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We propose a new framework of Hessian-free force-gradient integrators that do not require the analytical 
expression of the force-gradient term based on the Hessian of the potential. Due to that the new class of 
decomposition algorithms for separable Hamiltonian systems with quadratic kinetic energy may be particularly 
useful when applied to Hamiltonian systems where an evaluation of the Hessian is significantly more expensive 
than an evaluation of its gradient, e.g. in molecular dynamics simulations of classical systems. Numerical 
experiments of an N-body problem, as well as applications to the molecular dynamics step in the Hybrid Monte 
Carlo (HMC) algorithm for lattice simulations of the Schwinger model and Quantum Chromodynamics (QCD) 
verify these expectations.

1. Introduction

The numerical integration of Hamiltonian systems imposes challenging demands on the numerical integration scheme. Particularly, the phase 
space (𝒑,𝒒) with generalized coordinates 𝒒 and conjugate momenta 𝒑 is a symplectic manifold, giving rise to the need of geometric numerical integration

[1]. In this paper, we consider separable Hamiltonian systems (𝒑,𝒒) =  (𝒑) + (𝒒) with kinetic energy of the form

 (𝒑) = 1
2𝒑

⊤𝑴−1𝒑, (1)

where 𝑴 is a constant symmetric positive definite matrix. This particular structure has a wide range of applications in the field of many-body 
problems, e.g. classical mechanics [2], quantum mechanics [3], statistical mechanics [4] and lattice field theories [5]. In the latter case, the phase 
space is the cotangent bundle over a base space that is a Lie group manifold. Moreover, any system of second order ODEs 𝑦̈ = 𝑓 (𝑦) is reduced to the 
equations of motion under consideration in this work.

There exist many approaches for geometric numerical integration of Hamiltonian systems. Recently, symplectic generalized additive Runge–Kutta 
(GARK) schemes [6,7] have been developed. An alternative approach based on the variational principle has been discussed in [8]. Both approaches 
are restricted to Euclidean space. An extension of symplectic partitioned Runge–Kutta methods to the Lie group setting has been presented in [9]. 
However, the general framework does not include time-reversibility, another important feature of Hamiltonian systems. For separable Hamilto
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nian systems, splitting methods allow for the derivation of explicit geometric numerical integration schemes of arbitrarily high convergence via 
composition techniques [10--12].

By exploiting the special structure of the kinetic energy  (𝒑), force-gradient integrators (FGIs) [13,14] allow for an efficient computational process. 
FGIs can be regarded as splitting methods, applied to a modfied potential, resulting in more accurate numerical approximations with respect to the 
original system. One drawback of FGIs is the necessity of deriving the so-called force-gradient term (FG-term), containing the Hessian of the potential 
(𝒒). To our knowledge, the idea of using the Hessian of the potential (𝒒) to enhance splitting methods dates back to [15,16] and has been 
further investigated in [17]. Recently, force-gradient integrators have been successfully developed in the more general context of port-Hamiltonian 
(pH) systems to derive higher order schemes fufilling the dissipation inequality of pH systems and thus breaking the order-two limit for splitting 
methods [18]. Another possible drawback is the evaluation cost of the FG-term. In molecular dynamics simulations of classical systems, for example, 
the evaluation typically is 2-3 times more expensive than a usual force evaluation [12]. One can overcome this issue by approximating the FG-term, 
as proposed in [19] and further investigated in [20] for a particular FGI. In the context of lattice quantum chromodynamics (QCD), the approximation 
of the FG-term was initially applied to another FGI in [21]. The adapted FGI from [21] has been applied to the two-dimensional Schwinger model 
where we implemented the FG-term analytically [22] and in large scale lattice QCD simulations, see e.g. [23--25]. Numerical results highlight that 
the Hessian-free variant results in a more efficient computational process.

In this paper we will generalize the idea of approximating the FG-term for the entire class of FGIs introduced in [13]. This will be applied not 
only in case of lattice field theories, but in general for all separable Hamiltonian systems with kinetic energy of the form (1), where the new class of 
Hessian-free force-gradient integrators can be utilized. We will discuss the geometric properties, a rfined error analysis of the approximation, resulting 
in explicit formulae for the error terms, as well as a backward error analysis giving insight into the long-time behavior of Hessian-free FGIs.

The paper is organized as follows. In Section 2, we will briefly introduce Hamiltonian mechanics and its demands on the numerical integration 
scheme. Section 3 introduces the new class of Hessian-free force-gradient integrators. In Section 4, Hessian-free force-gradient integrators with up to 
eleven stages are derived. Here, (weighted) norms of the leading error coefficients are dfined as aggregated functions of the principal error term. By 
performing a global minimization of this aggregated function, we obtain optimal sets for the integrator coefficients. In Section 5, numerical results 
for three different test examples are discussed: a) the outer solar system, a 𝑁 -body problem with 𝑴 ≠ Id, b) the two-dimensional Schwinger model 
where we can compare the performance of exact FGIs and Hessian-free FGIs as the analytical expression of the FG-term is available [22], and c) 
four-dimensional gauge field simulations in lattice QCD with two heavy Wilson fermions. Here, the physical degrees of freedoms are elements of the 
non-Abelian matrix Lie group SU(3) and all tests are performed using the openQCD implementation [26,27]. The paper concludes with a summary 
and outlook for future research.

2. Hamiltonian mechanics and geometric numerical integration

In this section, we will briefly introduce Hamiltonian mechanics on matrix Lie groups. Moreover we will state the demands on the numerical 
integration scheme for separable Hamiltonian systems

(𝒑,𝒒) =  (𝒑) + (𝒒) = 1
2𝒑

⊤𝑴−1𝒑+ (𝒒) (2)

with constant symmetric positive definite matrix 𝑴 . Without loss of generality,1 we consider a separable Hamiltonian system of the form

(𝒑,𝒒) =  (𝒑) + (𝒒) = 1
2 ⟨𝒑,𝒑⟩+ (𝒒). (3)

2.1. Hamiltonian mechanics

We consider a phase space (𝒑,𝒒) ∈ 𝑇 ∗ where 𝑇 ∗ denotes the cotangent bundle over a base space that is a 𝑑-dimensional matrix Lie group 
manifold  and whose fibers are isomorphic to its Lie algebra g. The linear space g has a basis, consisting of generators 𝑻 𝑖, 𝑖 = 1,… , 𝑑. For matrix Lie 
groups, there exists a matrix representation 𝑸 of the Lie group element 𝒒 ∈  and 𝑷 ∶= 𝑝𝑖𝑻 𝑖 ∈ g of the momentum 𝒑. The generators 𝑻 𝑖 are linked 
to the Lie group elements 𝑸 via the right-invariant linear differential operator 𝒆𝑖 whose action on 𝑸 is dfined by

𝒆𝑖(𝑸) = −𝑻 𝑖𝑸. (4)

The operator (4) can be regarded as a generalization of the vector fields 𝜕∕𝜕𝒒 in the Lie group space. The cotangent space has a natural symplectic 
structure 𝝎 = −d𝒑 that is closed, d𝝎 = 0. The fundamental two-form 𝝎 dfines the Poisson bracket of two arbitrary Hamiltonian vector fields 𝑨̂, 𝑩̂

corresponding to zero-forms 𝑨,𝑩 as {𝑨,𝑩} = −𝝎(𝑨̂, 𝑩̂). Hamilton’s equations are most naturally expressed in terms of the Lie derivative operators

̂ ∶= { , ⋅} and ̂ ∶= { , ⋅},

resulting in the additively partitioned system of ordinary differential equations (ODEs)(
𝑷̇

𝑸̇

)
=
(
{ ,𝑷 }
{ ,𝑸}

)
+
(
{ ,𝑷 }
{ ,𝑸}

)
=
(
{ ,𝑷 }

𝟎

)
+
(

𝟎
{ ,𝑸}

)
=
(
̂𝑷

𝟎

)
+
(

𝟎
̂ 𝑸

)
.

For matrix Lie groups, there exist structure constants 𝑐𝑖
𝑗𝑘

satisfying [𝑻 𝑗 ,𝑻 𝑘] = 𝑐𝑖
𝑗𝑘
𝑻 𝑖. They occur in the Lie derivative operator

̂ = 𝑝𝑖𝒆𝑖 + 𝑐
𝑗

𝑘𝑖
𝑝𝑗𝑝

𝑘 𝜕

𝜕𝑝𝑖
(5)

1 With the Cholesky decomposition 𝑴 ∶=𝑳⊤𝑳 and transformed momenta 𝒑̃ ∶=𝑳𝒑, any system (2) can be written as a system of the form (3).
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of the kinetic part. For Abelian Lie groups (e.g. U(1) and SO(2)), it holds 𝑐𝑖
𝑗𝑘

= 0 for all 𝑖, 𝑗, 𝑘. In case of semisimple2 Lie groups [28] like SU(𝑛) (𝑛 ≥
2),SO(𝑛) (𝑛 ≥ 3),SL(𝑛) and Sp(𝑛) (𝑛 ≥ 1), it holds the total antisymmetry of the structure constants 𝑐𝑗

𝑘𝑖
𝑝𝑗𝑝

𝑘 = 0. Consequently, for this wide range of 
matrix Lie groups, the Lie derivative operator (5) of the kinetic part simplfies so that explicit forms of the Lie derivative operators read

̂ = −𝒆𝑖()
𝜕

𝜕𝑝𝑖
and ̂ = 𝑝𝑖𝒆𝑖, (6)

so that Hamilton’s equations become

𝑷̇ = −𝒆𝑖()
𝜕𝑷

𝜕𝑝𝑖
= −𝒆𝑖()𝑻 𝑖, 𝑷 (0) = 𝑷 0,

𝑸̇ = 𝑝𝑖𝒆𝑖(𝑸) = −𝑝𝑖𝑻 𝑖𝑸 = −𝑷𝑸, 𝑸(0) =𝑸0.

(7)

The formal solution of the subsystems(
𝑷̇

𝑸̇

)
=
(
̂𝑷

𝟎

)
=
(
−𝒆𝑖()𝑻 𝑖

𝟎

)
,

(
𝑷̇

𝑸̇

)
=
(

𝟎
̂ 𝑸

)
=
(

𝟎
−𝑷𝑸

)
,

can be expressed in terms of the matrix exponential exp(𝑡) =
∑∞

𝑘=0(𝑡)𝑘∕𝑘! and the Lie derivative operators via

𝜑
{1}
𝑡 (𝑷 0,𝑸0) =

(
exp(𝑡̂)𝑷 0

𝑸0

)
=
(
𝑷 0 − 𝑡𝒆𝑖((𝑸0))𝑻 𝑖

𝑸0

)
, 𝜑

{2}
𝑡 (𝑷 0,𝑸0) =

(
𝑷 0

exp(𝑡̂ )𝑸0

)
=
(

𝑷 0
exp(−𝑡𝑷 0)𝑸0

)
,

for the potential and the kinetic part, respectively.

Remark 1 (System updates). When having many components (𝒑𝓁 ,𝒒𝓁) ∈ 𝑇 ∗, 𝓁 = 1,… ,𝐿, one can trivially generalize the fundamental two-form, 
resulting in sums over all components 𝝎 = −

∑𝐿
𝓁=1 d𝒑𝓁 . Analogously, the locally acting kinetic energy generalizes to  (𝒑) =

∑𝐿
𝓁=1

1
2 ⟨𝒑𝓁 ,𝒑𝓁⟩. Conse

quently, Hamilton’s equations become

𝑷̇ 𝓁 = −𝒆𝑖()𝓁𝑻 𝑖, 𝑷 𝓁(0) = 𝑷 𝓁,0,

𝑸̇𝓁 = −𝑷 𝓁𝑸𝓁 , 𝑸𝓁(0) =𝑸𝓁,0, 𝓁 = 1,… ,𝐿.

Remark 2 (Classical mechanics). In classical Hamiltonian mechanics, the phase space is (𝒑,𝒒) ∈ℝ𝑑 ×ℝ𝑑 . With the fundamental two-form 𝝎 = d𝒒∧d𝒑, 
one obtains the well-known Hamiltonian equations of motion(

𝒑̇

𝒒̇

)
=

(
− 𝜕

𝜕𝒒
𝜕

𝜕𝒑

)
=
(
−𝒒(𝒒)
𝒑(𝒑)

)
, 

(
𝒑(0)
𝒒(0)

)
=
(
𝒑0
𝒒0

)
.

For the sake of clarity and coherence, we will keep the notation (7) for Hamiltonian mechanics on matrix Lie groups. However, it is important to 
emphasize that the results in this paper also hold for system updates, as well as for classical mechanics in Euclidean space.

2.2. Geometric integration

The Hamiltonian flow 𝜑𝑡(𝒑0,𝒒0) is characterized by the following properties.

• Energy conservation: The Hamiltonian is an invariant of the flow, i.e.,

d 
d𝑡
(𝜑𝑡(𝒑0,𝒒0)) = 0.

