
Living Reviews in Relativity  (2018) 21:7 
https://doi.org/10.1007/s41114-018-0016-5

REV IEW ART ICLE

Hamiltonian formulation of general relativity and
post-Newtonian dynamics of compact binaries

Gerhard Schäfer1 · Piotr Jaranowski2

Received: 13 November 2017 / Accepted: 23 July 2018
© The Author(s) 2018

Abstract
Hamiltonian formalisms provide powerful tools for the computation of approximate
analytic solutions of the Einstein field equations. The post-Newtonian computations of
the explicit analytic dynamics andmotion of compact binaries are discussed within the
most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous
Hamiltonians is achieved by the transition to Routhians. Order reduction of higher
derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of
general relativity is introduced for the tackling of compact binaries with spinning com-
ponents. Configurations are treatedwhere the absolute values of the spin vectors can be
considered constant. Compact objects are modeled by use of Dirac delta functions and
their derivatives. Consistency is achieved through transition to d-dimensional space
and application of dimensional regularization. At the fourth post-Newtonian level,
tail contributions to the binding energy show up. The conservative spin-dependent
dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-
leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic
and quartic in spin interactions. The radiation reaction dynamics is presented explicitly
through the third-and-half post-Newtonian order for spinless objects, and, for spin-
ning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most
important historical issues get pointed out.
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1 Introduction

Before entering the very subject of the article, namely the Hamiltonian treatment
of the dynamics of compact binary systems within general relativity (GR) theory,
some historical insight will be supplied. The reader may find additional history, e.g.,
in Damour (1983a, 1987b), Futamase and Itoh (2007), Blanchet (2014), and Porto
(2016).
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1.1 Early history (1916–1960)

The problem of motion of many-body systems is an important issue in GR (see,
e.g., Damour 1983a, 1987b). Earliest computations were performed by Droste, de
Sitter, and Lorentz in the years 1916–1917, at the first post-Newtonian (1PN) order of
approximation of the Einstein field equations, i.e., at the order n = 1, where (1/c2)n

corresponds to the nth post-Newtonian (PN) order with n = 0 being the Newtonian
level. Already in the very first paper, where Droste calculated the 1PN gravitational
field for a many-body system (Droste 1916), there occurred a flaw in the definition of
the rest mass m of a self-gravitating body of volume V (we follow the Dutch version;
the English version contains an additional misprint), reading, in the rest frame of the
body, indicated in the following by =̇,

m
Droste 1916=

∫
V
d3x � =̇

∫
V
d3x �∗

(
1 − 3U

c2

)
, (1.1)

where the “Newtonian” mass density �∗ = √−g�u0/c [g = det(gμν), u0 is the
time component of the four-velocity field uμ, uμuμ = −c2] fulfills the metric-free
continuity equation

∂t�∗ + div(�∗v) = 0, (1.2)

where v = (vi ) is the Newtonian velocity field (with vi = cui/u0). The Newtonian
potential U is defined by

ΔU = −4πG�∗, (1.3)

with the usual boundary condition for U at infinity: lim|r|→∞ U (r, t) = 0. Let us
stress again that the definition (1.1) is not correct. The correct expression for the rest
mass contrarily reads, at the 1PN level,

m =̇
∫
V
d3x �∗

(
1 + 1

c2

(
Π − U

2

))
, (1.4)

with specific internal energy Π . For pressureless (dust-like) matter, the correct 1PN
expression is given by

m =
∫
V
d3x �∗ =̇

∫
V
d3x

√
det(gi j ) � =

∫
V
dV�, (1.5)

where dV ≡ √
det(gi j ) d3x .

The error in question slept into second of two sequential papers by de Sitter
(1916a, b, 1917) when calculating the 1PN equations of motion for a many-body
system. Luckily, that error had no influence on the de Sitter precession of the Moon
orbit around the Earth in the gravitational field of the Sun. The error became identified
(at least for dusty matter) by Eddington and Clark (1938). On the other side, Levi-
Civita (1937b) used the correct rest mass formula for dusty bodies. Einstein criticized
the calculations by Levi-Civita because he was missing pressure for stabilizing the
bodies. Hereupon, Levi-Civita argued with the “effacing principle”, inaugurated by
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Brillouin, that the internal structure should have no influence on the external motion.
The 1PN gravitational field was obtained correctly by Levi-Civita but errors occurred
in the equations of motion including self-acceleration and wrong periastron advance
(Levi-Civita 1937a; Damour and Schäfer 1988). Full clarification was achieved by
Eddington and Clark (1938), letting aside the unstable interior of their dusty balls.
Interestingly, in a 1917 paper by Lorentz and Droste (in Dutch), the correct 1PN
Lagrangian of a self-gravitating many-body system of fluid balls was obtained but
never properly recognized. Only in 1937, for the edition of the collected works by
Lorentz, it became translated into English (Lorentz and Droste 1937). A full-fledged
calculation made by Einstein et al. (1938)—posed in the spirit of Hermann Weyl by
making use of surface integrals around field singularities—convincingly achieved the
1PN equations of motion, nowadays called Einstein–Infeld–Hoffmann (EIH) equa-
tions of motion. Some further refining work by Einstein and Infeld appeared in the
1940s. Fichtenholz (1950) computed the Lagrangian and Hamiltonian out of the EIH
equations. A consistent fluid ball derivation of the EIH equations has been achieved by
Fock (1939) and Petrova (1949) (delayed by World War II), and Papapetrou (1951a)
(see also Fock 1959).

In the 1950s, Infeld and Plebański rederived the EIH equations of motion with the
aid ofDirac δ-functions as field sources by postulating the properties of Infeld’s “good”
δ-function (Infeld 1954, 1957; Infeld and Plebański 1960; see Sect. 4.2 of our review
for more details). Also in the 1950s, the Dirac δ-function became applied to the post-
Newtonian problem of motion of spinning bodies by Tulczyjew (1959), based on the
seminal work byMathisson (1937, 2010), with the formulation of a general relativistic
gravitational skeleton structure of extended bodies. Equations of motion for spinning
test particles had been obtained before by Papapetrou (1951b) and Corinaldesi and
Papapetrou (1951). Further in the 1950s, another approach to the equations-of-motion
problem, called fast-motion or post-Minkowskian (PM) approximation, which is par-
ticularly useful for the treatment of high-speed scattering problems, was developed
and elaborated by Bertotti (1956) and Kerr (1959a, b, c), at the 1PM level. First results
at the 2PM level were obtained by Bertotti and Plebański (1960).

1.2 History on Hamiltonian results

Hamiltonian frameworks are powerful tools in theoretical physics because of their
capacity of full-fledged structural exploration and efficient application of mathemat-
ical theories (see, e.g., Holm 1985; Alexander 1987; Vinti 1998). Most importantly,
Hamiltonians generate the time evolution of all quantities in a physical theory. For
closed systems, the total Hamiltonian is conserved in time. Together with the other
conserved quantities, total linear momentum and total angular momentum, which are
given by very simple universal expressions, and the boost vector, which is connected
with the Hamiltonian density and the total linear momentum, the total Hamiltonian is
one of the generators of the globally operating Poincaré or inhomogeneous Lorentz
group. A natural ingredient of a Hamiltonian formalism is the (3 + 1)-splitting of
spacetime in space and time. Consequently Hamiltonian formalisms allow transpar-
ent treatments of both initial value problems and Newtonian limits. Finally, for solving
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equations of motion, particularly in approximation schemes, Hamiltonian frameworks
naturally fit into the powerful Lie-transform technique based on action-angle variables
(Hori 1966; Kinoshita 1978; Vinti 1998; Tessmer et al. 2013).

Additionally we refer to an important offspring of the Hamiltonian framework, the
effective-one-body (EOB) approach, which will find its presentation in an upcoming
Living Reviews article by Thibault Damour. References in the present article referring
to EOB are particularly Buonanno and Damour (1999, 2000), Damour et al. (2000a,
2008b, 2015), Damour (2001, 2016).

The focus of the present article is on theHamiltonian formalism of GR as developed
by Arnowitt, Deser, and Misner (ADM) (Arnowitt et al. 1959, 1960a, b), with its
Routhian modification (Jaranowski and Schäfer 1998, 2000c) (where the matter is
treated in Hamiltonian form and the field in the Lagrangian one) and classical-spin
generalization (Steinhoff and Schäfer 2009a; Steinhoff 2011), and with application to
the problem of motion of binary systems with compact components including proper
rotation (spin) and rotational deformation (quadratic in the spin variables); for other
approaches to the problem of motion in GR, see the reviews by Futamase and Itoh
(2007), Blanchet (2014), and Porto (2016). The review article byArnowitt et al. (1962)
gives a thorough account of the ADM formalism (see also Regge and Teitelboim
1974 for the discussion about asymptotics). In this formalism, the final Hamiltonian,
nowadays called ADM Hamiltonian, is given in form of a volume integral of the
divergence of a vector over three-dimensional spacelike hypersurface, which can also
naturally be represented as surface integral at flat spatial infinity i0.

It is also interesting to give insight into other Hamiltonian formulations of GR,
because those are closely related to the ADM approach but differently posed. Slightly
ahead of ADM, Dirac (1958, 1959) had developed a Hamiltonian formalism for GR,
and slightly afterwards, Schwinger (1963a, b). Schwinger’s approach starts from tetrad
representation of GR and ends up with a different set of canonical variables and,
related herewith, different coordinate conditions. Dirac has developed his approach
with some loose ends toward the final Hamiltonian (see Sect. 2.1 below and also,
e.g., Deser 2004), but the coordinate conditions introduced by him—nowadays called
Dirac gauge—are often used, mainly in numerical relativity. A subtle problem in all
Hamiltonian formulations of GR is the correct treatment of surface terms at spacelike
infinity which appear in the asymptotically flat spacetimes. In 1967, this problem has
been clearly addressed by De Witt (1967) and later, in 1974, full clarification has
been achieved by Regge and Teitelboim (1974). For a short comparison of the three
canonical formalisms in question, the Dirac, ADM, and Schwinger ones, see Schäfer
(2014).

Thefirst authorswhohadgiven theHamiltonian as two-dimensional surface integral
at i0 on three-dimensional spacelike hypersurfaces were ADM. Of course, the repre-
sentation of the total energy as surface integral was known before, particularly through
the Landau–Lifshitz gravitational stress-energy-pseudotensor approach. Schwinger
followed the spirit of ADM. He was fully aware of the correctness of his specific cal-
culationsmodulo surface terms onlywhich finally becamefixed by asymptotic Lorentz
invariance considerations. He presented the Hamiltonian (as well as the other genera-
tors of the Lorentz group) as two-dimensional surface integrals. Only one application
of the Schwinger approach by somebody else than Schwinger himself is known to the
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authors. It is the paper by Kibble in 1963 in which the Dirac spin-1/2 field found a
canonical treatment within GR (Kibble 1963). This paper played a crucial role in the
implementation of classical spin into the ADM framework by Steinhoff and Schäfer
(2009a) and Steinhoff (2011) (details can be found in Sect. 7 of the present article).

The ADM formalism is the most often used Hamiltonian framework in the analyti-
cal treatment of the problemofmotion of gravitating compact objects. Themain reason
for this is surely the very well adapted coordinate conditions for explicit calculations
introduced by Arnowitt et al. (1960c) (generalized isotropic coordinates; nowadays,
for short, often called ADMTT coordinates, albeit the other coordinates introduced by
Arnowitt et al. 1962, are ADMTT too), though also in Schwinger’s approach similar
efficient coordinate conditions could have been introduced (Schäfer 2014). Already
Kimura (1961) started application of the ADM formalism to gravitating point masses
at the 1PN level. In 1974, that research activity culminated in a 2PN Hamiltonian for
binary point masses obtained by Hiida and Okamura (1972), Ohta et al. (1974a, b).
However, one coefficient of their Hamiltonian was not correctly calculated and the
Hamiltonian as such was not clearly identified, i.e., it was not clear to which coor-
dinate system it referred to. In 1985, full clarification has been achieved in a paper
by Damour and Schäfer (1985) relying on the observation by Schäfer (1984) that the
perturbative use of the equations of motion on the action level implies that coordinate
transformations have been applied; also see Barker and O’Connell (1984, 1986). In
addition, Damour and Schäfer (1985) showed how to correctly compute the delicate
integral (UTT) which had been incorrectly evaluated by Hiida and Okamura (1972),
Ohta et al. (1974a, b), and made contact with the first fully correct calculation of the
2PN dynamics of binary systems (in harmonic coordinates) by Damour and Deruelle
(1981) and Damour (1982) in 1981–1982.

In Schäfer (1983b), the leading-order 2.5PN radiation reaction force for n-body
systems was derived by using the ADM formalism. The same force expression had
already been obtained earlier by Schäfer (1982) within coordinate conditions closely
related to the ADM ones—actually identical with the ADM conditions through 1PN
and at 2.5PN order—and then again by Schäfer (1983a), as quoted in Poisson andWill
(2014), based on a different approach but in coordinates identical to the ADM ones
at 2.5PN order. The 2PN Hamiltonian shown by Schäfer (1982) and taken from Ohta
et al. (1974b), apart from the erroneous coefficient mentioned above, is the ADM one
as discussed above (the factor 7 in the static part therein has to be replaced by 5),
and in the definition of the reaction force in the centre-of-mass system, a misprinted
factor 2 is missing, i.e. 2F = F1 − F2. The detailed calculations were presented in
Schäfer (1985, 1986), a further ADM-based derivation by use of a PM approximation
scheme has been performed. At 2PN level, the genuine 3-body potential was derived
by Schäfer (1987). However, in the reduction of a 4-body potential derived by Ohta
et al. (1973, 1974a, b) to three bodies made by Schäfer (1987) some combinatorical
shortcomings slept in, which were identified and corrected by Lousto and Nakano
(2008), and later by Galaviz and Brügmann (2011) in different form. The n-body
3.5PN non-autonomous radiation reaction Hamiltonian1 was obtained by the authors

1 In such a particle Hamiltonian, the field degrees of freedom are treated as independent from the particle
variables, rendering the particle Hamiltonian an explicit function of time.
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in Jaranowski and Schäfer (1997), confirming energy balance results in Blanchet and
Schäfer (1989), and the equations of motion out of it were derived by Königsdörffer
et al. (2003).

Additionally within the ADM formalism, for the first time in 2001, the conserva-
tive 3PN dynamics for compact binaries has been fully obtained by Damour and the
authors, by also for the first time making extensive use of the dimensional regular-
ization technique (Damour et al. 2001) (for an earlier mentioning of application of
dimensional regularization to classical point particles, see Damour 1980, 1983a; and
for an earlier n-body static result, i.e. a result valid for vanishing particle momenta
and vanishing reduced canonical variables of the gravitational field, not based on
dimensional regularization, see Kimura and Toiya 1972). Only by performing all cal-
culations in a d-dimensional space the regularization has worked out fully consistently
in the limit d → 3 (later on, a d-dimensional Riesz kernel calculation has been per-
formed too, Damour et al. 2008a). In purely 3-dimensional space computations two
coefficients, denoted by ωkinetic and ωstatic, could not be determined by analytical
three-dimensional regularization. The coefficient ωkinetic was shown to be fixable by
insisting on global Lorentz invariance and became thus calculable with the aid of the
Poincaré algebra (with value 24/41) (Damour et al. 2000c, d). The first evaluation of
the value ofωstatic (namelyωstatic = 0) was obtained by Jaranowski and Schäfer (1999,
2000b) by assuming a matching with the Brill–Lindquist initial-value configuration
of two black holes. The correctness of this value (and thereby the usefulness of con-
sidering that the Brill–Lindquist initial-value data represent a relevant configuration
of two black holes) was later confirmed by dimensional regularization (Damour et al.
2001). Explicit analytical solutions for the motion of compact binaries through 2PN
order were derived by Damour and Schäfer (1988) and Schäfer and Wex (1993b, c),
and through 3PN order by Memmesheimer et al. (2005), extending the seminal 1PN
post-Keplerian parametrization proposed by Damour and Deruelle (1985).

Quite recently, the 4PN binary dynamics has been successfully derived, using
dimensional regularization and sophisticated far-zone matching (Jaranowski and
Schäfer 2012, 2013, 2015; Damour et al. 2014). Let us remark in this respect that the
linear in G (Newtonian gravitational constant) part can be deduced to all PN orders
from the 1PM Hamiltonian derived by Ledvinka et al. (2008). For the first time, the
contributions to 4PN Hamiltonian were obtained by the authors in Jaranowski and
Schäfer (2012) through G2 order, including additionally all log-terms at 4PN going
up to the order G5. Also the related energy along circular orbits was obtained as
function of orbital frequency. The application of the Poincaré algebra by Jaranowski
and Schäfer (2012) clearly needed the noncentre-of-mass Hamiltonian, though only
the centre-of-mass one was published. By Jaranowski and Schäfer (2013), all terms
became calculated with the exception of terms in the reduced Hamiltonian linear in
ν ≡ m1m2/(m1+m2)

2 (wherem1 andm2 denote themasses of binary system compo-
nents) and of the ordersG3,G4, andG5. Those terms are just adding up to the log-terms
mentioned above. However, taking a numerical self-force solution for circular orbits
in the Schwarzschild metric into account, already the innermost (or last) stable circular
orbit could be determined numerically through 4PN order by Jaranowski and Schäfer
(2013). The complete 4PN analytic conservative Hamiltonian has been given for the
first time by Damour et al. (2014), based on Jaranowski and Schäfer (2015), together
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with the results of Le Tiec et al. (2012) and Bini and Damour (2013). Applications
of it for bound and unbound orbits were performed by Damour et al. (2015) and Bini
and Damour (2017).

For spinning bodies, counting spin as 0.5PN effect, the 1.5PN spin–orbit and 2PN
spin–spin Hamiltonians were derived by Barker and O’Connell (1975, 1979), where
the given quadrupole-moment-dependent part can be regarded as representing spin-
squared terms for extended bodies (notice the presence of the tensor product of two
unit vectors pointing each to the spin direction in the quadrupole-moment-dependent
Hamiltonians). For an observationally important application of the spin–orbit dynam-
ics, see Damour and Schäfer (1988). In 2008, the 2.5PN spin–orbit Hamiltonian
was successfully calculated by Damour et al. (2008c), and the 3PN spin1–spin2 and
spin1–spin1 binary black-hole Hamiltonians by Steinhoff et al. (2008a, b, c). The 3PN
spin1–spin1 Hamiltonian for binary neutron stars was obtained by Hergt et al. (2010).
The 3.5PN spin–orbit and 4PN spin1–spin2 Hamiltonians were obtained by Hartung
and Steinhoff (2011a, b) (also see Hartung et al. 2013; Levi and Steinhoff 2014). The
4PN spin1–spin1 Hamiltonian was presented in Levi and Steinhoff (2016a). Based
on the Dirac approach, the Hamiltonian of a spinning test-particle in the Kerr metric
has been obtained by Barausse et al. (2009, 2012). The canonical Hamiltonian for
an extended test body in curved spacetime, to quadratic order in spin, was derived
by Vines et al. (2016). Finally, the radiation-reaction Hamiltonians from the leading-
order spin–orbit and spin1–spin2 couplings have been derived by Steinhoff and Wang
(2010) and Wang et al. (2011).

1.3 More recent history on non-Hamiltonian results

At the 2PN level of the equations of motion, the Polish school founded by Infeld suc-
ceeded in getting many expressions whereby the most advanced result was obtained
by Ryteń in her MSc thesis from 1961 using as model for the source of the grav-
itational field Infeld’s “good δ-function”. Using the same source model as applied
by Fock and Petrova, Kopeikin (1985) and Grishchuk and Kopeikin (1986) derived
the 2PN and 2.5PN equations of motion for compact binaries. However, already in
1982, Damour and Deruelle had obtained the 2PN and 2.5PN equations of motion for
compact binaries, using analytic regularization techniques [Damour 1982, 1983a, b
(for another such derivation see Blanchet et al. 1998)]. Also Ohta and Kimura (1988)
should be mentioned for a Fokker action derivation of the 2PN dynamics. Regarding
the coordinate conditions used in the papers quoted in the present subsection, treating
spinless particles, all are based on the harmonic gauge with the exceptions of the ones
with a Hamiltonian background and those by Ryteń or Ohta and Kimura.

Using the technique of Einstein, Infeld, and Hoffmann (EIH), Itoh and Futamase
(2003) and Itoh (2004) succeeded in deriving the 3PN equations of motion for com-
pact binaries, and Blanchet et al. (2004) derived the same 3PN equations of motion
based on dimensional regularization. The extended Hadamard regularization, devel-
oped and applied before (Blanchet and Faye 2000a, b, 2001a, b), is incompatible2 with

2 The incompatibility of the extended Hadamard regularization with distribution theory and dimensional
regularization is serious and can not be expressed in terms of several constant ambiguity parameters. This

123



Hamiltonian formulation of general relativity and… Page 9 of 117  7 

distribution theory andwith themethod of dimensional regularization (Jaranowski and
Schäfer 2015). The 3.5PN equations of motion were derived within several indepen-
dent approaches: by Pati and Will (2002) using the method of direct integration of the
relaxed Einstein equations (DIRE) developed by Pati andWill (2000), byNissanke and
Blanchet (2005) applying Hadamard self-field regularization, by Itoh (2009) using the
EIH technique, and by Galley and Leibovich (2012) within the effective field theory
(EFT) approach. Radiation recoil effects, starting at 3.5PN order, have been discussed
by Bekenstein (1973), Fitchett (1983), Junker and Schäfer (1992), Kidder (1995), and
Blanchet et al. (2005).

Bernard et al. (2016) calculated the 4PN Fokker action for binary point-mass
systems and found a nonlocal-in-time Lagrangian inequivalent to the Hamiltonian
obtained by Damour et al. (2014). On the one hand, the local part of the result of
Bernard et al. (2016) differed from the local part of the Hamiltonian of Damour et al.
(2014) only in a few terms. On the other hand, though the nonlocal-in-time part of the
action in Bernard et al. (2016) was the same as the one in Damour et al. (2014, 2015),
Bernard et al. (2016) advocated to treat it (notably for deriving the conserved energy,
and deriving its link with the orbital frequency) in a way which was inequivalent to the
one in Damour et al. (2014, 2015). It was then shown by Damour et al. (2016) that:
(i) the treatment of the nonlocal-in-time part in Bernard et al. (2016) was not correct,
and that (ii) the difference in local-in-time terms was composed of a combination of
gauge terms and of a new ambiguity structure which could be fixed either by matching
to Damour et al. (2014, 2015) or by using the results of self-force calculations in
the Schwarzschild metric. In their recent articles (Bernard et al. 2017a, b) Blanchet
and collaborators have recognized that the criticisms of Damour et al. (2016) were
founded, and, after correcting their previous claims and using results on periastron
precession first derived by Damour et al. (2015, 2016), have obtained full equivalence
with the earlier derived ADM results. Let us also mention that Marchand et al. (2018)
has presented a self-contained calculation of the full 4PN dynamics (not making any
use of self-force results), which confirms again the correctness of the 4PN dynamics
first obtained by Damour et al. (2014). The computation of Marchand et al. (2018) can
be viewed as a 4PN analog of the 3PN derivation presented in Damour et al. (2001),
in which the power of dimensional regularization in post-Newtonian calculations has
been established for the first time. An application of the 4PN dynamics for bound
orbits was performed by Bernard et al. (2017b).

The application of EFT approach to PN calculations, devised by Goldberger and
Rothstein (2006a, b), has also resulted in PN equations of motion for spinless particles
up to the 3PN order (Gilmore and Ross 2008; Kol and Smolkin 2009; Foffa and
Sturani 2011). At the 4PN level, Foffa and Sturani (2013a) calculated a quadratic in
G higher-order Lagrangian, the published version of which was found in agreement
with Jaranowski and Schäfer (2012). The quintic in G part of the 4PN Lagrangian was
derived within the EFT approach by Foffa et al. (2017) (with its 2016 arXiv version
corrected byDamour and Jaranowski 2017). Galley et al. (2016) got the 4PN nonlocal-

Footnote 2 continued
can be clearly seen from the paper by Blanchet et al. (2004) on deriving the 3PN equations of motion in
harmonic coordinates: see the paragraph containing Eq. (1.8) and Eq. (3.55) there.
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in-time tail part. Recently, Porto and Rothstein (2017) and Porto (2017) performed a
deeper analysis of IR divergences in PN expansions.

The 1.5PN spin–orbit dynamics was derived in Lagrangian form by Tulczyjew
(1959) and Damour (1982). The 2PN spin–spin equations of motion were derived by
D’Eath (1975a, b), andThorne andHartle (1985), respectively, for rotating black holes.
The 2.5PN spin–orbit dynamics was successfully tackled by Tagoshi et al. (2001), and
by Faye et al. (2006), using harmonic coordinates approach.Within the EFT approach,
Porto (2010) and Levi (2010a) succeeded in determining the same coupling (also see
Perrodin 2011). The 3PN spin1–spin2 dynamics was successfully tackled by Porto
and Rothstein (2008b, 2010b) (based on Porto 2006; Porto and Rothstein 2006) and
by Levi (2010b), and the 3PN spin1–spin1 one, again by Porto and Rothstein (2008a),
but given in 2010 only in fully correct form (Porto and Rothstein 2010a). For the 3PN
spin1–spin1 dynamics, also see Bohé et al. (2015). The most advanced results for
spinning binaries can be found in Levi (2012), Marsat et al. (2013), Bohé et al. (2013),
Marsat (2015), and Levi and Steinhoff (2016a, b, c), reaching 3.5PN and 4PN levels
(also see Steinhoff 2017). Finally, the radiation-reaction dynamics of the leading-order
spin–orbit and spin1–spin2 couplings have been obtained by Wang and Will (2007)
and Zeng andWill (2007), based on the DIREmethod (Will 2005) (see alsoMaia et al.
2017a, b, where the EFT method became applied).

1.4 Notation and conventions

In this article, Latin indices from the mid alphabet are running from 1 to 3 (or d
for an arbitrary number of space dimensions), Greek indices are running from 0 to
3 (or d for arbitrary space dimensions), whereby x0 = ct . We denote by x = (xi )
(i ∈ {1, . . . , d}) a point in the d-dimensional Euclidean space R

d endowed with a
standard Euclidean metric defining a scalar product (denoted by a dot). For any spatial

d-dimensional vector w = (wi ) we define |w| ≡ √
w · w ≡

√
δi jwiw j , so | · | stands

here for the Euclidean length of a vector, δi j = δij denotes Kronecker delta. The partial
differentiation with respect to xμ is denoted by ∂μ or by a comma, i.e., ∂μφ ≡ φ,μ,
and the partial derivative with respect to time coordinates t is denoted by ∂t or by
an overdot, ∂tφ ≡ φ̇. The covariant differentiation is generally denoted by ∇, but
we may also write ∇α(·) ≡ (·)||α for spacetime or ∇i (·) ≡ (·);i for space variables,
respectively. The signature of the (d + 1)-dimensional metric gμν is +(d − 1). The
Einstein summation convention is adopted. The speed of light is denoted by c and G
is the Newtonian gravitational constant.

We use the notion of a tensor density. The components of a tensor density of
weight w, k times contravariant and l times covariant, transform, when one changes
one coordinate system to another, by the law [see, e.g., p. 501 in Misner et al. (1973)
or, for more general case, Sects. 3.7–3.9 and 4.5 in Plebański and Krasiński (2006),
where however definition of the density weight differs by sign from the convention
used by us]

T α
′
1...α

′
k

β ′
1...β

′
l

=
(
∂x ′

∂x

)−w
xα

′
1 ,α1 . . . x

α′
k ,αk x

β1
,β ′

1
. . . xβl ,β ′

l
T α1...αkβ1...βl

, (1.6)
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where (∂x ′/∂x) is the Jacobian of the transformation x → x ′(x). E.g., determinant of
the metric g ≡ det(gμν) is a scalar density of weight +2. The covariant derivative of
the tensor density of weightw, k times contravariant and l times covariant, is computed
according to the rule

∇γ T α1...αkβ1...βl
= ∂γ T α1...αkβ1...βl

− wΓ ρργ T α1...αkβ1...βl

+
k∑

i=1

Γ αiρiγ T
α1...ρi ...αk
β1...βl

−
l∑

j=1

Γ
ρ j
β jγ

T α1...αkβ1...ρ j ...βl
. (1.7)

For the often used case when T α1...αkβ1...βl
= |g|w/2T α1...αkβ1...βl

(where T α1...αkβ1...βl
is a tensor k

times contravariant and l times covariant), Eq. (1.7) implies that the covariant derivative
of T α1...αkβ1...βl

can be computed by means of the rule,

∇γ T α1...αkβ1...βl
= T α1...αkβ1...βl

∇γ |g|w/2 + |g|w/2∇γ T α1...αkβ1...βl
= |g|w/2∇γ T α1...αkβ1...βl

, (1.8)

because
∇γ |g|w/2 = ∂γ |g|w/2 − wΓ ρργ |g|w/2 = 0. (1.9)

Letters a, b (a, b = 1, 2) are particle labels, so xa = (xia) ∈ R
d denotes the position

of the ath point mass. We also define ra ≡ x − xa , ra ≡ |ra |, na ≡ ra/ra ; and for
a 
= b, rab ≡ xa − xb, rab ≡ |rab|, nab ≡ rab/rab. The linear momentum vector
of the ath particle is denoted by pa = (pai ), and ma denotes its mass parameter. We
abbreviate Dirac delta distribution δ(x− xa) by δa (both in d and in 3 dimensions); it
fulfills the condition

∫
dd x δa = 1.

Thinking in terms of dimensions of space, d has to be an integer, but whenever
integrals within dimensional regularization get performed, we allow d to become an
arbitrary complex number [like in the analytic continuation of factorial n! = Γ (n+1)
to Γ (z)].

2 Hamiltonian formalisms of GR

The presented Hamiltonian formalisms do all rely on a (3 + 1) splitting of spacetime
metric gμν in the following form:

ds2 = gμνdx
μdxν = −(Nc dt)2 + γi j (dxi + Nic dt)(dx j + N jc dt), (2.1)

where
γi j ≡ gi j , N ≡ (−g00)−1/2, Ni = γ i j N j with Ni ≡ g0i , (2.2)

here γ i j is the inverse metric of γi j (γikγ k j = δ ji ), γ ≡ det(γi j ); lowering and raising
of spatial indices is with γi j . The splitting (2.1), and the associated explicit 3 + 1
decomposition of Einstein’s equations, was first introduced by Fourès-Bruhat (1956).
The notations N and Ni are due to Arnowitt et al. (1962) and their names, respectively
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“lapse” and “shift” functions, are due toWheeler (1964). Let us note the useful relation
between the determinants g ≡ det(gμν) and γ :

g = −N 2γ. (2.3)

We restrict ourselves to consider only asymptotically flat spacetimes andwe employ
quasi-Cartesian coordinate systems (t, xi ) which are characterized by the following
asymptotic spacelike behaviour (i.e., in the limit r → ∞ with r ≡ √

xi xi and t =
const) of the metric coefficients:

N = 1 + O(1/r), Ni = O(1/r), γi j = δi j + O(1/r), (2.4)

N,i = O(1/r2), Ni
, j = O(1/r2), γi j,k = O(1/r2). (2.5)

De Witt (1967) and later, in a more refined way, Regge and Teitelboim (1974)
explicitly showed that the Hamiltonian which generates all Einsteinian field equations
can be put into the form,

H [γi j , π i j , N , Ni ; q A, πA] =
∫

d3x (NH − cNiHi )

+ c4

16πG

∮
i0
dSi ∂ j (γi j − δi jγkk), (2.6)

wherein N and Ni operate as Lagrangian multipliers and whereH andHi are Hamil-
tonian and momentum densities, respectively; i0 denotes spacelike flat infinity. They
depend on matter canonical variables q A, πA (through matter Hamiltonian density
Hm and matter momentum densityHmi ) and read

H ≡ c4

16πG

[
−γ 1/2R + 1

γ 1/2

(
γikγ jlπ

i jπkl − 1

2
π2

)]
+ Hm, (2.7)

Hi ≡ c3

8πG
γi j∇kπ

jk + Hmi , (2.8)

where R is the intrinsic curvature scalar of the spacelike hypersurfaces of constant-
in-time slices t = x0/c = const; the ADM canonical field momentum is given by the

density
c3

16πG
π i j , where

πi j ≡ −γ 1/2(Ki j − Kγi j ), (2.9)

with K ≡ γ i j Ki j , where Ki j = −NΓ 0
i j is the extrinsic curvature of t = const slices,Γ

0
i j

denote Christoffel symbols; π ≡ γi jπ i j ; ∇k denotes the three-dimensional covariant
derivative (with respect to γi j ). The given densities are densities of weight one with
respect to three-dimensional coordinate transformations. Let us note the useful formula
for the density of the three-dimensional scalar curvature of the surface t = const:
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√
γ R = 1

4
√
γ
((
γ i jγ lm − γ ilγ jm)

γ kn + 2
(
γ ilγ km − γ ikγ lm)

γ jn
)
γi j,kγlm,n

+ ∂i
(
γ−1/2∂ j (γ γ

i j )
)
. (2.10)

Thematter densitiesHm andHmi are computed fromcomponents of thematter energy-
momentum tensor Tμν by means of formulae

Hm = √
γ Tμνnμnν = √

γ N 2T 00, (2.11)

Hmi = −√
γ Tμi nμ = √

γ NT 0
i , (2.12)

where nμ = (−N , 0, 0, 0) is the timelike unit covector orthogonal to the spacelike
hypersurfaces t = const. Opposite to what the right-hand sides of Eqs. (2.11)–(2.12)
seem to suggest, the matter densities must be independent on lapse N and shift Ni and
expressible in terms of the dynamical matter and field variables q A, πA, γi j only (π i j

does not show up for matter which is minimally coupled to the gravitational field).
The variation of (2.6) with respect to N and Ni yields the constraint equations

H = 0 and Hi = 0. (2.13)

The most often applied Hamiltonian formalism employs the following coordinate
choice made by ADM (which we call ADMTT gauge),

π i i = 0, 3∂ jγi j − ∂iγ j j = 0 or γi j = ψδi j + hTTi j , (2.14)

where the TT piece hTTi j is transverse and traceless, i.e., it satisfies ∂ j hTTi j = 0 and

hTTi i = 0. The TT piece of any field function can be computed by means of the TT
projection operator defined as follows

δTTkli j ≡ 1

2
(Pil Pjk + Pik Pjl − Pkl Pi j ), Pi j ≡ δi j − ∂i∂ jΔ−1, (2.15)

where Δ−1 denotes the inverse of the flat space Laplacian, which is taken with-
out homogeneous solutions for source terms decaying fast enough at infinity (in
3-dimensional or, if not, then in generalized d-dimensional space). The nonlocality of
the TT-operator δTTkli j is just the gravitational analogue of the well-known nonlocality
of the Coulomb gauge in the electrodynamics.

