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CHAPTER I

INTRODUCTION

1.1 Motivation and Overview

The Standard Model of particle physics has proven to be enormously successful.
It describes all known fundamental particles and interactions, with the exception of
gravitation (which is not included in the model). The model, in its present form,
was completed by 1979. It was formed by joining the Weinberg-Salam electroweak
theory! with the theory of strong interactions,? Quantum Chromodynamics (QCD).
All of the fundamental particles in the Standard Model have been experimentally
verified except for the Higgs boson.

The model has withstood all experimental tests, except for recent measurements
indicating neutrinos can oscillate (mix) between flavors. Neutrino oscillations can be
accommodated by allowing neutrinos to have mass; they are massless in the Standard
Model. However, this is not a serious conceptual difficulty with the underpinnings of
the model. There are a number of extensions to the Standard Model which include
neutrinos with mass [1]. Any updated Standard Model, however, will likely include
more fundamental constants to account for this.

The large number of fundamental constants is one reason the Standard Model

is unsatisfying. There are 19 constants: 3 coupling constants, 9 masses, 3 mixing

IElectroweak theory combines electromagnetic forces with weak interactions. The most familiar
consequence of weak interactions is nuclear beta decays.

2Strong interactions bind protons and neutrons in the nucleus. Strong interactions are responsible
for most of the mass in the observable universe. Observations indicate the presence of more non-
luminous “dark matter” than can be accounted for by current cosmology.



angles, 1 phase, 1 Higgs self coupling, 1 Higgs-related constant with mass units, and
1 QCD vacuum energy parameter which determines the level of C'P violation allowed
in strong interactions [1]. The model gives no prediction for the values of these
constants. They are determined by measurements.

There are a number of approaches for testing a successful theory or model with
experiment. One way is to make more precise measurements. These measurements
may involve testing null or small predictions. Yet another strategy is to look in
untested regions. If a model has a history of success, all of these approaches likely
will provide further calculational challenges for theorists (since the easier calculations
have likely already been done and tested). This is especially true with the subject of
this thesis: D°-D° mixing.

Early predictions for D°~D° mixing in the Standard Model indicated an effect far
too small to be measured (assuming the Standard Model is correct). Further studies
found, however, that non-perturbative calculations are needed to make estimates
at the level of the experimental sensitivities. Most of the quantitative predictions
made by the Standard Model have involved perturbation theory.® Approaches for
non-perturbative calculations are not as well developed. At this time, it is not clear
whether errors in theoretical calculations can be made smaller than the experimental
sensitivities. This will depend in part on measurements not directly related to mixing
which are used as inputs to the calculations (see Sec. 1.3).

The following chapters present an analysis of mixing with data from the FOCUS

experiment at Fermi National Accelerator Laboratory. This chapter provides a brief

3Perturbation theory assumes the kinetic energies of the interacting particles are much greater
than the energy of the interaction.



introduction to D%~ D mixing and the FOCUS experiment. Chapter II describes how
the charm particles were produced. Chapter III describes the FOCUS spectrometer.
Chapter IV discusses reconstruction of basic quantities: momentum, position, and
particle type as well as initial data reduction. Chapter V discusses the simulation
of the experiment. Chapter VI describes the analysis methodology and Chapter VII
discusses systematic errors. Chapter VIII summarizes the results from this measure-
ment, results from other measurements, and discusses ongoing and future D°-D°

mixing searches.

1.2 D% D° Mixing

A D° meson is composed of a charm (c) and an anti-up (u) quark. D%s are
flavor eigenstates produced in strong interactions. Quarks also interact via the weak
force, which causes the eigenstate to evolve into a mizture of cu and cu. The weak

Hamiltonian, H,y, gives the time evolution of a D°/D° as*

i) D° D°
(2 — llwk
M —il'/2 My —il5/2 D° "
— : 1
My, —il%,/2 M —il'/2 D°

Note Hyy is not Hermitian since a D°/DP has a finite lifetime, 1/I". Diagonalizing

the weak Hamiltonian, Hyy, gives weak eigenstates

Dy =pD° 4+ ¢D° and Dy, = pD° — ¢D° (2)

4(Hyr)11 = (Hyp)22 in order to insure C'PT invariance.



with masses and lifetimes, My 1, and I'yy,. The constants, p and g are functions of M,
[, My, and I'yo. If Hyy conserves C'P, |p| = |q|, and Dy and Dy, are C'P eigenstates.
Experimentally, it has been found that |p| and |g| are nearly equal [2].

Starting with a D°, the probability of having a D° at time ¢ is:

2

[e_FHt + e Tt _ ge=(MutTL)t/2 cos(AMt)] (3)

1
Tmix(t) = - ‘g

4|p

where AM = (My — M) and AT' = (I'y — I'y). Since experimentally it is known

that AM < T" and AT"' < T', to a good approximation

2

1 q 1
mix(t) = — T2 AMZ _AFQ t2. 4
) = g ™[9] (8024 ] (@)
Defining x = AM/T and y = AT'/2T,

1 q 2

rmix(t) - Ze_rt - (.%'2 + y2)(rt)2 (5)
p
Integrating over all time gives

1 2

=5[] @ 402) ©)

Therefore, rmiy is the fraction of D’s decaying as D°’s. The fraction of D°’s decaying

‘13
q

Equation (7) differs from (6) in the interchange of p and q.

as D%’s is
2
(2% + 7). (7)

T'mix

(NSRS

1.3 Theoretical Predictions for D°-D° Mixing

[.3.1 Short Distance
The lowest order contributions to mixing in the Standard Model can be rep-

resented by the Feynman diagrams in Fig. 1 (so called “box diagrams”). The

4



|
D’ w= | { w- D’
| |
(0 d,s,b c
c %/ u
-
DY d, s, b d, s,b Do
-
u W= c

Figure 1: Box diagrams.

contribution from these diagrams is rpi, ~ 1071107, which is far below the mixing
calculated and observed in either s or b quark mesons. The strength of flavor changing
transitions among quarks is parameterized by a 3 x 3 unitary matrix in the Standard
Model. In terms of the elements, V;;, of this “Cabibbo-Kobayashi-Maskawa” (CKM)

matrix, the box diagrams give [3]
(D°|Hui D%) = > > Vi Vi Vs Vi S(i, ) (8)
(]

where S(7,7) is a function of the quark masses (m;) and ¢ and j run over the —1/3
charged quarks: d,s,b. The functions S(i,7) consist of integrals over the internal

quark momenta of the box diagrams. Unitarity of the CKM matrix, the small value

2

of (m?—m?2)/m?;,, the small value of V; V., and the large value of m, relative to my

and my all “conspire” to make this sum very nearly zero [4].
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Using unitarity, Eq. (8) becomes

<EO|HW1<|D0> = czl vud V:s VUS[S(da 8) + S(Sv d) - S(d> d) - S(Sa 8)]
+ V3 Vi V2 Vius[S (b, ) + S(s,b) — S(b,b) — S(s, s)]
(D°|Hyae| D°) = Vg Viua Vi Vs F((d, 8) + Vi Vao Vi Vs F(b, 8) + Vi Vs Vg Vaua F(d, b).
(10)
Note F(i,j) = F(j,i) and F(i,i) = 0. Since my < m;, and my < my, F(b,s) =
F(d,b) = F(b) (see [3] for details). Combining the last two terms in Eq. (10) then
gives