• Time-reversibility: The Hamiltonian flow is time-reversible, i.e.,

𝜌◦𝜑𝑡◦𝜌◦𝜑𝑡(𝒑0,𝒒0) = (𝒑0,𝒒0), 𝜌(𝒑,𝒒) = (−𝒑,𝒒).

• Symplecticity: The Hamiltonian flow is symplectic, i.e., d𝝎 = 0. A direct consequence of the symplecticity of the Hamiltonian flow is the 
preservation of volume,||||det 𝜕𝜑𝑡(𝒑0,𝒒0)

𝜕(𝒑0,𝒒0) 
|||| = 1.

• Closure property: The Hamiltonian flow satifies 𝜑𝑡(𝒑0,𝒒0) ∈ 𝑇 ∗ for all 𝑡 > 0 provided that (𝒑0,𝒒0) ∈ 𝑇 ∗.

We demand the numerical scheme Φℎ(𝒑0,𝒒0) = (𝒑1,𝒒1) ≈ 𝜑ℎ(𝒑0,𝒒0) to preserve the time-reversibility, volume-preservation, as well as the closure 
property of the Hamiltonian flow. For time-reversibility, one gets the criterion

𝜌◦Φℎ◦𝜌◦Φℎ(𝒑0,𝒒0) = (𝒑0,𝒒0). (8)

The numerical integration scheme is volume-preserving if it holds

2 A semisimple Lie group is a non-Abelian Lie group whose Lie algebra is semisimple, i.e., it is a direct sum of simple Lie algebras.
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𝜕(𝒑0,𝒒0) 

|||| = 1. (9)

The closure property demands

Φℎ(𝒑0,𝒒0) = (𝒑1,𝒒1) ∈ 𝑇 ∗, (10)

provided (𝒑0,𝒒0) ∈ 𝑇 ∗.

3. Hessian-free force-gradient integrators

An efficient approach for geometric numerical integration of Hamiltonian systems of the form (3) is given by force-gradient integrators (FGIs) 
[13,14]. In this section, we will introduce the new class of Hessian-free FGIs. Before introducing the adaption, we will start with a brief recapitulation 
of FGIs based on their introduction in [13].

3.1. Force-gradient integrators

As we have seen in the previous section, it is possible to compute the flows of the subsystems using the exponential map and the Lie derivative 
operators (6). Hence it is possible to compute an approximation to Hamilton’s equations (7) by composing evaluations of these exact flows, resulting 
in splitting methods [29]

Ψ(0) = Id, Ψ(𝑗) = Ψ(𝑗−1)◦𝜑{2}
𝑎𝑗ℎ

◦𝜑{1}
𝑏𝑗ℎ

, 𝑗 = 1,… , 𝑃 .

Since we demand the numerical integration scheme to preserve the time-reversibility (8), it has to hold either 𝑎1 = 0 (velocity version) or 𝑏𝑃 = 0
(position version). The remaining composition of 2𝑃 − 1 exponentials has to be symmetric, i.e., it has to hold 𝑎𝑗+1 = 𝑎𝑃−𝑗+1 and 𝑏𝑗 = 𝑏𝑃−𝑗+1 for the 
velocity version, 𝑎𝑗 = 𝑎𝑃−𝑗+1 and 𝑏𝑗 = 𝑏𝑃−𝑗 for the position version. Applying the Baker–Campbell--Hausdorff (BCH) formula, the overall integrator 
Ψℎ ∶= Ψ(𝑃 )

ℎ
can be written as an exponential [13]

exp
(
(𝜈̂ + 𝜎̂)ℎ+3ℎ

3 +5ℎ
5 +7ℎ

7 +(ℎ9)
)

(11a)

with 𝜈 ∶=
∑𝑃

𝑗=1 𝑎𝑗 , 𝜎 ∶=
∑𝑃

𝑗=1 𝑏𝑗 , and

3 = 𝛼
[
̂ ,

[
̂ , ̂

]]
+ 𝛽

[
̂ ,

[
̂ , ̂

]]
, (11b)

5 = 𝛾1

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]
+ 𝛾2

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]
+ 𝛾3

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]
+ 𝛾4

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]
, (11c)

7 = 𝜁1

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁2

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁3

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁4

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁5

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁6

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁7

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁8

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁9

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
+ 𝜁10

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ ,

[
̂ , ̂

]]]]]]
,

(11d)

where [⋅, ⋅] denotes the commutator [,] ∶=  − .3 To obtain splitting methods of convergence order 𝑝 > 2, one has to cancel the order
three error term 3, consisting of the two commutators [̂ , [̂ , ̂]] and [̂ , [̂ , ̂]]. Without using negative time steps, that are used for example in 
composition techniques [10--12], it is not possible to cancel both commutators at once [11]. For Hamiltonian systems of the form (3), the second 
commutator ̂ ∶= [̂ , [̂ , ̂]] exhibits a special structure

̂ = 2̂ ̂ ̂ = 2𝒆𝑗 ()𝒆𝑗𝒆𝑖()
𝜕

𝜕𝑝𝑖
(12)

that only depends on the generalized coordinates 𝑞𝑗 , and is called force-gradient term (FG-term). Extending the momentum updates 𝜑{1}
𝑏𝑗ℎ

by including 

evaluations of the force-gradient term, exp(𝑏𝑗 ̂ + 𝑐𝑗 ̂), results in a FGI. This allows to choose the coefficients 𝑎𝑗 , 𝑏𝑗 such that the first commutator 
[̂ , [̂ , ̂]] vanishes and then the coefficients 𝑐𝑗 can be chosen to remove the remaining order-3 error term [̂ , [̂ , ̂]], resulting in higher-order 
integrators. A symmetric FGI consists of 2𝑃 − 1 exponentials that are either momentum updates

exp
(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
(13)

or position updates

exp
(
𝑎(𝑛)ℎ̂

)
(14)

with coefficients 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛) that are related to the coefficients 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 via

3 The error term 5 neglects two zero-valued commutators [̂ , [̂ , [̂ , [̂ , ̂]]]] and [̂ , [̂ , [̂ , [̂ , ̂]]]].
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𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝑃+2
2 − 𝑛, 𝑃 even (velocity version),

𝑃+1
2 + 𝑛, 𝑃 odd (velocity version),

𝑃

2 + 𝑛, 𝑃 even (position version),
𝑃+1
2 − 𝑛, 𝑃 odd (position version),

for 𝑛 = 1,… ,⌊ 𝑃

2 ⌋. A FGI is constructed as follows. Starting from a central single-exponential operator

Ψ(0) =

⎧⎪⎪⎨⎪⎪⎩
exp(𝑎(𝑃+2)∕2ℎ𝑇̂ ), 𝑃 even (velocity version),

exp(𝑏(𝑃+1)∕2ℎ̂ + 𝑐(𝑃+1)∕2ℎ
3̂), 𝑃 odd (velocity version),

exp(𝑏𝑃∕2ℎ̂ + 𝑐𝑃∕2ℎ
3̂), 𝑃 even (position version),

exp(𝑎(𝑃+1)∕2ℎ̂ ), 𝑃 odd (position version),

(15a)

the integrator is obtained by consecutively applying the following symmetric transformations

Ψ(𝑛) = exp
(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
◦ exp

(
𝑎(𝑛)ℎ̂

)
◦Ψ(𝑛−1)◦ exp

(
𝑎(𝑛)ℎ̂

)
◦ exp

(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
, (15b)

for 𝑃 odd (velocity version) and 𝑃 even (position version), and

Ψ(𝑛) = exp
(
𝑎(𝑛)ℎ̂

)
◦ exp

(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
◦Ψ(𝑛−1)◦ exp

(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
◦ exp

(
𝑎(𝑛)ℎ̂

)
, (15c)

for 𝑃 even (velocity version) and 𝑃 odd (position version), 𝑛 = 1,… ,⌊ 𝑃

2 ⌋. By applying the BCH formula, the overall FGI Ψℎ ∶= Ψ(⌊𝑃∕2⌋)
ℎ

again takes 
the form (11). Thanks to the recursive definition (15) of the integrator, the multipliers 𝜈, 𝜎, 𝛼, 𝛽, 𝛾1,… , 𝛾4, and 𝜁1,… , 𝜁10 can be determined using 
recursive formulations stated in [13].

Order conditions. The FGI (15) has convergence order 𝑝 if its representation as an exponential (11) satifies

exp
(
(𝜈̂ + 𝜎̂)ℎ + 3ℎ

3 +5ℎ
5 +7ℎ

7 +(ℎ9)
)
= exp

(
ℎ(̂ + ̂)

)
+ (ℎ𝑝+1).

Hence the order conditions up to order seven are given by the recursive formulations of the multipliers 𝜈, 𝜎, 𝛼, 𝛽, 𝛾1,… , 𝛾4, and 𝜁1,… , 𝜁10 in [13].

Geometric integration. The momentum updates (13) of the FGI with 𝑐(𝑛) ≠ 0 can be regarded as an evaluation of the exact flow, corresponding to 
a modfied potential

FG(𝒒) = (𝒒) − 𝑐(𝑛)ℎ2

𝑏(𝑛)
̂ (𝒒),

where 
̂
(𝒒) is solved by 𝒆𝑖(̂

) = 2𝒆𝑗 ()𝒆𝑗𝒆𝑖(), that is again Hamiltonian. Due to the symmetric construction of (15), the integrator is time
reversible (8). As the integrator is a composition of exact flows that are symplectic, the overall integration scheme is symplectic and thus volume
preserving (9). The integrator also satifies the closure property (10) as a) the position updates (14) remain unchanged and b) the momentum updates 
(13) still yield momenta 𝑷 ∈ g.

Backward error analysis. It is a well-known quantity of symplectic integration schemes that they preserve a nearby shadow Hamiltonian ̃ exactly 
[30]. Given a symplectic integrator of order 𝑝, it holds ̃ = +(ℎ𝑝). As the FGI can be written as an exponential (11), it is straight-forward to 
determine an explicit expression for ̃. Replacing the commutators of the vector fields ̂ , ̂ by Poisson brackets of the zero-forms  , gives the 
shadow Hamiltonian

̃FG = 𝜈 + 𝜎 + ℎ2 (𝛼 { ,{ ,}} + 𝛽 { ,{ ,}})

+ ℎ4
(
𝛾1 { ,{ ,{ ,{ ,}}}} + 𝛾2 { ,{ ,{ ,{ ,}}}} + 𝛾3 { ,{ ,{ ,{ ,}}}} + 𝛾4 { ,{ ,{ ,{ ,}}}}

)
+ ℎ6

(
𝜁1 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁2 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁3 { ,{ ,{ ,{ ,{ ,{ , }}}}}}

+ 𝜁4 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁5 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁6 { ,{ ,{ ,{ ,{ ,{ , }}}}}}

+ 𝜁7 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁8 { ,{ ,{ ,{ ,{ ,{ , }}}}}} + 𝜁9 { ,{ ,{ ,{ ,{ ,{ , }}}}}}

+𝜁10 { ,{ ,{ ,{ ,{ ,{ , }}}}}}
)
+(ℎ8)

(16)

that is exactly preserved by the FGI (15).

Example 1 (Fourth-order FGI). One example of a fourth-order FGI that demands only five stages and a single evaluation of the FG-term is given by

exp
(

ℎ

6 ̂
)
exp

(
ℎ

2 ̂
)
exp

(
2ℎ
3 ̂ + ℎ3

72 ̂
)
exp

(
ℎ

2 ̂
)
exp

(
ℎ

6 ̂
)
. (17)

This integrator exactly preserves the shadow Hamiltonian

̃FGI4 =  +  + ℎ4
(

1 
2880 { ,{ ,{ ,{ ,}}}} + 1 

2880 { ,{ ,{ ,{ ,}}}} + 1 
2160 { ,{ ,{ ,{ ,}}}} + 1 

4320 { ,{ ,{ ,{ ,}}}}
)

+(ℎ6).

