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Notation and conventions

We follow the conventions of [1]. The metric tensor with the signature (−+ ++) is

denoted by gµν and its determinant by

g = det(gµν). (0.1)

Covariant derivative with respect to a general connection is denoted by ∇µ and its

connection coefficients by Γσµν . The connection coefficients are defined such that the

covariant derivative is

∇µT
ν = ∂µT

ν + ΓνµλT
λ, (0.2a)

∇µTν = ∂µTν − ΓλµνTλ. (0.2b)

When it is more convenient we use the comma notation for partial derivatives,
∂φ
∂xµ

= ∂µφ = φ,µ, and a semicolon for covariant derivatives, ∇µT
...
... = T ......;µ. The

Levi–Civita connection, which is metric compatible and symmetric, is denoted by a

circle over the symbol and the coefficients are

◦
Γσµν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (0.3)

Furthermore, quantities constructed from the Levi–Civita connection are denoted

by a circle over the symbols, e.g.
◦
∇µ. The Riemann tensor is defined as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (0.4)

The symmetrization of indices is defined as

T (µ1...µn) =
1

n!

∑
σ∈Sn

T µσ(1)...µσ(n) , (0.5)

where Sn is the symmetric group of n elements. The anti-symmetrization of indices

is defined as

T [µ1...µn] =
1

n!

∑
σ∈Sn

sgn(σ)T µσ(1)...µσ(n) , (0.6)

where sgn(σ) gives the sign of the permutation σ: +1 for even and −1 for odd

permutation. The torsion tensor is defined as

T σµν = 2Γσ[µν]. (0.7)

The Weyl tensor is defined in dimension d > 2 as

Wρσµν = Rρσµν −
2

(d− 2)

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(d− 1)(d− 2)
gρ[µgν]σR.

(0.8)
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CHAPTER 0. NOTATION AND CONVENTIONS

The Levi–Civita symbol in right handed coordinate systems is defined

εµ1µ2...µn =


+1 if µ1...µn is an even permutation of 0, 1, ..., (n− 1)

−1 if µ1...µn is an odd permutation of 0, 1, ..., (n− 1)

0 otherwise.

(0.9)

The generalized Kronecker delta is defined

δµ1µ2...µnν1ν2...νn
≡ n!δ[µ1

ν1
δµ2ν2 ...δ

µn]
νn . (0.10)

We use units where

~ = c = 1. (0.11)

Additionally, unless otherwise stated, we set the Planck mass to unity

Mp ≡
1√

8πGN

= 1, (0.12)

where GN is the Newton’s gravitational constant.
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Chapter 1

Introduction

Inflation is a hypothetical period of exponential expansion in the very early universe,

which is able to explain problems that the standard Hot Big Bang model cannot

answer. Most notably, it can explain the origin of the primordial perturbations

that ultimately give rise to the structure formation of our universe and predict the

form of the fluctuations we observe in the cosmic microwave background (CMB).

Inflation is a paradigm, and there is a plethora of different models that have various

ways of producing the exponential expansion of the universe, see e.g. [2]. In Higgs

inflation the Standard Model (SM) Higgs is non-minimally coupled to gravity and

drives inflation. The advantage of this scenario is that it is very minimalistic: no

new fields are added to the SM and only one new parameter is added, namely the

non-minimal coupling to gravity. Higgs inflation is reviewed in chapter 4.

In higher-order gravity, higher-order terms in the curvature are present in the

gravity sector. The appearance of these terms can be motivated in several ways, more

on this in chapter 5. Modified gravity sector (even just the addition of non-minimal

coupling in Higgs inflation) makes the question: which are the fundamental degrees

of freedom in General Relativity (GR), even more relevant. GR can be formulated

in different ways by starting with different independent variables and applying the

variational principle to the Einstein–Hilbert action. In the metric formulation of

GR the spacetime manifold is described by a metric and the Levi–Civita connection,

which is completely described by the metric. The metric is assumed to be the only

degree of freedom of gravity and varying the Einstein–Hilbert action with respect to

the metric gives the Einstein field equations. However, a priori there is no reason for

the connection to be described purely by the metric. In the Palatini formulation1

the metric and a general connection are treated as independent degrees of freedom.

In the case of the Einstein–Hilbert action, variation with respect to the connection

makes the connection become the Levi–Civita connection, and thus in the case of

the Einstein–Hilbert action these formulations are equivalent. However, when the

gravity sector is modified the two formulations differ. These two formulations lead

to different inflationary predictions. The aim of this thesis is to investigate how

higher-order curvature terms in the Palatini formulation change the predictions of

Higgs inflation.

The structure of this thesis is as follows. First, in chapter 2 we introduce the

metric and Palatini formulations of gravity. We show that the formulations are

equivalent with the Einstein–Hilbert action, however with subtle differences. When

introducing the metric formulation we discuss non-trivial boundary terms. In Pala-

1In fact Einstein was the first to consider the Palatini formulation [3].
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CHAPTER 1. INTRODUCTION

tini formulation we consider the subtleties arising with the most general connection.

In chapter 3, we introduce the topics of cosmology relevant for this thesis, namely

the FLRW model and inflation. In the case of inflation we focus on the generation

of primordial perturbations and inflationary observables.

In chapter 4, we review Higgs inflation in the metric and Palatini formulations.

We also discuss conformal transformations that make the analysis easier.

In chapter 5 we review the basic properties of higher-order gravity in the metric

and Palatini formulations. By considering f(R) gravity we illustrate the differences

between the two formulations. We also present the general parity preserving action

that is quadratic in the curvature tensor in the metric and Palatini formulation and

derive the equations of motion for these terms.

Finally, in chapter 6 we present a new result. We tackle the question how the

higher-order curvature terms change Higgs inflation. We consider a simple case

where only the symmetric part of the Ricci tensor appears in the action. We also

discuss disformal transformations, which turn out to be relevant for our analysis.

We then derive the slow-roll equations and finally compute how the inflationary

predictions are modified by the added higher-order curvature terms.
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Chapter 2

Variational principle in

general relativity

The variational principle has an important role in physics. Most field theories are

formulated by writing down an action in terms of the fields of the theory. GR is

no exception and it can be formulated using an action and applying the variational

principle.

The formulation of gravity that we are focusing in this thesis is the Palatini

formulation (sometimes also called the first order formalism) in which the metric

tensor and the connection are independent degrees of freedom. In this chapter we

review the main features of the metric and the Palatini formulations and see how

the procedure works with the Einstein–Hilbert action. We also consider the subtle

differences of these formulations.

2.1 Metric formulation

The assumption in metric formulation is that the only degree of freedom describing

the spacetime is the metric gµν and hence the connection on the manifold is metric

compatible
◦
∇σg

µν = 0 (parallel transport preserves the metric) and torsion free
◦
Γσµν =

◦
Γσνµ. Thus, the connection coefficients are

◦
Γσµν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.1)

The formulation proceeds by defining a Lagrangian density L, which is a functional

depending purely on the metric and its derivatives: L = L (gµν , ∂gµν , ∂∂gµν , ...).

The Lagrangian has to be Lorentz invariant, also other mathematical or physical

constraints may be imposed e.g. simplicity and invariance under other transforma-

tions. The action integral is the Lagrangian integrated over a compact region of the

spacetime Σ with respect to the invariant spacetime volume element
√
−gdnx. The

action reads

S[gµν ] =

∫
Σ

dnx
√
−gL. (2.2)

Then the classical variational principle is applied: requiring that an arbitrary vari-

ation of the action with respect to the metric should vanish identically, while the

variation on the boundary ∂Σ vanishes. In other words, the functional derivative of

the Lagrangian L with respect to the metric vanishes,

δL
δgµν

= 0. (2.3)

3



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

The simplest Lagrangian constructed only from the metric and its derivatives,

that leads to the Einstein field equations, is the Ricci scalar. This gives the Einstein–

Hilbert action

SEH =
1

2

∫
d4x
√
−g

◦
R, (2.4)

where
◦
R = gµν

◦
Rλ

µλν is the Ricci scalar. Variation of this action produces Einstein

field equations in vacuum. One may add in to the action a cosmological constant Λ

and a matter part LM . The variation of the matter part will yield the stress-energy

tensor

Tµν =
−2√
−g

δSM
δgµν

, (2.5)

where SM is the matter part of the action containing LM . This leads to the Einstein

field equations with a cosmological constant and a source term

◦
Rµν −

1

2
gµν

◦
R + Λgµν = Tµν . (2.6)

There is, however, a slight caveat in the derivation that concerns the boundary

terms. When comparing different formulations it is useful to take the boundaries

into account, since the resulting boundary conditions might be different.

2.1.1 Einstein–Hilbert action in metric formulation

We will shortly review the process of variation with the Einstein–Hilbert action. We

need to take the variation of
√
−ggµν

◦
Rµν with respect to the inverse metric gµν . To

accomplish this we make use of a couple of useful identities, namely:

δ
√
−g = −1

2

√
−ggµνδgµν (2.7)

and the Palatini identity, which in this case reads

δ
◦
Rρ

µλν =
◦
∇λδ

◦
Γρνµ −

◦
∇νδ

◦
Γρλµ, (2.8)

see appendix A. First of all we have:

δ(
√
−ggµν

◦
Rµν) =

√
−g

◦
Rµνδg

µν +
◦
Rδ
√
−g +

√
−ggµνδ

◦
Rµν . (2.9)

Taking the variation of the connection (2.1) gives

δ
◦
Γσµν =

1

2

[
gµαgνβ

◦
∇σδgαβ − gαµ

◦
∇νδg

ασ − gαν
◦
∇µδg

ασ
]
. (2.10)

Plugging (2.10) into the Palatini identity (2.8) and taking the contraction between

the first and the third index we end up with the variation of the Ricci tensor, finally

contracting this we have

gµνδ
◦
Rµν =

◦
∇λ

[
gµν

◦
∇λδgµν −

◦
∇αδg

αλ
]
. (2.11)

4



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

The variation of the action then reads

δSEH =

∫
d4x
√
−g
[
◦
Rµν −

1

2
gµν

◦
R

]
δgµν

+

∫
d4x
√
−g

◦
∇λ

[
gµν

◦
∇λδgµν −

◦
∇αδg

αλ
]
.

(2.12)

From this we immediately see that the first term leads to the Einstein field equations

in vacuum and the second term leads to a boundary term which we will consider

next.

2.1.2 York-Gibbons-Hawking boundary term

The second term in (2.12) is a total divergence and leads to a boundary term by

using the Stokes’ theorem∫
Σ

dnx
√
−g

◦
∇µV

µ =

∫
∂Σ

dn−1x
√
|γ|nµV µ, (2.13)

where V µ is a vector field defined in the region Σ with a boundary ∂Σ, γab is the

induced metric on the boundary and nµ is the unit normal to the surface. Note that

this form of the Stokes’ theorem only applies with the Levi–Civita connection; this

turns out to be important later when we consider the Palatini formulation. Using

this, the second term in (2.12) equals∫
∂Σ

d3x
√
|γ|nλ

[
gµν

◦
∇λδgµν −

◦
∇αδg

αλ
]
, (2.14)

from which we see that the boundary term does not vanish if we only assume that

the variation vanishes on the boundary. By imposing δgµν |∂Σ = 0 we get∫
∂Σ

d3x
√
|γ|nλ

[
gµν∂

λδgµν − ∂αδgαλ
]
. (2.15)

We would also have to require ∂λδg
µν |∂Σ = 0 for this term to vanish. An other way

is to modify the action by a term that will cancel this boundary contribution. This

additional term is called the York-Gibbons-Hawking (YGH) boundary term [4, 5].

The expression (2.15) can be further simplified by using the following identity for

the induced metric, assuming that the surface ∂Σ is not null (see e.g. [6, ch. 2.7])

gµν = εnµnν + γab
∂xµ

∂ya
∂xν

∂yb
, (2.16)

where ε = nµnµ equals +1 if ∂Σ is time-like and −1 if spacelike and ya are the

coordinates on the surface. We also denote

γµν = γab
∂xµ

∂ya
∂xν

∂yb
. (2.17)

5



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

The requirement that the variation of the metric vanishes on the boundary implies

that the tangential derivative nλγµν∂
νδgµλ = 0 vanishes. The surface term (2.15)

then becomes ∫
∂Σ

d3x
√
|γ|γµνnλ∂λδgµν , (2.18)

which can be be canceled by introducing a YGH–boundary term

SY GH =

∫
∂Σ

d3xε
√
|γ|K, (2.19)

where K =
◦
∇µn

µ is the trace of the extrinsic curvature of the boundary. It is

straightforward to verify this by taking the variation of this boundary term (2.19)

and see that it yields (2.18) up to a constant. For more details see e.g. [7] and

[8, Appendix E]. Thus when taking into account the boundaries, the action that

produces the Einstein field equations in the metric formulation is

SGR =

∫
Σ

d4x
√
−g

◦
R + 2

∫
∂Σ

d3xε
√
|γ|K. (2.20)

This is one method of dealing with the boundary term. In this thesis we are not

concerned about the details of these terms; for the physical significance of these

terms and further consideration see e.g. [9]. In the next section we will see that in

the Palatini formulation no YGH boundary term need to be added.

2.2 Palatini formulation

In the Palatini formulation the metric and the connection are considered as inde-

pendent degrees of freedom. Thus we have a spacetime manifold with a symmetric

Lorentzian metric gµν and a general connection, for which the metric compatibility

does not hold, ∇σgµν 6= 0, and the torsion does not necessarily vanish T σµν 6= 0.

The formulation is proceeded by constructing a Lagrangian density, which now

is a functional of both the metric and the connection and their derivatives

L = L(g, ∂g, ∂∂g, ...,Γ, ∂Γ, ∂∂Γ, ...). The action is now,

S[gµν ,Γ
σ
µν ] =

∫
Σ

dnx
√
−gL. (2.21)

Next we apply the classical variational principle: first we vary both the metric and

the connection separately with the variations vanishing on the boundary ∂Σ, and

then require that the variation of the action vanishes. This yields the equations of

motion for both the metric and the connection

δL
δgµν

= 0, and
δL
δΓσµν

= 0. (2.22)

The appeal of the Palatini formulation is that in the case of Einstein–Hilbert

action the dynamical equation for the connection imposes the connection to be

6



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

Levi–Civita and thus we recover the pseudo-Riemannian space with Einstein equa-

tions, with no prior assumptions. Furthermore there is no need to introduce YGH–

boundary terms to the action. There are, however, some unappealing properties in

this formulation when considering the most general connection and when introduc-

ing matter into the Lagrangian. We will discuss these problems after we review the

variation of the Einstein–Hilbert action and compare the procedure to the metric

case.

2.2.1 Einstein–Hilbert action in the Palatini formulation

We consider the case of a completely general connection. We denote the Riemann

tensor constructed purely from the connection (and tensors derived from it) with

Rρ
µσν to differentiate from the Levi–Civita counterpart denoted with

◦
Rρ

µσν . With a

completely general connection the Riemann tensor does not have all the symmetry

properties as with the Levi–Civita connection. The only property that remains is

the antisymmetry of the last two indices, which is apparent from the definition (0.4).

This then implies that there is more than one unique contraction that we can take

of the Riemann tensor in contrast to the one unique choice in the Levi–Civita case:

the Ricci tensor. Thus it is interesting to see whether the Ricci scalar is unique or

not. There are in fact three different non vanishing contractions of the Riemann

tensor. The Ricci tensor is defined as

Rµν = Rλ
µλν , (2.23)

which in general is not symmetric. We define the co-Ricci tensor as

R̂µ
ν = gλσRµ

σνλ, (2.24)

which in general does not have any symmetry properties. Finally we define the

antisymmetric Ricci tensor

R′µν = Rλ
λµν , (2.25)

which is sometimes also called the homothetic curvature and it is antisymmetric

from the definition of the Riemann tensor. Since the metric tensor is symmetric the

trace of gµνR′µν = 0 vanishes, furthermore

R̂µ
µ = gλσRµ

σµλ = gλσRλσ = R. (2.26)

Thus the Ricci scalar still remains unique. These different Ricci tensors come into

play in the higher-order Gravity in section 5, but now we can say that the Einstein–

Hilbert action is still uniquely determined1.

The action is

S =

∫
d4x
√
−ggµνRµν(Γ). (2.27)

1There exist other candidates other than the Ricci scalar that results in second order field

equations, see e.g. [10, 11].

7



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

The variation with respect to the metric is rather straightforward, since the variation

of the Ricci tensor is zero; so, we have

δ(
√
−ggµνRµν(Γ)) = δ

√
−ggµνRµν(Γ) + δ(gµν)Rµν(Γ). (2.28)

Using (2.7) the metric variation δS
δgµν

= 0 gives

R(µν) −
1

2
gµνR = 0. (2.29)

Notice that there were no appearances of any boundary terms.

The variation with respect to the connection is more involved. Since the only

object depending on the connection is the Ricci tensor we need to compute its

variation δRµν . For this we make use of the general Palatini identity

δRρ
µλν = ∇λδΓ

ρ
νµ −∇νδΓ

ρ
λµ + T σλν δΓ

ρ
σµ, (2.30)

see Appendix A. Taking the contraction of the first and third index gives the varia-

tion of δRµν . So the variation of the action so far is

δS =

∫
d4x
√
−ggµν

(
∇λδΓ

λ
νµ −∇νδΓ

λ
λµ + T σλν δΓ

λ
σµ

)
. (2.31)

The first and the second term inside the brackets need to be simplified further. We

will focus on the first term in (2.31), since steps for the second term are the same.