<E0|Hwk|D0> = cti Vud ch Vus F(dv 3) + ch Vub (ch Vus + c):i Vud)F(b)- (11)

The second term can be simplified by using the unitarity condition ViV, + ViV +

3Vup = 0. Thus
(D°|Hi| D°) = Vg Vua Ve Vs F(d, 8) — (Vi Va)* F (D). (12)
The first term can be simplified further. Using unitarity again:
Vs Vs Vea Vaa = =V Vs (Vi Vs + Ve, Vi) (13)
Also |V V| ~ 1073 V.2 V4| s0
Vit Vs Voig Vaa = = (Vs Vaus)? (14)

and Eq. (12) becomes

<EO|Hwk|DO> = _(ch VuS)QF(da 8) - (ch Vub)2 F(b) (15)
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(Vi Vip)? is 1.0 x 10° to 5.4 x 10® times smaller in magnitude than (V% V,,)?. Explicit
estimates of the integrals, however, show a factor of (my/my)? associated with the b

quark term compared to

mg —mg) (mg —my)

2 2
miy, ms

F(d,s) « ( (16)

for the light quark term [4, 3]. (m? — m3)/m}, reflects the fact that F(d,s) would
be zero if my = mg (“GIM” suppression [5]). (m2 —m2)/m?2 arises from momentum
transferred from the charm quark to the internal quarks. (This factor is generally
neglected in B and K° mixing since the dominant internal quark there is significantly
more massive than the external quarks.) Relative to the light quark term, the b quark

term is only

mi m? 1 1

c :
(m2 —m2)2 " <5.4 106 1.0 x 10

> ~ 0.015 to 0.079 (17)

times as large.
For mixing in K° (d3), B® (db), and B (sb), the internal loop quarks are the

charged +2/3 quarks: u, ¢, t.° The analogous expression to Eq. (8) is [6]
(BY|Hye| B®) = > > " Via Vs ViaVin S(i, ). (18)
i

The CKM factors for BY mixing are all of similar size, with the ¢ quark S(¢,¢) term
dominating: (B°|Hux|B%) ~ |VigVi;2S(t,t) ~ |Via|?> S(t,t). The S(t,t) integrals
produce a factor of m?/m3,. Comparing this with Eq. (16) for D° mixing, it is clear

the box diagrams are highly suppressed in D° mixing compared to B° mixing.

®DY mesons are the only experimentally accessible mesons which mix using the —1/3 charged
quarks for the internal loops. The two other (Standard Model) mesons which could do this, T° (uf)
and T? (%c), do not exist as bound states since the ¢ quark decays immediately.
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S(t,t) is also the largest term in B? mixing: (BY|Hy|B?) ~ |V, V2 S(t,t) ~
|Vis|* S(t,t). The BY mixing rate is expected to be roughly |V;,/Vi4|* times larger
than the B® mixing rate (recall the rate is the square of the amplitude). Mixing
in BY mesons has not been observed due to limited statistics. Limits on BY mixing
together with BY mixing measurements can be used to place constraints on |V,4| [6].

In K° mixing, the large S(t, j) terms are suppressed by the relatively small V;4V*
factors, so mixing is dominated by the S(c, ¢) term: (K°|H . |K°) ~ [V V| S(c, ) ~
|V.a|? S(c,c). (Although small, the S(t,c) term must be included to account for C'P
violation [1].) The S(c, ¢) integrals produce a factor of m2/m%,. Again, this is much

larger than the corresponding D° mixing factor shown in Eq. (16).

[.3.2 Long Distance

Since the internal quarks involved in D°-D° mixing are light, there are a large
number of intermediate hadronic states that can contribute to the amplitude for
mixing. Because the contribution from the box diagrams is so small, it is likely that
these intermediate “long distance” states dominate mixing. In K°-K° mixing, the
long-distance effects are comparable to the box diagram effects, however, the long-
distance effects largely cancel [7]. It is not clear to what degree long-distance effects
cancel in D%D° mixing.

Long-distance interactions are inherently non-perturbative. Two main approaches
have been used to estimate long distance contributions to D°~D° mixing: “dispersive”
approaches and “Heavy Quark Effective Field Theory” (HQEFT). Early dispersive
estimates for long-distance mixing indicated ry;, could be roughly as large as a per-

cent [8]. More detailed dispersive calculations [9] indicated mixing rates too small



to measure but still roughly a 100 times larger than the box calculation. Later cal-
culations using HQEFT indicated effects that are within a factor of ten of the box
calculation [10, 11]. More recent dispersive calculations indicate mixing might be
close to experimental limits [12, 13].

In dispersive calculations, the long-distance interactions are mediated by virtual
mesons. (For example, the D° can decay via a weak interaction into a virtual 7~ 7+
which then recombines via another weak interaction into a D°.) These interactions
are categorized as n-particle intermediate states related by SU(3) flavor symmetry
(i.e., they consist of mesons with the three closest mass quarks: u, d, and s). For
n > 1, the larger the symmetry breaking, the larger the mixing contribution. In the
limit of exact SU(3) flavor symmetry, the mixing contributions from each set of n
particles in the SU(3) group cancel exactly [9].

Consider for example the group of two charged pseudoscalars (spin zero): K=K,
- nt, K—nt, KTnt. SU(3) flavor symmetry is known to be badly broken in charm
decays. Experimentally [14, 15, 16],

BR(D® — K K*)
BR(D? — n—nt)

—=2.83+0.15 (19)

but this ratio would be 1 for exact SU(3) flavor symmetry and a pure spectator
diagram (i.e. weak interactions only) calculation yields a ratio of ~ 1.4 [17]. This gives
some indication that mixing from long-distance effects could be large [9]. Dispersive
estimates unfortunately depend strongly on experimental uncertainties of the D°
branching ratios. Because of these uncertainties, Standard Model mixing could be
near experimental limits [13].

Other dispersive examples come from 1-body (resonant) intermediate states.
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These involve particles with masses near the D° mass which can decay to the same
final state as a D°. Examples of such resonances include K (1830), K(1460), n(1760),
and 7(1800). These appear to give mixing rate contributions only within a factor of
ten of the box contributions but have implications for C'P violation [18].

The large effects seen in 2-body dispersive calculations are in contrast to the small
values obtained from HQEFT, which are the same order of magnitude as the box
diagram estimates. In HQEFT, the mass of the heavy quark (c here) is assumed to
be much larger than the scale of strong interactions (usually taken to be near 1 GeV).
This assumption is questionable but corrections are possible in principle. Since most
of the momentum is carried by the ¢, non-leptonic D° decays are forbidden to leading
order in HQEFT [10]. Long-distance effects are accounted for entirely by the running
of the renormalized mass below m..