In general, one has to derive the FG-term ̂ for each particular Hamiltonian system by computing the Hessian of the potential. An approximation 
of the FG-term proposed in [19] enables the use of the force-gradient integrator (17) by replacing the FG-term by an additional force evaluation. We 
will generalize this idea to the entire class of FGIs.
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3.2. Approximation of the force-gradient step

The derivation of the FG-term (12) can be quite tedious. In [22], for example, the FG-term for the two-dimensional Schwinger model has been 
computed. In other applications, e.g. the application for Hybrid Monte Carlo (HMC) [5] simulations in lattice QCD on four-dimensional lattices [31], 
it becomes even more complicated to derive the FG-term. It is possible to approximate the force-gradient step (13) by a composed evaluation of the 
force 𝒆𝑖() as it has been shown for Example 1 in [21]. A generalization to this approximation for arbitrary FGIs reads

exp
(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)
= exp

(
−𝑏(𝑛)ℎ𝒆𝑖()

𝜕

𝜕𝑝𝑖
+ 2𝑐(𝑛)ℎ3𝒆𝑗 ()𝒆𝑗𝒆𝑖()

𝜕

𝜕𝑝𝑖

)
= exp

(
−𝑏(𝑛)ℎ

(
Id − 2𝑐(𝑛)ℎ2

𝑏(𝑛)
𝒆𝑗 ()𝒆𝑗

)
𝒆𝑖()

𝜕

𝜕𝑝𝑖

)
= exp

(
−𝑏(𝑛)ℎ exp

(
−2𝑐(𝑛)ℎ2

𝑏(𝑛)
𝐹 𝑗𝒆𝑗

)
𝒆𝑖()

𝜕

𝜕𝑝𝑖

)
+(ℎ5)

(18)

Here, 𝐹 𝑗𝒆𝑗 = 𝒆𝑗 ()𝒒𝒆𝑗 denotes that the vector field is frozen at (𝒑,𝒒) [32] so that 𝒆𝑗 acting on 𝐹 𝑗 is dfined to be zero. Moreover, performing a 
Taylor expansion verfies the equality

exp
(
−2𝑐(𝑛)ℎ2

𝑏(𝑛)
𝐹 𝑗𝒆𝑗

)
𝒆𝑖()(𝑸) = 𝒆𝑖()

(
exp

(
−2𝑐(𝑛)ℎ2

𝑏(𝑛)
𝐹 𝑗𝑻 𝑗

)
𝑸

)
.

Consequently, this approximation allows one to replace the momentum update (13) by the following two-step procedure:

1. Compute a temporary position update via 𝑸′ = exp
(
−2𝑐(𝑛)ℎ2

𝑏(𝑛)
𝐹 𝑗𝑻 𝑗

)
𝑸.

2. Compute a usual momentum update of step size 𝑏(𝑛)ℎ by using the temporary position update for evaluating the force term −𝒆𝑖(), i.e., 
𝑷 𝑏(𝑛)ℎ = 𝑷 0 − 𝑏(𝑛)ℎ𝒆𝑖()(𝑸′)𝑻 𝑖.

Although this two-step procedure is used in implementations, the following equivalent expression is of importance for performing the error 
analysis.

Theorem 1 (Hessian-free force-gradient step). The two-step procedure is equivalent to replacing the momentum update (13) by

exp
(
𝑏(𝑛)ℎ̂(ℎ, 𝑏(𝑛), 𝑐(𝑛))

)
∶= exp

(
𝑏(𝑛)ℎ

∞ ∑
𝑘=0

2𝑘𝑐(𝑛)𝑘ℎ2𝑘

𝑘! ⋅ 𝑏(𝑛)𝑘
(
̃ ̂

)𝑘

̂

)
, (19)

with ̃ ∶= −𝒆𝑖()𝒒
𝜕

𝜕𝑝𝑖
.

Proof. When applying the exponential (13) to (𝒑,𝒒), one obtains

exp
(
𝑏(𝑛)ℎ̂ + 𝑐(𝑛)ℎ3̂

)(𝒑

𝒒

)
= exp

(
𝑏(𝑛)ℎ̂ + 2𝑐(𝑛)ℎ3̂ ̂ ̂

)(
𝒑

𝒒

)
= exp

(
𝑏(𝑛)ℎ

(
Id + 2𝑐(𝑛)ℎ2

𝑏(𝑛)
̂ ̂

)
̂

)(
𝒑

𝒒

)
= exp

(
𝑏(𝑛)ℎ

(
Id + 2𝑐(𝑛)ℎ2

𝑏(𝑛)
̃ ̂

)
̂

)(
𝒑

𝒒

)
= exp

(
𝑏(𝑛)ℎ exp

(
2𝑐(𝑛)ℎ2
𝑏(𝑛)

̃ ̂

)
̂

)(
𝒑

𝒒

)
+(ℎ5).

Applying the definition of the matrix exponential to the inner exponential concludes the proof. □

Consequently, the symmetric transformations (15b) and (15c) become

Ψ(𝑛) = exp
(
𝑏(𝑛)ℎ̂(ℎ, 𝑏(𝑛), 𝑐(𝑛))

)
◦ exp

(
𝑎(𝑛)ℎ̂

)
◦Ψ(𝑛−1)◦ exp

(
𝑎(𝑛)ℎ̂

)
◦ exp

(
𝑏(𝑛)ℎ̂(ℎ, 𝑏(𝑛), 𝑐(𝑛))

)
, (20a)

Ψ(𝑛) = exp
(
𝑎(𝑛)ℎ̂

)
◦ exp

(
𝑏(𝑛)ℎ̂(ℎ, 𝑏(𝑛), 𝑐(𝑛))

)
◦Ψ(𝑛−1)◦ exp

(
𝑏(𝑛)ℎ̂(ℎ, 𝑏(𝑛), 𝑐(𝑛))

)
◦ exp

(
𝑎(𝑛)ℎ̂

)
, (20b)

respectively. We refer to FGIs that utilize the approximation (18) as Hessian-free FGIs. From now on, we will refer to FGIs evaluating the FG-term (12)
as exact FGIs.

Order conditions. As the approximation (19) introduces an error of (ℎ5), the order conditions up to order four do not change. Based on the 
expression (19), it is possible to explicitly state the formulae of the error terms for Hessian-free FGIs. Of particular interest are the changes in the 
error terms (11c) and (11d). The new error terms read

′
5 =5 + 𝛾5 ̃ ̂ ̃ ̂ ̂ ,

′
7 =7 + 𝜁11̃ ̂ ̃ ̂ ̃ ̂ ̂ + 𝜁12̂ ̃ ̂ ̃ ̂ ̂ ̂ + 𝜁13̂ ̂ ̃ ̂ ̃ ̂ ̂ ,

(21)

where the new multipliers 𝛾5, 𝜁11, 𝜁12, 𝜁13 can be computed based on recursive relations. Starting from

𝛾
(0)
5 ∶=

⎧⎪⎪⎨⎪⎪⎩

0, 𝑃 even (velocity version),

2𝑐2(𝑃+1)∕2∕𝑏(𝑃+1)∕2, 𝑃 odd (velocity version),

2𝑐2
𝑃∕2∕𝑏𝑃∕2, 𝑃 even (position version),

0, 𝑃 odd (position version),

𝜁
(0)
11 ∶=

⎧⎪⎪⎨⎪⎪⎩

0, 𝑃 even (velocity version),

4𝑐3(𝑃+1)∕2∕(3𝑏
2
(𝑃+1)∕2), 𝑃 odd (velocity version),

4𝑐3
𝑃∕2∕(3𝑏

2
𝑃∕2), 𝑃 even (position version),

0, 𝑃 odd (position version),

and 𝜁 (0)12 = 𝜁
(0)
13 = 0, the recursive relations for the symmetric transformations (20a) become
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𝛾
(𝑛)
5 = 𝛾

(𝑛−1)
5 + 4𝑐(𝑛)2∕𝑏(𝑛), 𝜁

(𝑛)
11 = 𝜁

(𝑛−1)
11 +

(
8𝑐(𝑛)3∕𝑏(𝑛) + 2𝜎(𝑛)𝜈(𝑛)𝑐(𝑛)

2
)
∕(3𝑏(𝑛)),

𝜁
(𝑛)
12 = 𝜁

(𝑛−1)
12 + 𝑎(𝑛)

2
𝛾
(𝑛−1)
5 ∕3 − 2𝜈(𝑛)2𝑐(𝑛)2∕(3𝑏(𝑛)), 𝜁

(𝑛)
13 = 𝜁

(𝑛−1)
13 − 𝑎(𝑛)

2
𝛾
(𝑛−1)
5 ∕6 + 𝜈(𝑛)

2
𝑐(𝑛)

2∕(3𝑏(𝑛)),

and for the symmetric transformations (20b)

𝛾
(𝑛)
5 = 𝛾

(𝑛−1)
5 + 4𝑐(𝑛)2∕𝑏(𝑛), 𝜁

(𝑛)
11 = 𝜁

(𝑛−1)
11 +

(
8𝑐(𝑛)3∕𝑏(𝑛) + 2𝜎(𝑛)𝜈(𝑛)𝑐(𝑛)

2
)
∕(3𝑏(𝑛)),

𝜁
(𝑛)
12 = 𝜁

(𝑛−1)
12 + 𝑎(𝑛)

2
𝛾
(𝑛)
5 ∕3 − 2𝜈(𝑛)2𝑐(𝑛)2∕(3𝑏(𝑛)), 𝜁

(𝑛)
13 = 𝜁

(𝑛−1)
13 − 𝑎(𝑛)

2
𝛾
(𝑛)
5 ∕6 + 𝜈(𝑛)

2
𝑐(𝑛)

2∕(3𝑏(𝑛)),

for 𝑛 = 1,… ,⌊ 𝑃

2 ⌋.

Geometric integration. The Hessian-free force-gradient step (19) yields updated momenta 𝑷 ∈ g, whereas the position updates (14) remain 
unchanged. Consequently, the closure property (10) is still satified. The approximation does not affect the time-reversibility of the integrator. 
Furthermore, Hessian-free FGIs are a composition of shears that are volume-preserving so that the overall integrator preserves the volume. Hessian
free FGIs are no longer symplectic. The modfied momentum updates (19) are only symplectic if the Hessian of the potential commutes with itself 
when evaluated at (in general, different) 𝑸. Generally, this is not the case.

Backward error analysis. Due to the additional error terms, the modfied differential equation is not Hamiltonian, i.e. it does not preserve a nearby 
shadow Hamiltonian. Instead, the modfied differential equation of the Hessian-free FGI reads(

𝑷̇

𝑸̇

)
=
(
{̃FG,𝑷 }
{̃FG,𝑸}

)
+
(
ℎ4𝛾5̃ ̂ ̃ ̂ ̂𝑷 + ℎ6𝜁11̃ ̂ ̃ ̂ ̃ ̂ ̂𝑷 + ℎ6𝜁13̂ ̂ ̃ ̂ ̃ ̂ ̂𝑷

ℎ6𝜁12̂ ̃ ̂ ̃ ̂ ̂ ̂ 𝑸

)
+(ℎ8), (23)

where the first term corresponds to the shadow Hamiltonian (16) of the exact FGI using the same set of coefficients. The remaining terms introduce 
an energy drift. In general, without making any further assumption on the potential  of the Hessian-free FGI, the energy will have a linear drift of 
size (𝑡ℎmax{4,𝑝}) for a Hessian-free FGI of order 𝑝 and a time interval of length 𝑡. Note that one may choose the coefficients of the Hessian-free FGI 
to cancel drift terms so that one ends up with Hessian-free FGIs of order 𝑝 where the energy will have a linear drift of size (𝑡ℎ𝑟) with 𝑟 > 𝑝.

Example 2 (Hessian-free fourth-order FGI). Based on the fourth-order exact FGI (17), one gets the Hessian-free FGI

exp
(

ℎ

6 ̂
)
exp

(
ℎ

2 ̂
)
exp

(
2ℎ
3 ̂(ℎ, 23 ,

1 
72 )

)
exp

(
ℎ

2 ̂
)
exp

(
ℎ

6 ̂
)

(24)

of convergence order four. With 𝛾5 = 1∕1728≠ 0, the numerical energy has a linear drift of size (𝑡ℎ4).

Despite the lack of symplecticity, Hessian-free FGIs are interesting integrators and are particularly useful in the following situations.

a) The evaluation of the FG-term ̂ is significantly more expensive than an evaluation of the force 𝒆𝑖(),
b) An analytical expression for the FG-term ̂ is not available, e.g. because its derivation is tedious.

In certain applications, such as particles moving in gravitational or coulomb fields, evaluations of the FG-term are less expensive than force evaluations 
due to the specific structure of the potential. Here, Hessian-free FGIs are less efficient and not of practical relevance unless the exact FG-term is not 
available. In case of expensive evaluations (e.g. in molecular dynamics simulations), it demands a rfined analysis of Hessian-free FGIs to clarify 
whether Hessian-free FGIs allow for a more efficient computational process. For this purpose, the next section provides a classfication and derivation 
of Hessian-free FGIs with up to 11 stages, similar to the investigations made in [13].

4. Derivation of Hessian-free force-gradient integrators

In this section, we will provide a complete classfication of Hessian-free FGIs with up to eleven stages. The coefficients are chosen so that the 
maximum possible convergence order 𝑝 is achieved. If the solution is not unique, the free parameters can be optimized by minimizing a (weighted) 
norm of the multipliers in ′

𝑝+1. By expanding the commutators in (21), one ends up with the following contributions containing the new error 
terms:

• 4𝛾4̂ ̂ ̂ ̂ ̂ + 𝛾5̃ ̂ ̃ ̂ ̂ ,

• −8𝜁1̂ ̂ ̂ ̂ ̂ ̂ ̂ + 𝜁11̃ ̂ ̃ ̂ ̃ ̂ ̂ ,

• 8𝜁6̂ ̂ ̂ ̂ ̂ ̂ ̂ + 𝜁12̂ ̃ ̂ ̃ ̂ ̂ ̂ ,

• (−3𝜁4 − 4𝜁6)̂ ̂ ̂ ̂ ̂ ̂ ̂ + 𝜁13̂ ̂ ̃ ̂ ̃ ̂ ̂ .

