION ... END "bracket" pair are stored
for further use in the same session (permanent storage is explained in
Session 4). They may be printed:

IERASE
PRINT G,H
PRINT H{5),H(PI)

PRINT followed by a function name without argument(s) prints the
text of the function; with argument(s) it prints the corresponding
value(s).

The function G is no longer needed, so type
DELETE G

All names currently defined by the user are displayed by the
command:

INAMES

You see that G really got deleted and that H remains defined. Also
note that several variables are still defined and stored. Some contain
scalars such as A and B, some contain arrays such as X and Z. Variables
which are no longer needed may also be deleted by the DELETE operator.
All names defined and stored by the user should be periodically reviewed
using INAMES and all obsolete variables and programs deleted using
DELETE. The interactive command !DELETE makes deletion easier. Try this
command and see what happens (type A, N, or S as answer).

13

A FUNCTION is a special case of a program. A program is simply a
named sequence of commands. The whole sequence may be executed by
inserting the function name in an assignment statement. This saves a lot
of typing in repetitive situations.

A function is a program which returns a value. A function is called
by writing the function name plus argument 1list in any arithmetical
expression. All variables defined in a function are 1local to the
function unless declared global in the function or appearing in the
argument list.

A subroutine is a program whiéh performs a sequence of commands but
does not necessarily return a result. A subroutine is simply a function
without assignment of a value to the subroutine name. Hence a subroutine
call may not appear in an arithmetical expression, but is executed by
the command CALL. For example, suppose in the previous example one
wishes to study the function H(X) by always displaying H(X) against X.
Then one can define the subroutine

SUBROUTINE SH1(X)

GLOBAL %,B

H = EXP(=X)¥*SIN(A¥X)+B¥X*%2

DISPLAY H:X o i
PRINT 'THIS IS H:X“, "PARAMETERS A,B", A,B

and execute it by the call command
CALL SH1(Z)

Alternately one could use -our previously-defined function H(X) and
define the subroutine

!ERASE

SUBROUTIN §H2(x)
gﬁgPLAY H(X):X

and execute this by the call

CALL SH2(Z)

14

This 1is correctly executed, since A and B are still defined with the
values 8 and 0.01, respectively, and the GLOBAL definition in H(X)
communicates directly with these user-defined values.

Often it is convenient to disregard the distinction between local
and global variables and arguments. For such situations a third kind of
program, called macro, can be defined.

A macro is simply a named list of commands (macro body), which is
executed by the command CALL followed by the name of the macro; it then
behaves exactly as if the macro body had been inserted in place of the
call statement; all variables it uses must be defined at call time and
the variables it generates remain defined after execution. No variables
are made local or global or inaccessible; a macro has no arguments. For
example, our study of function H could also be performed by defining a
macro

!ERASE

MACHO My

EXP -X)*SIN(A*X)+B*X**2
DISPLAX
PRINT MAGRO MH DID IT , A,B

and execute this by
CALL MH

It could not work, because now X is no longer a "formal argument", the
macro requires X to be defined as well as A and B. Hence

X=12
| CALL MH

executes correctly, because A, B, and X have values when the macro is
called. In addition, the macro execution will leave a new variable H
defined. Try PRINT H or !NAMES to check this. This is because variables
defined by a macro are not local to the macro execution. Hence the main
advantage of a macro is that all variables which are valid at call time
may be used in the macro. The main disadvantage (sometimes an advantage)
is that all variables generated in the macro body remain defined after

15

the completion of the macro execution and overwrite any others of the
Same name.

Remark: In the following text we shall not always distinguish between
FUNCTION, SUBROUTINE and MACRO; wherever no confusion is possible we
simply use the common name "program".

1STOP
YES

¥END OF SESSION 2%

16

SESSION 3: STRUCTURAL ORGANIZATION

Remark: Read this session carefully before trying it on the terminal.

3.1 Levels of operation

We distinguish, at a given moment, different levels of operation:
the manual level, first program level (program called from manual
level), second program level (program called from first program level),

etc. Relative to the n*" program level, the (n- program level

is manual) is the "calling level". Schematically

Man.
th

e

0 1St

nd
Progr. 2 i
Progr.
Type
MACRO FIRST

PRINT 'THIS IS THE FIRST LEVEL CALLED FROM MANUAL’
gﬁ%L SECOND

MACRO SECOND .
ES%NT SECOND LEVEL CALLED FROM FIRST

CALL FIRST

3.2 Protection of names

As we have seen so far, any assignment statement or program
definition can redefine any previously-defined name. The

previously-defined object (variable or program) is overwritten and lost.

This is often convenient: new objects may be assigned to existing
names without explicit deletion of obsolete objects which are already
attached to these names.

17

This is also dangerous, however: one soon becomes careless and
forgets what programs and variables one has defined earlier and before
long one will destroy valuable objects by overwriting or redefining them
unintentionally. To avoid this, use PROTECT. See what happens if you

type
!ERA?E

X
A

2
ARRAY(5) . s
TC (an ARRAY command with missing second
ar%ument produces an array filled
with 17s)

acle]
a 1]
=

§R0TECT X,A,C
SUBROUTINE A(X)
DELETE C

PRINT X,A,C

Protected objects can be used, however:

!ERASE
XA = X¥*A
XX = X¥*¥X
PRINT XX,XA
but they are protected against any damage. The command

| DEPROTECT 4,X,C

gives back to A, X and C their normal unprotected status.

A way to get a completely fresh system where all names, including
protected ones, have disappeared is

ICLEAR
check it:
INAMES

Think twice before you use ICLEAR; it is very dangerous, because
everything is lost.

18

3.3 Scope of names

Names and the objects which they represent must be considered as
functions of time, the latter may be taken to increase by one unit for
each executed statement. Particular times with respect to a program are

t = tc, the "call time" when control goes to the program and t = tr, the

"return time" when control goes back to the calling level.

All program names are universal, i.e. any program can be called

from any level. We therefore need not discuss program names further.

All names needed for the execution of a statement or of a program
must Dbe defined at call time, otherwise the system will respond with an
error message. Type

'ERASE
SUBROUTINE SSS
GLOBAL A
PRINT A

END

A=5

CALL SSS

DELETE A
CALL §SS
Z = A%*A

From now on we assume that all needed names are defined. Consider the
following sets of names:

{MAN}t = Set of names defined at time t on the manual level (listed by
INAMES) ;

{CLL}t = Set of names defined at time t on the calling level;

{PRG}t = Set of names defined at time t in a program during execution;
more specifically we write {FCT}t, {SBR}t’ {MCR}t for function,
subroutine, macro, respectively.

{ARG}t = Set of names appearing in the calling statement as actual
arguments (of function or subroutine) and being defined at t;

{GI_.B}t = Set of global names defined at t;

19

{LOC}t = Set of local names defined at t;

{ } = Empty set.
We now state the scope of names by a few set relations:

For subroutines and/or functions we have

1.Mm%LHmth&m%={mmt
2. {LOC}t ={ }ift< toort >ty

3. Local names do not interfere with names outside the program:

namely

{Loch N ({MaN} UJ{CLL},) = { '}

4, {GLB}t and {ARG}t communicate with different sets:

{GLB}, with {MAN}, and {ARG}; with {CLL}

20

{ARG}, = {CLL} N {PRG}y

{GLB}; = {MAN} N{PRG} .

Two subroutines and/or functions PRG1 and PGR2 which do not call one

another can nevertheless communicate
- via their common global variables over the manual level,

- via their common actual arguments over the calling level.

X AAX)
9,0,0.0.¢
RS
\\ X,

N} = {GLB2}y = {PRG2} N {MAN}y
@, = (GLB1} N{GLB2}; = {PRG1} M {PRG2} N {MAN},

21

22

This rule remains true if {GLB} is replaced by {ARG} and {MAN} by
{CLL}.

. Warning: Any argument of a function or subroutine which is changed

during execution, is changed for good: it takes its new
value also on the calling level. (i.e. unlike the habit in
mathematics, the argument can also be an output variable).

Try
!ERASE
FUNCTION AQC(X) .
X is the formal argument
ABC =
END
Z =10
PRINT ABC(Z),Z Z is the actual argument

Z has changed its value. This often leads to undesired and
unpredictable side effects; therefore avoid systematically any
assignment statement with the argument of a function on the left-hand
side; rather introduce a local dummy variable: try

IERASE
FUNCTION ABC(X)
Y = X*92+2*X+1

Z = 10
PRINT ABC(Z),Z

this was only an example of what can happen if one is careless about
local variables. A good programmer would have used neither of these
two examples but simply written

KENCTIO§*2+S£X+1

7. Macros behave differently from subroutines and functions: all their

names communicate with, and only with the names of the calling level:

{MCR}; C {CLL}

{cLL,

1STOP
YES

¥END OF SESSION 3*

23

24

SESSION 4: MORE ON STRUCTURAL ORGANIZATION
(60 minutes)

4.1 Control structures

Control structures are mainly used inside programs, although
they can be used on the manual level. They allow three things:

- to make execution of a statement dependent on some condition

checked inside the program;

to carry out "loops" of repetitive operations;

- to Jjump over any number of statements and go to some specifically
labelled one, from where execution proceeds as usual.

4.2 Conditional statements, logical operators

The conditional statement is of the form
IF <expression> <statement>

the <expression> is evaluated and rounded to the nearest [positive or
negative integer(s)]. If then all values of the result (which might
be an array!) are equal to 1 (1 stands for "true"), <statement> is
executed; if not, instead of the conditioned statement, the next
following statement will be executed.

Type

X = =1

IF(X LT 0) Z
PRINT X,Z
IF(XGT0) Y
PRINT Y

ABS(X)

1]
o

Why the error message?

X =10
IF(X GT 5 OR X LT -5) PRINT "ABS(X)EXCEEDS 5°

The following "order relation operators" are in use:

LT = less than

LE = less_than or equal to

EQ = equal to

NE = not equal to

GE = greater than or equal to
GT = greater than.

To these add the "logical relation operators'" AND, OR, NOT, IF, ANY.
Logical operators require "truth values" ("true" and "false"); in
SIGMA we identify

"true" with the value +1

"false" with the value O

The mentioned logical operators have the following truth tables:

-—

2
(@}
=]
- O

IF, when applied to an array, has the sense of "if all". In SIGMA all
expressions, whether they do or do not contain logical operators and
functions can be freely mixed in the same statement.

Whenever a truth-value interpretation is implied by the context,
any number x: =0.5 < x < 0.5 is rounded to zero ("false") and any
0.5 < x < 1.5 is rounded to one ("true") and then interpreted; any
other number will be refused and cause an error message. The
relational operators generate one or zero according to whether the
relation is true or false:

IERASE
X = ARRAY (4,-2#1)
PRINT X

PRINT X LT =1
PRINT X LE O
PRINT X 1
PRINT X NE =1
PRINT X GE 1

PRINT X G{ 2
PRINT NOT(X GT 2)

One can mix logical or order relations with numbers:

'ERASE

% z ARRAY$21 ,=1#1)
Y1 = Y*)+1
DISPLA ? =21Y1

25

26

Note: To see what [.-2] means, try
DISPLAY [.-51Y, [.-91Y1
Another example is:

'ERASE
MACRO_TELLME

IF X PRINT X IS NEAR TO ONE~ ,
%ﬁDNOT X PRINT X IS NEAR TO ZERO

Now try

X=0

g:(AI_._.L1TELLME

CALL TELLME

X = ARRAY(4,-0.4999#0.4
CALL TELLISIE 99940.4999)

X = ARRAY(4,0.5001#1.4999)
gALL TELLME

AT L3TELLME

Here X itself is interpreted as the truth value (rounded if
necessary).

As the IF has the sense of "if all", a SIGMA function ANY is
provided which gives the scalar value TRUE if any component of its
argument is TRUE so that

IF (ANY (<expr>)) <statement>
will execute the statement once if any component of the result of the
expression is 1 (TRUE).
!ERASE

MACBO ANYALL , .
IF (X LT 6? PRINT " ALL X NEGATIVE
IF (X LT O0) PRINT X

IF (X LT 0) RETURN (which mean§: return to the
, calling level

IF (X G% 0) PR%NT NO NEGATIVE X ;

IF ANY (X LT 3) PRINT 'SOME X LT THREE

IF £§ L% 100) gRINT NQ X EXCEEDS 100 ,

IF_ANY (Y EQ O) PRINT "AT LEAST ONE X = O

Eg%NT X

'ERASE
X = ARRAY (4 0#3)
%ALL YAL

CALL_ANYALL

X = Xxﬁ
CALL ANYALL
{ERASE

X = X+100
CALL ANYALL

One more example is:

'ERASE

SUBR UT § SHO
v ?W(*(5)3)

IF ANY X LE O) % ABS(Y)
gﬁ%PLAY Y:X

= ARRAY ?1 ,0.5#3.5)
CALL SHOW

S = ARRAY(101,3.001#4)
CALL SHOW(S)

It is important to realize that if in
IF <expression> <statement>

either the <expression> and/or the <statement> contain arrays, the IF
statement does not function for each component individually.
Evaluation proceeds from left to right and firstly the whole array
<expr> is evaluated and then, if all components of the result equal
1, the <statement> is executed as usual.

If the result of <expr> contains at least one 0, control passes
to the next statement following the IF statement.

Conditional component-by-component execution of statements can
be achieved by combining logical and/or order relations with
arithmetic or other operators as shown in one of the above examples.

27

28

4.3 Loops

Loops are of the general form (do not type)

DO n1 I-= i-‘, 12, i3

"Do-loop-body" commands may use 1
but should not change it.

