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Abstract We study the general properties of fluid spheres satisfying the heuristic
assumption that theirs areal and proper radius are equal (the Euclidean condi-
tion). Dissipative and non-dissipative models are considered. In the latter case, all
models are necessarily geodesic and a subclass of the Lemaı̂tre–Tolman–Bondi
solution is obtained. In the dissipative case solutions are non-geodesic and are
characterized by the fact that all non-gravitational forces acting on any fluid ele-
ment produces a radial three-acceleration independent on its inertial mass.

Keywords Relativistic stars, Gravitational collapse

1 Introduction

Analytical or numerical solutions to Einstein equations describing dissipative grav-
itational collapse are thought to be useful not only for describing specific astro-
physical phenomena, but also as test-bed for probing cosmic censorship and hoop
conjecture among other important issues.

In this work we consider a large family of solutions, derived from the heuris-
tic assumption that the areal radius of any shell of fluid, which is the radius ob-
tained from its area, equals the proper radial distance from the centre to the shell.
Since these two quantities are always equal in the Euclidean geometry, systems
described by solutions satisfying such a condition will be called “Euclidean stars”.

Some of the models are necessarily dissipative. This is appealing from a phys-
ical point of view, since gravitational collapse is a highly dissipative process (see
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[1; 2; 3] and references therein). This dissipation is required to account for the
very large (negative) binding energy of the resulting compact object of the order
of −1053 erg.

The resulting dissipative models have a distinct dynamical property, namely
all non-gravitational forces acting on any fluid element, produce a radial three-
acceleration being independent of the inertial mass density of the fluid element.
This behaviour, which is characteristic of the gravitational force, is now shared,
due to the Euclidean condition, by all forces. The specific case of the shear-free
and conformally flat fluid, are considered in detail.

Non-dissipative models are necessarily geodesic, belonging to the Lemaı̂tre–
Tolman–Bondi (LTB) solutions (more specifically to the parabolic subclass). They
may describe collapsing dust or, more generally, anisotropic fluids [4].

2 The Euclidean condition and its consequences

We consider a spherically symmetric distribution of collapsing fluid, bounded by
a spherical surface Σ . The fluid is assumed to be locally anisotropic with principal
stresses unequal and undergoing dissipation in the form of heat flow. Choosing
comoving coordinates inside Σ , the general interior metric can be written

ds2
− =−A2dt2 +B2dr2 +R2(dθ

2 + sin2
θdφ

2), (1)

where A, B and R are functions of t and r and are assumed positive. We number
the coordinates x0 = t, x1 = r, x2 = θ and x3 = φ .

The matter energy-momentum T−
αβ

inside Σ has the form

T−
αβ

= (µ +P⊥)VαVβ +P⊥gαβ +(Pr−P⊥)χα χβ +qαVβ +Vα qβ , (2)

where µ is the energy density, Pr the radial pressure, P⊥ the tangential pressure,
qα the heat flux, V α the four-velocity of the fluid and χα a unit four-vector along
the radial direction. These quantities satisfy

V αVα =−1, V α qα = 0, χ
α

χα = 1, χ
αVα = 0. (3)

The four-acceleration aα and the expansion Θ of the fluid are given by

aα = Vα;βV β , Θ = V α
;α , (4)

and its shear σαβ by

σαβ = V(α;β ) +a(αVβ )−
1
3

Θ(gαβ +VαVβ ). (5)

Since we assumed the metric (1) comoving then

V α = A−1
δ

α
0 , qα = qB−1

δ
α
1 , χ

α = B−1
δ

α
1 , (6)

where q is a function of t and r. From (4) with (6) we have for the four-acceleration
and its scalar a,

a1 =
A′

A
, a2 = aα aα =

(
A′

AB

)2

, (7)
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and for the expansion

Θ =
1
A

(
Ḃ
B

+2
Ṙ
R

)
, (8)

where the prime stands for r differentiation and the dot stands for differentiation
with respect to t. With (6) we obtain for the shear (5) its non zero components

σ11 =
2
3

B2
σ , σ22 =

σ33

sin2
θ

=−1
3

R2
σ , (9)

and its scalar

σ
αβ

σαβ =
2
3

σ
2, (10)

where

σ =
1
A

(
Ḃ
B
− Ṙ

R

)
. (11)

The mass function m(t,r) introduced by Misner and Sharp [5] (see also [6]) reads

m =
R3

2
R23

23 =
R
2

[(
Ṙ
A

)2

−
(

R′

B

)2

+1

]
, (12)

We can define the velocity U of the collapsing fluid as the variation of the areal
radius with respect to proper time, i.e.