With the chain rule we have

√
−ggµν∇λδΓ

λ
νµ = ∇λ

(√
−ggµνδΓλνµ

)
−∇λ

(√
−ggµν

)
δΓλνµ. (2.32)

The first term on the right side of the equation resembles a surface term. We cannot,

however, turn this into a surface term with the Stokes’ theorem (2.13), since it is

only valid for the Levi–Civita connection. To deal with this, we use a change of

variables and write our general connection as

Γσµν =
◦
Γσµν + Cσ

µν , (2.33)

where
◦
Γσµν is the Levi–Civita connection and Cσ

µν is the difference from it and hence

a tensor. In addition, the second term on the right hand side of equation (2.32) is a

covariant derivative acting on a tensor density of weight +1, which we will evaluate

in order to get the desired form for the equation. For this we need the covariant

derivative of a scalar density, which for a general scalar density weight ω is

∇µρ = ∂µρ− ωΓσµσρ (2.34)

see Appendix A or [12, ch. III]. Note that it is important which of the contractions is

taken from the connection coefficients in (2.34) and this depends on the convention

for the covariant derivative (0.2). Expanding (2.32) further

√
−ggµν∇λδΓ

λ
νµ =

√
−g∇λ(g

µνδΓλµν) + gµν(∇λ

√
−g)δΓλµν −∇λ

(√
−ggµν

)
δΓλνµ.

(2.35)
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CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

Now using the change of variables (2.33) and writing out the derivative in the second

term we have

√
−ggµν∇λδΓ

λ
νµ =
√
−g

◦
∇λ(g

µνδΓλµν) +
√
−gCλ

λσg
µνδΓσµν

+ gµν
[ ◦
∇λ

√
−g − Cσ

λσ

]
δΓλµν −∇λ

(√
−ggµν

)
δΓλνµ.

(2.36)

The first term in this expression can now be turned into a surface term using Stokes’

theorem (2.13) and it will vanish. The terms containing the Cσ
µν tensors can be

combined and written using the torsion as Cλ
λσ −Cλ

σλ = T λλσ and finally we have
◦
∇λ

√
−g = 0. With these (2.36) simplifies to

√
−ggµν∇λδΓ

λ
νµ =

[√
−ggµνT λλσ −∇σ(

√
−ggµν)

]
δΓσµν , (2.37)

up to the vanishing surface terms. The second term in (2.31) goes similarly giving

finally the equations of motion for the connection

∇λ(
√
−ggνλ)δµσ −∇σ(

√
−ggµν)+

√
−g
[
gµνT λλσ − gνλT

ρ
ρλ δ

µ
σ + gνλT µσλ

]
= 0.

(2.38)

At this point we can consider the case in which a symmetric connection is as-

sumed. The obtained equation (2.38) simplifies considerably since the torsion van-

ishes and only the symmetric part of the upper indices contributes, we thus have

∇λ(
√
−ggλ(ν)δµ)

σ −∇σ(
√
−ggµν) = 0. (2.39)

Taking the trace of this with indices µ and σ we end up with

∇σ(
√
−ggµν) = 0, (2.40)

which is equivalent to the metric compatibility condition. Thus if we initially as-

sume a symmetric connection the connection dynamically becomes the Levi–Civita

connection. Then the equations of motion for the metric reduces to the Einstein

field equations, without needing to introduce additional YGH-boundary terms to

deal with the boundaries.

There are several good reasons to impose restrictions to the general connection.

For example, the equivalence principle in GR states that the connection coefficients

can be locally set to zero; however this is only possible with a completely symmetric

connection. Moreover, having a space with torsion means that infinitesimal paral-

lelograms do not close. Additionally, autoparallel curves and the extremal curves of

the metric2 are equivalent if and only if the torsion tensor is totally antisymmetric

T[σµν] = Tσµν and the connection metric compatible [13]. Let us now inspect the

most general case.

2Autoparallel curves are curves where vectors are parallel transported with respect to them-

selves, i.e. straight lines described by the connection. Extremal curves of the metric are curves

that tell the shortest or longest path between two points.

9



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

In the general case it can be shown that the most general solution to (2.38) is

given by [14]

Γσµν =
◦
Γσµν + δσνVµ, (2.41)

where Vµ is an arbitrary vector field. This says that the general solution for the

connection differs from the Levi–Civita connection by a projective transformation,

which acts as

Γσµν → Γσµν + δσνVµ. (2.42)

It seems that to get the standard Einstein field equations one has to make an addi-

tional requirement of setting this arbitrary vector field to zero which is equivalent to

saying that the trace of the torsion vanishes T λµλ = 0.3 There are different types of

methods to impose this requirement e.g. where the constrain is introduced in terms

of Lagrange multipliers [15]. However, it is easy to see that the Einstein–Hilbert

action is in fact invariant under the projective transformation in the case of a sym-

metric metric. This can be seen by applying the transformation for the Ricci tensor

which straightforwardly yields

Rµν → Rµν + 2∂[µVν]. (2.43)

The projective transformation has the effect of adding an antisymmetric part to the

Ricci tensor which vanishes when we take the contraction with symmetric metric,

thus the action is invariant under projective transformations. This implies that at

least the equations of motion are identical with the general solution (2.41) and the

Levi–Civita connection. However, geodesics described by the general solution could

still be different from Levi–Civita geodesics. It can be shown that the geodesics of

the general solution are pre-geodesics 4 of the Levi–Civita ones, and so the geodesics

coincide due to reparametrization invariance. The geodesics of the affine connection

are solutions of the equation

ẋλ∇λẋ
µ = 0, (2.44)

where xµ(τ) is a curve and the dot denotes a derivative with respect to the curve

parameter τ . Using the solution (2.41) this can be written as

ẋλ
◦
∇λẋ

µ + Vλẋ
λẋµ = 0. (2.45)

The pre-geodesics are given by extremizing the arc-length functional

s(λ) =

∫ λ

0

√
gµν ẋµẋνdλ, (2.46)

which has the extremum

ẋλ∇λẋ
µ = (s̈/ṡ)ẋµ. (2.47)

3This is obvious if one substitutes the solution (2.41) to the definition of torsion.
4Pre-geodesic of a connection is a smooth curve on a manifold, which has a reparametrization

that is a geodesic of the connection; i.e. the curves describe the same trajectory with different

parametrizations.

10



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

Now we can see that with the reparametrization

dxµ(λ)

dλ
=
dxµ(τ)

dτ

dτ

dλ
with

dτ

dλ
= exp

(
−
∫ λ

0

Vµ
dxµ

dλ
dλ

)
(2.48)

the geodesics of the general connection and the Levi–Civita one coincide. In these

two cases, however, parallel transport of a vector will differ by a homothetic trans-

formation (the resulting vectors differ by a scaling factor which depends on the

parametrization). It has been argued that the difference between these transports

is unobservable and the arbitrary vector field in the general solution is thus also un-

observable [16]. These considerations rely on the assumption that the matter part

of the Lagrangian is independent of the connection. This is not necessarily the case

if one considers fermionic matter. This brings us to consider matter parts of the

Lagrangian in the Palatini formulation.

2.2.2 Matter in the Palatini formulation

Under the assumption that the matter Lagrangian depends only on the metric, the

matter fields and their derivatives LM = LM(g,Ψi) the equations of motion for the

connection do not change and we recover the Einstein field equations with a source

term similarly to (2.6). This is straightforward if the matter Lagrangian is naturally

independent of the connection, most notably in the case of a canonical scalar field.

For a scalar field φ we have ∇µφ = ∂µφ, and thus it is naturally not coupled to

the connection. In general the matter Lagrangian depends on the metric and the

covariant derivative. Thus assuming that the matter Lagrangian is independent of

the general connection amounts to using the metric compatible covariant derivative

in the matter part of the Lagrangian. This leads to the general connection being

an auxillary field not related to the geometrical structure of the spacetime, since

the geodesics are now defined through the Levi–Civita connection a priori. Under

this assumption the theory ends up being equivalent to a metric theory of spacetime

[17].

In the literature the Palatini formulation is often defined by assuming that the

matter part is independent of the connection and the general case where this is

allowed LM = LM(g,Γ,Ψi) is called the metric-affine formulation. In the case where

the matter is coupled to the connection, which comes naturally when considering

fermionic fields, the situation is more complicated. Since now the equations of

motion for the connection will also have a source term usually in the literature

called the hypermomentum

∆ µν
σ =

−2√
−g

δSM
δΓσµν

. (2.49)

This formulation also has its problems. In the case of Einstein–Hilbert action taking

the trace of the equations of motion (2.38), with respect to the indices ν and σ, the

left side of the equation vanishes identically. Thus if we have a source term this

11



CHAPTER 2. VARIATIONAL PRINCIPLE IN GENERAL RELATIVITY

leads to a constraint for the hypermomentum ∆ µσ
σ = 0. This means that if we have

a matter Lagrangian that does not satisfy this constraint we get inconsistent field

equations. This problem can be traced back to the fact that the Einstein–Hilbert

action is invariant under projective transformations, but in general the matter ac-

tion is not, see [17, Sec. 4.2] and references therein. To get consistent field equations

with general matter Lagrangians one is required to: impose some restrictions on the

connections with e.g. the Lagrange multiplier method [15], consider a higher-order

action in the curvature or consider a non-symmetric metric i.e. Einstein-Strauss

theories [18, chapter XII]. However, we consider only scalar field matter and in this

case the Palatini and metric-affine formulations are equivalent since the scalar field

Lagrangian is naturally independent of the connection, (see e.g. [11, 13, 17, 19] for

more details of metric-affine theories).

We have shown that Palatini formulation in the case of the Einstein–Hilbert ac-

tion, makes the connection dynamically the Levi–Civita connection and the Einstein

field equations with a source term are obtained, if matter is not coupled to the con-

nection. To be precise, we cannot state that the metric and Palatini formulations

are completely equivalent in the case of Einstein–Hilbert action, since they differ

by a surface term and additionally the solution of the general connection includes

an extra vector field degree of freedom. It seems to be only a coincidence that the

formulations produce the same dynamics with the Einstein–Hilbert action and in

general the formulations produce different equations of motion. We will see this

explicitly in chapters 4 and 5 where we consider modified gravity sectors. Before

that we review the case where scalar field drives inflation.

12



Chapter 3

Inflationary paradigm

GR enabled us to start analyzing the evolution of the universe and together with

the SM of particle physics it gives rise to the hot Big Bang model of the universe.

The existence of the cosmic microwave background (CMB) and the abundances of

light elements are nicely explained by the hot Big Bang model. However, there are

problems that the standard hot Big Bang is unable to address.

Inflation can explain many features left unaddressed by the hot Big Bang model.

These include: why the universe is so homogeneous and isotropic (the horizon prob-

lem) and why it is spatially flat. Most notably, it can explain the origin of the

primordial perturbations that seed the structure formation of the universe.

In this chapter we review cosmic inflation keeping emphasis on the generation of

primordial perturbations, for more complete introduction see e.g. [20, part IV][21].

3.1 Friedmann-Lemâıtre-Robertson-Walker model

Inflation quickly makes the universe spatially homogeneous and isotropic to a good

approximation. Imposing these two properties implies that we can foliate our space-

time into spacelike slices that are maximally symmetric, decomposing spacetime into

a time and a spacelike three dimensional manifold R × Σt. The spatial slices are

equipped with an induced maximally symmetric metric. There exist a projection

tensor hµν that projects vectors to the spatial slices, which satisfies

hµνu
ν = 0, (3.1)

where uµ is the normal vector of the hypersurface Σt, which can be thought as the

time direction and is normalized by gµνu
µuν = −1. With these the full metric can

be decomposed into a useful form

gµν = hµν − uµuν , gµν = hµν − uµuν . (3.2)

The above costraints yields the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric [1, ch. 8.2]

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
, (3.3)

where t is the time coordinate, a(t) the scale factor describing the expansion of space,

{r, θ, φ} are the spherical spatial coordinates and k describes the curvature of space.

Since inflation drives the universe to be spatially flat, we can further simplify and

13



CHAPTER 3. INFLATIONARY PARADIGM

set k = 0. This enables us to write the FLRW metric in a simple form in Cartesian

coordinates

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
. (3.4)

The symmetries of the FLRW model restrict the matter content of the universe

to be described by an ideal fluid, for which the stress-energy tensor can be written

as

Tµν = pgµν + (ρ+ p)uµuν , (3.5)

where uµ = (−1, 0, 0, 0) is the four-velocity of the fluid, ρ and p are the energy

density and pressure of the fluid, respectively. With (3.4) and (3.5) plugged into the

Einstein equation (2.6) gives the Friedmann equations

H2 =
ρ

3
,

ä

a
= −1

6
(ρ+ 3p), (3.6)

where H = ȧ/a is the Hubble parameter and the dot denotes the time derivative.

Thus for accelerated expansion ä > 0 we need ρ + 3p < 0. Next we will see how a

scalar field can drive inflation.

3.2 Slow-Roll inflation

Adding a canonical scalar field to (2.4), the action reads

S =

∫
d4x
√
−g
[

1

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (3.7)

Assuming that the scalar field is homogeneous and isotropic, the Friedmann equa-

tions turn out to be

H2 =
1

3

[
1

2
ϕ̇2 + V (ϕ)

]
,

ä

a
= −1

3

[
ϕ̇2 − V (ϕ)

]
, (3.8)

and the equations of motion for the scalar field become

ϕ̈+ 3Hϕ̇ = −V,ϕ(ϕ). (3.9)

Thus the condition for inflation is satisfied when ϕ̇2 < V . In slow-roll (SR) approx-

imation we assume ϕ̇2 � V (ϕ). Additionally we assume that the derivative of the

field ϕ̇ does not change quickly in one Hubble time. This is needed for a sufficiently

long period of inflation to occur. The slow-roll conditions are

ϕ̇2 � V (ϕ), (3.10)

|ϕ̈| � |3Hϕ̇|. (3.11)

With these conditions satisfied the Friedmann equations (3.8) and (3.9) give the

slow-roll equations

H2 =
1

3
V (ϕ), 3Hϕ̇ = −V,ϕ(ϕ). (3.12)
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Another useful way of writing the requirement for inflation ä > 0 is

εH = − Ḣ

H2
< 1. (3.13)

With the slow-roll equations this is approximately

εH ≈ εV =
1

2

(
V,ϕ
V

)
SR
� 1, (3.14)

where εV is the first slow-roll parameter, which describes the quality of the slow-roll

approximation. The second slow-roll parameter is

|ηV | =
∣∣∣∣V,ϕϕV

∣∣∣∣ SR� 1, (3.15)

describing the change of the first slow-roll parameter. It can be shown that εV � 1

implies the first slow-roll condition (3.10) and |ηV | � 1 implies (3.11). Smallness

of the second and higher-order parameters (ζV = V,ϕϕϕV,ϕ/V
2 etc.) are needed for

long period of inflation. It also turs out that slow-roll is an attractor, meaning that

wide range of initial conditions rapidly tends to the slow-roll region, see e.g. [20, sec

18.6.2].

The amount of inflation is described by the number of e-folds N, which can be

written as

N(t) = ln
a(tend)

a(t)
=

∫ tend

t

Hdt =

∫ ϕ

ϕend

H

ϕ̇
dϕ

SR
≈
∫ ϕ

ϕend

dϕ√
2εV

, (3.16)

where the subscript ’end’ denotes the end of inflation. The end of slow-roll, and to

a good approximation the end of inflation, is defined as the point where the first or

the second slow-roll parameter becomes of the order of unity, which ever occurs first.

Thus the field value at the end of inflation can be solved either from ε(ϕend) = 1 or

|η(ϕend)| = 1. This then allows us to solve the field in terms of N from (3.16). This

is useful when evaluating the inflationary observables, which we shall discuss next.

3.3 Perturbations and inflationary observables

Inflation gives us a way of predicting the statistical properties of the primordial

perturbations. The perturbations are generated by quantum vacuum fluctuations,

which get amplified and stretched to large scales during inflation.

The full calculation, of the statistical properties of the perturbations, uses quan-

tum field theory in curved spacetime. The fields are expanded around the FLRW

solution as φ→ φ+ δφ, gµν → gµν + δgµν . The important fact is that perturbations

in the metric and Palatini formulations coincide in the case of the Einstein–Hilbert

action. For a review of this computation see e.g. [21, Part III]. We will only give a

high level overview of the main points and present the results.
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Since the perturbations are gauge dependent, care has to be taken over fixing a

gauge or constructing gauge invariant variables before proceeding with quantization

of the perturbations. For gauge transformation in perturbation theory of gravity see

e.g. [22, ch. 5]. Then canonical quantization procedure can be applied: promoting

the fields into operators and imposing canonical commutation relations. Due to the

curved background, complications arise when constructing the vacuum state, see e.g.

[23, ch. 3]. Approximating the background to be close to the static de Sitter space,

which is the case during inflation, the vacuum turns out to be the Bunch-Davies

vacuum, see e.g. [23, ch. 5]. The perturbations are then assumed to be initially in

this adiabatic Bunch-Davies vacuum state. A crucial fact that enables inflationary

theories to make predictions about the form of the perturbations is that initially

adiabatic perturbations are conserved after Hubble crossing in slow-roll; by Hubble

crossing we mean the instance when the wave numbers of the Fourier modes of the

perturbations become larger than the Hubble parameter k = aH, see e.g. [22, ch.