N1 CONTINUE

In words this means: "do the statements of the do-loop-body once for
each value of I, starting with I = iq, then for I =1i4 + i3,

I-= i1 + 213 ... until the next I would be greater than i,; then

continue". The do-loop-body is the set of statements embraced by the
DO statement and the CONTINUE. n4 must be an integer 1 < ny < 99999,

called label; inside a program the same label may not be used twice;
note that the label is not the same as the number printed

automatically by SIGMA which latter numbers the sequence of lines on
which statements are written. 11, 12, 13 must be either numbers or

scalar names (not arrays) or expressions having a scalar result. ig
and the comma preceding it may be omitted; in that case i3 =11is
assumed by SIGMA: i4, iy, 13 need not be integer, but i, should be >

i4 and 13 > 0 to really generate a loop. Type

'E

%ACR? SELECT
DO 1I=1,10

7 = RNDM(Z) (random number)
(ZGE 0.5) Z = =Z + 0.5

= ARRAY(10)

PRINT X
CALL SELECT
PRINT X

The loop body is performed at least once, because the test on I is
performed after the execution of the loop body:

DO 5 J = 4,1,1
PRINT J
5 CONTINUE

4.4 Labels and jumps

Statement labels are one to five digit integers which may be
attached to any statement by the user. Indiscriminate branching may
be performed by the GOTO statement

GOTO <expression>

The expression is evaluated and rounded to the nearest integer
(expression must, of course, result in a scalar). This integer is
taken to denote a label and, if such a label exists, execution
control jumps to the statement labelled by it.

Indiscriminate branching is useful in IF statements when the
alternatives consist of several statements, e.g.

29

30

Example: type

!ERASE

IF ?x g o) GQTO 1

X1 = GE 0

DISPLAX SQRT(X1)

PRINT ~SOME X NEGATIVE®

GOTO 3
1 DISPLAY SQRT(X):X
PRINT NO NEGATIVE X

’y 7, -

ég b b 61nsert 3 blanc lines
INT ROOT ACCEPTS NEGATI -

PRINT ’BUT REPLACES IHEM BY 0, ®°, b

PR%NT “SMALLEST X IS~, SMIN(X)’

’

X = ARRAY(101,-1#1)
CALL_ROOT

X=X+ 1
CALL ROOT

¥) The letter b means: push the |SPACE| key ("blanc")

*))

Note:

Never direct a GOTO from outside a DO loop into it. Example:

!ERASE

MACRO DONEVER

PRI T X 10
(e K*Xs)
1 RINT X(K

7 _CONTI
IF ANY(X LT 0) GOTO 13
END

!ERASE

X = ARRAY(1O -4#5)
CALL DONE
1STOP

¥END OF SESSION 4%

31

32

INTERLUDE
(this is not a Session)

SAVING AND LOADING

By now you have acquired enough skill to solve simple problems
and to write some programs. You will feel the need to preserve what
you did, so that you can use it later in another session. For this
you must have your own SIGMA workspace, which is uniquely identified
by two words, e.g.

NAME, YOURID

the first, NAME, is the "filename", the second, YOURID is your

"identifier"*). You may have several workspaces with different
filenames and the same identifier, e.g. JACK, BOB, CARL, ..., all
with the same YOURID. You chose these names and ask somebody who is

familiar with the workspace creating procedure to create for you the

workspace NAME. From now on, at the end of a session you type
!SAVE, NAME, YOURID

and the current status of your SIGMA Session (everthing visible by
INAMES) will be "saved", i.e. stored somewhere safely. Tomorrow or
next week you can continue your work by

ILOAD, NAME, YOURID

at exactly the point where you saved it. The scheme is as follows:

%) "NAME" and "YOURID" stand here as symbols for the actual words you
will choose and which will be different from "NAME" and "YOURID"

COMPUTER
CORE STORE

e

DISK

TERMINAL =

Every command that you type in will cause some action of the computer
and, in general, it will imply some change in the data and/or
programs stored in the core memory, where a small corner is reserved
for you. Upon saving, a copy of this corner is transferred to a
permanent store (disk) overwriting there the previous copy (if there
was one). Upon loading, a copy of what was stored on disk (by the
last !SAVE) is transferred to your corner of the memory, overwriting
what was there (if anything).

You should update your saved copy on disk, not only at the end
of a session, but also each time after creating some time-consuming
valuable object (data and/or program) by !SAVE; if then afterwards
the computer should break down, you can at least resume your work at
the point of this last !SAVE.

You will now realize how dangerous the !CLEAR command is: if you
use !CLEAR in a session, everything in your corner of core memory is
erased; if you would !SAVE, all your previously saved work would be
replaced by nothing; it is lost.

Get familiar with !LOAD and !SAVE; it is important. Note that
ISAVE may take a long time (minutes!) if the workspace is very long
and the computer busy.

From here on this tutorial supposes that you have a workspace of
your own (called here: NAME, YOURID) and that you start each session
by !LOAD and end it by !SAVE. Programs and numerical objects created
in the following sessions will be assumed to exist in later sessions
until redefined or deleted.

33

34

Do not continue before you have obtained your own workspace.

% END OF INTERLUDE ¥

ESSION 5: MULTIDIMENS%ONAL ARRAYS
(90 minutes

Remark: We do not begin here with !LOAD, since nothing was yet saved
onto your workspace.

5.1 Concatenation

We use the sign & (ampersand) to concatenate two objects. Type

éPRI?Ez (remain in !PRINT mode until 5.6)
X = x&;&u

Y = 10%

Z = 100%¥X

AEL -Ex

EACH = TP(X) 2Y) &TP(Z)

WRONG EACH& (A)

KO = TP%HO S

Thus the rule is: arrays of any dimension can be concatenated if they
have the same structure except for the last dimension, where they may
differ; concatenation is done by joining rows in the sequence in
which the objects to be concatenated appear in the statement.

5.2 The NCO vector

In all the printed objects you may have noticed a message like:
NCO(X) = 2 or NCO(EACH) = U4&3 etc.
NCO (= Number-of-COmponents-vector)
is a vector whose components indicate how many components are in each
dimension of the array. Hence the NCO vector defines the structure of
the array; NCO(EACH) = U&3 says that there are four rows of three
elements each, while NCO(OK) = NCO(KO) = U4&4 says that KO and OK are
4 by 4 structures. NCO is an operator:

If NCO has n components, the array is n-dimensional:

co(X))

DIMX =
NCO(? Cé(OK))

DIMOK = NCO

35

36

the product of all components of NCO is the total number of elements
of the array. The NCO operator plays a great role in constructing
programs which must handle arguments of any, not predetermined,
structure. It also is the most important tool in constructing arrays

of a given structure.

5.3 Constructing multidimensional arrays

We have used statements 1like X = ARRAY(101,0#1). The first
argument of the ARRAY operator is the NCO vector of the array; here
NCO(X) = 101 is one single number, NCO(NCO(X)) = 1. Now try
IE
X
X

= RRAY&% 1#24)

= ARRAY

In the second command the NCO vector is 8&3 and accordingly the ARRAY
operator has constructed an 8 x 3 matrix using the elements of X.

Now try

1ERASE
X = ARRAY(6&4,0#3)

Why do we obtain six identical rows? It is a convention, adopted for
the following reason:

To preserve the "orthogonality" of x and y in f(x,y). [See
Session 1] the range specification (0#3 here) by definition extends
over the "row-dimension" or the "right-most index" only. Hence if we
specify an NCO of two components (6&4) we are asking for six
identical rows of four numbers equally spaced over the range O#3.

Similarly

!ERASE
X = ARRAY (2&3&4, 10#40)

generates two matrices each containing three identical rows of four
numbers over (10#40).

One may be tempted to try to generate a column vector with the

integers 1,...,5 as components by

Y = ARRAY(5&1,1#5)

However the result is a column vector with each element equal to 1.
This is because by definition the left-hand end point of a range is

taken for a one-component row and the above statement asks for five
one-component rows over the range 1#5.

So how can we create column vectors and arrays with different
rows? By wusing the NCO vector to define the structure and using as
the second argument not a range but an array, which

- either was previously generated or explicitly concatenated from
other arrays or numbers
- or created on the spot; i.e. the second argument is an expression

which generates an array as its result.

For example, the column vector (1,2,3,4,5) may be generated in one of

four ways:
{ERASE
Z = ARRAY(5,1#5)
X = SQRT(Z)-

Now construct Y by

!ERASE
THEA

ARRAY b&1, RRA%%Q %5))
Y(5&1, (PI+X)¥*

[o o

The user is urged to explore various ways to generate
multidimensional arrays to deduce the rule how components from the
array result of the second argument are transcribed to the newly
created array. The rules may be stated thus:

i) Arrays are stored linearly such that through the sequence of
components each index goes through all its permitted values
before the next index to the left of it is increased by one.

37

38

This sequence of components is called index order.

ii) The ARRAY operator takes the elements of the result of the
second argument in index order and fills the newly created array
structure in its index order.

iii) If all components of the result of the second argument are
exhausted, any unfilled components of the new array are set
equal to 1; if there is no second argument, all are set equal to
1.

iv) If all components of the newly created array are filled, then
the remaining components of the result of the second argument
are discarded.

Try the following:

|ERASE
X = ARRAY$2&3)
X = ARRAY(12;1#12)

Note that although, because the display screen has finite dimensions,
X looks like a 3 x U4 matrix when printed, it actually is a row of 12
numbers: the NCO vector is 12 and not 3&Y4 as it will be for

Y = ARRAY(3&4,X)

there Y not only looks like a 3 x Y4 matrix, it really is one. Go on
with

Y = ARRAY(4&3,X)
IERASE

Y = ARRAY(6&2,Y)
Y = ARRAY(3&242,Y)

So far Y as well as X had 12 components; now:

IERASE

Y = ARRAY u&u,xg

Y = ARRAY 3&2 X

Y = ARRAY &gg

Y = ARRAY(3&I&Y4)¥*0
Y = ARRAY(2&2)*PI

5.4 The transpose operator

The transpose operator (TP) performs a general permutation of
the indices of an array. In its simplest form TP appeared with one
argument in Session 1, where it simply transposed a row into a
colum. In general

R = TP (arg1, arg,)
rearranges the components of the array specified by arg; into a new

index order specified by arg, as a permutation of the indices. For

example, if A is a three-dimensional array

A = {Ai112i3; 1 L iy <ny; 1 <A, <ny; 1 5_13 g_n3}, then
B = TP(A, 3&1&2)

defines B to be a three-dimensional array such that
Biti2i3 = Ai3iti2

so that

B = Byrj23i Byiges3 = Agzgiged 1< 3r <ngi 1< 3p <y,

Try the following example and try to account for all components
in the new index order:

IERASE

A = ARRAY(3,1#3)+ARRAY(2&1,10&20)+ARRAY (3&1&1, 100&200&300)
ATP1 = TP(A}

ATP2 = TP(A, 3&1&2)

Further extensions to the transpose operation are described in the
CERN SIGMA USER’S MANUAL.

5.5 Trace

Another important array operator is the trace operator TRACE.
The TRACE is a generalization of the trace operation of matrix
calculus. It contracts an array over one or more dimensions in one or
more summations.

39

R = TRACE (arg, argy, argy, ..., ar'gn)

takes the array specified by arg and generates the array R contracted
according to argy, argp, ..., arg,. The simplest is a straightforward

matrix calculus contraction over the right-most two dimensions. In

that case argy, ..., arg, may be omitted:

ASE
ARRAY (?&3&3 , ARRAY(27, 10#270))
RACE(X

gives a three component row vector Y such that

3
Y = {Yi =Z Xi33 1<1i<3}
J=1
In this case Y = TRACE(X) is therefore equivalent to

I Y = TRACE(X, 2&3)

Now try
|ERASE ,
X=X (to initiate printing of X)
Y = TRACE(X,3)
d
the result is Y = {y; 3 vij = %1 Xi g0 1<1,5<3)
'ERASE
X=X
Y = TRACE(X, 1&3)

k)
the result is Y = {y;; yi = > Xeqps 1£1 L 3}
k=1

!ERASE
X=X
Y = TRACE(X,1,2,3)

3 2: 3
the result is Y = 2 £ 2 Xy ik
=1 j=1 k=1 *J

IERASE
X=X
Y = TRACE(X, 1&2&3)

3
the result is Y = 5_.1 XKk

Hence the concatenation operator & combines those indices which are
to be put equal and summed over, while the comma separates different
such groups of indices, each such group being summed over
independently of the others. More sophisticated features of the trace
operator are described in the CERN SIGMA USER 'S MANUAL.

5.6 Indexing

INOPRINT

Array elements are addressed by a subscript list attached to an

array name.For example, define

[aSTas
nan

ARRAY (100, 10#1000)
ARRAY€2&3&4, 5#28)

then the following values: 10, 50, 990, 5, 28 will be printed by
PRINT X(1), X(5), X(99), Y(1,1,1), Y(2,3,4)
A one-dimensional array may be used as a subscript to specify
more than one component in any dimension. Hence rectangular subarrays

or extensions of subarrays may be specified by subscripting. For
example, try

NN oem
O
(A~

1#40))

This applies to arrays of any dimension so try

Y = ARRAY(2&3&4, ARRAY(2L,1#24))
Z=Y(1, 2&3, 3&u
Z = Y(1, 3&2, 3&Y4
Z = Y(1) 2&3, L&
7 = ¥Y(1, 3&2, U&

In each case Z is a 2 x 2 matrix, but in each case the components
appear 1in a different sequence. The rule for component sequencing on
indexing is an extension of the basic idea of index order: go through

all right-most index values before incrementing the next index to the

ey

42

left, but go through the indices of each dimension from left to right
as specified in the subscript list. With subscripting not all index
values may be present and some may be repeated. Thus

| Z = Y(1, 283, 3&4)

is equivalent to

| Z = ARRAY(2&2, Y(1,2,3) & Y(1,2,4) & Y¥(1,3,3) & Y(1,3,4))

while

'ERASE

I Z = Y(1, 2&3, 1&1)

is equivalent to

| Z = ARRAY(2&2, Y(1,2,1) & ¥(1,2,1) & ¥(1,3,1) & ¥(1,3,1))

A missing index in a subscript list denotes all elements in that
dimension. For example

%E5A§?1 1&2&3&L)
Z = Y(1) %’)

’)

denote the same third row of the first matrix. As another example,
the same two-dimensional subarray is denoted by the two expressions

¢ * A subscripted variable may appear on the left-hand side of an
assignment statement, in which case the right-hand side is evaluated
and taken in index order to fill the left-hand side in the extended

index order defined by subscripting.