U = DT R < 0 (in the case of collapse), (13)

where DT = (1/A)(∂/∂ t) defines the derivative with respect to proper time. Then
(12) can be rewritten as
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E ≡ R′

B
=

(
1+U2− 2m

R

)1/2

. (14)

The proper radial three-acceleration DTU of an infalling particle inside Σ can
be calculated to obtain

DTU =−
( m

R2 +4πPrR
)

+Ea, (15)

feeding back this expression into the radial component of the Bianchi identities
produces (see [7] for details)

(µ +Pr)DTU = −(µ +Pr)
( m

R2 +4πPrR
)
−E2

[
DRPr +2(Pr−P⊥)

1
R

]
−E

[
DT q+2q

(
2

U
R

+σ

)]
. (16)

The physical meaning of different terms in (16) is discussed in detail in [1; 7; 8].
We would like just to recall that the first term on the right hand side describes the
gravitational force term. As expected from the equivalence principle, its contri-
bution to DTU is independent on the inertial mass density µ + Pr. The two last
terms describe non-gravitational force terms (i.e. their combination vanishes in a
geodesic motion).

Two radii are determined for a collapsing spherical fluid distribution by the
metric (1). The first is determined by R(t,r) representing the radius as measured
by its spherical surface, hence called its areal radius. The second is obtained out
its radial integration

∫
B(t,r)dr, hence called proper radius. These two radii in

general, in Einstein’s theory, need not to be equal, unlike in Newton’s theory. Here
we assume those two radii to be equal. Hence with this condition we can write,

B = R′, (17)

implying from (14)

E = 1. (18)

The field equations with this condition become

κµ =
1

A2

(
Ṙ
R

+2
Ṙ′

R′

)
Ṙ
R

, (19)

κqAR′ =−2
Ṙ
R

A′

A
, (20)

κPr =− 1
A2

[
2

R̈
R
−

(
2

Ȧ
A
− Ṙ

R

)
Ṙ
R

]
+2

A′

A
1

RR′
, (21)

κP⊥ =− 1
A2

[
R̈
R

+
R̈′

R′
− Ȧ

A
Ṙ
R
−

(
Ȧ
A
− Ṙ

R

)
Ṙ′

R′

]
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+
[

A′′

A
−

(
R′′

R′
− R′

R

)
A′

A

]
1

R′2
; (22)

while the mass function (12) now reads,

m =
R
2

(
Ṙ
A

)2

. (23)

It is clear from (23) that if Ṙ = 0 then m = 0 and spacetime becomes Minkowskian.
Therefore all Euclidean stars are necessarily non-static. Furthermore, using (13),
(23) can be rewritten as

m
R

=
U2

2
. (24)

Hence, (24) can be interpreted as the Newtonian kinetic energy (per unit mass) of
the collapsing particles being equal to their Newtonian potential energy.

From (20), we observe that if the system is dissipating in the form of heat flow,
the collapsing source needs A′ 6= 0, implying because of (7) aα 6= 0. This means
that dissipation does not allow collapsing particles to follow geodesics. Inversely,
of course, non-dissipative Euclidean models are necessarily geodesic, since q = 0
implies because of (7) and (20) that aα = 0.

It is interesting to observe that due to the Euclidean condition, the dynamical
equation (15) or (16) becomes,

DTU =−
( m

R2 +4πPrR
)
− κqR

2U
, (25)

implying that the non-gravitational force term (the last on the right hand side) con-
tributes to DtU , for any fluid element, independently on its inertial mass density.
In other words, the Euclidean condition produces a “gravitational-like” behaviour
in non-gravitational forces (which are controlled by q). Thus, the effect of non-
gravitational forces amounts to modify the gravitational force term, leaving a
“gravitational-like” force term producing a radial three-acceleration independent
on the inertial mass density of the fluid element.

The Weyl tensor Cαβγδ for metric (1) with (17) has the following non zero
components,

C0101 =
A2

3

{[
R̈
R
− R̈′

R′
+

(
Ȧ
A

+
Ṙ
R

)(
Ṙ′

R′
− Ṙ

R

)](
R′

A

)2

+
A′′

A
−

(
R′′

R′
+

R′

R

)
A′

A

}
, (26)

and all the other non zero components are proportional to (26),

R2

2
C0101 = −B2C0202 =−

(
B

sinθ

)2

C0303

= A2C1212 =
(

A
sinθ

)2

C1313 =−1
2

(
AB

Rsinθ

)2

C2323. (27)
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With (11), (21) and (22) we can rewrite (26) like

C0101 =
AR′2

3

[
κ(P⊥−Pr)A+2

Ṙ
r

σ

]
, (28)

showing that for isotropic systems the shear-free conditions implies a conformally
flat source.

