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Abstract
The decomposition of a square matrix into a sum of Pauli strings is a classical pre-processing step
required to realize many quantum algorithms. Such a decomposition requires significant
computational resources for large matrices. We present an exact and explicit formula for the Pauli
string coefficients which inspires an efficient algorithm to compute them. More specifically, we
show that up to a permutation of the matrix elements, the decomposition coefficients are related to
the original matrix by a multiplication of a generalised Hadamard matrix. This allows one to use
the Fast Walsh-Hadamard transform and calculate all Pauli decomposition coefficients in
O(N2 logN) time and usingO(1) additional memory, for an N ×N matrix. A numerical
implementation of our equation outperforms currently available solutions.

1. Introduction

The Pauli matrices P := {I,X,Y,Z}, where

I :=

(
1 0
0 1

)
, X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, (1)

form a set of elementary gates, ubiquitous in the field of quantum computation and information [1]. In
order to apply a quantum algorithm to a specific application area such as simulation of quantum
systems [2–5] or solving systems of linear equations [6], it is often desirable to express the problem input,
such as a Hamiltonian or more generally a complex matrix, A ∈ C2n×2n with a positive integer n, as a
weighted sum of tensor products of Pauli matrices, also known as Pauli strings:

A=
∑
P∈Pn

α(P)P, (2)

where

Pn :=


n−1⊗
j=0

Pj : Pj ∈ P

 (3)

and α : Pn→ C. The problem is then to compute the Pauli coefficients (α(P))P∈Pn efficiently.
An exact expression for the Pauli coefficients is given by

α(P) =
1

2n
tr
(
A†P

)
(P ∈ Pn) , (4)

which follows from equation (2) and the fact that Pn forms an orthonormal basis under the Hilbert–Schmidt
inner product 1

2n tr(A
†B) on the vector space C2n×2n . Unfortunately, naive implementation of equation (4)
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suffers from poor scaling,O(25n), and this equation is not easy to use for a derivation of an explicit
linear-combination-of-unitaries decomposition of a Hamiltonian or a matrix used in specific applications.

In this work, we derive an exact and explicit representation of α based on a Walsh–Hadamard transform,
defined as multiplication by the nth tensor power H⊗n of the Hadamard matrix

H :=

(
1 1
1 −1

)
. (5)

Namely, for a matrix A= (ap,q)
2n−1
p,q=0 ∈ C2n×2n , the following theorem holds.

Theorem 1 (Pauli decomposition of A ∈ C2n×2n via theWalsh–Hadamard transform). The following
decomposition

A=
2n−1∑
r,s=0

αr,sPr,s, (6)

where

Pr,s :=
n−1⊗
j=0

(irj∧sjXrjZsj) ∈ Pn

(
r, s ∈ [2n− 1]0

)
(7)

and

αr,s :=
i−|r∧s|

2n

2n−1∑
q=0

aq⊕r,q

(
H⊗n

)
q,s

(
r, s ∈ [2n− 1]0

)
, (8)

holds. Conversely, A can be recovered from its Pauli string decomposition according to

ar,s = i|r∧s|
2n−1∑
q=0

αr⊕s,q

(
H⊗n

)
q,s
. (9)

In theorem 1, ∧,⊕, and ·̄ are the bitwise AND, XOR, and NOT operators, respectively, |·| is the Hamming
weight, {rj}n−1

j=0 and {sj}n−1
j=0 are the binary expansion coefficients of r and s, respectively, and [2n− 1]0 :=

{0,1, . . .2n− 1}. Precise definitions of these standard notations can be found at the beginning of section 2.
As we show in the proof of theorem 1, Pr,s is indeed a Pauli string because irj∧sjXrjZsj ∈ P := {I,X,Y,Z} for
rj, sj ∈ {0,1}.

A naive implementation of matrix multiplication performed in equation (8) scales asO(23n). However,
one can use the Fast Walsh–Hadamard transform [7, chapter 7], which scales asO(n22n) and requires only
n22n addition and n22n subtraction operations on complex numbers, withO(1) additional memory.
Furthermore, because XOR transformation can be implemented in place, full Pauli decomposition can be
implemented withO(1)memory overhead.