5.4][24]. This is also the point where the quantum fluctuations get transformed to

look like a classical field, see e.g. [25], which allows us to treat the perturbations

as classical. In first order perturbation theory scalar, vector and tensor degrees of

freedom do not mix; this is sometimes called the decomposition theorem, see e.g.

[22, ch. 5]. This allows us to separately calculate the spectrum for scalar and tensor

perturbations. It turns out that vector perturbations quickly decay away and can

be ignored here.

The gauge invariant quantity describing the scalar perturbations is the so called

Sasaki-Mukhanov variable ν, which in the spatially flat gauge is ν = aδφ. The

Fourier mode functions νk of this variable obey the equations of motion [26]

ν ′′k +

(
k2 − z′′

z

)
νk = 0, (3.17)

where z ≡ aφ̇/H, the prime denotes a derivative with respect to the conformal

time dτ = dt/a and k is the comoving wave number of the Fourier mode. This

is solved in the slow-roll approximation with the Bunch-Davies vacuum state as

the initial condition. These solutions are used to compute the correlation functions

that describe the statistical properties of the perturbations. To the first order the

perturbations are Gaussian and completely described by the power spectrum (two

point correlation function)

Pδφ =
1

a2
Pν =

k3

2π2a2
|uk|2 =

(
H

2π

)2
∣∣∣∣∣
k=aH

. (3.18)

The comoving curvature perturbation R turns out to be an useful quantity that

can be related to the spectrum measured from the CMB 1. It is proportional to the

1Sometimes in the literature another useful quantity is used, the curvature perturbation on

uniform-density hypersurfaces ζ. It can be shown that these quantities are equal outside the

horizon and during slow-roll.
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Sasaki-Mukhanov variable R = ν/z [21]. Thus the power spectum for the curvature

perturbation is

PR =
1

z2
Pν =

1

2ε

(
H

2π

)2
∣∣∣∣∣
k=aH

, (3.19)

where ε is the first slow-roll parameter. It is customary to parametrize the spectrum

in a nearly scale invariant form

PR = As

(
k

k∗

)ns−1

, (3.20)

where k∗ is some reference scale, As is the amplitude and ns is the spectral tilt, which

describes the scale dependence of the spectrum. Thus when ns = 1 the spectrum is

scale invariant. The amplitude in the slow-roll aproximation can be written as

As =
1

24π2

V

εV
(3.21)

and to first order the spectral tilt becomes

ns − 1 ≡ d lnPR(k)

d ln k

SR
≈ −6εV + 2ηV . (3.22)

Inflation also predicts the form of tensor perturbations. Similar calculation as

for the scalar perturbations gives the spectrum for the tensor perturbations

Pt = 2

(
2

a

)2

Pν = 8

(
H

2π

)2
∣∣∣∣∣
k=aH

. (3.23)

This can also parametrized in a nearly scale invariant form as

Pt = At

(
k

k∗

)nt
. (3.24)

The amplitude in the slow-roll approximation reads

At =
3

2π2
V. (3.25)

The spectral tilt for this to the first order becomes

nt ≡
d lnPt
d ln k

SR
≈ −2εV . (3.26)

The amplitude of tensor spectrum is not amplified by the slow-roll parameters, in

contrast to the spectrum of the scalar perturbations, and is thus harder to observe.

The important quantity that the current observations can set bounds on is the

tensor-to-scalar ratio, which in the slow-roll becomes

r ≡ PR
Pt

SR
≈ 16εV . (3.27)

We have seen that when a single scalar field drives inflation inflationary predictions

can be computed from the inflaton potential alone.
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Chapter 4

Higgs inflation

The Standard Model of particle physics (SM) contains one scalar field: the Higgs

boson. For this reason it is tempting to identify the Higgs field as the inflaton.

However, the Higgs self-coupling (λ ' 0.129) is too large to generate an amplitude

for the primordial scalar perturbations that is consistent with current observations.

At tree level the calculated amplitude is too large. This remains the case when

taking into account quantum corrections to the potential [27, 28, 29].

Adding a non-minimal coupling between the Higgs and gravity can generate a

spectrum compatible with current observations. The non-minimal coupling term

is well motivated. It is the only new dimension four operator when the Einstein–

Hilbert and SM actions are combined. Furthermore, even if the term is absent in

the action at classical level this kind of non-minimal coupling term is generated

when a scalar field is quantized in a curved background; more specifically when

renormalizing the energy-momentum tensor [23, ch. 3, 6].

The feature that only one new parameter is introduced makes this one of the

most interesting models to study. Furthermore, the couplings between the Higgs

and the rest of the SM are known experimentally, which is advantageous since the

reheating period after inflation can be calculated in detail. This is important since

the length of the reheating period affects the inflationary observables. In contrast,

many models introduce new unknown couplings between the inflaton and the SM.

In Higgs inflation the SM Higgs boson non-minimally coupled to gravity is iden-

tified as the inflaton field. The action reads

S =

∫
d4x
√
−g
[
(1

2
M2 + ξH†H)R− (DµH)†(DµH) +mhH†H− λ(H†H)2 + LSM

]
,

(4.1)

where M is a mass parameter, ξ is positive dimensionless non-minimal coupling

parameter to be fixed by observations, H is the Higgs doublet, Dµ is the gauge

covariant derivative and LSM is the rest of the standard model. During inflation

the rest of the SM acts as spectator fields and do not affect the evolution of the

universe. We can write the Higgs doublet in the unitary gauge as H = 1/
√

2 ( 0
v+h ),

where v = 246 GeV is the vacuum expectation value (vev) of the Higgs field h.

We can thus write the relevant part of the action as

S =

∫
d4x
√
−g
[

1

2
(M2 + ξh2)R− 1

2
gµν∂µh∂νh− V (h)

]
, (4.2)

where V (h) is the symmetry breaking potential

V (h) =
λ

4
(h2 − v2)2. (4.3)
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The non-minimal coupling to gravity changes the strength of gravitational inter-

action by effectively changing Newton’s gravitational constant, or equivalently the

square of Planck mass

M2
p = M2 + ξh2. (4.4)

The Planck mass we measure today in the Jordan frame (the definition of the Jordan

frame is discussed in the next section) would then be M2
p = M2 + ξv2. With a non-

minimal coupling in the range 1� ξ �M2/v2 we can approximate M 'Mp, which

is what we will do from now on. Additionally we again set Mp to unity. Differences

occur only in the large field regime h�Mp/ξ, which turns out to be the inflationary

regime.

The non-minimal coupling makes the computation of inflationary observables

more involved. However, we can make use of conformal transformations to remove

the non-minimal coupling. Then determining the spectrum of the perturbations will

follow the standard computation outlined in section 3.3. Let us next discuss these

transformations more closely.

4.1 Conformal transformations

Conformal transformation is a local rescaling of the metric

gµν →
∼
gµν = Ω2(x)gµν , (4.5)

where Ω2(x) is a positive smooth function called the conformal factor. This is thus

a map between two pseudo-Riemannian spaces. The causal structure is unchanged.

Space(Time)like vectors remain space(time)like and null vectors remain as null vec-

tors. Thus null geodesics are left invariant under conformal transformations and light

cones are unchanged. Angles between vectors are also unchanged. What conformal

transformations do change is the geometry. For example the time-like geodesics

generically differ.

To be able to perform this transformation to the action (4.2) we need to compute

how the relevant quantities transform. First of all for the inverse metric we have
∼
gλν

∼
gµλ = δµν and thus

∼
gµν = Ω−2(x)gµν . The metric determinant transforms as

det(
∼
gµν) = det(Ω2gµν) = Ω2d det(gµν), (4.6)

where d is the number of spacetime dimensions. So we have altogether

gµν = Ω−2∼gµν

gµν = Ω2∼gµν

√
−g = Ω−d

√
−∼g.

(4.7)

This is all that is needed for the Palatini formulation. For the metric formulation

we also need to know how the Ricci scalar transforms under the conformal transfor-

mations. First transforming the Levi–Civita connection we find

◦
Γσµν =

∼
◦
Γσµν −

[
2δσ(ν ln Ω,µ) −

∼
gµν

∼
gσλ ln Ω,λ

]
. (4.8)
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We can plug this into the definition of the Riemann tensor (0.4) and see how it

transforms

◦
R
σ

µλν =
∼
◦
Rσ

µλν + 2
∼
gµ[ν

∼
gσρ

∼
∇λ]

∼
∇ρ ln Ω + 2δσ[λ

∼
∇ν]

∼
∇µ ln Ω + 2δσ[λ ln Ω,ν] ln Ω,µ

2
∼
gµ[λδ

σ
ν]
∼
gρτ ln Ω,ρ ln Ω,τ +

∼
gµ[ν

∼
gρσ ln Ω,λ] ln Ω,ρ,

(4.9)

where quantities with a tilde are constructed from the metric
∼
gµν . Taking the con-

traction we get how the Ricci tensor transforms

◦
Rµν =

∼
◦
Rµν +

∼
gµν

∼
� ln Ω + (d− 2)

∼
∇ν

∼
∇µ ln Ω

+ (d− 2) ln Ω,µ ln Ω,ν + (2− d)
∼
gµν

∼
gρτ ln Ω,ρ ln Ω,τ .

(4.10)

Contracting with the metric gµν we get how the Ricci scalar transforms

◦
R = Ω2

[ ∼
◦
R + 2(d− 1)

∼
� ln Ω + (d− 1)(2− d)

∼
gρτ ln Ω,ρ ln Ω,τ

]
. (4.11)

It is also straightforward to derive how higher-order curvature terms (discussed later

in chapter 5) transform, but with the higher-order terms we focus on the Palatini

formulation. Considering higher-order terms in metric formulation is out of the

scope of this thesis. In contrast in the Palatini formulation the situation is simple,

since the Riemann tensor does not depend on the metric and is thus unchanged. All

the different invariants that are second order in curvature, that we will encounter

in chapter 5, are invariant under conformal transformations (in 4 dimensions). For

example √
−ggµλgνσRµνRλσ =

[
−Ω−2×4∼g

]1/2
Ω4∼gµλ

∼
gνσRµνRλσ

=
√
−∼g∼gµλ∼gνσRµνRλσ.

(4.12)

The usefulness of these transformations is due to the fact that two different-

looking actions related by a conformal transformation are physically equivalent at

the classical level1. By performing a conformal transformation we thus find a dif-

ferent representation for the theory. Customarily in the literature these different

representations that are related by conformal transformations are called different

frames. There are two specific important frames that have their own names. The so

called Jordan frame, which is characterized by the fact that there is a non-minimal

coupling between a scalar field and the curvature term. The other important frame

is the so called Einstein frame, where matter is minimally coupled to the curvature.

The physical equivalence of these two frames is clear from the fact that the trans-

formation is required to be invertible and thus it gives a one-to-one correspondence

between these two frames. The transformation can also be thought simply as a local

change of units [30]. When comparing quantities between two frames attention has

to be paid to appropriately account for the conformal factor.

The inflationary observables, both the curvature and tensor perturbations, can

be shown to be invariant under conformal transformations [31, 32]. The inflationary

1When quantizing the theory this point is less clear.
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observables can thus be calculated in any frame. In the case of Higgs inflation

inflationary observables have also been computed in both frames and the results

agree, see [33] and references therein.

Transforming the action (4.2) to the Einstein frame is different in the metric and

Palatini formulation due to the distinct metric dependence of the actions. Let’s now

perform this transformation in both cases.

4.1.1 Einstein frame in metric formulation

Let’s first consider the metric formulation, where R(Γ) =
◦
R(g) in (4.2). From the

action (4.2) we see that we can remove the non-minimal coupling by choosing the

conformal factor to be

Ω2(x) = 1 + ξh2. (4.13)

With the previously obtained transformations the action (4.2) becomes

S =

∫
d4x
√
−∼gΩ−4

{
1

2
Ω2Ω2

[ ∼
◦
R + 3

∼
� ln Ω2 − 3

2
∼
gρλ ln Ω2

,ρ ln Ω2
,λ

]
− 1

2
Ω2∼gµν∂µh∂νh− V (h)

}
,

(4.14)

where the second term inside the square brackets is a total derivative. This term can

be converted to a surface term using the Stokes’ theorem (2.13) and thus vanishes.

Writing

ln Ω2
,λ =

(Ω2),λ
Ω2

=
Ω2
,h

Ω2
∂λh, (4.15)

the action simplifies to

S =

∫
d4x
√
−∼g
{

1

2

∼
◦
R− 1

2

3
2
(Ω2)2

,h + Ω2

Ω4

∼
gµν∂µh∂νh− Ω−4V (h)

}
. (4.16)

We see that we have been able to remove the non-minimal coupling between gravity

and the scalar field. The cost for this is a modified matter sector with a non-

canonical kinetic term. The kinetic term can be brought into a canonical form by a

field redefinition

dχ

dh
=

√
3
2
(Ω2)2

,h + Ω2

Ω4
. (4.17)

With this the action becomes

S =

∫
d4x
√
−∼g
{

1

2

∼
◦
R− 1

2
∼
gµν∂µχ∂νχ− U(χ)

}
, (4.18)

where we defined the modified potential

U(χ) ≡ V (h(χ))

Ω4(h(χ))
. (4.19)

Note that the h field has to be solved in terms of the new field from the redefinition

(4.21), we will come to this later.
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4.1.2 Einstein frame in the Palatini formulation

In the Palatini formulation this is considerably easier since the Ricci tensor is un-

changed. We can again get rid of the non-minimal coupling by the same conformal

factor (4.13). The action (4.2) becomes

S =

∫
d4x
√
−∼g
[

1

2
∼
gµνRµν −

1

2

1

Ω2

∼
gµν∂µh∂νh−

V (h)

Ω4

]
. (4.20)

The non-canonical kinetic term can be again brought in to canonical form by a field

redefinition, which now simply reads

dχ

dh
=

√
1

Ω2
. (4.21)

So the action can be written

S =

∫
d4x
√
−∼g
{

1

2

∼
R− 1

2
∼
gµν∂µχ∂νχ− U(χ)

}
, (4.22)

with

U(χ) ≡ V (h(χ))

Ω4(h(χ))
. (4.23)

We see that the metric and Palatini formulations differ by the form of the potential

coming from the fact that the field redefinitions differ. We will see this difference

more explicitly in the following section.

4.2 Tree-level inflationary observables

The tree-level inflationary observables are now straightforward to compute in the

Einstein frame. As we saw in chapter 3, these can be computed from the potential,

which are different between the metric and Palatini formulations. To get the poten-

tial we need to solve the new field variable χ from the field redefinition. Let’s again

start with the metric formulation.

4.2.1 Metric formulation

It is possible to solve χ from the field redefinition (4.21) analytically [33]. However,

the form of the solution is cumbersome and not particularly illuminating. We can

solve it approximately by assuming that ξ � 1, which we shall later see is the case

in Higgs inflation. Additionally in the inflationary regime the field value is large
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h� 1/ξ. The field redefinition (4.21) is then approximately 2

dχ

dh
=

√
1 + (1 + 6ξ)ξh2

(1 + ξh2)2

'
√

6ξh

1 + ξh2
.

(4.24)

Which when solved gives

h2 =
1

ξ

(
e

2√
6
χ − 1

)
. (4.25)

Solving for χ gives

χ =

√
3

2
ln
(
1 + ξh2

)
=

√
3

2
ln Ω(h)2. (4.26)

We also see that in the small field regime h � 1/ξ we simply have h ' χ. So the

field redefinition (4.21) is approximately solved in different asymptotic regions as

χ '

h ,when h� 1/ξ√
3
2

ln Ω(h)2 ,when h� 1/ξ
(4.27)

In the large field region the Higgs vev is much smaller than the field value and we

can approximate the Jordan frame potential (4.3) as

V (h) ' λ

4
h4. (4.28)

With these, in the large field regime, the potential (4.19) becomes

U(χ) =
λ

4ξ2

(
1− e−

2√
6
χ
)2

. (4.29)

From this we see that the potential is asymptotically flat: U(χ) → λ/(4ξ2) when

χ → ∞. Thus there is a plateau in the large field regime where slow-roll inflation

can occur. This also implies that the action has an asymptotic shift symmetry, i.e.

it is symmetric under the shift of the inflaton field (χ→ χ+ constant) in the limit

χ→∞.3 This approximate symmetry turns out to be important when considering

quantum corrections [35].