Taking into account its gauge condition as given in Eq. (2.14), the field momentum
c3

16πG
π i j can be split into its longitudinal and TT parts, respectively,

π i j = π̃ i j + π i j
TT, (2.16)
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where the TT part π i j
TT fulfills the conditions ∂ jπ

i j
TT = 0 and π i i

TT = 0 and where the
longitudinal part π̃ i j can be expressed in terms of a vectorial function V i ,

π̃ i j = ∂i V j + ∂ j V i − 2

3
δi j∂kV

k . (2.17)

It is also convenient to parametrize the field functionψ fromEq. (2.14) in the following
way

ψ =
(
1 + 1

8
φ

)4

. (2.18)

The independent field variables are π i j
TT and hTTi j . Already Kimura (1961) used just

this presentation for applications. The Poisson bracket for the independent degrees of
freedom reads

{F(x),G(y)} ≡ 16πG

c3

×
∫

d3z

(
δF(x)

δhTTi j (z)

(
δTTkli j (z)

δG(y)

δπkl
TT(z)

)
− δG(y)

δhTTi j (z)

(
δTTkli j (z)

δF(x)

δπkl
TT(z)

))
,

(2.19)

where δF(x)/(δ f (z)) denotes the functional (or Frèchet) derivative. ADM gave the
Hamiltonian in fully reduced form, i.e., after having applied (four) constraint equations
(2.13) and (four) coordinate conditions (2.14). It reads

Hred[hTTi j , π i j
TT; q A, πA] = c4

16πG

∮
i0
dSi ∂ j (γi j − δi jγkk)

= c4

16πG

∫
d3x ∂i∂ j (γi j − δi jγkk). (2.20)

The reduced Hamiltonian generates the field equations of the two remaining metric
coefficients (eight metric coefficients are determined by the four constraint equa-
tions and four coordinate conditions combined with four otherwise degenerate field
equations for the lapse and shift functions). By making use of (2.18) the reduced
Hamiltonian (2.20) can be written as

Hred[hTTi j , π i j
TT; q A, πA] = − c4

16πG

∫
d3x Δφ[hTTi j , π i j

TT; q A, πA]. (2.21)

2.1 Hamiltonian formalisms of Dirac and Schwinger

Dirac had chosen the following coordinate system, called “maximal slicing” because
of the field momentum condition,

π ≡ γi jπ i j = 0, ∂ j (γ
1/3γ i j ) = 0. (2.22)
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The reason for calling the condition π = 2Kγ 1/2 = 0 “maximal slicing” is because
the congruence of the timelike unit vectors nμ normal to the t = const hypersurfaces
(slices)—as such irrotational—is free of expansion (notice that∇μnμ = −K ). Hereof
it immediately follows that a finite volume in any slice gets unchanged by a small
timelike deformation of the slice which vanishes on the boundary of the volume, i.e.
an extremum principle holds (see, e.g., York 1979). The corresponding independent
field variables are (no implementation of the three differential conditions!)

π̃ i j =
(
π i j − 1

3
γ i jπ

)
γ 1/3, g̃i j = γ−1/3γi j , (2.23)

with the algebraic properties γi j π̃ i j = 0 and det(g̃i j ) = 1. To leading order linear in
the metric functions, the Dirac gauge coincides with the ADM gauge. The reduction
of the Dirac form of dynamics to the independent tilded degrees of freedom has been
performed by Regge and Teitelboim (1974), including a fully satisfactory derivation
of the Hamiltonian introduced by Dirac. The Poisson bracket for the Dirac variables
reads

{F,G} =
∫

d3z δ̃kli j (z)
(

δF

δg̃i j (z)
δG

δπ̃kl(z)
− δG

δg̃i j (z)
δF

δπ̃kl(z)

)

+ 1

3

∫
d3z

(
π̃ i j (z)g̃kl(z)− π̃kl(z)g̃i j (z)

) δF

δπ̃ i j (z)
δG

δπ̃kl(z)
, (2.24)

with
δ̃kli j ≡ 1

2
(δki δ

l
j + δli δkj )−

1

3
g̃i j g̃

kl , g̃i j g̃
jl = δli . (2.25)

The Hamiltonian proposed by Dirac results from the expression

HD = − c4

16πG

∫
d3x ∂i (γ

−1/2∂ j (γ γ
i j )) (2.26)

through substituting in the Eq. (2.10) by also using the Eq. (2.7) on-shell. Notice
that the resulting Hamiltonian shows first derivatives of the metric coefficients only.
The same holds with the Hamiltonian proposed by Schwinger, see Eq. (2.29) and
the Eq. (2.27) on-shell. The Hamiltonians (2.20), (2.26), and (2.29) are identical as
global objects because their integrands differ by total divergences which do vanish
after integration.

Schwinger proposed still another set of canonical field variables (qi j ,Πi j ), for
which the Hamiltonian and momentum densities have the form

H ≡ c4

16πG
γ−1/2

(
− 1

4
qmn∂mq

kl∂nq
kl − 1

2
qln∂mq

kl∂kq
mn

− 1

2
qkl∂k ln(q

1/2)∂l ln(q
1/2)+ ∂i∂ j qi j + qikq jlΠi jΠkl − (qi jΠi j )

2
)

+ Hm,

(2.27)

Hi ≡ c3

16πG

[
−Πlm∂i q

lm + ∂i (2Πlmq
lm)− ∂l(2Πimq

lm)
]

+ Hmi , (2.28)
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where Πi j ≡ −γ−1(πi j − 1
2πγi j ), q

i j ≡ γ γ i j , q ≡ γ 2; Schwinger’s canonical

field momentum
c3

16πG
Πi j is just

c3

16πG
γ−1/2Ki j . The Poisson bracket for the

Schwinger variables does have the same structure as the one for the ADM variables.
The Schwinger’s reduced Hamiltonian has the form

HS = − c4

16πG

∮
i0
dSi ∂ j q

i j = − c4

16πG

∫
d3x ∂i∂ j q

i j . (2.29)

If Schwinger would have chosen coordinate conditions corresponding to those intro-
duced above in Eqs. (2.14) (ADM also introduced another set of coordinate conditions
to which Schwinger adjusted), namely

Πi i = 0, qi j = ϕδi j + f i jTT, (2.30)

a similar simple technical formalism convenient for practical calculations would have
resulted with the independent field variables ΠTT

i j and f i jTT. To our best knowledge,
only the paper by Kibble (1963) delivers an application of Schwinger’s formalism,
apart from Schwinger himself, namely a Hamiltonian formulation of the Dirac spinor
field in gravity. Much later, Nelson and Teitelboim (1978) completed the same task
within the tetrad-generalized Dirac formalism (Dirac 1962).

2.2 Derivation of the ADMHamiltonian

The ADM Hamiltonian was derived via the generator of field and spacetime-
coordinates variations. Let the generator of general field variations be defined as (it
corresponds to the generator G ≡ pi δxi of the point-particle dynamics in classical
mechanics with the particle’s canonical momentum pi and position xi )

Gfield ≡ c3

16πG

∫
d3x π i jδγi j . (2.31)

Let the coefficients of three space-metric γi j be fixed by the relations (2.14), then the
only free variations left are

Gfield = c3

16πG

∫
d3x π i j

TTδh
TT
i j + c3

16πG

∫
d3x π j jδψ (2.32)

or, modulo a total variation,

Gfield = c3

16πG

∫
d3x π i j

TTδh
TT
i j − c3

16πG

∫
d3x ψδπ j j . (2.33)

It is consistent with the Einstein field equations in space-asymptotically flat space–
time with quasi-Cartesian coordinates to put [the mathematically precise meaning of
this equation is detailed in the Appendix B of Arnowitt et al. (1960a)]
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ct = −1

2
Δ−1π j j , (2.34)

which results in, dropping total space derivatives,

Gfield = c3

16πG

∫
d3x π i j

TTδh
TT
i j + c4

8πG

∫
d3x Δψ δt . (2.35)

Hereof the Hamiltonian easily follows in the form

H = − c4

8πG

∫
d3x Δψ, (2.36)

which can also be written, using the form of the three-metric from Eq. (2.14),

H = c4

16πG

∫
d3x ∂i∂ j (γi j − δi jγkk). (2.37)

This expression is valid also in case of other coordinate conditions (Arnowitt et al.
1962). For the derivation of the generator of space translations, the reader is referred
to Arnowitt et al. (1962) or, equivalently, to Schwinger (1963a).

3 The ADM formalism for point-mass systems

3.1 Reduced Hamiltonian for point-mass systems

In this section we consider the ADM canonical formalism applied to a system of
self-gravitating nonrotating point masses (particles). The energy-momentum tensor
of such system reads

T αβ(xγ ) =
∑
a

mac
∫ ∞

−∞
uαa u

β
a√−g
δ(4)

(
xμ − xμa (τa)

)
dτa, (3.1)

where ma is the mass parameter of ath point mass (a = 1, 2, . . . labels the point

masses), uαa ≡ dxαa /dτa (with c dτa =
√

−gμνdx
μ
a dxνa ) is the four-velocity along the

worldline xμ = xμa (τa) of the ath particle. After performing the integration in (3.1)
one gets

T αβ(x, t) =
∑
a

mac
uαa u

β
a

u0a
√−g

δ(3)
(
x − xa(t)

)
, (3.2)

where xa = (xia) is the position three-vector of the ath particle. The linear four-
momentum of the ath particle equals pαa ≡ mauαa , and the three-momentum
canonically conjugate to the position xa comes out to be pa = (pai ), where
pai = mauai .

123



 7 Page 18 of 117 G. Schäfer, P. Jaranowski

The action functional describing particles-plus-field system reads

S =
∫

dt

(
c3

16πG

∫
d3x π i j∂tγi j +

∑
a

pai ẋ
i
a − H0

)
, (3.3)

where ẋ ia ≡ dxia/dt . The asymptotic value 1 of the lapse function enters as prefactor
of the surface integral in the Hamiltonian H0, which takes the form

H0 =
∫

d3x (NH − cNiHi )+ c4

16πG

∮
i0
dSi ∂ j (γi j − δi jγkk), (3.4)

where the so-called super-Hamiltonian density H and super-momentum density Hi

can be computed by means of Eqs. (2.7)–(2.8), (2.11)–(2.12), and (3.2). They read
[here we use the abbreviation δa for δ(3)(x − xa)]

H = c4

16πG

[
1

γ 1/2

(
π i
jπ

j
i − 1

2
π2

)
− γ 1/2R

]
+

∑
a

c
(
m2

ac
2 + γ i ja pai paj

)1/2
δa,

(3.5)

Hi = c3

8πG
∇ jπ

j
i +

∑
a

paiδa, (3.6)

where γ i ja ≡ γ
i j
reg(xa) is the finite part of the inverse metric evaluated at the particle

position, which can be perturbatively and, using dimensional regularization, unam-
biguously defined (see Sects. 4.2, 4.3 below and Appendix A4 of Jaranowski and
Schäfer 2015).

The evolutionary part of the field equations is obtained by varying the action func-
tional (3.3) with respect to the field variables γi j and π i j . The resulting equations
read

γi j,0 = 2Nγ−1/2
(
πi j − 1

2
πγi j

)
+ ∇i N j + ∇ j Ni , (3.7)

π
i j
,0 = −Nγ 1/2

(
Ri j − 1

2
γ i j R

)
+ 1

2
Nγ−1/2γ i j

(
πmnπmn − 1

2
π2

)

− 2Nγ−1/2
(
π imπ

j
m − 1

2
ππ i j

)
+ ∇m(π

i j Nm)− (∇mN
i )πmj

− (∇mN
j )πmi + 1

2

∑
a

Naγ
ik
a pakγ

jl
a pal

(
γmn
a pam pan + m2

ac
2
)−1/2

δa .

(3.8)

The constraint part of the field equations results from varying the action (3.3) with
respect to N and Ni . It has the form

H = 0, Hi = 0. (3.9)
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The variation of the action (3.3) with respect to xa and pa leads to equations of motion
for the particles,

ṗai = − ∂

∂xia

∫
d3x (NH − cNkHk)

= cpaj
∂N j

a

∂xia
− c

(
m2

ac
2 + γ kla pak pal

)1/2 ∂Na

∂xia

− cNa

2
(
m2

ac
2 + γmn

a pam pan
)1/2

∂γ kla

∂xia
pak pal , (3.10)

ẋ ia = ∂

∂ pai

∫
d3x

(
NH − cNkHk

)

= cNaγ
i j
a paj(

m2
ac

2 + γ kla pak pal
)1/2 − cNi

a . (3.11)

Notice the involvement of lapse and shift functions in the equations of motion. Both
the lapse and shift functions, four functions in total, get determined by the application
of the four coordinate conditions (2.14) to the field equations (3.7) and (3.8).

The reduced action, which is fully sufficient for the derivation of the dynamics of
the particles and the gravitational field, reads (only the asymptotic value 1 of the shift
function survives)

S =
∫

dt

[
c3

16πG

∫
d3x π i j

TT∂t h
TT
i j +

∑
a

pai ẋ
i
a − Hred

]
, (3.12)

where both the constraint equations (3.9) and the coordinate conditions (2.14) are
taken to hold. The reduced Hamilton functional Hred is given by

Hred
[
xa,pa, hTTi j , π

i j
TT

] = − c4

16πG

∫
d3x Δφ

[
xa,pa, hTTi j , π

i j
TT

]
. (3.13)

The remaining field equations read

c3

16πG
∂tπ

i j
TT = −δTTi jkl

δHred

δhTTkl
,

c3

16πG
∂t h

TT
i j = δTTkli j

δHred

δπkl
TT

, (3.14)

and the equations of motion for the point masses take the form

ṗai = −∂Hred

∂xia
, ẋ ia = ∂Hred

∂ pai
. (3.15)

Evidently, there is no involvement of lapse and shift functions in the equations of
motion and in the field equations for the independent degrees of freedom (Arnowitt
et al. 1960b; Kimura 1961).
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3.2 Routh functional

The Routh functional (or Routhian) of the system is defined by

R
[
xa,pa, hTTi j , ∂t h

TT
i j

] ≡ Hred − c3

16πG

∫
d3x π i j

TT ∂t h
TT
i j . (3.16)

This functional is a Hamiltonian for the point-mass degrees of freedom, and a
Lagrangian for the independent gravitational field degrees of freedom. Within the
post-Newtonian framework it was first introduced by Jaranowski and Schäfer (1998,
2000c). The evolution equation for the gravitational field degrees of freedom reads

δ

δhTTi j (x, t)

∫
R(t ′) dt ′ = 0. (3.17)

The Hamilton equations of motion for the two point masses take the form

ṗai = − ∂R
∂xia

, ẋ ia = ∂R

∂ pai
. (3.18)

For the following treatment of the conservative part of the dynamics only, we
will make now a short model calculation revealing the structure and logic behind the
treatment. Let’s take a Routhian of the form R(q, p; ξ, ξ̇ ). Then the action reads

S[q, p; ξ ] =
∫ (

pq̇ − R(q, p; ξ, ξ̇ ))dt . (3.19)

Its variation through the independent variables gives

δS =
∫ [

d

dt
(pδq)+

(
q̇ − ∂R

∂ p

)
δ p +

(
− ṗ − ∂R

∂q

)
δq

−
(
∂R

∂ξ
− d

dt

∂R

∂ξ̇

)
δξ − d

dt

(
∂R

∂ξ̇
δξ

)]
dt . (3.20)

Going on-shell with the ξ -dynamics yields

δS =
∫ [

d

dt
(pδq)+

(
q̇ − ∂R

∂ p

)
δ p +

(
− ṗ − ∂R

∂q

)
δq

]
dt −

(
∂R

∂ξ̇
δξ

)+∞

−∞
.

(3.21)
The vanishing of the last term means—thinking in terms of hTTi j and ḣTTi j , i.e. con-

sidering the term (
∫
d3x π i j

TT δh
TT
i j )

+∞−∞ on the solution space of the field equations
(“on-field-shell”)—that as much incoming as outgoing radiation has to be present, or
time-symmetric boundary conditions have to be applied. Thus in the Fokker-type
procedure no dissipation shows up. This, however, does not force the use of the
symmetric Green function, which would exclude conservative tail contributions at
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4PN and higher PN orders. Assuming a leading-order-type prolongation of the form
R = R(q, p, q̇, ṗ), the autonomous dynamics can be deduced from the variation

δS =
∫ [

d

dt
(pδq)+

(
q̇ − δR

δ p

)
δ p +

(
− ṗ − δR

δq

)
δq

]
dt, (3.22)

where the Euler–Lagrange derivative δA/δz ≡ ∂A/∂z−d(∂A/∂ ż)/dt has been intro-
duced.

Having explained that, the conservative part of the binary dynamics is given by the
higher-order Hamiltonian equal to the on-field-shell Routhian,

Hcon[xa,pa, ẋa, ṗa, . . .]
≡ R

[
xa,pa, hTTi j (xa,pa, ẋa, ṗa, . . .), ḣ

TT
i j (xa,pa, ẋa, ṗa, . . .)

]
, (3.23)

where thefield variableshTTi j , ḣ
TT
i j were “integratedout”, i.e., replacedby their solutions

as functionals of particle variables. The conservative equations of motion defined by
the higher-order Hamiltonian (3.23) read

ṗai (t) = − δ

δxia(t)

∫
Hcon(t

′) dt ′, ẋ ia(t) = δ

δ pai (t)

∫
Hcon(t

′) dt ′, (3.24)

where the functional derivative is given by

δ

δz(t)

∫
Hcon(t

′) dt ′ = ∂Hcon

∂z(t)
− d

dt

∂Hcon

∂ ż(t)
+ · · · , (3.25)

with z = xia or z = pai . Schäfer (1984) and Damour and Schäfer (1991) show that
time derivatives of xa and pa in the higher-order Hamiltonian (3.23) can be eliminated
by the use of lower-order equations of motion, leading to an ordinary Hamiltonian,

Hord
con[xa,pa] = Hcon[xa,pa, ẋa(xa,pa), ṗa(xa,pa), . . .]. (3.26)

Notice the important point that the two Hamiltonians Hcon and Hord
con do not belong

to the same coordinate system. Therefore, the Hamiltonians Hcon and Hord
con and their

variables should have, say, primed and unprimed notations which usually however
does not happen in the literature due to a slight abuse of notation.

A formal PN expansion of the Routh functional in powers of 1/c2 is feasible to all

PN orders. With the aid of the definition hTTi j ≡ 16πG

c4
ĥTTi j , we may write

R
[
xa,pa, hTTi j , ∂t h

TT
i j

] −
∑
a

mac
2 =

∞∑
n=0

1

c2n
Rn

[
xa,pa, ĥTTi j , ∂t ĥ

TT
i j

]
. (3.27)
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Hereof, the field equation for hTTi j results in a PN-series form,

(
Δ− 1

c2
∂2t

)
ĥTTi j =

∞∑
n=0

1

c2n
DTT
(n)i j

[
x, xa,pa, ĥTTkl , ∂t ĥ

TT
kl

]
. (3.28)

This equation must now be solved step by step using either retarded integrals for
getting thewhole dynamics or time-symmetric ones for only the conservative dynamics
defined by Hcon, which themselves have to be expanded in powers of 1/c. In higher
orders, however, non-analytic in 1/c log-terms do show up (see, e.g., Damour et al.
2014, 2016).

To calculate the reduced Hamiltonian of Eq. (2.21) for a many-particle system one
has to perturbatively solve for φ and π̃ i j the constraint equations H = 0 and Hi = 0
with the densitiesH,Hi defined in Eqs. (3.5)–(3.6). Then the transition to theRouthian
of Eq. (3.16) is straightforward using the second equation in (3.14). The expansion
of the Hamiltonian constraint equation up to c−10 leads to the following equation [in
this equation and in the next one we use units c = 1, G = 1/(16π)]3:

−Δφ =
∑
a

[
1 − 1

8
φ + 1

64
φ2 − 1

512
φ3 + 1

4096
φ4

+
(
1

2
− 5

16
φ + 15

128
φ2 − 35

1024
φ3

)
p2a
m2

a

+
(

−1

8
+ 9

64
φ − 45

512
φ2

)
(p2a)

2

m4
a

+
(

1

16
− 13

128
φ

)
(p2a)

3

m6
a

− 5

128

(p2a)
4

m8
a

+
(

−1

2
+ 9

16
φ + 1

4

p2a
m2

a

)
pai paj
m2

a
hTTi j − 1

16

(
hTTi j

)2 ]
maδa

+
(
1 + 1

8
φ

)(
π̃ i j

)2 +
(
2 + 1

4
φ

)
π̃ i jπ

i j
TT +

(
π
i j
TT

)2

+
[(

−1

2
+ 1

4
φ − 5

64
φ2

)
φ,i j +

(
3

16
− 15

128
φ

)
φ,iφ, j + 2π̃ ik π̃ jk

]
hTTi j

+
(
1

4
− 7

32
φ

)(
hTTi j,k

)2 +
(
1

2
+ 1

16
φ

)
hTTi j,kh

TT
ik, j

+Δ
[(

−1

2
+ 7

16
φ

)(
hTTi j

)2] −
[
1

2
φhTTi j h

TT
ik, j + 1

4
φ,k

(
hTTi j

)2]
,k

+ O(c−12). (3.29)

The expansion of the momentum constraint equation up to c−7 reads

3 Equations (3.29) and (3.30) are taken from Jaranowski and Schäfer (1998, 2000c) and they are enough
to calculate 3PN-accurate two-point-mass Hamiltonian. In Jaranowski and Schäfer (2015) one can find
higher-order PN expansion of constraint equations, performed in d dimensions, necessary to compute 4PN
Hamiltonian.
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π̃
i j
, j =

(
−1

2
+ 1

4
φ − 5

64
φ2

)∑
a

paiδa +
(

−1

2
+ 1

16
φ

)
φ, j π̃

i j

− 1

2
φ, jπ

i j
TT − π̃ jk

,k h
TT
i j + π̃ jk

(
1

2
hTTjk,i − hTTi j,k

)
+ O(c−8). (3.30)

In the Eqs. (3.29) and (3.30) dynamical field variables hTTi j and π i j
TT are counted as

being of the orders 1/c4 and 1/c5, respectively [cf. Eq. (3.28)].

3.3 Poincaré invariance

In asymptotically flat spacetimes the Poincaré group is a global symmetry group. Its
generators Pμ and Jμν are realized as functions Pμ(xa,pa) and Jμν(xa,pa) on the
many-body phase-space. They are conserved on shell and fulfill the Poincaré algebra
relations for the Poisson bracket product (see, e.g., Regge and Teitelboim 1974),

{Pμ, Pν} = 0, (3.31)

{Pμ, Jρσ } = −ημρPσ + ημσ Pρ, (3.32)

{Jμν, Jρσ } = −ηνρ Jμσ + ημρ J νσ + ησμ Jρν − ησν Jρμ, (3.33)

where the Poisson brackets are defined in an usual way,

{A, B} ≡
∑
a

(
∂A

∂xia

∂B

∂ pai
− ∂A

∂ pai

∂B

∂xia

)
. (3.34)

The meaning of the components of Pμ and Jμν is as follows: the time component
P0 (i.e., the total energy) is realized as the Hamiltonian H ≡ cP0, Pi = Pi is linear
momentum, J i ≡ 1

2ε
ikl Jkl [with εi jk ≡ εi jk ≡ 1

2 (i − j)( j − k)(k − i), Jkl = J kl ,
and Ji j = εi jk J k] is angular momentum, and Lorentz boost vector is Ki ≡ J i0/c.
The boost vector represents the constant of motion associated to the centre-of-mass
theorem and can further be decomposed as Ki = Gi − t Pi (with Gi = Gi ). In terms
of three-dimensional quantities the Poincaré algebra relations read (see, e.g., Damour
et al. 2000c, d)

{Pi , H} = 0, {Ji , H} = 0, (3.35)

{Ji , Pj } = εi jk Pk, {Ji , J j } = εi jk Jk, (3.36)

{Ji ,G j } = εi jk Gk, (3.37)

{Gi , H} = Pi , (3.38)

{Gi , Pj } = 1

c2
H δi j , (3.39)

{Gi ,G j } = − 1

c2
εi jk Jk . (3.40)
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TheHamiltonian H and the centre-of-mass vectorGi have the integral representations

H = − c4

16πG

∫
d3x Δφ = − c4

16πG

∮
i0
r2dΩ n · ∇φ, (3.41)

Gi = − c2

16πG

∫
d3x xiΔφ = − c2

16πG

∮
i0
r2dΩ n j (xi∂ j − δi j )φ, (3.42)

where n r2dΩ (n is the radial unit vector) is the two-dimensional surface-area element
at i0. The two quantities H and Gi are the most involved ones of those entering the
Poincaré algebra.

The Poincaré algebra has been extensively used in the calculations of PN Hamil-
tonians for spinning binaries (Hergt and Schäfer 2008a, b). Hereby the most useful
equation was (3.38), which tells that the total linear momentum has to be a total
time derivative. This equation was also used by Damour et al. (2000c, d) to fix the
so called “kinetic ambiguity” in the 3PN ADM two-point-mass Hamiltonian without
using dimensional regularization. In harmonic coordinates, the kinetic ambiguity got
fixed by a Lorentzian version of the Hadamard regularization based on the Fock–de
Donder approach (Blanchet and Faye 2001b).

The explicit form of the generators Pμ(xa,pa) and Jμν(xa,pa) (i.e., P, J, G, and
H ) for two-point-mass systems is given in Appendix C with 4PN accuracy.

The global Lorentz invariance results in the following useful expressions (see, e.g.,
Rothe and Schäfer 2010; Georg and Schäfer 2015). Let us define the quantity M
through the relation

Mc2 ≡
√
H2 − P2c2 or H =

√
M2c4 + P2c2, (3.43)

and let us introduce the canonical centre of the system vector X (with components
Xi = Xi ),

X ≡ Gc2

H
+ 1

M
(
H + Mc2

)
(
J −

(
Gc2

H
× P

))
× P. (3.44)

Then the following commutation relations are fulfiled:

{
Xi , Pj

} = δi j ,
{
Xi , X j

} = 0,
{
Pi , Pj

} = 0, (3.45)

{M, Pi } = 0, {M, Xi } = 0, (3.46)

{M, H} = 0, {Pi , H} = 0,
H

c2
{Xi , H} = Pi . (3.47)

The commutation relations clearly show the complete decoupling of the internal
dynamics from the external one by making use of the canonical variables. The
equations (3.43) additionally indicate that M2 is simpler (or, more primitive) than
M , cf. Georg and Schäfer (2015). A centre-of-energy vector can be defined by
Xi
E = XEi = c2Gi/H = c2Gi/H . This vector, however, is not a canonical position

vector, see, e.g., Hanson and Regge (1974).
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In view of our later treatment of particles with spin, let us decompose the total
angular momentum Jμν of a single object into orbital angular momentum Lμν and
spin Sμν , both of them are anti-symmetric tensors,

Jμν = Lμν + Sμν. (3.48)

The orbital angular momentum tensor is given by

Lμν = ZμPν − Zν Pμ, (3.49)

where Zμ denotes 4-dimensional position vector (with Z0 = ct). The splitting in
space and time results in

J i j = Zi P j − Z j Pi + Si j , J i0 = Zi H/c − Pict + Si0. (3.50)

Remarkably, relativity tells us that any object with mass M , spin length S, and positive
energy density must have extension orthogonal to its spin vector of radius of at least
S/(Mc) (see, e.g., Misner et al. 1973). Clearly then, the position vector of such an
object is not given a priori but must be defined. As the total angular momentum should
not depend on the fixation of the position vector, the notion of spin must depend on the
fixation of the position vector and vice versa. Thus, imposing a spin supplementary
condition (SSC) fixes the position vector.We enumerate here themost often used SSCs
(see, e.g., Fleming 1965; Hanson and Regge 1974; Barker and O’Connell 1979).

(i) Covariant SSC (also called Tulczyjew-Dixon SSC):

PνS
μν = 0. (3.51)

The variables corresponding to this SSC are denoted in Sect. 7 by Zi = zi , Si j ,
and Pi = pi .

(ii) Canonical SSC (also called Newton–Wigner SSC):

(Pν + Mc nν)S
μν = 0, Mc = √−PμPμ, (3.52)

where nμ = (−1, 0, 0, 0), nμnμ = −1. The variables corresponding to this SSC
are denoted in Sect. 7 by ẑi , Ŝi j , and Pi .

(iii) Centre-of-energy SSC (also called Corinaldesi–Papapetrou SSC):

nνS
μν = 0. (3.53)

Here the boost vector takes the form of a spinless object, Ki = Zi H/c2− Pi t =
Gi − Pi t .
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3.4 Poynting theorem of GR

Let us start with the following local identity, having structure of a Poynting theorem
for GR in local form,

− ḣTTi j �hTTi j = −∂k
(
ḣTTi j h

TT
i j,k

)
+ 1

2
∂t

[
(ḣTTi j /c)

2 + (hTTi j,k)2
]
, (3.54)

where � ≡ −∂2t /c2 + Δ denotes the d’Alembertian. Integrating this equation over
whole space gives, assuming past stationarity,

−
∫
V∞

d3x ḣTTi j �hTTi j = 1

2

∫
V∞

d3x ∂t
[
(ḣTTi j /c)

2 + (hTTi j,k)2
]
, (3.55)

where V∞ is just another expression for R
3. Notice that the far zone is understood as

area of the t = const slice where gravitational waves are decoupled from their source
and do freely propagate outwards, what means that the relation hTTi j,k = −(nk/c)ḣTTi j +
O(r−2) is fulfilled in the far or wave zone. Using

−
∫
Vfz

d3x ḣTTi j �hTTi j = −
∮
fz
dsk ḣ

TT
i j h

TT
i j,k + 1

2

∫
Vfz

d3x ∂t
[
(ḣTTi j /c)

2 + (hTTi j,k)2
]
,

(3.56)
with Vfz as the volume of the space enclosed by the outer boundary of the far (or, wave)
zone (fz) and dsk = nkr2dΩ surface-area element of the two-surface of integration
with dΩ as the solid-angle element and r the radial coordinate, it follows

−
∫
(V∞−Vfz)

d3x ḣTTi j �hTTi j =
∮
fz
dsk ḣ

TT
i j h

TT
i j,k

+ 1

2

∫
(V∞−Vfz)

d3x ∂t
[
(ḣTTi j /c)

2 + (hTTi j,k)2
]
. (3.57)

Dropping the left side of this equation as negligibly small, assuming the source term
for �hTTi j , which follows from the Routhian field equation (3.17), to decay at least as

1/r3 for r → ∞ (for isolated systems, all source terms for�hTTi j decay at least as 1/r4

if not TT-projected; the TT-projection may raise the decay to 1/r3, e.g. TT-projection
of Dirac delta function), results in

c3

32πG

∮
fz
dΩ r2

(
ḣTTi j

)2 = c2

32πG

d

dt

∫
(V∞−Vfz)

d3x
(
ḣTTi j

)2
, (3.58)

with meaning that the energy flux through a surface in the far zone equals the growth
of gravitational energy beyond that surface.
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3.5 Near-zone energy loss and far-zone energy flux

The change in time of the matter Routhian reads, assuming R to be local in the
gravitational field,

dR

dt
= ∂R

∂t
=

∫
d3x

∂R
∂hTTi j

ḣTTi j +
∫

d3x
∂R
∂hTTi j,k

∂k ḣ
TT
i j +

∫
d3x

∂R
∂ ḣTTi j

ḧTTi j , (3.59)

where

R(xa,pa, t) ≡
∫

d3x R(xa,pa, hTTi j (t), hTTi j,k(t), ḣTTi j (t)). (3.60)

The equation for dR/dt is valid provided the equations of motion

ṗai = − ∂R
∂xia

, ẋ ia = ∂R

∂ pai
(3.61)

hold. Furthermore, we have

∫
d3x

∂R
∂hTTi j,k

∂k ḣ
TT
i j +

∫
d3x

∂R
∂ ḣTTi j

ḧTTi j =
∫

d3x ∂k

(
∂R
∂hTTi j,k

ḣTTi j

)

+ d

dt

∫
d3x

∂R
∂ ḣTTi j

ḣTTi j −
∫

d3x ∂k

(
∂R
∂hTTi j,k

)
ḣTTi j −

∫
d3x

d

dt

(
∂R
∂ ḣTTi j

)
ḣTTi j .