Y(, , 2&
Yé1&2, 1&3&3, 2&3).

NN

If there are too many components on the right-hand side, surplus
components are discarded after all components specified on the
left-hand side are filled.

If, however, there are too few components on the right-hand
side, and all components specified on the left-hand side are not
filled, then the right-hand sequence is repeated in index order until
all components specified on the left-hand side are filled. This
differs from the definition of the ARRAY operator (see Section 1.6)
and allows for the filling of arrays with cyclic patterns. For
example, the n x n unit matrix may be defined by

IERASE
M = ARRAY(N&N)
M(,) =1 é ARRAY (N, 0#0).

A problem arises in the definition of the NCO of Z if one
specified

Z = Y(1&2, 3, 3&4)
and SIGMA resolves this by defining that the NCO of an array

generated by subscripting is obtained by

i) writing down the number of components specified for each
subscript dimension (for the above example (2&1&2))

ii) striking out all 1°s from this vector [leaving (2&2) in our
example] except that if no components remain, a single component
is specified which is set equal to 1. You may find this rule
strange, because it gives the new construct a sometimes unwanted
structure; try for instance

'ERASE
l Y = ARRAY(3&1&4, ARRAY(12, 1#12))

Y consists of three 1 x 4 matrices (to be distinguished from one 3 x
4 matrix). Now type

zZ=Y(,,2)

which selects the second component of each of the three matrices; you
might have wished that the result keeps a memory of the structure of

43

4y

Y and should be a set of three 1 x 1 matrices (NCO = 3&1&1) while
SIGMA has rearranged it into a 1&3 vector.

Even
Y1 = Y(,,)
does not reproduce the old Y; it eliminates the 1 from the NCO(Y) and

makes Y1 into a 3 x 4 matrix.

These conventions have not been invented to make life difficult
for the user, but because in complex situations ambiguities can
arise. In any case, if one wishes to obtain a particular structure
containing 1°s in the NCO vector, then one can always do it by
explicit array definition:

| Z1 = ARRAY(3&1&1, Y(,,2))
has the structure the user might have expected in the above example.
I INOPRINT

Further special array operators:

- the diagonal element selector DIAG
- the reduction operator DROP
- the array element projector PROJ

are somewhat too sophisticated to be discussed here; they are also
rarely used. Therefore we refer to the CERN SIGMA USER’S MANUAL.

ISAVE ..., ...
1STOP

¥END OF SESSION 5%

SESSION 6: PROGRAM EDITING
— (20 minutes

ILOAD ...,

With the saving facility, you can attempt to construct longer
and more complicated programs. The editing facility allows one to

correct programs line by line.
Let us construct a program which computes the polynomial

P(x) = a3 + apXx + ... anxn"1 and let us put in some mistakes:

SUBROUTINE PO(X,A)
%oz NCO(A)

J=0,N
1 PO = (PO'+ A(N-J))*X
END

It is useful to test a new program on a simple case, printing out
everything:

The message says that when the program comes to the statement PO =
(PO + ...) it has no PO available, at least not a numerical entity

with that name. Now we correct:
'EDIT PO
You see the program and a message asking you either to copy or to

delete or to insert a new statement. We wish to insert PO = 0 just

before the DO loop. To this end we type
| c.3
which copies until statement No. 3 exclusively. Now we insert:

I PO = 0

u5

46

and are told that we are in "insert mode", which means, we can go on
inserting statements. As we have nothing more to insert, we type

C.6
which copies until statement No. 6 exclusively, that is, until END
inclusively. You simply can type C.99 with the same effect, but

without having to look carefully what number you should type. Now we
look and try again

PRINT PO

CALL PO(X,A)
The message tells us that there must be something wrong with our DO
loop. Indeed, for J = N we try to obtain A(0), while the index O does
not exist. Hence
| IEDIT PO
now we copy until No. 4 exclusively by
| C.4
and type the correct statement
| DO 1J = 0,N-2
which makes only A(2) ... A(N) appear in the DO loop; in fact A(1)
should be added at the end without being once more multiplied by X.
To achieve that, we copy until No. 6 (exclusively)
| C.6

and put in the new statements

PO = PO + A(1)
END

Instead of typing C.99 we have typed END, which terminates the
editing as well (without doing any copying!). Now the program should
work:

| CALL PO(X,A)

How is that possible in spite of our correction? We had better look
at the program:

| PRINT PO
We see that the new statement with J = O,N-2 and the old one with
J = O,N are both there; we have forgotten to delete the old one. We

do this now:

IEDIT PO
C.5

We delete from here until (exclusively) No. 6 by typing
D.6

and copy the rest:

C . 99
'ERASE
CALL PO(X,A)

The result is correct. Hence we say
INOPRINT
!ERASE

and try once more

CALL PQ (SX,A)
PRINT P

The text of the program is printed, because although the subroutine
PO 1is executed, the variable PO was local and cannot be printed. If

47

48

we would declare it global, the program would destroy itself by
replacing its text by the value 17. Thus we should make it a function
and, furthermore, give it a longer name, which is more mnemonic and

less 1likely to be chosen if working in another area (this is a
general rule!).

EDIT PO

FUNCTION POLYNOM(X,A)
now we must eliminate the old "program head":
| D.2

Further we insert a descriptor of the function:

COMPUTES POLYNOM A(1)+A(2)¥X+...+A(N)*X¥¥(N-1)

-99

The $ sign serves as defining a "comment", i.e. a piece of text which
is stored in the program but not executed. We look at the new
program:

!ERASE
PRINT POLYNOM
PRINT POLYNOM(X,A)

Indeed, the name POLYNOM does not appear in an assignment statement;
hence

éE?%T POLYNOM
POLYNOM = PO
END

We try again:
PRINT POLYNOM(X,A)

The result is correct. We make one more check:

= (x-1)(x=2)(x=3) = =6 + 11x - 6x° + x3
has the roots 1,2,3. We type

-6&118=6&1
ARRAY (101, 1#3)
POLYNOM(X,A)

A
X
Y
DISPLAY Y%X

L nn

1

It seems to be all right, hence we

!ERASE
PRINT POLYNOM (and take a copy)
ng%ECT POLYNOM

e s e g eee

and have the useful function POLYNOM saved for later use. This 1is a
sample of the technique to be employed in program construction. In
constructing programs which call chains of subprograms it is useful
to not only !PRINT before starting to check the program, but also to
type !CHAIN; SIGMA will then send a message each time another
subprogram is called (end this procedure by !NOCHAIN)

1STOP

¥END OF SESSION 6%

49

SESSION 7: SOME FUN WITH SPECIAL ARRAY OPERATORS
30 minutes)

ILOAD ...,

SIGMA has some special operators faciliating array handling;
this and the next Session will give you a feeling of what they can do

for you.

7.1 General operators

iPRIKERA , 1#8)

D=D z%? gforward difference)

S = SUM(running sum

'ERASE

DS = DIFF ?) (DIFF is not the inverse of SUM!)

P -PRO E (running product)

AR5

Z=D (Y) éDlrac " —function")

Y = X=4.6 find the rule for location of 1)

Z = DEL(Y)

iERASAR Y(3&4,ARRAY (12, 1#12))

MI = R% g 2row—w1se minimum, structure
reserved)

SMI SMIN(X) ?the smallest element of X)

MAX(X) row~w1se maximum, structure

reserved

SMA = SMAX(X) ?the largest element of X)

LSS (x4

L2 = LSEX 2; (row-confined cyclic 1left and
right shift ?

R2 = LS(X,=2)

7.2 Random numbers and histograms, ordering

INOPRINT
1ERASE
X = ARRAY(100) ,
(each time another set of random

RX = RNDM(X) numbers 0 < z < 1 in an array
having the structure of x
RY = RNDM(X)

DISPLAY RY:RX,[*]RY
DISPLAY [HISTIRY

{ERASE

OX = ORDER(RX, Rxg (ordering operator)
OY = ORD R R

DISPLAY *)0Y: OX oY

DISPLAY [HISTIOY’

50

The rule for the ORDER operator is: R = ORDER(A,B) finds that
permutation of elements of B which would bring B into a
non-descending sequence (row-wise); it then constructs R by applying
this permutation (row-wise) to A. (A and B are left unchanged).

'ERASE

N = ARRAY(10,1#10)
ON = ORDER(N,-N)
PRINT ON,N

Now we sort the random numbers RX into a histogram having 10 bins
from O to 1:

BIN ARR Y(11,0#1)
% § BIN§
PRINT HX TRACE HX)

(histogram operator)

Thus HIST(RX,BIN) counts how many elements of RX fall into each bin.
There are, however, eleven numbers printed, while we have only ten
bins. The last (eleventh) bin collects all those numbers which could
not be sorted into the ten bins dividing up the range O#1; we call it
the "waste bin". Try

B%ﬁ%SE A RAY(#.5)
H = ? E ? BIN1)
PRINT H TRACE(H

About half of the numbers (repeat the 1last two statements a few
times) lie outside the interval chosen and are collected in the waste
bin.

We combine the HIST operator with the histogram display facility
(these two are different things):

DISPLAY [HIST] HX %
PRINT TRACE RX)/NCO RX), TRACE(BIN*HX)

What numbers did you expect?

51

52

7.3 Integration

The operator QUAD computes the definite running integral with

approximately the precision of Simpson’s rule:

t

F(t) = g y(t) dt” <= F = QUAD(Y,DT)

Example: to

RAY (101,0#2¥PI)

el

ENDF = F(1OTE
DISPLAY Y:T,[.-2]F

)
n
1
]
[

The result should be
t

(quadrature operator, with ste
1gngth oy, F ’ P

F(t) = § sin (£ dt” = 1 - cos (t)

Y T
ENDF = .fgsin (t7) dt” =0 ;

o
Check by typing

| bzt hprosP

The error is invisible but not zero (e.g. ENDF is not zero). We check

the error by typing

DISPLAY F-(1-COS(T))

In the present case the maximal error is < 10'6.

It is not wuseful to construct a
because it is much too sensitive to
extrapolations at the ends.

ISAVE ..., ...
1STOP

*¥END OF SESSION T7#

differentiation operator,
round-off errors and to

SESSION 8: MORE FUN WITH SPECIAL ARRAY OPERATORS:

INTERPOLATION AND FUNCTION INVERSION
(35 minutes

ILOAD ...,

8.1 Interpolation

Given a range a#b and a function over it, for example: FX,X. Let
Y be a vector of values

Y= {Y‘|, Yo, «ev) yn} = {X1, Xoy -0y Xk}.

We have in SIGMA an operator EVAL (evaluation) which can compute F(Y)
by linear interpolation.

ERASE
X_= ARRAY(11,0#10)
BX_= X8

-ARRAY210,.5# .5) ,
FY = EVAL(FX,X,Y (evaluation operator)

IERASE
PRINT TP (X)&TP(FX),TP(Y)&TP (Y*Y)&TP(FY)

You see the linear interpolation result in the last column, the exact
result in the middle.

DISPLAY FX:X, [.-2]FY:Y

Before proceeding do a few examples of your own with more complicated

FX and also with a Y range only partly overlapping the X range.

8.2 Function inversion

EVAL is -- in many cases -- useful in function inversion.
Suppose we have a function y = f(x) which we can easily cast in the
form of a SIGMA FUNCTION, but what we really need is x as a function
of y: x = g(y) and we cannot construct G explicitly. What we can do
is to compute a table y = f(x) for equidistant x, but what we need is
2

a table x = g(y) for equidistant y. Take a trivial example f(x) = x%,

where we can check the method. Type

53

54

FUNCTION F(X)
F = X¥

FX = F(XE
DISPLAY [HIST]X:FX,X

We have displayed X as function of FX, but the [HIST] display shows
how much the points on the FX axis deviate from being equidistant.
Suppose we want x = g(y) (here y) for 11 equidistant points

0 <y; £100;

IERASE
Y = ARRAY(11 0#100)

SEApAT Rery Foldax:v

The EVAL operator has found the values at the equidistant Y points by
linear interpolation; the result can be improved by iteration if the
FUNCTION F(X) is explicitly known as in our example:

S5K1 2 EVAL (SX,F)
SSX = E §SQ %Q 1% Y) ete.

This can be continued until the precision equals the working
precision of the computer. Compare the approximations with the exact
results:

!ERASE
PRINT TP(SQX)&TP(SQX1)&TP (SQX2)&TP(SQRT(Y))

Now try to invert {y = sin(x); 0 < x < 21} with this method and see
where it fails. However, the display facility of SIGMA is Jjust as
useful in showing things which do not work (and indicating why) as
for workable cases.

8.3 Finding zeros of functions

Let us find one of the zeros of f(x) = x3 - 6x° + 11x - 6. We
use our function POLYNOM(X,A) [Session 6]:

A = -6&11&-0&1
X = ARRAY6101 -200#100)
DISPLAY POLYNOM(X,A):X

Obviously the range was too large;

X = ARRAY(101,- 0#2)
DISPLAY P LYNO
X = ARRAY (101 3#5

DISPLAY PgLYNOM ﬁjA) :X

X_= ARRAY (101
DISPLAY P LYNOM X,A):X
Where exactly lies the zero located near x = 27

1, #
DISPLAY POLYNOM(X

X_= ARRAY(101 .
PRINT EVAL (X,POL Z

B
X,A),0)

What we have done is almost the same as function inversion: we have
calculated the inverse function at one single point. With this method
roots can be located with arbitrary precision, if the function is
explicitly given (as a FUNCTION or otherwise).

ISAVE ...,
ISTOP

¥END OF SESSION 8%

55

SESSION 9: MATRIX OPERATIONS

ILOAD ..., .