We can now calculate the inflationary observables in the slow-roll approach from

the potential. The first slow-roll parameters are

εU =
1

2

(
U,χ
U

)2

=
4

3

(
e

2√
6
χ − 1

)−2

=
4

3ξ2h4
(4.30)

ηU =
U,χχ
U

=
4

3

(
2− e

2√
6
χ
)(

e
2√
6
χ − 1

)−2

=
4

3ξ2h4

(
1− ξh2

)
. (4.31)

2When this was first done in the literature [34] the approximation h� 1/
√
ξ was made which

results in a different form for the potential; the overall approximate form is different but the

asymptotic behavior is the same. The first slow-roll parameter turns out to be the same but

second and higher order slow-roll parameters are different.
3In the Jordan frame this asymptotic symmetry manifests itself as a asymptotic scale symmetry:

xµ → αxµ and h(x)→ α−1h(αx) where α is a constant.
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We can get the field value at the end of inflation defined by the usual condition,

which in this case is ε(χend) = 1. Equating (4.30) to unity and solving for χ gives

the field value at the end of inflation

χend =

√
3

2
ln

(
1 +

√
3

4

)
. (4.32)

As described in the section 3.3 the observables are to be evaluated at a horizon

crossing. We can do this by solving the field in terms of the number of e-folds

χ(N∗), where N∗ is the number of e-folds when some reference scale k∗ crosses the

horizon k∗ = a∗H∗. From (3.16) and (4.30) we have

N∗ =

∫ χ∗

χend

dχ√
2ε

=

∫ χ∗

χend

U

U,χ
dχ =

∫ χ∗

χend

1

2

√
3

2

(
e

2√
6
χ − 1

)
dχ, (4.33)

giving us

N∗ =
3

4

[
exp

(
2√
6
χ∗

)
− exp

(
2√
6
χend

)]
−
√

6

4
[χ∗ − χend] . (4.34)

Plugging in the field value at the end of inflation (4.32) we get

N∗ =
1

4

[
3 exp

(
2√
6
χ∗

)
−
√

6χ∗

]
− 3

4

[
ln

(
1 +

√
3

4

)
−

(
1 +

√
3

4

)]
, (4.35)

where the numerical factor is of the order of unity. Assuming that the exponential

term dominates we finally get

N∗ '
3

4
exp

(
2√
6
χ∗

)
. (4.36)

It is also possible solve χ∗ in terms of N∗ and χend analytically. The approximated

form is easier to work with, which gives

χ∗(N∗) =

√
3

2
ln

(
4

3
N∗

)
. (4.37)

With this we can write the inflationary observables in terms of the number of e-folds.

The slow-roll parameters are

ε(N∗) =
12

(4N∗ − 3)2
' 3

4N2
∗

(4.38)

η(N∗) = 8
3− 2N∗

(4N∗ − 3)2
' − 1

N∗
, (4.39)

where we approximated further by assuming 4N∗ � 1. The amplitude of the scalar

perturbations is

As =
1

24π2

λ(4N∗ − 3)4

768ξ2N2
∗
' 1

24π2

λN2
∗

3ξ2
. (4.40)
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The spectral tilt of scalar perturbations is

ns = 1− 8(3 + 4N∗)

(4N∗ − 3)2
' 1− 2

N∗
. (4.41)

The spectral tilt of tensor perturbations is

nt =
−24

(4N∗ − 3)2
' − 3

2N2
∗
. (4.42)

The tensor-to-scalar ratio is

r =
192

(4N∗ − 3)2
' 12

N2
∗
. (4.43)

Analytical expressions, with out the approximations made here, for these observ-

ables can be found in [33]. The precise number of e-folds depends on the heating

period after inflation, which advantageously can be calculated in detail since the SM

parameters are experimentally known. These computations have been carried out

in the literature [36, 37, 38]. We use the simplifying assumption that the reheating

period was instant, which gives us an estimate of N∗ ' 55 when the usual reference

scale k∗ = 0.05 Mpc−1 passes the horizon. We can now find an estimate for the

non-minimal coupling by matching the amplitude (4.40) with the observed value

[39]

ln
(
1010As

)
' 3.094± 0.034. (4.44)

This gives a relation between the non-minimal coupling and the Higgs self-coupling.

With the previous estimate for the number of e-folds we have

ξ ' 800N∗
√
λ ' 44000

√
λ (4.45)

We see that the non-minimal coupling is required to be quite large since λ ' 0.129,

but still ξ � M2
p/v

2 ∼ 1032 as we previously required. It is also smaller than the

upper bound ξ < 2.6× 1015 set by considering observations about the Higgs at the

LHC [40].

We can now also get numerical values for the important observables

ns ' 0.964, r ' 0.00396, (4.46)

which are in good agreement with the current observed values [39].

However, this model is not without problems. The non-minimal coupling to

gravity makes this model non-renormalizable in the Jordan frame. Written in terms

of canonically normalized variables gµν = ηµν + M−1
p hµν in the weak field regime

φ2R results in a dimension 5 term and is thus non-renormalizable. In the Einstein

frame the non-renormalizability comes from the nonlinear form of the interactions

in the potential. Non-renormalizability implies that there is some cutoff scale where

perturbation theory breaks down, and in the effective field theory point of view one

would have to add higher dimension terms in the scalar field to the action suppressed
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by the cutoff. These higher-order terms could spoil the inflationary plateau. Hence,

it is important to estimate this cutoff in order to figure out whether the theory is

consistent in the inflationary region or does it need to be modified. One way of

estimating this cutoff is to see where tree-level unitarity is violated, see e.g. [41,

ch. 24]. Estimating the cutoff by expanding only the metric around a background

leads to a cutoff which is right around the inflationary scale, and thus seems to

lead to inconsistencies [42]. However, during inflation both metric and the scalar

are naturally expanded around a background. In [35] the cutoff was estimated by

expanding both the metric and the scalar field around a background, in both Einstein

and Jordan frames. This results in a field dependent cutoff, which is parametrically

much larger than the Hubble scale during inflation and is equal to the Planck scale

at small field values. These considerations suggest that our tree-level analysis is

consistent, however this is still an open question.

4.2.2 Palatini formulation

In the Palatini formulation the analysis follows the same steps. The field redefinition

is now simpler
dχ

dh
=

1√
Ω2

=
1√

1 + ξh2
, (4.47)

which is easily integrated to give

χ(h) =
1√
ξ

sinh−1
(√

ξh
)
, (4.48)

h(χ) =
1√
ξ

sinh
(√

ξχ
)
. (4.49)

Again the Higgs vev is negligible in the large field regime and we take the Jordan

frame potential to be (4.28). Plugging (4.48) into the potential (4.23) gives

U(χ) =
λ

4ξ2
tanh4

(√
ξχ
)
, (4.50)

which is asymptotically flat: χ → ∞, U(χ) → λ/(4ξ2) and has a plateau in the

large field regime where slow-roll can occur. The slow-roll parameters can be ap-

proximated in the large field regime
√
ξχ� 1 as

ε ' 128ξ exp
(
−4
√
ξχ
)
, (4.51)

η ' −32ξ exp
(
−2
√
ξχ
)
, (4.52)

The second slow-roll parameter becomes of order of unity before the first parameter.

Thus we get the field value at the end of inflation from |η(χend)| = 1. This gives

χend =
1

2
√
ξ

ln (32ξ) . (4.53)
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Next we need to solve the field in terms of e-folds. Starting with

N∗ =

∫ χ∗

χend

U

U,χ
dχ =

∫ χ∗

χend

1

8
√
ξ

sinh
(

2
√
ξχ
)
dχ

=
1

16ξ
cosh

(
2
√
ξχ
)∣∣∣∣χ∗

χend

,

(4.54)

which gives

N∗ =
1

32ξ

[
exp

(
2
√
ξχ∗

)
− exp

(
2
√
ξχend

)]
. (4.55)

Plugging in the field value at the end of inflation (4.53) into the previous expression

N∗ = −1 +
1

32ξ
exp

(
2
√
ξχ∗

)
, (4.56)

then with the assumption that N∗ � 1 we get4

N∗ '
1

32ξ
exp

(
2
√
ξχ
)
. (4.57)

Allowing us to solve the field in terms of the e-folds

χ(N∗) =
1

2
√
ξ

ln (32ξN∗) . (4.58)

The slow-roll parameters in terms of e-folds become

ε(N∗) '
1

8N2
∗ ξ

(4.59)

η(N∗) ' −
1

N∗
. (4.60)

Which allows us to write the observables in terms of the e-folds

As '
1

24π2

2λN2
∗

ξ
, (4.61)

ns ' 1− 2

N∗
, (4.62)

nt ' −
1

4N2
∗ ξ
, (4.63)

r ' 2

N2
∗ ξ
, (4.64)

where we again approximated N∗ � 1. The reheating stage after inflation is also

different in the Palatini case and it has been studied in [44]. There it was found

4In the ref. [43] the assumption χ∗ � χend is made, which in fact result in the same approximate

form (4.57) and thus does not change the results that we obtain. However, when looking at (4.53)

and (4.58) we see that χ∗, χend are of the same order. In the reference [43] the end of inflation is

defined to be at ε = 1, which leads χ∗ to be about twice the value of χend.
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that the reheating stage is almost instant, which increases the required number of

e-folds. The number of e-folds is estimated to be N∗ ' 50. The number of e-folds

depends on the value of the non-minimal coupling ξ. With the range ξ = 106 . . . 109

we have N∗ ' 51 . . . 50. We can now match the observed amplitude of the scalar

perturbations (4.44). This now requires a much larger non-minimal coupling

ξ ' 3.8× 106N2
∗λ ' 3.9× 109λ, (4.65)

which is many orders of magnitude larger than in the metric formulation. However,

it is still much smaller than what we required ξ � M2
p/v

2 ∼ 1032 and smaller than

the LHC upper bound ξ < 2.6× 1015.

We see that the tilt of the scalar spectrum has the same form to the first order as

in the metric case, but with the smaller estimated number of e-folds has a slightly

smaller value. The main difference comes in the tensor-to-scalar ratio, which is

suppressed by the non-minimal coupling. Future planned experiments could thus

rule out Palatini-Higgs inflation if significant tensor-to-scalar ratio is observed. With

our estimates the important observables have the values

ns ' 0.960, r ' 2.1× 10−13λ−1, (4.66)

which are still compatible with observations.

The unitarity violation is less of a problem in Palatini formulation. A straight-

forward estimation of the cutoff turns out to be parametrically larger than the scale

during inflation, for details see [45] and references therein.

Now that we have reviewed the Higgs inflation in Palatini formulation we are

ready to consider higher-order curvature terms and Higgs inflation. We shall begin

by reviewing some basic properties of higher-order gravity.
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Chapter 5

Higher-order gravity

GR has been well tested on different scales, since its formulation, and it has been

able to predict new phenomena. Despite the unquestioned success of the theory

there are good reasons to consider modified theories of gravity. From a theoretical

standpoint the lack of theory of quantum gravity suggests that this is not the full

story. Moreover, the non-renormalizability of GR (see e.g.[41, Ch. 22.4]), further

suggest that GR is a effective field theory of some underlying more complete theory.

There are many ways to start modifying GR (for a exhaustive survey in view

of cosmology see e.g. [46]). Here we are interested in higher-order gravity theories,

where terms that are higher-order in the curvature are added to the action. Existence

of these terms can be motivated in several ways: considering relativistic QFT in

classical curved background generates terms to the action which are quadratic in the

curvature tensor [47][23]. Additionally, Weinberg and Deser suggested that adding

quadratic curvature terms to the action makes the theory renormalizable1, which

was later proven [49]. Also these kind of terms are generated in string theories as

low energy effective actions at classical level, see [50, 51][52, Ch. 7].

However, adding these kinds of terms introduces new kinds of problems. In the

case of metric formulation the equations of motion contain higher-order derivative

terms of the form, which by the Ostrogradsky theorem [53, Ch 2.5], lead to insta-

bilities. By instabilities we mean that there exists solutions for which the energies

are not bounded from below and can thus have arbitrary negative energies2. These

negative energy modes are often called ghosts in the literature. These lead into

serious difficulties when trying to interpret the theory.

In the Palatini formulation appearance of ghosts is more unclear. Naively one

might think that since in Palatini formulation the resulting equations of motion are

only second order, and thus there are no Ostrogradsky instabilities, there would not

be any ghosts. However, by analyzing the degrees of freedom of some quadratic

curvature terms it has been shown that ghost modes can still appear [55]. The

question, what is the most general form of the Lagrangian where ghosts do not

appear, requires further research.

In this chapter we will consider the addition of quadratic curvature invariants in

both the metric and Palatini formulations and derive the equations of motion for

these terms.

1Renormalization is out of the scope of this thesis. For an introduction see e.g. [41, Part III][48,

Part II]
2It has been suggested that with higher-order terms all the unstable solutions are unphysical

and all the physical solutions remain stable in semiclassical limit [54].
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5.1 f (R) gravity

To illustrate the differences between the metric and Palatini formulations arising

from adding higher-orders curvature terms to the action, we first consider adding

higher powers of the Ricci scalar. We can do this in general by considering a general

function of the Ricci scalar f(R). This is called f(R) gravity, for a review see e.g.

[19]. It is well known that in both the metric and Palatini formulations these kind

of theories are equivalent to GR coupled to a scalar field known as scalar-tensor

theories3 [56]. It is also known that with the condition f ′′(R) ≥ 0 (prime denotes

the derivative with respect to the Ricci scalar R) these theories are ghost free [19,

Ch. V, and references therein].

Let’s see how the differences between the metric and Palatini formulation appear.

5.1.1 In the metric formulation

The action under consideration is

S =

∫
d4x
√
−gf(

◦
R). (5.1)

The steps for taking the variation of this action are very similar as those we skimmed

over in section 2.1.1. To deal with the boundaries without imposing extra constraints

YGH-term needs to be added similarly as in section 2.1.2 4. The differences occur

when performing partial integrations, since this now introduces second order deriva-

tive terms of f ′(
◦
R). The resulting equations of motion are

f ′(
◦
R)

◦
Rµν −

1

2
f(

◦
R)gµν −

◦
∇µ

◦
∇νf

′(
◦
R) + gµν

◦
�f ′(

◦
R) = 0, (5.2)

where
◦
� ≡

◦
∇µ

◦
∇µ is the d’Alembertian operator. These are fourth order partial

differential equations of the metric, if f ′(
◦
R) is dynamical; and reduce to second

order equations, if f ′(
◦
R) is a constant.

The difference between the metric and Palatini formulation is more easily seen

when moving to the Einstein frame. If we assume that f ′′(
◦
R) 6= 0 we can introduce

a new scalar field φ and write the action as

S =

∫
d4x
√
−g
[
f(φ) + f ′(φ)(

◦
R− φ)

]
. (5.3)

We see that the variation with respect to the field φ leads to a constraint
◦
R = φ and

thus we recover equivalent equations of motion to the original action. Now with a

3Note that this equivalence does not apply in metric-affine formulation.
4The exact form of the term differs from the one in the section 2.1.2. The term needed is

SY GH = 2

∫
∂Σ

d3xε
√
γf ′(

◦
R)

◦
∇µnµ,

for a detailed derivation see [7].
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simple change of variables Φ(φ) = f ′(φ), and with the requirement that the inverse

φ(Φ) exists, we can write V (Φ) = φ(Φ) − f(φ(Φ)), which brings the action to the

form

S =

∫
d4x
√
−g
[
Φ
◦
R− V (Φ)

]
. (5.4)

There now appears a non-minimal coupling between the scalar and gravity. We can

now remove this non-minimal coupling by performing a conformal transformation,

as we have done before. With

gµν → Φgµν , (5.5)

and using relations from section 4.1, the action can be written in Einstein frame

S =

∫
d4x
√
−g
[
◦
R− 3

2Φ2
∂µΦ∂µΦ− Φ−2V (Φ)

]
, (5.6)

where a surface term was dropped. Thus we see that in the metric formulation there

appears a new gravitational degree of freedom.

5.1.2 In the Palatini formulation

Next we will see how the equations of motion turn out in the Palatini formulation.

Variation of the action (5.1) with respect to the metric gives

f ′(R)R(µν) −
1

2
f(R)gµν = 0. (5.7)

Variation of the action with respect to the connection follows the same steps as we

did in section 2.2.1. Thus the equations of motion for the connection are

∇λ(
√
−gf ′(R)gνλ)δµσ −∇λ(

√
−gf ′(R)gµν)

+
√
−gf ′(R)

[
gµνT λλσ − gνλT

ρ
ρλ δ

µ
σ + gνλT µσλ

]
= 0.

(5.8)

Let us now move to the Einstein frame. Often in the literature the torsion is

assumed to vanish; this is not, however, necessary for finding the Einstein frame.

We start by noticing that the equations of motion for the connection (5.8) with the

change of variables qµν = f ′(R)gµν are the same as for the Einstein–Hilbert action.

We know the general solution for this equation, namely (2.41). Thus (5.8) has the

general solution

Γσµν =
◦
Γσµν(q) + δσνVµ, (5.9)

where
◦
Γσµν(q) is the Levi–Civita connection for the metric qµν and Vµ is an arbitrary

vector field. The action is invariant under the projective transformations (2.42), and

thus the arbitrary vector field does not come into the action. We can thus say that

Rµν is equivalent to the Ricci scalar with Levi–Civita connection of the metric qµν ,

Rµν =
◦
Rµν(q). So the action becomes

S =

∫
d4x
√
−g
[
Φgµν

◦
Rµν(q)− V (Φ)

]
. (5.10)

31



CHAPTER 5. HIGHER-ORDER GRAVITY

We can now perform a conformal transform to get rid of the qµν dependence, since

gµν = Φ−1qµν . Using the relations from section 4.1 and performing the conformal

transformation the action can be written as

S =

∫
d4x
√
−g
[
Φ
◦
R +

3

2Φ
∂µΦ∂µΦ− V (Φ)

]
, (5.11)

where a surface term was ignored. There is still a non-minimal coupling present,

so we do a another conformal transformation to the Einstein frame. With (5.5) the

action becomes

S =

∫
d4x
√
−g
[
◦
R +

3

2Φ2
∂µΦ∂µΦ− 3

2Φ2
∂µΦ∂µΦ− Φ−2V (Φ)

]
. (5.12)

The kinetic term vanishes and the action becomes

S =

∫
d4x
√
−g
[ ◦
R− Φ−2V (Φ)

]
+ Sm [Φgµν ,Ψi] , (5.13)

where we wrote explicitly the matter part of the action to illustrate that in the

Palatini formulation there is no new degrees of freedom, since the scalar Φ does not

have a kinetic term, but the relation between existing degrees of freedom is altered.