(3.62)

The canonical field momentum is given by

c3

16πG
π
i j
TT = −δTTi jkl

∂R
∂ ḣTTkl

. (3.63)

Performing the Legendre transformation

H = R + c3

16πG

∫
d3x π i j

TTḣ
TT
i j , or R = H − c3

16πG

∫
d3x π i j

TTḣ
TT
i j , (3.64)

the energy loss equation takes the form [using Eq. (3.59) together with (3.62) and
(3.63)]

dH

dt
=

∫
d3x ∂k

(
∂R
∂hTTi j,k

ḣTTi j

)
+

∫
d3x

∂R
∂hTTi j

ḣTTi j

−
∫

d3x ∂k

(
∂R
∂hTTi j,k

)
ḣTTi j −

∫
d3x

d

dt

(
∂R
∂ ḣTTi j

)
ḣTTi j . (3.65)
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Application of the field equations

∂R
∂hTTi j

− ∂k
(
∂R
∂hTTi j,k

)
− d

dt

(
∂R
∂ ḣTTi j

)
= 0 (3.66)

yields, assuming past stationarity [meaning that at any finite time t no radiation can
have reached spacelike infinity, so the first (surface) term in the right-hand side of Eq.
(3.65) vanishes],

dH

dt
= 0. (3.67)

The Eq. (3.58) shows that the Eq. (3.64) infers, employing the leading-order quadratic
field structure of R

[
R = −(1/4)(c2/(16πG))(ḣTTi j )2 + · · · ; see Eq. (F.3)],

d

dt

(
R −

∫
Vfz

d3x
∂R
∂ ḣTTi j

ḣTTi j

)
= −L, (3.68)

where

L = − c4

32πG

∮
fz
dskh

TT
i j,k ḣ

TT
i j = c3

32πG

∮
fz
dΩ r2

(
ḣTTi j

)2
(3.69)

is the well known total energy flux (or luminosity) of gravitational waves. The Eq.
(3.68) can be put into the energy form, again employing the leading-order quadratic
field structure of R,

d

dt

(
H − c2

32πG

∫
(V∞−Vfz)

d3x
(
ḣTTi j

)2) = −L. (3.70)

Taking into account the Eqs. (3.29) and (3.41) we find that the second term in the
parenthesis of the left side of Eq. (3.70) exactly subtracts the corresponding terms
from pure (hTTi j,k)

2 and (π i j
TT)

2 expressions therein. This improves, by one order in
radial distance, the large distance decay of the integrand of the integral of the whole
left side of Eq. (3.70), which runs over the whole hypersurface t = const. We may
now perform near- and far-zone PN expansions of the left and right sides of the Eq.
(3.70), respectively. Though the both series are differently defined—on the left side,
expansion in powers of 1/c around fixed time t of an energy expression which is time
differentiated; on the right side, expansion in powers of 1/c around fixed retarded time
t − r/c—the expansions cannot contradict each other as long as they are not related
term by term. For the latter relation we must keep in mind that PN expansions are
instantaneous expansions so that the two times, t and t − r/c, are not allowed to be
located too far apart from each other. This means that we have to read off the radiation
right when it enters far zone. Time-averaging of the expressions on the both sides
of Eq. (3.70) over several wave periods makes the difference between the two times
negligible as it should be if one is interested in a one-to-one correspondence between
the terms on the both sides. The Newtonian and 1PN wave generation processes were
explicitly shown to fit into this scheme by Königsdörffer et al. (2003).
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3.6 Radiation field

In the far zone, the multipole expansion of the transverse-traceless (TT) part of the
gravitational field, obtained by algebraic projection with

Pi jkl(n) ≡ 1

2

(
Pik(n)Pjl(n)+ Pil(n)Pjk(n)− Pi j (n)Pkl(n

)
, (3.71)

Pi j (n) ≡ δi j − nin j , (3.72)

where n ≡ x/r (r ≡ |x|) is the unit vector in the direction from the source to the far
away observer, reads (see, e.g., Thorne 1980; Blanchet 2014)

hTT fz
i j (x, t) = G

c4
Pi jkm(n)

r

∞∑
l=2

{(
1

c2

) l−2
2 4

l! M
(l)
kmi3...il

(
t − r∗

c

)
Ni3...il

+
(
1

c2

) l−1
2 8l

(l + 1)! εpq(kS
(l)
m)pi3...il

(
t − r∗

c

)
nq Ni3...il

}
, (3.73)

where Ni3...il ≡ ni3 . . . nil and where M(l)
i1i2i3...il

and S(l)i1i2i3...il denote the lth time
derivatives of the symmetric and tracefree (STF) radiative mass-type and current-type
multipole moments, respectively. The term with the leading mass-quadrupole tensor
takes the form (see, e.g., Schäfer 1990)

M(2)
i j

(
t − r∗

c

)
= M̂

(2)
i j

(
t − r∗

c

)

+ 2Gm

c3

∫ ∞

0
dv

[
ln

( v
2b

)
+ κ

]
M̂
(4)
i j

(
t − r∗

c
− v

)
+ O

(
1

c4

)
, (3.74)

with

r∗ = r + 2Gm

c2
ln

( r

cb

)
+ O

(
1

c3

)
(3.75)

showing the leading-order tail term of the quadrupole radiation (the gauge dependent
relative phase constant κ between direct and tail term was not explored by Schäfer
1990; for more details see, e.g., Blanchet and Schäfer 1993; Blanchet 2014). Notice
the modification of the standard PN expansion through tail terms. This expression
nicely shows that also multipole expansions in the far zone do induce PN expansions.
The mass-quadrupole tensor M̂i j is just the standard Newtonian one. Higher-order tail
terms up to “tails-of-tails-of-tails” can be found in Marchand et al. (2016). Leading-
order tail terms result from the backscattering of the leading-order outgoing radiation,
the “tails-of-tails” from their second backscattering, and so on.

Through 1.5PN order, the luminosity expression (3.69) takes the form

L(t) = G

5c5

{
M(3)

i j M
(3)
i j + 1

c2

[
5

189
M(4)

i jkM
(4)
i jk + 16

9
S(3)i j S

(3)
i j

]}
. (3.76)
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On reasons of energy balance in asymptotically flat space, for any coordinates or
variables representation of the Einstein theory, the time-averaged energy loss has to
fulfill a relation of the form

−
〈
dE (t − r∗/c)

dt

〉
= 〈L(t)〉 , (3.77)

where the time averaging procedure takes into account typical periods of the system.
Generalizing our considerations after Eq. (3.70) we may take the observation time t
much larger than the time, say tbfz, the radiation enters the far or wave zone, even
larger than the damping time of the radiating system, by just freely transporting the
radiation power along the null cone with tacitly assuming 〈L(t)〉 = 〈L(tbfz)〉. Coming
back to Eq. (3.70), time averaging on the left side of Eq. (3.70) eliminates total time
derivatives of higher PN order, so-called Schott terms, and transforms them into much
higher PN orders. The both sides of the equation (3.77) are gauge (or, coordinate)
invariant. We stress that the Eq. (3.77) is valid for bound systems. In case of scattering
processes, a coordinate invariant quantity is the emitted total energy.

The energyflux tonPNorder in the far zone implies energy loss to (n+5/2)PNorder
in the near zone. Hereof it follows that energy-loss calculations are quite efficient via
energy-flux calculations (Blanchet 2014). In general, only after averaging over orbital
periods the both expressions do coincide. In the case of circular orbits, however, this
averaging procedure is not needed.

4 Applied regularization techniques

The most efficient source model for analytical computations of many-body dynamics
in general relativity are point masses (or particles) represented through Dirac delta
functions. If internal degrees of freedom are come into play, derivatives of the delta
functions must be incorporated into the source. Clearly, point-particle sources in field
theories introduce field singularities, which must be regularized in computations. Two
aspects are important: (i) the differentiation of singular functions, and (ii) the integra-
tion of singular functions, either to new (usually also singular) functions or to the final
Routhian/Hamiltonian. The item (ii) relates to the integration of the field equations
and the item (i) to the differentiation of their (approximate) solutions. On consistency
reasons, differentiation and integration must commute.

The most efficient strategy developed for computation of higher-order PN point-
particle Hamiltonians relies on performing a 3-dimensional full computation in the
beginning (using Riesz-implemented Hadamard regularization defined later in this
section) and then correcting it by a d-dimensional one around the singular points,
as well the local ones (UV divergences) as the one at infinity (IR divergences).
A d-dimensional full computation is not needed. At higher than the 2PN level 3-
dimensional computations with analytical Hadamard and Riesz regularizations show
up ambiguities which require a more powerful treatment. The latter is dimensional
regularization. The first time this strategy was successfully applied was in the 3PN
dynamics of binary point particles (Damour et al. 2001); IR divergences did not appear
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therein, those enter from the 4PN level on only, the same as the nonlocal-in-time tail
terms to which they are connected. At 4PN order, using different regularization meth-
ods for the treatment of IR divergences (Jaranowski and Schäfer 2015), an ambiguity
parameter was left which, however, got fixed by matching to self-force calculations in
the Schwarzschild metric (Le Tiec et al. 2012; Bini and Damour 2013; Damour et al.
2014).

The regularization techniques needed to perform PN calculations up to (and includ-
ing) 4PN order, are described in detail in Appendix A of Jaranowski and Schäfer
(2015).

4.1 Distributional differentiation of homogeneous functions

Besides appearance of UV divergences, another consequence of employing Dirac-
delta sources is necessity to differentiate homogeneous functions using an enhanced
(or distributional) derivative, which comes from standard distribution theory (see, e.g.,
Sect. 3.3 in Chapter III of Gel’fand and Shilov 1964).

Let f be a real-valued function defined in a neighbourhood of the origin of R
3. f

is said to be a positively homogeneous function of degree λ, if for any number a > 0

f (a x) = aλ f (x). (4.1)

Let k := −λ − 2. If λ is an integer and if λ ≤ −2 (i.e., k is a nonnegative integer),
then the partial derivative of f with respect to the coordinate xi has to be calculated
by means of the formula

∂i f (x) = ∂i f (x)+ (−1)k

k!
∂kδ(x)

∂xi1 · · · ∂xik ×
∮
Σ

dσi f (x′) x ′i1 · · · x ′ik , (4.2)

where ∂i f on the lhs denotes the derivative of f considered as a distribution, while
∂i f on the rhs denotes the derivative of f considered as a function (which is computed
using the standard rules of differentiation),Σ is any smooth close surface surrounding
the origin and dσi is the surface element on Σ .

The distributional derivative does not obey the Leibniz rule. It can easily be seen
by considering the distributional partial derivative of the product 1/ra and 1/r2a . Let
us suppose that the Leibniz rule is applicable here:

∂i
1

r3a
= ∂i

(
1

ra

1

r2a

)
= 1

r2a
∂i

1

ra
+ 1

ra
∂i

1

r2a
. (4.3)

The right-hand side of this equation can be computed using standard differential cal-
culus (no terms with Dirac deltas), whereas computing the left-hand side one obtains
some term proportional to ∂iδa . The distributional differentiation is necessary when
one differentiates homogeneous functions under the integral sign. For more details,
see Appendix A5 in Jaranowski and Schäfer (2015).
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4.2 Riesz-implemented Hadamard regularization

The usage of Dirac δ-functions to model point-mass sources of gravitational field
leads to occurrence of UV divergences, i.e., the divergences near the particle locations
xa , as ra ≡ |x − xa | → 0. To deal with them, Infeld (1954, 1957), and Infeld and
Plebański (1960) introduced “good” δ-functions, which, besides having the properties
of ordinary Dirac δ-functions, also satisfy the condition

1

|x − x0|k δ(x − x0) = 0, k = 1, . . . , p, (4.4)

for some positive integer p (in practical calculations one takes p large enough to take
all singularities appearing in the calculation into account). They also assumed that the
“tweedling of products” property is always satisfied

∫
d3x f1(x) f2(x)δ(x − x0) = f1reg(x0) f2reg(x0), (4.5)

where “reg” means regularized value of the function at its singular point (i.e., x0 in
the equation above) evaluated by means of the rule (4.4).

A natural generalization of the rule (4.4) is the concept of “partie finie” value of
function at its singular point, defined as

freg(x0) ≡ 1

4π

∫
dΩ a0(n), (4.6)

with (here M is some non-negative integer)

f (x = x0 + εn) =
∞∑

m=−M

am(n)εm, n ≡ x − x0
|x − x0| . (4.7)

Defining, for a function f singular at x = x0,

∫
d3x f (x)δ(x − x0) ≡ freg(x0), (4.8)

the “tweedling of products” property (4.5) can be written as

( f1 f2)reg(x0) = f1reg(x0) f2reg(x0). (4.9)

The above property is generally wrong for arbitrary singular functions f1 and f2. In
the PN calculations problems with fulfilling this property begin at the 3PN order. This
is one of the reasons why one should use dimensional regularization.

The Riesz-implemented Hadamard (RH) regularization was developed in the con-
text of deriving PN equations of motion of binary systems by Jaranowski and Schäfer
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(1997, 1998, 2000c) to deal with locally divergent integrals computed in three dimen-
sions. The method is based on the Hadamard “partie finie” and the Riesz analytic
continuation procedures.

The RH regularization relies on multiplying the full integrand, say i(x), of the
divergent integral by a regularization factor,

i(x) −→ i(x)
(r1
s1

)ε1(r2
s2

)ε2
, (4.10)

and studying the double limit ε1 → 0, ε2 → 0 within analytic continuation in the
complex ε1 and ε2 planes (here s1 and s2 are arbitrary three-dimensional UV regu-
larization scales). Let us thus consider such integral performed over the whole space
R
3 and let us assume than it develops only local poles (so it is convergent at spatial

infinity). The value of the integral, after performing the RH regularization in three
dimensions, has the structure

IRH(3; ε1, ε2) ≡
∫
R3

i(x)
(r1
s1

)ε1(r2
s2

)ε2
d3x

= A + c1
( 1

ε1
+ ln

r12
s1

)
+ c2

( 1

ε2
+ ln

r12
s2

)
+ O(ε1, ε2). (4.11)

Let us mention that in the PN calculations regularized integrands
i(x)(r1/s1)ε1(r2/s2)ε2 depend on x only through x − x1 and x − x2, so they
are translationally invariant. This explains why the regularization result (4.11)
depends on x1 and x2 only through x1 − x2.

In the case of an integral over R
3 developing poles only at spatial infinity (so it is

locally integrable) it would be enough to use a regularization factor of the form (r/r0)ε

(where r0 is an IR regularization scale), but it is more convenient to use the factor

(r1
r0

)aε(r2
r0

)bε
(4.12)

and study the limit ε → 0. Let us denote the integrand again by i(x). The integral,
after performing the RH regularization in three dimensions, has the structure

IRH(3; a, b, ε) ≡
∫
R3

i(x)
(r1
r0

)aε(r2
r0

)bε
d3x = A−c∞

(
1

(a + b)ε
+ln

r12
r0

)
+O(ε).
(4.13)

Let us remark here that the extended Hadamard regularization procedure developed
by Blanchet and Faye (2000a, b, 2001a, b) is both incompatible with standard distri-
bution theory and with the method of dimensional regularization; for more details see
Jaranowski and Schäfer (2015) (see also the footnote 2 above).

Many integrals appearing inPNcalculationswere computed using a famous formula
derived in Riesz (1949) in d dimensions. It reads

∫
dd x rα1 r

β
2 = πd/2Γ (

α+d
2 )Γ (

β+d
2 )Γ (−α+β+d

2 )

Γ (−α
2 )Γ (−β

2 )Γ (
α+β+2d

2 )
rα+β+d
12 . (4.14)
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To compute the 4PN-accurate two-point-mass Hamiltonian one needs to employ a
generalization of the three-dimensional version of this formula for integrands of the
form rα1 r

β
2 (r1+r2+r12)γ . Such formulawas derived by Jaranowski and Schäfer (1998,

2000c) and also there an efficient way of implementing both formulae to regularize
divergent integrals was proposed (it employs prolate spheroidal coordinates in three
dimensions). See Appendix A1 of Jaranowski and Schäfer (2015) for details and
Appendix A of Hartung et al. (2013) for generalization of this procedure to d space
dimensions.

4.3 Dimensional regularization

It was first shown by Damour et al. (2001), that the unambiguous treatment of UV
divergences in the current context requires usage of dimensional regularization (see,
e.g., Collins 1984). It was used both in the Hamiltonian approach and in the one
using the Einstein field equations in harmonic coordinates (Damour et al. 2001, 2014;
Blanchet et al. 2004; Jaranowski and Schäfer 2013, 2015; Bernard et al. 2016). The
dimensional regularization preserves the law of “tweedling of products” (4.9) and
gives all involved integrals, particularly the inverse Laplacians, a unique definition.

4.3.1 D-dimensional ADM formalism

Dimensional regularization (DR)needs the representation of theEinsteinfield equation
for arbitrary space dimensions, say d for the dimension of space and D = d+1 for the
spacetime dimension. In the following, GD = GN�

d−3
0 will denote the gravitational

constant in D-dimensional spacetime and GN the standard Newtonian one, �0 is the
DR scale relating both constants.

The unconstraint Hamiltonian takes the form

H =
∫

dd x (NH − cNiHi )+ c4

16πGD

∮
i0
dd−1Si ∂ j (γi j − δi jγkk), (4.15)

where dd−1Si denotes the (d −1)-dimensional surface element. The Hamiltonian and
the momentum constraint equations written for many-point-particle systems are given
by

√
γ R = 1√

γ

(
γikγ j�π

i jπk� − 1

d − 1
(γi jπ

i j )2
)

+ 16πGD

c3
∑
a

(m2
ac

4 + γ i ja pai paj )
1
2 δa, (4.16)

−∇ jπ
i j = 8πGD

c3
∑
a

γ
i j
a pajδa . (4.17)
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The gauge (or coordinate) ADMTT conditions read

γi j =
(
1 + d − 2

4(d − 1)
φ

)4/(d−2)

δi j + hTTi j , π i i = 0, (4.18)

where
hTTi i = 0, ∂ j h

TT
i j = 0. (4.19)

The field momentum π i j splits into its longitudinal and TT parts, respectively,

π i j = π̃ i j + π i j
TT, (4.20)

where the longitudinal part π̃ i j can be expressed in terms of a vectorial function V i ,

π̃ i j = ∂i V j + ∂ j V i − 2

d
δi j∂kV

k, (4.21)

and where the TT part satisfies the conditions,

π i i
TT = 0, ∂ jπ

i j
TT = 0. (4.22)

The reduced Hamiltonian of the particles-plus-field system takes the form

Hred
[
xa,pa, hTTi j , π

i j
TT

] = − c4

16πGD

∫
dd x Δφ

[
xa,pa, hTTi j , π

i j
TT

]
. (4.23)

The equations of motion for the particles read

ẋa = ∂Hred

∂pa
, ṗa = −∂Hred

∂xa
, (4.24)

and the field equations for the independent degrees of freedom are given by

∂

∂t
hTTi j = 16πGD

c3
δTTkli j

δHred

δπkl
TT

,
∂

∂t
π
i j
TT = −16πGD

c3
δ
TTi j
kl

δHred

δhTTkl
, (4.25)

where the d-dimensional TT-projection operator is defined by

δ
TTi j
kl ≡ 1

2
(δikδ jl + δilδ jk)− 1

d − 1
δi jδkl

− 1

2
(δik∂ jl + δ jl∂ik + δil∂ jk + δ jk∂il)Δ−1

+ 1

d − 1
(δi j∂kl + δkl∂i j )Δ−1 + d − 2

d − 1
∂i jklΔ

−2. (4.26)
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Finally, the Routh functional is defined as

R
[
xa,pa, hTTi j , ḣ

TT
i j

] ≡ Hred
[
xa,pa, hTTi j , π

i j
TT

] − c3

16πGD

∫
dd x π i j

TTḣ
TT
i j , (4.27)

and the fully reduced matter Hamiltonian for the conservative dynamics reads

H [xa,pa] ≡ R
[
xa,pa, hTTi j (xa,pa), ḣ

TT
i j (xa,pa)

]
. (4.28)

4.3.2 Local and asymptotic dimensional regularization

The technique developed by Damour et al. (2001) to control local (or UV) divergences
boils down to the computation of the difference

lim
d→3

H loc(d)− HRH loc(3), (4.29)

where HRH loc(3) is the “local part” of theHamiltonian obtained bymeans of the three-
dimensional RH regularization [it is the sum of all integrals of the type IRH(3; ε1, ε2)
introduced in Eq. (4.11)], H loc(d) is its d-dimensional counterpart.

Damour et al. (2001) showed that to find the DR correction to the integral
IRH(3; ε1, ε2) of Eq. (4.11) related with the local pole at, say, x = x1, it is enough to
consider only this part of the integrand i(x) which develops logarithmic singularities
in three dimensions, i.e., which locally behaves like 1/r31 ,

i(x) = · · · + c̃1(n1) r
−3
1 + · · · , when x → x1. (4.30)

Then the pole part of the integral (4.11) related with the singularity at x = x1 can be
recovered by RH regularization of the integral of c̃1(n1) r

−3
1 over the ball B(x1, �1) of

radius �1 surrounding the particle x1. The RH regularized value of this integral reads

IRH1 (3; ε1) ≡
∫
B(x1,�1)

c̃1(n1) r
−3
1

(r1
s1

)ε1
d3r1 = c1

∫ �1

0
r−1
1

(r1
s1

)ε1
dr1, (4.31)

where c1/(4π) is the angle-averaged value of the coefficient c̃1(n1). The expansion
of the integral IRH1 (3; ε1) around ε1 = 0 equals

IRH1 (3; ε1) = c1
( 1

ε1
+ ln

�1

s1

)
+ O(ε1). (4.32)

The idea of the technique developed by Damour et al. (2001) relies on replacing
the RH-regularized value of the three-dimensional integral IRH1 (3; ε1) by the value of
its d-dimensional version I1(d). One thus considers the d-dimensional counterpart of
the expansion (4.30). It reads

i(x) = · · · + �k(d−3)
0 c̃1(d;n1) r6−3d

1 + · · · , when x → x1. (4.33)
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Let us note that the specific exponent 6 − 3d of r1 visible here follows from the
r1 → 0 behaviour of the (perturbative) solutions of the d-dimensional constraint
equations (4.16)–(4.17). The number k in the exponent of �k(d−3)

0 is related with the
momentum-order of the considered term [e.g., at the 4PN level the termwith k is of the
order of O(p10−2k), for k = 1, . . . , 5; such term is proportional to Gk

D]. The integral
I1(d) is defined as

I1(d) ≡ �k(d−3)
0

∫
B(x1,�1)

c̃1(d;n1) r6−3d
1 ddr1 = c1(d)

∫ �1

0
r5−2d
1 dr1, (4.34)

where c1(d)/
(
Ωd−1�

k(d−3)
0

)
(Ωd−1 stands for the area of the unit sphere in R

d ) is the
angle-averaged value of the coefficient c̃1(d;n1),

c1(d) ≡ �k(d−3)
0

∮
Sd−1(0,1)

c̃1(d;n1) dΩd−1. (4.35)

One checks that always there is a smooth connection between c1(d) and its three-
dimensional counterpart c1,

lim
d→3

c1(d) = c1(3) = c1. (4.36)

The radial integral in Eq. (4.34) is convergent if the real part �(d) of d fulfills the
condition �(d) < 3. Making use of the expansion c1(d) = c1(3+ ε) = c1 + c′1(3)ε+
O(ε2), where ε ≡ d − 3, the expansion of the integral I1(d) around ε = 0 reads

I1(d) = −�
−2ε
1

2ε
c1(3 + ε) = − c1

2ε
− 1

2
c′1(3)+ c1 ln �1 + O(ε). (4.37)

Let us note that the coefficient c′1(3) usually depends on ln r12 and it has the structure

c′1(3) = c′11(3)+ c′12(3) ln
r12
�0

+ 2c1 ln �0, (4.38)

where c′12(3) = (2 − k)c1 [what can be inferred knowing the dependence of c1(d) on
�0 given in Eq. (4.35)]. Therefore the DR correction also changes the terms ∝ ln r12.

The DR correction to the RH-regularized value of the integral IRH(3; ε1, ε2) relies
on replacing this integral by

IRH(3; ε1, ε2)+ΔI1 +ΔI2, (4.39)

where
ΔIa ≡ Ia(d)− IRHa (3; εa), a = 1, 2. (4.40)

Then one computes the double limit

lim
ε1→0
ε2→0

(
IRH(3; ε1, ε2)+ΔI1 +ΔI2

)
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= A − 1

2

(
c′11(3)+ c′21(3)

) − 1

2

(
c′12(3)+ c′22(3)

)
ln

r12
�0

+ (
c1 + c2

) (− 1

2ε
+ ln

r12
�0

)
+ O(ε). (4.41)

Note that all poles ∝ 1/ε1, 1/ε2 and all terms depending on radii �1, �2 or scales s1,
s2 cancel each other. The result (4.41) is as if all computations were fully done in d
dimensions.

In the DR correcting UV of divergences in the 3PN two-point-mass Hamiltonian
performed byDamour et al. (2001), after collecting all terms of the type (4.41) together,
all poles ∝ 1/(d −3) cancel each other. This is not the case for the UV divergences of
the 4PN two-point-mass Hamiltonian derived by Jaranowski and Schäfer (2015). As
explained in Sect. VIII D of Jaranowski and Schäfer (2015), after collecting all terms
of the type (4.41), one has to add to the Hamiltonian a unique total time derivative to
eliminate all poles ∝ 1/(d − 3) (together with �0-dependent logarithms).

The above described technique of theDRcorrecting ofUVdivergences can easily be
transcribed to control IR divergences. This is done by the replacement of the integrals

∫
B(xa ,�a)

dd x i(x) (4.42)

by the integral ∫
Rd\B(0,R)

dd x i(x), (4.43)

where B(0, R) means a large ball of radius R (with the centre at the origin 0 of the
coordinate system), and by studying expansion of the integrand i(x) for r → ∞. This
technique was not used to regularize IR divergences in the computation of the 4PN
two-point-mass Hamiltonian by Damour et al. (2014) and Jaranowski and Schäfer
(2015). This was so because this technique applied only to the instantaneous part of
the 4PN Hamiltonian is not enough to get rid of the IR poles in the limit d → 3. For
resolving IR poles it was necessary to observe that the IR poles have to cancel with
the UV poles from the tail part of the Hamiltonian (what can be achieved e.g. after
implementing the so-called zero-bin subtraction in the EFT framework, see Porto and
Rothstein 2017).

Another two different approaches were employed byDamour et al. (2014) and Jara-
nowski and Schäfer (2015) to regularize IR divergences in the instantaneous part of
the 4PN Hamiltonian (see Appendix A3 in Jaranowski and Schäfer 2015): (i) modify-
ing the behavior of the function hTT(6)i j at infinity,

4 (ii) implementing a d-dimensional
version of Riesz–Hadamard regularization. Both approaches were developed in d
dimensions, but the final results of using any of them in the limit d → 3 turned out to be
identical with the results of computations performed in d = 3 dimensions. Moreover,
the results of the two approaches were different in the limit d → 3, what indicated the

4 This approach is described in Appendix A3 a of Jaranowski and Schäfer (2015), where Eqs. (A40)–(A42)

are misprinted: (r/s)B ḧTT
(4)i j should be replaced by

[
(r/s)B ḧTT

(4)i j

]TT. The Eq. (3.6) in Damour et al. (2014)
is the correct version of Eq. (A40) in Jaranowski and Schäfer (2015).
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ambiguity of IR regularization, discussed in detail by Jaranowski and Schäfer (2015)
and fixed byDamour et al. (2014). This IR ambiguity can be expressed in terms of only
one unknown parameter, because the results of two regularization approaches, albeit
different, have exactly the same structure with only different numerical prefactors.
This prefactor can be treated as the ambiguity parameter. The full 4PN Hamiltonian
was thus computed up to a single ambiguity parameter and it was used to calculate, in
a gauge invariant form, the energy of two-body system along circular orbits as a func-
tion of frequency. The ambiguity parameter was fixed by comparison of part of this
formula [linear in the symmetric mass ratio ν, see Eq. (6.3) below for the definition]
with the analogous 4PN-accurate formula for the particle in the Schwarzschild metric
which included self-force corrections.

Analogous ambiguity was discovered in 4PN-accurate calculations of two-body
equations of motion done by Bernard et al. (2016) in harmonic coordinates, where
also analytic regularization of the IR divergences of the instantaneous part of the
dynamics was performed. However, the computations made by Bernard et al. (2016)
faced also a second ambiguity (Damour et al. 2016; Bernard et al. 2017b), which must
come from their different (harmonic instead of ADMTT) gauge condition and the
potentiality of analytic regularization not to preserve gauge (in contrast to dimensional
regularization). The first method of analytic regularization applied by Damour et al.
(2014) and Jaranowski and Schäfer (2015) is manifest ADMTT gauge preserving.
Finally, Marchand et al. (2018) and Bernard et al. (2017a) successfully applied in
harmonic-coordinates approach d-dimensional regularization all-over.

4.3.3 Distributional differentiation in d dimensions

One can show that the formula (4.2) for distributional differentiation of homogeneous
functions is also valid (without any change) in the d-dimensional case. It leads, e.g.,
to equality

∂i∂ j r
2−d = (d − 2)

d nin j − δi j
rd

− 4πd/2

d Γ (d/2 − 1)
δi jδ. (4.44)

To overcome the necessity of using distributional differentiations it is possible to
replace Dirac δ-function by the class of analytic functions introduced in Riesz (1949),

δε(x) ≡ Γ ((d − ε)/2)
πd/22εΓ (ε/2)

r ε−d , (4.45)

resulting in the Dirac δ-function in the limit

δ = lim
ε→0

δε. (4.46)

On this class of functions, the inverse Laplacian operates as

Δ−1δε = −δε+2, (4.47)
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and instead of (4.44) one gets

∂i∂ j r
ε+2−d = (d − 2 − ε) (d − ε)nin j − δi j

rd−ε . (4.48)

There is no need to use distributional differentiation here, so no δ-functions are
involved.

Though the replacements in the stress–energy tensor density of δa through δεa (with
a = 1, 2) do destroy the divergence freeness of the stress–energy tensor and thus the
integrability conditions of the Einstein theory, the relaxed Einstein field equations
(the ones which result after imposing coordinate conditions) do not force the stress–
energy tensor to be divergence free and can thus be solved without problems. The
solutions one gets do not fulfill the complete Einstein field equations but in the final
limits εa → 0 the general coordinate covariance of the theory is manifestly recovered.
This property, however, only holds if these limits are taken before the limit d = 3 is
performed (Damour et al. 2008a).

5 Point-mass representations of spinless black holes

This section is devoted to an insight of how black holes, the most compact objects
in GR, can be represented by point masses. On the other side, the developments
in the present section show that point masses, interpreted as fictitious point masses
(analogously to image charges in the electrostatics), allow to represent black holes.
Later on, in the section on approximate Hamiltonians for spinning binaries, neutron
stars will also be considered, taking into account their different rotational deformation.
Tidal deformationwill not be considered in this review; for information about this topic
the reader is referred to, e.g., Damour and Nagar (2010) and Steinhoff et al. (2016).

The simplest black hole is a Schwarzschildian one which is isolated and non-
rotating. Its metric is a static solution of the vacuum Einstein field equations. In
isotropic coordinates, the Schwarzschild metric reads (see, e.g., Misner et al. 1973)

ds2 = −
⎛
⎜⎝
1 − GM

2rc2

1 + GM

2rc2

⎞
⎟⎠

2

c2dt2 +
(
1 + GM

2rc2

)4

dx2, (5.1)

where M is the gravitating mass of the black hole and (x1, x2, x3) are Cartesian
coordinates inR

3 with r2 = (x1)2+(x2)2+(x3)2 and dx2 = (dx1)2+(dx2)2+(dx3)2.
The origin of the coordinate system r = 0 is not located where the Schwarzschild
singularity R = 0, with R the radial Schwarzschild coordinate, is located, rather it is
located on the other side of the Einstein–Rosen bridge, at infinity, where space is flat.
The point r = 0 does not belong to the three-dimensional spacelike curved manifold,
so we do have an open manifold at r = 0, a so-called “puncture” manifold (see,
e.g., Brandt and Brügmann 1997; Cook 2005). However, as we shall see below, the
Schwarzschild metric can be contructed with the aid of a Dirac δ function with support
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at r = 0, located in a conformally related flat space of dimension smaller than three.
Distributional sources with support at the Schwarzschild singularity are summarized
and treated by Pantoja and Rago (2002) and Heinzle and Steinbauer (2002).