Whereas we choose to minimize the norm

Err3 ∶=
√

𝛼2 + 𝛽2 (25)

in case of 𝑝 = 2, we use weighted norms for 𝑝 = 4 and 𝑝 = 6 incorporating the aforementioned relations. For 𝑝 = 4, we choose the norm

Err5 ∶=
√

𝛾21 + 𝛾22 + 𝛾23 + 𝛾24 +
(
1
4 𝛾5

)2
, (26)

which, in case of non-gradient schemes (𝛾5 = 0), results in the usual Euclidean norm used in [13]. The weighted norm incorporates that the contri
bution of 𝛾5 is four times less than 𝛾4. Analogously, we choose for 𝑝 = 6
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Err7 ∶=

√√√√√ 10 ∑
𝑗=1 

𝜁2
𝑗
+
(
1
8 𝜁11

)2
+
(
1
8 𝜁12

)2
+
(

7 
24 𝜁13

)2
. (27)

Here, the weight of 7∕24 for 𝜁13 is derived by taking the mean value of 1∕3 and 1∕4, so that for non-gradient schemes (𝜁11 = 𝜁12 = 𝜁13 = 0) the 
weighted norm again reduces to the norm used in [13]. Moreover, the efficiency of the integrators has been measured using the formula

Eff (𝑝) = 1 
(𝑛𝑓 )𝑝 ⋅ Err𝑝+1

. (28)

Note that in order to reduce the number of unknowns, we will take into account in advance the symmetry of the FGI, as well as the order-1 conditions ∑𝑃
𝑗=1 𝑎𝑗 =

∑𝑃
𝑗=1 𝑏𝑗 = 1 throughout this section. For any number of stages 𝑠, we obtain different variants based on the coefficients 𝑐𝑗 set to zero in 

order to reduce the number 𝑛𝑓 of force evaluations. All variants are summarized by the total number of force evaluations 𝑛𝑓 per time step, the 
achieved convergence order 𝑝, and the number of degrees of freedom 𝑣, followed by the set of coefficients that is minimizing the (weighted) norm 
of the leading error term Err𝑝+1. In addition, the corresponding efficiency according to (28) is stated. Note that for velocity algorithms, the number 
of force recalculations 𝑛𝑓 is reduced by one since the last modfied momentum update of time step 𝑛 and the first one of time step 𝑛+ 1 coincide so 
that the force does not have to be re-evaluated.

4.1. Hessian-free force-gradient integrators with s=3 stages (P=2)

For 𝑃 = 2, it is only possible to achieve convergence order 𝑝 = 2. The free parameters are chosen so that the norm (25) is minimized.

4.1.1. Velocity versions

The velocity version of a convergent three-stage Hessian-free FGI reads

Ψℎ = exp
(

ℎ

2 ̂(ℎ,1∕2, 𝑐1)
)
exp

(
ℎ̂

)
exp

(
ℎ

2 ̂(ℎ,1∕2, 𝑐1)
)

with free parameter 𝑐1. The method has convergence order two with leading error terms 𝛼 = 1∕12 and 𝛽 = 1∕24 + 2𝑐1.
Variant 1 (𝑛𝑓 = 2, 𝑝 = 2, 𝑣 = 1).

𝑐1 = −1∕48, Err3 = 1∕12, Eff = 3. (29)

Variant 2 (𝑛𝑓 = 1, 𝑝 = 2, 𝑣 = 0). For 𝑐1 = 0, one obtains the well-known velocity version of the Störmer–Verlet scheme [1], resulting in

Err3 =
√
5∕24 ≈ 0.0932, and Eff = 24∕

√
5 ≈ 10.73. (30)

4.1.2. Position versions

The position version for 𝑃 = 2 reads

Ψℎ = exp
(

ℎ

2 ̂
)
exp

(
ℎ̂(ℎ,1, 𝑐1)

)
exp

(
ℎ

2 ̂
)

with free parameter 𝑐1. The scheme has convergence order two and leading error terms 𝛼 = −1∕24 and 𝛽 = −1∕12 + 𝑐1.
Variant 1 (𝑛𝑓 = 2, 𝑝 = 2, 𝑣 = 1).

𝑐1 = 1∕12, Err3 = 1∕24, Eff = 6. (31)

Variant 2 (𝑛𝑓 = 1, 𝑝 = 2, 𝑣 = 0). Setting 𝑐1 = 0 yields the position version of the Störmer–Verlet method [1] with

Err3 =
√
5∕24 ≈ 0.0932, and Eff = 24∕

√
5 ≈ 10.7. (32)

4.1.3. Remarks

As all schemes for 𝑠 = 3 cannot achieve a higher convergence order than two, the optimal values for 𝑐1, as well as the principal error term do not 
change compared to the results in [13]. However, the efficiency of the Hessian-free FGIs with 𝑐1 ≠ 0 increases since in [13] evaluating the FG-term 
is assumed to be twice as expensive as the force.

4.2. Hessian-free force-gradient integrators with s=5 stages (P=3)

Considering 𝑃 = 3, it is possible to obtain Hessian-free FGIs of convergence order 𝑝 = 4. For fourth-order methods, we minimize Err5 dfined in 
(26) and denote its minimum by 𝛾min.

4.2.1. Velocity versions

The velocity version

Ψℎ = exp
(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
ℎ

2 ̂
)
exp

(
(1 − 2𝑏1)ℎ̂(ℎ,1 − 2𝑏1, 𝑐2)

)
exp

(
ℎ

2 ̂
)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
has three free parameters 𝑏1, 𝑐1, 𝑐2. Solving the order-three conditions while keeping 𝑐1 as a free parameter gives

𝑏1 = 1∕6, 𝑐2 = 1∕72 − 2𝑐1. (33)

Variant 1 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 1). The minimization of Err5 yields

𝑐1 = −0.000881991367333, 𝑐2 = 0.015652871623554, 𝛾min ≈ 0.000625, Eff ≈ 6.25. (34)
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Variant 2 (𝑛𝑓 = 3, 𝑝 = 4, 𝑣 = 0). Setting 𝑐1 = 0, (33) yields the unique solution

𝑐2 = 1∕72, 𝛾min ≈ 0.000728, Eff ≈ 16.96. (35)

Variant 3 (𝑛𝑓 = 3, 𝑝 = 4, 𝑣 = 0). For 𝑐2 = 0, (33) yields

𝑐1 = 1∕144, 𝛾min ≈ 0.00335, Eff ≈ 3.68. (36)

Variant 4 (𝑛𝑓 = 2, 𝑝 = 2, 𝑣 = 1). For 𝑐1 = 𝑐2 = 0, we obtain a non-gradient algorithm, i.e., the approximation of the FG-term does not apply. Hence 
we obtain exactly the same coefficients and principal error term as in [13], namely

𝑏1 =
1
2
−

(2
√
326 + 36)1∕3

12 
+ 1 

6(2
√
326 + 36)1∕3

≈ 0.1931833275037836, Err3 ≈ 0.00855, Eff ≈ 29.24. (37)

4.2.2. Position versions

The position version

Ψℎ = exp
(
𝑎1ℎ̂

)
exp

(
ℎ

2 ̂(ℎ,1∕2, 𝑐1)
)
exp

(
(1 − 2𝑎1)ℎ̂

)
exp

(
ℎ

2 ̂(ℎ,1∕2, 𝑐1)
)
exp

(
𝑎1ℎ̂

)
has two degrees of freedom, namely 𝑎1, 𝑐1.
Variant 1 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 0). We obtain two real solutions where the optimal one reads

𝑎1 =
1
2

(
1 − 1 √

3

)
, 𝑐1 =

1 
48

(2 −
√
3), 𝛾min ≈ 0.000718, Eff ≈ 5.44. (38)

Variant 2 (𝑛𝑓 = 2, 𝑝 = 2, 𝑣 = 1). Setting 𝑐1 = 0, the Hessian-free FGI reduces to a non-gradient scheme that does not make use of the approximation 
to the FG-term ̂. The global minimum of Err3 is achieved at

𝑎1 =
1
2
−

(2
√
326 + 36)1∕3

12 
+ 1 

6(2
√
326 + 36)1∕3

≈ 0.1931833275037836, Err3 ≈ 0.00855, Eff ≈ 29.24. (39)

4.2.3. Remarks

All variants except (34) have the same optimal solutions as the exact FGIs in [13]. However, their principal error term and efficiency change due 
to the additional error term 𝛾5 (except for the non-gradient versions). In case of (34), the additional error term also results in a difference in the 
coefficients, particularly in 𝑐1 and thus in 𝑐2. The Hessian-free FGI (35) coincides with (24) which was the first Hessian-free FGI derived in [21] and 
has been applied to the Schwinger model [22] in a nested integrator. It is the most efficient Hessian-free FGI with 𝑠 = 5 stages. The non-gradient 
schemes (37) and (39) dfine the most efficient integrators of order two within this framework.

4.3. Hessian-free force-gradient integrators with s=7 stages (P=4)

For 𝑃 = 4, one can again derive Hessian-free FGIs up to convergence order four. However, the additional number of stages allows to reduce the 
principal error term Err5. Furthermore, it is now possible to derive non-gradient schemes of order 𝑝 = 4.

4.3.1. Velocity versions

The velocity version with 𝑃 = 4 reads

Ψℎ = exp
(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎2ℎ̂

)
exp

(
( 12 − 𝑏1)ℎ̂(ℎ, 12 − 𝑏1, 𝑐2)

)
exp

(
(1 − 2𝑎2)ℎ̂

)
exp

(
( 12 − 𝑏1)ℎ̂(ℎ, 12 − 𝑏1, 𝑐2)

)
× exp

(
𝑎2ℎ̂

)
exp

(
ℎ𝑏1̂(ℎ, 𝑏1, 𝑐1)

)
where 𝑎2, 𝑏1, 𝑐1, 𝑐2 are free parameters. The order-three conditions have the solutions

𝑏1 =
1 
12

(
6 + 1 

𝑎2(𝑎2 − 1)

)
, 𝑐1 = − 1 

288

(
6 + 288𝑐2 −

1 
𝑎2(𝑎2 − 1)2

)
. (40)

Variant 1 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 2). Minimizing Err5 with respect to the two free parameters 𝑎2, 𝑐2 results in

𝑎2 = 0.273005515864808, 𝑏1 = 0.080128674198082, 𝑐1 = 0.000271601364672,

𝑐2 = 0.002959399979707, 𝛾min ≈ 0.0000275, Eff ≈ 28.09.
(41)

Variant 2 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 1). At 𝑐1 = 0, the global minimum is reached at

𝑎2 = 0.281473422092232, 𝑏1 = 0.087960811032557, 𝑐2 = 0.003060423791562,

𝛾min ≈ 0.0000498, Eff ≈ 32.12.
(42)

Variant 3 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 1). Setting 𝑐2 = 0, one finds

𝑎2 = 0.258529167713908, 𝑏1 = 0.065274481323251, 𝑐1 = 0.003595899064589,

𝛾min ≈ 0.000891, Eff ≈ 4.38.
(43)
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Variant 4 (𝑛𝑓 = 3, 𝑝 = 4, 𝑣 = 0). For 𝑐1 = 0 and 𝑐2 = 0, one obtains the velocity version of the Forest-Ruth algorithm [33] with

𝑎1 = 1∕(2 − 21∕3), 𝑏1 = 1∕(2 ⋅ (2 − 21∕3)), 𝛾min ≈ 0.0383, Eff ≈ 0.32. (44)

4.3.2. Position versions

The position counterpart has the form

Ψℎ = exp
(
𝑎1ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
( 12 − 𝑎1)ℎ̂

)
exp

(
(1 − 2𝑏1)ℎ̂(ℎ,1 − 2𝑏1, 𝑐2)

)
exp

(
( 12 − 𝑎1)ℎ̂

)
× exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎1ℎ̂

)
,

where 𝑎1, 𝑏1, 𝑐1, 𝑐2 are free parameters. Analogously to the velocity counterpart, one can solve the third-order conditions for 𝑎1 and 𝑐1, leading to

𝑎1 =
1
2
± 1 √

24𝑏1
, 𝑐1 =

1 
24

(
1 − 12𝑐2 ±

√
6𝑏1(1 − 𝑏1)

)
. (45)

Variant 1 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 2). One reaches the minimum of Err5 at

𝑎1 = 0.116438749543126, 𝑏1 = 0.283216992495952, 𝑐1 = 0.001247201195115,

𝑐2 = 0.002974030329635, 𝛾min ≈ 0.0000200, Eff ≈ 38.57.
(46)

Variant 2 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 1). Putting 𝑐2 = 0, one achieves the minimum at

𝑎1 = 0.136458051118946, 𝑏1 = 0.315267858070664, 𝑐1 = 0.002427032834125,

𝛾min ≈ 0.0000844, Eff ≈ 18.95.
(47)

Variant 3 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 1). Setting 𝑐1 = 0, the minimum is achieved at

𝑎1 = 0.089775972994422, 𝑏1 = 0.247597680043986, 𝑐2 = 0.006911440413815,

𝛾min ≈ 0.000149, Eff ≈ 26.19.
(48)

Variant 4 (𝑛𝑓 = 3, 𝑝 = 4, 𝑣 = 0). The non-gradient version, obtained by setting 𝑐1 = 𝑐2 = 0, is the position version of the algorithm by Forest and Ruth 
[33] which is given by

𝑎1 = 1∕(2 ⋅ (2 − 21∕3)), 𝑏1 = 1∕(2 − 21∕3), 𝛾min ≈ 0.0283, Eff ≈ 0.44. (49)

4.3.3. Remarks

The most efficient seven-stage algorithm is given by the position version (46) with an efficiency of approximately 38.57. Compared to the most 
efficient five-stage Hessian-free FGI of order four, namely the velocity version (35) with Eff ≈ 16.96. Consequently, using the same number of 
total force recalculations, the seven-stage algorithm (46) will reduce the global errors approximately by a factor of 38.57∕16.96 ≈ 2.27 compared to 
the five-stage Hessian-free FGI (35). The non-gradient versions (44) and (49) now dfine methods of order four. These methods are equivalent to 
applying Yoshida’s triple-jump composition [11] to (30) and (32), respectively. The principal error term of the non-gradient schemes is relatively 
large, resulting in less efficient algorithms. In practice, one should either choose force-gradient schemes (e.g., the five-stage Hessian-free FGI (35)
reduces the global errors approximately by a factor of 16.96∕0.44 ≈ 38.55 while using the same number of total force evaluations) or non-gradient 
schemes with more stages which will be presented in the proceeding sections.