There are at least two ways of reconciling the small values for mixing predicted by
HQEFT with the large effects seen in dispersive calculations. One is that the disper-
sive contributions among the individual SU(3) flavor representations cancel [10, 11,
13]. Another interpretation is that the approximation m. > 1 GeV/c? is inadequate
or corrections are large. Other leading order HQEFT calculations for charm (not mix-
ing) have had varied success [19, 20]. Next to leading order calculations have been
developed [21] as well as an alternative expansion scheme [22] (again in non-mixing
contexts). These provide some hope for improved Standard Model D% D° mixing

calculations in the future.
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[.3.3 Other Models and Comparisons of Predictions

Some theories predict extensions to the Standard Model which can give rise to
large mixing. Some examples of theories and models predicting mixing close to the
experimental bounds include: supersymmetry with quark-squark alignment [23], four
generation theories [24], and theories containing leptoquarks [25].

In general, both Standard Model and non-Standard Model predictions of mix-
ing vary by several orders of magnitude, as can be seen from the compilation by
Nelson [26] (shown in Fig. 2).

An observation of D°-D° mixing at present experimental sensitivities would indi-
cate either long-distance interactions (which are difficult to compute), or the presence

of non-Standard Model physics.

[.4 Experimental Signatures

To identify mixing one needs to know the flavor content of a neutral meson at
some initial time and again at some later time. If the meson has changed into its
antiparticle, then mixing has occurred. Since misidentification can mimic a wrong
sign signal, another indicator of mixing is useful. The proper lifetime® distribution for
mixed events is one such indicator. For D° mesons, the proper lifetime distribution
for mixing has a characteristic t?¢~1* dependence (see Eqgs. (5) and (6)). Events in
which mixing does not occur (an initial D° decays as a D°) have a proper lifetime
distribution proportional to e, within the approximations discussed in Sec. I.2.

A pure D° eigenstate can be produced in strong decays.” Traditionally, this is

6 «“Proper lifetime” means the decay time in the rest frame of the decaying particle.
TAt least this can be done in the Standard Model. In some unified field theories this may only
be approximately true.
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Figure 2: Theoretical “guidance.” The triangles are Standard Model predictions for
x, the squares are Standard Model predictions for y, and the circles are non-Standard
Model predictions for z. (Figure from H. Nelson, UCSB HEP 99-08, 1999, SLAC
SPIRES preprint hep-ex/9908021.)
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Figure 3: A candidate for mixing arises in D° — K~ 7+ decays when the pion from
the neutral D decay has a charge opposite that of the pion from the D* decay.

done with the decays D*t — D%r* and D*~ — D%, which is the approach taken
in this analysis. The D** decays essentially instantly after being produced. The
charge of the 7 identifies the initial flavor of the DO, since flavor is conserved in
strong interactions: D**(cd) — D°(cu) 7" (ud). The final D° flavor can often be
determined from its weak decay daughters. A mode frequently used to search for
mixing is D° — K 7% [27, 28]. This mode has the advantage of being relatively
easy to reconstruct. Candidates for mixing arise when the pion from the D*' has
an opposite charge (“wrong sign”) from the pion in the decay of the D° (see Fig. 3).
The lowest order Feynman diagram for D° — K7t is shown in Fig. 4. However
there are rare processes in which the daughters of the D° can decay into the “wrong

sign” without mixing. This occurs with Doubly Cabibbo Suppressed (DCS) decays

(Fig. 5). One can derive the proper lifetime distribution for wrong sign decays by
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Figure 4: Lowest order Feynman diagram for D° — K 7.

DO

Figure 5: Doubly Cabibbo Suppressed (DCS) decays of D° can also give rise to wrong
sign events. Both vertices involve cross generational transitions, thus the decay is
“doubly suppressed.” Although small, DCS decays likely occur at levels exceeding
mixing.
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combining the diagrams for DCS and mixing. Analysis of D° — K*7~ is interesting
in that it provides information about both DCS and mixing, however sensitivity to
mixing is somewhat impaired by fitting to a more complicated time distribution.

An approach which provides information about the y part of mixing (see Eq. (6)),
without measuring mixing, is to look for an asymmetry between the lifetime of the
CP even final state D° — KK, and the CP mixed final state D° — K 7" [29].

An approach which avoids the DCS complication is to look at semileptonic decays
of DY, such as D° — K~/v, [30] (Fig. 6). This is the approach taken for this analysis.
Although the mixing proper decay time distribution is simpler for semileptonic decays,
the neutrino () is not reconstructed, so both D** mass and D° decay time resolutions
are impaired compared to the fully charged hadronic decays. In semileptonic decays,
the charge of the lepton uniquely defines the flavor of the neutral D. When the muon
has a charge opposite that of the pion from the D* (“wrong sign” decays) mixing has
occurred (Fig. 7).

Reconstruction, backgrounds, and misidentification of semileptonic candidate

events are discussed in Chapters VI and VII.

[.6 The FOCUS Experiment

The data used in this analysis were collected in the FOCUS experiment during the
1996-1997 fixed target run at the Fermi National Accelerator Laboratory (Fermilab).
FOCUS/ES831 is a charm photoproduction experiment and an upgrade of FNAL-E687.
FOCUS has collected over one million fully reconstructed charm hadron decays.

The FOCUS collaboration consists of roughly 110 people from 17 institutions

in 5 countries (United States, Italy, Brazil, Mexico, and Korea). Table 1 lists the

15



Vi

Figure 6: Diagram for D° — K~/ v,. The charge of the lepton (or kaon) determines
the flavor of the neutral D.
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Figure 7: Wrong sign semileptonic decays indicate mixing.
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Table 1: Institutions participating in FOCUS. The FOCUS collaboration consists of
roughly 110 people from 17 institutions in 5 countries (United States, Italy, Brazil,
Mexico, and Korea).

University of California, Davis

CBPF (Brazil)

CINVESTAV (Mexico)

University of Colorado, Boulder

Fermi National Accelerator Laboratory
INFN and Frascati Laboratory
University of Illinois, Urbana-Champaign
Korea University, Seoul

INFN and University of Milano
University of North Carolina, Ashville
INFN and University of Pavia
Universidad Autonoma de Puebla (Mexico)
University of Puerto Rico, Mayaguez
University of South Carolina

University of Tennessee

Vanderbilt University

University of Wisconsin, Madison

institutions participating in FOCUS.

The FOCUS experimental hall is located at the Fermilab Wideband facility (wide-
band refers to the broad range of photon energies). The photons there were produced
from bremsstrahlung of electrons off lead nuclei. These real (as opposed to virtual)
photons are the highest energy real photons produced by humans with an average
triggered energy of ~ 175 GeV in FOCUS.®

Photons are well suited for producing charm mesons. A meson beam produces a
smaller fraction of charm hadrons relative to other hadrons than a photon beam. For

a photon beam:

Rate of charm production

~ 1%.

Rate of total hadronic production

8E687 ran with a higher energy but lower rate.
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For hadron beams, this ratio is ~ 0.1%. Qualitatively this difference arises from
flavor conservation in strong interactions—the u-d quark content of a meson beam
produces more u-d containing hadrons than charm mesons. The mechanisms for
charm photoproduction involve a photon resolving into a charm-anticharm pair within
a nucleon. With an electron beam this can be achieved via a virtual photon. In a
fixed target experiment, however, an electron beam also produces a large number of
unwanted electromagnetic interactions. With a real photon beam, however, electron-
positron and muon-antimuon pair production is a significant background. As we will
see, measures were taken in the experimental apparatus design to minimize the impact
of these backgrounds.