A two black hole initial value solution of the vacuum Einstein field equations is the
time-symmetric Brill–Lindquist one (Brill and Lindquist 1963; Lindquist 1963),

ds2 = −

⎛
⎜⎜⎝
1 − β1G

2r1c2
− β2G

2r2c2

1 + α1G

2r1c2
+ α2G

2r2c2

⎞
⎟⎟⎠

2

c2dt2 +
(
1 + α1G

2r1c2
+ α2G

2r2c2

)4

dx2, (5.2)

where ra ≡ x − xa and ra ≡ |ra | (a = 1, 2), the coefficients αa and βa can be
found in Jaranowski and Schäfer (2002) (notice that hTTi j = 0, π i j = 0, and, initially,
∂t ra = 0). Its total energy results from the ADM surface integral [this is the reduced
ADM Hamiltonian from Eq. (2.20) written for the metric (5.2)]

EADM = − c4

2πG

∮
i0
dSi ∂iΨ = (α1 + α2)c2, (5.3)

where dSi = nir2dΩ is a two-dimensional surface-area element (with unit radial
vector ni ≡ xi/r and solid angle element dΩ) and

Ψ ≡ 1 + α1G

2r1c2
+ α2G

2r2c2
. (5.4)

Introducing the inversion map x → x′ defined by Brill and Lindquist (1963)

r′
1 ≡ r1

α21G
2

4c4r21
�⇒ r1 = r′

1
α21G

2

4c4r ′2
1

, (5.5)

where r′
1 ≡ x′ − x1, r ′

1 ≡ |x′ − x1|, the three-metric dl2 = Ψ 4dx2 transforms into

dl2 = Ψ ′4dx′2, with Ψ ′ ≡ 1 + α1G

2r ′
1c

2 + α1α2G2

4r2r ′
1c

4 , (5.6)

where r2 = r′
1α

2
1G

2/(4c4r ′2
1 )+r12 with r12 ≡ x1−x2. From the newmetric function

Ψ ′ the proper mass of the throat 1 results in,

m1 ≡ − c2

2πG

∮
i10

dS′
i ∂

′
iΨ

′ = α1 + α1α2G

2r12c2
, (5.7)

where i10 denotes the black hole’s 1 own spacelike infinity. Hereof the ADM energy
comes out in the form,

EADM = (m1 + m2)c
2 − G

α1α2

r12
, (5.8)
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where

αa = ma − mb

2
+ c2rab

G

⎛
⎝
√
1 + ma + mb

c2rab/G
+

(
ma − mb

2c2rab/G

)2

− 1

⎞
⎠ . (5.9)

This construction, as performed by Brill and Lindquist (1963), is a purely geometrical
(or vacuum) one without touching singularities. Recall that this energy belongs to an
initial value solution of the Einstein constraint equations with vanishing of both hTTi j
and particle together with field momenta. In this initial conditions spurious gravita-
tional waves are included.

In the following we will show how the vacuum Brill–Lindquist solution can be
obtained with Dirac δ-function source terms located at r1 = 0 and r2 = 0 in a
conformally related three-dimensional flat space. To do this we will formulate the
problem in d space dimensions and make analytical continuation in d of the results
down to d = 3. The insertion of the stress–energy density for point masses into the
Hamiltonian constraint equation yields, for pai = 0, hTTi j = 0, and π i j = 0,

− ΨΔφ = 16πG

c2
∑
a

maδa, (5.10)

where Ψ and φ parametrize the space metric,

γi j = Ψ 4/(d−2)δi j , Ψ ≡ 1 + d − 2

4(d − 1)
φ. (5.11)

If the lapse function N is represented by

N ≡ χ

Ψ
, (5.12)

an equation for χ results of the form (using the initial-data conditions pai = 0,
hTTi j = 0, π i j = 0),

Ψ 2Δχ = 4πG

c2
d − 2

d − 1
χ
∑
a

maδa . (5.13)

With the aid of the relation

Δ
1

rd−2
a

= − 4πd/2

Γ (d/2 − 1)
δa (5.14)

it is easy to show that for 1 < d < 2 the equations for Ψ and χ do have well-defined
solutions. To obtain these solutions we employ the ansatz

φ = 4G

c2
Γ (d/2 − 1)

πd/2−1

(
α1

rd−2
1

+ α2

rd−2
2

)
, (5.15)
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where α1 and α2 are some constants. After plugging the ansatz (5.15) into Eq. (5.10)
we compare the coefficients of the Dirac δ-functions on both sides of the equation.
For point mass 1 we get

(
1 + G(d − 2)Γ (d/2 − 1)

c2(d − 1)πd/2−1

( α1

rd−2
1

+ α2

rd−2
2

))
α1δ1 = m1δ1. (5.16)

After taking 1 < d < 2, one can perform the limit r1 → 0 for the coefficient of δ1 in
the left-hand-side of the above equation,

(
1 + G(d − 2)Γ (d/2 − 1)

c2(d − 1)πd/2−1

α2

rd−2
12

)
α1δ1 = m1δ1. (5.17)

Going over to d = 3 by arguing that the solution is analytic in d results in the relation

αa = ma

1 + G

2c2
αb

rab

, (5.18)

where b 
= a and a, b = 1, 2. The ADM energy is again given by, in the limit d = 3,

EADM = (α1 + α2)c2. (5.19)

Here we recognize the important aspect that although the metric may describe close
binary black holes with strongly deformed apparent horizons, the both black holes can
still be generated by point masses in conformally related flat space. This is the justifi-
cation for our particle model to be taken as model for orbiting black holes. Obviously
black holes generated by point masses are orbiting black holes without spin, i.e.,
Schwarzschild-type black holes. The representation of a Schwarzschild-type black
hole in binary-black-hole systems with one Dirac δ-function seems not to be the only
possibility. As shown by Jaranowski and Schäfer (2000a), binary-black-hole config-
urations defined through isometry-conditions at the apparent horizons (Misner 1963)
need infinitely many Dirac δ-functions per each one of the black holes. Whether or not
those black holes are more physical is not known. It has been found by Jaranowski and
Schäfer (1999) that the expressions for ADM energy of the two kinds of binary black
holes do agree through 2PN order, and that at the 3PN level the energy of the Brill–
Lindquist binary black holes is additively higher by G4m2

1m
2
2(m1 +m2)/(8c6r412), i.e.

the Misner configuration seems stronger bound. The same paper has shown that the
spatial metrics of both binary-black-hole configurations coincide through 3PN order,
and that at least through 5PN order they can bemade to coincide by shifts of black-hole
position variables.
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6 Post-Newtonian Hamilton dynamics of nonspinning compact
binaries

In this section we collect explicit results on Hamilton dynamics of binaries made of
compact and nonspinning bodies. Up to the 4PN order the Hamiltonian of binary
point-mass systems is explicitly known and it can be written as the sum

H [xa,pa, t] =
∑
a

mac
2 + HN(xa,pa)+ 1

c2
H1PN(xa,pa)+ 1

c4
H2PN(xa,pa)

+ 1

c5
H2.5N(xa,pa, t)+ 1

c6
H3PN(xa,pa)+ 1

c7
H3.5PN(xa,pa, t)

+ 1

c8
H4PN[xa,pa] + O(c−9). (6.1)

This Hamiltonian is the PN-expanded reduced ADM Hamiltonian of point-masses
plus field system; the nontrivial procedure of reduction is described in Sects. 3.1 and
3.2 of this review. The non-autonomous dissipative Hamiltonians H2.5PN(xa,pa, t)
and H3.5PN(xa,pa, t) are written as explicitly depending on time because they depend
on the gravitational field variables (see Sect. 6.5 for more details). The dependence of
the 4PN Hamiltonian H4PN on xa and pa is both pointwise and functional (and this is
why we have used square brackets for arguments of H4PN).

We will display here the conservative Hamiltonians HN to H4PN in the centre-
of-mass reference frame, relegating their generic, noncentre-of-mass forms, to
Appendix C. In the ADM formalism the centre-of-mass reference frame is defined
by the simple requirement

p1 + p2 = 0. (6.2)

Here we should point out that at the 3.5PN order for the first time recoil arises, hence
the conservation of linear momentum is violated [see, e.g., Fitchett 1983 (derivation
based on wave solutions of linearized field equations) and Junker and Schäfer 1992
(derivation based on wave solutions of non-linear field equations)]. This however has
no influence on the energy through 6.5PN order, if P ≡ p1 + p2 = 0 holds initially,
because up to 3PN order the Eq. (3.43) is valid and the change of the Hamiltonian H
caused by nonconservation of P equals dH/dt = [(c2/H)P]3PN · (dP/dt)3.5PN = 0
through 6.5PN order.

Let us define
M ≡ m1 + m2, μ ≡ m1m2

M
, ν ≡ μ

M
, (6.3)

where the symmetric mass ratio 0 ≤ ν ≤ 1/4, with ν = 0 being the test-body case and
ν = 1/4 for equal-mass binaries. It is convenient to introduce reduced (or rescaled)
variables r and p (together with the rescaled time variable t̂),

r ≡ x1 − x2
GM

, n ≡ r
|r| , p ≡ p1

μ
= −p2

μ
, pr ≡ n · p, t̂ ≡ t

GM
, (6.4)
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as well as the reduced Hamiltonian

Ĥ ≡ H − Mc2

μ
. (6.5)

6.1 Conservative Hamiltonians through 4PN order

The conservative reduced 4PN-accurate two-point-mass Hamiltonian in the centre-of-
mass frame reads

Ĥ [r,p] = ĤN(r,p)+ 1

c2
Ĥ1PN(r,p)+ 1

c4
Ĥ2PN(r,p)

+ 1

c6
Ĥ3PN(r,p)+ 1

c8
Ĥ4PN[r,p]. (6.6)

The Hamiltonians ĤN through Ĥ3PN are local in time. They explicitly read

ĤN(r,p) = p2

2
− 1

r
, (6.7)

Ĥ1PN(r,p) = 1

8
(3ν − 1)p4 − 1

2

[
(3 + ν)p2 + ν p2r

] 1

r
+ 1

2r2
, (6.8)

Ĥ2PN(r,p) = 1

16
(1 − 5ν + 5ν2)p6

+ 1

8

[
(5 − 20ν − 3ν2)p4 − 2ν2 p2r p

2 − 3ν2 p4r
]1
r

+ 1

2
[(5 + 8ν)p2 + 3ν p2r ]

1

r2
− 1

4
(1 + 3ν)

1

r3
, (6.9)

Ĥ3PN(r,p) = 1

128
(−5 + 35ν − 70ν2 + 35ν3)p8

+ 1

16

[
(−7 + 42ν − 53ν2 − 5ν3)p6 + (2 − 3ν)ν2 p2r p

4

+ 3(1 − ν)ν2 p4r p2 − 5ν3 p6r
]1
r

+
[ 1

16
(−27 + 136ν + 109ν2)p4

+ 1

16
(17 + 30ν)ν p2r p

2 + 1

12
(5 + 43ν)ν p4r

] 1

r2

+
[(

−25

8
+

(
1

64
π2 − 335

48

)
ν − 23

8
ν2

)
p2

+
(

−85

16
− 3

64
π2 − 7

4
ν

)
ν p2r

]
1

r3

+
[
1

8
+

(
109

12
− 21

32
π2

)
ν

]
1

r4
. (6.10)
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The total 4PN Hamiltonian Ĥ4PN[r,p] is the sum of the local-in-time piece
Ĥ local
4PN (r,p) and the piece Ĥnonlocal

4PN [r,p] which is nonlocal in time:

Ĥ4PN[r,p] = Ĥ local
4PN (r,p)+ Ĥnonlocal

4PN [r,p]. (6.11)

The local-in-time 4PN Hamiltonian Ĥ local
4PN (r,p) reads

Ĥ local
4PN (r,p) =

(
7

256
− 63

256
ν + 189

256
ν2 − 105

128
ν3 + 63

256
ν4

)
p10

+
{

45

128
p8 − 45

16
p8ν +

(
423

64
p8 − 3

32
p2r p

6 − 9

64
p4r p

4
)
ν2

+
(

−1013

256
p8 + 23

64
p2r p

6 + 69

128
p4r p

4 − 5

64
p6r + 35

256
p8r

)
ν3

+
(

− 35

128
p8 − 5

32
p2r p

6 − 9

64
p4r p

4 − 5

32
p6r − 35

128
p8r

)
ν4

}
1

r

+
{
13

8
p6 +

(
−791

64
p6 + 49

16
p2r p

4 − 889

192
p4r + 369

160
p6r

)
ν

+
(
4857

256
p6 − 545

64
p2r p

4 + 9475

768
p4r − 1151

128
p6r

)
ν2

+
(
2335

256
p6 + 1135

256
p2r p

4 − 1649

768
p4r + 10353

1280
p6r

)
ν3

}
1

r2

+
{
105

32
p4 +

[(
2749

8192
π2 − 589189

19200

)
p4 +

(
63347

1600
− 1059

1024
π2

)
p2r p

2

+
(

375

8192
π2 − 23533

1280

)
p4r

]
ν +

[(
18491

16384
π2 − 1189789

28800

)
p4

−
(
127

3
+ 4035

2048
π2

)
p2r p

2 +
(
57563

1920
− 38655

16384
π2

)
p4r

]
ν2

+
(

− 553

128
p4 − 225

64
p2r − 381

128
p4r

)
ν3

}
1

r3

+
{
105

32
p2 +

[(
185761

19200
− 21837

8192
π2

)
p2 +

(
3401779

57600
− 28691

24576
π2

)
p2r

]
ν

+
[(

672811

19200
− 158177

49152
π2

)
p2 +

(
−21827

3840
+ 110099

49152
π2

)
p2r

]
ν2

}
1

r4

+
{

− 1

16
+

(
−169199

2400
+ 6237

1024
π2

)
ν +

(
−1256

45
+ 7403

3072
π2

)
ν2

}
1

r5
.

(6.12)

The time-symmetric but nonlocal-in-time Hamiltonian Ĥnonlocal
4PN [r,p] is related

with the leading-order tail effects (Damour et al. 2014). It equals

Ĥnonlocal
4PN [r,p] = −1

5

G2

νc8
...
I i j (t)× Pf2r12/c

∫ +∞

−∞
dτ

|τ |
...
I i j (t + τ), (6.13)
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where PfT is a Hadamard partie finie with time scale T ≡ 2r12/c and where
...
I i j

denotes a third time derivative of the Newtonian quadrupole moment Ii j of the binary
system,

Ii j ≡
∑
a

ma

(
xiax

j
a − 1

3
δi jx2a

)
. (6.14)

The Hadamard partie finie operation is defined as (Damour et al. 2014)

PfT

∫ +∞

0

dv

v
g(v) ≡

∫ T

0

dv

v
[g(v)− g(0)] +

∫ +∞

T

dv

v
g(v). (6.15)

Let us also note that in reduced variables the quadrupole moment Ii j and its third time
derivative

...
I i j read

Ii j = (GM)2μ

(
r ir j − 1

3
r2δi j

)
,

...
I i j = − ν

Gr2

(
4n〈i p j〉 − 3(n · p)n〈i n j〉) ,

(6.16)
where 〈· · · 〉 denotes a symmetric tracefree projection andwhere in

...
I i j the time deriva-

tives ṙ, r̈, and
...
r were eliminated by means of Newtonian equations of motion.

From the reduced conservativeHamiltonians displayed above, where a factor of 1/ν
is factorized out [through the definition (6.5) of the reducedHamiltonian], the standard
test-body dynamics is very easily obtained, simply by putting ν = 0. The conservative
Hamiltonians ĤN through Ĥ4PN serve as basis of the EOB approach, where with the
aid of a canonical transformation the two-body dynamics is put into test-body form
of an effective particle moving in deformed Schwarzschild metric, with ν being the
deformation parameter (Buonanno and Damour 1999, 2000; Damour et al. 2000a,
2015). These Hamiltonians, both directly and through the EOB approach, constitute
an important element in the construction of templates needed to detect gravitational
waves emitted by coalescing compact binaries. Let us stress again that the complete
4PN Hamiltonian has been obtained only in 2014 (Damour et al. 2014), based on
earlier calculations (Blanchet and Damour 1988; Bini and Damour 2013; Jaranowski
and Schäfer 2013) and a work published later (Jaranowski and Schäfer 2015).

6.2 Nonlocal-in-time tail Hamiltonian at 4PN order

Thenonlocal-in-time tailHamiltonian at the 4PN level (derived and applied byDamour
et al. 2014, 2015, respectively) is the most subtle part of the 4PN Hamiltonian. It
certainly deserves some discussion. Let us remark that though the tail Hamiltonian
derived in 2016 by Bernard et al. (2016) was identical with the one given in Damour
et al. (2014), the derivation there of the equations of motion and the conserved energy
was incorrectly done, as detailed by Damour et al. (2016), which was later confirmed
by Bernard et al. (2017b).

The 4PN-level tail-related contribution to the action reads

Stail4PN = −
∫

H tail
4PN(t) dt, (6.17)
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where the 4PN tail Hamiltonian equals

H tail
4PN(t) = −G2M

5c8
...
I i j (t)Pf2r(t)/c

∫ ∞

−∞
dv

|v|
...
I i j (t + v). (6.18)

Because formally
...
I i j (t + v) = exp

(
v
d

dt

)
...
I i j (t), (6.19)

the tail Hamiltonian can also be written as

H tail
4PN(t) = −G2M

5c8
...
I i j (t)Pf2r(t)/c

∫ ∞

0

dv

v

[...
I i j (t + v)+ ...

I i j (t − v)]

= −2G2M

5c8
...
I i j (t)Pf2r(t)/c

∫ ∞

0

dv

v
cosh

(
v
d

dt

)
...
I i j (t). (6.20)

Another writing of the tail Hamiltonian is

H tail
4PN(t) = −2G2M

5c8
...
I i j (t)Pf2r(t)/c

∫ ∞

0

dv

v
cosh (vX(H0))

...
I i j (t) (6.21)

with

X(H0) ≡
∑
i

(
∂H0

∂ pi (t)

∂

∂xi (t)
− ∂H0

∂xi (t)

∂

∂ pi (t)

)
, H0 = (p(t))2

2μ
− GMμ

r(t)
.

(6.22)

This presentation shows that H tail
4PN can be constructed from positions and momenta at

time t .
For circular orbits,

...
I i j (t) is an eigenfunction of cosh

(
v d
dt

)
, reading

cosh

(
v
d

dt

)
...
I i j (t) = cos (2vΩ(t))

...
I i j (t), (6.23)

where Ω is the angular frequency along circular orbit (pr = 0),

Ω(t) ≡ ϕ̇ = ∂H0(pϕ, r)

∂ pϕ
= pϕ(t)

μr2(t)
, H0(pϕ, r) = p2ϕ

2μr2
− GMμ

r
. (6.24)

Notice that the representation of Ω(t) as function of the still independent (dynam-
ical equation ṗr = −∂H0/∂r has not yet been used) canonical variables pϕ(t)
and r(t) (in Damour et al. 2014, 2016, a more concise representation for circular
orbits has been applied, based on the orbital angular momentum as only variable).
The somewhat complicated structure of Eq. (6.23) can be made plausible by writing

v
d

dt
= v Ω(pϕ, r)

d

dϕ
, see Eq. (6.24), and parametrizing the Eq. (6.16) for circular
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orbits (pr = 0) with orbital angle ϕ. The 4PN tail Hamiltonian for circular orbits can
thus be written as

H tail circ
4PN (t) = −2G2M

5c8
(...
I i j (t)

)2 Pf2r(t)/c

∫ ∞

0

dv

v
cos

(
2pφ(t)

μr2(t)
v

)

= 2G2M

5c8
(...
I i j (t)

)2 [
ln

(
4pφ(t)

μcr(t)

)
+ γE

]
, (6.25)

where γE = 0.577 . . . denotes Euler’s constant. This representation has been used by
Bernard et al. (2016), see Eq. (5.32) therein, for a straightforward comparison with
the tail results presented by Damour et al. (2014).

6.3 Dynamical invariants of two-body conservative dynamics

The observables of two-body systems that can be measured from infinity by, say,
gravitational-wave observations, are describable in terms of dynamical invariants, i.e.,
functions which do not depend on the choice of phase-space coordinates. Dynamical
invariants are easily obtained within a Hamiltonian framework of integrable systems.

We start from the reduced conservative Hamiltonian Ĥ(r,p) in the centre-of-mass
frame (we are thus considering here a local-in-timeHamiltonian; for the local reduction
of a nonlocal-in-time 4PN-level Hamiltonian see Sect. 6.3.2 below) and we employ
reduced variables (r,p). The invariance of Ĥ(r,p) under time translations and spatial
rotations leads to the conserved quantities

E ≡ Ĥ(r,p), j ≡ J
μGM

= r × p, (6.26)

where E is the total energy and J is the total orbital angular momentum of the binary
system in the centre-of-mass frame. We further restrict considerations to the plane of
the relative trajectory endowed with polar coordinates (r , φ) and we use Hamilton–
Jacobi approach to obtain themotion. To do this we separate the variables t̂ ≡ t/(GM)
and φ in the reduced planar action Ŝ ≡ S/(GμM), which takes the form

Ŝ = −Et̂ + jφ +
∫ √

R(r , E, j) dr . (6.27)

Here j ≡ |j| and the effective radial potential R(r , E, j) is obtained by solving the
equation E = Ĥ(r,p) with respect to pr ≡ n · p, after making use of the relation

p2 = (n · p)2 + (n × p)2 = p2r + j2

r2
. (6.28)

The Hamilton–Jacobi theory shows that the observables of the two-body dynamics
can be deduced from the (reduced) radial action integral
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ir (E, j) ≡ 2

2π

∫ rmax

rmin

√
R(r , E, j) dr , (6.29)

where the integration is defined from minimal to maximal radial distance. The dimen-
sionless parameter k ≡ ΔΦ/(2π) (with ΔΦ ≡ Φ − 2π ) measuring the fractional
periastron advance per orbit and the periastron-to-periastron period P are obtained by
differentiating the radial action integral:

k = −∂ir (E, j)
∂ j

− 1, (6.30)

P = 2πGM
∂ir (E, j)

∂E
. (6.31)

It is useful to express the Hamiltonian as a function of the Delaunay (reduced)
action variables (see, e.g., Goldstein 1981) defined by

n ≡ ir + j = N
μGM

, j = J

μGM
, m ≡ jz = Jz

μGM
. (6.32)

The angle variables conjugate to n, j , and m are, respectively: the mean anomaly, the
argument of the periastron, and the longitude of the ascending node. In the quantum
language, N /� is the principal quantum number, J/� the total angular-momentum
quantum number, and Jz/� the magnetic quantum number. They are adiabatic invari-
ants of the dynamics and they are, according to the Bohr–Sommerfeld rules of the
old quantum theory, (approximately) quantized in integers. Knowing the Delaunay
Hamiltonian Ĥ(n, j,m) one computes the angular frequencies of the (generic) rosette
motion of the binary system by differentiating Ĥ with respect to the action variables.
Namely,

ωradial = 2π

P
= 1

GM

∂ Ĥ(n, j,m)

∂n
, (6.33)

ωperiastron = ΔΦ

P
= 2πk

P
= 1

GM

∂ Ĥ(n, j,m)

∂ j
. (6.34)

Here, ωradial is the angular frequency of the radial motion, i.e., the angular frequency
of the return to the periastron, while ωperiastron is the average angular frequency with
which the major axis advances in space.

6.3.1 3PN-accurate results

The dynamical invariants of two-body dynamics were computed by Damour and
Schäfer (1988) at the 2PN level and then generalized to the 3PN level of accuracy
by Damour et al. (2000b). We are displaying here 3PN-accurate formulae. The peri-
astron advance parameter k reads
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k = 3

c2 j2

{
1 + 1

c2

[
5

4
(7 − 2ν)

1

j2
+ 1

2
(5 − 2ν) E

]

+ 1

c4

[
5

2

(
77

2
+

(
41

64
π2 − 125

3

)
ν + 7

4
ν2

)
1

j4

+
(
105

2
+

(
41

64
π2 − 218

3

)
ν + 45

6
ν2

)
E

j2

+ 1

4
(5 − 5ν + 4ν2) E2

]
+ O(c−6)

}
. (6.35)

The 3PN-accurate formula for the orbital period reads

P = 2πGM

(−2E)3/2

{
1 − 1

c2
1

4
(15 − ν)E

+ 1

c4

[
3

2
(5 − 2ν)

(−2E)3/2

j
− 3

32
(35 + 30ν + 3ν2) E2

]

+ 1

c6

[(
105

2
+

(
41

64
π2 − 218

3

)
ν + 45

6
ν2

)
(−2E)3/2

j3

− 3

4
(5 − 5ν + 4ν2)

(−2E)5/2

j

+ 5

128
(21 − 105ν + 15ν2 + 5ν3) E3

]
+ O(c−8)

}
. (6.36)

These expressions have direct applications to binary pulsars (Damour and Schäfer
1988). Explicit analytic orbit solutions of the conservative dynamics through 3PN
order are given by Memmesheimer et al. (2005). The 4PN periastron advance was
first derived by Damour et al. (2015, 2016), with confirmation provided in a later
rederivation (Bernard et al. 2017b; also see Le Tiec and Blanchet 2017).

All conservative two-body Hamiltonians respect rotational symmetry, therefore the
Delaunay variable m does not enter these Hamiltonians. The 3PN-accurate Delaunay
Hamiltonian reads (Damour et al. 2000b)

Ĥ(n, j,m) = − 1

2n2

{
1 + 1

c2

[
6

jn
− 1

4
(15 − ν) 1

n2

]

+ 1

c4

[
5

2
(7 − 2ν)

1

j3n
+ 27

j2n2
− 3

2
(35 − 4ν)

1

jn3
+ 1

8
(145 − 15ν + ν2) 1

n4

]

+ 1

c6

[(
231

2
+

(
123

64
π2 − 125

)
ν + 21

4
ν2

)
1

j5n
+ 45

2
(7 − 2ν)

1

j4n2

+
(

− 303

4
+

(
1427

12
− 41

64
π2

)
ν − 10ν2

)
1

j3n3
− 45

2
(20 − 3ν)

1

j2n4

+ 3

2
(275 − 50ν + 4ν2)

1

jn5
− 1

64
(6363 − 805ν + 90ν2 − 5ν3)

1

n6

]
+ O(c−8)

}
.

(6.37)
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6.3.2 Results at 4PN order

The reduced 4PN Hamiltonian Ĥ4PN[r,p] can be decomposed in two parts in a way
slightly different from the splitting shown in Eq. (6.11). Namely,

Ĥ4PN[r,p] = Ĥ I
4PN(r,p; s)+ Ĥ II

4PN[r,p; s], (6.38)

where the first part is local in time while the second part is nonlocal in time; s ≡
sphys/(GM) is a reduced scalewith dimension of 1/velocity2,where sphys is a scalewith
dimension of a length. The Hamiltonian Ĥ I

4PN is a function of phase-space variables
(r,p) of the form

Ĥ I
4PN(r,p; s) = Ĥ loc

4PN(r,p)+ F(r,p) ln
r

s
, F(r,p) ≡ 2

5

G2M

c8
(
...
I i j )

2, (6.39)

where the Hamiltonian Ĥ loc
4PN is given in Eq. (6.12) above. The Hamiltonian Ĥ II

4PN is
a functional of phase-space trajectories (r(t),p(t)),

Ĥ II
4PN[r,p; s] = −1

5

G2

νc8
...
I i j (t)× Pf2sphys/c

∫ +∞

−∞
dτ

|τ |
...
I i j (t + τ). (6.40)

The nonlocal Hamiltonian Ĥ II
4PN[r,p; s] differs fromwhat is displayed in Eq. (6.13) as

the nonlocal part of the 4PN Hamiltonian. There the nonlocal piece of Ĥ4PN is defined
by taking as regularization scale in the partie finie operation entering Eq. (6.13) the
time 2r12/c instead of 2sphys/c appearing in (6.40). Thus the arbitrary scale sphys enters
both parts Ĥ I

4PN and Ĥ II
4PN of Ĥ4PN, though it cancels out in the total Hamiltonian.

Damour et al. (2015) has shown that modulo some nonlocal-in-time shift of the phase-
space coordinates, one can reduce a nonlocal dynamics defined by the Hamiltonian
Ĥ [r,p; s] ≡ ĤN(r,p) + Ĥ II

4PN[r,p; s] to an ordinary (i.e., local in time) one. We
will sketch here this reduction procedure, which employs the Delaunay form of the
Newtonian equations of motion.

It is enough to consider the planar case. In that case the action-angle variables
are (L, �;G, g), using the standard notation of Brouwer and Clemence (1961) (with
L ≡ n and G ≡ j). The variable L is conjugate to the “mean anomaly” �, while G is
conjugate to the argument of the periastron g = ω. The variables L and G are related
to the usual Keplerian variables a (semimajor axis) and e (eccentricity) via

L ≡ √
a, G ≡

√
a(1 − e2). (6.41)

By inverting (6.41) one can express a and e as functions of L and G:

a = L2, e =
√
1 −

(G
L

)2

. (6.42)
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We use here rescaled variables: in particular, a denotes the rescaled semimajor axis
a ≡ aphys/(GM). We also use the rescaled time variable t̂ ≡ tphys/(GM) appropriate
for the rescaled Newtonian Hamiltonian

ĤN(L) = 1

2
p2 − 1

r
= − 1

2L2 . (6.43)

The explicit expressions of the Cartesian coordinates (x, y) of a Newtonian motion in
terms of action-angle variables are given by

x(L, �;G, g) = cos g x0 − sin g y0, y(L, �;G, g) = sin g x0 + cos g y0, (6.44)

x0 = a(cos u − e), y0 = a
√
1 − e2 sin u, (6.45)

where the “eccentric anomaly” u is the function of � and e defined by solving Kepler’s
equation

u − e sin u = �. (6.46)

The solution of Kepler’s equation can be written in terms of Bessel functions:

u = �+
∞∑
n=1

2

n
Jn(ne) sin(n �). (6.47)

Note also the following Bessel–Fourier expansions of cos u and sin u [which directly
enter (x0, y0) and thereby (x, y)]

cos u = − e

2
+

∞∑
n=1

1

n
[Jn−1(ne)− Jn+1(ne)] cos n �, (6.48)

sin u =
∞∑
n=1

1

n
[Jn−1(ne)+ Jn+1(ne)] sin n �. (6.49)

For completeness, we also recall the expressions involving the “true anomaly” f (polar
angle from the periastron) and the radius vector r :

r = a(1 − e cos u) = a(1 − e2)

1 + e cos f
, (6.50)

x0
r

= cos f = cos u − e

1 − e cos u
,

y0
r

= sin f =
√
1 − e2 sin u

1 − e cos u
. (6.51)

The above expressions allows one to evaluate the expansions of x , y, and therefrom
the components of the quadrupole tensor Ii j , as power series in e and Fourier series
in �.

Let us then consider the expression

F(t, τ ) ≡ ...
I i j (t)

...
I i j (t + τ), (6.52)
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which enters the nonlocal-in-time piece (6.40) of the Hamiltonian. In order to evaluate
the order-reduced value of F(t, τ ) one needs to use the equations of motion, both
for computing the third time derivatives of Ii j , and for expressing the phase-space
variables at time t +τ in terms of the phase-space variables at time t . One employs the
zeroth-order equations of motion following from the Newtonian Hamiltonian (6.43),

d�

dt̂
= ∂ ĤN

∂L = 1

L3 ≡ Ω(L), dg

dt̂
= ∂ ĤN

∂G = 0, (6.53)

dL
dt̂

= −∂ ĤN

∂�
= 0,

dG
dt̂

= −∂ ĤN

∂g
= 0, (6.54)

whereΩ(L) ≡ L−3 is the (t̂-time) rescaledNewtonian (anomalistic) orbital frequency
Ω = GMΩphys (it satisfies the rescaled third Kepler’s law:Ω = a−3/2). The fact that
g, L, and G are constant and that � varies linearly with time, makes it easy to compute...
I i j (t + τ) in terms of the values of (�, g,L,G) at time t . It suffices to use (denoting
by a prime the values at time t ′ ≡ t + τ )

�′ ≡ �(t + τ) = �(t)+Ω(L)τ̂ , (6.55)

where τ̂ ≡ τ/(GM), together with g′ = g, L′ = L, and G′ = G. The order-reduced
value of F(t, τ ) is given by (using d/dt̂ = Ω d/d�)

F(�, τ̂ ) =
(
Ω(L)
GM

)6 d3 Ii j
d�3

(�)
d3 Ii j
d�3

(�+Ω(L)τ̂ ). (6.56)

Inserting the expansion of Ii j (�) in powers of e and in trigonometric functions of �
and g, yields F in the form of a series of monomials of the type

F(�, τ̂ ) =
∑

n1,n2,±n3

C±
n1n2n3 e

n1 cos(n2 �± n3Ω τ̂), (6.57)

where n1, n2, n3 are natural integers. (Because of rotational invariance, and of the
result g′ = g, there is no dependence of F on g.)

All the terms in the expansion (6.57) containing a nonzero value of n2 will, after
integrating over τ̂ with the measure dτ̂ /|τ̂ | as indicated in Eq. (6.40), generate a
corresponding contribution to Ĥ II

4PN which varies with � proportionally to cos(n2 �).
One employs now the standardDelaunay technique: any term of the type A(L) cos(n�)
in a first-order perturbation εH1(L, �) ≡ Ĥ II

4PN(L, �) of the leading-orderHamiltonian
H0(L) ≡ HN(L) can be eliminated by a canonical transformation with generating
function of the type εg(L, �) ≡ εB(L) sin(n�). Indeed,

δgH1 = {H0(L), g} = −∂H0(L)
∂L

∂g

∂�
= −nΩ(L) B(L) cos(n�), (6.58)

so that the choice B = A/(nΩ) eliminates the term A cos(n�) in H1. This shows that
all the periodically varying terms (with n2 
= 0) in the expansion (6.57) of F can be
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eliminated by a canonical transformation. Consequently one can simplify the nonlocal
part Ĥ II

4PN of the 4PN Hamiltonian by replacing it by its �-averaged value,

ˆ̄H II
4PN(L,G; s) ≡ 1

2π

∫ 2π

0
d� Ĥ II

4PN[r,p; s] = −1

5

G2

νc8
Pf2s/c

∫ +∞

−∞
dτ̂

|τ̂ | F̄ , (6.59)

where F̄ denotes the �-average of F(�, τ̂ ) [which is simply obtained by dropping all
the terms with n2 
= 0 in the expansion (6.57)]. This procedure yields an averaged

Hamiltonian ˆ̄H II
4PN which depends only on L, G (and s) and which is given as an

expansion in powers of e (because of the averaging this expansion contains only even
powers of e). Damour et al. (2015) derived the �-averaged Hamiltonian as a power
series of the form5

ˆ̄H II
4PN(L,G; s) = 4

5

ν

c8L10

∞∑
p=1

p6| Î pi j (e)|2 ln
(
2p

eγEs

cL3

)
, (6.60)

where Î pi j (e) are coefficients in the Bessel–Fourier expansion of the dimensionless

reduced quadrupole moment Îi j ≡ Ii j/[(GM)2μa2],

Îi j (�, e) =
+∞∑

p=−∞
Î pi j (e)e

ip�. (6.61)

Equation (6.60) is the basic expression for the transition of the tail-related part of the
4PN dynamics to the EOB approach (Damour et al. 2015).