From the Einstein frame action (5.6) in the metric formulation we observe there

is one extra degree of freedom. In contrast from the Einstein frame action (5.13) in

the Palatini formalism we see that there are no new degrees of freedom5.

5.2 Quadratic gravity in metric formulation

Let us next investigate the other possible quadratic curvature terms, starting with

the metric formulation.

Due to the high number of symmetries of the Riemann tensor, in the metric for-

mulation, there are only a few independent terms that can be written down, namely:
◦
R2,

◦
Rµν

◦
Rµν and

◦
Rµνσλ

◦
Rµνσλ (there is one more possible term εµνσρ

◦
Rαβ

µν

◦
Rαβσρ, but

this turns out to be a total derivative).

Equations of motion for the
◦
R2 term can be easily read from the f(

◦
R) gravity

equations of motion (5.2). Derivation of the equations of motion for the last two

terms is straightforward but somewhat lengthy. We give some needed tricks and just

state the results. Keep in mind that when raising and lowering the indices of the

variation: δgµν = −gµαgνβδgαβ. We make use of the Bianchi identities
◦
Rµν[σλ;ρ] = 0

(more specifically the contracted Bianchi identity) and the definition of how the

commutator of two covariant derivatives [
◦
∇µ,

◦
∇ν ] act on a general tensor (see e.g.

[1, p. 123]). With these in mind and ignoring surface terms the equations of motion

5Comparing the Jordan frame actions, the metric case (5.4) is of the form of Brans-Dicke action

with ω0 = 0 and the Palatini case ω0 = −3/2
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turn out to be6

δ(
◦
R2)√
−gδgµν

= −1

2

◦
R2gµν + 2

◦
R
◦
Rµν − 2

◦
∇ν

◦
∇µ

◦
R + 2gµν

◦
�
◦
R = 0, (5.14)

δ(
◦
Rαβ

◦
Rαβ)√

−gδgµν
=− 1

2
gµν

◦
Rαβ

◦
Rαβ +

◦
�
◦
Rµν +

1

2
gµν

◦
�
◦
R

−
◦
∇ν

◦
∇µ

◦
R + 2

◦
RλσRµλνσ = 0,

(5.15)

δ(
◦
Rαβσλ

◦
Rαβσλ)√

−gδgµν
=− 1

2
gµν

◦
Rαβσλ

◦
Rαβσλ + 2

◦
R αβσ
µ

◦
Rναβσ + 4

◦
�
◦
Rµν

− 2
◦
∇ν

◦
∇µ

◦
R + 4

◦
Rλσ

◦
Rλµσν − 4

◦
Rµλ

◦
R λ
ν = 0.

(5.16)

These are again seen to be fourth order differential equations. Notice that the sum

of these terms with the right coefficients leads to the higher-order derivative terms

to cancel out. Namely the combination

LGB =
◦
R2 − 4

◦
RµνR

µν +
◦
Rµνσλ

◦
Rµνσλ, (5.17)

called the Gauss-Bonnet term. The variation of this term can be written in a

compact form using the Weyl tensor (0.8). This is identically zero and it is called

the Bach-Lanczos identity [57]

δLGB
δgµν

= W αβσ
µ Wναβσ −

1

4
gµνWαβσλW

αβσλ = 0, (5.18)

for a simple proof see e.g. [58, Appendix]. The combination (5.17) does not con-

tribute to the equations of motion in 4 dimensions. The term (5.17) is a topological

invariant (Euler characteristic) of the manifold. The generalized Gauss-Bonnet the-

orem in 4 dimensions states that

1

32π2

∫
M

d4x
√
−g
[ ◦
R2 − 4

◦
Rµν

◦
Rµν +

◦
Rµνσλ

◦
Rµνσλ

]
= χ(M), (5.19)

where χ(M) is a topological invariant of the manifold M. This implies that only two

of the three different higher-order terms are independent. We can solve out one of

the three terms (choosing the most complicated one including the Riemann tensor)

and write the general action quadratic in the curvature as (ignoring the constant

term)

S =

∫
d4x
√
−g
(
α
◦
Rµν

◦
Rµν + β

◦
R2 + γ

◦
R
)
, (5.20)

where α, β and γ are constants. This is exactly the form of the Lagrangian that has

been proven to be renormalizable in all orders of perturbation theory [49]. This,

however, comes with the cost of massive spin-2 ghost [59][60]. Next we will consider

Lagrangians that do not lead to ghosts in the metric formulation and see that this

requirement restricts the form of the Lagrangian considerably.

6This derivation gives rise to boundary terms that can be canceled by adding YHG-terms to

the action as done before; these terms are ignored here.
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5.2.1 Lovelock gravity

Lovelock constructed the most general Lagrangian in metric formulation, that leads

to second order field equations, and do not contain ghosts, in arbitrary number of

spacetime dimension [61, 62]. The restrictions that Lovelock imposed were: the

general Einstein tensor can only depend on the metric and its first two derivatives

and it should be divergence free. It turns out that in four spacetime dimensions the

only such tensors are the metric and the Einstein tensor of GR. Thus the Lovelock

action is the Einstein–Hilbert action; this is also called the Lovelock’s theorem [61,

Theorem 5]. The Lovelock Lagrangian in d dimensions is

LdLovelock =

n<d/2∑
n=0

cnLn, (5.21)

where cn are constants with dimensionality 2n− d and

Ln =
1

2n
δα1β1...αnβn
µ1ν1...µnνn

n∏
m=1

◦
Rµmνm

αmβm
, (5.22)

where δ...... is the generalized Kronecker delta (0.10). Notice that if n > d/2 then

Ln will be zero, since there are more indices in the Kronecker delta than there are

dimensions. The first few terms of Ln are

L0 = Λ, (5.23a)

L1 = R, (5.23b)

L2 =
◦
R2 − 4

◦
RµνR

µν +
◦
Rµνσλ

◦
Rµνσλ. (5.23c)

The term with n = d/2 turns out to be a topological invariant also in general and

this justifies why it is not included in the sum (5.21).

It turns out that for Lovelock gravity every solution in the metric formulation

is also a solution in the Palatini formulation, but not the other way around. Not

every solution of the Palatini formulation is a solution of the metric formulation.

Thus in the case of Lovelock gravity metric formulation is contained in the Palatini

formulation. There are also other forms of higher-order curvature Lagrangians that

have this relation between these two formulations [63].

5.3 Quadratic gravity in the Palatini formulation

Let us now consider adding quadratic curvature invariants to the action in the Pala-

tini formulation. In contrast to the metric case there are more different invariants

that we can construct out of two Riemann tensors. We can think of the most general
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Lagrangian second order in the Riemann tensor, that does not violate parity (i.e.

ignoring terms with the Levi–Civita symbol) as 7

S =

∫
d4x
√
−g
(
all contractions of Rσ

ρµνR
α
βτδ

)
. (5.24)

There are 16 possible independent contractions due to the Riemann tensor having

only one symmetry. These contractions can be written in terms of the different

possible Ricci tensors found in (2.23)–(2.25). With these the action can be written

as

S =

∫
d4x
√
−g
[
αR2 + β1RµνR

µν + β2RµνR
νµ + β3RµνR̂

µν + β4RµνR̂
νµ+

β5R̂µνR̂
µν + β6R̂µνR̂

νµ + β7R̂µνR
′µν + β8R

′
µνR

′µν + β9RµνR
′µν+

γ1RµνσλR
µνσλ + γ2RµνσλR

µσνλ + γ3RµνσλR
νµσλ + γ4RµνσλR

νσµλ+

γ5RµνσλR
σνµλ + γ6RµνσλR

σλµν
]
.

(5.25)

Derivation of the equations of motion for these terms follows the similar procedure

as that we did for the Einstein–Hilbert action in the section 2.2.1. We will derive

the equations of motion for one of these terms for clarity and present the rest of the

equations of motion for each term in the appendix B.

We will consider the term RµνR
µν . Starting with the metric variation

δ

∫
d4x
√
−gRµνR

µν =

∫
d4x

[
RµνR

µνδ
√
−g +

√
−gδ(RµνR

µν)
]
. (5.26)

Taking the variation of RµνR
µν gives

δ (RµνR
µν) = δ

(
gτµgλνRσ

µσνR
ρ
τρλ

)
= (δgτµ)gλνRµνRτλ + gτµ(δgλν)RµνRτλ

=
(
R λ
µ Rνλ +Rλ

µRλν

)
δgµν

(5.27)

With the previous identity and (2.7) the equation of motion turn out to be

R λ
µ Rνλ +Rλ

µRλν −
1

2
gµνRαβR

αβ = 0. (5.28)

Next let’s look at the variation with respect to the connection. First of all we have∫
d4x
√
−gδ(RµνR

µν) =

∫
d4x
√
−ggτµgλν [RτλδRµν +RµνδRτλ]

=

∫
d4x
√
−g2RµνδRµν .

(5.29)

Then using the Palatini identity (2.30) this becomes∫
d4x
√
−g2Rµν

[
∇σδΓ

σ
νµ −∇νδΓ

σ
σµ + T σλν δΓ

λ
σµ

]
. (5.30)

7There might be some redundancy in these terms, if there exists some equivalent more general

version of the Gauss-Bonnet theorem in metric affine space.
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Like previously the first and the second term inside the brackets have to be simplified

further. This computation is very similar to the one we performed in section 2.2.1.

First we expand out the first term in (5.30)

2Rµν∇σδΓ
σ
νµ = 2

√
−g∇σ(RµνδΓσνµ) + 2Rµν∇σ

√
−gδΓσνµ

− 2∇σ(
√
−gRµν)δΓσνµ,

(5.31)

using the change of variables Γσµν =
◦
Γσµν + Cσ

µν this becomes

2Rµν∇σδΓ
σ
νµ = 2

√
−g

◦
∇σ(RµνδΓσνµ) + 2

√
−gCλ

λσ (RµνδΓσνµ)+

2Rµν
[ ◦
∇ν

√
−g − Cλ

σλ

]
δΓσνµ − 2∇σ(

√
−gRµν)δΓσνµ.

(5.32)

The first term in this expression is now a total divergence and can be turned into a

surface term by Stokes’ theorem (2.13) and it will vanish. The terms containing the

Cσ
µν tensors can be again written in terms of the torsion tensor. With these this

simplifies to

2Rµν∇σδΓ
σ
νµ =

[
2
√
−gRµνT λλσ − 2∇σ(

√
−gRµν)

]
δΓσνµ, (5.33)

up to the surface terms. The second term in (5.30) goes similarly and the equations

of motion turn out to be

2∇λ(
√
−gRµλ)δνσ − 2∇σ(

√
−gRµν)

+ 2
√
−g
[
RµνT λλσ −RµρT λλρ +RµλT νσλ

]
= 0.

(5.34)

The non-metricity nature of these equations becomes more transparent if we write

it in terms of the non-metricity tensor, defined by

Qσµν ≡ ∇σgµν . (5.35)

Note that it is symmetric in the last two indices. It is important to also note that

∇σg
µν 6= Q µν

σ . A quick computation will give us the right relation,

∇σg
µν = ∇σ(gµαgνβgαβ) = Q µν

σ + 2∇σg
µν , (5.36)

and thus

∇σg
µν = −Q µν

σ . (5.37)

With the definition of non-metricity and torsion it is straightforward to verify that

a general connection can be written as 8

Γσµν =
◦
Γσµν +

1

2

[
−Q σ

µ ν +Qσ
νµ −Q σ

νµ

]
+

1

2

[
T σµν − T σ

µν + T σ
ν µ

]
. (5.38)

8Plug in the definition of non-metricity (5.35) into (5.38) and write out the covariant derivative

of the metric. With a few steps of algebra the left and right hand side of the equation will match.
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Using this we can write ∇µ

√
−g in terms of the non-metricity, since

∇µ

√
−g =

◦
∇µ

√
−g − Cλ

µλ

√
−g. (5.39)

Taking the trace of (5.38) we get

Cλ
µλ =

1

2

[
−Q λ

µ λ +Qλ
λµ −Q λ

λµ

]
+

1

2

[
T λµλ − T λ

µλ + T λ
λ µ

]
= −1

2
Q λ
µ λ,

(5.40)

where the torsion tensors vanish due to them being antisymmetric in the last two

indices and two of the non-metricity terms vanish due to the symmetry of the last

two indices. Thus we have

∇µ

√
−g =

1

2
Q λ
µ λ

√
−g. (5.41)

Using this we can write the equations of motion (5.34) as

2Rµλ

[
1

2
Q ρ
λ ρδ

ν
σ − T

ρ
ρλ δ

ν
σ + T νσλ

]
+ 2Rµν

[
−1

2
Q ρ
σ ρ + T λλσ

]
−Q µλ

λ δνσ +Q µν
σ + 2δνσ∇λR

µλ − 2∇σR
µν = 0.

(5.42)

The non-metricity and torsion dependence of the last two terms containing covariant

derivatives of the Ricci tensor can also be written out using (5.38). This form for

the equation is useful when trying to find solutions in the general case. However, as

we can see even for this one quadratic term RµνR
µν the equations of motion turn

out to be very complicated. Furthermore, the fact that some of the extra degrees of

freedom coming from the higher-order terms turn out to be ghost degrees of freedom

complicate the picture [64, 65, 55]. To be able to say something about higher-order

terms and Higgs inflation we will restrict our action such that no new degrees of

freedom appear, and thus avoid any inconsistencies. In the next chapter we shall

see how this is accomplished.
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Chapter 6

Higher-order gravity and Higgs

inflation

In this chapter we present a new result. We analyze Higgs inflation with higher-order

curvature terms in the Palatini formulation. We have to make several simplifying

assumptions to make the calculations analytically tractable. The first simplification

that we make is to assume vanishing torsion, i.e. our general connection is assumed

to be symmetric Γσνµ = Γσµν . We will only add terms constructed from the Ricci

tensor and additionally we will consider an action invariant under projective trans-

formations, which does not introduce extra gravitational degrees of freedom, that

would complicate the picture. The action that we will consider in the Jordan frame

reads

S =

∫
d4x
√
−g
[

1

2

{(
1 + ξh2

)
R + βR2 + αR(µν)R

(µν)

}
− 1

2
gµν∂µh∂νh− V (h)

]
.

(6.1)

Like in the case of pure Higgs inflation one could work with this action and compute

the inflationary observables. However we can again simplify our life by transforming

our action into an Einstein–Hilbert like action; we will again call this the Einstein

frame. However, this is now a more involved task due to the higher-order curva-

ture terms. We will also present an alternative method of computing the slow-roll

equations without going into the Einstein frame.

First we will carry out the computation in the Einstein frame. We start by

introducing a general procedure how to bring an projective invariant Ricci based

theory, like we have, into the Einstein frame. We then use this method to compute

the slow-roll equations and parameters with our action (6.1). Next we will derive

the slow-roll equations without going to the Einstein frame and see that our results

agree. Finally we will show how the inflationary observables are modified by the

higher-order curvature terms.

6.1 Finding the Einstein frame representation

Here we will outline the general procedure how to transform an projective invariant

Ricci based theory to the Einstein frame. This general procedure was also described

in [66]. We will then use this procedure in our special case to obtain our new result.
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We write our general action as

S =
1

2

∫
d4x
√
−g
[
F
(
gµν , R(µν), ψi, ∂µψi

)
+ Lm (gµν , ψi, ∂µψi)

]
, (6.2)

where F is a general function of the symmetric part of the Ricci tensor Rµν , the

metric gµν and matter fields ψi; and Lm is the matter part of the action. We can

perform a Legendre transformation so that the action becomes

S =
1

2

∫
d4x
√
−g
[
F (gµν ,Σµν , ψi, ∂µψi) +

∂F

∂Σµν

(
R(µν) − Σµν

)
+ Lm [gµν , ψi, ∂µψi]

]
,

(6.3)

where Σµν is an auxillary field, which is symmetric by definition. Taking the vari-

ation of the action (6.3) with respect to Σµν gives the constraint Σµν = R(µν) and

thus the actions (6.2) and (6.3) describe the same theory. The Legendre transformed

action is now linear in the Ricci tensor and we are one step closer to finding the

Einstein frame. We next make a field redefinition

√
−qqµν =

√
−g ∂F

∂Σµν

, (6.4)

where q ≡ det qµν and qµν is the inverse of qµν , which means that qµλqνλ = δµν . Note

that the new variable is also symmetric qµν = qνµ. From this redefinition we can

solve the auxillary field Σµν in terms of the metric gµν , the matter fields ψi and the

new variable qµν , i.e. Σµν = Σµν(gµν , qµν , ψi). This enables us to write the action as

S =
1

2

∫
d4x

{ √
−qqµνRµν

−
√
−g
[
∂F

∂Σµν

Σµν(qµν , gµν , ψi)− F (qµν , gµν , ψi) + Lm(gµν , ψi)

]}
.

(6.5)

From this action it is apparent that the metric gµν does not have a kinetic term

and thus its equations of motion are algebraic equations. We can thus solve the

original metric gµν in terms of the new field qµν and the matter fields ψi, that is

gµν = gµν(qµν , ψi). Plugging this back into the (6.5) gives us an action that depends

only on the independent connection Γσµν , the new field qµν and the matter fields ψi

S =
1

2

∫
d4x

{ √
−qqµνRµν −

√
−g
[
∂F

∂Σµν

Σµν(qµν , ψi)−
1

2
F (qµν , ψi)− Lm(q, ψ)

]}
,

(6.6)

where
√
−g is also solved in terms of qµν and ψi. Thus we have managed to transform

our action into the Einstein frame where the gravitational sector is the Einstein–

Hilbert action for the metric qµν .