The following chapter discusses how the charm particles are produced. This is
followed by a chapter describing the spectrometer. Much of this material is drawn
from the extensive article, “Description and Performance of the Fermilab E687 Spec-
trometer” [31], which the reader can refer to for further details. FOCUS is a major
upgrade of E687. Nearly all detector systems changed in some fashion. Differences

between FOCUS and E687 will be noted explicitly.
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CHAPTER II

THE FOCUS BEAM LINE

II.1 Protons from the Tevatron

The acceleration of protons to near TeV energies proceeds through several types
of accelerators. Each accelerator is optimal for a particular range of energies. The
five accelerators used at Fermilab for the 1996-97 fixed target run are summarized
below and shown in Fig. 8.

Cockcroft-Walton: This accelerator consists of a repeating lattice of diodes and
capacitors [32] which builds up a single voltage gap of 750 kV. H™ ions are accelerated
across this gap and sent to the LINAC.

LINAC: This is an Alvarez type linear accelerator [33]. It has a coaxial type
geometry. The central conductor is split at intervals, forming “drift tubes” separated
by gaps. The drift tubes and outer conductor are connected to a radio-frequency (rf)
oscillator. This forms a resonant rf cavity with electromagnetic waves propagating in
the space between the tubes and outer conductor. The acceleration is provided by
roughly parallel electric field lines running across each gap. The field lines reverse
direction every half period of the oscillation. During the reversal, the ions are shielded
from the fields by traveling within a drift tube. Each successive drift tube is longer
than the previous, to account for the increasing velocity of the ions.

The H™ ions are accelerated by the LINAC to a kinetic energy of 400 MeV. They
then pass through a thin carbon foil which strips the electrons off, leaving a proton.

The proton is sent to the Booster.
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Figure 8: Schematic diagram of the Fermilab accelerators and beam lines.

II.1.1 Synchrotrons

The accelerators after the LINAC are synchrotrons. A synchrotron [33] has a
ring geometry, which enables a particle to pass through accelerating rf cavities many
times, reducing the number of rf cavities required. The beam is confined to a circular
path with magnets. The bending magnetic fields are synchronized to the momentum
to maintain a constant radius. Also, the rf frequency is synchronized to the arrival
time of the beam particles.

Charged particles moving in a bent path emit substantially more radiation than
a particle accelerating in a straight path. For a given momentum, the power emitted
by synchrotron radiation is inversely proportional to the fourth power of the mass.
This makes synchrotrons substantially less efficient for accelerating electrons than

protons.*

!The highest energy electron/positron accelerator is the Large Electron Positron (LEP) syn-
chrotron at CERN (European Organization for Nuclear Research) which reaches 100 GeV. The
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The resonant rf cavities [33, 34| in synchrotrons (and many linear accelerators) are
designed to operate at higher frequencies than the Alvarez type discussed above. The
coaxial design is generally replaced by one or more nearly enclosed cavities. A small
opening (iris) at each end of a rf cavity allows passage of the accelerated particles.
The size of the iris and shape of the cavity is designed to insure the phase velocity of
the enclosed electromagnetic wave is close to the velocity of the accelerated particles
(essentially ¢ in the Tevatron).? With this condition satisfied, there is no need for
shielding with drift tubes.

Three synchrotrons provided the remaining energy boosts for the protons used by
FOCUS. These are discussed below.

Booster: The Booster is about 500 feet in diameter and accelerates a group of
protons to 8 GeV. Twelve such groups are used to fill the Main Ring. A proton
goes around the Booster about 16,000 times to reach 8 GeV. The magnets used in
the Booster combine the functions of bending and focusing in a single magnet (the
Main Ring and Tevatron use dipole magnets for bending and quadrupole magnets for
focusing).

Main Ring: The Main Ring (now decommissioned) and Tevatron share the same
tunnel. This ring is about 4 miles in circumference. Conventional copper-coiled steel
magnets are used by the Main Ring to guide the protons as their energy is increased
to 150 GeV. The protons are then injected into the Tevatron.

Tevatron: In fixed target running, the Tevatron accelerates the protons to

800 GeV. The protons are held to a circular path by dipole magnets wrapped in

Large Hadron Collider (LHC) is being built in the same tunnel as the LEP collider. Protons are
expected to reach 7 TeV in the LHC.
2In general, the phase velocity is also a function of the frequency.

21



superconducting niobium-titanium alloy wire, cooled to below 4.5 Kelvin. As the
beam energy increases from 150 to 800 GeV, the magnets are ramped from 0.66 Tesla
to 3.54 Tesla. The rf cavities used for accelerating the protons operate at 53 MHz,
producing 18 ns spaced bunches of protons called “buckets” (about 1000 buckets are

required to fill the Tevatron).

I1.1.2 Proton Extraction
The Tevatron operates on a cycle of beam acceleration and extraction. During
the 1996-97 fixed target run, protons were accelerated for 40 sec and then extracted
slowly (to keep the intensity low) during a 20 sec “spill.” During extraction, the
protons were sent to the “switchyard” where the beam was split among the Proton,
Neutrino, and Meson areas. The beam in each of these areas was split further to the
various experiments. The Wideband Photon Lab, where FOCUS was located, is in

the Proton area.

I1.2 Photon Production and Energy Tagging

The photons in FOCUS are produced from bremsstrahlung of electrons and posi-
trons off nuclei in a lead radiator. The production of these electrons, and the removal
of other particles from the beam involves several stages, illustrated in Fig. 9.

Magnets are used in various places to deflect or focus charged particles. Dipole
sweeping magnets remove charged particles from the beam. Quadrupole magnets are
used to focus charged particles. Neutral particles are removed by means of a neutral
dump, with the electrons carried around the dump by means of dipole magnets.

The ultimate production of the photon beam can be traced in steps, as follows.
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Figure 9: Layout of the tagging system.
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A proton beam (800 GeV) from the main accelerator strikes the primary target
made of liquid deuterium. The low charge to mass ratio of a deuterium nucleus
maximizes hadronic interactions while minimizing electromagnetic interactions. This
interaction produces a large number of hadrons (mostly pions), the charged ones
being swept aside by magnets.®> Neutral pions decay instantly and primarily into
photon pairs. Some of these photons strike a lead converter producing e*-e~ pairs
in the region near a lead nucleus. The primary target is made of 3.4 meters of liquid
deuterium which provides one proton interaction length. A longer target would result
in an increase in e*-e~ pairs produced in the primary target rather than the converter.

The neutral dump collects the remaining neutral particles (except for neutrinos,

which rarely interact).*

The conversion electron passes through two sets of dipole
magnets. The electron path is bent with additional dipoles while passing through five
planes of silicon microstrip detectors, enabling a determination of the electron’s initial
momentum (“tagging” the electron). Finally, the electron reaches the radiator (20%
of a radiation length® of lead) to produce the final desired bremsstrahlung. Passing
through the radiator, the electron is swept aside by magnets into a Recoil Electron
Shower Hodoscope (RESH). The RESH consists of layers of Lucite scintillator and
lead and is split into thirteen segments so that the direction of the deflected electron is

measured in addition to its energy. (The central segment uses SiO; instead of Lucite,

for greater radiation hardness.) The remaining energy is possessed by the photon,

3Many of these hadrons give rise to “halo” muons in the downstream experiment which must be
“vetoed” (see Sec. II1.10.1 for further discussion).