4.4. Hessian-free force-gradient integrators with s=9 stages (P=5)

Taking 𝑃 = 5 enables the derivation of a Hessian-free FGI of convergence order 𝑝 = 6. In this case, we aim for minimizing the norm (27) and 
denote its minimum by 𝜁min, otherwise we remain at minimizing Err5 according to (26).

4.4.1. Velocity versions

The velocity version of a nine-stage Hessian-free FGI takes the form

Ψℎ = exp
(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
exp

(
( 12 − 𝑎2)ℎ̂

)
exp

(
(1 − 2(𝑏1 + 𝑏2))ℎ̂(ℎ,1 − 2(𝑏1 + 𝑏2), 𝑐3)

)
× exp

(
( 12 − 𝑎2)ℎ̂

)
exp

(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
and is characterized by six degrees of freedom 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3.
Variant 1 (𝑛𝑓 = 7, 𝑝 = 6, 𝑣 = 0). Despite there is a new order condition due to 𝛾5, we find the same unique solution as in [13], namely

𝑎2 =
1
2
+

3
√

675 + 75
√
6

30 
+ 5 

2 3
√

675 + 75
√
6
, 𝑏1 =

𝑎2
3 
, 𝑏2 = −

5𝑎2
3 

(𝑎2 − 1), 𝑐1 = 0,

𝑐2 = −
5𝑎22
144

+
𝑎2
36

− 1 
288

, 𝑐3 =
1 

144
−

𝑎2
36

(𝑎2
2 

+ 1
)
, 𝜁min ≈ 0.00154, Eff ≈ 0.0055.

(50)

Since the unique solution satifies 𝑐1 = 0, this variant coincides with the variant of demanding 𝑐1 = 0.
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Variant 2 (𝑛𝑓 = 7, 𝑝 = 4, 𝑣 = 3). For 𝑐3 = 0, minimizing the norm of the leading error term results in

𝑎2 = 0.227758000273404, 𝑏1 = 0.070935378258660, 𝑏2 = 0.322911610232109,

𝑐1 = 0.000067752132787, 𝑐2 = 0.001597508440746, 𝛾min ≈ 0.0000101, Eff ≈ 41.06.
(51)

Variant 3 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 3). By demanding 𝑐2 = 0, one gets

𝑎2 = 0.197279141794602, 𝑏1 = 0.060885008530668, 𝑏2 = 0.288579639891554,

𝑐1 = 0.000429756946246, 𝑐3 = 0.002373498029145, 𝛾min ≈ 0.0000130, Eff ≈ 59.33.
(52)

Variant 4 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 2). At 𝑐1 = 0 and 𝑐3 = 0, the minimization of Err5 yields

𝑎2 = 0.219039425103133, 𝑏1 = 0.068466565514186, 𝑏2 = 0.311000565033563,

𝑐2 = 0.001602470431500, 𝛾min ≈ 0.0000105, Eff ≈ 73.45.
(53)

Variant 5 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 2). For 𝑐1 = 0 and 𝑐2 = 0, we achieve

𝑎2 = 0.200395293638238, 𝑏1 = 0.073943321445602, 𝑏2 = 0.258244950046509,

𝑐3 = 0.003147048491590, 𝛾min ≈ 0.0000651, Eff ≈ 24.57.
(54)

Variant 6 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 2). Putting 𝑐2 = 0 and 𝑐3 = 0, one finds the minimum

𝑎2 = 0.190585159174513, 𝑏1 = 0.036356798097337, 𝑏2 = 0.340278911234329,

𝑐1 = 0.002005691094612, 𝛾min ≈ 0.000336, Eff ≈ 4.76.
(55)

Variant 7 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 1). Finally, choosing 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0 and minimizing Err5 results in the non-gradient scheme [12]

𝑎2 = 0.520943339103990, 𝑏1 = 0.164498651557576, 𝑏2 = 1.235692651138917,

𝛾min ≈ 0.000654, Eff ≈ 5.97.
(56)

4.4.2. Position versions

The position version

Ψℎ = exp
(
𝑎1ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎2ℎ̂

)
exp

(
( 12 − 𝑏1)ℎ̂(ℎ, 12 − 𝑏1, 𝑐2)

)
exp

(
(1 − 2(𝑎1 + 𝑎2))ℎ̂

)
× exp

(
( 12 − 𝑏1)ℎ̂(ℎ, 12 − 𝑏1, 𝑐2)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎1ℎ̂

)
comes with five degrees of freedom 𝑎1, 𝑎2, 𝑏1, 𝑐1, 𝑐2, only allowing for the derivation of Hessian-free FGIs up to convergence order 𝑝 = 4. The order 
conditions up to order four yield the equations

𝑎1 =
(
3 − 6𝑎2 + 12𝑎2𝑏1 ∓

√
3
√

1 − 24𝑎22𝑏1 + 48𝑎22𝑏
2
1

)
∕6,

𝑐2 =
(
2 − 12𝑎2𝑏1 + 24𝑎2𝑏21 ∓

√
3
√

1 − 24𝑎22𝑏1 + 48𝑎22𝑏
2
1 − 48𝑐1

)
∕48,

(57)

so that three degrees of freedom 𝑎2, 𝑏1, 𝑐1 are remaining.
Variant 1 (𝑛𝑓 = 8, 𝑝 = 4, 𝑣 = 3). The norm of the leading error term is minimized at sign minus with

𝑎1 = 0.094471605659163, 𝑎2 = 0.281057227947299, 𝑏1 = 0.227712700174579,

𝑐1 = 0.000577062053569, 𝑐2 = 0.000817399268485, 𝛾min ≈ 0.00000501, Eff ≈ 48.71.
(58)

Variant 2 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 2). Setting 𝑐1 = 0 results in a minimum achieved at sign minus, given by

𝑎1 = 0.047802682977081, 𝑎2 = 0.265994592108478, 𝑏1 = 0.143282503449494,

𝑐2 = 0.002065558490728, 𝛾min ≈ 0.0000346, Eff ≈ 22.32.
(59)

Variant 3 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 2). For 𝑐2 = 0, we obtain (at sign minus)

𝑎1 = 0.118030603246046, 𝑎2 = 0.295446189611111, 𝑏1 = 0.273985556386628,

𝑐1 = 0.001466561305710, 𝛾min ≈ 0.0000471, Eff ≈ 16.39.
(60)

Variant 4 (𝑛𝑓 = 4, 𝑝 = 4, 𝑣 = 1). With 𝑐1 = 0 and 𝑐2 = 0, one finds the non-gradient scheme

𝑎1 = 0.178617895844809, 𝑎2 = −0.066264582669818, 𝑏1 = 0.712341831062606,

𝛾min ≈ 0.000610, Eff ≈ 6.40.
(61)

4.4.3. Remarks

For 𝑠 = 9, we obtain the first (and at the same time unique) Hessian-free FGI of convergence order 𝑝 = 6, namely the velocity version (50). It is 
the same unique solution as in [13], although one has to satisfy the new order condition due to 𝛾5. Since some variants of eleven-stage Hessian-free 
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FGIs will be affected by order reduction, this can be regarded as a lucky coincidence. All other variants dfine order-four integrators. The most 
efficient one is given by the velocity version (53) with an efficiency of Eff ≈ 73.45. Compared to the most efficient seven-stage variant (46), it allows 
to reduce the global errors approximately by a factor of 73.45∕38.57 ≈ 1.9 while keeping the total number of force recalculations fixed.

4.5. Hessian-free force-gradient integrators with s=11 stages (P=6)

We finally consider the case of Hessian-free FGIs with 𝑃 = 6. For the cases 𝑃 ≤ 5, each variant of Hessian-free FGIs has the same convergence 
order as the common FGIs in [13], i.e., the additional order conditions did not result in an order reduction. For 𝑃 = 6, however, some variants are 
affected by order reduction.

4.5.1. Velocity versions

In velocity form, the eleven-stage propagation takes the form

Ψℎ = exp
(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
exp

(
𝑎3ℎ̂

)
exp

(
( 12 − (𝑏1+ 𝑏2))ℎ̂(ℎ, 12 − (𝑏1+ 𝑏2), 𝑐3)

)
× exp

(
(1 − 2(𝑎2 + 𝑎3))ℎ̂

)
exp

(
( 12 − (𝑏1+ 𝑏2))ℎ̂(ℎ, 12 − (𝑏1+ 𝑏2), 𝑐3)

)
exp

(
𝑎3ℎ̂

)
exp

(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
× exp

(
𝑎2ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
with seven degrees of freedom 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3.
Variant 1 (𝑛𝑓 = 9, 𝑝 = 6, 𝑣 = 0). The only real solution is given by

𝑎2 = 0.270990466773838, 𝑎3 = 0.635374358266882, 𝑏1 = 0.090330155591279,

𝑏2 = 0.430978044876253, 𝑐1 = 0, 𝑐2 = 0.002637435980472,

𝑐3 = −0.000586445610932, 𝜁min ≈ 0.00000699, Eff ≈ 0.27.

(62)

Note that (62) also covers the variant demanding 𝑐1 = 0.
Variant 2 (𝑛𝑓 = 8, 𝑝 = 4, 𝑣 = 4). For 𝑐2 = 0, the best solution is achieved at

𝑎2 = 0.068597474282941, 𝑎3 = 0.284851197274498, 𝑏1 = −0.029456704762871,

𝑏2 = 0.228751459942521, 𝑐1 = 0.000410146066173, 𝑐3 = 0.001249935251564,

𝛾min ≈ 0.00000355, Eff ≈ 68.84.

(63)

Variant 3 (𝑛𝑓 = 8, 𝑝 = 4, 𝑣 = 4). Putting 𝑐3 = 0 yields

𝑎2 = 0.203263079324187, 𝑎3 = 0.200698071607808, 𝑏1 = 0.066202529912271,

𝑏2 = 0.267856111220228, 𝑐1 = 0.000012570620797, 𝑐2 = 0.001042408779514,

𝛾min ≈ 0.00000519, Eff ≈ 47.08.