In general, if we do not assume a symmetric Ricci tensor the new metric qµν
is not symmetric. Even if a symmetric connection is assumed the Ricci tensor can
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have an antisymmetric part: R[µν] = −∇[νQµ]. and thus from the field redefinition

(6.4) it is clear that also qµν has an antisymmetric part. The non-symmetric part

will then contain new gravitational degrees of freedom and in general these can

lead to instabilities in the theory [67][68]. In fact in the non-symmetric case the

action can be seen to be equivalent to a non-symmetric gravity theory, which has

been shown to contain instabilities. However, it is possible to construct a non-

projective invariant theory in Ricci based gravity without instabilities by requiring

that the torsion will vanish by means of Lagrange multipliers. Then the resulting

new gravitational degrees of freedom from the antisymmetric part will result in one

massive vector field [55]. In fact, in a cosmological setting with the FLRW universe

the Ricci tensor is restricted to be symmetric since the only available tensors are

the projection tensor for the spacelike slices hµν and the timelike vector uµ. Thus

the background evolution will be the same with a general Ricci tensor, but the

perturbations will include these extra degrees of freedom. Considering these extra

degrees of freedom are out of the scope of this thesis.

If the action is projective invariant there are no new gravitational degrees of

freedom and qµν is symmetric. The action (6.6) is then the Einstein–Hilbert action

for the metric qµν with modified matter sector. The connection is thus the Levi–

Civita connection for the metric qµν .

In what follows we shall carry out this procedure in the case of Higgs inflation

with higher-order curvature terms.

6.2 Einstein frame

The general procedure works for non-minimally coupled actions. However, we will

simplify our action (6.1) by removing the non-minimal coupling with a conformal

transformation like previously

gµν → Ω2(x)gµν , Ω2 = 1 + ξh2. (6.7)

Since the higher-order terms are invariant under conformal transformations in the

Palatini formulation, as we noted in section 4.1, only the matter sector is modified.

The action becomes

S =

∫
d4x
√
−g
[

1

2

{
R + βR2 + αRµνR

µν
}
−1

2
Ω−2gµν∂µh∂νh− Ω−4V (h)

]
. (6.8)

The kinetic term is brought to the canonical form with the same field redefinition

as before (4.21). And the potential U(χ) is defined as (4.23). With these the action

simplifies to

S =

∫
d4x
√
−g
[

1

2

{
R + βR2 + αRµνR

µν
}
− 1

2
gµν∂µχ∂νχ− U(χ)

]
. (6.9)

We will call the action in this form the higher-order gravity frame. We will also

later derive the slow-roll equations in this frame to compare with the Einstein frame
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results. First, let us carry out the procedure outlined above and transform (6.9)

into the Einstein frame.

With our action (6.9) the function F is

F (gµν , Rµν) = R + βR2 + αRµνR
µν , (6.10)

and the matter sector is

Lm(gµν , χ) = −1

2
gµν∂µχ∂νχ− U(χ). (6.11)

To bring our action explicitly to the form of (6.6) we start by solving the auxillary

field Σµν in terms of qµν and gµν . We will write out all the metrics explicitly when

performing contractions to see more easily the metric dependence and to make it

clear which metric is used when making the contractions. Writing out (6.4) with

(6.10) we have
√
−qqµν =

√
−g
[
(1 + 2βgσλΣσλ)g

µν + 2αgσµgλνΣσλ

]
. (6.12)

Taking the trace of this we have
√
−qqµνgµν =

√
−g
[
4(1 + 2βgσλΣσλ) + 2αgσλΣσλ

]
, (6.13)

from which we can solve

gσλΣσλ =

√
−qqµνgµν√
−g(8β + 2α)

− 4

8β + 2α
. (6.14)

Substituting this back into (6.12) and solving for Σµν we get

Σµν =
1

2α

√
−q√
−g

qσλgσµgλν −
1

2α + 8β

[
1 +

β
√
−q

α
√
−g

qσλgσλ

]
gµν . (6.15)

Next we need to substitute this back to the Legendre transformed action (6.3) and

derive the equations of motion for the original metric gµν . Computing the variation

is straightforward but lengthy, see appendix C.1 for a few more details, here we will

just present the result

1√
−g

δS

δgµν
= − 1

4(α + 4β)

√
−q√
−g

qσλgσµgλν

+
1

4α

q

g

[
qσλqρδgλδgρνgσµ −

β

(α + 4β)
qδρgδρq

σλgσµgλν

]
+

1

2
gµν

[
1

α + 4β

(
β

8α

q

g
qλσgλσq

ρδgρδ

)
− q

g

1

8α
qλσqδρgλδgσρ

]
− 1

2
∂µχ∂νχ+

1

2
gµν

[
U(χ) +

1

2
gλσ∂λχ∂σχ

]
= 0.

(6.16)

We now need to solve the original metric gµν in terms of the new metric qµν and the

scalar field χ. This turns out to be the most difficult part. We will solve this by

introducing the following ansatz

gµν = γ1(χ,Xq)qµν + γ2(χ,Xq)∂µχ∂νχ, (6.17)
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where Xq = qµν∂µχ∂νχ. This is in the form of a disformal transformation. We are

thus effectively finding the disformal transformation which brings the action to the

Einstein frame. Let us briefly discuss these kind of metric transformations.

6.2.1 Disformal transformations

Another useful type of metric transformations that is able to bring more complicated

actions into the Einstein frame, is disformal transformations. These are of the form

qµν = Γ1(χ,Xg)gµν + Γ2(χ,Xg)∂µχ∂νχ, (6.18)

where Xg = gµν∂µχ∂νχ and Γ1,Γ2 are called the conformal and disformal factor

respectively. We write the inverse of this transformation as

gµν = γ1(χ,Xq)qµν + γ2(χ,Xq)∂µχ∂νχ. (6.19)

Notice that both of the factors are allowed to depend on the kinetic term of the

scalar field and thus these factors depend on the metric gµν and in the case of the

inverse transformation they depend on the new metric qµν . The factors between the

transformation and its inverse have the following relations

Γ1(χ,Xg) =
1

γ1(χ,Xq(Xg))
, Γ2(χ,Xg) = −γ2(χ,Xq(Xg))

γ1(χ,Xq(Xg))
, (6.20)

where the Xq has to be solved in terms of Xg. We will get a more explicit form

for Xq(Xg) later. The factors Γ1,Γ2 are restricted by requiring that the new metric

describes a well defined spacetime. For that we require the following four conditions:

1. The transformation should be invertible, so that there exists an inverse metric

qµν .

2. The transformation does not change the Lorentzian signature of the metric.

3. Causal trajectories have to remain causal.

4. The transformation has to be invertible.

Sometimes in the literature also another condition is listed, which is that the volume

element has to be non-zero. This is however redundant since this is already guaran-

teed by the first condition listed. These requirements assure that the transformation

is a map between two pseudo-Riemannian spaces and the two representations are

physically equivalent, for investigations of this see e.g. [69, 70].

It is easier to compute the constraints in a cosmological setting and since we are

interested in analyzing inflation this is enough for our purposes. Let’s look at how

these requirements restrict the two factors. Looking at the invariant line element

dŝ2 = Γ1gµνdx
µdxν + Γ2∂µχ∂νχdx

µdxν = Γ1ds
2 + Γ2(∂µχdx

µ)2, (6.21)
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we see that the light-cones get modified and are either stretched or squeezed de-

pending on the sing of Γ2. To ensure that causal trajectories, ds2 < 0, are also

causal with the transformed metric we must have dŝ2 < 0, i.e. Γ2 < 0 everywhere.

To maintain the Lorentzian signature of the transformed metric, i.e. q00 < 0

with q0i = 0, we must have

q00 = Γ1g00 + Γ2∂0χ∂0χ < 0. (6.22)

Multiplying both sides with g00, which is negative, we get

Γ1 + Γ2g
00∂0χ∂0χ > 0. (6.23)

In a FLRW model ∂µχ is time-like; thus, taking a frame where ∂µχ = (∂0χ, 0, 0, 0)

we can write Xg = g00∂0χ∂0χ. So we have the frame independent requirement

Γ1 + Γ2Xg > 0. (6.24)

The inverse of the transformed metric qµν can be obtained from qλνq
µλ = δµν . We

introduce an ansatz for the inverse metric

qµν = Γ3(χ,Xg)g
µν + Γ4(χ,Xg)g

µλgνσ∂λχ∂σχ (6.25)

Substituting this and (6.18) into the identity δµν = qµλqνλ we get

δµν =
(
Γ3g

µλ + Γ4g
µρqλτ∂ρχ∂τχ

)
(Γ1gµν + Γ2∂µχ∂νχ)

= Γ1Γ3δ
µ
ν + (Γ2Γ4Xg + Γ1Γ4 + Γ2Γ3) gµλ∂λχ∂νχ.

(6.26)

Requiring for the coefficients to match on the left and right side of the equation we

get {
Γ1Γ3 = 1

Γ2Γ4Xg + Γ1Γ4 + Γ2Γ3 = 0.
(6.27)

Solving for Γ3 and Γ4 we get 
Γ3 =

1

Γ1

Γ4 =
−Γ2

Γ1(Γ1 +XgΓ2)
.

(6.28)

The inverse metric is thus

qµν =
1

Γ1

gµν − Γ2

Γ1(Γ1 +XgΓ2)
gλµgσν∂λχ∂σχ, (6.29)

For this to be non-singular we must require Γ1 > 0 and Γ1 + XqΓ2 > 0 every-

where. These two conditions are enough to assure the existence of the inverse metric

and that the Lorentz signature is unchanged. We can now relate Xq with Xg by

multiplying (6.29) with ∂µχ∂νχ which yields

Xq =
Xg

Γ1 +XgΓ2

. (6.30)
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The existence of the inverse transformation (6.29) is guaranteed by the condition of

non vanishing Jacobian determinant, which yields the condition [71]

Γ1

(
Γ1 +

1

2
Xg

∂Γ1

∂Xg

+
1

2
X2
g

∂Γ2

∂Xg

)
6= 0. (6.31)

This constraint also guarantees that the equation (6.30) is solvable. Next let’s look

at how the determinant of the metric transforms. We begin by taking (6.18) and

contracting both sides with gνσ and taking the determinant

det(qµνg
νσ) = det

[
Γ1δ

σ
µ + Γ2g

νσ∂µχ∂νχ
]
. (6.32)

Thinking in terms of matrices the left-hand side is a determinant of the product of

two square matrices which is equal to the product of their determinants. Addition-

ally det(M−1) = (detM)−1, so we have

qg−1 = det [Γ1δ
µ
σ + Γ2g

νσ∂µχ∂νχ] . (6.33)

For the right hand side we write the determinant in terms of the completely anti-

symmetric Levi–Civita symbol εµνσλ as

qg−1 = εµνσλ [
(
Γ1δ

0
µ + Γ2∂µχ∂ρχq

0ρ
)

×
(
Γ1δ

1
ν + Γ2∂νχ∂ρχg

1ρ
)

×
(
Γ1δ

2
σ + Γ2∂σχ∂ρχg

2ρ
)

×
(
Γ1δ

3
λ + Γ2∂λχ∂ρχg

3ρ
)

] .

(6.34)

Since the left hand side is a ratio of two scalar densities with the same weight it is

a scalar and so we can pick any convenient frame to evaluate this expression. Thus,

again picking a frame where ∂µχ = (∂0χ, 0, 0, 0) makes all except few terms vanish

giving us
qg−1 = Γ4

1ε
µνσλδ0

µδ
1
νδ

2
σδ

3
λ + Γ3

1Γ2∂µχ∂ρχg
0ρδ1

νδ
2
σδ

3
λε
µνσλ

= Γ4
1 + Γ3

1Γ2∂0χ∂0χg
00

= Γ3
1 (Γ1 +XgΓ2) .

(6.35)

Finally the determinant of qµν in terms of gµν and χ becomes

q = gΓ3
1 (Γ1 +XgΓ2) . (6.36)

Thus, the volume element transforms as

d4x
√
−q = d4x

√
−g
√

Γ3
1(Γ1 +XgΓ2), (6.37)

which is already guaranteed to be non-zero by the previously found constraints.

The invariance of inflationary observables under disformal transformations has been

investigated in the literature [69, 72, 73, 74, 75].

For our computation we need to perform the inverse transformation (6.19) and

thus we need relations for the inverse metric gµν and the metric determinant in
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terms of the factors γ1, γ2. We see that the computations can be performed with

the exactly same steps as we did above and so we have

gµν =
1

γ1

gµν − γ2

γ1(γ1 +Xqγ2)
qλµqσν∂λχ∂σχ, (6.38)

for the inverse metric gµν and

g = qγ3
1 (γ1 +Xqγ2) , (6.39)

for the metric determinant. Similarly Xg can be written in terms of Xq as

Xg =
Xq

γ1 +Xqγ2

. (6.40)

Since we will be solving only the form of the inverse transformation it is easier to

check the four conditions that we require in terms of the factors γ1 and γ2. Using

the relations between the transformation and its inverse (6.20) and how the kinetic

terms are related (6.40) the requirements for the existence of the inverse metric

become

1

γ1

> 0 ⇐⇒ γ1 > 0,
1

γ1 +Xqγ2

> 0 ⇐⇒ γ1 +Xqγ2 > 0. (6.41)

The requirement for causal trajectories to remain causal becomes

− γ2

γ1

< 0 ⇐⇒ γ2 > 0. (6.42)

Finally the invertibility condition becomes

γ1

(
γ1 +

1

2
Xq

∂γ1

∂Xq

+
1

2
X2
q

∂γ2

∂Xq

)
6= 0. (6.43)

Now we have all the necessary tools to carry out the computation.

6.2.2 Solving the metric

In the previous section we found the inverse (6.38) for the ansatz of the metric gµν
(6.17), and additionally the metric determinant g in terms of the new metric qµν
and the scalar χ (6.39).

Now we can substitute the ansatz (6.17),(6.29) and the determinant (6.39) to the

constraint equation for the metric gµν (6.16). This will give us algebraic equations

for the coefficients γ1 and γ2. After doing the substitutions and requiring that the

coefficients of qµν and ∂µχ∂νχ vanish identically we get the system of equations:

1

16α(α + 4β)γ2
1(γ1 +Xqγ2)

[
− 4αγ4

1 + 2Xq(α + 2β)γ1γ2

+X2
q (α + 3β)γ2

2 − 4Xqαγ
3
1(α + 4β + γ2) + 4αγ1

√
γ3

1(γ1 +Xqγ2)

]
− 1

2
γ1U(χ) = 0,

(6.44)
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from the coefficient of qµν and

1

16α(α + 4β)γ3
1(γ1 +Xqγ2)

[
− 4αγ4

1(2α + 8β − γ2) + 8(α + 2β)γ2
1γ2

− 4Xqαγ
3
1(α + 4β − γ2)γ2 + 2Xq(5α + 12β)γ1γ

2
2 + 3X2

q (α + 3β)γ3
2

−
(
8αγ1γ2 + 4Xqαγ

2
2

)√
γ3

1(γ1 +Xqγ2)

]
+

1

2
γ2U(χ) = 0,

(6.45)

from the coefficient of ∂µχ∂νχ. We can now check what happens in the vacuum

limit. Taking Xq → 0 ,U(χ) → 0 and χ → 0 the equation (6.44) simplifies to

γ1− 1 = 0, the second equation is nonexistent (0 = 0) since there is no kinetic term

for the scalar. Substituting γ1 = 1 to the modified scalar sector in the action (6.6)

gives zero. Thus, we obtain the Einstein equations in vacuum.

In general it is hard to find solutions to this set of algebraic equations. However,

in slow-roll approximation the square of the time derivative of the field is small

χ̇2/H2 � 1. In FLRW universe we have Xq = −χ̇2, thus we can treat Xq as a small

parameter and find approximate solutions of the form

γ1(χ,Xq) = a0 + a1Xq + a2X
2
q + . . . ,

γ2(χ,Xq) = b0 + b1Xq + b2X
2
q + . . .

(6.46)

We can then find solutions of this form by substituting (6.46) into the equations

(6.44) and (6.45) and again expanding in terms of Xq and requiring that each of the

coefficients vanish identically. This gives us systems of equations from which we can

solve the coefficients {ai, bi}. In the zeroth order we get the system of equations

a0 [1 + 2αU(χ) + 8βU(χ)]− 1

α + 4β
= 0

−2α(α + 4β)a2
0 + (4β + α(2 + (−2 + a0)a0))b0

4α(α + 4β)a2
0

+
1

2
b0U(χ) = 0,

(6.47)

which are easily solved giving

a0 =
1

1 + (2α + 8β)U(χ)

b0 =
2α

[1 + (2α + 8β)U(χ)] [1 + (4α + 8β)U(χ)]
.

(6.48)

These expressions quickly become very cumbersome to write down and are not

particularly illuminating. So we will not present any more terms here; a few more

coefficients can be found from the appendix C.2. It can be now verified that the

requirements that we required for the transformation to be physical are met. To

this first order the requirements reduce to a0 > 0, b0 > 0 and a0 + b0Xq > 0.