“Interactions in the neutral dump (largely from K9’s and neutrons) also give rise to halo muons
(see above footnote).

5A “radiation length” is the mean amount of material needed to reduced the energy of an electron
to 1/e = 0.368 of its initial value, where the energy loss comes from bremsstrahlung. Bremsstrahlung
is the dominant mechanism for energy loss in high energy electrons.
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Figure 10: Photon energy from reconstructed D° — K n*, D° — K 7*rT7x~, and
Dt — K rntnT events. The smooth curve is a fit to a Gaussian.

which passes through the magnet undisturbed.® These photons continue on to be
used by FOCUS. A similar process is followed by the positron branch.

Photons which do not interact in the charm production target are measured in a
shower counter, the Beam Gamma Monitor (BGM) located at the end of the spec-
trometer. The BGM consists of 24 alternating layers of lead and SiO;. The BGM,
like the RESH, has a depth of 24 radiation lengths.

The mean photon energy for reconstructed D events is about 180 GeV (Fig. 10).

I.3 Charm Production Target

The beam photons can interact with one of four BeO target segments. The target
material and thickness is chosen to minimize e*-e~ pair production, multiple Coulomb
scattering and re-interactions, while maximizing charm production and the number
of charm decays outside of the targets. This requires a material with a small effective

Z/A. Be was used for the initial 20% of FOCUS data and all of E687. BeO actually

6Multiple high energy photons are produced in a small fraction of the bremsstrahlungs. The
thickness of the radiator was chosen to minimize the impact of multiple bremsstrahlungs on the
performance of the experimental apparatus.
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has a slightly higher effective Z/A than Be, but is 63% more dense than Be, so a
smaller thickness of BeO is required for the same number of interactions. The smaller
thickness allowed for silicon strips to be added within the target, closer to the primary

interaction. Further details on this silicon and target layout are in Sec. III.1.
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CHAPTER III

SPECTROMETER

The FOCUS spectrometer is illustrated in Fig. 11. The length of the spectrometer
is roughly 31 meters from the most upstream target face to the most downstream
muon filter face. The beam photons are incident on a segmented BeO target. Silicon
microstrip detectors are located between the target segments and also downstream of
the target. Five stations of proportional wire chambers and two separated, oppositely
polarized, magnets provide momentum measurements for charged particles. These
tracking and vertexing detectors provide FOCUS with a proper time resolution ~ 8%
of DO lifetime. Three threshold Cerenkov counters are used to discriminate between
protons, kaons, pions, and electrons.

For both muon and electromagnetic detectors there are inner and outer regions.
The outer regions measure wide angle particles which miss the inner detectors. Inner
muons are detected with an array of scintillating paddles with layers of iron serving
as absorbers of hadrons and electrons. Outer muons are detected with resistive plate
chambers with the downstream analysis magnet serving as an absorber. Two elec-
tromagnetic calorimeters identify electrons and photons. The inner electromagnetic
calorimeter consists of lead glass scintillator; the outer electromagnetic calorimeter
consists of plastic scintillator with lead layers.

The hadron calorimeter consists of iron absorber plates with scintillating tile. The
hadron calorimeter is used in the first level trigger.

Each of these detectors are detailed below.
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III.1 Target and Silicon Microstrips

Tracking and vertexing in the charm production and decay region is accomplished
with silicon microstrip detectors. Silicon microstrip detectors consist of parallel strips
of reverse biased p-n junctions. The junctions establish an electric field which pro-
duces a current from electron-hole pairs liberated by the passage of an ionizing par-
ticle.

The target and silicon microstrip layout is shown in Fig. 12. Four BeO segments
serve as targets for the photon beam. Two target silicon stations, containing two
perpendicular views in each station, are located within and just downstream of the
targets. Each view has a 25 micron pitch. The use of a segmented target and the
addition of target silicon is an improvement over E687. The use of BeO instead of Be
allowed more space for these modifications as well as increasing the cross section for

charm production slightly (BeO is denser than the previously used Be). As well as
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adding measuring stations closer to the primary interaction, the use of a segmented
target lessens confusion from hadronic interactions—charm frequently decays outside
the target.

Just downstream of the target region are four more stations of silicon microstrip
detectors (SSD’s) with three views in each station [35]. Each view has a 25 to 100 mi-
cron pitch. The vertex resolution in z (along the beam) is about 300 microns; in x
and y it is about 6 microns. This provides an average lifetime resolution of 0.028 ps
for charged two-body decays, using the combined silicon microstrip and target silicon
system.

A coincidence in the trigger counters on either side of the downstream microstrip
detectors is one component of the first level trigger. This coincidence selects events

originating from the target.

II1.2 PWC System

Tracking downstream of the upstream analysis magnet is done with proportional
wire chambers (PWC’s). PWC’s are gas ionizing detectors. As with other gas ionizing
detectors (RPC’s, proportional tubes, and Geiger-Muller tubes) a charged particle
passing through the detector ionizes the gas, electrons migrate towards the anode
(high voltage) and positive ions migrate towards the cathode (low voltage or ground).
The corresponding current due to this migrating charge is measured. Secondary
ionizations due to collisions between the accelerating electrons and ions create tertiary

ions and so on, forming an avalanche which amplifies the signal exponentially.! The

!There are actually several ionization mechanisms involved. See Sec. 6.2 of Leo [36] for further
details.
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anodes and cathodes in PWC’s consist of wires. Most of the avalanche is localized to
the intense field region near an anode wire.

The proportional wire chamber system consists of 20 planes arranged in five sta-
tions with four views per station. The stations are labeled PO, P1, P2, P3, and P4,
upstream to downstream. The views in each station measure YVUX, upstream to
downstream. The U and V anode wires run 11.3 degrees from the y-measuring anodes
(horizontal).

There are two types of stations. Type I (PO and P3) have an active region of
about 30 in. x 50 in. The anode wires are 0.8 mil diameter (1 mil = 1 thousandth
of an inch) gold-plated tungsten. The anode wire spacing is 80 mils. Cathode wires
are 2.5 mil diameter Cu-Be with a spacing of about 33 mils.

Type II stations (P1, P2, P4) have an active region of 60 in. x 80 in. The anode
wires are 1.0 mil diameter gold plated tungsten. The wire spacing is 130 mils. Cathode
wires are 3.5 mil diameter Cu-Be with a spacing of about 48 mils.

The gas mixture used was 75% Argon, 25% Ethane. Type I planes ran at 3.3

3.6 kV; type II ran at 2.8-3.2 kV.

IT1.3 Magnets
Two vertical-bending dipole magnets with opposite polarity were used for mo-
mentum determination. The magnets are identical in construction, apart from the
shielding plates. The magnets consist of a 66 inch thick steel yoke wound with copper
coils. The center of the coils contain a channel for water cooling.
The central field values were roughly 6.6 kGauss and 14.0 kGauss for M1 (up-

stream) and M2 (downstream), respectively. M1 had a momentum kick, p;, of
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0.400 GeV/c; M2 had a p; of 0.837 GeV /c.