Relation to previous work. To the best of our knowledge, the explicit equations (8) and (9) and their proofs
have not been published before. There are several algorithms developed for calculating the Pauli coefficients
α [8–16]. To date, the best scaling methods achieve the time complexityO(n22n) [13–16] of the present
algorithm. The previous fastest approach, as measured by CPU time, is the optimized Rust implementation
of the tensorised Pauli decomposition (TPD) algorithm of Hantzko, Binkowski, and Gupta [14] in
Qiskit [17, 18]. As shown in section 3, our approach outperforms this implementation. The most similar
algorithm is that of Gidney [15] which we learnt about after posting this work online. It was proposed in
Stack-Overflow comment [15] without though an explanation of how this algorithm was derived. Gidney’s
code then was also incorporated in Pennylane [19]. The main difference of [15] to ours is that our
implementation carries out all operations, including XOR transformation, in-place. Hamaguchi, Hamada
and Yoshioka proposed an algorithm [16] which is based on the Fast Walsh–Hadamard transformation.
While the central primitive/subroutine in their algorithm is also the Fast Walsh–Hadamard transformation,
we observe that our implementation is around 3x faster as shown in the results section. We also note that the
(Fast) Walsh–Hadamard transformation is well understood and its fast implementations are known [7, 20].
This transformation is used in other areas of quantum computation. For example, in the context of Pauli
channels, it was shown that Pauli error rates and Pauli eigenvalues are related to each other through such a
transformation [21] and its fast implementation is used in several papers [22, 23]. However, as evident by
equation (8), the Walsh–Hadamard transformation by itself does not provide the Pauli decomposition of a
matrix as the application of XOR transformation and the correct phase factors must still be applied.
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The paper is organised as follows. Our theoretical results, including a rigorous proof of theorem 1, are
contained in section 2. In this section, we also consider special cases where A possesses certain symmetries,
establishing three corollaries of theorem 1. The numerical algorithm inspired by equations (6)–(8) is
presented in section 3 together with comparison against the Qiskit implementation of TPD and the
algorithm of Hamaguchi et al [16]. In section 4, we draw conclusions from the results presented herein and
discuss the outlook for Pauli decomposition in the context of our results.

2. Theoretical results

In this section, we prove our main result, theorem 1. Additionally, we state and prove three corollaries
concerning the special cases where the matrix to be decomposed is (i) Hermitian, (ii) real symmetric or (iii)
complex symmetric.

To make our statements and proofs precise, we introduce some technology. Given a positive integer N, we
define [N]0 := {0,1, . . . ,N}. For any p ∈ [2n− 1]0, there exists a unique binary decomposition

p=
n−1∑
j=0

pj2
j

(
pj ∈ {0,1}

)
, (10)

which defines a map p 7→ (pj)
n−1
j=0 ∈ {0,1}n. Moreover, we may use equation (10) to extend operations

{0,1}×{0,1}→ {0,1} on bits to operations [2n− 1]0× [2n− 1]0→ [2n− 1]0 on n-bit integers, by bitwise
application. Let x,y ∈ {0,1} and recall the following operations

NOT: x := 1− x, XOR: x⊕ y := xy+ xy, AND: x∧ y := xy. (11)

Bitwise operations on integers are defined by composing the⊕ (XOR) and ∧ (AND) operators with
equation (10) yielding the definitions

XOR: p⊕ q :=
n−1∑
j=0

(
pj⊕ qj

)
2j, AND: p∧ q :=

n−1∑
j=0

(
pj ∧ qj

)
2j

(
p,q ∈ [2n− 1]0

)
. (12)

We also make use of the Hamming weight,

|p| :=
n−1∑
j=0

pj
(
p ∈ [2n− 1]0

)
. (13)

2.1. Proof of theorem 1
Let Ep,q be a matrix unit for C2n×2n , i.e.

Ep,q :=
(
δj,pδk,q

)2n−1

j,k=0

(
p,q ∈ [2n− 1]0

)
. (14)

We write

Ep,q =
n−1⊗
j=0

ej (p,q) , (15)

where

ej (p,q) :=
(
δk,pjδl,qj

)1
k,l=0

(
j ∈ [n− 1]0 ;p,q ∈ [2n− 1]0

)
. (16)

The Pauli matrices form a basis for C2×2; for the matrix units equation (16), the explicit decomposition
is

ej (p,q) =
1

2

(
Xpj⊕qj +(−1)pj (iY)pj⊕qj Zpj⊕qj

)
. (17)

Next, using the identity XZ=−iY, we obtain

ej (p,q) =
1

2

(
Xpj⊕qj +(−1)qj Xpj⊕qjZ

)
. (18)