Now substituting the solution of the form (6.46) with the solved coefficients

{ai, bi} to the action (6.6) and writing this again in series of Xq we get the modified
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matter sector

Lm =− U

1 + (2α + 8β)U
−

1
2
qµν∂µχ∂νχ

1 + (2α + 8β)U

+
[α2U + β(1 + 8βU) + α(1 + 6βU)]

2 [1 + (2α + 8β)U ] [1 + (4α + 8β)U ]
(qµν∂µχ∂νχ)2

+ . . .

(6.49)

As before we can bring the kinetic term to a canonical form by another field redefi-

nition
dχ

dφ
=
√

1 + (2α + 8β)U. (6.50)

The potential of the new field φ reads

∼
U(φ) =

U(χ(φ))

1 + (2α + 8β)U(χ(φ))
. (6.51)

This brings the matter Lagrangian to the form

Lm = −
∼
U − 1

2
qµν∂µφ∂νφ

+
[α2U + β(1 + 8βU) + α(1 + 6βU)] [1 + (2α + 8β)U ]

2 [1 + (4α + 8β)U ]
(qµν∂µφ∂νφ)2

+ . . .

(6.52)

For later convenience we will write this as

Lm = −
∼
U − 1

2
qµν∂µφ∂νφ

+ c2(U(φ))(qµν∂µφ∂νφ)2 + · · ·+ cn(U(φ))(qµν∂µφ∂νφ)n + . . .
(6.53)

At this point we can also note that when taking the limit α→ 0 we obtain the result

of [76], where non-minimally coupled scalar with the addition of only R2 term was

analyzed. This is, however, with the assumption that all the higher than second

order kinetic terms vanish when the limit is taken. This is expected to be the case,

but should still be explicitly proven. Easier way of seeing this is to take the limit

α → 0 from the start. This simplifies the computations and with some effort the

same result is obtained.

When the α→ 0 limit is taken we have to require β > 0 to have the correct sign

for the kinetic terms in (6.52) and avoid instabilities. We see that the correct signs

for the kinetic terms are preserved in the general case if both α, β > 0. There might

exist more of the parameter space where this is the case, but this needs further

investigation. Thus here we require that α, β > 0.

We are now ready to derive the equations of motion, which now is an easy task

since the gravitational sector is nothing but the Einstein–Hilbert action.
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6.2.3 Equations of motion

We have managed to bring our action to the form

S =

∫
d4x
√
−q
[

1

2
qµνRµν −

∼
U − 1

2
Xq + c2(U(φ))X2

q + . . .

]
, (6.54)

where cn(φ) are functions of the field defined in (6.53). Thus as previously shown

the connection is solved to be the Levi–Civita connection of the metric qµν . The

equations of motion for the metric thus are

G(q)
µν ≡R(q)

µν −
1

2
R(q)qµν =

− qµν
[
∼
U +

1

2

(
Xq + c2X

2
q + . . .

)]
+ ∂µφ∂νφ [1 + c2Xq + . . . )] ,

(6.55)

and for the scalar φ we have

�φ(1 + 4c2Xq + . . . )

+ qµν∂νφ∂µφ
[
c2Xq + c4X

3
q + . . .

]
+
[
c′2(χ)X2

q + . . .
]

=
∼
U,φ.

(6.56)

With the assumption that the kinetic term for the field is sufficiently small such that

we can ignore all terms of order higher than one, we get the Einstein equations with

a scalar field. With the FLRW solution with zero spatial curvature the temporal

component of the metric field equations becomes

3H2 =
∼
U +

1

2
φ̇2, (6.57)

and the equations of motion for the scalar field become

φ̈+ 3Hφ̇ = −
∼
U,φ (6.58)

With the slow-roll conditions |φ̈| � |3Hφ̇| and φ̇2 �
∼
U the equations reduce to the

familiar slow-roll equations with the modified potential
∼
U

3H2 =
∼
U

3Hφ̇ = −
∼
U ′,

(6.59)

The first few slow-roll parameter are thus

ε̃ =
1

2

( ∼
U ′
∼
U

)2

η̃ =

∼
U ′′
∼
U

ζ̃ =

∼
U ′
∼
U ′′′
∼
U2

.

(6.60)

Now it is clear that φ̇2 = 2/3
∼
Uε and with (6.50) we get that χ̇2 = 2/3Uε thus

validating our assumption that χ̇2 is small in slow-roll. What is left to determine is

when does this approximation break down and when the higher-order terms in Xq

should be taken in to account.
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6.3 Higher-order gravity frame representation

Now we return to the second method of arriving to these slow-roll equations. We

derive the equations of motion for the action (6.9) and show that by performing

the disformal transformation they are equal to the Einstein frame equations. We

derived the equations of motion for the higher-order terms in the most general case

in the chapter 5.3. In the case of the action (6.1) and vanishing torsion these simplify

considerably. For the metric we obtain(
1

2
+ βR

)
Rµν + αR λ

µ Rνλ −
1

2
∂µχ∂νχ

− 1

2
gµν

[
1

2
(1 + βR)R +

α

2
RσλR

σλ + Lm
]

= 0,

(6.61)

where Lm is defined in (6.11) as before. For the connection we get

∇σ

{√
−g [(1 + 2βR) gµν + 2αRµν ]

}
= 0. (6.62)

We see that this is a metric compatibility condition for a metric defined with

√
−qqµν =

√
−g [(1 + 2βR) gµν + 2αRµν ] . (6.63)

Thus, the connection is the Levi–Civita connection for the metric qµν . We need to

solve qµν in terms of gµν and the scalar field χ. This is accomplished by solving R

and Rµν . We can start by solving R, which is easily solved by taking the trace of

(6.61). This gives

R = gµν∂µχ∂νχ+ 4U(χ). (6.64)

Solving Rµν is more complicated. In a FLRW universe the Ricci tensor must be of

the form

Rµν = R1(gλσ, χ)gµν +R2(gλσ, χ)uµuν . (6.65)

We can plug in this ansatz into the the equations of motion for the metric (6.61)

and obtain a system of equations for R1 and R2 (∂µχ = χ̇uµ):(
1

2
+ βR

)
R1+αR2

1 −
1

4

(
R + βR2 + 2Lm

)
− α

4

(
4R2

1 +R2
2 − 2R1R2

)
= 0,

(6.66)

(
1

2
+ βR

)
R2 − αR2

2 + 2αR1R2 −
1

2
χ̇2 = 0, (6.67)

This system of equations is solved by

R±1 =
1 + 12αLm + 2R(3α + 2β)(1 + βR)− 3αχ̇2 ± A

8(α + 2αβR)

R±2 =
1 + 4αLm + 2R(α + 2β)(1 + βR)− αχ̇2 ± A

2α(1 + 2βR)
,

(6.68)
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with

A ≡
√
−4α(1 + 2βR)2χ̇2 + [1 + 4αLm + 2R(α + 2β)(1 + βR)− αχ̇2]2. (6.69)

We can now solve the metric qµν from (6.63) giving

qµν =
(1 + 2βR + 2αR1)gµν + 2αR2u

µuν√
(1 + 2βR + 2αR1)3 [(1 + 2βR + 2αR1)− 2αR2]

≡ 1

q1

gµν + q3u
µuν

(6.70)

where we have used the previously found identity (6.39) to write the determinant

of qµν in terms of gµν and χ. We can use the previously obtained identity for the

inverse metric (6.29) and write the inverse, for later convenience, as

qµν ≡ q1gµν + q2uµuν , q2 =
q3

1
q1

(
q3
q1
− 1

q1

) (6.71)

The solution (6.68) with the minus signs will correspond to the solution found with

the earlier method and it is in fact the inverse of the transformation found before.

The second solution (6.68) with the plus signs turns out to be non-invertible, at

least in the inflationary region, and thus was not found by the earlier method.

Additionally, the resulting disformal transformation does not preserve the Lorentzian

signature of the metric qµν in the regime where χ̇2 � U(χ). With the positive signed

solution the constraint for preserving the Lorentzian signature (6.24), to zeroth order

in χ̇2, simplifies to

− [1 + 8(α + β)U(χ)] > 0, (6.72)

which is not satisfied. In contrast with the negatively signed solution the constraint

to zeroth order becomes

1 + (2α + 8β)U(χ) > 0, (6.73)

which is satisfied. The positively signed solution (6.68) is thus dismissed as unphys-

ical.

Now let us continue deriving the equations of motion. We can start by computing

the connection explicitly by plugging in the solution of qµν into the definition of Levi–

Civita connection. After a straightforward simplification, with the abbreviations

(6.70),(6.71) and making use of (3.2), we obtain

◦
Γσµν(q) =

◦
Γσµν(g) +

[
1

2
q̇1

(
q3 −

1

q1

)
+ q3q1H

]
uσhµν

+
1

2

[
1

q1

(q̇2 − q̇1) + q3(q̇1 − q̇2)

]
uσuµuν +

1

2

q̇1

q1

hσ(µuν)

≡
◦
Γσµν(g) + Lσµν ,

(6.74)

50



CHAPTER 6. HIGHER-ORDER GRAVITY AND HIGGS INFLATION

where H = ȧ/a is the Hubble parameter and hµν is the metric of the spacelike slices.

We also used the fact that uλ
◦
Γλµν(g) = Hhµν in FLRW universe. Now we can plug

this into the definition of the Riemann tensor and see how it is modified, this gives

R(q)
µν = R(g)

µν +
◦
∇(g)
λ Lλµν −

◦
∇(g)
ν Lλµλ + LλλσL

σ
µν − LλνσLσλµ

≡ R(g)
µν + L1gµν + L2uµuν .

(6.75)

Now instead of plugging this into the full equations of motion for the metric we can

plug this into (6.65) and we get

R(g)
µν = (R1 − L1)gµν + (R2 − L2)uµuν , (6.76)

where L1 and L2 have to be explicitly computed from (6.74) and (6.75). This is a

straightforward but tedious task and so we shall not do it explicitly here. When

L1, L2 are computed using the solutions (6.68) for R−1 , R
−
2 and plugged into (6.76)

we get the Friedmann equations. The full equation is cumbersome to write down

and we will not need it for our purposes, thus we will again expand in powers of χ̇

and do not write down terms O(χ̇2). For the negatively signed solution {R−1 , R−2 }
we get

3H2 = U − 12Hχ̇U ′ [α + 3β + 3(α2 + 6αβ + 8β2)]

[1 + (4α + 8β)U ] [1 + (2α + 8β)U ]
+O(χ̇2). (6.77)

The equations of motion for the scalar field are not modified and are simply

χ̈+ 3Hχ̇ = −U,χ. (6.78)

These are the equations of motion in the higher-order gravity frame. To see that

these are indeed equivalent to the Einstein frame counterparts, that we obtained

earlier, we need to know how the Hubble parameter and the time derivatives change

under the disformal transformation.

These transformation rules can be seen by looking at the invariant line element.

With gµν = γ1qµν + γ2uµuν :

ds2 = gµνdx
µdxν = γ2uµuνdx

µdxν + γ1qµνdx
µdxν

= −(γ1 − γ2)dt2 + γ1a
2(t)δijdx

idxj,
(6.79)

where we used a frame uµ = (−1, 0, 0, 0) and qµν = diag(−1, a2, a2, a2). From this

we see that the scale factor and time coordinate transform as

dt→
√
γ1 − γ2dt

a(t)→ √γ1a(t).
(6.80)

Thus the Hubble parameter transforms like

H → 1√
γ1 − γ2

[
H +

1

2

γ̇1

γ1

]
. (6.81)
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Applying these rules to the scalar field equations of motion (with our previous

definitions γ1 = 1/q1 and γ2 = −q2/(q1 − q2)) and keeping only first order terms in

χ̇ we get

[1 + (α + 4β)U ] (χ̈+ 3Hχ̇) = −U,χ. (6.82)

Now making the field redefinition (6.50) we get the same result as before (6.58).

The equation (6.77) is also straightforward. Plugging in the transformations and

keeping only linear terms we get

3H2 [1 + (2α + 8β)U ]− 12Hχ̇U ′ [α + 3β + 3(α2 + 6αβ + 8β2)]

1 + (4α + 8β)U

= U − 12Hχ̇U ′ [α + 3β + 3(α2 + 6αβ + 8β2)]

1 + (4α + 8β)U
+O(χ̇2),

(6.83)

which simplifies to the previous result (6.57). This was just to show another way

of obtaining the slow-roll equations in the Einstein frame. We will not pursue the

analysis in the higher-order gravity frame further.

With the slow-roll equations of motions in the Einstein frame we are now ready

to analyze how the inflationary behavior is modified due to the higher-order terms.

6.4 Changes to inflationary observables

We can now see how the inflationary observables are modified by the higher-order

curvature terms. It is easier to write the slow-roll parameters (6.60) with the field

variable χ. Using (6.50) and (6.51), simple manipulations yield

ε̃U =
1

2

( ∼
U ′
∼
U

)2

=
εU

1 + (2α + 8β)U(χ)

η̃U =

∼
U ′′
∼
U

= η − 3
(2α + 8β)U(χ)

1 + (2α + 8β)U(χ)
ε,

(6.84)

where εU = 1/2(U,χ/U)2, ηU = U,χχ/U are the slow-roll parameters that we obtained

previously without the higher-order curvature terms in chapter 4. The field value

at the end of inflation is again obtained from |η̃(χend)| = 1, which in the large field

limit
√
ξχ� 1 results in the same value as obtained earlier

χend =
1

2
√
ξ

ln (32ξ) . (6.85)

We also find that in the slow-roll approximation the formula for the number of

e-folds is unchanged

N∗ '
∫ φ∗

φend

dφ√
2ε̃

=

∫ χ∗

χend

dχ√
2εU

. (6.86)

We thus obtain the same relation between the field and the number of e-folds

χ(N∗) =
1

2
√
ξ

ln (32ξN∗) . (6.87)
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This holds assuming that our expansion in terms of the kinetic term of the field is

still valid when approaching the end of inflation. This needs further investigations.

Assuming our expansion to be valid we see that the scalar spectrum amplitude

is unchanged

As =
1

24π2

∼
U

ε̃
=

1

24π2

1 + (2α + 8β)U

1 + (2α + 8β)U

U

εU
=

1

24π2

U

εU
. (6.88)

Thus matching this to the observed amplitude gives the same requirement for the

non-minimal coupling (4.65). The tilt of the scalar spectrum is also unchanged to

first order in the slow-roll parameters

ns − 1 = −6ε̃+ 2η̃ = −6
εU

1 + (2α + 8β)U(χ)
+ 2ηU − 6

(2α + 8β)U(χ)

1 + (2α + 8β)U(χ)
εU

= −6εU + 2ηU .
(6.89)

What changes is the spectrum of tensor perturbations. The amplitude

At =
2

3π2

U

1 + (2α + 8β)U
, (6.90)

tilt of the spectrum

nt = −2ε̃ =
−2εU

1 + (2α + 8β)U
, (6.91)

and the tensor-to-scalar ratio

r = 16ε̃ =
16εU

1 + (2α + 8β)U
(6.92)

are all suppressed by the same factor. The observables in terms of the number of

e-folds (approximating with ξ � 1) become

At '
λ

λ(2α + 8β) + 4ξ2
(6.93)

nt ' −
ξ

2N2
∗ [λ(α + 4β) + 2ξ2]

(6.94)

r ' − 4ξ

N2
∗ [λ(α + 4β) + 2ξ2]

. (6.95)

Thus we see that both higher-order curvature terms βR2 and αR(µν)R
(µν) have the

same effect of suppressing the tensor perturbation spectrum but keeping the scalar

perturbation spectrum unchanged. Again when we take the limit α→ 0 we recover

the results of [76].

Higgs inflation and higher-order gravity in the metric formulation has been stud-

ied in the literature. In ref. [77] Higgs inflation with the addition of
◦
R2 term was

analyzed. As we saw in section 5.1 in the metric formulation there is additional de-

grees of freedom of gravity and the inflationary model becomes a multi field model.

It was found out that in the case of metric formulation the pure Higgs inflation,

where the inflation is driven completely by the Higgs field, is ruined.
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Conclusions

We have reviewed the metric and Palatini formulations in a comparative manner

and discussed their subtle differences in the case of the Einstein–Hilbert action and

more obvious differences when considering higher-order theories of gravity.

We reviewed Higgs inflation in both the metric and Palatini formulations and

obtained the inflationary observables in terms of the number of e-folds. We computed

the numerical values for the observables, and saw that they are compatible with

current observational bounds. The tensor-to-scalar ratio is suppressed by the large

non-minimal coupling parameter ξ in the Palatini formulation r ' 2.1 × 10−13λ−1,

compared to r ' 0.00396 in metric formulation. The spectral tilt is also slightly

smaller in Palatini formulation due to the different reheating period. These allow us

to distinguish Palatini Higgs inflation from the metric Higgs inflation. This could

possibly be accomplished by the next generation of planned experiments [78].

We briefly discussed the problems of ghost modes appearing in both metric and

Palatini formulations when considering higher-order gravity. This problem requires

further research. We derived the equations of motion for all the different parity

preserving quadratic curvature invariants in the Palatini formulation.