SIGMA has a few special matrix operators: C = MULT(A,B) gives
Cik -Z: AlJ ik for any two compatible rectangular matrices: if A and

B are vectors C is the scalar product; if scalars, C is the ordinary
product. The determinant of a quadratic matrix Q is D = DET(Q), its
inverse I = INV(Q), its eigenvalues are E = EIGVAL(Q) and its
eigenvectors F = EIGVEC(Q).

We turn to examples:

Let x° = M(ALPHA)x be the new coordinates of a point P after the
coordinate axes in the plane have been rotated by ALPHA degrees
("passive" rotation)

FUNCTION ROT(ALPHA)

ROT IS TWO DIMENSIONAL PASSIVE
ROTATION MATRIX FOR ALPHA (DEGREES)
EOEIZ PHA/360

SINéA
ROT = ARRAY(2&2,C&S&~-S&C)

ROT; g%
ROT(2
ROT(40

!ERAS
PRINT MULT£M1E M25),M4i0 Compare!
IM25

PRINT IM25 T(—2) Compare!
PR%NT MULT(M25 INV(M25)) Unit matrix

IERASE
PRINT DET(M25),DET(IM25),DET(M40)

Now construct a matrix

by typing

A = ARRAY(2&2,5&0&0&-3)

and consider it in the rotated frame: (ax)” = a’x” hence a’ = MaM'1;

take ALPHA = 40°:

| A1 = MULT(MULT(M.O,A),INV(M40))
Determinants are invariant, hence

| PRINT DET(A),DET(A1)

Eigenvalues are invariant, too:

EVLA1 = EIGVAL
PRINT EVLA,EVLA1

EVLA = EIGVAL(
| 2o
Obviously the result of EIGVAL is a vector with the eigenvalues as
elements. The order in which the eigenvalues are sorted into the
resulting vector, is unpredictable:

C = ARRAY (10&10)¥0

DO 1 K=1,10

C(K,K) ="K

1 CONTINUE

1ERASE

PRINT EIGVAL(C),EIGVAL(C+1E~20),EIGVAL(-C)

Back to our two-dimensional example!

'ERASE

EVCA = EIGVEC(A)
EVCA1 = EIGVEC(A1)
PRINT EVCA,EVCA1

While the order of the eigenvalues is unpredictable, the
order of the eigenvectors is -- at least -- the same as that of the
eigenvalues: the first row of the result of EIGVEC is the eigenvector
belonging to the eigenvalue which is the first element of the result
of EIGVAL and so on.

While EVCA contains the vectors (0,1) and (1,0) properly
normalized (within the precision of the computer), EVCA1 is not

normalized. Hence, as a rule, normalize eigenvectors if necessary.

57

58

Note that the eigenvectors are the rows, not the columns; hence
if one wishes to multiply the eigenvectors by a matrix, one has to
transpose them first! And do not forget that they appear in an
unpredictable order! Geometrically, the eigenvectors of A do not
depend on the choice of the coordinate axes, hence the operator A and
its eigenvectors are geometrically invariant; they only have
different components in different coordinate systems: the
eigenvectors of Al must have the same components as those of A seen
from the rotated coordinate frame:

EVCAT1 = MULT(M40,TP(EIGVEC(A)))

!ERAS]%I
PRINT EVCA1,EVCA1}

Again arbitrary normalization makes it difficult to compare;

I PRINT EVCA1/EVCA11

which shows that both differ only by normalization.

All this works for n x n matrices and for sets of matrices
combined in higher dimensional arrays as well. Non-square matrices

can be multiplied if compatible in the sense of matrix
multiplication.

ISAVE ..., .
1STOP

¥END OF SESSION 9%

SESSION 10: DIALOGUE yITH SIGMA
) (30 minutes

10.1 Modes of operation

1ILOAD ...,

You can, apart from computing interactively, communicate with
SIGMA in another way; namely, by telling it to deliver some special
information, to display in a particular way, or to operate in a mode
different from usual.

You know already a few of the commands used for this
communication; namely, commands which wusually are preceded by an

exclamation mark (!); for instance you know

INAMES, IEDIT, IERASE, 1PRINT
INOPRINT, 1LOAD ISAVE IDELETE
iCHAIN, INOCHAIN, iCLEAR

The !sign is necessary to distinguish the following word from a
possible name; for instance try

X
Y

§§§%Y(101,o#1)
EDIT = Y¥*¥X
DISPLAY Y:X,EDIT

It is seen that EDIT is taken as a name and is displayed.

We shall now try some other communication commands. Type

'ERASE
T ARR?Y(1 1,04%PT)
R = LOG(1+T

R¥CO

X S

Y = R¥SIN(2¥T)
DISPLAY Y:
DISPLAY 2%Y:X/2

—~
><nN—=

You see that the two figures are identical, while the scale of the
axes has changed. If one wishes to see how figures are deformed by a
change of parameters, one must make sure that SIGMA plots them all to
the same scale instead of adjusting each .figure to a scale for an
optimized use of the screen. To do this, we type !NOSCALE, which
fixes the scale as it was established by the last DISPLAY statement

59

preceding this command. The scale remains fixed for all following
displays until !SCALE restores automatic scaling. Type

DISPLAY Y:X
INOSCALE
DISPLAY 2¥Y:X/2
!SCALE

Now we come to logarithmic scaling. Type

Y+§

X+
1LOGY
DISPLAY Y:X
1LOGX

L
DISPLAY Y:X

Y
X

Display remains double logarithmic until we type

'LINY
DISPLAY Y:X
ILINX
DISPLAY Y:X

We may put a grid over the figure for easier reading of coordinates
!GRID
DISPLAY Y:X
1L.OGY
1LOGX
DISPLAY Y:X
Instead of removing grid and log, we can simply type

!NORMAL (axes, linear scale, no grid,
framé, automatic scaling)
DISPLAY Y:X

We also may wish to see the curve all alone:

INOFRAME
INOAX
DISPLAY Y:X
INORMAL

The 1labels on the axes may be too large, or you may wish to print a
long program; type

60

!SMALL
DISPLAY Y:X
'ERASE
PRINT X
!LARGE

For testing nested programs we type !CHAIN and from now on SIGMA
informs us which program is called from where and when its end is
reached. Type

SUBROUTINE A

CALL B

END

SUBROUTINE B

CALL C

END

SUBROUTINE C)
PRINT "THIS IS HOW !CHATN WORKS

CALL A
!CHAIN
CALL A

Suppose in subroutine C we had, by mistake, put in a statement CALL
A; then SIGMA would enter into the infinite loop

N

and only a certain stopping procedure(namely: ESC A RETURN) , which
would destroy your current work and oblige you to reload, could
return control to the terminal. To prevent that, SIGMA counts all
automatically executed statements with a "limit counter" and stops,
when a certain 1limit is reached (4000 statements). The counter is
reset to zero each time a manual command from the terminal is
executed. Let us try it; we can change the limit

ILIMIT 20
!EDIT C

C.2
PRINT ‘LIMIT IS 20°
CALL A

Now, without the limit counter, CALL A would 1lead to an infinite

61

62

loop; in reality:

| 'ERASE
CALL A

You should now type STOP. We reset

!LIMIT 4000
DELETE A,B,C

You may not always wish to have eight digits printed. Construct a
matrix with elements ajp = ik

!ERASE

M- 58838
PRINT MM

Not very nice; now
IDIGITS 2
PRINT MM
This looks better. We reset

| IDIGITS 8

Of course, playing around with the system, we may have forgotten
which of the various options we chose. For information type

!STATUS

There are a few entries in the printed status report which we do not
discuss now, but there is one in line 8 from above:

NO OF FREE NAME SPACES (some number)

which means that you cannot define an arbitrary number of names, in
total only about 440. If you go beyond that, you must first delete
some old ones, or ask for another workspace with another name. If you

disregard this advice, you will receive an error message telling you

about OVERFLOW and there may be damage to your current work.

10.2 Copying information from another SIGMA user

You may have learned about some SIGMA program or a set of data,
constructed by somebody else and stored on his workspace, which might
be of use for you. You need not type all this into your terminal; you
can simply copy it from your colleague’s workspace. Let XYZ, DATA,
PROGRAM be required the items and HISWORK the name of his workspace
(you do not need his identifier!). In this case you would type

!COPY HISWORK, XYZ, DATA, PROGRAM
If you have already yourself items with such names, they must be
renamed or deleted beforehand, otherwise you will receive an error

message (no damage is done).

10.3 The SIGMA Library Workspace

A number of useful SIGMA programs are collected in the SIGMA
Library Workspace.

1COPY LIBRARY, CONTENT
'ERASE
CALL CONTENT

CONTENT informs you about the contents of the library and about the
procedure to be followed in order to copy any of the library programs
into your workspace. Copy a few of them and try them out. Delete them
if not needed further; this keeps your workspace short (you can get
them back at any time by copying again).

ISAVE ..., ...
1STOP

¥END OF SESSION 10%

63

64

SESSION 11: MORE ON DIALOGUE WITH SIGMA; DISPLAY MODES
(30 minutes)

ILOAD ..., ...

We have learned about some simple display modes. Here are a few
more sophisticated ones.

INOERA 1is wused to suppress the automatic erasing of the screen
before a new display command is executed; !ERA will restore automatic
erase.

If in a program you have different displays following each
other, the next display may start before there was the time to look
at or copy the previous one. For this we put !WAIT just at the point
where the program should wait indefinitely until you type GO (or STOP
to leave the program and go back to manual); instead you can insert
!PAUSE 25 (or any other number) which causes the program to idle 25
seconds and then continue. We can also define the size of the display
by I!SEIW followed by a four-component vector giving the coordinates
of Yoins Ymax: ZXmin® Xmaxs in this order, called the "window
coordinates". The maximal window will depend on the type of terminal
screen; for example for the Tektronix TU012 the screen is limited by

T1im = 0
yHm = 780
X1im = 0
xH®B - 023

and SIGMA uses normally

Ymin = 80

Ymax = 746
Xmin = 338
Xmax = 1000

Let us define some windows; type

WMAX = 0&780&0&1023
%Egg% = 80&g 8 8&1000
HT = 01g6§&51o&1o10
400&780&0&500
HOO§580&528&1023

% &50

0&380&523&1023

PROTECT WMAX, WNORM, WLEFT, WRIGHT, W11, W12, W21, We2
i e, ol

=

—

n»a
HIIHII

With these windows and the !NOERA command, one may draw one, two, or
four figures on the screen. We shall now study the use of all this by
building them into a program via several editing steps. Type

SUBROUTIN%

X = ARRAY(101 O#Z*PI)

Y1 = X¥X¥SIN(2 xg

Y2 = 20*EXP -X/2)%*C0S(2%¥X)
DISPLAY Y1:

DISPLAY ¥2

DISPLAY Y1,[.-]Y2

DISPLAY Y1:¥2

END

CALL SHOW

You hardly had the time to look at the figures. There are two ways
out: either insert I!WAIT or !PAUSE 20 or display all four on one

screen. We define two new subroutines SHOSLO for slowly displaying
and SHOW4 for four pictures:

IEDIT SHOW

SUBROUTINE SHOSLO Enew title)

D.2 delete old title)
éW%IT (waits for STOP or GO)
(!JW.IB&IT

1PAUSE 30 (30 seconds pause)
C.99

CALL SHOSLO

This is already nice. Maybe we like the last curve so much that we
display it once more without axes and frame:

'EDIT SHOSLO

AME
DISPLAY Y1:Y2
!NORMAL

65

66

END
CALL SHOSLO
We can be satisfied with this. Now all four in one figure:

!EDIT SHOW
gUgROUTINE SHOW4

8LgBAL witl, W12, W21, W22, WNORM
!SETW W11

C.

c!:SETw W12

ésé'rw w21

ééETw W22

EN

CALL SHOWY

Obviously we now need the !NOERA to avoid automatic erasing. Also the

large 1labels in the small figures are disturbing; we use !SMALL to
cure this. Hence

éEgIT SHOWY

1ERASE (Note the difference between !ERA
and !ERASE

INOERA

!S1 L

(!:ERA

{LARGE

ISETW WNORM

END

CALL SHOW4

We may wish to have a figure without axes, but with four frames:

INOAX
CALL SHOW4
1AXES

Still more sophisticated commands are available but seldom needed;
some of them have already been used in earlier sessions. Here are a
few examples:

X

X = ARRA (300,0#8)
DISPLAY F:X

DISPLAY(=) F:X

DISPLAY (O#5:0#3)F:X

F
SQRT(F)
[;]FSQRT(F)

[SISQRT(F)
X QRRAY(21 ,=1#1)

Y =
DISPLAY[0]Y:X
%ISPLAY PARABOLAJY

DISPLAY[]Y X
DISPLAY

ISAVE ..

ISTOP

COSH(X) + SIN(1/(X*¥x+0.1))

The si oscillations remain
invisible

[equal_ scale on boﬁh axes; does
not help in this case

511m1ts dlsgl%y of F and X to
X < 3; oscillations
become ™ v131ble

["incomplete display statement";
lets F flash onceﬁ

[adds{F to the display]
[adds ¥,S at the_points computed;

the JOlnlng lines are mereiy
linear interpolations drawn

¥END OF SESSION 11%

67

68

SESSION 12: TOPOLOGICAL ARITHMETIC
(40 minutes

ILOAD ..., .

Apart from automatic array handling and convenient graphical
displays, topological arithmetic is one of the most powerful devices
in SIGMA. You know its simplest aspect: construction of functions of
two variables, from Session 1; the basic idea introduced there will
now be generalized.

Remember that in arithmetical operations SIGMA combines arrays
component-wise. If they have exactly the same structure (i.e.
identical NCO vectors), this is uniquely possible. However, there is
another situation, where this is also uniquely possible, although
their NCO vectors are not identical.

Consider an example of what was said in Session 1.

IPRINT
ARRAY24,1#4;

ARRAY (5,044

X+Y

NP
noan

Of course, component-wise addition is impossible. As in Session 1 we
transpose Y:

YT = TP(Y)

Z = X+YT
This works, because a unique "component by component" combination (in
an extended sense) is possible (see figure, Session 1).