3
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Putting equation (18) into equation (15) yields

Ep,q =
1

2n

n−1⊗
j=0

(
Xpj⊕qj +(−1)qj Xpj⊕qjZ

)
=

1

2n

n−1⊗
j=0

∑
sj=0,1

(−1)qj∧sj Xpj⊕qjZsj =
1

2n

n−1∏
j=0

∑
sj=0,1

(−1)qj∧sj X
pj⊕qj
j Z

sj
j ,

(19)

where

Xj := I⊗j⊗X⊗ I⊗(n−j−1), Zj := I⊗j⊗Z⊗ I⊗(n−j−1)
(
j ∈ [n− 1]0

)
. (20)

It follows from equation (19) that

Ep,q =
1

2n

 ∑
s0=0,1

· · ·
∑

sn−1=0,1

 n−1∏
j=0

(−1)qj∧sj X
pj⊕qj
j Z

sj
j , (21)

which is equivalent to

Ep,q =
1

2n

2n−1∑
s=0

n−1∏
j=0

(−1)qj∧sj X
pj⊕qj
j Z

sj
j (22)

with s defined via equation (10).
To proceed, we will express the constant factors in equation (22) using tensor products of Hadamard

matrices, equation (5). Note that

Hqj,sj = (−1)qj∧sj
(
qj, sj ∈ {0,1}

)
(23)

and hence,

(
H⊗n

)
q,s

=
n−1∏
j=0

(−1)qj∧sj
(
q, s ∈ [2n− 1]0

)
. (24)

Using this observation in equation (22) gives

Ep,q =
1

2n

2n−1∑
s=0

n−1∏
j=0

(−1)qj∧sj

 n−1∏
j=0

X
pj⊕qj
j Z

sj
j =

1

2n

2n−1∑
s=0

(
H⊗n

)
q,s

n−1∏
j=0

X
pj⊕qj
j Z

sj
j . (25)

Decomposing A into a sum of elementary matrices and using equation (25), we write

A=
1

2n

2n−1∑
p,q,s=0

ap,q
(
H⊗n

)
q,s

n−1∏
j=0

X
pj⊕qj
j Z

sj
j . (26)

Let us introduce a new variable of summation, r := p⊕ q. Note that for each q ∈ [2n− 1]0, the map
p 7→ p⊕ q is a bijection [2n− 1]0→ [2n− 1]0 and that p= q⊕ r and rj = pj⊕ qj. Hence,

A=
1

2n

2n−1∑
r,s=0

2n−1∑
q=0

aq⊕r,q

(
H⊗n

)
q,s

n−1∏
j=0

X
rj
j Z

sj
j =

2n−1∑
r,s=0

 i−|r∧s|

2n

2n−1∑
q=0

aq⊕r,q

(
H⊗n

)
q,s

i|r∧s|
n−1∏
j=0

X
rj
j Z

sj
j

 , (27)

which concludes the proof of equations (6)–(8) if we can show that Pr,s, defined in (7), is an element of Pn.
Indeed, using the identity XZ=−iY, we compute

XrjZsj =


I

(
rj, sj

)
= (0,0)

X
(
rj, sj

)
= (1,0)

Z
(
rj, sj

)
= (0,1)

−iY
(
rj, sj

)
= (1,1) ,

(28)

which shows that

i|r∧s|
n−1∏
j=0

X
rj
j Z

sj
j =

n−1⊗
j=0

irj∧sjXrjZsj ∈ Pn. (29)

4
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To establish the converse, equation (9), we first write

as⊕r,s =
1

2n

2n−1∑
u=0

2n−1∑
q=0

au⊕r,u

(
H⊗n

)
u,q

(
H⊗n

)
q,s

= i|r∧s|
2n−1∑
q=0

αr,q

(
H⊗n

)
q,s
, (30)

using equation (8) and the fact that H⊗n is symmetric and satisfies (H⊗n)2 = 2nI⊗n. By making the
replacement r→ r⊕ s in (30) and using the identity (r⊕ s)∧ s= r∧ s, we obtain the result equation (9).

2.2. Special cases
We consider the special cases where A is (i) Hermitian, (ii) real symmetric, or (iii) (complex) symmetric.

Corollary 1.1 (Decomposition of Hermitian matrices). Suppose that A ∈ C2n×2n satisfies A† = A. Then,
αr,s ∈ R for r, s ∈ [2n− 1]0.