For another approach to the occurrence and treatment of the (�, �′)-structure in
nonlocal-in-time Hamiltonians the reader is referred to Damour et al. (2016) (therein,
� is called λ).

6.4 The innermost stable circular orbit

The innermost stable circular orbit (ISCO) of a test-body orbiting in the Schwarzschild
metric is located at R = 6MG/c2, in Schwarzschild coordinates. Within a Hamilto-
nian formalism the calculation of the ISCO for systems made of bodies of comparable
masses is rather straightforward. It is relevant to start from discussion of dynamics of
a two-body system along circular orbits.

The centre-of-mass conservative Hamiltonian Ĥ(r,p) can be reduced to circular
orbits by setting pr = n · p = 0 and p2 = j2/r2, then Ĥ = Ĥ(r , j). Moreover,
∂ Ĥ(r , j)/∂r = 0 along circular orbits, what gives the link between r and j , r = r( j).
Finally the energy Êcirc along circular orbits can be expressed as a function of j only,
Êcirc( j) ≡ Ĥ(r( j), j). The link between the (reduced) centre-of-mass energy Êcirc
and the (reduced) angular momentum j is explicitly known up to the 4PN order. It
reads (Bini and Damour 2013; Damour et al. 2014)

5 Here e = 2.718 . . . should be distinguished from the eccentricity e.
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Êcirc( j; ν) = − 1

2 j2

{
1 +

(
9

4
+ 1

4
ν

)
1

j2
+

(
81

8
− 7

8
ν + 1

8
ν2

)
1

j4

+
[
3861

64
+

(
41π2

32
− 8833

192

)
ν − 5

32
ν2 + 5

64
ν3

]
1

j6

+
[
53703

128
+

(
6581π2

512
− 989911

1920
− 64

5

(
2γE + ln

16

j2

))
ν

+
(
8875

384
− 41π2

64

)
ν2 − 3

64
ν3 + 7

128
ν4

]
1

j8
+ O( j−10)

}
. (6.62)

An important observational quantity is the angular frequency of circular orbits, ωcirc.
It can be computed as

ωcirc = 1

GM

dÊcirc

d j
. (6.63)

It is convenient to introduce the coordinate-invariant dimensionless variable (which
can also serve as small PN expansion parameter)

x ≡
(
GMωcirc

c3

)2/3

. (6.64)

Making use of Eqs. (6.63) and (6.64) it is not difficult to translate the link of Eq. (6.62)
into the dependence of the energy Êcirc on the parameter x . The 4PN-accurate formula
reads (Bini and Damour 2013; Damour et al. 2014)

Êcirc(x; ν) = − x

2

{
1 −

(
3

4
+ ν

12

)
x +

(
− 27

8
+ 19ν

8
− ν2

24

)
x2

+
[

− 675

64
+

(
34445

576
− 205π2

96

)
ν − 155ν2

96
− 35ν3

5184

]
x3

+
[

− 3969

128
+

(
9037π2

1536
− 123671

5760
+ 448

15

(
2γE + ln(16x)

))
ν

+
(
3157π2

576
− 498449

3456

)
ν2 + 301ν3

1728
+ 77ν4

31104

]
x4 + O(x5)

}
.

(6.65)

In the test-mass limit ν → 0 (describing motion of a test particle on a circular orbit
in the Schwarzschild spacetime) the link Êcirc(x; ν) is exactly known,

Êcirc(x; 0) = 1 − 2x√
1 − 3x

− 1. (6.66)

The location xISCO = 1/6 of the ISCO in the test-mass limit corresponds to the
minimum of the function Êcirc(x; 0), i.e.
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dÊcirc(x; 0)
dx

∣∣∣∣
x=xISCO

= 0. (6.67)

Therefore the most straightforward way of locating the ISCO for ν > 0 relies on
looking for the minimum of the function Êcirc(x; ν), i.e., for a given value of ν,
the location of the ISCO is obtained by (usually numerically) solving the equation
dÊcirc(x; ν)/(dx) = 0 (Blanchet 2002). Equivalently the location of the ISCO can
be defined as a solution of the set of simultaneous equations ∂ Ĥ(r , j)/∂r = 0 and
∂2 Ĥ(r , j)/∂r2 = 0. Both approaches are equivalent only for the exact Hamiltonian
Ĥ(r , j), see however Sect. IVA2 inBuonanno et al. (2003, 2006) for subtleties related
to equivalence of both approacheswhen using post-Newtonian-accurateHamiltonians.
With the aid of the lattermethod, Schäfer andWex (1993a) computed the nPN-accurate
ISCO of the test mass in the Schwarzschild metric through 9PN order in three different
coordinate systems, obtaining three different results. Clearly, the application of the
first method only results in a nPN-accurate ISCO described by parameters which are
coordinate invariant.

Let us consider the 4PN-accurate expansion of the exact test-mass-limit formula
(6.66),

Êcirc(x; 0) = − x

2

(
1 − 3

4
x − 27

8
x2 − 675

64
x3 − 3969

128
x4 + O(x5)

)
. (6.68)

Let us compute the successive PN estimations of the exact ISCO frequency param-
eter xISCO = 1/6 ∼= 0.166667 in the test-mass limit, by solving the equations
dÊcirc

nPN(x; 0)/(dx) = 0 for n = 1, . . . , 4, where the function Êcirc
nPN(x; 0) is defined

as the O(xn+1)-accurate truncation of the right-hand-side of Eq. (6.68). They read:
0.666667 (1PN), 0.248807 (2PN), 0.195941 (3PN), 0.179467 (4PN). One sees that
the 4PN prediction for the ISCO frequency parameter is still ∼8% larger than the
exact result. This suggests that the straightforward Taylor approximants of the energy
function Êcirc(x; ν) do not converge fast enough to determine satisfactorily the fre-
quency parameter of the ISCO also in ν > 0 case, at least for sufficiently small values
of ν. The extrapolation of this statement for larger ν is supported by the values of
the ISCO locations in the equal-mass case (ν = 1/4), obtained by solving the equa-
tions dÊcirc

nPN(x; 1/4)/(dx) = 0 for n = 1, . . . , 4, where the function Êcirc
nPN(x; ν) is

now defined as the O(xn+1)-accurate truncation of the right-hand-side of Eq. (6.65).
For the approximations from 1PN up to 4PN the ISCO locations read (Damour et al.
2000a; Blanchet 2002; Jaranowski and Schäfer 2013): 0.648649 (1PN), 0.265832
(2PN), 0.254954 (3PN), and 0.236599 (4PN).6

To overcome the problem of the slow convergence of PN expansions several new
methods of determination of the ISCO for comparable-mass binaries were devised by

6 The 4PN value of the ISCO frequency parameter given here, 0.236599, is slightly different from the value
0.236597 published in Jaranowski and Schäfer (2013). The reason is that in Jaranowski and Schäfer (2013)
the only then known approximate value 153.8803 of the linear-in-ν coefficient in the 4PN-order term in
Eq. (6.65) was used, whereas the numerical exact value of this coefficient reads 153.8837968 . . .. From
the same reason the 4PN ISCO frequency parameter determined by the j-method described below in this
section, is equal 0.242967, whereas the value published in Jaranowski and Schäfer (2013) reads 0.247515.
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Damour et al. (2000a). They use different “resummation” techniques and are based
on the consideration of gauge-invariant functions. One of the methods, called the
“ j-method” by Damour et al. (2000a), employs the invariant function linking the
angular momentum and the angular frequency along circular orbits and uses Padé
approximants. The ISCO is defined in this method as the minimum, for the fixed value
of ν, of the function j2(x; ν), where j is the reduced angular momentum [introduced
in Eq. (6.26)]. The function j2(x; ν) is known in the test-mass limit,

j2(x; 0) = 1

x(1 − 3x)
, (6.69)

and its minimum coincides with the exact “location” xISCO = 1/6 of the test-mass
ISCO. The form of this function suggests to use Padé approximants instead of direct
Taylor expansions. It also suggests to require that all used approximants have a pole
for some xpole, which is related with the test-mass “light-ring” orbit occurring for
xlr = 1/3 in the sense that xpole(ν) → 1/3 when ν → 0. The 4PN-accurate function
j2(x; ν) has the symbolic structure (1/x)(1+ x +· · ·+ x4+ x4 ln x). In the j-method
the Taylor expansion at the 1PN level with symbolic form 1 + x is replaced by Padé
approximant of type (0,1), at the 2PN level 1+x+x2 is replaced by (1,1) approximant,
at the 3PN level 1 + x + x2 + x3 is replaced by (2,1) approximant, and finally at the
4PN level 1 + x + x2 + x3 + x4 is replaced by (3,1) Padé approximant [the explicit
form of the (0,1), (1,1), and (2,1) approximants can be found in Eqs. (4.16) of Damour
et al. 2000a]. At all PN levels the test-mass result is recovered exactly and Jaranowski
and Schäfer (2013) showed that the ISCO locations resulting from 3PN-accurate and
4PN-accurate calculations almost coincide for all values of ν, 0 ≤ ν ≤ 1

4 . The ISCO
locations in the equal-mass case ν = 1/4 for the approximations from 1PN up to
4PN are as follows (Jaranowski and Schäfer 2013): 0.162162 (1PN), 0.185351 (2PN),
0.244276 (3PN), 0.242967 (4PN).

6.5 Dissipative Hamiltonians

To discuss dissipative Hamiltonians it is convenient to use the toymodel from Sect. 3.2
with the Routhian R(q, p; ξ, ξ̇ ) and its corresponding Hamiltonian H(q, p; ξ, π) =
πξ̇ − R. The Hamilton equations of motion for the (q, p) variables read

ṗ = −∂H
∂q

= −∂R
∂q
, q̇ = ∂H

∂ p
= ∂R

∂ p
, (6.70)

and the Euler–Lagrange equation for the ξ variable is

∂R

∂ξ
− d

dt

∂R

∂ξ̇
= 0. (6.71)

Alternatively, the Hamilton equations of motion for the (ξ, π) variables can be used.
Solutions of the Euler–Lagrange equation are functions ξ = ξ(q, p). Under those
solutions, the Hamilton equations of motion for the (q, p) variables become
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ṗ = −∂R
∂q

∣∣∣∣
ξ=ξ(q,p)

, q̇ = ∂R

∂ p

∣∣∣∣
ξ=ξ(q,p)

. (6.72)

These autonomous equations in the (q, p) variables contain the full conservative and
dissipative content of the (q, p) dynamics. The time-symmetric part of R yields the
conservative equations of motion and the time-antisymmetric part of the dissipative
ones. The conservative equations of motion agree with the Fokker-type ones showing
the same boundary conditions for the (ξ, ξ̇ ) variables. When going from the (ξ, ξ̇ )
variables to the field variables hTT and ḣTT, those time-symmetric boundary conditions
mean as much incoming as outgoing radiation.

To describe astrophysical systems one should use the physical boundary conditions
of no incoming radiation and past stationarity. Clearly, radiative dissipation happens
now and the time-symmetric part of the whole dynamics makes the conservative part.
In linear theories the conservative part just results from the symmetric Green function
Gs, whereas the dissipative one from the antisymmetric Green function Ga, which
is a homogeneous solution of the wave equation. The both together combine to the
retarded Green function Gret = Gs + Ga, with Gs = (1/2)(Gret + Gadv) and Ga =
(1/2)(Gret − Gadv), where Gadv denotes the advanced Green function. In non-linear
theories time-symmetric effects can also result from homogeneous solutions, e.g., the
tail contributions.

For a binary system, the leading-order direct and tail radiation reaction enter the
Routhian in the form

Rrr(xa,pa, t) = −1

2
hTT rr
i j (t)

(
p1i p1 j
m1

+ p2i p2 j
m2

− Gm1m2

r12
ni12n

j
12

)
, (6.73)

where hTT rr
i j (t)decomposes into a direct radiation-reaction termand a tail one (Damour

et al. 2016),

hTT rr
i j (t) = − 4G

5c5

(
I (3)i j (t)+

4GM

c3

∫ ∞

0
dτ ln

(
cτ

2sphys

)
I (5)i j (t − τ)

)
. (6.74)

The last term on the right side results in a Routhian, which reproduces the correspond-
ing tail effects in Blanchet (1993) and Galley et al. (2016).

The conservative (time-symmetric) part in hTT rr
i j reads

hTT rr con
i j (t) = −8G2M

5c8
Pf2sphys/c

∫ ∞

−∞
dt ′

|t − t ′| I
(4)
i j (t

′), (6.75)

and the dissipative (time-antisymmetric) one equals

hTT rr dis
i j (t) = − 4G

5c5
I (3)i j (t)−

8G2M

5c8
Pf2sphys/c

∫ ∞

−∞
dt ′

t − t ′
I (4)i j (t

′), (6.76)
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where use has been made of the relations

Pfτ0

∫ ∞

−∞
dt ′ f (t ′)
|t − t ′| =

∫ ∞

0
dτ ln

(
τ

τ0

)
[ f (1)(t − τ)− f (1)(t + τ)], (6.77)

Pfτ0

∫ ∞

−∞
dt ′ f (t ′)
t − t ′

=
∫ ∞

0
dτ ln

(
τ

τ0

)
[ f (1)(t − τ)+ f (1)(t + τ)]. (6.78)

The leading-order 2.5PN dissipative binary orbital dynamics is described by the
non-autonomous Hamiltonian (Schäfer 1995),

H2.5PN(xa,pa, t) = 2G

5c5
...
I i j

(
x ′k
a (t)

) (
p1i p1 j
m1

+ p2i p2 j
m2

− Gm1m2

r12
ni12n

j
12

)
,

(6.79)
where Ii j is the Newtonian mass-quadrupole tensor,

Ii j
(
x ′k
a (t)

) ≡
∑
a

ma
(
x ′i
a (t)x

′ j
a (t)− 1

3
x′2
a (t)δi j

)
. (6.80)

Only after the Hamilton equations of motion have been obtained the primed posi-
tion and momentum variables coming from

...
I i j are allowed to be identified with the

unprimed position and momentum variables, also see Galley (2013). Generally, the
treatment of dissipation with Hamiltonians or Lagrangians necessarily needs doubling
of variables (Bateman 1931). In quantum mechanics, that treatment was introduced
by Schwinger (1961) and Keldysh (1965). In the EFT approach as well a doubling of
variables is needed if one wants to treat dissipative systems in a full-fledged manner
on the action level (see, e.g., Galley and Leibovich 2012; Galley et al. 2016). How-
ever, one should keep in mind that in quantum mechanics damping can also be treated
without doubling of variables by making use of the fact that the Feynman Green func-
tion GF, the analogue of the retarded Green function of classical physics, decomposes
into real and imaginary parts, GF = Gs + (i/2)G(1), where both Gs from above and
G(1), Hadamard’s elementary function, are symmetric Green functions, G(1) solving
homogeneous wave equation asGa does. The imaginary part in e.g. the Eq. (8.7.57) in
the book by Brown (1992) yields nothing but the dipole radiation loss formula and this
without any doubling of variables (also see Sect. 9-4 in Feynman and Hibbs 1965).

Applications of the 2.5PNHamiltonian can be found in, e.g., Kokkotas and Schäfer
(1995), Ruffert et al. (1996), Buonanno and Damour (1999), and Gopakumar and
Schäfer (2008), where in Gopakumar and Schäfer (2008) a transformation to the
Burke–Thorne gauge (coordinate conditions) is performed. More information on the
2.5PN dissipation can be found in Damour (1987a). The 3.5PN Hamiltonian for many
point-mass systems is known too, it is displayed in Appendix E (Jaranowski and
Schäfer 1997; Königsdörffer et al. 2003). Regarding gravitational spin interaction, see
the next section, also for this case radiation reaction Hamiltonians have been derived
through leading order spin–orbit and spin–spin couplings (Steinhoff and Wang 2010;
Wang et al. 2011). Recent related developments within the EFT formalism are found
in Maia et al. (2017a, b).
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Let us mention that the already cited article Galley et al. (2016) contains two
interesting results improving upon and correcting an earlier article by Foffa and Sturani
(2013b): on the one hand it confirms the conservative part of the tail action, particularly
the additional rational constant 41/30which corresponds to the famous 5/6 in the Lamb
shift (see, e.g., Brown 2000), and on the other side it correctly delivers the dissipative
part of the tail interaction. It is worth noting that in the both articles the involved
calculations were performed in harmonic coordinates.

7 Generalized ADM formalism for spinning objects

In this section we review the recent generalization of ADM formalism describing
dynamics of systems made of spinning point masses or, more precisely, pole–dipole
particles. We start from reviewing the generalization which is of fully reduced form
(i.e., without unresolved constraints, spin supplementary and coordinate conditions)
and which is valid to linear order in spin variables [our presentation of linear-in-spins
dynamics closely follows that of Steinhoff and Schäfer (2009a)].

7.1 Dynamics linear in spins

In this section Latin indices from the middle of the alphabet i , j , k, . . . are run-
ning through {1, 2, 3}. We utilize three different reference frames here, denoted by
different indices. Greek indices refer to the coordinate frame (xμ) and have the val-
ues μ = 0, 1, 2, 3. Lower case Latin indices from the beginning of the alphabet
refer to the local Lorentz frame with its associated tetrad fields

(
eμa (xν)

)
(eμa denotes

thus the μ coordinate-frame component of the tetrad vector of label a), while upper
case ones denote the so-called body-fixed Lorentz frame with its associated “tetrad”(
Λ a

A (z
μ)

)
, where (zμ) denotes coordinate-frame components of the body’s posi-

tion (so Λ a
A is the a local-Lorentz-frame component of the tetrad vector of label

A). The values of these Lorentz indices are marked by round and square brack-
ets as a = (0), (i) and A = [0], [i], respectively, e.g., A = [0], [1], [2], [3]. The
basics of the tetrad formalism in GR can be found in, e.g., Sect. 12.5 of Weinberg
(1972).

In GR, the coupling of a spinning object to a gravitational field, in terms of a
Lagrangian density, reads

LM =
∫

dτ

[(
pμ − 1

2
Sab ω

ab
μ

)
dzμ

dτ
+ 1

2
Sab
δθab

dτ

]
δ(4)(xν − zν(τ )). (7.1)

The linearmomentumvariable is pμ and the spin tensor is denoted by Sab. The object’s
affine time variable is τ and δ(4)(xν− zν(τ )) is the 4-dimensional Dirac delta function
(from now on we will abbreviate it to δ(4)). The angle variables are represented by
some Lorentz matrix satisfying ΛAaΛBbηAB = ηab or ΛAaΛBbη

ab = ηAB , where
ηAB = diag(−1, 1, 1, 1) = ηab, which must be respected upon infinitesimal Lorentz
transformations (see Hanson and Regge 1974), so δθab ≡ Λ a

C dΛ
Cb = −δθba . The
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Ricci rotation coefficientsω ab
μ are given byωμαβ = eaαebβω ab

μ = −Γ (4)βαμ+ecα,μecβ ,

withΓ (4)βαμ = 1
2 (gβα,μ+gβμ,α−gαμ,β) as the 4-dimensionalChristoffel symbols of the

first kind with gμν = eaμebνηab the 4-dimensional metric. As in Hanson and Regge
(1974), the matrix ΛCa can be subjected to right (or left) Lorentz transformations,
which correspond to transformations of the local Lorentz reference frame (or the
body-fixed frame, respectively). In the action (7.1) only a minimal coupling between
spin variables and gravitational field is employed; for more general (than minimal)
couplings, the reader is referred to Bailey and Israel (1975).

The matter constraints are given by, also in terms of a Lagrangian density,

LC =
∫

dτ

[
λa1 p

bSab + λ2[i]Λ[i]a pa − λ3

2
(p2 + m2c2)

]
δ(4), (7.2)

where m is the constant mass of the object, p2 ≡ pμ pμ, and λa1, λ2[i], λ3 are the
Lagrange multipliers. The constraint

pbSab = 0 (7.3)

is called the spin supplementary condition (SSC), it states that in the rest frame the
spin tensor contains the 3-dimensional spin S(i)( j) only (i.e., the mass-dipole part
S(0)(i) vanishes).7 The conjugate constraint Λ[i]a pa = 0 ensures that ΛCa is a pure
3-dimensional rotation matrix in the rest frame (no Lorentz boosts), see Hanson and
Regge (1974). Finally, the gravitational part is given by the usual Einstein–Hilbert
Lagrangian density

LG = c4

16πG

√−gR(4), (7.4)

where g is the determinant of the 4-dimensional metric and R(4) is the 4-dimensional
Ricci scalar. Using a second-order form of the gravitational action, i.e., not varying the
connection independently, ensures that the torsion tensor vanishes, see, e.g., Nelson
and Teitelboim (1978). The complete Lagrangian density is the sum

L = LG + LM + LC . (7.5)

We assume space-asymptotic flatness as a boundary condition of the spacetime. The
total action is given in a second-order form, where the Ricci rotation coefficients are
not independent field degrees of freedom and where no torsion of spacetime shows
up. It reads

W [eaμ, zμ, pμ,ΛCa, Sab, λ
a
1, λ2[i], λ3] =

∫
dt d3x L, (7.6)

and must be varied with respect to the tetrad field eaμ, the Lagrange multipliers λa1,
λ2[i], λ3, position zμ and linear momentum pμ of the object, as well as with respect
to angle-type variables ΛCa and spin tensor Sab associated with the object.

7 For more details about SSCs, see Sect. 3.3 of our review.
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Variation of the action δW = 0 leads to the equations of motion for the matter
variables (here d and D denote ordinary and covariant total derivatives, respectively)

DSab
Dτ

= 0,
DΛCa

Dτ
= 0, uμ ≡ dzμ

dτ
= λ3 pμ, (7.7)

Dpμ
Dτ

= −1

2
R(4)μρabu

ρSab, (7.8)

as well as to the usual Einstein equations with the stress–energy tensor (cf. Tulczyjew
1957 and Sect. 12.5 in Weinberg 19728)

Tμν = eμa√−g

δ(LM + LC )

δeaν

=
∫

dτ

[
λ3 p

μ pν
δ(4)√−g

+
(
u(μSν)α

δ(4)√−g

)
||α

]
, (7.9)

where R(4)μρab is the 4-dimensional Riemann tensor in mixed indices, ||α denotes the
4-dimensional covariant derivative. Here it was already used that preservation of the
constraints in time requires λa1 to be proportional to pa and λ2[i] to be zero, so that λa1
and λ2[i] drop out of the matter equations of motion and the stress–energy tensor. The
Lagrange multiplier λ3 = λ3(τ ) represents the reparametrization invariance of the
action (notice λ3 = √−u2/m). Further, an antisymmetric part of the stress–energy
tensor vanishes,

1

2

∫
dτ

(
Sμνuρ

δ(4)√−g

)

||ρ
= 1

2

∫
dτ

DSμν

Dτ

δ(4)√−g
= 0, (7.10)

and Tμν ||ν = 0 holds by virtue of the matter equations of motion. Obviously, the spin
length s as defined by 2s2 ≡ SabSab is conserved.

A fully reduced action is obtained by the elimination of all constraints and gauge
degrees of freedom. However, after that the action has still to be transformed into
canonical form by certain variable transformations. To perform this reduction we
employ 3+1 splitting of spacetime by spacelike hypersurfaces t = const. The timelike
unit covector orthogonal to these hypersurfaces reads nμ = (−N , 0, 0, 0) or nμ =
(1,−Ni )/N . The three matter constraints can then be solved in terms of pi , Si j , and
Λ[i](k) as

np ≡ nμ pμ = −
√
m2c2 + γ i j pi p j , (7.11)

nSi ≡ nμSμi = pkγ k j S ji

np
= γi j nS j , (7.12)

Λ[ j](0) = Λ[ j](i) p(i)
p(0)

, Λ[0]a = − pa

mc
. (7.13)

8 Especially Eq. (12.5.35) there.
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We take LC = 0 from now on. A split of the Ricci rotation coefficients results in

ωki j = −Γ j ik + eai,keaj , (7.14)

nμωkμi = Kki − gi j
N j
,k

N
+ eai

N
(ea0,k − eal,k N

l), (7.15)

ω0i j = NKi j − N j;i + eai,0eaj , (7.16)

nμω0μi = Ki j N
j − N;i − γi j

N j
,0

N
+ eai

N
(ea0,0 − eal,0N

l), (7.17)

where ;i denotes the 3-dimensional covariant derivative, Γ j ik the 3-dimensional
Christoffel symbols, and the extrinsic curvature Ki j is given by 2NKi j = −γi j,0 +
2N(i; j), where (··· ) denotes symmetrization.

It is convenient to employ here the time gauge (see Schwinger 1963a and also Dirac
1962; Kibble 1963; Nelson and Teitelboim 1978),

eμ(0) = nμ. (7.18)

Then lapse and shift turn into Lagrange multipliers in the matter action, like in the
ADM formalism for nonspinning matter points. The condition (7.18) leads to the
following relations:

e(0)i = 0 = e0(i), e(0)0 = N = 1/e0(0), (7.19)

Ni = −Nei(0), e(i)0 = N je(i)j , (7.20)

γi j = e(m)i e(m) j , γ i j = ei(m)e
(m) j , (7.21)

which effectively reduce the tetrad eaμ to a triad e(i) j .
The matter part of the Lagrangian density, after making use of the covariant SSC

(7.3), turns into

LM = LMK + LMC + LGK + (td), (7.22)

where (td) denotes an irrelevant total divergence. After fixing the yet arbitrary param-
eter τ by choosing τ = z0 = ct , where t is the time coordinate, the terms attributed
to the kinetic matter part are given by

LMK =
[
pi + Ki j nS

j + Akle( j)ke
( j)
l,i −

(
1

2
Skj + p(knS j)

np

)
Γ

k j
i

]
żiδ + nSi

2np
ṗiδ

+
[
S(i)( j) + nS(i) p( j) − nS( j) p(i)

np

]
Λ
(i)
[k]Λ̇[k]( j)

2
δ, (7.23)
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where δ ≡ δ(xi − zi (t)) and Ai j is defined by

γikγ jl A
kl = 1

2
Si j + nSi p j

2np
. (7.24)

The matter parts of the gravitational constraints result from

LMC = −NHmatter + NiHmatter
i , (7.25)

where the densities Hmatter and Hmatter
i are computed from Eqs. (2.11)–(2.12) and

(7.9). After employing the covariant SSC one gets (Steinhoff et al. 2008c)

Hmatter = √
γ Tμνn

μnν = −npδ − Ki j pi nS j

np
δ − (nSkδ);k, (7.26)

Hmatter
i = −√

γ Tiνn
ν = (pi + Ki j nS

j )δ +
(
1

2
γmk Sikδ + δ(ki γ l)m

pknSl
np

δ

)
;m
.

(7.27)

Further, some terms attributed to the kinetic part of the gravitational field appear as

LGK = Ai j e(k)i ė
(k)
j δ. (7.28)

Now we proceed to Newton–Wigner (NW) variables ẑi , Pi , Ŝ(i)( j), and Λ̂[i]( j),
which turn the kinetic matter part LMK into canonical form. The variable transforma-
tions read

zi = ẑi − nSi

mc − np
, nSi = − pkγ k j Ŝ j i

mc
, (7.29)

Si j = Ŝi j − pinS j

mc − np
+ p jnSi

mc − np
, (7.30)

Λ[i]( j) = Λ̂[i](k)
(
δk j + p(k) p( j)

mc(mc − np)

)
, (7.31)

Pi = pi + Ki j nS
j + Âkle( j)ke

( j)
l,i −

(
1

2
Skj + p(knS j)

np

)
Γ

k j
i , (7.32)

where Âi j is given by

γikγ jl Â
kl = 1

2
Ŝi j + mcp(i nS j)

np(mc − np)
. (7.33)

The NW variables have the important properties Ŝ(i)( j) Ŝ(i)( j) = 2s2 = const and

Λ̂
(i)
[k]Λ̂[k]( j) = δi j , which implies that δθ̂ (i)( j) ≡ Λ̂

(i)
[k]dΛ̂[k]( j) is antisymmetric. The

redefinitions of position, spin tensor, and angle-type variables are actually quite natural
generalizations of their Minkowski space versions to curved spacetime, cf. Hanson
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and Regge (1974) and Fleming (1965). However, there is no difference between linear
momentum pi and canonical momentum Pi in the Minkowski case. In these NW
variables, one has

LGK + LMK = L̂GK + L̂MK + (td), (7.34)

with [from now on δ = δ(xi − ẑi (t))]

L̂MK = Pi ˙̂ziδ + 1

2
Ŝ(i)( j)

˙̂
θ(i)( j)δ, (7.35)

L̂GK = Âi j e(k)i e
(k)
j,0δ. (7.36)

Notice that all ṗi terms in the action have been canceled by the redefinition of the
position and also all Ki j termswere eliminated fromLMC andLMK by the redefinition

of the linearmomentum. If the terms explicitly dependingon the triad e(i)j are neglected,
the known source terms of Hamilton andmomentum constraints in canonical variables
are obtained [cf. Eqs. (4.23) and (4.25) in Steinhoff et al. (2008c)].

The final step goes with the ADM action functional of the gravitational field
(Arnowitt et al. 1962; De Witt 1967; Regge and Teitelboim 1974), but in tetrad form
as derived by Deser and Isham (1976). The canonical momentum conjugate to e(k) j
is given by

π̄ (k) j = 8πG

c3
∂L

∂e(k) j,0
= e(k)i π

i j + e(k)i
8πG

c3
Âi jδ, (7.37)

where the momentum π i j is given by

π i j = √
γ (γ i jγ kl − γ ikγ jl)Kkl . (7.38)

Legendre transformation leads to

L̂GK + LG = c3

8πG
π̄ (k) j e(k) j,0 − c4

16πG
Ei,i + LGC + (td). (7.39)

In asymptotically flat spacetimes the quantity Ei is given by [cf. Eq. (2.6)]

Ei = γi j, j − γ j j,i . (7.40)

The total energy then reads

E = c4

16πG

∮
d2si Ei . (7.41)

The constraint part of the gravitational Lagrangian density takes the form

LGC = −NHfield + NiHfield
i , (7.42)
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with

Hfield = − c4

16πG
√
γ

[
γ R + 1

2

(
γi jπ

i j
)2 − γi jγklπ ikπ jl

]
, (7.43)

Hfield
i = c3

8πG
γi jπ

jk
;k, (7.44)

where R is the 3-dimensional Ricci scalar. Due to the symmetry of π i j , not all com-
ponents of π̄ (k) j are independent variables (i.e., the Legendre map is not invertible),
leading to the additional constraint ([...] denotes anti-symmetrization)

π̄ [i j] = 8πG

c3
Â[i j]δ. (7.45)

This constraint will be eliminated by going to the spatial symmetric gauge (for the
frame e(i) j )

e(i) j = ei j = e ji , e(i) j = ei j = e ji . (7.46)

Then the triad is fixed as the matrix square-root of the 3-dimensional metric, ei j e jk =
γik , or, in matrix notation,

(ei j ) =
√
(γi j ). (7.47)

Therefore, we can define a quantity Bkl
i j as

ek[i e j]k,μ = Bkl
i j γkl,μ, (7.48)

or, in explicit form,

2Bkl
i j = emi

∂emj

∂gkl
− emj

∂emi

∂gkl
. (7.49)

This expression may be evaluated perturbatively, cf. Steinhoff et al. (2008c). One also
has Bkl

i j δkl = 0. Furthermore,

e(k)i e
(k)
j,μ = Bkl

i j γkl,μ + 1

2
γi j,μ, (7.50)

which yields

π̄ (k) j e(k) j,0 = 1

2
π i j
canγi j,0, (7.51)

with the new canonical field momentum

π i j
can = π i j + 8πG

c3
Â(i j)δ + 16πG

c3
Bi j
kl Â

[kl]δ. (7.52)

The gravitational constraints arising from the variations δN and δNi read,

Hfield + Hmatter = 0, Hfield
i + Hmatter

i = 0. (7.53)
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They are eliminated by imposing the gauge conditions

3γi j, j − γ j j,i = 0, π i i
can = 0, (7.54)

which allow for the decompositions

γi j = Ψ 4δi j + hTTi j , π i j
can = π̃ i j

can + π i jTT
can , (7.55)

where hTTi j and π i jTT
can are transverse and traceless quantities, and longitudinal part π̃ i j

can

is related to a vector potential V i
can by

π̃ i j
can = V i

can, j + V j
can,i − 2

3
δi j V

k
can,k . (7.56)

Let us note that in the construction of V i
can the operatorΔ

−1 is employed [see the text
below Eq. (2.15)].

The gravitational constraints can now be solved for Ψ and π̃ i j
can, leaving hTTi j and

π
i jTT
can as the final degrees of freedom of the gravitational field. Notice that our gauge

condition π i i
can = 0 deviates from the original ADM one π i i = 0 by spin corrections

(which enter at 5PN order). The final fully reduced action reads,

W = c4

16πG

∫
d4x π i jTT

can hTTi j,0 +
∫

dt

[
Pi ˙̂zi + 1

2
Ŝ(i)( j)

˙̂
θ(i)( j) − E

]
. (7.57)

The dynamics is completely described by the ADM energy E , which is the total
Hamiltonian (E = H ) once it is expressed in terms of the canonical variables. This
Hamiltonian can be written as the volume integral

H [ẑi , Pi , Ŝ(i)( j), hTTi j , π i jTT
can ] = − c4

2πG

∫
d3x ΔΨ

[
ẑi , Pi , Ŝ(i)( j), h

TT
i j , π

i jTT
can

]
.