Tracks spread out by M1 are refocused by M2. The focal point is chosen to
be near the inner-electromagnetic calorimeter. Electron-positron pairs are produced
profusely in the target. These are swept into a vertical swath by M1. The pairs
that pass the geometrical acceptance of M1 and M2 are refocused by M2. Several
detectors contain a vertical gap to exclude the pair region. These include: the outer
electromagnetic calorimeter (OE), the inner electromagnetic calorimeter (IE), the OH
trigger hodoscope (just upstream of the OE), and the HxV trigger hodoscope (located

just upstream of the IE).

II1.4 Straw Tubes

Straw tubes are gas ionizing detectors (gas ionizing detectors were described briefly
in Sec. IT1.2). For straw tubes, each anode wire is enclosed by a separate small cathode
tube (straw).

Three straw tube wire chambers, a new addition for FOCUS, cover the pair region.
One is located just upstream of each of the three most upstream PWC’s. Each straw
chamber contains three views—one z-measuring and two slant views £11.33 degrees
from vertical. Each view contains three layers of tubes. The straws are 5 mm diameter
mylar with an inner coating of copper. The central wire in each straw is 20 micron
diameter gold plated tungsten. The gas, a 50% argon, 50% ethane mixture, flowed
with a negligible positive pressure. The copper straw coating was held at ground; the

central wire at ~ 1.6 kV.
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Table 2: Cerenkov counter specifications [37].

Counter | Gas | Threshold (GeV/c) | Number | Ave. Number of
pion kaon proton | of Cells | Photoelectrons

C2 N.O | 45 159 30.2 110 8-11
C1 He-No | 84 297 56.5 90 2.5-3.6
C3 He 174 615 117 100 9

I11.5 Cerenkov Counters

When a charged particle traverses a medium faster than the speed of light in the
medium, a “shock-wave” of light is emitted in a cone similar to the shock-wave of
sound emitted when jet airplane breaks the sound barrier. This shock-wave of light
is referred to as Cerenkov radiation. The threshold speed for producing Cerenkov
light is 5; = 1/n where n is the index of refraction and 5 = speed/c. The half angle
of the Cerenkov light cone is given by 6. = arccos(1/(n3)). The number of photons
produced per unit pathlength of the emitting particle is proportional to sin?#6..

In FOCUS, three threshold Cerenkov counters provide discrimination between
protons, kaons, pions, and electrons. Table 2 summarizes the properties of these
detectors, including the momentum thresholds for producing Cerenkov light for vari-
ous species and the average number of photoelectrons detected in a phototube for a
Cerenkov cone contained within a cell (there is one cell for each phototube).

The Cerenkov counters in FOCUS are operated in “threshold” mode. The ADC
information in each cell is only used to determine if a cell has detected light or not.
For each particle hypothesis and counter, 6. and the expected number of photons is
computed. This information, together with the measured distribution of activated

cells, is used to determine a likelihood for each hypothesis (Sec. IV.4.1 describes this
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in more detail).
The design characteristics of the three Cerenkov counters are briefly summarized

below. A more detailed discussion can be found in [37] and [31].

II1.5.1 C1
C1 is the most upstream Cerenkov counter. The gas mixture is 57% He, 43% N,
(which differs slightly from the ratio used in E687). The length of the gas volume
along the beam direction is 71 inches. There are 90 cells; each cell consists of a
mirror and a phototube. Each phototube has a diameter of 2, 3, or 5 inches. The 2
and 3 inch tubes use collection cones to ensure complete light collection. A detailed

discussion of C1 can be found in [38].

I1.5.2 C2

C2 is located downstream of C1. C2 uses N,O gas and the length of the gas
volume is 74 inches. It has the lowest momentum threshold. There are 54 inner
cells and 56 outer cells. The inner cells contain 2 inch phototubes; the outer contain
5 inch phototubes. The faces of the tubes are coated with the wavelength shifter,
p-terphenyl. Each cell consists of a light collection cone and a phototube. The cells
are actually mounted along the east and west sides of the structure. An array of
mirrors direct the Cerenkov light into the cells. C2 contains a vertical gap in the

region of high photon and e™-e~ pair flux.
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II1.5.3 C3
C3 is the most downstream Cerenkov counter. It has the highest momentum
threshold. C3 uses He gas and the length of the gas volume is 277 inches. There are
100 cells. Each cell consists of a focusing mirror, light collection cone, and phototube.
The phototubes were coated with waveshifter p-terphenyl. The gaps between the
phototubes and gas volume windows were flushed with Ny to prevent contamination

from He diffusion through the windows.

II1.6 Inner Muon Detectors

The inner muon system uses three layers of steel to filter out electrons and hadrons.
Stations of scintillating paddles are positioned just downstream of each steel layer.
E687 used a combination of proportional tubes and coarse grained triggering scintil-
lator. For FOCUS, the proportional tubes were replaced with much faster scintillator
to greatly reduced false identification from the muon halo. The most upstream layer
of steel/scintillator was also a new addition for FOCUS.

The most upstream layer of steel is 24 inches thick followed by z-measuring and y-
measuring scintillator (MH1X and MH1Y). The next layer of steel is just downstream
of MH1Y and is 24 inches thick. This is followed by more scintillator (MH2X and
MH2Y). Downstream of this is the most downstream layer of steel (27 inches) followed
by the final scintillator array (MH3UV) arranged in a slanted “V” configuration 30

degrees from horizontal.
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II1.7 Quter Muon Detectors

The outer muon (OM) system consists of an array of resistive plate chambers
(RPC’s) located between the downstream analysis magnet (M2)? and the P3 PWC
(very little overlap with the RPC’s). M2 serves as a filter of hadrons and electrons.
Eight towers of chambers are arranged around the M2 aperture. Each tower consists
of three chambers—an x-measuring, a y-measuring, and a slant view (45 degrees),
for a total of 24 chambers. The 3 ¢m wide read-out strips were OR’ed into effective
12 cm wide strips in order to reduce electronics and cabling. Due to multiple Coulomb
scattering in the magnet iron, 12 cm provided sufficient resolution.

Collaborators from Vanderbilt and Pavia were responsible for testing and installing
the outer muon system as well as developing the read-out and trigger electronics. The
author of this thesis assisted in this process, and had the primary responsibility for
developing the OM reconstruction and simulation software.

The outer muon system in FOCUS completely replaced the proportional tubes
and scintillator used in E687. RPC’s are insensitive to magnetic fields and there are
no phototubes requiring shielding. Since RPC’s are operated in “streamer” mode
(discussed below), no amplification of the signals was required before discriminating.
In addition to quenching gas, the high resistance in an RPC limits the region of the
ionization avalanche.

RPC’s are gas ionizing detectors (described in general terms in Sec. II1.2). The
RPC’s used in FOCUS were built by General Technica, in Colli, Italy. They contain
two gaps with a single readout layer as shown in Fig 13. A double gap provides larger

signals, as well as eliminating the slight inefficiency from the gap spacers (the spacers

2 Actually, located downstream of the M2 mirror plate.
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Figure 13: Cross section of a FOCUS RPC module (not to scale).

are staggered to prevent them from overlapping between layers). The high voltage
ground planes are made of bakelite with a volume resistivity of about 10*! Q cm. The
readout strips lie between the ground planes and consist of aluminum coated plastic.
The outer faces of the high voltage planes are coated with conductive graphite to
deliver a uniform voltage. The ground and high voltage planes were treated with
linseed oil on the gap facing sides, ostensibly to smooth the surface and improve field
uniformity [39]. The planes are encased in foam and aluminum and reinforced with
stainless steel “u-channels.” Six of the eight towers used RPC’s which were 1 m across
and 1.6 m high. The two towers on either side of the magnet aperture used 1.8 m
high RPC’s.