Proof. As Pauli strings are Hermitian, it follows from equation (6) and our Hermiticity assumption that

A−A† =
2n−1∑
r,s=0

(
αr,s−α∗

r,s

) n−1⊗
j=0

(irj∧sjXrjZsj) = 0. (31)

By the linear independence of Pn, the prefactors of the Pauli strings in (31) must be identically zero. Thus,
αr,s−α∗

r,s = 0 for r, s ∈ [2n− 1]0 and the result follows.

In the case of symmetric matrices, we can use the following proposition to make statements about the
sparsity of (αr,s)

2n−1
r,s=0.

Proposition 1.2 (Distribution of±1 inH⊗n). The matrix H⊗n ∈ C2n×2n has 2n−1(2n± 1) entries with values
±1, respectively.

Proof. The claim is easily verified in the case n= 1. Assume, inductively, that the claim holds for an arbit-
rary positive integer n. We write H⊗(n+1) =H⊗n⊗H; a straightforward calculation shows that H⊗(n+1) has
2n(2n+1± 1) entries with values±1, respectively. The result follows.

Corollary 1.3 (Decomposition of real symmetric matrices). Suppose that A ∈ R2n×2n satisfies A⊤ = A.
Then, αr,s ∈ R when |r∧ s| is even and αr,s = 0 when |r∧ s| is odd. Correspondingly, (αr,s)

2n−1
r,s=0 has a sparsity of

(2n− 1)/2n+1.

Proof. The first claim follows immediately from corollary 1.1. To prove the second claim, we use the identity

(irj∧sjXrjZsj)
⊤
= (−1)rj∧sj (irj∧sjXrjZsj) (32)

to group Pauli strings in equation (6):

A−A⊤ =
2n−1∑
r,s=0

(
αr,s− (−1)|r∧s|

αr,s

) n−1⊗
j=0

(irj∧sjXrjZsj) = 0. (33)

By the linear independence ofPn, we must have αr,s− (−1)r∧sαr,s = 0 for r, s ∈ [2n− 1]0. In the case |r∧ s|
odd, this implies αr,s = 0.

To compute the sparsity of (αr,s)
2n−1
r,s=0, we note that(

H⊗n
)
r,s
= (−1)|r∧s| (

r, s ∈ [2n− 1]0
)
, (34)

i.e. (H⊗)r,s is equal to the parity of |r∧ s|. Hence, using proposition 1.2, we obtain the stated sparsity: The
locations of zeros correspond to the locations of−1 in H⊗n.

Corollary 1.4 (Decomposition of complex symmetric matrices). Suppose that A ∈ C2n×2n satisfies A⊤ = A.
Then, αr,s = 0 when |r∧ s| is odd. Correspondingly, (αr,s)

2n−1
r,s=0 has a sparsity of (2

n− 1)/2n+1.

Proof. We write

A= Re(A)+ i Im(A) (35)

and note that Re(A) and Im(A) are real symmetric matrices. By corollary 1.3 and linearity, we obtain the first
claim.

The proof of the sparsity claim is similar to that in the proof of corollary 1.3.

5
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Figure 1. Illustration of algorithm 1 and theorem 1 for an 8× 8 matrix. In Step 1, the XOR transform is applied, which permutes
the elements in each matrix column according to (36). Then, in Step 2, the Walsh–Hadamard transform is applied to each row
according to (38). This can be done efficiently with the Fast Walsh–Hadamard algorithm [7]. Finally, in Step 3, the elements are
multiplied by prefactors according to (39).

3. Algorithm and numerical results

In this section, we present our implementation of the Pauli decomposition and compare its efficiency to the
latest (still unreleased) Qiskit implementation [17] of the TPD algorithm [14]. The following algorithm is
also illustrated in figure 1.

Algorithm 1 (Pauli decomposition of A ∈ C2n×2n via theWalsh–Hadamard transform)
Input:

• The matrix elements (ap,q)
N−1
p,q=0 of a matrix A of dimension N ×N (N= 2n).

Output:

• The coefficients of the Pauli decompositionA=
∑2n−1

r,s=0αr,sPr,s in equation (6). They are computed in-place,

i.e. they are stored in (ap,q)
N−1
p,q=0.