(7.58)
The equal-time Poisson bracket relations take the standard form,

{ẑi , Pj } = δi j , {Ŝ(i), Ŝ( j)} = εi jk Ŝ(k), (7.59)

{hTTi j (x, t), πklTT
can (x

′, t)} = 16πG

c3
δTTkli j δ(x − x′), (7.60)

zero otherwise, where Ŝ(i) = 1
2ε(i)( j)(k) Ŝ( j)(k), ε(i)( j)(k) = εi jk = (i − j)( j − k)(k −

i)/2, and δTTi jmn is the TT-projection operator, see, e.g., Steinhoff et al. (2008c). Though
the commutation relations (7.59) and (7.60) are sufficient for the variables onwhich the
Hamiltonian (7.58) depends on, for completeness we add the non-trivial ones needed
when aHamiltonian, besides Ŝ(i)( j), also depends on the 3-dimensional rotationmatrix
Λ̂[i]( j) (“angle” variables). They read

{Λ̂[i]( j), Ŝ(k)(l)} = Λ̂[i](k)δl j − Λ̂[i](l)δk j . (7.61)
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The angular velocity tensor Ω̂(i)( j), the Legendre dual to Ŝ(i)( j), i.e. Ω̂(i)( j) =
2∂H/∂ Ŝ(i)( j), is defined by Ω̂(i)( j) = δθ̂ (i)( j)/dt = Λ̂ (i)

[k]
˙̂
Λ[k]( j), and the time deriva-

tive of the spin tensor thus reads

˙̂S(i)( j) = 2Ŝ(k)[(i)Ω( j)](k) + Λ̂[k]( j) ∂H

∂Λ̂[k](i) − Λ̂[k](i) ∂H

∂Λ̂[k]( j) . (7.62)

The Hamiltonian H of Eq. (7.58) generates the time evolution in the reduced mat-
ter+field phase space. Generalization and application to many-body systems is quite
straightforward, see Steinhoff et al. (2008c). The total linear (P tot

i ) and angular (J toti j )
momenta take the forms (particle labels are denoted by a),

P tot
i =

∑
a

Pai − c3

16πG

∫
d3x πklTT

can hTTkl,i , (7.63)

J toti j =
∑
a

(
ẑia Paj − ẑ ja Pai + Ŝa(i)( j)

)
− c3

8πG

∫
d3x

(
π ikTT
can hTTk j − π jkTT

can hTTki

)

− c3

16πG

∫
d3x

(
xiπklTT

can hTTkl, j − x jπklTT
can hTTkl,i

)
, (7.64)

and are obtained from the reduced action in the standard Noether manner.

7.2 Spin-squared dynamics

For the construction of the spin-squared terms we resort to the well-known stress–
energy tensor for pole–dipole particles but augmented for quadrupolar terms. The
stress–energy tensor density then reads (Steinhoff et al. 2008b)

√−g Tμν =
∫

dτ

[
tμνδ(4) + (tμναδ(4))||α + (tμναβδ(4))||αβ

]
. (7.65)

The quantities tμν... = tνμ... only depend on the four-velocity uμ ≡ dzμ/dτ , where
zμ(τ) is the parametrization of the worldline in terms of its proper time τ , and
on the spin and quadrupole tensors. Notice that, in general, the quadrupole expres-
sions include not only the mass-quadrupole moment, but also the current-quadrupole
moment and the stress-quadrupole moment (see, e.g., Steinhoff and Puetzfeld 2010).
For the pole–dipole particle tμναβ is zero. In contrast to the stress–energy tensor of
pole–dipole particles, the Riemann tensor shows up at the quadrupolar level. However,
the source terms of the constraints,

γ
1
2 Tμνnμnν = Hmatter, −γ 1

2 T μ
i nμ = Hmatter

i , (7.66)

at the approximation considered here, do not include the Riemann tensor.
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Regarding rotating black holes, the mass-quadrupole tensor Qi j
1 of object 1 is given

by Steinhoff et al. (2008b) (also see, e.g., Thorne 1980; Damour 2001)

m1c
2Qi j

1 ≡ γ ikγ jlγmn Ŝ1km Ŝ1nl + 2

3
S21γ

i j , (7.67)

where S1 = (S1(i)) is the three-dimensional Euclidean spin vector related to a spin
tensor Ŝ1i j with the help of a dreibein ei( j) by Ŝ1i j = ei(k)e j(l)εklm S1(m). The quantity
S21 is conserved in time,

2S21 = γ ikγ jl Ŝ1i j Ŝ1kl = const. (7.68)

The source terms of the constraints in the static case (independent from the linear
momenta Pi of the objects, what means taking Pi = 0, but pi 
= 0) read

Hmatter
S21 , static

= c1
(
c2Qi j

1 δ1

)
;i j + 1

8m1
γmnγ

pjγ qlγmi
,pγ

nk
,q Ŝ1i j Ŝ1klδ1

+ 1

4m1

(
γ i jγmnγ kl,m Ŝ1ln Ŝ1 jkδ1

)
,i
, (7.69)

Hmatter
i static = 1

2

(
γmk Ŝikδ

)
,m

+ O(Ŝ3). (7.70)

The c1 is some constant that must be fixed by additional considerations, like matching
to the Kerr metric. The noncovariant terms are due to the transition from three-
dimensional covariant linear momentum pi to canonical linear momentum Pi given
by [cf. Eq. (4.24) in Steinhoff et al. 2008c or Eq. (7.32) above]

pi = Pi − 1

2
γi jγ

lmγ
jk
,m Ŝkl + O(P2)+ O(Ŝ2). (7.71)

Thus the source terms are indeed covariant when the point-mass and linear-in-spin
terms depending on the (noncovariant) canonical linear momentum are added, cf.
Eqs. (7.26) and (7.27).

The simple structure of the Qi j
1 term in Eq. (7.69) is just the structure of minimal

coupling of theMinkowski spacemass-quadrupole term to gravity. As shown by Stein-
hoff et al. (2008b), the most general ansatz for the spin-squared coupling including the
three-dimensional Ricci tensor reduces to the shown term. Here we may argue that the
correct limit to flat space on the one side and the occurrence of a multiplicative second
delta-function through the Ricci tensor from the spinning “point” particle on the other
side makes the ansatz unique. A deeper analysis of the structure of nonlinear-in-spin
couplings can be found in, e.g., Levi and Steinhoff (2015).

7.3 Approximate Hamiltonians for spinning binaries

All the approximate Hamiltonians presented in this subsection have been derived or
rederived in recent papers by one of the authors and his collaborators employing
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canonical formalisms presented in Sects. 7.1 and 7.2 (Damour et al. 2008c; Stein-
hoff et al. 2008c, b). They are two-point-particle Hamiltonians, which can be used
to approximately model binaries made of spinning black holes. For the rest of this
section, canonical variables (which are arguments of displayed Hamiltonians) are not
hatted any further. We use a, b = 1, 2 as the bodies labels, and for a 
= b we define
rabnab ≡ xa − xb with n2ab = 1.

The Hamiltonian of leading-order (LO) spin–orbit coupling reads (let us note that
in the following pa will denote the canonical linear momenta)

HLO
SO =

∑
a

∑
b 
=a

G

c2r2ab
(Sa × nab) ·

(
3mb

2ma
pa − 2pb

)
, (7.72)

and the one of leading-order spin(1)–spin(2) coupling is given by

HLO
S1S2 =

∑
a

∑
b 
=a

G

2c2r3ab
[3(Sa · nab)(Sb · nab)− (Sa · Sb)] . (7.73)

The more complicated Hamiltonian is the one with spin-squared terms because it
relates to the rotational deformation of spinning black holes. To leading order, say for
spin(1), it reads

HLO
S21

= Gm2

2c2m1r312
[3(S1 · n12)(S1 · n12)− (S1 · S1)] . (7.74)

The LO spin–orbit and spin(a)–spin(b) centre-of-mass vectors take the form

GLO
SO =

∑
a

1

2c2ma
(pa × Sa), GLO

S1S2 = 0, GLO
S21

= 0. (7.75)

The LO spin Hamiltonians have been applied to studies of binary pulsar and solar
system dynamics, including satellites on orbits around the Earth (see, e.g., Barker and
O’Connell 1979; Schäfer 2004). Another application to the coalescence of spinning
binary black holes via the effective-one-body approach is given inDamour (2001). The
LO spin dynamics was analysed for black holes and other extended objects in external
fields by D’Eath (1975a) and Thorne and Hartle (1985), and for binary black holes in
the slow-motion limit by D’Eath (1975b). In Barausse et al. (2009, 2012) the spinning
test-particle dynamics in the Kerr metric has been explored at LO within Hamiltonian
formalism based on Dirac brackets. In the article Kidder (1995) the LO spin–orbit and
spin1–spin2 dynamics for compact binaries is treated in full detail, even including their
influence on the gravitational waves and the related gravitational damping, particularly
the quasi-circular inspiraling and the recoil of the linear momentum from the LO spin
coupling was obtained.
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The Hamiltonian of the next-to-leading-order (NLO) spin–orbit coupling reads

HNLO
SO = −G

((p1 × S1) · n12)
c4r212

(
5m2p21
8m3

1

+ 3((p1 · p2)+ (n12 · p1)(n12 · p2))
4m2

1

− 3(p22 − 2(n12 · p2)2)
4m1m2

)
+ G

((p1 × S1) · p2)
c4r212

(
2(n12 · p2)
m1m2

− 3(n12 · p1)
4m2

1

)

+ G
((p2 × S1) · n12)

c4r212

(p1 · p2)+ 3(n12 · p1)(n12 · p2)
m1m2

− G2 ((p1 × S1) · n12)
c4r312

(
11m2

2
+ 5m2

2

m1

)

+ G2 ((p2 × S1) · n12)
c4r312

(
6m1 + 15m2

2

)
+ (1 ↔ 2). (7.76)

This Hamiltonian was derived by Damour et al. (2008c). The equivalent derivation of
the NLO spin–orbit effects in two-body equations of motion was done in harmonic
coordinates by Blanchet et al. (2006, 2007, 2010).

The NLO spin(1)–spin(2) Hamiltonian is given by

HNLO
S1S2 = G

2m1m2c4r312

[
6((p2 × S1) · n12)((p1 × S2) · n12)

+ 3

2
((p1 × S1) · n12)((p2 × S2) · n12)

− 15(S1 · n12)(S2 · n12)(n12 · p1)(n12 · p2)
− 3(S1 · n12)(S2 · n12)(p1 · p2)+ 3(S1 · p2)(S2 · n12)(n12 · p1)
+ 3(S2 · p1)(S1 · n12)(n12 · p2)+ 3(S1 · p1)(S2 · n12)(n12 · p2)
+ 3(S2 · p2)(S1 · n12)(n12 · p1)− 3(S1 · S2)(n12 · p1)(n12 · p2)
+ (S1 · p1)(S2 · p2)− 1

2
(S1 · p2)(S2 · p1)+ 1

2
(S1 · S2)(p1 · p2)

]

+ 3

2m2
1r

3
12

[
− ((p1 × S1) · n12)((p1 × S2) · n12)

+ (S1 · S2)(n12 · p1)2 − (S1 · n12)(S2 · p1)(n12 · p1)
]

+ 3

2m2
2r

3
12

[
− ((p2 × S2) · n12)((p2 × S1) · n12)

+ (S1 · S2)(n12 · p2)2 − (S2 · n12)(S1 · p2)(n12 · p2)
]

+ 6(m1 + m2)G2

c4r412
[(S1 · S2)− 2(S1 · n12)(S2 · n12)]. (7.77)

The calculation of the LO and NLO S21 -Hamiltonians needs employing the source
terms (7.69)–(7.70). In the case of polar–dipolar–quadrupolar particles which are to
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model spinning black holes, Qi j
1 is the quadrupole tensor of the black hole 1 resulting

from its rotational deformation and the value of the constant c1 is fixed by matching
to the test-body Hamiltonian in a Kerr background: c1 = −1/2. Additionally one
has to use the Poincaré algebra for unique fixation of all coefficients in momentum-
dependent part of the Hamiltonian. The NLO S21 -Hamiltonian was presented for the
first time by Steinhoff et al. (2008b).9 It reads

HNLO
S21

= G

c4r312

{
m2

m3
1

[
1

4
(p1 · S1)2 + 3

8
(p1 · n12)2 S21 − 3

8
p21 (S1 · n12)2

− 3

4
(p1 · n12) (S1 · n12) (p1 · S1)

]
+ 3

4m1m2

[
3p22 (S1 · n12)2

− p22S
2
1

]
+ 1

m2
1

[
3

4
(p1 · p2)S21 − 9

4
(p1 · p2) (S1 · n12)2

− 3

2
(p1 · n12) (p2 · S1) (S1 · n12)+ 3 (p2 · n12) (p1 · S1) (S1 · n12)

+ 3

4
(p1 · n12) (p2 · n12)S21 − 15

4
(p1 · n12) (p2 · n12) (S1 · n12)2

]}

− G2m2

2c4r412

[
9(S1 · n12)2 − 5S21 + 14m2

m1
(S1 · n12)2 − 6m2

m1
S21

]
. (7.78)

The spin precession equations corresponding to the Hamiltonians HNLO
S1S2

and HNLO
S21

have been calculated also by Porto and Rothstein (2008a, b),10 respectively, where the
first paper [Porto and Rothstein 2008b has benefited from Steinhoff et al. (2008a)]
when forgotten terms from spin-induced velocity corrections in the LO spin–orbit
coupling could be identified (so-called subleading corrections), see Eq. (57) in Porto
and Rothstein (2008b).

The NLO spin–orbit and spin(a)–spin(b) centre-of-mass vectors take the form

GNLO
SO = −

∑
a

p2a
8c4m3

a
(pa × Sa)

+
∑
a

∑
b 
=a

Gmb

4c4marab

{
[(pa × Sa) · nab]5xa + xb

rab
− 5(pa × Sa)

}

+
∑
a

∑
b 
=a

G

c4rab

{
3

2
(pb × Sa)− 1

2
(nab × Sa)(pb · nab)

− [(pa × Sa) · nab]xa + xb
rab

}
, (7.79)

9 Slightly earlier a fully dynamical calculation of that dynamics was made by Porto and Rothstein (2008a).
This result turned out to be incomplete due to incorrect treatement of a specific Feynman diagram.
10 The final spin precession equation of the paper [Porto and Rothstein 2008a deviates from the corre-
sponding one in Steinhoff et al. (2008c)]. A detailed inspection has shown that the last term in Eq. (60) of
Porto and Rothstein (2008a) has wrong sign (Steinhoff and Schäfer 2009b). Using the correct sign, after
redefinition of the spin variable, agreement with the Hamiltonian of Steinhoff et al. (2008c) is achieved.
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GNLO
S1S2 = G

2c4
∑
a

∑
b 
=a

{
[3(Sa · nab)(Sb · nab)− (Sa · Sb)] xa

r3ab
+ (Sb · nab) Sa

r2ab

}
,

(7.80)

GNLO
S21

= 2Gm2

c4m1

{
3 (S1 · n12)2

8r312
(x1 + x2)+ S21

8r312
(3x1 − 5x2)− (S1 · n12)S1

r212

}
.

(7.81)

We can sum up all centre-of-mass vectors displayed in this subsection in the fol-
lowing equation:

G = GN +G1PN +G2PN +G3PN +G4PN +GLO
SO +GNLO

SO +GNLO
S1S2 +GNLO

S21
+GNLO

S22
,

(7.82)
whereGN up toG4PN represent the pure orbital contributions, which do not depend on
spin variables [the explicit formulae for them one can find in Jaranowski and Schäfer
(2015)]. The last term in Eq. (7.82) can be obtained from the second last one by means
of the exchange (1 ↔ 2) of the bodies’ labels.

The currently known conservative two-point-particle Hamiltonians, modeling bina-
ries made of spinning black holes, can be summarized as follows:

H = HN + H1PN + H2PN + H3PN + H4PN

+ HLO
SO + HLO

S1S2 + HLO
S21

+ HLO
S22

+ HNLO
SO + HNLO

S1S2 + HNLO
S21

+ HNLO
S22

+ HNNLO
SO + HNNLO

S1S2 + HNNLO
S21

+ HNNLO
S22

+ Hp1S32
+ Hp2S31

+ Hp1S31
+ Hp2S32

+ Hp1S1S22
+ Hp2S2S21

+ Hp1S2S21
+ Hp2S1S22

+ HS21 S
2
2

+ HS1S32
+ HS2S31

+ HS41
+ HS42

, (7.83)

where the first line comprises pure orbital, i.e., spin-independent, Hamiltonians. The
Hamiltonians from the second and the third line are explicitly given above. The NNLO
spin–orbit HNNLO

SO and spin1–spin2 HNNLO
S1S2

Hamiltonians were obtained by Hartung
et al. (2013), their explicit forms can be found in Appendix D. Levi and Steinhoff
(2016a) derived, applying theEFTmethod to extended bodies, theNNLOspin-squared
Hamiltonians HNNLO

S21
and HNNLO

S22
; we do not display them explicitly, as their deriva-

tion is not yet fully confirmed. All the Hamiltonians with labels containing linear
momenta p1 or p2 and those quartic in the spins were derived by Hergt and Schäfer
(2008a, b) with the aid of approximate ADMTT coordinates of the Kerr metric and
application of the Poincaré algebra.11 Their generalizations to general extended objects
were achieved by Levi and Steinhoff (2015), where also for the first time the Hamil-
tonians HS41

and HS42
were obtained (correcting Hergt and Schäfer 2008a). All the

11 The HS41
and HS42

terms were incorrectly claimed to be zero by Hergt and Schäfer (2008a).
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Hamiltonians cubic and quartic in the spins and displayed in Eq. (7.83) are explicitly
given in Appendix D. Notice that not all Hamiltonians from Eq. (7.83) are necessarily
given in the ADMgauge, because any use of the equations ofmotion in their derivation
has changed gauge. E.g., for spinless particles the highest conservative Hamiltonian
in ADM gauge is H2PN.

For completeness we also give the spin-squared Hamiltonians for neutron stars
through next-to-leading order (Porto and Rothstein 2008a, 2010a; Hergt et al. 2010).
They depend on the quantityCQ , which parametrizes quadrupolar deformation effects
induced by spins. The LO Hamiltonian reads (cf., e.g., Barker and O’Connell 1979)

HLO
S21 (NS)

= Gm1m2

2r312
CQ1

(
3
(S1 · n12)2

m2
1

− S21
m2

1

)
. (7.84)

The NLO Hamiltonian equals

HNLO
S21 (NS)

= G

r312

[
m2

m3
1

((
−21

8
+ 9

4
CQ1

)
p21(S1 · n12)2 +

(
3

2
CQ1 − 5

4

)
(S1 · p1)2

+
(
15

4
− 9

2
CQ1

)
(p1 · n12)(S1 · n12)(S1 · p1)

+
(

−9

8
+ 3

2
CQ1

)
(p1 · n12)2S21 +

(
5

4
− 5

4
CQ1

)
p21S

2
1

)

+ 1

m2
1

(
− 15

4
CQ1(p1 · n12)(p2 · n12)(S1 · n12)2

+
(
3 − 21

4
CQ1

)
(p1 · p2)(S1 · n12)2

+
(

−3

2
+ 9

2
CQ1

)
(p2 · n12)(S1 · n12)(S1 · p1)

+
(

−3 + 3

2
CQ1

)
(p1 · n12)(S1 · n12)(S1 · p2)

+
(
3

2
− 3

2
CQ1

)
(S1 · p1)(S1 · p2)

+
(
3

2
− 3

4
CQ1

)
(p1 · n12)(p2 · n12)S21

+
(

−3

2
+ 9

4
CQ1

)
(p1 · p2)S21

)
+ CQ1

m1m2

(9
4
p22(S1 · n12)2 − 3

4
p22S

2
1

)]

+ G2m2

r412

[(
2 + 1

2
CQ1 + m2

m1

(
1 + 2CQ1

))
S21

+
(

−3 − 3

2
CQ1 − m2

m1

(
1 + 6CQ1

))
(S1 · n12)2

]
. (7.85)

123



 7 Page 76 of 117 G. Schäfer, P. Jaranowski

This Hamiltonian for CQ1 = 1 agrees with that given in Eq. (7.78) describing black-
hole binaries. It has been derived fully correctly for the first time byPorto andRothstein
(2010a) using the EFT method. Shortly afterwards, an independent calculation by
Hergt et al. (2010), in part based on the Eqs. (7.69) and (7.70) including (7.67), has
confirmed the result.

The radiation-reaction (or dissipative) Hamiltonians for leading-order spin–orbit
and spin1–spin2 couplings are derived by Steinhoff and Wang (2010) and Wang et al.
(2011). All the known dissipative Hamiltonians can thus be summarized as

Hdiss = H2.5PN + H3.5PN + HLO diss
SO + HLO diss

S1S2 , (7.86)

where H2.5PN and H2.5PN are spin-independent (purely orbital) dissipative Hamiltoni-
ans. The leading-order Hamiltonian H2.5PN is given in Eq. (6.79) for two-point-mass
and in Appendix E for many-point-mass systems, and the next-to-leading-order
Hamiltonian H3.5PN is explicitly given in the Appendix E (also for many-point-mass
systems). The spin-dependent dissipative Hamiltonians HLO diss

SO and HLO diss
S1S2

can be

read off from the Hamiltonian H spin
3.5PN given in the Appendix E (we keep here the nota-

tion of the Hamiltonian used by Wang et al. 2011, which indicates spin corrections to
the spinless 3.5PN dynamics).
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A Hamiltonian dynamics of ideal fluids in Newtonian gravity

In the Newtonian theory the equations for gravitating ideal fluids are usually given in
the following form:

(i) The equation for the conservation of mass,12

∂t�∗ + div(�∗v) = 0, (A.1)

where �∗ is the mass density and v = (vi ) is the velocity field of the fluid.
(ii) The equations of motion,

�∗∂tv + �∗
2

grad v2 − �∗ v × curl v = −grad p + �∗ grad U , (A.2)

12 In a Cartesian spatial coordinate system (xi ) and for any vector field w and any scalar field φ we define:
divw ≡ ∂iwi , (curlw)i ≡ εi jk∂ jwk , (grad φ)i ≡ ∂iφ.
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where p is the pressure in the fluid and U the gravitational potential.
(iii) The equation of state,

ε = ε(�∗, s) with dε = hd�∗ + �∗T ds, or dp = �∗dh − �∗T ds, (A.3)

with the temperature T , the internal energy density ε and the specific enthalpy
h.

(iv) The conservation law for the specific entropy s along the flow lines,

∂t s + v · grad s = 0. (A.4)

(v) The Newtonian gravitational field equation,

ΔU = −4πG�∗, (A.5)

where Δ is the Laplacian. The gravitational potential hereof reads

U (x, t) = G
∫

d3x′ �∗(x′, t)
|x − x′| . (A.6)

Within the Hamilton framework the equations of motion are obtained from the
relation ∂t A(x, t) = {A(x, t), H}, valid for any function A(x, t) living in phase space,
i.e. built out of the fundamental variables �∗, πi , and s, with the Hamiltonian given
by H = H [�∗, πi , s], where πi is the linear momentum density of the fluid (Holm
1985). The brackets {·, ·} are called Lie–Poisson brackets. They may be defined by

{∫
d3x ξ iπi , F[�∗, s, πi ]

}
=

∫
d3x

(
δF

δ�∗
Lξ �∗ + δF

δs
Lξ s + δF

δπi
Lξπi

)
, (A.7)

where F is a functional of �∗, s, and πi , Lξ denotes the Lie derivative along the
vector field ξ i , and δF/δ(· · · ) are the Fréchet derivatives of the functional F [see,
e.g., Appendix C of Blanchet et al. (1990) and references therein].

Explicitly, the equations in (i), (ii), and (iv) take the following Hamiltonian form
[the equations in (iii) and (v) remain unchanged]:

(i) The mass conservation equation

∂�∗
∂t

= −∂i
(
δH

δπi
�∗

)
, (A.8)

notice that vi = δH

δπi
.

(ii) The equations of motion

∂πi

∂t
= −∂ j

(
δH

δπ j
πi

)
− ∂i

(
δH

δπ j

)
π j − ∂i

(
δH

δ�∗

)
�∗ + δH

δs
∂i s. (A.9)
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(iv) The entropy conservation law

∂s

∂t
= − δH

δπi
∂i s. (A.10)

The following kinematical Lie–Poisson bracket relations between the fundamental
variables are fulfilled:

{πi (x, t), �∗(x′, t)} = ∂

∂x ′i [�∗(x′, t)δ(x − x′)], (A.11)

{πi (x, t), s(x′, t)} = ∂s(x′, t)
∂x ′i δ(x − x′), (A.12)

{πi (x, t), π j (x′, t)} = πi (x′, t) ∂
∂x ′ j δ(x − x′)− π j (x, t)

∂

∂xi
δ(x − x′), (A.13)

and zero otherwise. More explicitly the Hamiltonian of the fluid takes the form,

H = 1

2

∫
d3x
πiπi

�∗
− G

2

∫
d3x d3x′ �∗(x, t)�∗(x′, t)

|x − x′| +
∫

d3x ε. (A.14)

For point masses, the momentum and mass densities are given by

πi =
∑
a

paiδ(x − xa), �∗ =
∑
a

maδ(x − xa), (A.15)

and we have also h = p = s = 0. The position and momentum variables fulfill the
standard Poisson bracket relations,

{xia, paj } = δi j , zero otherwise, (A.16)

and the Hamiltonian results in

H = 1

2

∑
a

p2a
ma

− G

2

∑
a 
=b

mamb

|xa − xb| , (A.17)

where the internal and self-energy terms have been dropped (after performing a proper
regularization, see Sect. 4.2 in our review).

Let us remark that for fluids a canonical formalism with standard Poisson brackets
can be obtained with the transition to Lagrangian coordinates bA(xi , t), such that
∂t bA + v · grad bA = 0. Then,

pA = biAπi with biA = ∂xi

∂bA
. (A.18)

The variables bA and pB are canonically conjugate to each other, i.e.

{bA(xi , t), pB(y j , t)} = δAB (xi − yi ). (A.19)
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The mass density in Lagrangian coordinates, say μ(bA, t), is defined by �∗ d3x =
μ d3b and relates to the usual mass density as �∗ = μ(bA, t) det(bBj ).

B Hamiltonian dynamics of ideal fluids in GR

The general-relativistic equations governing the dynamics of gravitating ideal fluids
are as follows (see, e.g., Holm 1985; Blanchet et al. 1990).

(i) The equation for the conservation of mass,

∂μ(
√−g�uμ) = 0 or ∂t�∗ + div(�∗v) = 0, (B.1)

where � denotes the proper rest-mass density and uμ the four-velocity field of
the fluid (gμνuμuν = −1), �∗ = √−gu0� is the coordinate mass density and v
the velocity field of the fluid, vi = cui/u0.

(ii) The equations of motion,

∂μ
(√−g Tμi

) − 1

2

√−g Tμν ∂i gμν = 0, (B.2)

where
Tμν = �(c2 + h)uμuν + pgμν (B.3)

is the stress–energy tensor of the fluid with pressure p and specific enthalpy h.
(iii) The equation of state, using the energy density e = �(c2 + h)− p,

e = e(�, s) with de = (c2 + h)d� + �T ds or dp = �dh − �T ds. (B.4)

(iv) The conservation law for the specific entropy s along the flow lines,

uμ∂μs = 0 or ∂t s + v · grad s = 0. (B.5)

(v) The Einsteinian field equations for gravitational potential (or metric) functions
gμν ,

Rμν = 8πG

c4

(
Tμν − 1

2
gμνgαβT

αβ

)
. (B.6)

The variables of the canonical formalism get chosen to be

�∗ = √−gu0�, s, πi = 1

c

√−gT 0
i . (B.7)

They do fulfill the same (universal, free of spacetime metric) kinematical Lie–Poisson
bracket relations as in the Newtonian theory (see Holm 1985 or also Blanchet et al.
1990),

{πi (x, t), �∗(x′, t)} = ∂

∂x ′i [�∗(x′, t)δ(x − x′)], (B.8)
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{πi (x, t), s(x′, t)} = ∂s(x′, t)
∂x ′i δ(x − x′), (B.9)

{πi (x, t), π j (x′, t)} = πi (x′, t) ∂
∂x ′ j δ(x − x′)− π j (x, t)

∂

∂xi
δ(x − x′). (B.10)

Written as Hamiltonian equations of motion, i.e. ∂t A(x, t) = {A(x, t), H}, the
equations in (i), (ii), and (iv) take the following form [the equations in (iii) and (v)
remain unchanged]:

(i) The mass conservation equation

∂�∗
∂t

= −∂i
(
δH

δπi
�∗

)
, (B.11)

notice vi = δH

δπi
.

(ii) The equations of motion

∂πi

∂t
= −∂ j

(
δH

δπ j
πi

)
− ∂i

(
δH

δπ j

)
π j − ∂i

(
δH

δ�∗

)
�∗ + δH

δs
∂i s. (B.12)

(iv) The entropy conservation law

∂s

∂t
= − δH

δπi
∂i s, (B.13)

where the Hamiltonian functional is given by H = H [�∗, πi , s], see Holm
(1985).

Point-mass systems fulfill
h = p = s = 0, (B.14)

(just as for dust) and the momentum and mass densities read

πi =
∑
a

paiδ(x − xa), �∗ =
∑
a

maδ(x − xa), via = dxia
dt
. (B.15)

The position and momentum variables again fulfill the standard Poisson bracket rela-
tions,

{xia, paj } = δi j , zero otherwise. (B.16)

Hereof the standard Hamilton equations are recovered,

dpai
dt

= − ∂H
∂xia

,
dxia
dt

= ∂H

∂ pai
. (B.17)

Remarkably, the difference to the Newtonian theory solely results from the Hamilto-
nian, so the difference betweenGRand theNewtonian theory is essentially a dynamical
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andnot a kinematical one.This statement refers to thematter only andnot to the gravita-
tional field. The latter ismuchmore complicated inGR, dynamically and kinematically
as well.

C 4PN-accurate generators of Poincaré symmetry for two-point-mass
systems

Generators of Poincaré symmetry for two-point-mass systems are realized as functions
on the two-body phase-space (x1, x2,p1,p2). In the 3 + 1 splitting the 10 generators
are: Hamiltonian H , linear momentum Pi , angular momentum J i , and centre-of-
energy vector Gi (related to boost vector Ki through Ki = Gi − t Pi ). They all fulfill
the Poincaré algebra relations (3.35)–(3.40). In this appendix we show 4PN-accurate
formulae for these generators derived within the ADM formalism (see Bernard et al.
2018 for recent derivation of corresponding and equivalent formulae for integrals of
motion in harmonic coordinates).