(64)

Variant 4 (𝑛𝑓 = 7, 𝑝 = 4, 𝑣 = 3). Setting 𝑐1 = 0 and 𝑐2 = 0, the optimal solution looks as

𝑎2 = 0.122268182901557, 𝑎3 = 0.203023211433263, 𝑏1 = 0.055200549768959,

𝑏2 = 0.127408150658963, 𝑐3 = 0.001487834491987, 𝛾min ≈ 0.0000189, Eff ≈ 21.98.
(65)

Variant 5 (𝑛𝑓 = 7, 𝑝 = 4, 𝑣 = 3). Putting 𝑐1 = 0 and 𝑐3 = 0, one finds

𝑎2 = 0.201110227930330, 𝑎3 = 0.200577842713366, 𝑏1 = 0.065692416344302,

𝑏2 = 0.264163604920340, 𝑐2 = 0.001036943019757, 𝛾min ≈ 0.00000520, Eff ≈ 80.13.
(66)

Variant 6 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 3). For 𝑐2 = 0 and 𝑐3 = 0, minimization of Err5 results in

𝑎2 = 0.282918304065611, 𝑎3 = −0.002348009438292, 𝑏1 = 0.080181913812571,

𝑏2 = −1.372969015964262, 𝑐1 = 0.000325098077953, 𝛾min ≈ 0.0000166, Eff ≈ 46.47.
(67)

Variant 7 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 2). Finally, letting 𝑐1 = 𝑐2 = 𝑐3 = 0, we obtain the optimal eleven-stage non-gradient scheme (in velocity form) by 
choosing

𝑎2 = 0.253978510841060, 𝑎3 = −0.032302867652700, 𝑏1 = 0.083983152628767,

𝑏2 = 0.682236533571909, 𝛾min ≈ 0.0000270, Eff ≈ 59.26.
(68)

4.5.2. Position versions

When starting with a position update (14), the eleven-stage Hessian-free FGI reads

Ψℎ = exp
(
𝑎1ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
exp

(
( 12 − (𝑎1 + 𝑎2))ℎ̂

)
× exp

(
(1 − 2(𝑏1 + 𝑏2))ℎ̂(ℎ,1 − 2(𝑏1 + 𝑏2), 𝑐3)

)
exp

(
( 12 − (𝑎1 + 𝑎2))ℎ̂

)
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× exp
(
𝑏2ℎ̂(ℎ, 𝑏2, 𝑐2)

)
exp

(
𝑎2ℎ̂

)
exp

(
𝑏1ℎ̂(ℎ, 𝑏1, 𝑐1)

)
exp

(
𝑎1ℎ̂

)
,

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3 are free parameters.
Variant 1 (𝑛𝑓 = 10, 𝑝 = 6, 𝑣 = 0). In general, there exist four real solutions to obtain a Hessian-free FGI of order 𝑝 = 6. The best solution is

𝑎1 = 0.109534125980058, 𝑎2 = 0.426279051773841, 𝑏1 = 0.268835839917653,

𝑏2 = 0.529390037396794, 𝑐1 = 0.000806354602850, 𝑐2 = 0.007662601517364,

𝑐3 = −0.011627206142396, 𝜁min ≈ 0.00000603, Eff ≈ 0.17.

(69)

All four solutions have coefficients 𝑐𝑗 ≠ 0, i.e., an order reduction appears as soon as one 𝑐𝑗 is supposed to be zero. The variant with 𝑐1 = 0 is omitted 
since order 𝑝 = 6 can be achieved by setting 𝑎1 = 0, resulting in the nine-stage velocity algorithm (50).
Variant 2 (𝑛𝑓 = 8, 𝑝 = 4, 𝑣 = 4). Putting 𝑐2 = 0 yields

𝑎1 = 0.083684971641549, 𝑎2 = 0.225966488946428, 𝑏1 = 0.199022868372193,

𝑏2 = 0.197953981691206, 𝑐1 = 0.000437056543403, 𝑐3 = 0.000870457820984,

𝛾min ≈ 0.00000318, Eff ≈ 76.79.

(70)

Variant 3 (𝑛𝑓 = 9, 𝑝 = 4, 𝑣 = 4). For 𝑐3 = 0, the minimum is achieved at

𝑎1 = 0.082541033171754, 𝑎2 = 0.228637847036999, 𝑏1 = 0.196785139280847,

𝑏2 = 0.206783248777282, 𝑐1 = 0.000317260402502, 𝑐2 = 0.000555360763892,

𝛾min ≈ 0.00000235, Eff ≈ 64.99.

(71)

Variant 4 (𝑛𝑓 = 6, 𝑝 = 4, 𝑣 = 3). Setting 𝑐1 = 0 and 𝑐2 = 0 results in

𝑎1 = 0.134257092137626, 𝑎2 = −0.007010267216916, 𝑏1 = −0.485681409840328,

𝑏2 = 0.767464037573892, 𝑐3 = 0.002836723107629, 𝛾min ≈ 0.0000154, Eff ≈ 50.09.
(72)

Variant 5 (𝑛𝑓 = 7, 𝑝 = 4, 𝑣 = 3). At 𝑐1 = 0 and 𝑐3 = 0, the best solution reads

𝑎1 = 0.062702644098210, 𝑎2 = 0.193174566017780, 𝑏1 = 0.149293739165427,

𝑏2 = 0.220105234408407, 𝑐2 = 0.000966194415594, 𝛾min ≈ 0.00000445, Eff ≈ 93.60.
(73)

Variant 6 (𝑛𝑓 = 7, 𝑝 = 4, 𝑣 = 3). Letting 𝑐2 = 0 and 𝑐3 = 0, the minimization of Err5 leads to

𝑎1 = 0.115889910143319, 𝑎2 = 0.388722377182381, 𝑏1 = 0.282498420841510,

𝑏2 = −0.625616553474143, 𝑐1 = 0.001208219887746, 𝛾min ≈ 0.0000128, Eff ≈ 32.64.
(74)

Variant 7 (𝑛𝑓 = 5, 𝑝 = 4, 𝑣 = 2). Demanding 𝑐1 = 𝑐2 = 𝑐3 = 0, we arrive at the non-gradient scheme

𝑎1 = 0.275008121233242, 𝑎2 = −0.134795009910679, 𝑏1 = −0.084429619507071,

𝑏2 = 0.354900057157426, 𝛾min ≈ 0.0000518, Eff ≈ 30.89.
(75)

4.5.3. Remarks

The variants include two additional Hessian-free FGIs of order 𝑝 = 6, a velocity version (62) with efficiency Eff ≈ 0.27 and a position version (69)
with Eff ≈ 0.17. Both versions are significantly more efficient than the nine-stage algorithm (50) with Eff ≈ 0.0055: using the same number of total 
force evaluations, the eleven-stage algorithms reduce the global errors approximately by a factor of 0.27∕0.0055 ≈ 49.09 and 0.17∕0.0055 ≈ 30.91, 
respectively.

The most efficient eleven-stage Hessian-free FGI of order 𝑝 = 4 is given by the position algorithm (73) with Eff ≈ 93.60. Compared to the 
most efficient nine-stage algorithm (53) of order four (Eff ≈ 73.45), the eleven-stage algorithm reduces the global errors approximately by a factor 
of 93.60∕73.45 ≈ 1.27. The most efficient velocity algorithm is (66) with an efficiency of approximately 80.13. The non-gradient algorithm (68)
(Eff ≈ 59.3) became a state-of-the-art scheme in lattice quantum chromodynamics [31] due to its high efficiency compared to lower-stage algorithms. 
Based on the efficiency measure, both the position algorithm (73) and the velocity algorithm (68) are able to reduce the global errors while keeping 
the number of total force recalculations fixed, namely by a factor of approximately 1.58 and 1.35, respectively.

4.6. Complete classfication

A summary of all schemes derived in this section is provided in Table 1. The table contains the schemes in abbreviated forms, i.e., 𝐴 and 𝐵 corre
spond to the exponential operators exp(𝑎𝑗ℎ̂ ) and exp(𝑏𝑗ℎ̂), respectively, and 𝐷 denotes approximated FG-updates of the form exp(𝑏𝑗ℎ̂(ℎ, 𝑏𝑗 , 𝑐𝑗 )). 
For any number of stages 𝑠 = 3,5,7,9,11, the integrators are grouped according to their order of convergence. Within each group, the schemes are 
sorted in ascending order with respect to the number of force evaluations 𝑛𝑓 . For the same number of evaluations, more efficient schemes are listed 
first. While some of the new schemes have only slightly different time coefficients compared to the results in [13], there are also variants where one 
can observe large differences in the time coefficients.
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Table 1
Collection of Hessian-free force-gradient integrators with up to eleven stages. For all algo
rithms, the convergence order 𝑝, the number of force evaluations 𝑛𝑓 per time step, the leading 
error term Err𝑝+1, its efficiency Eff , as well as a remark on the earlier appearance of the time 
coefficients, are stated. For completeness, the final column refers to the ID of the respective 
variant in [13].

Algorithm Equation 𝑝 𝑛𝑓 Err𝑝+1 Efficiency Remarks ID in [13] 
BAB (30) 2 1 0.0932 10.73 [34] 1 
ABA (32) 2 1 0.0932 10.73 [34] 2 
DAD (29) 2 2 0.0833 3.00 [13,20] 3 
ADA (31) 2 2 0.0417 6.00 [13] 4

BABAB (37) 2 2 0.00855 29.24 [13,35] 5 
ABABA (39) 2 2 0.00855 29.24 [13,35] 6 
BADAB (35) 4 3 0.000728 16.96 [36,37] 8 
DABAD (36) 4 3 0.00335 3.68 [13] 7 
DADAD (34) 4 4 0.000625 6.25 New 9 
ADADA (38) 4 4 0.000718 5.44 [36,37] 10

ABABABA (49) 4 3 0.0283 0.44 [11,38] 12 
BABABAB (44) 4 3 0.0383 0.32 [11,38] 11 
ABADABA (48) 4 4 0.000149 26.19 New 14 
DABABAD (43) 4 4 0.000891 4.38 New 13 
BADADAB (42) 4 5 0.0000498 32.12 New 15 
ADABADA (47) 4 5 0.0000844 18.95 New 16 
ADADADA (46) 4 6 0.0000200 38.57 New 18 
DADADAD (41) 4 6 0.0000275 28.09 New 17

ABABABABA (61) 4 4 0.000610 6.40 [13] 20 
BABABABAB (56) 4 4 0.000654 5.97 [13] 19 
BABADABAB (54) 4 5 0.0000651 24.57 New 21 
DABABABAD (55) 4 5 0.000336 4.76 New 22 
BADABADAB (53) 4 6 0.0000105 73.45 New 24 
DABADABAD (52) 4 6 0.0000130 59.33 New 23 
ABADADABA (59) 4 6 0.0000346 22.32 New 25 
ADABABADA (60) 4 6 0.0000471 16.39 New 26 
DADABADAD (51) 4 7 0.0000101 41.06 New 27 
ADADADADA (58) 4 8 0.00000501 48.71 New 29 
BADADADAB (50) 6 7 0.00154 0.0055 [13] 28

BABABABABAB (68) 4 5 0.0000270 59.26 [13] 30 
ABABABABABA (75) 4 5 0.0000518 30.89 [13] 31 
ABABADABABA (72) 4 6 0.0000154 50.09 New 33 
DABABABABAD (67) 4 6 0.0000166 46.47 New 32 
ABADABADABA (73) 4 7 0.00000445 93.60 New 36 
BADABABADAB (66) 4 7 0.00000520 80.13 New 34 
ADABABABADA (74) 4 7 0.0000128 32.64 New 37 
BABADADABAB (65) 4 7 0.0000189 21.98 New 35 
ADABADABADA (70) 4 8 0.00000318 76.79 New 40 
DABADADABAD (63) 4 8 0.00000355 68.84 New 38 
DADABABADAD (64) 4 8 0.00000519 47.08 New 39 
ADADABADADA (71) 4 9 0.00000235 64.99 New 43 
BADADADADAB (62) 6 9 0.00000699 0.27 New 42 
ADADADADADA (69) 6 10 0.00000603 0.17 New 45 

4.7. Hessian-free force-gradient integrators of higher orders

In case of very accurate integrations, it can be useful to consider numerical time integration schemes of even higher convergence order 𝑝. The 
derivation of Hessian-free and exact FGIs via direct decompositions will result in the most efficient schemes within the framework. However, the 
derivation becomes a more challenging numerical problem when further increasing the number of stages.

An alternative approach of deriving numerical time integration schemes of arbitrarily high convergence order is given by means of composition 
techniques [10--12]. Using symmetric compositions, the time-reversibility, volume-preservation and closure property of the underlying base methods 
is preserved. Since the derivation based on direct decomposition will always lead to more efficient algorithms, composition techniques should only 
be applied for very high orders for which no methods based on direct decomposition are known. For example, Yoshida’s triple jump [11] based on the 
non-gradient scheme (30) yields the method (44) which is the least effective decomposition scheme (Eff ≈ 0.32) of order four under investigation. 
Starting from a base method of order 𝑝, Yoshida’s triple jump requires 3𝑘 applications of the base method to obtain a composition scheme of order 
𝑝+2𝑘. The alternative approach of Suzuki’s fractals [10] demands even more applications, namely 5𝑘. Advanced composition schemes [12] provide 
a possibility to derive composition schemes with significantly less stages if one wants to increase the order by more than two orders. Advanced 
composition schemes starting from a base scheme of order 𝑝 ∈ {4,6,8} have been discussed in [12]. Advanced composition schemes based on base 
schemes of order 𝑝 = 2 have been investigated in [39].
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5. Numerical results

This section provides numerical tests of Hessian-free FGIs for three different test examples. In Section 5.1, numerical tests for the outer solar 
system, a 𝑁 -body problem with mass matrix 𝑴 ≠ Id, are performed. Then, in Section 5.2, we consider the Hybrid Monte Carlo (HMC) algorithm 
[5] in two different applications. The two-dimensional Schwinger model is discussed in Section 5.2.1. Here, we have implemented the analytical 
FG-term [22]. This enables a comparison of the exact FGIs [13] to the new class of Hessian-free FGIs. Secondly, in Section 5.2.2, four-dimensional 
gauge field simulations in lattice QCD with two heavy Wilson fermions are discussed. Since the links are elements of the special unitary group SU(3), 
this provides an example in a non-Abelian setting.