PRINT NCO(X), NCO(YT)

We have NCO(X) = 1&4 and NCO(YT) = 5&1. Write NCO(YT) below NCO(X):

1 4 (any number of 1°s to the left are
5 implied)

What SIGMA (in a way) does, is to make the two NCO’s equal by
repeating those structures which appear only once (where the 1°s
occur) identically as often as required to match the other NCO:

1 2 3 4
X={1 2 3 4}—X" = } 5 ﬂ
- 11 2 g 4
1 2 Y
0 00 00
1 ol 11
NCO(X). = 1&4 NCO(X') = 5&U
NCOgY%) = B&1 NCOEYT)) = g&u

SIGMA combines the new compatible arrays X and YT component by
component (in reality it does not expand X and YT, but only arranges
its internal DO loops in a proper way to produce the same result as
if they had been expanded). The above procedure neither loses nor
arbitrarily adds any information. Obviously it can be applied to
arrays of any dimension: if

NCO(A)

laygs ay_q) «--» 35 «--, aq}

{by, By_1s «--» Dy -, Dy}

and (OP) is any binary operator, the statement C = A(OP)B gives a
result if and only if

NCO(B)

i) either a; = by for all i = 1...N

ii) or, if some a; # b;, then either a; = 1orb; =1,

We then call "A and B compatible for topological arithmetic". Note
that if these conditions are not fulfilled, they can always be
enforced by restructuring arrays by inserting 1°s into their NCO.

69

1

X:
Y =
X1 =
Z1 =

x»%b

RAYi% & ﬁggﬁ%égl%ﬁ ;3
RRA 3&3&1&1,X)

'ER
X2 ARRAY23&1&1&3
Y2 = ARRAY(2&2&1,Y)

Z2 = X2 +
PRINT NCO(Z1) NCO(Z2)

&

i X)

Try a few more choices to make X and Y compatible.

A few examples are as follows:

DIGITS 3

IERASE

MATRIX = 100%Z+10%Y+X
IDIGITS 8

INOPRINT

IERASE

FUNCTION LENGTH(X,Y.Z)
LENGTH = SQRT?§$XiY*Y+Z*Z)
END

PRINT LEN TH61

A = ARRA

B ARRAY 3&1 ARRAY(3,-1#1))
C = ARRAY(2&1&1,0&1)

IERASE
PRINT A,B,C, LENGTH(A,B,C)

The rules for topological arithmetic allow construction of functions

of several (up to 10) variables. Be aware of the rapid growth of the

total number of components with the array dimension (type !STATUS to

learn the maximum number of array components permitted).

Summary:
Topological arithmetic extends the component-by-component
rule to the combination of arrays over the topological
product of their subscript spaces. In general, programs will
automatically do the correct topological combination if the
arrays match in the sense described above. It is up to you
to give your arrays the required structure before calling
programs or typing statements.

A last example:

70

IERASE
FUNCTION F(X,Y
ENB X;SIN&))(: ?fcos(x)

X =
Y =X

DI
DISPLAY Z1:X
DISPLAY TP(Z1):Y

Interpret the results!

Topological arithmetic is worth being learned well.

ISAVE .
!STOP

¥END OF SESSION 12%

71

72

SESSTON 13: COMPLEX NUMBE AND FUNCTIONS
(25 minutes

1LOAD ...,

SIGMA does not make a systematic distinction between real
numbers and complex ones; there is, however, a distinction in
practice: while, in principle, a real number is a complex number with
zero imaginary part, it would be wasteful to carry this zero
imaginary part through a computation which remains entirely in the
real domain. Hence in ordinary, real computations, SIGMA drops the
redundant imaginary part. SIGMA is, however, constantly watching
whether a computation leads into the complex domain; if that happens,
it "analytically continues" from the real axis into the complex plane
and from then on carries both the real and the imaginary part of all
elements in all arrays of which at least one element has become
complex. Thus, in principle, one need not worry about a computation
going complex, SIGMA will care. In practice, unfortunately, it is not
SO0 simple

- because arrays, having suddenly twice as many components, may
become too large;

- because DISPLAY Y:X may not give the expected picture if Y and/or X
is complex;

- because some array operators are "non-analytic" (e.g. MAX, ORDER,
HIST and others) and because many of the available functions (see
Appendix 1) and of your own user-written programs will only work
for real arguments.

We shall not discuss all the possible pitfalls here; you will
realize soon enough if something went wrong and your own growing
experience, together with the CERN SIGMA USER'S MANUAL, will help
you. Here we consider only a few cases which do work.

Complex numbers can be entered in two ways:

!ERASE
Z1 = 3I4
Z2 = 2A3

The first is interpreted as 3+4i, the second as 2 exp (3i).

PRINT Z1, Z2, ABS(Z1), ABS(Z2), Z1+Z2

Internally all complex numbers are stored as pairs of real numbers
(real part; imaginary part) and the above 2A3 is converted to that
form as you see from the printed Z2.

Now type

:

ATB

N
nmun

It does not work, because AIB is interpreted as a name; had SIGMA
been designed to interpret it as a complex number, all names
containing the letter I would have to be banned.

How then do we form a complex array from two real ones? Type

!ERAS

CPL%(e ,B)

REAL Zg

R
I
CZ_= CONJ Z)

PRINT A,B,2,CZ,R,I,M

Complex and real arrays may be mixed:

PRINT Z+A, Z+B, A¥Z

Now let us see how SIGMA goes complex automatically:

é%ﬁﬂerSQRT 4), SQRT(-4)
X = 4= &5&3’ -
= §T X)

BRINT Q WBS(Q) Q2

Next we study complex functions. The best way to do this is to
look at the mapping of the complex plane by constructing arcs in the

original plane and see where they go in the image plane.

IERASE

T = ARRAY(101,0#2%pPI)
R = LOG(1+T§

X = R*COS(T

73

R*SIN(T)
CPLX(X,Y)

N

This is a logarithmic spiral

2(t) = et log (1+ 1) 0<t <o
How do we plot it? Try
DISPLAY Z:T
So this does not work. Whenever a display gives you some figure like
this, you know that your computation went complex somewhere. The
correct way to plot the arc Z(t) is, of course,

I DISPLAY IMAG(Z):REAL(Z)

Now we try some functions:

!
I R
S
B

and plot them:

ASE
%QQT(Z)
EXP(Z)

I DISPLAY IMAG(Z):REAL(Z), IMAG(R):REAL(R)
Where is the square root cut located? Next

l DISPLAY IMAG(Z):REAL(Z), IMAG(S):REAL(S)
finally

l DISPLAY IMAG(Z):REAL(Z), IMAG(E):REAL(E)

It is rather time-consuming to type all this each time; also we
should have inserted (=) after DISPLAY to have equal scale on both
axes. We write a small subroutine for complex plotting:

'ERASE
UBROUTINE COMPLOT(W,Z)

PLOTS CONTOURS OF W (FULL) AND Z (BROKEN)
IN COMPLEX PLANE

EI%SPLAY(:)IMAG(W) :REAL (W), [.-2]IMAG(Z):REAL(Z)

[DISPLAY(=) instructs SIGMA to use the same scale on the X and Y
axis]

PROTECT COMPLOT
CALL COMPLOT(R,Z
CALL COMPLOT(S,Z
CALL COMPLOT E,%1

CALL COMPLOT(Z/(1+2),2)

Try a few more examples. Then !SAVE so that COMPLOT becomes part
of your private program library:

ISAVE ..., ...
1STOP

¥END OF SESSION 13%

75

76

SESSION 14: MORE COMPLEX MAPPING
0 minutes

!ILOAD ..., ..
Instead of mapping one curve, it is much better to map a regular

set of curves. The following subroutines provide you with

rectangular grld (COMGRID)
rectan%ular set of radii and circles (COMNET)
segment of the radii-circle set (COMSECT)

1L
oo

You may !COPY all three from the SIGMA library (see end of Session
10, and Appendix 2); if at your place there is no such library, type

UBROUTINE COMGRID(NV,NH,SIZE,CENTER)

DRAWS NV VERTICAL,NH HORIZONTAL LINES IN SQUARE
OF SIDELENGTH SIZE, CENTERED AT CENTER
AVATLABLE AS ZV,ZH’

LOBAL ZV,ZH
XV=ARRAY (NV, —SIZE/2#SIZE/23
YH=ARRAY (NH |, -SIZE/2#SI /§
§=§RRAY 1,2SIZE/2#SIZE/2
ZV=CPLX TP%XV ¥ +CENTER
ZH= CPLX ENTER
gﬁ% COMPEOT

PROTECT COMGRID
CALL COMGRID(5,4,2,111)

From now on, under the name ZV, you have five vertical lines of 51
points each and under the name ZH four horizontal lines of 51 points

each at your disposal as arguments of the complex function you wish

to study in the neighbourhood of z = 1+i. Consider eZ and z+1/(1+z).
You type

Z EXP
CALL COMPLO %WV)
+ZV

PO (T
CALL COMPLOT(WV1,WH1)

In many cases you wish to see what the mapping does in the vicinity
of a singularity: consider w = 1/z. Make sure that no line of our
grid actually goes through zero; type

CALL COMGRIDE1O 10, 1 og
CALL COMPLOT(1/ZV,1/ZH

It might be more instructive to put a net of circles and radii; type
(or !COPY from SIGMA library)

!ERASE

UBROUTINE COMNET(NR,NC,RMIN,RMAX,CENTER)

DRAWS NR RADII,NC CIRCLES WITH RMIN < R < RMAX
CENTERED AT CENTER,AVATLABLE AS ZR AND ZC

LOBAL Z
RR-ARRAY 51 RMIN#RMAX%
RC=ARRAY (NC, RMIN#R
P=ARRAY g

SIN(TP(PR)))+CENTER
zc CPLX TP(RC'%COS(P ,TP(RC%*SIN%P?LCENTER
%NAJﬁL COMPLOT (ZR, Z

PROTECT COMNET . .
ISAVE ..., (to save the two subroutines in case of

computer breakdown)
CALL COMNET(10,10,0.2,1,1I1)

You see that the point 1+i is not touched if RMIN > 0; if you
wish to see the mapping in the neighbourhood of a singularity, you
may employ COMNET with Z put right on the singular point; consider
log(z=(1+i)):

CALL COMPLOT(LOG(ZR-1I1), LOG(ZC-1I1))

Finally one might wish to see only some sector of the set of radii
and circles: type (or !COPY from SIGMA library)

!ERASE

77

78

SUBROUTINE COMSECT(NR,NC,RMIN,RMAX,AMIN,AMAX ,CENTER)

DRAWS NR RADIT AND NC CIRCLES WITH RMIN < R < RMAX
AMIN < ANGLE(RADIAN) < AMAX
ENTERED AT CENTER. AVAILABLE AS ZR AND ZC

LOBAL Z
RR-ARRAY?51 RMIN#RMAX%
RC=ARRAY (NC | RMIN#RMAX

ARRAY AMIN#
PR-ARRA N g
ZR=CPLX (RR ¢o RR*sgN(Tpg §;))+CENTER
ZC=CPLX TP(RC cos , TP (RC)*SIN(P)) +CENTER
CALL OOMPLOT(ZR, ZC

PROTECT COMSEC
CALL COMSECT 5 ,0.2,1,P1/5,PI/7,1I1)
WR = SIN 1I1-ZR
111-20
LOT(WR WC)

Now try to understand the programs COMGRID, COMNET, COMSECT!

!STOP

¥END OF SESSION 1li¥

SESSION 15: INPUT AND OUTPUT OF DATA; COMMUNICATION WITH THE MAIN

COMPUTING CENTBE VIA FILES.
50 minutes

LOGIN WITHOUT ENTERING SIGMA; REMAIN IN COMMAND MODE.

Remark: In what follows, commands within brackets [] are optional.
Do not type the brackets!

15.1 Input from files

So far all data-input has been from your terminal. This is
satisfactory in cases where a few parameters define a problem and
most of the data required by a problem are generated by mathematical
functions. There are, however, problems which require many multidigit
numbers as input data so that retyping by hand is both time-consuming
and error prone. This session will illustrate the simplest techniques
to handle such problems. As an example, let us now create a "local"

file (that will be destroyed after LOGOUT)™)

This time, after LOGIN, you did not enter SIGMA; you remain in
INTERCOM in COMMAND mode: COMMAND - is displayed at your terminal.
Type
| ETL, 1111
We call the INTERCOM editor by typing

| EDITOR

When two dots .. appear you are in EDIT mode.

¥) If you need to keep data after LOGOUT and use it with SIGMA later
on, you will need a "permanent" file (not to be confused with your
workspace). In this case you will have to contact your CUAC (Computer
Users Advisory Committee) representative to have such a permanenet
file allocated.

79

80

Let us create some data. Please type

CREATE

The line number is displayed. After the line number please type, for
example,

1O\ —

The = sign ends your data creation; now save these data on a local
file, call it MYFILE, typing

SAVE MYFILE N

where N indicates that you do not want the line number saved. To exit
the editor type

BYE

You have created a local file with the filename MYFILE; have a look
for yourself by typing

FILES

The following procedure of using (in SIGMA) data on file applies as
well to any existing permanent file:

If your permanent file was not created by CDC 6000, please make
sure that the format of this file is SIGMA compatible. In case of
doubt, please contact the PEO (Program Enquiry Office).

If you have an existing permanent file on the CDC 6000 series
you can make your file local by typing

*
ATTACH, MYFILE, PFNAME, ID=YOURID"

Your permanent file is now a local file with the temporary name
MYFILE and you can use the procedure below.

You are still in COMMAND mode. Enter SIGMA the usual way. For
our first exercise loading your workspace is not necessary. (In
general you would load your workspace with programs which will
analyse your data.) You are ready to copy the data from the file to a
SIGMA array. This is done in three steps:

i) make the file known to SIGMA by typing
l GET MYFILE

ii) if you want to copy the first N numbers from MYFILE and place
them in the one-dimensional array A the command is (do not type
yet)

A = READ (MYFILE, N)

where N is either an integer or a variable containing an
integer, or an expression resulting in an integer.
Provided there were at least N numbers on the file MYFILE, the
array A will now contain a vector of N numbers. SIGMA reads as many
records as necessary (and existing) from the file to obtain N
numbers. SIGMA also converts them from character to floating point,

using the same conventions as for terminal entries.