If the applied voltage between the cathode and anode is high enough, a physical
limit known as “breakdown” or the “Raether limit” is reached. Because of their
high operating voltages (> 4.5kV), breakdown is always reached in RPC’s. At these
voltages, many avalanches would spread along the length of the detector if they were
not prevented by a “quenching” gas. These non-localized avalanches are caused by

UV photons which are emitted as electrons recombine with ions [36]. A quenching
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gas absorbs these photons and disperses their energy.

The measured current needs to be localized to be translated into a position mea-
surement. In a RPC this is achieved by the extremely high resistance (~ 10'! € cm)
of the ground and high voltage planes. The charge removed from the ground and
high voltage planes during a discharge cannot be restored over the duration of the
discharge (~ 10ns). The relaxation time of the plates is roughly 10~%s. Roughly
0.1 cm? remains inactive during the relaxation time [40]. The rapid drop in potential
difference in this small area helps in quenching the avalanche. The choice of gas
also serves to quench the avalanche—isobutane or CO4 captures UV photons emitted
from electron-ion recombination. Freon, with its high electron affinity, also reduces
the region of the discharge [40].

Two gas mixtures were used in FOCUS. The first was chosen for its low flamma-
bility and relatively low voltage required (5.8 kV) [41]. This mixture was: 71% Argon,
8% Isobutane, 5% Freon 13B1, and 16% CO,. Using this mixture in normal running
conditions, we found the pulse height distributions to have very long tails. These
long pulses caused the RPC’s to frequently draw too much current. About a quarter
of the way through the run, we switched to using a more conventional gas mixture:
4% Freon, 42% Isobutane, and 54% Argon (8.1 kV operating voltage). This did not
have the long pulses and high current draw.

The OM was also used for triggering. The OM produced two types of trigger
inputs, indicating either at least one or two active towers (to signal one or two muons).
For a tower to be considered active, a signal from at least two views was required
within a tower. The two hit trigger required the two active towers be non-adjacent

(to eliminate triggering on a single muon passing through two towers). The center
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top and bottom towers were not used for two hit trigger due to eT-e~ pairs.

II1.8 Electromagnetic Calorimeters

In a calorimeter, the energy of an incident particle is dispersed into a shower of
lower energy particles which can be more effectively detected and contained. Near
the start of an electromagnetic (EM) shower, bremsstrahlung and e*e™ pair produc-
tion are the dominant processes; near the end, ionization and Compton scattering
dominate.

The inner and outer electromagnetic calorimeters detect electrons (more precisely
EM showers) and photons. They are also used to reconstruct %, which decay into

photons.

II1.8.1 Inner Electromagnetic Calorimeter

The Inner Electromagnetic Calorimeter (IE) consists of a layer of 802 lead glass
blocks 60.2 cm deep (18.8 radiation lengths and 2.2 proton interaction lengths).
Cerenkov light (Sec. II1.5) produced within the blocks is detected by photomulti-
plier tubes. Each lead glass block has a 5.8 x 5.8 ¢cm? square face. The detector is
split in half by a 5.5 inch wide vertical pair gap. Each block is wrapped in aluminized
mylar which reflects produced light into a photomultiplier tube attached to the end.

The glass blocks are of type F-2 manufactured by Schott Glass Technologies, Inc.
Type F-2 glass is composed roughly of 45% silica, 45% lead oxide, 5% sodium dioxide,
and 5% potassium oxide by weight.

For calibration purposes, light from xenon flash tubes was distributed to each

glass block by fiber optics during each inter-spill. This calibration was checked and
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corrected throughout the run by reconstructing 7°’s.

The IE was also used for triggering. Three types of trigger inputs were formed
with the IE: a sum of the entire IE energy, a sum of the transverse energy, and a
trigger to select J/1) — eTe™ decays. Energy sums are formed from six nearly square
regions (sextants). Three sextants are on each side of the pair gap. The J/v¢ trigger
required about 20 GeV deposited in two non-adjacent sextants (sextants separated

by the pair gap are considered non-adjacent).

[11.8.2 Outer Electromagnetic Calorimeter

The Outer Electromagnetic Calorimeter (OE) detects electrons and photons in the
outer region of the spectrometer. It consists of alternating layers of aluminum, lead
(stiffened with 6% Sb (antimony) by weight), and scintillator. Its outer dimensions are
255 x 205 cm?. This corresponds to an angular acceptance of 28 < 10| < 142 mrad
and 49 < 0,| < 114 mrad. A 9 cm wide vertical gap excludes the e*e™ pair region.

The scintillator layers are made of strips arranged in horizontal, vertical, and slant
views (45° and 135°). Extra layers were added for FOCUS and a scintillating tile “tie
breaker” was added. The tie breaker is a single plane of 100 tiles. The x and y hits
from two photons give four possible positions. The tie breaker, together with the
slant views, help resolve this ambiguity.

The OE also adds 23 cm of equivalent iron absorber for the outer muon system.

II1.9 Hadron Calorimeter

The theory of showers produced from hadronic interactions is not as well under-

stood as the theory of EM showers. Descriptions of the shower evolution are largely
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empirical. In a hadronic shower, multiple hadrons are produced in each interaction
within the shower. Many 7%’s can be produced which gives rise to a significant EM
component to the shower. The EM component can vary considerably. In addition, a
variable fraction of the energy is invisible (not measurable). Invisible energy goes into
breaking up absorber nuclei or into neutrinos or muons which escape the detector.
A more extensive introduction to hadronic and EM showers, with references, can be
found in [42].

To enhance selection of hadronic events over eTe™ photon conversions, an energy
requirement of ~ 20 GeV in the Hadron Calorimeter (HC) was included in the first
level trigger. For this reason, the HC had to have a fast response, large acceptance
(~ 100 mrad), and fairly good energy resolution. The sampling gas hadron calorimeter
from E687 was replaced with scintillating tile with a fiber readout in FOCUS. The
existing HC iron structure was retained.

The HC consists of 28 iron plates interspersed with 0.7 cm thick scintillator planes.
The first two plates are 6.4 and 5.1 cm respectively; the remaining plates are each
4.4 cm thick. This corresponds to a total of 7.8 proton interaction lengths and 72.7
radiation lengths. Each scintillator plane is formed from 66 tiles of different size (see
Fig. 14).

Blue scintillation light was converted to green by wavelength shifting plastic fibers.
The fibers in each tile were thermally fused to clear fibers which transmitted the light
to photomultiplier tubes (PMT) via a square mixing block interface. The PMT
outputs were sent to 15 CAMAC summer cards. The outputs of each summer were
integrated. Four different integrators ran continuously, with two operating during

any given clock cycle (the 18 ns accelerator rf).
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Figure 14: Hadron Calorimeter schematic.