5.1. The outer solar system

We consider the separable Hamiltonian system

(𝒑,𝒒) = 1
2

5 ∑
𝑖=0 

1 
𝑚𝑖

𝑝⊤𝑖 𝑝𝑖 −𝐺

5 ∑
𝑖=1 

𝑖−1 ∑
𝑗=0 

𝑚𝑖𝑚𝑗‖𝑞𝑖 − 𝑞𝑗‖ ,
describing the motion of the four outer planets (and Pluto) relative to the sun. Here, the momenta 𝒑 and positions 𝒒 are supervectors composed 
by the vectors 𝑝𝑖, 𝑞𝑖 ∈ ℝ3. We have taken the parameters from [1] and also took the initial data from [40] corresponding to September 5, 1994 at 
midnight. Solutions of the outer solar system using the Hessian-free FGI (73) with step size ℎ = 200 over a time period of 200,000 days are depicted 
in Fig. 1, showing the correct behavior. Numerical results for the other variants of Hessian-free FGIs show the same behavior, as expected.
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Fig. 1. Outer solar system. Numerical solution using the Hessian
free FGI (73) and ℎ = 200 over a time period of 200,000 days.

0 10 20 30 40

2

4

6

integrator ID in Table 1

co
nv

er
ge

nc
e o

rd
er

 𝑝

Fig. 2. Outer solar system. Numerical verfication of the convergence order of Hessian
free FGIs. For each variant of Hessian-free FGIs, the scaling has been measured performing 
simulations using different step sizes. The plot displays the mean, as well as the standard 
deviation of the numerical measurement of the convergence order.

Fig. 2 shows that all Hessian-free FGIs achieve the desired convergence order. These results are more or less just a reference that the derivation 
and solution of the order conditions has been performed correctly and that Hessian-free FGIs are also applicable to Hamiltonian systems (2) with 
𝑴 ≠ Id. Furthermore, the efficiency of the integrators for the outer solar system is depicted in Fig. 3 by plotting the global error vs. the total number 
of force evaluations for different step sizes. For the sake of clarity, only a selection of integrators is shown: the most efficient non-gradient scheme 
for any number of stages, the frequently used Hessian-free FGI (35), as well as the three best performing Hessian-free FGIs of order four. Compared 
to the most efficient fourth-order non-gradient scheme (68), Hessian-free FGIs are able to reduce the error by more than one order of magnitude 
at the same number of force evaluations, emphasizing the efficiency of the proposed class of integrators. For accuracy demands up to 1𝑒 − 4, the 
Hessian-free FGI (73) is even able to compete with the most efficient sixth-order integrator under investigation, the 15-stage non-gradient velocity 
algorithm introduced in [13]. In addition, the results show that the practical efficiency of the integrators might diverge from the theoretical findings 
summarized in Table 1. For example, (35) (Eff ≈ 16.96) is more efficient than (68) (Eff ≈ 59.26) and (52) (Eff ≈ 59.33) is approximately as efficient 
as (73) (Eff ≈ 93.60). The theoretical efficiency values are derived by equating all brackets to one; therefore, this outcome is not contradictory. 
Nevertheless, the efficiency measure provides a valuable heuristic, indicating which integrators are likely to be efficient without requiring additional 
assumptions about the specific system.

Another important feature is the long-time energy conservation of Hessian-free FGIs. As an example, Fig. 4 depicts the relative energy error 
((𝒑𝑛,𝒒𝑛)−(𝒑0,𝒒0))∕(𝒑0,𝒒0) for the Hessian-free FGI (73). For this problem, no drift is visible, i.e. the Hessian-free FGIs behave like a symplectic 
integrator and thus show excellent long-term energy behavior. Note that this observation coincides with the observations made in [20] for another 
𝑁 -body problem. 

5.2. Hybrid Monte Carlo simulations

The most common approach of simulating quantum field theories on the lattice is given by Hybrid Monte Carlo (HMC) simulations [5]. Within 
the HMC algorithm, the lattice quantum field theory is embedded in a higher-dimensional classical system by introducing a fictitious simulation 
time. It is described by a separable Hamiltonian system

([𝑷 ], [𝑸]) =  ([𝑷 ]) + ([𝑸]),

reaching the equilibrium distribution of the desired expectation values in the large time limit. The square brackets denote a cofiguration, i.e. the 
set of all variables arranged on the lattice. For a given cofiguration [𝑸], a new cofiguration [𝑸′] is generated by performing an HMC update 
consisting of a molecular dynamics (MD) step and a Metropolis step.
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Fig. 3. Outer solar system. Global error vs. number of force evaluations for a selected number of Hessian-free FGIs (blue lines) and non-gradient schemes (red lines). 
The simulation has been performed over a time period of 200,000 days using different number of steps, nsteps ∈ {1000,1500,… ,5000}. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 4. Outer solar system. Relative energy error of the Hessian-free FGI (73) using ℎ= 200 over a time period of 200,000 days. 

• MD step. For a trajectory of length 𝜏 , solve the Hamiltonian equations of motion given by

𝑷̇ 𝑥,𝜇 = − 𝜕([𝑷 ], [𝑸])
𝜕𝑸𝑥,𝜇

, 𝑸̇𝑥,𝜇 = 𝜕([𝑷 ], [𝑸])
𝜕𝑷 𝑥,𝜇

for each position (𝑥,𝜇) on the lattice. We denote the new cofiguration by ([𝑷 ′], [𝑸′]).

• Metropolis step. Accept the new cofiguration ([𝑷 ′], [𝑸′]) with probability

([𝑸]→ [𝑸′]) = min (1, exp(−Δ)) ,

where Δ =([𝑷 ′], [𝑸′]) −([𝑷 ], [𝑸]). Depending on the acceptance step, either the new or old cofiguration is added to the Markov chain 
and used as the initial cofiguration for the next MD step.

The Markov process will converge to a unique fixed point distribution provided that it is ergodic and satifies the detailed balance condition [5]. 
The detailed balance condition is satified, if the numerical integration scheme used in the MD step is time-reversible and volume-preserving [31]. 
Good energy conservation is required to ensure a high acceptance rate in the Metropolis step. At the same time, one is interested in minimizing the 
computational cost of the HMC algorithm. Consequently, the choice of the integrator in the MD step plays a crucial role. The optimal acceptance 
rate for a numerical integration scheme of order 𝑝 is [41]

⟨𝑃acc⟩opt = exp(−1∕𝑝). (76)

Equation (76) indicates that the optimal acceptance rate for order 𝑝 = 2 is 61%, 78% for order 𝑝 = 4 and 85% for order 𝑝 = 6. In practice, however, 
achieving the optimal acceptance rate is often challenging, as instabilities emerge as a limiting factor in the step size ℎ. Hence one frequently aims 
at achieving an acceptance rate of 𝑃acc ≈ 90%. For log-normal distributed Δ𝐻 , the expected acceptance rate is given by [42]

⟨𝑃acc⟩ = erfc
(√

𝜎2∕8
)

, (77)

where 𝜎2 denotes the (empirical) variance in Δ𝐻 and erfc the complementary error function. All in all, we are interested in minimizing the number 
of force evaluations per unit trajectory 𝑛𝑓∕ℎ while achieving a desired acceptance rate 𝑃acc ∈ [0,1], i.e., we aim at maximizing the step size ℎ such 
that 𝜎2 ≤ 8(erfc−1(𝑃acc))2 is satified.
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5.2.1. The two-dimensional Schwinger model

The two-dimensional Schwinger model is dfined by the Hamiltonian

(𝒑,𝒒) = 1
2

𝑉 ,2 ∑
𝑛=1,𝜇=1

𝑝2
𝑛,𝜇

+ 𝐺([𝑸]) + 𝐹 ([𝑸])

with 𝑉 =𝐿×𝑇 the volume of the lattice and 𝐺([𝑸]) the pure gauge action and 𝐹 ([𝑸]) the fermion action. The links 𝑸 on the lattice are elements of 
the Abelian Lie group U(1). Consequently the links 𝑄𝜇(𝑛) connecting the sites 𝑛 and 𝑛+ 𝜇̂ and can be written in the form 𝑄𝜇(𝑛) = exp(𝑖𝑞𝜇(𝑛)) ∈ U(1), 
𝑞𝜇(𝑛) ∈ [−𝜋,𝜋], 𝜇 ∈ {𝑥, 𝑡} the respective space and time directions. The momenta 𝑝𝑛,𝜇 are elements of the corresponding Lie algebra ℝ. Details 
on the action  can be found here Appendix A. For this Hamiltonian system, the force-gradient term ̂ has been derived in [22], allowing for a 
comparison of the exact FGIs in [13] and our Hessian-free ones. On a lattice of size 16× 16 at pure gauge coupling 𝛽 = 1 and at bare mass parameter 
𝑚0 = 0.352443 [43], we computed 2000 trajectories of length 𝜏 = 1 with 𝑁 = 20,25,30,35,40 number of steps using any set of coefficients from 
Table 1 and [13, Tab. 2]. Note that we chose for the simulations a large bare quark mass corresponding to 𝑧 = 0.8 in [43, Tab. 2] to guarantee a 
stable integration for our setup without nested integration and without Hasenbusch mass-preconditioning in a large volume. For all variants, we 
consider both the exact FG-term (12) and the approximation (18) resulting in Hessian-free FGIs. By measuring the dependence of the variance 𝜎2

of Δ𝐻 on the number of steps 𝑁 and using the relation to the acceptance rate (77), we estimated for each integrator the number of required force 
steps to reach 90% acceptance rate. In Fig. 5, a pair-wise comparison to our proposed integrators (Hessian-free FGIs with coefficients from Table 1) 
is depicted. Fig. 5a shows that, for almost all variants, Hessian-free FGIs allow for a more efficient computational process than the FGIs from [13]. 
A major difference can be observed for those variants who are affected by an order reduction, e.g. (70). This can be explained by the fact that in the 
relevant region of 𝑃acc ≈ 90%, second and fourth order integrators turn out to be more efficient for this lattice size. For increasing lattice sizes (see 
e.g. Section 5.2.2), higher-order schemes become more efficient. For simplicity, exact FGIs are often implemented using the approximation (18), 
see e.g. [44]. The coefficients derived in [13] do not incorporate the new error terms (21) that occur due to the approximation. Fig. 5b highlights 
that Hessian-free FGIs with coefficients from Table 1 usually perform better than Hessian-free FGIs with coefficients from [13]. In contrast, Fig. 5c 
underlines that the coefficients derived in this paper are only recommended for Hessian-free FGIs. Using the coefficients for exact FGIs leads to less 
efficient schemes, as expected. In this case, the coefficients from [13] should be used since they are optimized for exact FGIs.
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(a) Exact FGIs with coefficients from [13] (red circles) vs. Hessian-free FGIs with coefficients from Table 1 (blue squares).
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(b) Hessian-free FGIs with coefficients from [13] (red circles) vs. Hessian-free FGIs with coefficients from Table 1 (blue squares). The coefficients from [13] with 
ID = 41 yield 𝑛𝑓∕ℎ(𝑃acc = 90%) ≈ 63 and are not displayed for visualization purposes.
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(c) Exact FGIs with coefficients from Table 1 (red circles) vs. Hessian-free FGIs with coefficients from Table 1 (blue squares).