We consider next the non-dissipative case.

3 Collapse with q = 0

As mentioned before, for this case we have from (20) that A′ = 0 which means
A = A(t) and by rescaling t we can have

A = 1. (29)

Of course such models are members of the Lemaı̂tre–Tolman–Bondi (LTB) space-
times [9; 10; 11], furthermore they correspond to the parabolic case. Indeed, the
general metric for LTB spacetimes read,

ds2 =−dt2 +
R′2

1−K(r)
dr2 +R2(dθ

2 + sin2
θdφ

2), (30)

where K(r) is an arbitrary function of r.
Imposing the Euclidean condition (17) in (30), one obtains K = 0, which de-

fines parabolic LTB spacetimes. Further, assuming that the source consists of pure
dust (Pr = P⊥ = 0) then it follows from the field equations that

R(t,r) = [c1(r)t + c2(r)]2/3, (31)

and

κµ =
4c1c′1

3(c1t + c2)(c′1t + c′2)
, (32)

where c1(r) and c2(r) are integration functions. Hence the solution reduces to
parabolic LTB collapsing dust [9; 10; 11].

From (29) and (31) we have for (26),

C0101 =
(

2
3

)4 c1(c′1t + c′2)
2

(c1t + c2)5/3 σ , (33)

where σ , from (11), is

σ =
c2c′1− c1c′2

(c1t + c2)(c′1t + c′2)
. (34)

In the shear-free case, c1 = c2, the system becomes conformally flat too, and
with the freedom for choosing the r coordinate we can assume c1 = r3/2 recovering
the Friedmann critical dust sphere.

Of course more general models can be obtained by relaxing the condition of
vanishing pressure, we recall that LTB spacetime is compatible with an anisotropic
fluid [12; 13].



Collapsing spheres satisfying an “Euclidean condition” 7

4 Collapse with q 6= 0

We consider now the dissipative case. For simplicity we assume the fluid to be
shear-free. In this latter case the line element can be written as [14]

ds2
− =−A2dt2 +B2[dr2 + r2(dθ

2 + sin2
θdφ

2)], (35)

then the Euclidean condition becomes

B = (Br)′→ B = f (t) (36)

implying

R = f (t)r, (37)

where f is an arbitrary function of t.
The field equations (19–22) now read,

κµ =
3

A2

(
ḟ
f

)2

, (38)

κq =−2
ḟ
f 2

A′

A2 , (39)

κPr =− 1
A2

[
2

f̈
f
−

(
2

Ȧ
A
− ḟ

f

)
ḟ
f

]
+

2
f 2r

A′

A
, (40)

κP⊥ =− 1
A2

[
2

f̈
f
−

(
2

Ȧ
A
− ḟ

f

)
ḟ
f

]
+

1
f 2

(
A′′

A
+

1
r

A′

A

)
. (41)

From (40) and (41) we have

κ(P⊥−Pr) =
1

f 2A

(
A′′− A′

r

)
. (42)

From (28) it follows that (in the shear–free case) if the collapsing source is con-
formally flat, it must be isotropic in its pressures, and vice-versa.

The general form of all conformally flat and shear-free metrics is known [15],
it reads

A =
[
e1 (t)r2 +1

]
B, (43)

where e1 is an arbitrary function of t, and

B =
1

e2(t)r2 + e3(t)
, (44)

where e2 and e3 are arbitrary functions of t.
The Euclidean condition then implies

e2 = 0, e3 =
1
f
. (45)
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An approximate solution of this kind has been presented and discussed in [15].
Furthermore, an exact solution is also known [16], which in turn is a particular
case of a family of solutions found in [17]. It reads (see Case III in [16])

f (t) = (β1 +β2)2e−2αrΣ t (46)

and

A = (αr2 +1) f , (47)

where α , β1 and β2 are constants. The above solution satisfies junction conditions
and its physical properties have been discussed in [16]. Thus we shall not elab-
orate any further on it. Suffice to say at this point that its physical properties are
reasonable and a thermodynamic analysis brings out the relevance of relaxational
effects on the evolution of the system.
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