Complexity:

• Runtime:O(N2 logN)
• Additional space:O(1)

Algorithm:

1. XOR-Transform: Permute the elements of the matrix A= (ap,q)
N−1
p,q=0 according to

ar,q← ar⊕q,q

(
r,q ∈ [N− 1]0

)
. (36)

This transformation can be done in place requiring only 2n−1(2n− 1) SWAP operations.
2. Fast Walsh–Hadamard Transform: Apply the Walsh–Hadamard transform

ar,s←
N−1∑
q=0

ar,qH
⊗n
q,s

(
r, s ∈ [N− 1]0

)
. (37)

This can be done in place using only n22n addition and n22n subtraction operations on complex
numbers [7]. This is because the generalised Hadamard matrix

H⊗n =
n−1∏
j=0

Hj with Hj := I⊗j⊗H⊗ I⊗(n−j−1)
(
j ∈ [n− 1]0

)
, (38)

and Hj is highly sparse and structured: Each column of Hj has only 2 non-zero elements, and they take
values in {±1}. Other decompositions of generalised Hadamard matrices are possible [7, 20].

6
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Figure 2. The execution time to perform a Pauli decomposition on random Hermitian matrices, as a function of the number of
qubits. This calculation was performed on a single core AMD EPYC 7763 processor, 2.4GHz. Each data point was obtained by
averaging over 10 runs for each of 10 different random matrices (100 runs contribute to each data point). The orange and green
lines show this work, with and without calculation of a symplectic representation of Pauli strings, respectively. Qiskit-dev TPD
refers to to the latest (still unreleased) Qiskit implementation [17] of the TPD algorithm [14]. Hamaguchi et al refers to the
work [16, 26].

3. Prefactors: Multiply each element of A according to

ar,s← ar,s
(−i)|r∧s|

2n
(
r, s ∈ [N− 1]0

)
. (39)

This can be done in place.

Reference implementation:

• A reference implementation in C with Python & Numpy bindings is freely available on Github [24] under
the MIT license. It can also be installed with pip install pauli_lcu.

The execution time of this algorithm for random Hermitian matrices as a function of n is presented
in figure 2(green line). We compare our implementation to Qiskit’s function decompose_dense from
qiskit._accelerate.sparse_pauli_op in the yet unpublished version [17] (blue line). Qiskit includes
calculation of the symplectic representation [25] of the Pauli strings along with the coefficients; to make a
fair comparison, we also show our algorithm including this calculation (orange line), and time our Python
bindings rather than C code throughout. We observe that for more than 4 qubits, our implementation
outperforms Qiskit and the maximum speed up we achieved is around a factor of≈ 1.4. We also compare
our results with the approach of Hamaguchi, Hamada and Yoshioka, which is based on the Fast
Walsh–Hadamard transformation as well. We used their C++ implementation as available at the GitHub
repository [26]. We observe that our algorithm provides a maximum speedup of a factor 3.6. For further
details of our implementation we refer to our open-source implementation at [24]. Finally, we note that the
reverse transform equation (9) can be achieved by effectively running algorithm 1 backwards.

To evaluate the performance of our algorithms further, we consider two more examples from chemistry
and physics. One is the transformation of the electron repulsion integrals:

hIJ =

ˆ

R3×R3

dr ′dr
ρ∗I (r,r

′)ρJ (r,r ′)

|r− r ′|
, I, J ∈

[
D2− 1

]
0
, (40)

where D is the number of basis functions, and ρI(r,r ′) is a pair-density matrix. We use precomputed
integrals for the Fe2S2 complex from [27]. Table 1 shows the execution time of our algorithms, the algorithm

7
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Table 1. The execution time (in seconds) to perform a Pauli decomposition on electronic integrals in a molecular orbital basis set. This
calculation was performed on a single core AMD EPYC 7763 processor, 2.4GHz. Qiskit-dev TPD refers to the Qiskit
implementation [17] of the TPD algorithm [14]. Hamaguchi et al refers to the work [16, 26].

Number of Coefficients only Symplectic repr. Symplectic repr. Coefficients only
basis functions (this work) (this work) (Qiskit-dev TPD) (Hamaguchi et al)

16 0.000 877 0.00 132 0.00 188 0.00 204
32 0.0103 0.0269 0.0271 0.0327
64 0.226 0.526 0.607 0.788
128 3.95 9.52 11.1 memory error

Table 2. The execution time (in seconds) to perform a Pauli decomposition on a kinetic energy matrix in real space. This calculation was
performed on a single core AMD EPYC 7763 processor, 2.4GHz. Qiskit-dev TPD refers to the Qiskit implementation [17] of the TPD
algorithm [14]. Hamaguchi et al refers to the work [16, 26].