The gauge fixing used in the ADM formalism manifestly respects the Euclidean
group (which means that the Hamiltonian H is translationally and rotationally invari-
ant), therefore the generators Pi and J i are simply realized as

Pi (xa,pa) =
∑
a

pai , J i (xa,pa) =
∑
a

εik� x
k
a pa�. (C.1)

These formula are exact (i.e., valid at all PN orders).
The 4PN-accurate conservative Hamiltonian H≤4PN is the sum of local and

nonlocal-in-time parts,

H≤4PN[xa,pa] = H local≤4PN(xa,pa)+ Hnonlocal
4PN [xa,pa], (C.2)

where the nonlocal-in-time piece equals

Hnonlocal
4PN [xa,pa] = −1

5

G2M

c8
...
I i j (t)× Pf2r12/c

∫ +∞

−∞
dτ

|τ |
...
I i j (t + τ). (C.3)

The third time derivative of Ii j , after replacing all time derivatives of xa by using the
Newtonian equations of motion, can be written as

...
I i j = −2Gm1m2

r212

{
4n〈i

12

(
p1 j〉
m1

− p2 j〉
m2

)
− 3

(
(n12 · p1)

m1
− (n12 · p2)

m2

)
n〈i
12n

j〉
12

}

= −2Gm1m2

r312

{
4x 〈i

12v
j〉
12 − 3

r12
(n12 · v12)x 〈i

12x
j〉
12

}
, (C.4)

where the relative velocity v12 ≡ p1/m1−p2/m2 (〈· · · 〉 denotes a symmetric tracefree
projection). This formula is valid in an arbitrary reference frame and it is obviously

123



 7 Page 82 of 117 G. Schäfer, P. Jaranowski

Galileo-invariant. Consequently the nonlocal-in-time Hamiltonian (C.3) is Galileo-
invariant as well. The local part of the 4PN-accurate Hamiltonian reads

H local≤4PN(xa,pa) = Mc2 + HN(xa,pa)+ H1PN(xa,pa)+ H2PN(xa,pa)

+ H3PN(xa,pa)+ H local
4PN (xa,pa). (C.5)

The Hamiltonians HN to H3PN in generic, i.e. noncentre-of-mass, reference frame, are
equal to [the operation “+(

1 ↔ 2
)
” used below denotes the addition for each term,

including the ones which are symmetric under the exchange of body labels, of another
term obtained by the label permutation 1 ↔ 2]

HN(xa,pa) = p21
2m1

− Gm1m2

2r12
+ (

1 ↔ 2
)
, (C.6)

c2 H1PN(xa,pa) = − (p
2
1)

2

8m3
1

+ Gm1m2

4r12

(
− 6p21

m2
1

+ 7(p1 · p2)
m1m2

+ (n12 · p1)(n12 · p2)
m1m2

)
+ G2m2

1m2

2r212
+ (

1 ↔ 2
)
, (C.7)

c4 H2PN(xa,pa) = (p21)
3

16m5
1

+ Gm1m2

8r12

(
5
(p21)

2

m4
1

− 11

2

p21 p
2
2

m2
1m

2
2

− (p1 · p2)2
m2

1m
2
2

+ 5
p21 (n12 · p2)2

m2
1m

2
2

− 6
(p1 · p2) (n12 · p1)(n12 · p2)

m2
1m

2
2

− 3

2

(n12 · p1)2(n12 · p2)2
m2

1m
2
2

)
+ G2m1m2

4r212

(
m2

(
10

p21
m2

1

+ 19
p22
m2

2

)

− 1

2
(m1 + m2)

27 (p1 · p2)+ 6 (n12 · p1)(n12 · p2)
m1m2

)

− G3m1m2(m2
1 + 5m1m2 + m2

2)

8r312
+ (

1 ↔ 2
)
, (C.8)

c6 H3PN(xa,pa) = − 5(p21)
4

128m7
1

+ Gm1m2

32r12

(
− 14(p21)

3

m6
1

+ 6p21(n12 · p1)2(n12 · p2)2
m4

1m
2
2

+ 4

(
(p1 · p2)2 + 4 p21 p

2
2

)
p21

m4
1m

2
2

− 10

(
p21 (n12 · p2)2 + p22 (n12 · p1)2

)
p21

m4
1m

2
2

+ 24
p21 (p1 · p2)(n12 · p1)(n12 · p2)

m4
1m

2
2

+ 2
p21 (p1 · p2)(n12 · p2)2

m3
1m

3
2

+
(
7 p21 p

2
2 − 10 (p1 · p2)2

)
(n12 · p1)(n12 · p2)

m3
1m

3
2

+
(
p21 p

2
2 − 2 (p1 · p2)2

)
(p1 · p2)

m3
1m

3
2

+ 15
(p1 · p2)(n12 · p1)2(n12 · p2)2

m3
1m

3
2

− 18
p21 (n12 · p1)(n12 · p2)3

m3
1m

3
2

+ 5
(n12 · p1)3(n12 · p2)3

m3
1m

3
2

)

+ G2m1m2

r212

(
1

16
(m1 − 27m2)

(p21)
2

m4
1

− 115

16
m1

p21 (p1 · p2)
m3

1m2
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+ 1

48
m2

25 (p1 · p2)2 + 371 p21 p
2
2

m2
1m

2
2

+ 17

16

p21(n12 · p1)2
m3

1

+ 5

12

(n12 · p1)4
m3

1

− 1

8
m1

(
15 p21 (n12 · p2)+ 11 (p1 · p2) (n12 · p1)

)
(n12 · p1)

m3
1m2

− 3

2
m1
(n12 · p1)3(n12 · p2)

m3
1m2

+ 125

12
m2
(p1 · p2) (n12 · p1)(n12 · p2)

m2
1m

2
2

+ 10

3
m2
(n12 · p1)2(n12 · p2)2

m2
1m

2
2

− 1

48
(220m1 + 193m2)

p21(n12 · p2)2
m2

1m
2
2

)

+ G3m1m2

r312

(
− 1

48

(
425m2

1 +
(
473 − 3

4
π2

)
m1m2 + 150m2

2

)
p21
m2

1

+ 1

16

(
77(m2

1 + m2
2)+

(
143 − 1

4
π2

)
m1m2

)
(p1 · p2)
m1m2

+ 1

16

(
20m2

1 −
(
43 + 3

4
π2

)
m1m2

)
(n12 · p1)2

m2
1

+ 1

16

(
21(m2

1 + m2
2)+

(
119 + 3

4
π2

)
m1m2

)
(n12 · p1)(n12 · p2)

m1m2

)

+ G4m1m3
2

8r412

((
227

3
− 21

4
π2

)
m1 + m2

)
+ (

1 ↔ 2
)
. (C.9)

The formula for the Hamiltonian H local
4PN is large, therefore we display it in smaller

pieces:

c8 H local
4PN (xa,pa) = 7(p21)

5

256m9
1

+ Gm1m2

r12
H48(xa,pa)+ G2m1m2

r212
m1 H46(xa,pa)

+ G3m1m2

r312

(
m2

1 H441(xa,pa)+ m1m2 H442(xa,pa)
)

+ G4m1m2

r412

(
m3

1 H421(xa,pa)+ m2
1m2 H422(xa,pa)

)

+ G5m1m2

r512
H40(xa,pa)+

(
1 ↔ 2

)
, (C.10)

where

H48(xa,pa) = 45(p21)
4

128m8
1

− 9(n12 · p1)2(n12 · p2)2(p21)2
64m6

1m
2
2

+ 15(n12 · p2)2(p21)3
64m6

1m
2
2

− 9(n12 · p1)(n12 · p2)(p21)2(p1 · p2)
16m6

1m
2
2

− 3(p21)
2(p1 · p2)2

32m6
1m

2
2

+ 15(n12 · p1)2(p21)2p22
64m6

1m
2
2

− 21(p21)
3p22

64m6
1m

2
2

− 35(n12 · p1)5(n12 · p2)3
256m5

1m
3
2
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+ 25(n12 · p1)3(n12 · p2)3p21
128m5

1m
3
2

+ 33(n12 · p1)(n12 · p2)3(p21)2
256m5

1m
3
2

− 85(n12 · p1)4(n12 · p2)2(p1 · p2)
256m5

1m
3
2

− 45(n12 · p1)2(n12 · p2)2p21(p1 · p2)
128m5

1m
3
2

− (n12 · p2)2(p21)2(p1 · p2)
256m5

1m
3
2

+ 25(n12 · p1)3(n12 · p2)(p1 · p2)2
64m5

1m
3
2

+ 7(n12 · p1)(n12 · p2)p21(p1 · p2)2
64m5

1m
3
2

− 3(n12 · p1)2(p1 · p2)3
64m5

1m
3
2

+ 3p21(p1 · p2)3
64m5

1m
3
2

+ 55(n12 · p1)5(n12 · p2)p22
256m5

1m
3
2

− 7(n12 · p1)3(n12 · p2)p21p22
128m5

1m
3
2

− 25(n12 · p1)(n12 · p2)(p21)2p22
256m5

1m
3
2

− 23(n12 · p1)4(p1 · p2)p22
256m5

1m
3
2

+ 7(n12 · p1)2p21(p1 · p2)p22
128m5

1m
3
2

− 7(p21)
2(p1 · p2)p22

256m5
1m

3
2

− 5(n12 · p1)2(n12 · p2)4p21
64m4

1m
4
2

+ 7(n12 · p2)4(p21)2
64m4

1m
4
2

− (n12 · p1)(n12 · p2)3p21(p1 · p2)
4m4

1m
4
2

+ (n12 · p2)2p21(p1 · p2)2
16m4

1m
4
2

− 5(n12 · p1)4(n12 · p2)2p22
64m4

1m
4
2

+ 21(n12 · p1)2(n12 · p2)2p21p22
64m4

1m
4
2

− 3(n12 · p2)2(p21)2p22
32m4

1m
4
2

− (n12 · p1)3(n12 · p2)(p1 · p2)p22
4m4

1m
4
2

+ (n12 · p1)(n12 · p2)p21(p1 · p2)p22
16m4

1m
4
2

+ (n12 · p1)2(p1 · p2)2p22
16m4

1m
4
2

− p21(p1 · p2)2p22
32m4

1m
4
2

+ 7(n12 · p1)4(p22)2
64m4

1m
4
2

− 3(n12 · p1)2p21(p22)2
32m4

1m
4
2

− 7(p21)
2(p22)

2

128m4
1m

4
2

, (C.11)

H46(xa,pa) = 369(n12 · p1)6
160m6

1

− 889(n12 · p1)4p21
192m6

1

+ 49(n12 · p1)2(p21)2
16m6

1

− 63(p21)
3

64m6
1

− 549(n12 · p1)5(n12 · p2)
128m5

1m2
+ 67(n12 · p1)3(n12 · p2)p21

16m5
1m2

− 167(n12 · p1)(n12 · p2)(p21)2
128m5

1m2
+ 1547(n12 · p1)4(p1 · p2)

256m5
1m2

− 851(n12 · p1)2p21(p1 · p2)
128m5

1m2
+ 1099(p21)

2(p1 · p2)
256m5

1m2
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+ 3263(n12 · p1)4(n12 · p2)2
1280m4

1m
2
2

+ 1067(n12 · p1)2(n12 · p2)2p21
480m4

1m
2
2

− 4567(n12 · p2)2(p21)2
3840m4

1m
2
2

− 3571(n12 · p1)3(n12 · p2)(p1 · p2)
320m4

1m
2
2

+ 3073(n12 · p1)(n12 · p2)p21(p1 · p2)
480m4

1m
2
2

+ 4349(n12 · p1)2(p1 · p2)2
1280m4

1m
2
2

− 3461p21(p1 · p2)2
3840m4

1m
2
2

+ 1673(n12 · p1)4p22
1920m4

1m
2
2

− 1999(n12 · p1)2p21p22
3840m4

1m
2
2

+ 2081(p21)
2p22

3840m4
1m

2
2

− 13(n12 · p1)3(n12 · p2)3
8m3

1m
3
2

+ 191(n12 · p1)(n12 · p2)3p21
192m3

1m
3
2

− 19(n12 · p1)2(n12 · p2)2(p1 · p2)
384m3

1m
3
2

− 5(n12 · p2)2p21(p1 · p2)
384m3

1m
3
2

+ 11(n12 · p1)(n12 · p2)(p1 · p2)2
192m3

1m
3
2

+ 77(p1 · p2)3
96m3

1m
3
2

+ 233(n12 · p1)3(n12 · p2)p22
96m3

1m
3
2

− 47(n12 · p1)(n12 · p2)p21p22
32m3

1m
3
2

+ (n12 · p1)2(p1 · p2)p22
384m3

1m
3
2

− 185p21(p1 · p2)p22
384m3

1m
3
2

− 7(n12 · p1)2(n12 · p2)4
4m2

1m
4
2

+ 7(n12 · p2)4p21
4m2

1m
4
2

− 7(n12 · p1)(n12 · p2)3(p1 · p2)
2m2

1m
4
2

+ 21(n12 · p2)2(p1 · p2)2
16m2

1m
4
2

+ 7(n12 · p1)2(n12 · p2)2p22
6m2

1m
4
2

+ 49(n12 · p2)2p21p22
48m2

1m
4
2

− 133(n12 · p1)(n12 · p2)(p1 · p2)p22
24m2

1m
4
2

− 77(p1 · p2)2p22
96m2

1m
4
2

+ 197(n12 · p1)2(p22)2
96m2

1m
4
2

− 173p21(p
2
2)

2

48m2
1m

4
2

+ 13(p22)
3

8m6
2

, (C.12)

H441(xa,pa) = 5027(n12 · p1)4
384m4

1

− 22993(n12 · p1)2p21
960m4

1

− 6695(p21)
2

1152m4
1

− 3191(n12 · p1)3(n12 · p2)
640m3

1m2
+ 28561(n12 · p1)(n12 · p2)p21

1920m3
1m2

+ 8777(n12 · p1)2(p1 · p2)
384m3

1m2
+ 752969p21(p1 · p2)

28800m3
1m2

− 16481(n12 · p1)2(n12 · p2)2
960m2

1m
2
2

+ 94433(n12 · p2)2p21
4800m2

1m
2
2
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− 103957(n12 · p1)(n12 · p2)(p1 · p2)
2400m2

1m
2
2

+ 791(p1 · p2)2
400m2

1m
2
2

+ 26627(n12 · p1)2p22
1600m2

1m
2
2

− 118261p21p
2
2

4800m2
1m

2
2

+ 105(p22)
2

32m4
2

, (C.13)

H442(xa,pa) =
(
2749π2

8192
− 211189

19200

)
(p21)

2

m4
1

+
(
375π2

8192
− 23533

1280

)
(n12 · p1)4

m4
1

+
(
63347

1600
− 1059π2

1024

)
(n12 · p1)2p21

m4
1

+
(
10631π2

8192
− 1918349

57600

)
(p1 · p2)2
m2

1m
2
2

+
(
13723π2

16384
− 2492417

57600

)
p21p

2
2

m2
1m

2
2

+
(
1411429

19200
− 1059π2

512

)
(n12 · p2)2p21

m2
1m

2
2

+
(
248991

6400
− 6153π2

2048

)
(n12 · p1)(n12 · p2)(p1 · p2)

m2
1m

2
2

−
(
30383

960
+ 36405π2

16384

)
(n12 · p1)2(n12 · p2)2

m2
1m

2
2

+
(
2369

60
+ 35655π2

16384

)
(n12 · p1)3(n12 · p2)

m3
1m2

+
(
1243717

14400
− 40483π2

16384

)
p21(p1 · p2)

m3
1m2

+
(
43101π2

16384
− 391711

6400

)
(n12 · p1)(n12 · p2)p21

m3
1m2

+
(
56955π2

16384
− 1646983

19200

)
(n12 · p1)2(p1 · p2)

m3
1m2

, (C.14)

H421(xa,pa) = 64861p21
4800m2

1

− 91(p1 · p2)
8m1m2

+ 105p22
32m2

2

− 9841(n12 · p1)2
1600m2

1

− 7(n12 · p1)(n12 · p2)
2m1m2

, (C.15)

H422(xa,pa) =
(
1937033

57600
− 199177π2

49152

)
p21
m2

1

+
(
282361

19200
− 21837π2

8192

)
p22
m2

2

+
(
176033π2

24576
− 2864917

57600

)
(p1 · p2)
m1m2

+
(
698723

19200
+ 21745π2

16384

)
(n12 · p1)2

m2
1

+
(
63641π2

24576
− 2712013

19200

)
(n12 · p1)(n12 · p2)

m1m2

+
(
3200179

57600
− 28691π2

24576

)
(n12 · p2)2

m2
2

, (C.16)
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H40(xa,pa) = −m4
1

16
+

(
6237π2

1024
− 169799

2400

)
m3

1m2

+
(
44825π2

6144
− 609427

7200

)
m2

1m
2
2. (C.17)

The centre-of-energy vector Gi (xa,pa)was constructed with 3PN-accuracy (using
the method of undetermined coefficients) by Damour et al. (2000c, d), and at the 4PN
level by Jaranowski and Schäfer (2015). It can be written as13

Gi (xa,pa) =
∑
a

(
Ma(xb,pb) xia + Na(xb,pb) pai

)
, (C.18)

where the functions Ma and Na possess the following 4PN-accurate expansions

Ma(xa,pa) = ma + 1

c2
M1PN

a (xa,pa)+ 1

c4
M2PN

a (xa,pa)

+ 1

c6
M3PN

a (xa,pa)+ 1

c8
M4PN

a (xa,pa), (C.19)

Na(xa,pa) = 1

c4
N 2PN
a (xa,pa)+ 1

c6
N 3PN
a (xa,pa)+ 1

c8
N 4PN
a (xa,pa). (C.20)

The functions M1PN
1 to M3PN

1 read

M1PN
1 (xa,pa) = p21

2m1
− Gm1m2

2r12
, (C.21)

M2PN
1 (xa,pa) = − (p

2
1)

2

8m3
1

+ Gm1m2

4r12

(
− 5p21

m2
1

− p22
m2

2

+ 7(p1 · p2)
m1m2

+ (n12 · p1)(n12 · p2)
m1m2

)
+ G2m1m2(m1 + m2)

4r212
, (C.22)

M3PN
1 (xa,pa) = (p21)

3

16m5
1

+ Gm1m2

16r12

(
9
(p21)

2

m4
1

+ (p22)
2

m4
2

− 11
p21 p

2
2

m2
1m

2
2

− 2
(p1 · p2)2
m2

1m
2
2

+ 3
p21 (n12 · p2)2

m2
1m

2
2

+ 7
p22 (n12 · p1)2

m2
1m

2
2

− 12
(p1 · p2) (n12 · p1)(n12 · p2)

m2
1m

2
2

− 3
(n12 · p1)2(n12 · p2)2

m2
1m

2
2

)

+ G2m1m2

24r212

(
(112m1 + 45m2)

p21
m2

1

+ (15m1 + 2m2)
p22
m2

2

13 Let us note that the centre-of-energy vector Gi does not contain a nonlocal-in-time piece which would
correspond to the nonlocal-in-time tail-related part of the 4PN Hamiltonian. The very reason for this is that
the integrals contributing to Gi

4PN are less singular than those for H4PN, and the singular structure of terms

contributing to Gi
4PN rather relates to the singular structure of terms contributing to H3PN.
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− 1

2
(209m1 + 115m2)

(p1 · p2)
m1m2

+ (n12 · p1)2
m1

− (n12 · p2)2
m2

− (31m1 + 5m2)
(n12 · p1)(n12 · p2)

m1m2

)

− G3m1m2(m2
1 + 5m1m2 + m2

2)

8r312
. (C.23)

The function M4PN
1 has the following structure:

M4PN
1 (xa,pa) = −5(p21)

4

128m7
1

+ Gm1m2

r12
M46(xa,pa)

+ G2m1m2

r212

(
m1 M441(xa,pa)+ m2 M442(xa,pa)

)

+ G3m1m2

r312

(
m2

1 M421(xa,pa)+ m1m2 M422(xa,pa)

+ m2
2 M423(xa,pa)

)
+ G4m1m2

r412
M40(xa,pa), (C.24)

where

M46(xa,pa) = −13(p21)
3

32m6
1

− 15(n12 · p1)4(n12 · p2)2
256m4

1m
2
2

− 91(n12 · p2)2(p21)2
256m4

1m
2
2

+ 45(n12 · p1)2(n12 · p2)2p21
128m4

1m
2
2

− 5(n12 · p1)3(n12 · p2)(p1 · p2)
32m4

1m
2
2

+ 25(n12 · p1)(n12 · p2)p21(p1 · p2)
32m4

1m
2
2

+ 5(n12 · p1)2(p1 · p2)2
64m4

1m
2
2

+ 7p21(p1 · p2)2
64m4

1m
2
2

+ 11(n12 · p1)4p22
256m4

1m
2
2

− 47(n12 · p1)2p21p22
128m4

1m
2
2

+ 91(p21)
2p22

256m4
1m

2
2

+ 5(n12 · p1)3(n12 · p2)3
32m3

1m
3
2

− 7(n12 · p1)(n12 · p2)3p21
32m3

1m
3
2

+ 15(n12 · p1)2(n12 · p2)2(p1 · p2)
32m3

1m
3
2

+ 7(n12 · p2)2p21(p1 · p2)
32m3

1m
3
2

− 5(n12 · p1)(n12 · p2)(p1 · p2)2
16m3

1m
3
2

− 11(n12 · p1)3(n12 · p2)p22
32m3

1m
3
2

− (p1 · p2)3
16m3

1m
3
2

+ 7(n12 · p1)(n12 · p2)p21p22
32m3

1m
3
2

− 5(n12 · p1)2(p1 · p2)p22
32m3

1m
3
2

+ p21(p1 · p2)p22
32m3

1m
3
2

+ 15(n12 · p1)2(n12 · p2)4
256m2

1m
4
2

− 11(n12 · p2)4p21
256m2

1m
4
2
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+ 5(n12 · p1)(n12 · p2)3(p1 · p2)
32m2

1m
4
2

− 5(n12 · p2)2(p1 · p2)2
64m2

1m
4
2

− 21(n12 · p1)2(n12 · p2)2p22
128m2

1m
4
2

+ 7(n12 · p2)2p21p22
128m2

1m
4
2

+ (p1 · p2)2p22
64m2

1m
4
2

− (n12 · p1)(n12 · p2)(p1 · p2)p22
32m2

1m
4
2

+ 11(n12 · p1)2(p22)2
256m2

1m
4
2

+ 37p21(p
2
2)

2

256m2
1m

4
2

− (p22)
3

32m6
2

, (C.25)

M441(xa,pa) = 7711(n12 · p1)4
3840m4

1

− 2689(n12 · p1)2p21
3840m4

1

+ 2683(p21)
2

1920m4
1

− 67(n12 · p1)3(n12 · p2)
30m3

1m2
+ 1621(n12 · p1)(n12 · p2)p21

1920m3
1m2

− 411(n12 · p1)2(p1 · p2)
1280m3

1m2
− 25021p21(p1 · p2)

3840m3
1m2

+ 289(n12 · p1)2(n12 · p2)2
128m2

1m
2
2

− 259(n12 · p2)2p21
128m2

1m
2
2

+ 689(n12 · p1)(n12 · p2)(p1 · p2)
192m2

1m
2
2

+ 11(p1 · p2)2
48m2

1m
2
2

− 147(n12 · p1)2p22
64m2

1m
2
2

+ 283p21p
2
2

64m2
1m

2
2

+ 7(n12 · p1)(n12 · p2)3
12m1m3

2

+ 49(n12 · p2)2(p1 · p2)
48m1m3

2

− 7(n12 · p1)(n12 · p2)p22
6m1m3

2

− 7(p1 · p2)p22
48m1m3

2

− 9(p22)
2

32m4
2

, (C.26)

M442(xa,pa) = −45(p21)
2

32m4
1

+ 7p21(p1 · p2)
48m3

1m2
+ 7(n12 · p1)(n12 · p2)p21

6m3
1m2

− 49(n12 · p1)2(p1 · p2)
48m3

1m2
− 7(n12 · p1)3(n12 · p2)

12m3
1m2

+ 7(p1 · p2)2
24m2

1m
2
2

+ 635p21p
2
2

192m2
1m

2
2

− 983(n12 · p1)2p22
384m2

1m
2
2

+ 413(n12 · p1)2(n12 · p2)2
384m2

1m
2
2

− 331(n12 · p2)2p21
192m2

1m
2
2

+ 437(n12 · p1)(n12 · p2)(p1 · p2)
64m2

1m
2
2

+ 11(n12 · p1)(n12 · p2)3
15m1m3

2

− 1349(n12 · p2)2(p1 · p2)
1280m1m3

2

− 5221(n12 · p1)(n12 · p2)p22
1920m1m3

2

− 2579(p1 · p2)p22
3840m1m3

2
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+ 6769(n12 · p2)2p22
3840m4

2

− 2563(p22)
2

1920m4
2

− 2037(n12 · p2)4
1280m4

2

, (C.27)

M421(xa,pa) = −179843p21
14400m2

1

+ 10223(p1 · p2)
1200m1m2

− 15p22
16m2

2

+ 8881(n12 · p1)(n12 · p2)
2400m1m2

+ 17737(n12 · p1)2
1600m2

1

, (C.28)

M422(xa,pa) =
(
8225π2

16384
− 12007

1152

)
p21
m2

1

+
(
143

16
− π2

64

)
(p1 · p2)
m1m2

+
(

655

1152
− 7969π2

16384

)
p22
m2

2

+
(
6963π2

16384
− 40697

3840

)
(n12 · p1)2

m2
1

+
(
119

16
+ 3π2

64

)
(n12 · p1)(n12 · p2)

m1m2

+
(
30377

3840
− 7731π2

16384

)
(n12 · p2)2

m2
2

, (C.29)

M423(xa,pa) = − 35p21
16m2

1

+ 1327(p1 · p2)
1200m1m2

+ 52343p22
14400m2

2

− 2581(n12 · p1)(n12 · p2)
2400m1m2

− 15737(n12 · p2)2
1600m2

2

, (C.30)

M40(xa,pa) = m3
1

16
+

(
3371π2

6144
− 6701

1440

)
m2

1m2

+
(
20321

1440
− 7403π2

6144

)
m1m

2
2 + m3

2

16
. (C.31)

The functions N 2PN
1 and N 3PN

1 equal

N 2PN
1 (xa,pa) = −5

4
G (n12 · p2), (C.32)

N 3PN
1 (xa,pa) = G

8m1m2

(
2 (p1 · p2)(n12 · p2)− p22 (n12 · p1)

+ 3 (n12 · p1)(n12 · p2)2
)

+ G2

48r12

(
19m2 (n12 · p1)

+ (130m1 + 137m2) (n12 · p2)
)
. (C.33)
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The more complicated function N 4PN
1 has the structure:

N 4PN
1 (xa,pa) = Gm2N45(xa,pa)+ G2m2

r12

(
m1 N431(xa,pa)

+ m2 N432(xa,pa)
)

+ G3m2

r212

(
m2

1 N411(xa,pa)

+ m1m2 N412(xa,pa)+ m2
2 N413(xa,pa)

)
, (C.34)

where

N45(xa,pa) = −5(n12 · p1)3(n12 · p2)2
64m3

1m
2
2

+ (n12 · p1)(n12 · p2)2p21
64m3

1m
2
2

+ 5(n12 · p1)2(n12 · p2)(p1 · p2)
32m3

1m
2
2

− (n12 · p2)p21(p1 · p2)
32m3

1m
2
2

+ 3(n12 · p1)(p1 · p2)2
32m3

1m
2
2

− (n12 · p1)3p22
64m3

1m
2
2

− (n12 · p1)p21p22
64m3

1m
2
2

+ (n12 · p1)2(n12 · p2)3
32m2

1m
3
2

− 7(n12 · p2)3p21
32m2

1m
3
2

+ 3(n12 · p1)(n12 · p2)2(p1 · p2)
16m2

1m
3
2

+ (n12 · p2)(p1 · p2)2
16m2

1m
3
2

− 9(n12 · p1)2(n12 · p2)p22
32m2

1m
3
2

+ 5(n12 · p2)p21p22
32m2

1m
3
2

− 3(n12 · p1)(p1 · p2)p22
16m2

1m
3
2

− 11(n12 · p1)(n12 · p2)4
128m1m4

2

+ (n12 · p2)3(p1 · p2)
32m1m4

2

+ 7(n12 · p1)(n12 · p2)2p22
64m1m4

2

+ (n12 · p2)(p1 · p2)p22
32m1m4

2

− 3(n12 · p1)(p22)2
128m1m4

2

, (C.35)

N431(xa,pa) = −387(n12 · p1)3
1280m3

1

+ 10429(n12 · p1)p21
3840m3

1

− 751(n12 · p1)2(n12 · p2)
480m2

1m2
+ 2209(n12 · p2)p21

640m2
1m2

− 6851(n12 · p1)(p1 · p2)
1920m2

1m2
+ 43(n12 · p1)(n12 · p2)2

192m1m2
2

− 125(n12 · p2)(p1 · p2)
192m1m2

2

+ 25(n12 · p1)p22
48m1m2

2

− 7(n12 · p2)3
8m3

2

+ 7(n12 · p2)p22
12m3

2

, (C.36)

N432(xa,pa) = 7(n12 · p2)p21
48m2

1m2
+ 7(n12 · p1)(p1 · p2)

24m2
1m2

− 49(n12 · p1)2(n12 · p2)
48m2

1m2

+ 295(n12 · p1)(n12 · p2)2
384m1m2

2

− 5(n12 · p2)(p1 · p2)
24m1m2

2

− 155(n12 · p1)p22
384m1m2

2
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− 5999(n12 · p2)3
3840m3

2

+ 11251(n12 · p2)p22
3840m3

2

, (C.37)

N411(xa,pa) = −37397(n12 · p1)
7200m1

− 12311(n12 · p2)
2400m2

, (C.38)

N412(xa,pa) =
(
5005π2

8192
− 81643

11520

)
(n12 · p1)

m1

+
(
773π2

2048
− 61177

11520

)
(n12 · p2)

m2
, (C.39)

N413(xa,pa) = −7073(n12 · p2)
1200m2

. (C.40)

DHigher-order spin-dependent conservative Hamiltonians

In this appendix we present explicit formulae for higher-order spin-dependent con-
servative Hamiltonians not displayed in the main body of the review. We start with
the next-to-next-to-leading-order spin–orbit Hamiltonian, which was calculated by
Hartung et al. (2013) (see also Hartung and Steinhoff 2011a). It reads

HNNLO
SO (xa,pa,Sa) = G

r212

{(
7m2(p21)

2

16m5
1

+ 9(n12 · p1)(n12 · p2)p21
16m4

1

+ 3p21(n12 · p2)2
4m3

1m2
+ 45(n12 · p1)(n12 · p2)3

16m2
1m

2
2

+ 9p21(p1 · p2)
16m4

1

− 3(n12 · p2)2(p1 · p2)
16m2

1m
2
2

− 3(p21)(p
2
2)

16m3
1m2

− 15(n12 · p1)(n12 · p2)p22
16m2

1m
2
2

+ 3(n12 · p2)2p22
4m1m3

2

− 3(p1 · p2)p22
16m2

1m
2
2

− 3(p22)
2

16m1m3
2

)
((n12 × p1) · S1)

+
(

−3(n12 · p1)(n12 · p2)p21
2m3

1m2
− 15(n12 · p1)2(n12 · p2)2

4m2
1m

2
2

+ 3p21(n12 · p2)2
4m2

1m
2
2

− p21(p1 · p2)
2m3

1m2
+ (p1 · p2)2

2m2
1m

2
2

+ 3(n12 · p1)2p22
4m2

1m
2
2

− (p21)(p
2
2)

4m2
1m

2
2

− 3(n12 · p1)(n12 · p2)p22
2m1m3

2

− (p1 · p2)p22
2m1m3

2

)
((n12 × p2) · S1)+

(
−9(n12 · p1)p21

16m4
1

+ p21(n12 · p2)
m3

1m2

+ 27(n12 · p1)(n12 · p2)2
16m2

1m
2
2

− (n12 · p2)(p1 · p2)
8m2

1m
2
2

− 5(n12 · p1)p22
16m2

1m
2
2

+ (n12 · p2)p22
m1m3

2

)
((p1 × p2) · S1)

}
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+ G2

r312

{(
−3m2(n12 · p1)2

2m2
1

+
(

−3m2

2m2
1

+ 27m2
2

8m3
1

)
p21 +

(
177

16m1
+ 11

m2

)
(n12 · p2)2

+
(

11

2m1
+ 9m2

2m2
1

)
(n12 · p1)(n12 · p2)+

(
23

4m1
+ 9m2

2m2
1

)
(p1 · p2)

−
(

159

16m1
+ 37

8m2

)
p22

)
((n12 × p1) · S1)+

(
4(n12 · p1)2

m1
+ 13p21

2m1

+ 5(n12 · p2)2
m2

+ 53p22
8m2

−
(
211

8m1
+ 22

m2

)
(n12 · p1)(n12 · p2)

−
(

47

8m1
+ 5

m2

)
(p1 · p2)

)
((n12 × p2) · S1)+

(
−

(
8

m1
+ 9m2

2m2
1

)
(n12 · p1)

+
(

59

4m1
+ 27

2m2

)
(n12 · p2)

)
((p1 × p2) · S1)

}

+ G3

r412

{(
181m1m2

16
+ 95m2

2

4
+ 75m3

2

8m1

)
((n12 × p1) · S1)

−
(
21m2

1

2
+ 473m1m2

16
+ 63m2

2

4

)
((n12 × p2) · S1)

}
+ (1 ↔ 2). (D.1)

The next-to-next-to-leading-order spin1–spin2 Hamiltonian was calculated for the
first time by Hartung et al. (2013). Its explicit form reads

HNNLO
S1S2 (xa,pa,Sa) = G

r312

{
((p1 × p2) · S1)((p1 × p2) · S2)

16m2
1m

2
2

− 9((p1 × p2) · S1)((n12 × p2) · S2)(n12 · p1)
8m2

1m
2
2

− 3((n12 × p2) · S1)((p1 × p2) · S2)(n12 · p1)
2m2

1m
2
2

+ ((n12 × p1) · S1)((n12 × p1) · S2)
(
9p21
8m4

1

+ 15(n12 · p2)2
4m2

1m
2
2

− 3p22
4m2

1m
2
2

)

+ ((n12 × p2) · S1)((n12 × p1) · S2)
(

− 3p21
2m3

1m2
+ 3(p1 · p2)

4m2
1m

2
2

− 15(n12 · p1)(n12 · p2)
4m2

1m
2
2

)
+ ((n12 × p1) · S1)((n12 × p2) · S2)

×
(

3p21
16m3

1m2
− 3(p1 · p2)

16m2
1m

2
2

− 15(n12 · p1)(n12 · p2)
16m2

1m
2
2

)

+ (p1 · S1)(p1 · S2)
(
3(n12 · p2)2
4m2

1m
2
2

− p22
4m2

1m
2
2

)
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+ (p1 · S1)(p2 · S2)
(

− p21
4m3

1m2
+ (p1 · p2)

4m2
1m

2
2

)

+ (p2 · S1)(p1 · S2)
(

5p21
16m3

1m2
− 3(p1 · p2)

16m2
1m

2
2

− 9(n12 · p1)(n12 · p2)
16m2

1m
2
2

)

+ (n12 · S1)(p1 · S2)
(
9(n12 · p1)p21

8m4
1

− 3(n12 · p2)p21
4m3

1m2
− 3(n12 · p2)p22

4m1m3
2

)

+ (p1 · S1)(n12 · S2)
(

− 3(n12 · p2)p21
4m3

1m2
− 15(n12 · p1)(n12 · p2)2

4m2
1m

2
2

+ 3(n12 · p1)p22
4m2

1m
2
2

− 3(n12 · p2)p22
4m1m3

2

)
+ (n12 · S1)(n12 · S2)

(
− 3(p1 · p2)2

8m2
1m

2
2

+ 105(n12 · p1)2(n12 · p2)2
16m2

1m
2
2

− 15(n12 · p2)2p21
8m2

1m
2
2

+ 3p21(p1 · p2)
4m3

1m2
+ 3p21p

2
2

16m2
1m

2
2

+ 15p21(n12 · p1)(n12 · p2)
4m3

1m2

)
+ (S1 · S2)

(
(p1 · p2)2
16m2

1m
2
2

− 9(n12 · p1)2p21
8m4

1

− 5(p1 · p2)p21
16m3

1m2
− 3(n12 · p2)2p21

8m2
1m

2
2

− 15(n12 · p1)2(n12 · p2)2
16m2

1m
2
2

+ 3p21p
2
2

16m2
1m

2
2

+ 3p21(n12 · p1)(n12 · p2)
4m3

1m2
+ 9(p1 · p2)(n12 · p1)(n12 · p2)

16m2
1m

2
2

)}

+ G2

r412

{
((n12 × p1) · S1)((n12 × p1) · S2)

(
12

m1
+ 9m2

m2
1

)

− 81

4m1
((n12 × p2) · S1)((n12 × p1) · S2)

− 27

4m1
((n12 × p1) · S1)((n12 × p2) · S2)

− 5

2m1
(p1 · S1)(p2 · S2)+ 29

8m1
(p2 · S1)(p1 · S2)− 21

8m1
(p1 · S1)(p1 · S2)

+ (n12 · S1)(p1 · S2)
[(

33

2m1
+ 9m2

m2
1

)
(n12 · p1)−

(
14

m1
+ 29

2m2

)
(n12 · p2)

]

+ (p1 · S1)(n12 · S2)
[

4

m1
(n12 · p1)−

(
11

m1
+ 11

m2

)
(n12 · p2)

]

+ (n12 · S1)(n12 · S2)
[

− 12

m1
(n12 · p1)2 − 10

m1
p21 + 37

4m1
(p1 · p2)

+ 255

4m1
(n12 · p1)(n12 · p2)

]
+ (S1 · S2)

[
−

(
25

2m1
+ 9m2

m2
1

)
(n12 · p1)2

+ 49

8m1
p21 + 35

4m1
(n12 · p1)(n12 · p2)− 43

8m1
(p1 · p2)

]}
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+ G3

r512

{
− (S1 · S2)

(
63

4
m2

1 + 145

8
m1m2

)

+ (n12 · S1)(n12 · S2)
(
105

4
m2

1 + 289

8
m1m2

)}
+ (1 ↔ 2). (D.2)

Leading-order cubic in spin Hamiltonians (which are also proportional to the linear
momenta of the bodies) were derived by Hergt and Schäfer (2008a, b) and Levi and
Steinhoff (2015). They are collected here into the single Hamiltonian HLO

pS3
, which

equals

HLO
pS3 (xa, pa, Sa) ≡ Hp1S32

+ Hp2S31
+ Hp1S31

+ Hp2S32

+ Hp1S1S22
+ Hp2S2S21

+ Hp1S2S21
+ Hp2S1S22

= G

m2
1r

4
12

{
3

2

[
S21 (S2 · (n12 × p1))+ (S1 · n12) (S2 · (S1 × p1))

+ (n12 · (S1 × S2))
(
(S1 · p1)− 5(S1 · n12)(p1 · n12)

)

− 5(S1 · n12)2 (S2 · (n12 × p1))− 3m1

2m2

(
S21 (S2 · (n12 × p2))

+2(S1 · n12)(S2 · (S1 × p2))− 5(S1 · n12)2(S2 · (n12 × p2))
)]

−(S1 × n12) ·
(
p2 − m2

4m1
p1

) (
S21 − 5 (S1 · n12)2

)}
+ (1 ↔ 2).