*¥) Here PFNAME stands symbolically for the actual name of your
permanent file, YOURID stands for your own identifier and MYFILE
for the name you wish to give to your (permanent) file while it
is local. Hence in an actual situation the above three names
will be different from MYFILE, PFNAME, YOURID.

81

iii)

82

To make sure you get the first N numbers you must rewind your file

to start reading from the beginning; type
I REWIND MYFILE

For example, you want the first four data placed in a
one-dimensional array A: type

| A = READ (MYFILE,4)

If you do want the next three data placed in array B, DO NOT
rewind; Jjust type

B = READ (MYFILE,3)
To place the whole file on an array C, type

REWIND MYFILE
C = READ (MYFILE,T)

To see what you got, type
' PRINT A,B,C

Release the file MYFILE from the SIGMA system by executing (do not
type yet)

PUT MYFILE - makes file unknown to SIGMA (delete) -
or
RELEASE MYFILE - filename afterwards refers to a
non-existing file;
Type
PUT MYFILE
1STOP
YES

If you are back in COMMAND mode of INTERCOM, look at your files:

\ FILES

You see SIGMA with an asterisk; you had attched SIGMA; it is a

permanent file. MYFILE is a 1local file; it does not have an
asterisk.

Re-enter SIGMA. You do not have to attach SIGMA again, just type

| SIGMA

15.1.1 Communication with a running SIGMA program; (the terminal as

file)

The terminal itself is regarded by SIGMA as a file named TERMNL,
which is always known to SIGMA (no need for GET) and which cannot be
released (no need for PUT). Hence the READ operator can be used to
communicate with a running SIGMA program as for example in the following
program:

SUBROUTINE CHAT]
PRINT 'HOW OLD ARE_YOU?
A = READ(TERMNL, 1)))
PRINT ~YOUR AGE'IS”, A, 'YEARS

END
CALL CHAT

To enter a string with or without quotes around it, the second argument
of READ should take the form m & n where m specifies how many records
should be read (each time a RETURN key is pressed on the terminal, one
record is read from the terminal) n specifies how many characters from
each record should be read.

Hence to accept a "yes" or "no" response one could write the following
program

SUBRQUTINE ,YESNO ,
111 PRINT 'IF YOU WOUL? LIKE ME TO ASK YOU AGAIN, ENTER YES
S = READ IERMN%, 1& %

%gD(s EQ 'YES') GOTO 111

CALL YESNO

Respond with YES a couple of times then with NO or anything else.

83

Here is a more realistic example, using numerical as well as string
input from the terminal:

SUBRQUTINE FCTRL .

PRINT TO OBTAIN ij TYPE N°, °N=
BAY g

PRINT IF YCJU WLSH LOG(N!), TYPE LFCT’

PRI U WISH N! ITSELF, TYPE FACT®

A = READ(TERMNL 1&4)

1ERASE

IF A EQ FACT . R = PROD(N)

IF A FQ 'LFCT’ GOTO 10 .

PRINT 'N EQUALS’, NCO(N) ‘Nt EQUALS”, R(NCO(N))

TURN
10 TRACE LOG(N))

PRINT ‘N BQU , NCO(N), 'LOG(N!) EQUALS", R

END

CALL FCTRL (call it a few Elmes and try the
options 1t offers

15.2 OQutput of data to a file

Any SIGMA array may be written to a file where it will appear in a
format identical to the format used by PRINT (i.e. character file with
blanks separating the numbers). This means, in particular, that each
line of SIGMA printout corresponds to one record on the file (in most
cases four numbers). This must be kept in mind when re-reading from the
file into SIGMA. The procedure to write onto a file again proceeds in
three steps

i) make the file known to SIGMA, except that in this case the file
should be a new file to be created, type

\ GET MYouT®)

For creation of a permanent file, you would have to supply the
proper identifier; see your local CUAC representative.

ii) Copy one or more arrays in index order onto the file. Define, for

example,

A1 = ARRAY (5, 1#5)

¥) As before, MYOUT stands symbolically for any name you choose

84

I A2 = ARRAY (3, 9#11)
Write the arrays on the file MYOUT by typing

| WRITE MYOUT, A1, A2

PRINT A1, A2

Look at the print-out: in exactly this same format A1 and A2 will
now be in your file, each line of print will be in one file record
(only the numbers are written, not the NCO, etc.)

iii) Release the file from SIGMA and make it into a local [permanent]
file

PUT MYOUT [,YOURID]

The optional ID in PUT would ensure that the file is registered as
a permanent file in case MYOUT is a new name created in (i) above.
RELEASE or PUT without ID should not be used for permanent files,
since the file will disappear after you log out from the terminal.
To see that your file MYOUT has been created as a local [permanent]
file

!STOP
YES
FILES

Remember the asterisks; there are no asterisks if MYOUT is local.
If you wish you may read this file MYOUT into your workspace. Let us
read from MYOUT. First enter SIGMA by typing SIGMA and then type

GET_MYOUT

REWIND MYOUT

'ERASE

X = READ EMYOUT, 3
Y = READ (MYOUT,
REWIND MYOQUT

Z = READ (MYOUT,100)

See what you got
PRINT X,Y,Z

85

5th to th 3 g0 gth

Y contains only the element and not the element as
one might have expected. This is because of the WRITE format being equal
to the PRINT format: remember, we had written A1 = ARRAY(5, 1#5) and

AZ = ARRAY (3, 9#11) onto the file with the PRINT format. The file

records will therefore contain:

1St record: 1.0000 2.0000 3.0000 4.,0000
2 pecord: 5.0000
374 pecord: 9.0000 10.0000 11.0000

READ (MYOUT,N) will read the next N elements from MYOUT, but always
starting at the beginning of the next file record.

The easiest way not to worry about format is to use

REWIND MYQUT
DUMMY = READ (MYOUT, 1000)

to read the whole file (or, if it contains > 1000 numbers, its first
1000 numbers) into DUMMY and then use the by now familiar SIGMA array
structuring techniques to construct your desired arrays from DUMMY. Try
it!

In case you wish to read into SIGMA a file containing more than the
maximum number of numbers allowed in a SIGMA array (!STATUS informs you
about this), you must read your file into several arrays; in that case
be careful to choose N in the READ commands such that each READ ends
with the last number of a record; if you do not know the length of the
records, you can easily find out by trial and error, varying N and
printing a few of the first and last numbers of each array.

15.3 Qutput of a program to a file

Since WRITE used the same format and philosophy as PRINT and PRINT
can print the text of a program as well as its result, one can also
WRITE the text of any one or several programs onto a file using the
procedure described in Section 15.2 (ii). The only difference is that
(do not type yet) |

WRITE MYPRO, PROG1, PROG2 ... PROGN

86

should be made to reference one or more programs. We try that now.

'LOAD your workspace.

To create a local file named MYPRO type

GET MYPRO
INAMES

You may have programs named POLYNOM and COMPLOT on your workspace which
you may want to write on MYPRO; type

WRITE MYPRO, POLYNOM, COMPLOT
PUT MYPRO
To make MYPRO permanent, type after !STOP and before logout:

l CATALOG ,MYPRO,ID=YOURID

15.4 Input of programs from files

A program written to a file by WRITE cannot be read back by READ,
because the READ operation always generates an array as a result and a
user program is certainly not an array. Try, for example, to assign any
subroutine to an array and see what happens (print it). Hence another
operator is needed. This operator, called SYSIN, informs SIGMA that the
following file contains programs.

Suppose that you have saved several programs on the file named
MYPRO and some time 1later you would like to read them again. Let us
simulate "sometime later" by first saving the current state of our SIGMA
session and then clearing the system completely:

ISAVE
!CLEAR
YES

Test that the system contains no names by

INAMES

87

Now
SYSIN

1
11

go through the familiar procedure 15.2 (i), (ii), and (iii) using
in step (ii) because the file MYOUT contains programs

GET_MYPRO
SYSIN MYPRO

3

and when control returns to you at the terminal

iii

and P

NOTE

15.5
i)

ii)

88

) PUT MYPRO

Now have a look at what names the system contains:
oNavEs

ROG1 ... PROGN should be present and ready for action.

that SYSIN will return control to the terminal when it reaches the
end of the specified file. SYSIN simply deceives SIGMA into
believing that the specified file is the terminal with a very fast
and accurate typist. Hence SYSIN may be used to read programs or
command sequences from any character file whether made by a WRITE
operation or not. For example, INTERCOM experts may prefer their
own favourite editor to SIGMA's rather limited edit facilities.
SYSIN permits a file generated by any editor to be read into SIGMA
as if it were retyped character by character on your terminal. Type

ISTOP !do not save, since you want to keep
your old workspace, not the new one
that only contains COMPLOT and
POLYNOM!

YES
FILES
LOGOUT LOGIN again for next Session.

General comments

All statements and procedures described above may be incorporated
in any of your programs.

There may.be any number of READ or REWIND requests between GET and
PUT of a file; if N of a read request exceeds the number of numbers

iii)

iv)

remaining on the file, reading stops at the last number without
giving an error message. As a rule you should always inspect the
array resulting from a read command to make sure that it correponds
to your intentions: each new READ starts at the beginning of the
next record and ignores those numbers of the previous record which
have not been read.

There may be any number of WRITE requests, too.

A GET request may in some unfortunate cases cause errors which
cannot be detected by SIGMA; since this will cause the loss of all
current work it is always advisable to !SAVE before any dialogue

with the file system is initiated.

To discard any permanent file e.g. MYFILE, you type, when you are
in INTERCOM (not in SIGMA)

DISCARD MYFILE
PURGE MYFILE, MYOUT, ABC, ...

¥END OF SESSION 15%

89

SESSION 16: CONCLUDING SESSION

With the end of SESSION 15 we have also come to the end of this

tutorial.

At this point you should review all defined objects:

ILOAD ..., ...
INAMES

Type in and protect (or !COPY from SIGMA library workspace) the programs
of Appendix 3 (as far as frequently needed) and delete all programs and
variables which you no longer need (remember that you may delete all
seldom needed programs available from the SIGMA library; see end of
SESSION 10):

| DELETE PROGR1, PROGR2,

(if protected, DEPROTECT before DELETE)

| IDELETE (for variables)

Inspect once more by

| INAMES

and, if you are satisfied with what remains,

| ISAVE ..., ...
1STOP

Now you are familiar with the fundamental concepts of SIGMA and have a
workspace with several useful programs. For further reference consult
the CERN SIGMA USER’S MANUAL and/or go back to one or the other of the

Sessions of this tutorial.

90

Acknowledgements

Many people have contributed to this tutorial by suggestions and in
discussions and -- above all -- by trying out parts or the whole of it
in practice. We wish to thank all of them.

We are particularly grateful to K. S. Koelbig and H. E. Rafelski
for a thorough critical check of all Sessions resulting in many
improvements. Session 15 has been rewritten by H. E. Rafelski. The
typing was done by M. Guarisco using the AUTHOR facility; we thank her
as well as H. von Eicken and H. E. Rafelski for the creation of the

final layout and the production of this beautiful computer printed text.

The present SIGMA is the end product of more than ten years of
evolution, during which ideas and hard work of many people were
synthesized. It owes its first conception to C. J. Culler and B. D.
Fried [in: ON LINE COMPUTING; ed. W. Karplus; Mc Graw Hill Inc., New
York 1967]; main contributions are due to G. Barta, H. Jedlicka and L.
van Hove but above all to C. E. Vandoni, who was the chief implementor
and supervisor of the prodject through its whole history.

Further Reading

CERN SIGMA USER’S MANUAL (available at CERN from C. E. Vandoni, DD, ext.
3355).

R. Hagedorn, J. Reinfelds, C.Vandoni and L. Van Hove, SIGMA. To be
published as CERN Yellow Report in 1978/79.

91

APPENDIX 1: AVAILABLE FUNCTIONS

In this Appendix we list all operators and functions of the CERN

SIGMA version available in Spring 1978. At later times and at other

computer centers this list might not correspond to reality. Please

consult the manual valid then and there.

Array Functions:

FUNCTION USE SEMANTICS OF ARGUMENTS NOTES
AND RESULT
ANY R=ANY (arg) Components of arg must be R is 1 if and only if at least
Boolean. R is a Boolean one component of arg is true
scalar. (=1).

DEL R=DEL (arg) A component of R is 1 if arg
has a zero in the half interval
on either side of the corresponding
element of arg.

DET R=DET (arg) arg must be an array of R is the determinant of arg.

square matrices. R is a
scalar or vector of
determinants.

DIFF R=DIFF (arg) Rows of R contain forward diff-
erences of rows of arg. Last
differences by quadratic extrapolation.

DROP R=DROP(arg,argl...argN) argl...argN must be Drop reduces arrays by specifying

scalars or vectors. sub-arrays which are to be
eliminated.

EIGVAL R=EIGVAL(arg) arg must be an array of Rows of R contain the eigen-

square matrices. values of the matrices of arg.

EIGVEC R=EIGVEC(arg) arg must be an array of The eigenvectors of 15t matrix

of square matrices. of arg are stored row-wise into
the 15t matrix of R and so on.

EVAL R=EVAL (argl,arg2,arg3) argl and arg2 must have EVAL regards argl as a function

identical NCO vectors. of arg? and R is argl interpolated
Row length of R is equal at points given by arg3.
to row length of arg3.

HIST R=HIST(argl,arg2) Data points defined by rows of
argl are counted into bins defined
by rows of arg2.

INV R=INV(arg) arg must be an array of Matrix inversion.

square matrices.

LS R=LS(argl,arg2) arg2 must be a scalar The rows of argl are shifted
circularly by arg2 positions to
the left.