Number of Coefficients only Symplectic repr. Symplectic repr. Coefficients only
grid points (this work) (this work) (Qiskit-dev TPD) (Hamaguchi et al)

8 2.95 · 10−5 2.13 · 10−5 10.2 · 10−5 5.62 · 10−5

64 6.23 · 10−5 8.35 · 10−5 0.00 018 8.5 · 10−5

512 0.00227 0.00546 0.0113 0.007068
4096 0.221 0.528 0.94 0.79
32 768 17.2 41.3 81.6 memory error

of Hantzko et al [14] as implemented on Qiskit, and the algorithm of Hamaguchi et al [16, 26]. For the
largest basis set size, we observe a speedup of 1.16 for the symplectic representation , and further factor of 2.4
(2.78 in total as compared to Qiskit-dev TPD) when one is interested in Pauli coefficients only.

Our second example is the transformation of the kinetic energy operator represented in real space using
the dual plane-wave basis [28–30]. For a cubic cell with lattice constant of one and for uniformly distributed
grid points, the kinetic energy matrix is

T ′
n,n = 2π2

N1/3/2−1∑
m1,m2,m3=−N1/3/2

(
m2

1 +m2
2 +m2

3

)
exp

 2π i

N1/3

3∑
j=1

mj

(
nj− n ′

j

) (41)

where N, the total number of grid points, is a power of 23; n1,n2,n3,n ′
1,n

′
2,n

′
3 ∈

[
N1/3− 1

]
0
, and

n= (n1,n2,n3), n ′ = (n ′
1,n

′
2,n

′
3). In addition to being symmetric, the kinetic energy matrix also contains

translational symmetry. We provide the python script for generating such a matrix in [31]. Table 2 shows the
execution time of different algorithms. For the largest calculations, where the total number of grid points is
N= 215, we observe a factor of 1.65 speedup for the symplectic representation as compared to Qiskit-dev
TPD, and a further factor of 2.5 when one is interested in Pauli coefficients only (a factor of 4.12 speed up in
total as compared to Qiskit-dev TPD).

As can be seen from figure 1, our algorithm allows for straightforward parallelization. First, the XOR
transformation (Step 1 in figure 1) is applied to each column, then Hadamard transformation and phase
factor multiplication are applied to each row independently (Steps 2–3 in figure 1). We have implemented
this parallelization with OpenMP and tested it on the largest example from table 2 (215× 215 matrix). As is
shown on figure 3, we observe nearly ideal speedup for 2 and 4 cores. For 8 cores, the wall time is reduced by
a factor of 7 and the Pauli coefficients can be calculated in around 2.5 s as compared to 17.2 s on a single
AMD EPYC 7763 core.

4. Conclusion

In this work, we have presented an exact and explicit approach to the Pauli decomposition of matrices
A ∈ C2n×2n . Practically, our theoretical result inspires an efficient algorithm for the computation of the Pauli
string coefficients. We develop this algorithm and demonstrate that it outperforms the previous leading
solutions in the literature. We emphasize that, as we employ the fast Walsh–Hadamard transform, our
algorithm achieves favorable performance versus existing solutions without sophisticated optimisation
techniques.

Our results have immediate applications in quantum chemistry. Pauli decompositions of Hamiltonians
in second quantization are available through fermion-to-qubit mappings such as that of
Jordan–Wigner [4, 32]. However, they are not applicable to Hamiltonians in first quantization. Our theorem
applied to Hermitian matrices and their higher-dimensional tensorial extensions allows one to derive the

8
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Figure 3. Speedup of Pauli decomposition due to parallelization using OpenMP. The same 215 × 215 kinetic energy matrix as
in table 2 was used as an example. This calculation was performed on AMD EPYC 7763 processors, 2.4GHz, and 386 GB RAM.

explicit Pauli decomposition of first quantization Hamiltonians for the study of chemical systems on
quantum computers [33]. More generally, we expect that our results will be useful in the block-encoding of
matrices. Finally, our solution is available as an open source package at [24].

5. Supplementary information

Scripts used to produce results for this paper are available at Zenodo [31]. Our code is further available on
Github [24] and with pip install pauli_lcu.

Data availability statement

The data that support the findings of this study are openly available at reference [31].
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