(D.3)

Leading-order quartic in spin Hamiltonians were derived by Levi and Steinhoff
(2015). They are collected here into the single Hamiltonian HLO

S4
, which reads

HLO
S4 (xa,Sa) ≡ HS21 S

2
2

+ HS1S32
+ HS2S31

+ HS41
+ HS42

= − 3G

2m1m2r
5
12

{
1

2
S21S

2
2 + (S1 · S2)2 − 5

2

(
S21 (S2 · n12)2 + S22 (S1 · n12)2

)

− 10(S1 · n12) (S2 · n12)
(
(S1 · S2)− 7

4
(S1 · n12) (S2 · n12)

)}

− 3G

2m2
1r

5
12

{
S21 (S1 · S2)− 5(S1 · S2)(S1 · n12)2

− 5S21 (S1 · n12) (S2 · n12)+ 35

3
(S2 · n12)(S1 · n12)3

}

− 3Gm2

8m3
1r

5
12

{
S41 (S

2
1)

2 − 10S21 (S1 · n12)2 + 35

3
(S1 · n12)4

}
+ (1 ↔ 2).

(D.4)

Let us note that it is possible to compute the leading-order Hamiltonians to all orders
in spin (Vines and Steinhoff 2018).
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E Dissipative many-point-mass Hamiltonians

In this appendix we display all known dissipative Hamiltonians for many-body sys-
tems (i.e. for systems comprising any number of components), made of both spinless
or spinning bodies. We start by displaying the dissipative leading-order 2.5PN and
next-to-leading-order 3.5PN ADMHamiltonians valid for spinless bodies. The 2.5PN
Hamiltonian is given in Eq. (6.79) for two-body systems, but in this appendix we
display formula for it valid for many-body systems. The 3.5PN Hamiltonian was
computed for the first time by Jaranowski and Schäfer (1997). The Hamiltonians read
[in this appendix we use units in which c = 1 and G = 1/(16π)]14

H2.5PN(xa,pa, t) = 5π χ̇(4)i j (t) χ(4)i j (xa,pa), (E.1)

H3.5PN(xa,pa, t) = 5π χ(4)i j (xa,pa)
(
Π̇1i j (t)+ Π̇2i j (t)+ Π̈3i j (t)

)
+ 5π χ̇(4)i j (t)

(
Π1i j (xa,pa)+ Π̃2i j (xa, t)

)
− 5π χ̈(4)i j (t)Π3i j (xa,pa)

+ χ̇(4)i j (t)
(
Q′

i j (xa,pa, t)+ Q′′
i j (xa, t)

)

+ ∂3

∂t3
(
R′(xa,pa, t)+ R′′(xa, t)

)
. (E.2)

To display the building blocks of these Hamiltonians we adopt the notation that the
explicit dependence on time t is through canonical variables with primed indices
only, e.g., χ(4)i j (t) ≡ χ(4)i j (xa′(t),pa′(t)). We also define sabc ≡ rab + rbc + rca ,
saa′b′ ≡ raa′ + rab′ + ra′b′ , and saba′ ≡ rab + raa′ + rba′ . The building blocks are then
defined as follows15:

χ(4)i j (xa,pa) ≡ 8

15

1

16π

∑
a

1

ma

(
p2aδi j − 3pai paj

)

+ 4

15

1

(16π)2
∑
a

∑
b 
=a

mamb

rab
(3niabn

j
ab − δi j ), (E.3)

Π1i j (xa,pa) ≡ 4

15

1

16π

∑
a

p2a
m3

a

(
−p2aδi j + 3pai paj

)

+ 8

5

1

(16π)2
∑
a

∑
b 
=a

mb

marab

(
−2p2aδi j + 5pai paj + p2an

i
abn

j
ab

)

+ 1

5

1

(16π)2
∑
a

∑
b 
=a

1

rab

{[
19(pa · pb)− 3(nab · pa)(nab · pb)

]
δi j

− 42pai pbj − 3
[
5(pa · pb)+ (nab · pa)(nab · pb)

]
niabn

j
ab

14 In Jaranowski and Schäfer (1997), Eq. (58) for H3.5PN contains misprints, which were corrected in Eq.
(2.8) of Königsdörffer et al. (2003).
15 In Jaranowski and Schäfer (1997), Eqs. (56) and (57) for Q′′

i j and R′′, respectively, contain misprints,
which were corrected in Eqs. (2.9) of Königsdörffer et al. (2003).
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+ 6(nab · pb)
(
niab paj + n j

ab pai
) }

+ 41

15

1

(16π)3
∑
a

∑
b 
=a

m2
amb

r2ab

(
δi j − 3niabn

j
ab

)

+ 1

45

1

(16π)3
∑
a

∑
b 
=a

∑
c 
=a,b

mambmc

{
18

rabrca

(
δi j − 3niabn

j
ab

)

− 180

sabc

[(
1

rab
+ 1

sabc

)
niabn

j
ab + 1

sabc
niabn

j
bc

]

+ 10

sabc

[
4

(
1

rab
+ 1

rbc
+ 1

rca

)
− r2ab + r2bc + r2ca

rabrbcrca

]
δi j

}
, (E.4)

Π2i j (xa,pa) ≡ 1

5

1

(16π)2
∑
a

∑
b 
=a

mb

marab

⎧⎨
⎩
[
5(nab · pa)2 − p2a

]
δi j − 2pai paj

+
[
5p2a − 3(nab · pa)2

]
niabn

j
ab − 6(nab · pa)(niab paj + n j

ab pai )

⎫⎬
⎭

+ 6

5

1

(16π)3
∑
a

∑
b 
=a

m2
amb

r2ab

(
3niabn

j
ab − δi j

)

+ 1

10

1

(16π)3
∑
a

∑
b 
=a

∑
c 
=a,b

mambmc

⎧⎨
⎩

[
5
rca
r3ab

(
1 − rca

rbc

)
+ 13

rabrca
− 40

rabsabc

]
δi j

+
[
3
rab
r3ca

+ r2bc
rabr3ca

− 5

rabrca
+ 40

sabc

(
1

rab
+ 1

sabc

)]
niabn

j
ab

+
[
2
(rab + rca)

r3bc
− 16

(
1

r2ab
+ 1

r2ca

)
+ 88

s2abc

]
niabn

j
ca

⎫⎬
⎭ , (E.5)

Π3i j (xa,pa) ≡ 1

5

1

(16π)2
∑
a

∑
b 
=a

mb

{
− 5(nab · pa)δi j

+(nab · pa)niabn j
ab + 7(niab paj + n j

ab pai )

}
, (E.6)

Π̃2i j (xa, t) ≡ 1

5

1

(16π)2
∑
a

∑
a′

ma

ma′raa′

{(
5(naa′ · pa′)2 − p2a′

)
δi j − 2pa′i pa′ j

+(
5p2a′ − 3(naa′ · pa′)2

)
niaa′n

j
aa′ − 6(naa′ · pa′)(niaa′ pa′ j + n j

aa′ pa′i )

}

+ 1

10

1

(16π)3
∑
a

∑
a′

∑
b′ 
=a′

mama′mb′
{

32

saa′b′

( 1

ra′b′
+ 1

saa′b′

)
nia′b′n

j
a′b′
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+ 16
( 1

r2a′b′
− 2

s2aa′b′

)
(niaa′n

j
a′b′ + n j

aa′nia′b′)− 2
(raa′ + rab′

r3a′b′
+ 12

s2aa′b′

)
niaa′n

j
ab′

+ [ raa′

r3a′b′

(raa′

rab′
+ 3

) − 5

ra′b′raa′
+ 8

saa′b′

( 1

raa′
+ 1

saa′b′

)]
niaa′n

j
aa′

+ [
5
raa′

r3a′b′

(
1 − raa′

rab′

) + 17

ra′b′raa′
− 4

raa′rab′
− 8

saa′b′

( 1

raa′
+ 4

ra′b′

)]
δi j

}
, (E.7)

Q′
i j (xa,pa, t) ≡ − 1

16

1

16π

∑
a

∑
a′

ma′

maraa′

{
2pai paj + 12(naa′ · pa)niaa′ paj

− 5p2an
i
aa′n

j
aa′ + 3(naa′ · pa)2niaa′n

j
aa′

}
, (E.8)

Q′′
i j (xa, t) ≡ 1

32

1

(16π)2
∑
a

∑
b 
=a

∑
a′

mambma′
{

32

saba′

( 1

rab
+ 1

saba′

)
niabn

j
ab

+ [
3
raa′

r3ab
− 5

rabraa′
+ r2ba′

r3abraa′
+ 8

saba′

( 1

raa′
+ 1

saba′

)]
niaa′n

j
aa′

− 2
(raa′ + rba′

r3ab
+ 12

s2aba′

)
niaa′n

j
ba′ − 32

( 1

r2ab
− 2

s2aba′

)
niabn

j
aa′

}
, (E.9)

R′(xa,pa, t) ≡ 2

105

1

16π

∑
a

∑
a′

r2aa′
mama′

{ − 5p2ap
2
a′ + 11(pa · pa′)2

+ 4(naa′ · pa′)2p2a + 4(naa′ · pa)2p2a′ − 12(naa′ · pa′)(naa′ · pa)(pa · pa′)
}

− 1

105

1

(16π)2
∑
a

∑
a′

∑
b′ 
=a′

ma′mb′

ma

{(
2
r4aa′

r3a′b′
− 2

r2aa′r2ab′

r3a′b′
− 5

r2aa′
ra′b′

)
p2a

+ 4
r2aa′
ra′b′

(naa′ · pa)2 + 17
( r2aa′
ra′b′

+ ra′b′
)
(na′b′ · pa)2

+ 2
(
6
r3aa′

r2a′b′
+ 17raa′

)
(naa′ · pa)(na′b′ · pa)

}
, (E.10)

R′′(xa, t) ≡ 1

105

1

(16π)2
∑
a

∑
b 
=a

∑
a′

mamb

ma′

{(
5
r2aa′
rab

+ 2
r2aa′r2ba′

r3ab
− 2

r4aa′

r3ab

)
p2a′

− 17
(r2aa′
rab

+ rab
)
(nab · pa′)2 − 4

r2aa′
rab
(naa′ · pa′)2

+ 2
(6r3aa′

r2ab
+ 17raa′

)
(nab · pa′)(naa′ · pa′)

}

+ 1

210

1

(16π)3
∑
a

∑
b 
=a

∑
a′

∑
b′ 
=a′

mambma′mb′
{
2

r2aa′

rabr3a′b′

(
r2aa′ − r2ab′

)

+ 2
r2aa′

r3abra′b′

(
r2aa′ − r2ba′

) + 4
rabr2aa′

r3a′b′
− 5

r2aa′
rabra′b′

− 2
( r3ab
r3a′b′

+ rab
ra′b′

)
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− 4
rabraa′rbb′

r3a′b′
(naa′ · nbb′)+ 17

( rab
ra′b′

+ ra′b′

rab
+ r2aa′

rabra′b′

)
(nab · na′b′)2

+ 6
r4aa′

r2abr
2
a′b′
(nab · na′b′)+ 34r2aa′

( 1

r2ab
+ 1

r2a′b′

)
(nab · na′b′)

}
. (E.11)

The leading-order Hamiltonian for systemsmade of any number of spinning bodies
was derived by Wang et al. (2011). It reads16

H spin
3.5PN(xa,pa, Sa, t) = 5π

(
χ(4)i j (xa,pa)

(
Π̇

spin
1i j (t)+ Π̇ spin

2i j (t)+ Π̈ spin
3i j (t)

)

+ χ̇(4)i j (t)
(
Π

spin
1i j (xa,pa, Sa)+ Π̃ spin

2i j (xa, t)
)

− χ̈(4)i j (t)Π spin
3i j (xa, Sa)

)
+ χ̇(4)i j (t)Q′ spin

i j (xa,pa, Sa, t)

+ ∂3

∂t3

(
R′ spin(xa,pa, Sa, t)+ R′′ spin(xa, t)

)

− d

dt

(
χ̇(4)i j (t)O

spin
i j (pa, Sa)

)
, (E.12)

where Sa is the spin tensor associated with ath body, with components Sa(i)( j). The

function χ(4)i j is defined in Eq. (E.3) above and the functions Π spin
1i j , Π

spin
2i j , Π

spin
3i j ,

Π̃
spin
2i j , Q

′ spin
i j , R′ spin, R′′ spin, and Ospin

i j are given by

Π
spin
1i j (xa,pa, Sa) ≡ 4

5(16π)2
∑
a

∑
b 
=a

{
1

r2ab

[
3(nab · pb)nkab(n j

abSa(i)(k) + niabSa( j)(k))

− 3pbk(n
j
abSa(i)(k) + niabSa( j)(k))− 3nkab(pbj Sa(i)(k) + pbi Sa( j)(k))

+ 4(3niabn
j
ab − δi j )nkab pbl Sa(k)(l)

]
+ mb

ma

1

r2ab

[
pak(n

j
abSa(i)(k) + niabSa( j)(k))

+ (4δi j − 6niabn
j
ab)n

k
ab pal Sa(k)(l) + 4nkab(paj Sa(i)(k) + pai Sa( j)(k))

]

− Sa(k)(l)
r3ab

[
(3niabn

j
ab − δi j )Sb(k)(l) + 3nkab(n

j
abSb(i)(l) + niabSb( j)(l))

+ 3(δi j − 5niabn
j
ab)n

k
abn

n
abSb(n)(l)

]}
, (E.13)

Π
spin
2i j (xa,pa, Sa) ≡ − 4

5(16π)2
∑
a

∑
b 
=a

mb

ma

1

r2ab

{
− 2pak(n

i
abSa( j)(k) + n j

abSa(i)(k))

+ nkab(pai Sa( j)(k) + paj Sa(i)(k))+ 3(nab · pa)nkab(niabSa( j)(k) + n j
abSa(i)(k))

+ (δi j + 3niabn
j
ab)n

k
ab pal Sa(k)(l)

}
, (E.14)

16 We keep here the total time derivative as given in Wang et al. (2011), though it could be dropped as
correspondingly done in the Eq. (E.2), because it can be removed by performing a canonical transformation.
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Π
spin
3i j (xa,pa, Sa) ≡ 4

5(16π)2
∑
a

∑
b 
=a

mb

rab
nkab(n

j
abSa(i)(k) + niabSa( j)(k)), (E.15)

Π̃
spin
2i j (xa, t) ≡ − 4

5(16π)2
∑
a

∑
a′

ma

ma′
1

r2aa′

{
2pa′k(n

i
aa′Sa′( j)(k) + n j

aa′Sa′(i)(k))

− nkaa′(pa′i Sa′( j)(k) + pa′ j Sa′(i)(k))− (δi j + 3niaa′n
j
aa′)nkaa′ pa′l Sa′(k)(l)

− 3(naa′ · pa′)nkaa′(niaa′Sa′( j)(k) + n j
aa′Sa′(i)(k))

}
, (E.16)

Q′ spin
i j (xa,pa, Sa, t) ≡ 1

4(16π)

∑
a

∑
a′

ma′

ma

1

r2aa′

{
2pak(n

i
aa′Sa( j)(k) + n j

aa′Sa(i)(k))

− nkaa′(pai Sa( j)(k) + paj Sa(i)(k))− (δi j + 3niaa′n
j
aa′)nkaa′ pal Sa(k)(l)

− 3(naa′ · pa)nkaa′(niaa′Sa( j)(k) + n j
aa′Sa(i)(k))

}
, (E.17)

R′ spin(xa,pa, Sa, t) ≡ 1

15(16π)

∑
a

∑
a′

Sa(i)( j)

{
4ra′a
ma′ma

(
p2a′nia′a paj

− (na′a · pa′)pa′i paj − 2(pa′ · pa)nia′a pa′ j
)

+ 1

7(16π)

∑
b′ 
=a′

ma′mb′

ma

(
17nia′b′ paj − 2ra′a

ra′b′

(
17(na′b′ · pa)nia′b′n

j
a′a

+ 7nia′a paj
) + 6r2a′a

r2a′b′

(
nia′b′ paj + 2(na′a · pa)nia′b′n

j
a′a

)

+ 8ra′a
r3a′b′

(
r2a′an

i
a′a paj − r2b′an

i
a′a paj

))}

+ 4

15(16π)

∑
a

∑
a′

raa′

ma′ma
Sa′(i)( j)

(
p2an

i
aa′ pa′ j − 2(pa′ · pa)niaa′ paj

+ (naa′ · pa)pa′i paj
)

+ 2

15(16π)

∑
a

∑
a′ 
=a

1

ma′ma
Sa(i)( j)

(
3pa′k pai Sa′(k)( j)

− 2(pa′ · pa)Sa′(i)( j) − 2pa′i pak Sa′(k)( j)
)
, (E.18)

R′′ spin(xa, t) ≡ 2

15(16π)2
∑
a

∑
b 
=a

∑
a′

mamb

ma′
ra′a
rab

Sa′(i)( j)
(
nia′a pa′ j

− 2(nab · pa′)nia′an
j
ab − (na′a · nab)niab pa′ j

)
, (E.19)

Ospin
i j (pa, Sa) ≡

∑
a

1

8m2
a
pak

(
pai Sa(k)( j) + paj Sa(k)(i)

)
. (E.20)
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F Closed-form 1PMHamiltonian for point-mass systems

The first post-Minkowskian (1PM) closed-form Hamiltonian for point-mass systems
has been derived by Ledvinka et al. (2008). The starting point is the ADM reduced
Hamiltonian describing N gravitationally interacting point masses with positions xa
and linear momenta pa (a = 1, . . . , N ). The 1PM Hamiltonian is, by definition,
accurate through terms linear in G and it reads (setting c = 1)

Hlin =
∑
a

ma − 1

2
G

∑
a,b 
=a

mamb

rab

(
1 + p2a

m2
a

+ p2b
m2

b

)

+ 1

4
G

∑
a,b 
=a

1

rab
(7pa · pb + (pa · nab)(pb · nab))

− 1

2

∑
a

pai paj
ma

hTTi j (x = xa)+ 1

16πG

∫
d3x

(
1

4
hTTi j,k h

TT
i j,k + π i j

TTπ
i j
TT

)
,

(F.1)

where ma ≡ (
m2

a + p2a
) 1
2 and nabrab ≡ xa − xb (with |nab| = 1). The independent

degrees of freedom of the gravitational field, hTTi j and π i j
TT, are treated to linear order

in G. Denoting x − xa ≡ na |x − xa | and cos θa ≡ (na · ẋa)/|ẋa |, the solution for
hTTi j (x) was found to be

hTTi j (x) = δTT kl
i j

∑
b

4G

mb

1

|x − xb|
pbk pbl√

1 − ẋ2b sin
2 θb

. (F.2)

An autonomous point-massHamiltonian needs the field part in the relatedRouthian,

R f = 1

16πG

∫
d3x

1

4

(
hTTi j,k h

TT
i j,k − ḣTTi j ḣ

TT
i j

)
, (F.3)

to be transformed into an explicit function of particle variables. Using the Gauss law
in the first term and integrating by parts the term containing the time derivatives one
arrives at

R f = − 1

16πG

∫
d3x

1

4
hTTi j

(
ΔhTTi j − ∂2t hTTi j

)
+ 1

64πG

∮
dSk(h

TT
i j h

TT
i j,k)

− 1

64πG

d

dt

∫
d3x (hTTi j ḣ

TT
i j ). (F.4)

The field equations imply that the first integral directly combines with the “interac-
tion” term containing

∑
m−1

a pai paj hTTi j (xa), so only its coefficient gets changed.
The remaining terms in R f , the surface integral and the total time derivative, do
not modify the dynamics of the system since in our approximation of unacceler-
ated field-generating particles, the surface integral vanishes at large |x|. The reduced
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Routhian thus takes the form, now referred to as H because it is a Hamiltonian for the
particles,

Hlin(xc,pc, ẋc) =
∑
a

ma − 1

2
G

∑
a,b 
=a

mamb

rab

(
1 + 2

p2a
m2

a

)

+ 1

4
G

∑
a,b 
=a

1

rab
(7 (pa · pb)+ (pa · nab)(pb · nab))

− 1

4

∑
a

pai paj
ma

hTTi j (x = xa; xb,pb, ẋb). (F.5)

Though dropping a total time derivative, which implies a canonical transformation,
the new canonical coordinates keep their names. A further change of coordinates has
to take place to eliminate the velocities ẋa in the Hamiltonian. This can be achieved by
simply putting ẋa = pa/ma (again without changing names of the variables). Using

the shortcut yba ≡ m−1
b [m2

b + (nba · pb)2] 12 , the Hamiltonian comes out in the final
form (Ledvinka et al. 2008)

Hlin =
∑
a

ma − 1

2
G

∑
a,b 
=a

mamb

rab

(
1 + p2a

m2
a

+ p2b
m2

b

)

+ 1

4
G

∑
a,b 
=a

1

rab
(7 (pa · pb)+ (pa · nab)(pb · nab))

− 1

4
G

∑
a,b 
=a

1

rab

(mamb)
−1

(yba + 1)2yba

{
2
(
2(pa · pb)2(pb · nba)2

− 2(pa · nba)(pb · nba)(pa · pb)p2b + (pa · nba)2p4b − (pa · pb)2p2b
) 1

m2
b

+ 2
[
(pa · pb)2 − p2a(pb · nba)2 + (pa · nba)2(pb · nba)2

+ 2(pa · nba)(pb · nba)(pa · pb)− (pa · nba)2p2b
]

+
[
p2ap

2
b − 3p2a(pb · nba)2 + (pa · nba)2(pb · nba)2

+ 8(pa · nba)(pb · nba)(pa · pb)− 3(pa · nba)2p2b
]
yba

}
. (F.6)

This is the Hamiltonian for a many-point-mass system through 1PM approximation,
i.e., including all terms linear in G. It is given in closed form and entirely in terms of
the canonical variables of the particles.

The usefulness of that Hamiltonian has been proved in several applications (see,
e.g., Foffa and Sturani 2011, 2013a; Jaranowski and Schäfer 2012; Damour 2016;
Feng et al. 2018). Especially in Jaranowski and Schäfer (2012) it was checked that
the terms linear in G in the 4PN-accurate ADM Hamiltonian derived there, are, up to
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adding a total time derivative, compatible with the 4PN-accurate Hamiltonian which
can be obtained from the exact 1PM Hamiltonian (F.6). Let us also note that Damour
(2016) has shown that, after a suitable canonical transformation, the rather complicated
Hamiltonian (F.6) is equivalent (modulo the EOB energy map) to the much simpler
Hamiltonian of a test particle moving in a (linearized) Schwarzschild metric. The
binary centre-of-mass 2PM Hamiltonian has been derived most recently by Damour
(2018) in an EOB-type form and also the gravitational spin–orbit coupling in binary
systems has been achieved at 2PM order by Bini and Damour (2018) (for other 2PM
results see, e.g., Bel et al. 1981; Westpfahl 1985).

G Skeleton Hamiltonian for binary black holes

The skeleton approach to GR developed by Faye et al. (2004), is a truncation of GR
such that an analytic PN expansion exists to arbitrary orders which, at the same time,
is explicitly calculable. The approach imposes the conformal flat condition for the
spatial three-metric for all times (not only initially as for the Brill–Lindquist solution),
together with a specific truncation of the field-momentum energy density. It exactly
recovers the general relativity dynamical equations in the limits of test-body and 1PN
dynamics. The usefulness of the skeleton approach in the construction of initial data
needed for numerical solving binary black hole dynamics was studied by Bode et al.
(2009).

The conformally flat metric

γi j =
(
1 + 1

8
φ

)4

δi j (G.1)

straightforwardly results in maximal slicing, using the ADM coordinate conditions,

π i jγi j = 2
√
γ γ i j Ki j = 0. (G.2)

Our coordinates fit to the both ADM and Dirac coordinate conditions. The momentum
constraint equations now become

π
j
i, j = −8πG

c3
∑
a

paiδa . (G.3)

The solution of these equations is constructed under the condition that π j
i is purely

longitudinal, i.e.,

π
j
i = ∂i V j + ∂ j Vi − 2

3
δi j∂l Vl . (G.4)

This condition is part of the definition of the skeleton model.
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Furthermore, in the Hamiltonian constraint equation, which in our case reads

Δφ = − π
j
i π

i
j

(1 + 1
8φ)

7
− 16πG

c2
∑
a

maδa

(1 + 1
8φ)

(
1 + p2a

(1 + 1
8φ)

4m2
ac

2

)1/2

, (G.5)

a truncation of the numerator of the first term is made in the following form

π
j
i π

i
j ≡ −2Vj∂iπ

i
j + ∂i (2Vjπ

i
j ) → −2Vj∂iπ

i
j = 16πG

c3
∑
a

paj Vjδa, (G.6)

i.e., dropping fromπ j
i π

i
j the term ∂i (2Vjπ

i
j ). This is the second crucial truncation con-

dition additional to the conformal flat one. Without this truncation neither an explicit
analytic solution can be constructed nor a PN expansion is feasible. From Jaranowski
and Schäfer (1998, 2000c), it is known that at the 3PN level the hTTi j -field is needed

to make the sum of the corresponding terms from π j
i π

i
j analytic in 1/c.

With the aid of the ansatz

φ = 4G

c2
∑
a

αa

ra
(G.7)

and bymaking use of dimensional regularization, the energy andmomentumconstraint
equations result in an algebraic equation for αa of the form (Faye et al. 2004),

αa = ma

1 + Gαb
2rabc2

⎡
⎢⎢⎢⎣1 + p2a/(m

2
ac

2)(
1 + Gαb

2rabc2

)4

⎤
⎥⎥⎥⎦

1/2

+ pai Vai/c(
1 + Gαb

2rabc2

)7 , b 
= a.

(G.8)

With these inputs the skeleton Hamiltonian for binary black holes results in

Hsk = − c4

16πG

∫
d3x Δφ =

∑
a

αac
2. (G.9)

The Hamilton equations of motion read

ẋa = ∂Hsk

∂pa
, ṗa = −∂Hsk

∂xa
. (G.10)

We will present the more explicit form of the binary skeleton Hamiltonian in the
centre-of-mass reference frameof the binary,which is definedby the equalityp1+p2 =
0. We define

p ≡ p1 = −p2, r ≡ x1 − x2, r ≡ |r|. (G.11)
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It is also convenient to introduce dimensionless quantities17 (here M ≡ m1 +m2 and
μ ≡ m1m2/M)

r̂ ≡ rc2

GM
, p̂ ≡ p

μc
, p̂2 = p̂2r + ĵ2/r̂2 with p̂r ≡ pr

μc
and ĵ ≡ Jc

GMμ
,

(G.12)
where pr ≡ p · r/r is the radial linear momentum and J ≡ r×p is the orbital angular
momentum in the centre-of-mass frame. The reduced binary skeleton Hamiltonian
Ĥsk ≡ Hsk/(μc2) [it defines equations of motion with respect to dimensionless time
t̂ ≡ tc3/(GM)] can be put into the following form (Gopakumar and Schäfer 2008):

Ĥsk = 2 r̂(ψ1 + ψ2 − 2), (G.13)

where the functions ψ1 and ψ2 are solutions of the following system of coupled
equations

ψ1 = 1 + χ−
4 r̂ ψ2

√√√√
1 +

4 ν2
(
p̂2r + ĵ2/r̂2

)

χ2− ψ4
2

−
(
8 p̂2r + 7 ĵ2/r̂2

)
ν2

8 r̂2ψ7
2

, (G.14)

ψ2 = 1 + χ+
4 r̂ ψ1

√√√√
1 +

4 ν2
(
p̂2r + ĵ2/r̂2

)

χ2+ ψ4
1

−
(
8 p̂2r + 7 ĵ2/r̂2

)
ν2

8 r̂2ψ7
1

, (G.15)

where χ− ≡ 1 − √
1 − 4 ν and χ+ ≡ 1 + √

1 − 4 ν, with ν ≡ μ/M .
Beyond the propertiesmentioned in the beginning, the conservative skeletonHamil-

tonian reproduces the Brill–Lindquist initial-value solution. It is remarkable that the
skeleton Hamiltonian allows a PN expansion in powers of 1/c2 to arbitrary orders.
The skeleton Hamiltonian thus describes the evolution of a kind of black holes under
both conformally flat condition and the condition of analyticity in 1/c2. Along cir-
cular orbits the two-black-hole skeleton solution is quasistationary and it satisfies the
property of the equality of Komar and ADM masses (Komar 1959, 1963). Of course,
gravitational radiation emission is not included. It can, however, be added to some
reasonable extent, see Gopakumar and Schäfer (2008).

Restricting to circular orbits and defining x ≡ (GMω/c3)2/3, whereω is the orbital
angular frequency, the skeleton Hamiltonian reads explicitly to 3PN order,

Ĥsk = − x

2
+

(
3

8
+ ν

24

)
x2 +

(
27

16
+ 29

16
ν − 17

48
ν2

)
x3

+
(
675

128
+ 8585

384
ν − 7985

192
ν2 + 1115

10368
ν3

)
x4 + O(x5). (G.16)

In Faye et al. (2004), the coefficients of this expansion are given to the order x11

inclusively. We recall that the 3PN-accurate result of general relativity reads [cf. Eq.
(6.65)],

17 Let us note the they differ from the reduced variables introduced in Sect. 6 in Eq. (6.4).
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Ĥ≤3PN = − x

2
+

(
3

8
+ ν

24

)
x2 +

(
27

16
− 19

16
ν + 1

48
ν2

)
x3

+
(
675

128
+

(
205

192
π2 − 34445

1152

)
ν + 155

192
ν2 + 35

10368
ν3

)
x4. (G.17)

In the Isenberg–Wilson–Mathews approach to general relativity only the conformal
flat condition is employed. Through 2PN order, the Isenberg–Wilson–Mathews energy
of a binary is given by

ĤIWM = − x

2
+

(
3

8
+ ν

24

)
x2 +

(
27

16
− 39

16
ν − 17

48
ν2

)
x3. (G.18)

The difference between ĤIWM and Ĥsk shows the effect of truncation in the field-
momentum part of Ĥsk through 2PN order and the difference between ĤIWM and
Ĥ≤3PN reveals the effect of conformal flat truncation. In the test-body limit, ν = 0,
the three Hamiltonians coincide.
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