When we considered adding higher-order curvature terms to the Higgs inflation

scenario we simplified our action to contain only the symmetric part of the Ricci

tensor. Actions constructed this way do not suffer from ghosts, due to the fact that

no new gravitational degrees of freedom are present. This also allows us to transform

our action to the Einstein frame. By adding only terms βR2 + αR(µν)R
(µν) we were

able to find the Einstein frame representation in the inflationary region by finding

an approximate solution in powers of the kinetic term of the inflaton field, i.e. the

small parameter χ̇2/H2. This method could possibly be applied to more general

Lagrangians than the one we considered here. However, the region of validity of this

approximation needs further investigation. Furthermore, the two parameters α and

β were assumed to be positive to assure correct signs for the kinetic terms. However,

there could be other valid regions for these parameters that give the correct sings,

which were not explored in this thesis.

With the assumption that we can extrapolate the approximate solution to the

end of inflation the number of e-folds turns out to be unchanged when comparing to

the case where no higher-order terms are present. This results to the same relation

between the number of e-folds and the inflation field. The scalar amplitude and
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tilt of the scalar spectrum are also unchanged. The changes appeared in the tensor

perturbation spectrum. The amplitude, spectral tilt and the tensor to scalar ratio

are all suppressed by the combination of the couplings of the higher-order terms and

the Higgs self coupling: 1 + (2α + 8β)U . We conclude that in this simple case the

higher-order curvature terms do not ruin the Palatini Higgs inflation.
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Appendix A

Useful identities

A.1 Palatini identity

Start from the definition of the Riemann tensor (0.4) and take the variation with

respect to the connection

δRρ
µλν = ∂λδΓ

ρ
νµ + ΓρλσδΓ

σ
νµ + δΓρλσΓσνµ − (λ↔ ν). (A.1)

Notice that difference of connections is a tensor, hence δΓρνµ is a tensor, so the

covariant derivative is well defined

∇λ(δΓ
ρ
νµ) = ∂λδΓ

ρ
νµ + ΓρλσδΓ

σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ. (A.2)

Now gathering terms

δRρ
µλν =

[
∂λδΓ

ρ
νµ + ΓρλσδΓ

σ
νµ − ΓσλµδΓ

ρ
νσ

]
−
[
∂νδΓ

ρ
λµ + ΓρνσδΓ

σ
λµ − ΓσνµδΓ

ρ
λσ

]
.

(A.3)

Notice the terms inside the brackets almost equal the covariant derivative of the

variation of the connection, we can make it equal by adding and subtracting the

missing terms

δRρ
µλν =

[
∂λδΓ

ρ
νµ + ΓρλσδΓ

σ
νµ − ΓσλµδΓ

ρ
νσ − ΓσλνδΓ

ρ
σµ

]
−
[
∂νδΓ

ρ
λµ + ΓρνσδΓ

σ
λµ − ΓσνµδΓ

ρ
λσ − ΓσνλδΓ

ρ
σµ

]
+ T σλν δΓ

ρ
σµ

(A.4)

and we get the result

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) + T σλν δΓ

ρ
σµ. (A.5)

A.2 Tensor densities

A general tensor density T of weight ω is an object that transforms as

T′
µ1...µn

ν1...νn
=

∣∣∣∣∣∂xα∂x′β

∣∣∣∣∣
ω
∂x′µ1

∂xσ1
. . .

∂x′µn

∂xσn
. . .

∂xτ1

∂xν1
. . .

∂xτn

∂xνn
Tσ1...σnτ1...τn , (A.6)

where || denotes the determinant. Scalar density of weight ω transforms as

ρ′ =

∣∣∣∣∣∂xα∂x′β

∣∣∣∣∣
ω

ρ. (A.7)
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A way of looking at a scalar density of weight one is as a single independent compo-

nent of a covariant antisymmetric tensor ρ = ρ[µ1...µn] = ρµ1...µn , see e.g. [18, ch. II].

It is easy to see that a single component of this transforms as a scalar density. Now

∇µ(ρν1...νn) = ∂µρν1...νn − Γσµν1ρσν2...νn − Γσµν2ρν1σ...n − ...− Γσµνnρν1...σ. (A.8)

Since all the non zero components are equal up-to a sign we can focus on one of

them

∇µ(ρ0...n) = ∂µρ0...n − Γσµ0ρσ1...n − Γσµ1ρ0σ...n − ...− Γσµnρ0...σ, (A.9)

we see that this equals

∇µρ = ∂µρ− Γσµσρ. (A.10)

This is the result for a scalar density of weight +1. From this it is easy to generalize

to arbitrary scalar density of weight ω by requiring that the covariant derivative of

such a density transforms as a (0, 1)−tensor density. One finally obtains

∇µρ = ∂µρ− ωΓσµσρ, (A.11)

for a scalar density ρ of weight ω.
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Appendix B

Equations of motion in the Palatini

formulation

Here we list the equations of motion for the different curvature invariants in the

action (5.25) in Palatini formulation.

• L = R2

2RR(αβ) −
1

2
gαβR

2 = 0. (B.1)

2∇λ(
√
−gRgνλ)δµσ − 2∇σ(

√
−gRgµν)

+ 2
√
−gR

[
gµνT λλν − gνρT λλρ δµσ + gνλT µσλ

]
= 0.

(B.2)

• L = RµνRµν

R λ
α Rβλ +Rλ

αRλβ −
1

2
gαβR

µνRµν = 0. (B.3)

2∇λ(
√
−gRµλ)δνσ − 2∇σ(

√
−gRµν)

+ 2
√
−g
[
RµνT λλσ −RµρT λλρ δ

ν
σ +RµλT νσλ

]
= 0.

(B.4)

• L = RµνRνµ

R λ
α Rλβ +Rλ

αRβλ −
1

2
gαβR

µνRνµ = 0. (B.5)

2∇λ(
√
−gRλµ)δνσ − 2∇σ(

√
−gRνµ)

+ 2
√
−g
[
RνµT λλσ −RρµT λλρ δ

ν
σ +RλµT νσλ

]
= 0.

(B.6)

• L = R̂µνR̂µν

2Rµ(α|ν|β)R̂
µν + R̂µαR̂

µ
β − R̂ανR̂

ν
β −

1

2
gαβR̂

µνR̂µν = 0. (B.7)

2∇λ(
√
−ggµλR̂ ν

σ )− 2∇λ(
√
−ggµνR̂ λ

σ )

+ 2
√
−g
[
gµνR̂ λ

σ T
ρ
ρλ − g

µλR̂ ν
σ T

ρ
ρλ + gµλR̂ ρ

σ T
ν
ρλ

]
= 0.

(B.8)

• L = R̂µνR̂νµ

2Rµ(α|ν|β)R̂
νµ − 1

2
gαβR̂

µνR̂νµ = 0. (B.9)

2∇λ(
√
−ggµλR̂ν

σ)− 2∇λ(
√
−ggµνR̂λ

σ)

+ 2
√
−g
[
gµνR̂λ

σT
ρ
ρλ − g

µλR̂ν
σT

ρ
ρλ + gµλR̂ρ

σT
ν
ρλ

]
= 0.

(B.10)
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• L = RµνR̂
µν

Rµ(α|ν|β)R
µν +

1

2
RµαR̂

µ
β +

1

2
RµβR̂

µ
α −

1

2
gαβRµνR̂

µν = 0. (B.11)

∇λ(
√
−gR̂µλ)δνσ −∇σ(

√
−gR̂µν)

+∇λ(
√
−ggµλR ν

σ )−∇λ(
√
−ggµνR λ

σ )

+ 2
√
−g
[
R̂µνT λλσ − R̂νλT ρρλ δ

µ
σ + R̂νλT µσλ

]
+ 2
√
−g
[
gµνR λ

σ T
ρ
ρλ − g

µλR ν
σ T

ρ
ρλ + gµρR λ

σ T
ν
λρ

]
= 0.

(B.12)

• L = RµνR̂
νµ

Rµ(α|ν|β)R
νµ +

1

2
RβνR̂

ν
α +

1

2
RανR̂

ν
β −

1

2
gαβRµνR̂

νµ = 0. (B.13)

∇λ(
√
−gR̂λµ)δνσ −∇σ(

√
−gR̂νµ)

+∇λ(
√
−ggµλRν

σ)−∇λ(
√
−ggµνRλ

σ)

+ 2
√
−g
[
R̂νµT λλσ − R̂λνT ρρλ δ

µ
σ + R̂λνT µσλ

]
+ 2
√
−g
[
gµνRλ

σT
ρ
ρλ − g

µλRν
σT

ρ
ρλ + gµρRλ

σT
ν
λρ

]
= 0.

(B.14)

• L = R′µνR
′µν

2R′αµR
µ
β −

1

2
gαβR

′
µνR

′µν = 0. (B.15)[
4∇λ(

√
−gR′νλ) + 4

√
−gR′λνT ρρλ + 2

√
−gR′λρT νλρ

]
δµσ = 0. (B.16)

• L = R[µν]R
′µν

R[βν]R
′ ν
α +R[αν]R

′ ν
β −

1

2
gαβR[µν]R

′µν = 0. (B.17)[
4∇λ(

√
−gR[νλ]) + 4

√
−gT ρρλR

[λν] + 2
√
−gR[λρ]T νλρ

]
δµσ

+
1

2

[
∇σ(
√
−gR′νµ)−∇λ(

√
−gR′µλ)δνσ +

√
−gR′µλT ρρλ δ

ν
σ

−
√
−gR′νµT ρρσ +

√
−gT νσλR′µλ

]
= 0.

(B.18)

• L = R̂[µν]R
′µν

Rµ(α|ν|β)R
′µν + R̂[µβ]R

′µ
α −

1

2
gαβR̂[µν]R

′µν = 0. (B.19)[
4∇λ(

√
−gR̂[νλ]) + 4

√
−gR̂[λν]T ρρλ +

√
−gR̂[λρ]T νλρ

]
δµσ

∇λ(
√
−ggµλR′ νσ )−∇λ(

√
−ggµνR′ νσ ) +

√
−g
[
gµνR′ λσ T

ρ
ρλ

−gµλR′ νσ T
ρ
ρλ + gµλR′ ρσ T

ν
ρλ

]
= 0.

(B.20)
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• L = RµνρλR
µνρλ

RµαρλR
µ ρλ
β + 2RµνραR

µνρ
β −RανρλR

νρλ
β − 1

2
gαβRµνρλR

µνρλ = 0. (B.21)

4∇λ(
√
−gR µνλ

σ ) + 2
√
−g
[
2R µλν

σ T ρρλ +R µλρ
σ T νλρ

]
= 0. (B.22)

• L = RµνρλR
νµρλ

2RµναλR
νµ λ
β −

1

2
gαβRµνρλR

νµρλ = 0. (B.23)

4∇λ(
√
−gRµ νλ

σ ) + 2
√
−g
[
2Rµ λν

σ T ρρλ +Rµ λρ
σ T νλρ

]
= 0. (B.24)

• L = RµνρλR
ρλµν

Rµν
ραR

ρ
βµν +Rµν

ρβR
ρ
αµν +−1

2
gαβRµνρλR

ρλµν = 0. (B.25)

2∇λ(
√
−gRνλ µ

σ )− 2∇λ(
√
−gRλν µ

σ )

+ 2
√
−g
[
Rλν µ

σ T
ρ
ρλ −R

νλ µ
σ T

ρ
ρλ +Rλρ µ

σ T
ν
λρ

]
= 0.

(B.26)

• L = RµνρλR
ρνµλ

Rµ λ
βν R

ν
αµλ +Rµν

ρβR
ρ
νµα +−1

2
gαβRµνρλR

ρνµλ = 0. (B.27)

2∇λ(
√
−gRνµ λ

σ )− 2∇λ(
√
−gRλµ ν

σ )

+ 2
√
−g
[
Rλµ ν

σ T
ρ
ρλ −R

νµ λ
σ T

ρ
ρλ +Rρµ λ

σ T
ν
λρ

]
= 0.

(B.28)

• L = RµνρλR
νρµλ

Rµ λ
νβ R

ν
αµλ +Rµ λ

ν βR
ν
λµα −

1

2
gαβRµνρλR

νρµλ = 0. (B.29)

∇λ(
√
−gRν µλ

σ )−∇λ(
√
−gRλ µν

σ )

+∇λ(
√
−gRνµ λ

σ )−∇λ(
√
−gRµλ ν

σ )

+
√
−g
[
Rλ µν

σ T ρρλ −R
ν µλ
σ T ρρλ +Rλ µρ

σ T νλρ
]

+
√
−g
[
Rµλ ν

σ T
ρ
ρλ −R

νµ λ
σ T

ρ
ρλ +Rλµ ρ

σ T
ν
λρ

]
= 0.

(B.30)

• L = RµνρλR
µρνλ

2Rµν(β|λR
µ νλ
α) +RλµνβR

λνµ
α −RβµνλR

νµλ
α − 1

2
gαβRµνρλR

µρνλ = 0. (B.31)

2∇λ(
√
−gR νµλ

σ )− 2∇λ(
√
−gR λµν

σ )

+ 2
√
−g
[
R λµν
σ T ρρλ −R

νµλ
σ T ρρλ +R λµρ

σ T νλρ
]

= 0.
(B.32)
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Appendix C

Details of the series solution

C.1 Variation of transformed action

Here the variation of the Legendre transformed action (6.5), where the auxillary

field Σµν is written in terms of qµν and gµν is performed with respect to the metric

gµν .

The part of the Lagrangian density depending on gµν is

√
−gLg ≡ Lg = −

√
−g
[
∂F

∂Σµν

Σµν(q, g)− F (q, g)− Lm(g, χ)

]
. (C.1)

Written out in terms of Σµν

Lg = −
√
−g
[
βΣ2 + αΣλσΣλσ + U(χ) +

1

2
gλσ∂λχ∂σχ

]
, (C.2)

where Σ ≡ gµνΣµν . The variation is

δLg =−
√
−g
[
2βΣδΣ + 2αgλγΣλσδ(g

ρσΣγρ) +
1

2
∂λχ∂σχδg

λσ

]
+

1

2

√
−ggµνLgδgµν

(C.3)

First looking at δΣ separately

δΣ = δ

(
−4

2α + 8β
+

1

2α + 8β

√
−q√
−g

qσλgσλ

)
, (C.4)

with the identity δ
√
−g = 1/2

√
−ggµνδgµν we have

δΣ =
1

2α + 8β

√
−q√
−g

(
qµν − 1

2
qσλgσλg

µν

)
δgµν . (C.5)

Now separately looking at δΣµν

δΣµν = δ

[
1

2α

√
−q√
−q

qσλgσµgλν −
1

2α + 8β

(
1 +

β

α

√
−q√
−q

qσλgσλ

)
gµν

]
, (C.6)

which becomes

δΣµν =− δgµν
2α + 8β

+

√
−q√
−g

[
− 1

4α
qσλgσµgλνg

ργδgργ +
1

α
qσλgσµδgλν

− β

α(2α + 8β)

(
qλσgλσδgµν −

1

2
qσλgσλgµνg

ργδgργ + qσλgµνδgσλ

)]
.

(C.7)
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With these out of the way it is just a question of plugging these in to (C.3) and

simplifying the expression. In the end we get

δLg =
√
−g
{
− 1

4(α + 4β)

√
−q√
−g

qσλgσµgλν

+
1

4α

q

g

[
qσλqρδgλδgρνgσµ −

β

(α + 4β)
qδρgδρq

σλgσµgλν

]
+

1

2
gµν

[
1

α + 4β

(
β

8α

q

g
qλσgλσq

ρδgρδ

)
− q

g

1

8α
qλσqδρgλδgσρ

]
− 1

2
∂µχ∂νχ+

1

2
gµν

[
U(χ) +

1

2
gλσ∂λχ∂σχ

] }
δgµν .

(C.8)

C.2 Series solution of the modified scalar sector

Here a few coefficients for the approximate solution (6.46) of the disformal transfor-

mation (6.17) parameters and the scalar sector with a few more terms are presented.

a0 =
1

1 + (2α + 8β)U(χ)

b0 =
2α

[1 + (2α + 8β)U(χ)] [1 + (4α + 8β)U(χ)]

a1 = − α + 2β

1 + (4α + 8β)U

b1 =
4α [−2(α + β)− (3α + 4β)(3α + 8β)U − 8(α + 2β)2(α + 4β)U2]

(1 + 2αU + 8βU)(1 + 4αU + 8βU)3

a2 =
α [7α + 10β + 4(3α + 5β)(3α + 8β)U + 40(α + 2β)2(α + 4β)U2]

2(1 + 2αU + 8βU)(1 + 4αU + 8βU)3

b2 =
2α

(1 + 2αU + 8βU)(1 + 4αU + 8βU)5

×
[

64α6U4 + 4β2(1 + 8βU)4 + 128α5U3(3 + 8βU)

+ 5αβ(1 + 8βU)3(5 + 16βU) + 2α3U(1 + 8βU)(85 + 128βU(7 + 11βU))

+ 4α4U2(111 + 8βU(131 + 208βU)) + (α + 8αβU)2(21 + 2βU(173 + 328βU))

]
(C.9)
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The scalar sector with few more terms

Lm =− U

1 + (2α + 8β)U
−

1
2
Xq

1 + (2α + 8β)U

+
α2U + β(1 + 8βU) + α(1 + 6βU)

2 [1 + (2α + 8β)U ] [1 + (4α + 8β)U ]
X2
q

− α [12α3U2 + 3β(1 + 8βU)2 + 2α2U(7 + 48βU) + 3α(1 + 18βU + 80β2U2)]

2(1 + 2αU + 8βU)(1 + 4αU + 8βU)3
X3
q

+
3α

8(1 + 2αU + 8βU)(1 + 4αU + 8βU)5
X4
q

[
64α6U4 . . .

(C.10)
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