Fig. 5. Schwinger model. Estimation of the required number of force steps per unit trajectory 𝑛𝑓∕ℎ to reach 𝑃acc = 90%. Evaluations of the FG-term are counted 
as two force evaluations. The sufigures show a pair-wise comparison to Hessian-free FGIs with coefficients from Table 1 (blue squares) with (a) exact FGIs with 
coefficients from [13], (b) Hessian-free FGIs with coefficients from [13], (c) exact FGIs with coefficients from Table 1 (red circles).
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5.2.2. Four-dimensional lattice QCD simulations with Wilson fermions

We consider gauge field simulations in lattice quantum chromodynamics (QCD) on a four-dimensional lattice of size 𝑉 = 𝑇 × 𝐿3 with lattice 
spacing 𝑎. Here, the Hamiltonian reads

([𝑷 ], [𝑸]) = 1
2
∑
𝑥,𝜇

tr(𝑃 2
𝑥,𝜇) + 𝐺([𝑸]) + 𝐹 ([𝑸]), (78)

where 𝐺([𝑸]) denotes the Wilson gauge action, 𝐹 ([𝑸]) denotes the fermion action (for details, see Appendix B). Here, the links 𝑄𝑥,𝜇 , connecting 
the sites 𝑥 and 𝑥+ 𝑎𝜇̂, are elements of the non-Abelian matrix Lie group SU(3) of unitary matrices with determinant one. The scaled momenta 𝑖𝑃𝑥,𝜇

are elements of the associated Lie algebra su(3) of traceless and anti-Hermitian matrices and occur in the formulation of the equations of motion. As 
an initial test in lattice QCD simulations, we consider an ensemble used in [45] generated with two dynamical non-perturbatively (𝑎) improved 
Wilson quarks at a mass equal to half of the physical charm quark. Starting from a thermalized cofiguration, we computed 100 trajectories for 𝜏 = 2.0
and varying step size ℎ = 𝜏∕𝑁 for different values of 𝑁 on a 48 × 243 lattice with gauge coupling 𝛽 = 5.3 and hopping parameter 𝜅 = 0.1327 for all 
Hessian-free FGIs discussed in this paper. For the simulations, we have put all forces on a single time-scale of integration.4 The results of selected 
integrators are depicted in Fig. 6. The results emphasize that the use of fourth-order integrators and in particular the Hessian-free FGI (48) results 
in the most efficient computational process with 𝑛𝑓 ⋅𝑁 ≈ 34 to achieve the optimal acceptance rate ⟨𝑃acc⟩opt = 78%. In contrast, the most efficient 
non-gradient scheme (68) demands 𝑛𝑓 ⋅𝑁 ≈ 38. Moreover, the Hessian-free FGI (35) is a very efficient choice (𝑛𝑓 ⋅𝑁 ≈ 37). The integrators (48)
(Eff ≈ 26.19) and (35) (Eff ≈ 16.96) are not among the most efficient integrators according to the efficiency measure (28). In lattice QCD, however, 
we are only interested in the region of 0.01 ≤ 𝜎2 ≤ 1. In this region, the limiting factor in the step size ℎ usually comes from instabilities [48] so that 
the performance of the integrators strongly depends on their stability properties. For the non-gradient schemes, a linear stability analysis is already 
available [49]. First results on the linear stability of FGIs support the claim that Hessian-free FGIs with a larger stability domain are benficial for 
application in lattice QCD simulations. Moreover, we emphasize that Hessian-free FGIs are not symplectic and thus will in general have a linear 
energy drift of size (𝜏ℎmax{4,𝑝}) while exact FGIs are symplectic, resulting in a bounded energy error without any drift. Since the trajectory length 
𝜏 is rather short, the energy drift is negligible. The linear stability and energy conservation of Hessian-free FGIs is subject of a following paper in 
progress.
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Fig. 6. Lattice QCD. Variance of Δ𝐻 vs. number of force evaluations per trajectory 𝑛𝑓 ⋅𝑁 for a selected number of Hessian-free FGIs, namely the three best performing 
Hessian-free FGIs (blue lines), as well as the most efficient non-gradient scheme for order 𝑝 ∈ {4,6} (red lines). The most efficient non-gradient scheme of order 𝑝 = 2
is not included for visualization purposes as it achieves ⟨𝑃acc⟩opt at 𝑛𝑓 ⋅𝑁 ≈ 140. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

For the best-performing Hessian-free FGI (48) and the most efficient non-gradient integrator (68), we tuned the step size ℎ to achieve an acceptance 
rate of 𝑃acc ≥ 90%, resulting in the step size ℎ= 0.2 for both integrators, and computed 2000 trajectories. The results of both setups are summarized 
in Table 2, including the cost measure

cost =
𝑛𝑓 ⋅𝑁

𝑃acc ⋅ 𝜏
,

as well as estimates of the integrated autocorrelation times of the topological charge 𝑄0 measured at Wilson flow time 𝑡0, and the Wilson flow 
reference scale 𝑡0∕𝑎2. For both quantities we observe similar autocorrelation times, despite the lower acceptance rate of the Hessian-free force
gradient integrator. By investigating the cost measure, it turns out that the Hessian-free FGI only demands approximately 84% of the computational 
cost compared to the non-gradient integrator. Despite the simplicity of the ensemble, the results show the potential of Hessian-free FGIs for lattice 
QCD simulations. In more complicated ensembles, the performance usually benfits from applying nested integration techniques [46,47] to employ 
different step sizes for different parts of the forces. The investigation of Hessian-free FGIs inside nested integrators is subject to future research 
focusing on multiple time stepping techniques. 

4 We also performed simulations using nested integrators that employ a smaller step size to the gauge force. At these lattice parameters, however, we were not 
able to observe any significant improvement in the acceptance probability by applying nested integration techniques, see e.g. [46,47].
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Table 2
Lattice QCD. Comparison of the performance of two tuned setups based on 2000 
trajectories of length 𝜏 = 2.0. Both setups use a step size of ℎ = 0.2. The re
sults contain the number of force evaluations per trajectory, the acceptance 
rate 𝑃acc , integrated autocorrelation times 𝜏int (𝑡0) and 𝜏int (𝑄0) in molecular dy
namics units (MDUs), and a measure for the computational cost.

ID 𝑛𝑓 ⋅𝑁 𝑃acc 𝜏int (𝑡0) [MDU] 𝜏int (𝑄0) [MDU] cost 
BABABABABAB 50 97.5% 37.40(12.66) 22.91(6.52) 25.64
ABADABA 40 92.3% 28.15(9.24) 22.05(6.31) 21.67

6. Conclusion and outlook

In this work, we generalized the approximation proposed in [19,21], resulting in a new class of Hessian-free FGIs. The new integrators are applica
ble to separable Hamiltonian systems of the form (2), as well as to general second order ODEs 𝑦̈ = 𝑓 (𝑦). In contrast to exact FGIs [13], the Hessian-free 
variants do not need for the Hessian of the potential energy  and replace it by another force evaluation. At the price of additional error terms, that 
have been derived explicitly in this work, one is able to save costly evaluations of the force-gradient term, e.g. in molecular dynamics simulations. 
Hessian-free FGIs are time-reversible, volume-preserving and satisfy the closure property, but they are no longer symplectic. Consequently, they do 
not preserve a nearby shadow Hamiltonian. In general, this results in a linear energy drift of size (𝑡ℎ𝑝). A complete classfication of Hessian-free 
FGIs up to 𝑠 = 11 stages shows that some variants undergo only small changes in the time coefficients compared to the respective variants in [13], 
whereas the time coefficients of other variants change significantly, e.g. if an order reduction appears due to the additional error terms. Numerical 
tests emphasize the computational efficiency of the proposed numerical integration schemes for different applications, making them a valuable class 
of integration schemes for a wide range of applications.

The efficiency of higher order integration schemes strongly depends on the system size so that Hessian-free FGIs of order 𝑝 > 4 may become 
efficient for simulating lattice quantum field theories of larger volumes [50]. Hence a next natural step is to investigate Hessian-free FGIs with 𝑠 > 11
stages, aiming for more efficient sixth-order integrators.

In the context of lattice QCD, the numerical results indicate that the stability properties of the integrators are crucial for an efficient computational 
process. Thus we will perform a linear stability analysis of Hessian-free and exact FGIs to validate which variants are superior in terms of stability. 
Furthermore, a rfined analysis on the energy conservation of Hessian-free FGIs in lattice QCD will contribute in designing more efficient numerical 
integration schemes for simulating quantum field theories on the lattice.

The efficiency measure used in this work assumes that the error terms are equally dominant. However, this simplifying assumption does not hold 
in general. Minimizing a problem-specific weighted norm results in even more efficient integrators [50]. Therefore, we will develop a tuning model 
that numerically measures the error terms to obtain appropriate weights for the weighted norm. Since we derived the additional error terms for 
Hessian-free FGIs in this work, this enables tuning procedures similar to [50] and may enhance other existing tuning models, e.g. [44].

In many applications, separable Hamiltonian systems with a potential splitting (𝒑,𝒒) =  (𝒑) +
∑𝑁

𝑚=1 
{𝑚}(𝒒) occur. Here, the potential part is 

split with respect to, for example, stiffness, nonlinearity, dynamical behavior, and evaluation cost. In lattice QCD, for example, the fermion part of the 
action is characterized by slow dynamics and expensive evaluation cost, whereas the gauge part is fast and cheap to evaluate. This multirate potential 
can be exploited by means of nested integration, see e.g. [22,46,47]. We aim at designing a general framework of nested integration schemes and 
providing an order theory including explicit formulae of the error terms.
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Appendix A. Details on the action for the two-dimensional Schwinger model

The action  is given by the sum of the gauge part

𝐺([𝑸]) = 𝛽

𝑉∑
𝑛=1 

(1 −Re(ℙ(𝑛)))

summing up over all plaquettes
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ℙ(𝑛) =𝑄1(𝑛)𝑄2(𝑛+ 1̂)𝑄†
1(𝑛+ 2̂)𝑄†

2(𝑛),

scaled by a coupling constant 𝛽, and the fermion part

𝐹 ([𝑸]) = 𝜂†
(
𝐷†𝐷

)−1
𝜂,

with pseudofermion field 𝜂 and Wilson-Dirac operator

𝐷𝑛,𝑚 = (2 +𝑚0)𝛿𝑛,𝑚 − 1
2

2 ∑
𝜇=1

(
(1 − 𝜎𝜇)𝑄𝜇(𝑛)𝛿𝑛,𝑚−𝜇̂ + (1 + 𝜎𝜇)𝑄†

𝜇(𝑛− 𝜇̂)𝛿𝑛,𝑚+𝜇̂

)
,

where 𝑚0 denotes the mass parameter, 𝛿𝑛,𝑚 the Kronecker delta acting on the pseudofermion field via

𝑉∑
𝑚=1

𝛿𝑛,𝑚𝜂(𝑚) = 𝜂(𝑛),

and 𝜎𝜇 the Pauli matrices

𝜎1 =
(
0 1
1 0

)
, 𝜎2 =

(
0 −𝑖

𝑖 0

)
,

which build a basis of the Lie group U(1).

Appendix B. Details on the Hamiltonian for lattice QCD

Any matrix representation 𝑃𝑥,𝜇 can be written as 𝑃𝑥,𝜇 = 𝑝𝑖𝑻 𝑖 where the generators 𝑻 𝑖, 𝑖 = 1,… ,8, are given by the Gell-Mann matrices [51]. 
With 𝒑𝑥,𝜇 ∶= (𝑝1,… , 𝑝8)⊤, a straight-forward computation shows that

tr(𝑃 2
𝑥,𝜇) = ⟨𝒑𝑥,𝜇,𝒑𝑥,𝜇⟩,

holds. Consequently, the kinetic energy in (78) can be written as

 (𝒑) = 1
2
∑
𝑥,𝜇

⟨𝒑𝑥,𝜇,𝒑𝑥,𝜇⟩
which is of the form (1) with 𝑴 = Id. The action  = 𝐺 +𝐹 is dfined on a four dimensional lattice with volume 𝑉 and consists of the gauge part

𝐺([𝑸]) =
∑
𝑥 

∑
𝜇<𝜈

𝛽
(
1 − 1

3
Re

(
tr
(
ℙ𝑥,𝜇𝜈([𝑸])

)))
with gauge coupling 𝛽 and plaquettes

ℙ𝑥,𝜇𝜈([𝑸]) =𝑄𝑥,𝜇𝑄𝑥+𝑎𝜇̂𝑄
†
𝑥+𝑎𝜈̂,𝜇

𝑄†
𝑥,𝜈 ,

and the fermion part

𝐹 ([𝑸]) = ⟨𝜙1, (𝐷𝑒𝑜𝐷
†
𝑒𝑜 + 𝜇2)−1𝜙1⟩+ ⟨𝜙2, (1 + 𝜇2(𝐷𝑒𝑜𝐷

†
𝑒𝑜)

−1)𝜙2⟩+∑
𝑥 

tr log𝐷2
𝑥,𝑥

with complex-valued pseudofermion fields 𝜙1 and 𝜙2. The fermion part is decomposed using even-odd reduction in combination with one Hasenbusch 
mass preconditioning term [52] with shift parameter 𝜇, such that the determinant is given by

det𝐷2 =
det(𝐷𝑒𝑜𝐷

†
𝑒𝑜 + 𝜇2 ⋅ Id) 

det(Id + 𝜇2(𝐷𝑒𝑜𝐷
†
𝑒𝑜)−1)

⋅
∏
𝑥 

det𝐷2
𝑥,𝑥

with the even-odd reduced Dirac operator 𝐷𝑒𝑜 = Id−𝐷−1
𝑒,𝑒𝐷𝑒,𝑜𝐷

−1
𝑜,𝑜𝐷𝑜,𝑒 and the block diagonal terms 𝐷𝑥,𝑥. The clover improved Wilson Dirac operator 

can be represented as a complex matrix of size 12 × 𝑉 with next neighbor interactions. For a more detailed discussion, we refer to [53].

Data availability

An extended version of the openQCD package [26] including the proposed class of integrators is opensource and available online at https://
github.com/KevinSchaefers/openQCD_force-gradient.
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