92

Array Functions continued:

SEMANTICS OF ARGUMENTS AND
NOTES
FUNCTION USE RESULTS T
MAX R=MAX(arg) Replaces each element in each
row by the largest value in that
Tow
MIN R=MIN(arg) Replaces each element in each
row by the smallest value in
that row
n
MULT R=MULT (argl,arg2) Argl and Arg2 must be two R, .=L (argl),, (arg2)
. R X ij ik kJ
dimensional arrays compatible k=1
in the matrix sense
NCO R=NCO(arg) Obtains the NCO vector of arg
ORDER R=0RDER(argl,arg2) argl and arg2 must have Rows of argl are re-ordered such
compatible dimensions that the same permutation of
subscripts would re-order rows
of arg2 in non-descending order
PROD R=PROD(arg) Rows of R are the running products
of arg
PROJ R=PROJ(argl,arg2) arg2 is a vector or R is a vector of elements pro-
matrix jected from argl as specified by
arg2
QUAD R=QUAD(argl,arg2) arg2 must be a scalar Rows of argl are numerically
argl must have 5 or more integrated to produce rows of R
elements in each row
SMAX R=SMAX(arg) R is a scalar equal to the largest
element of arg
SMIN R=SMIN(arg) R is a scalar equal to the smallest
element of arg
SUM R=SUM(arg) Rows of R are running sums of
rows of arg
TP R=TP(argl,arg2) arg2 must be a vector R is obtained by transposition of
the indices of argl according to
arg2
TRACE R=TRACE (arg,argl, argl...argN must be R is obtained by contracting as
«..argh) stalars or vectors specified by argl...argN

93

Library Functions:

These are a subset of mathematical functions provided by the CERN PROGRAM LIBRARY and are

available under SIGMA, where they act automatically componentwise if applied to arrays.

NAME CERN Prog.Lib. PURPOSE NOTES

ACOS (B100) Arcosine If |arg| > 1., R=0

ALOGAM (C341) tziiziz:m of the Gamma If arg < 0., R=0

ASIN (B100) Arcsine If |arg| > 1., R<0

BESCJ (C331) Complex Bessel Functions R=BESCJ (A,N, X} {JA+N(X]}'OSA$1
x real or complex

BESIO (C313) Modified Bessel Functicns If arg > 741.66, R=0

BESI1 (C313) 1 Ip- 4y If arg > 741.66, R=0

BESJO (C312) Bessel Function JO If arg > 2.0E14, R=0

BESJ1 (C312) Bessel Function Jl If arg > 2.0E14, R=0

BESKO (C313) Modified Bessel Functions If arg > 741.66, or arg < 0, R=0

BESKI (C313) 3 KO'Kl If arg > 741,66, or arg < 0.1, R=0

BESYO (C312) Bessel Function YD If arg > 2.0El4, or arg < 0, R=0

BESY1 (C312) Bessel Function Y1 If arg > 2.0E14, or arg &< 0, R=0

COSH (B200) Hyperbolic Cosine If |arg| > 741.66, R=0

COSINT (C336) Cosine Integral If arg =0, R=0

DAWSGCN (C339) Dawson's integral

DILOG (C304) Dilogarithm Function

EBESIO | (C313) el g

EBESI1 | (C313) oIl I,

EBESKO | (C313) e If x$0., R=0

EBESK1 | (C313) ek, If x<0., R=0

ELLICK (C308) Complete Elliptic

ELLICE (C308) 1 Integral K and E

ERF (C300) Error Function and

ERFC (C300) i Normal

EXPINT (C337) Exponential Integral

FREQ (c300) Frequency Function

GAMMA (C305) Gamma Function If -163.5 > arg > 176.5, R=0

RNDM (vV104) Random Number Generator Components of RNDM(X) are random
numbers between 0 and 1 with
NCO(RNDM(X))mNCO(X)

SINH (B200) Hyperbolic Sine If |arg| > 741.66, R=0

SININT (C336) Sine Integral

TAN (B100) Tangent If |arg| > 8.4E14, R=0

94

Systems Functions:

FUNCTION DEFINITION NUMBER OF USE NOTES
ARGUMENTS
Absolute value |arg| 1 ABS(arg) for complex arg
/(Relarg))Z + (Im(arg))?
Arctangent arctang(arg) 1 ATAN(arg) ATAN(X)=6, where tan ©=X
-mM/2<0<m/2
Frctan(argl/argzl 2 RTANZ[argl.arg2 ATANz(Y,x)=arctan[Y/x]=e
-TgoO<m
Take complex Re(arg)- 1 CONJ (arg)
conjugate Im(argl)*i
Trigonometric cos(arg) 1 COS(arg) Accuracy diminishes for large
Cosine arguments. Returns zero if
|arg|z2**47
Combine two real arg1+arg2*i 2 CPLX(argl.arg£ The real parts are taken for
arrays into a complex argl ar argz
complex array
Exponential o8 1 EXP(arg) Valid range for arg is:
-675.8 § arg < 741.6
else returns zero
Take imaginary Im(arg) 1 IMAG(arg) The imaginary part of a real
part array is zero
Truncation Sign of arg 1 INT(arg) If |arg|224B result is
times largest unpredictable
integer<|arg]
Natural loge(arg] 1 LOG(arg)
Logarithm
Common loglo(arg] 1 LOG10(arg)
Logarithm
Remaindering argl(mod argz) 2 MoD(arg. ,arg.)| The function MOD(arg.,arg,) is
1 2’| defined as arg -[argl/argz] arg,
where Dd is the truncation
function of x, namely INT(x)
Convert string values of 1 NUMBER(arg)
array into a array elements
numerical array unchanged
Take real part Re(arg) 1 REAL (arg)
Transfer of sign |arg | times 2 SIGN(argl,arg2
sign of arg2
Trigonometric sin (arg) 1 SIN(arg) Accuracy diminishes for large
Sine arguments. Returns zero if
|arg|32**47
1
Square root arg’ 1 SQRT (arg)
Convert numerical | arg modulo 64 1 STRING(arg)
array into a
string array
Hyperbolic tanh (arg) 1 TANH (arg)
tangent
S

95

APPENDIX 2: THE SIGMA LIBRARY WORKSPACE

As SIGMA offers facilities not common with usual computing (batch)
situations, it cannot wuse without special interface the programs
collected in your batch services library. Those programs, which have
been made available under SIGMA, are found in Appendix 1. On the other
hand, a number of SIGMA programs, exploiting typical SIGMA techniques,
have been written by users and might be of interest to other users. Some
are collected at CERN in a particular SIGMA workspace with the name
LIBRARY. Using the !COPY command, you can copy any of these programs
into your workspace(s). The procedure is as follows: type

1COPY LIBRARY, CONTENT
'ERASE
CALL CONTENT

The subroutine CONTENT will inform you about the content of the library
and of what you must do in order to copy any of the programs available.
You should follow this prescription and not try to copy immediately a
library program; the given prescription ensures that you do not only
obtain the wanted program, but with it also all those programs which it

calls as subprograms.

The whole sequence of commands used for copying a library program
to your workspace is then:

1LOAD NAME, YOURID (symbolic names, use your own!)
iCOPY LIBRARY, CONTENT ym ’ y

IERASE

CALL CONTENT

From the printed list you select, for example, IMS3 (invariant momentum
space for three particles):

1COPY LIBRARY, LIMS3
CALL LIMS3

DELETE CONTENT, LIMS3
1SAVE NAME, YOURID

From now on IMS3 will be part of your own workspace. It is
recommended to leave library programs in your own workspace only as long
as you need them frequently; the shorter your workspace, the faster is

96

loading and saving and, therefore, it is less time-consuming to copy a
seldom used library program each time it is needed and delete it

afterwards, than to keep it forever in your workspace.

97

APPENDIX 3: SOME USEFUL SIGMA PROGRAMS

In this Appendix we collect a few useful programs written in SIGMA
language:

Stereoscopic three-dimensional view

Complex mapping (from Sessions 13/14)

Polynomial (from Session

. Simpson definite integral .

. Polynomial least squares fit. (Needs polynomial)
. Legendre polynomial approximation.

. Fourier series approximation.

=IO\ LN —

At CERN, all these programs are contained in the SIGMA Library workspace
from where you may copy them using the description given in Appendix 2.
It is a good exercise in SIGMA programming to analyse these programs, to
understand exactly how they work and possibly to improve them. In any

case try them out on a few examples.

For those SIGMA users who do not have access to the SIGMA Library
at CERN, we give below the full text of the above seven programs so that
you can type them in, test, correct, and !SAVE them.

1. STEREO (X,Y,Z, THETA, PHI, NUMBER)

This produces one (NUMBER=1) or two (NUMBER=2) pictures of the
surface or trajectory Z(X,Y). X and Y may be vector arrays, transposed
or not; the total number of components of Z must be < 1280 (CERN 1977
version; ask !ISTATUS for up to date information). THETA and PHI are the
view directions in degrees for MONO view (NUMBER=1). In STEREO view
(NUMBER=2) we look at the left (right) figure with

PHI; g = PHI - 4° * sin (THETA)

PHIjgnt = PHI + 4O % sin (THETA)

which for 20° < THETA < 40° corresponds to seeing the object from about
60 cm away with a distance between the eyes of about 6 cm; for THETA
outside this range the stereoscopic effect is there but for THETA = 0 it

vanishes, while for THETA = 90° it is somewhat exaggerated. Had we tried

98

to keep the effect the same for all THETA, the z-axis could not be kept
always vertical.

The user who cannot (even not with a thin piece of cardboard as
separation wall) manage to merge the two slightly different figures into
a single one (it may take a few minutes of patience the first time),
puts simply NUMBER=1 in STEREO call.

The figures are not faithful in scale: all variables are scaled to
lie between 0 and 1, so that the picture shows everything inscribed in a
unit cube {X,Y,Z}.

BROUTINE STEREO(X,Y,Z,THETA,PHI ,NUMBER)

FOR NUMBER=2 PRODUCES TWQ FIGURES FOR STEREO VIEW
NUMBER=1 GIVES SINGLE FIGURE

BEST RESULTS WITH THETA BETWEEN 20 AND 40

THETA 1S POLAR,PHI AZIMUTHAL ANGLE OF VIEW (DEGREE)
WORKS FOR CURVE AND SURFACE IN SPACE

-S PROD

PRO %
NY= SMAXéPROD?NgO? i%g

TRAJ=(NX E AND (NX EQ N)
XMA=SMAX (X
YMA=SMAX (Y

INOAX

'NOFRAME

RAD 2*PI/ 60
EThHRAD

P= PHI¥
CT=COS %?
ST=3IN(T
*S
&0&1&1&1&1)

&1&0&1&0&1)
&1&1&0&1&0)

PRTRREY g PR ST RN
RORO RO RO RORo
[@ PN QUT T S Ay

I=0

CP= COSEP-A/Z;&COS P+A
SP=SIN(P=A/2)&SIN (P+ A
W=ARRAY (2&4 ,280&750& 1
201 I=I+1

PN ORIRERERORORS

RO

—-\\\

612&280&780&411&911)

99

0
1==CT*(AX*CP(I)+AY¥*SP
=A§RAY SMAX g (Y))&1,¥N

YY*CP(IL—XN*SP(I%
' SPSI)+XN CP%I))+ZN*ST

TF NUMBER EQ 1. GOTO 10

202 ISETW W(I

DISPLAY(=) AZ1:AY1

INOSCALE

AY1=-AX*SP$I%+AY*CP§%;g+Az*ST

DISPLA% z1:¥1
IF NOT(TRAJ) DISPLAY TP(Z1):TP(Y1)
%5 %OEQK11G?$O 201

20 PﬁINT ’

ANGLE=A/RAD

EE%NT,THETA,PHI,

PRINT STEBEOSCOPIC VIEW UNDER ANGLES THETA,PHI. ”)
PRINT | ~, LOOK WITH LEFT EYE ON LEFT,RIGHT EYE ON RIGHT FIGURE
PRINT 'YOU MAY PUT SEPARATION WALL BETWEEN FIGURES]

PRINT ‘PERPENDICULAR TO FIGURES AND TOUCHING YOUR NOSE

PRINT . 'VIEWING DISTANCE ABOUT 50 CENTIMETRES)

PRINT ‘FIGURES MERGE INTO SINGLE ONE SEEN IN SPACE® |

PRINT~ ~, 'BEST RESULTS WITH THETA BETWEEN 20 AND 40
01 éﬁORMAL

GQOTO % 0
101 DISPLAY(=) AZ1:AY1
INOSCALE

DISPLA z1:¥1
TRAJ) DISPLAY ,TR(Z1):TP(Y1)
,LHETA ,PH Ly s
PRINT ‘THIS 1S MONO ,
PRINT ‘FOR STEREO CALL WITH NUMBER=2
GOTO 301

100

Example: z = x cos y + y cos X ;-5 < x,y £5

" %W\
5N ’,‘e " S)
27500 ,o'&' 555
NS

e SN0

THETA=_20.000000
PHI= -30.000000

STEREOSCOPIC VIEW UNDER ANGLES THETA,PHI.

LOOK WITH LEFT EYE ON LEFT,RIGHT EYE ON RIGHT FIGURE
YOU MAY PUT SEPARATION WALL BETWEEN FIGURES
PERPENDICULAR TO FIGURES AND TOUCHING YOUR NOSE
VIEWING DISTANCE ABOUT 50 CENTIMETERS

FIGURES MERGE INTO SINGLE ONE SEEN IN SPACE

BEST RESULTS WITH THETA BETWEEN 20 AND 60

101

2. COMPLEX MAPPING

102

Known from Sessions 13 and 14

SUBROUTINE COMPLOT(W,Z)

PLOTS CONTOURS OF W (FULL) AND Z (BROKEN)
IN COMPLEX PLANE

gﬁgPLAY(=)IMAG(W):REAL(W),[--2]IMAG(Z):REAL(Z)

SUBROUTINE COMGRID(NV,NH,SIZE,CENTER)

DRAWS NV VERTICAL,NH HORIZONTAL LINES IN SQUARE
OF SIDELENGTH SIZE, ENTERED AT CENTER
AVATLABLE AS ZV,ZH

LOBAL ZV,ZH
XV:ARRAY{NV,—SIZE/2#SIZE/23
YH=ARRAY (NH | -SIZE/2#SIZE/2
%=§RRAY(51,-SIZE/Z#SIZE/z)
ZV:CPLX%TP XV) §3+CENTER
ZH=CPLX (X gyﬂ +CENTER
gﬁ%L COMPLOT(ZV , ZH

UBROUTINE COMNET(NR,NC,RMIN,RMAX ,CENTER)

DRAWS NR RADII,NC CIRCLES WITH RMIN < R < RMAX
CENTERED AT CENTER,AVAILABLE AS ZR AND ZC

LOBAL ZR,ZC
RR=ARRAY (51, RMIN#RMAX
RC=ARRAY (NC , RMINFEMAX
P=ARRAY (51 .~PL#PI .%g 83
PR=AKRAY(NR+1,-PI#PI¥;
ZR=CPLX(RR¥COS(TP(PR)) R
7C=CPLX TPSR%) COSSP
CALL OOMPLOT(ZR,ZC

A
.

TPEPR;))+CENTER
P))+CENTER

SUBROUTINE COMSECT(NR,NC,RMIN,RMAX,AMIN,AMAX ,CENTER)

DRAWS NR RADII AND NC CIRCLES WITH RMIN < R < RMAX
AMIN < ANGLE(RADIAN) < AMAX
ENTERED AT CENTER. AVAILABLE AS ZR AND ZC

LOBAL ZR,7C

RR:ARRAY?51,RMIN#RMAX3

RC=ARRAY (NC , RMIN#RMAX

BREANRA %&RAX%%%)&

ZR=CPLX (RR*COS (TP PR;g SIN(TPéPRg))+CENTER
, C) *SIN(P))+CENTER

3. POLYNOMIAL

Known from Session 6

FUNCTION POLYNOM(X,A)

103

4. SIMPSON DEFINITE INTEGRAL

The definite integral

X4
f F(x)dx
X

o

can be obtained by means of QUAD, the integration operator; one simply
picks up the last component of the result. Applied to multidimensional
arrays, QUAD(Y,DX) assumes that each row of the array Y is to be
integrated with the same step size DX; furthermore, QUAD needs 2> 5
elements per row in Y.

SIMPSON has been written to allow more generality: each row may
have another step length which may either be given (third argument DX;
then set X = 0) or computed by SIMPSON from X(second argument; then set
DX = 0); furthermore SIMPSON requires only > 3 points. Apart from the
restrictions > 3 points and step length constant within a row, SIMPSON
is very general; the number of points may be even or odd. Note that the
result of integrating a rectangular array (N by K) is an N by 1 column
vector; more generally, if

then
NCO(SIMPSON(FX,X,0)) = N1 & N2 & ... & Nl-1 & 1

UNCTION SIMPSON(FX,X,DX)

SIMPSON INTEGRAL(FX*DX) FOR ARBITRARY ARRAYS

IF FX AND X ARE GIVEN,SET DX=0

IF FX AND DX ARE GIVEN,SET X=0

FX AND X MUST MATCH TOPOLOGICALLY

IF SO,SIMPSON WORKS ROW BY ROW INDEPENDENTLY
IF X 1S GéVEN EQUIDISTANCE IS CHECKED

IF DX IS GIVEN, EQUIDISTANCE IS ASSUMED

NUMBER OF SUPPORT POINTS MAY BE EVEN

FX

2DX E_0) GOTO 51
ABS(DIFF(DIFF(X))/DIFF(X)) GE 1E-10) GOTO 101
NX=NCO(X)
NX 1=NX NgO(NX))
NYZNCO Y

NY 1=NY NCO(NY%)
)

Y=
IF
IF

NX1 NE NY1

GOTO 100
NCO(NCO(X)

IF
NX =1

104

H:ARRAY(NX,X(NX1)-X(NX1-1))
GQTO 5

51 H= D%
NY=NCO(Y)

52 NiNY(NCO(NY))
N1(NCO(NY)):1

N=N-1
NN=ARRAY (N, 1#N)

N2=NY

N2(NCO(Y))=
Y=ARRAY(N2,Y(NN))
GOTO 10

% N=N+1

S= S+H/12¥ARRAY(N1 5%Y (N)+8%¥Y(N-1)-Y(N=2))
SIMPSON=S
RETURN

10 MASK= (MOD(ARR?Y&? 1#N)K

Ga%g%ﬁ%éﬁs-AgﬁgY N1 Y(+Yt§§9 MASK)) NCO(NY)))

OO PRINT 'NOT DONE ; NO MATCH IN X AND Y~

A step length varying from row to row is useful

RETURN
101 PRINT 'NOT DONE ; SUPPORT POINTS NOT EQUIDISTANT’

in double

integration with variable inner limits; an example is the moment of

inertia of a unit sphere with unit density.

1 {1=z
e =2anzS r3 dr = 8T /15 .
-‘l o
Numerically
7 = ARRAY(21,=1#1
Z = ARRAY(31: 544 hrp (sarT(1-2%%2))

R is a 21-row array, each row having a different range and step length

105

THETA = 2*PI*SIMPSON(TP(SIMPSON(R**3 R,0)),Z,0)
PRINT THETA, 8*PI/15

5. POLYNOMIAL, LEAST SQUARES FIT

Given MX = MY pairs of values {x;, vl ("data") (neither of the
sets {x;}, {yi} need be equidistant and/or ordered); then FIT computes
the least squares fit by a polynomial of order ORDER; WEIGHT must be

either a scalar (put it = 1) or have NCO(WEIGHT) = MX. For instance,
WEIGHT might be the inverse of the error y; attached to each '"measured

value" y;.

WEIGHT = 1/ABS(DY), where NCO(DY) = NCO(Y)
or any function of DY or of Y or of X.

The program makes available and prints out the coefficients ay of

fit = a; + ax + ... + anxn (n = ORDER)

and makes available the fit-function pair YFIT, XFIT. Note that the
program works rather slowly if NCO(X)*(ORDER+1)*¥2 GE 1280.

UBROUTINE FIT(X,Y,WEIGHT,ORDER)

EOMPUTE§XLEAEE QARE FIT OF G;Vgﬁ ORDER N

WEIGHT=1 OR NCO WEIGHT NCO(X

COEFFICIENTS UNDER COEFF : AK=COEFF(K+1)
101-POINT FIT FUNCTION AVAILABLE UNDER XFIT,YFIT
RELATIVE ERROR AVAILABLE UNDER RELERR

LOBAL COEFF,XFIT,YFIT,RELERR

N=ORDER+1

IF N EQ 1 GO TO 5
L=ARRAY (N 1#N;
K=ARRAY (N&1,L
MX c

?CO&Q
M%AND?(W WORGH B9 1))) GO TO
RE%%%NX ,Y,WEIGHT DO NOT MATCH ;

1 =K+L-

IF?E%*N*L éE 1280; GO TO 2

xx—ﬁggﬁy MX&}&1 WEIG T)
TRAC M§§ §

GO
% gW‘O*X+WEIGHT

106

DO
C+X§i)**MKL*WW(I)

CON U
TRACE Yg IGHT*X¥%¥(K-1),2)
D- P(D,2&1)

COEFF-MULT(INV(C))

COEFF=TP (COEFF , 2&

XFIT=ARRAY 101) SMIN (X)#SMAX (X))
YFIT:POL%N?M(X?IT COEFF)

DIS *1]Y:

RELERB-(Y1-Y3/ABS(Y)
PRINT MEAN REL §
gg%gT 8RACE(ABS(Y1—Y)/TRACE(ABS(Y))

5 IF NCO(WE GHT) EQ 1 WEIGH
COEF CE(Y*WE ? ;/TRA VEIGHT D
§FIT-A§RAY§ 81E§¥IN X)#SMAX (X

DISPLAY[.]Y:X,YFIT: XFIT
PRINT ORDER EQUAL”N-1

RELERR—?Q?fw/ABs(y)
PRINT 'MEAN RE
PRINT T%ACE(ABS(Yl—X))/TRAgg(ABS(Y))

. FICIENTS =
PRINT TP(COEFF) ’
END

", A0 ON TOP

T Y

107

6. LEGENDRE POLYNOMIAL APPROXTMATION

A function f(x) known for equidistant x is approximated by Legendre
polynomials after being transformed to the interval -1 to +1.

UBROUTINE FITLEG(F,X)

FITLEG FIRST TRANSFORMS TO INTERVAL -1 TO +1 AND THEN

F S LEG DRLMAE 3M§M§L+142§*P(L XX))

RESULT IN LGAPPR ; COEFFICIENTS A(L) IN COEFFL(L+1)
RESULT DISPLAYED IN FULL , ORIGINAL F AS ¥¥¥¥

1F NCO(NCO(F)) NE 1 GOTO 10

A= E ORDER DESIRED - 50 FOR INTERRUPTIBLE
A=A& s UEN E OF APPROXIMATIONS, OR THE ORDE% wE §E
ﬁ %gg% &q A& N IS GREATER THAN 1 - &ARRAY(30)*
GLOBAL COEFFL ,LGAPPR

X1=SMAX X

%x-?x1+xo)/2)*2/(x1-xo)
COEFFL-ARRAYEN +1)
kg %ERAY(NCO X))
COEFFLE13-SIMPSON§F XX, o)
COEFFL (2)=SIMPSON (F¥XX XX ,0)
LGAPPR= COEFFL(1)/2+3/2*XX*COEFFL(2)

DO

DO ! haallbdy s 103 (2))((k1)
COEFFL (K)=SIMPSON (L ¥F
igAEﬁR-LGAPPR+ K-.)*COEFFL(K)*L
L1=L

IF(N NE 50) GO T0 3

ISMALL

DISPLAY LGAPPR:XX & %g

PRINT HIGHEST P!l HAS K=",K-1

PRI
PRINT TRA%%?ABEILGAPPR—F))/TRACE(ABS(F))

CC INPUT TYPE C FOR CONTINUE FOR STOP -",1&1) EQ 'Y~
IF CCC EQ 0) RETURN

CONTINUE

CONEINUE

ISMAL

DISPLAY LGAPPR:XX,[*1F

1LARGE

PRINT, HIGHEST P(KX) BAS K=",N

PRINT” MEAY REL, B

PR%ggNTRAC ARS (LGABPR-F)) /TRACE(ABS (F))

10 PRINT “NOT EXECUTED,WRONG DIMENSION OF ARGUMENT(S)’

108

7. FOURIER SERIES APPROXIMATION

If f(x) is given over an interval with equidistant spacing, FOURIER
computes successive Fourier approximations to f(x) up to an order N =
NCO(X) /4.

UBROUTINE FOURIER(F,X)

[l eniandiini el i enepepepepeepepp P P L D et

COMPUTES SUCCESSIVE FQURIER APPR. TO F(X)
F IS NAME OF VECTOR ARRAY

RESULT AVAILABLE UNDER FOURAPP

COEFFICIENTS AVAILABLE UNDER MEANVAL ,FOURCA,FOURSB

KLI(\)%AL FOURAPP ,MEANVAL ,FOURCA ,FFOURSB
)
FOUR A= AR AY(K/4)*0

gRCA
L-GSMAX(X -SMIN(X))/2
FOURAPP=QUAD (F,DX)/2/L
FOURAPP-FOURAP?
MEANVAL- 12?

1 N=1, NCO FOURCA)

c cos T
S=SIN(T
A=QUAD (C¥*F,DX)/L
B=QUAD(S*F,DX)/L
FOURCA N;-A K

FOURSB(N

FOURAPP= ﬁPP+C*FOURCA(N)+S*FOURSB(N)
B%%PLAY F:X,FOURAP

IWAIT
1_CONTINUE ,
EII\R“%NT ORDER OF APPR. EQUAL TO 1/4 OF NCO; END REACHED

109

APPENDIX 4: ORGANIZATION OF USER 'S PRIVATE DATA AND PROGRAM LIBRARY

After some time of heavy SIGMA use the user’s workspace becomes
long, mainly owing to programs which he might wish to conserve for a
long time. In that case saving takes times which go easily into the
order of several minutes. As frequent saving is an effective means
against heavy losses of work, this situation is inconvenient. In that
case it is useful to have several workspaces (with the same identifier),
for example

JRCKAAT, EPLAB

JACKDAT, EPLAB

JACKDLY, EPLAB
where JACK serves as the main workspace in which actual computing 1is
done and which is kept as short as possible; all permanent mathematical
functions you have constructed, you put in JACKMAT, all valuable data,
tables, etc., in JACKDAT, programs with physics application in JACKPHY ,
and all other useful programs in JACKDIV. Suppose you wish to add to
JACKDIV the polynomial least squares fit subroutine FIT. Then there are

two possibilities:

If you have access to the CERN | If there is no SIGMA LIBRARY

SIGMA LIBRARY containing FIT
| 'Loap Jackp1v, EPLAB | !LOAD JACKDIV, EPLAB
| tcoPY LIBRARY, CONTENT Type in the program FIT without

trying to correct your typing
errors now; it is safer first
to

| !ERASE | !SAVE JACKDIV, EPLAB

110

CALL CONTENT Now you !EDIT FIT to correct
typing errors (if necessary)
and test FIT in a realistic
case. You may be informed that
POLYNOM is unknown. In that
case you type in the program
POLYNOM and !SAVE again. Then
IEDIT POLYNOM (if there are
mistakes) and try again FIT on

a few cases. If everything

works,
| ICOPY LIBRARY, LFIT | INAMES
l CALL LFIT delete all superfluous objects

(there are arrays left from
testing FIT)

| PROTECT FIT, POLYNOM | 'PROTECT FIT, POLYNOM

| DELETE LFIT, CONTENT | !SAVE JACKDIV, EPLAB

| !SAVE JACKDIV, EPLAB

As FIT needs POLYNOM as a
subprogram, LFIT has copied
both of them and both are now
in JACKDIV

T

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