Accounting for all time delays, a trigger signal from the HC was available for the
first level trigger 0.34 us after an interaction in the target. The HC trigger reduced
the first level trigger rate by about a factor of 100 to about 3 kHz.

Two systems were employed to monitor the HC response: a %Co source and a
laser system. Calibrations were performed with muons and pions. The measured
energy resolution was oz /E = 85%/vE +0.86% (a significant improvement over the

E687 HC (05/E = 132.6%/VE)).

II1.10 The Trigger
A trigger is the logic used to select interactions with physics of interest and re-

ject uninteresting background events. FOCUS had roughly 10® interactions per spill
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(~ 20 seconds) and only triggered on about 3 x 10* per spill. The triggered events
were mainly hadronic, the rest were mainly electromagnetic (e*e™ and p*pu~ pairs).
FOCUS had two levels of triggers: the first level, or Master Gate (MG), and the
second level. The MG makes a fast initial selection. If the MG criteria are satisfied,
then the second level trigger starts. If the event passes the second level trigger, the
event is read out to be eventually written to tape, otherwise the readout electronics
are cleared and reset. It takes about 160 ns for signals from the spectrometer to reach
the triggering electronics, with a MG decision made about 40 ns later. The second
level trigger decision is made 1200 ns after the MG. Reseting takes about 1000 ns.
It takes about 60 us to readout an event, during which time no other events can be

triggered.

II1.10.1 Trigger Elements

The following is a discussion of the origin of the various trigger signals.

Triggering Scintillators

Several stations of scintillator arrays were used to trigger on or veto certain classes
of events. These are described below.

TR1 is a 1.6 mm thick scintillator lying just downstream of the target silicon
(Fig. 12). It is used to indicate an interaction in the target.

TR2 lies just downstream of the silicon microstrip detectors (Fig. 12) and indi-
cates that a charged particle has entered the aperture of the M1 magnet. This counter
consists of four separate pieces of scintillator arranged in quadrants with roughly 1 cm

overlap at the edges (the intersecting corners at the center are chopped off so that the
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overlap is at most two layers). The signals from the four are combined with a logical
OR. All of the “Master Gate” (first level) triggers require a coincidence of TR1 and
TR2.

HxXYV is an array of 36 counters arranged in two layers with a conversion pair
gap, positioned just upstream of the IE. “H” refers to the horizontal pitch layer, “V”
refers to the vertical pitch layer. The output of the counters is fed into a fast logic
module which produces two possible output signals: (HxV); or (HxV)s,, indicating
one or two charged particles detected respectively.

OH is a layer of 24 counters positioned just upstream of the OE. It contains a
central gap the size of the M2 aperture as well as a vertical pair gap. The signal OH;
from this array signifies at least one charged particle was measured.

IM1 & IM2 are located close to the MH (muon hodoscope) counters (Sec. I11.6).
IM1H is just downstream of MH2X; IM1V is just downstream of MH2Y; IM2H is
just upstream of MH3UV. The IM counters cover a larger acceptance but have worse
resolution than the MH arrays. The IM counters are only used for triggering. Two
outputs are derived from the IM arrays—IM; and IMs, signifying one or two muons
detected.

AM & AMD are located just upstream of the charm production target, sur-
rounding the beam. A coincidence in these two counters is used to veto muons
arising from the primary production target (the target for the proton beam discussed
in Sec. I1.2) and the neutral beam dump. Since these “halo” muons are produced far
upstream, they have very small angles in order to reach the charm production target

region (Sec. I1.3). A signal from these counters is used to veto certain muon triggers.
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Triggers from Other Detectors

Various detectors formed a trigger signal based on an OR or sum of active detector
subsystem outputs. Triggers were formed from the HC (Sec. II1.9), IE (Sec. I11.8.1),

and OM (Sec. II1.7) detector outputs.

I11.10.2 The Master Gate
As discussed above, the Master Gate (first level trigger) makes an initial fast
decision to begin reading out an event and start the second level trigger.
Information from the trigger elements listed above is fed to the Master Gate
module [43], which outputs eight trigger types (MG1-MG8). Most of the data for

this analysis comes through the hadronic MG trigger:

where the “” denotes the logical AND and “+” denotes the logical OR. Fyp is

summed HC energy greater than 18 GeV.

IT1.10.3 Second Level Trigger
In the second level trigger, additional requirements are made along with MG1:
enough PWC hits for at least four tracks are required (MULT4) and some electro-

magnetic energy in the IE. The hadronic second level trigger is then:

TRIG1 = MG1 - Ejg 2 - MULT4.
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III.11 Data Acquisition System

Data passing the second level trigger is saved to 8 mm tape for later analysis.
The Data Acquisition System (DAQ) converts the various digitized detector signals
into a serial format to be written to tape. It has to deal with a variety of input
formats. These include some standard formats such as PCOS (Proportional Chamber
Operating System) used by the PWC’s and FERA (Fast Encoding and Readout ADC)
used by the straw chambers, but generally each detector has a unique format.

Figure 15 illustrates the DAQ schematically. Signals from the various detectors
are carried via coax or ribbon cables into modules in CAMAC? crates.? Various
sorts of processing is done there depending on the detector, including time-to-digital
conversion (TDC), analog-to-digital conversion (ADC), compression, discrimination,
latching, etc. The modules produce ECL® outputs.

Each ECL signal is sent to a DYC+P° [44] which packs the 16 bit words received
into 32 bit words. The DYC+ buffers a sub-event” of data. When a DYC+ or the
FSCC receives a “token,” the sub-event is transferred to the DDD via the RS-485 bus.®
The DYC+ then sends a token to the next DYC+, to allow it to release its buffered
sub-event to the RS-485 cable. Tokens are sent along in a circular fashion. DDD is
an acronym for three modules which receive, buffer, and sequence the input from the

RS-485. The result is sent along a VME bus to a SGI Challenge L workstation. The

3Computer Automated Measurement and Control—a widely used electronics standard developed
by the European Standard of Nuclear Electronics.

4Signals from the calorimeters and part of the output of the Cerenkov system bypass the CAMAC
and are digitized by Fastbus ADC’s.

SEmitter-Coupled Logic handles very fast signals, but with close logic levels: -0.9 V and -1.75 V.

SDamn Yankee Controller—designed by the Fermilab Physics Department.

TA sub-event is the digitized and encoded data generated by a single detector system (or by part
of it) in response to a trigger signal.

8The RS485 standard allows for up to 10 Mb/s with up to 32 drivers and receivers.
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Figure 15: Schematic of the DAQ layout.

workstation buffers the data on disk and later writes it to tape.
The DAQ logged 1500 to 2000 events per second, with a typical event size of 4 kB.

The livetime was typically 85-90%. For more details on the DAQ see [45].
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CHAPTER IV

DATA RECONSTRUCTION

In this chapter, we discuss general reconstruction and data reduction techniques
used in FOCUS. The emphasis will be on techniques that are either typically used

in every FOCUS analysis or that are pertinent for semileptonic analyses.

IV.1 Tracking

Tracks in the SSD and PWC systems (Secs. III.1 and III.2) are initially recon-
structed separately (although the SSD is used to “seed” the search for tracks in the
PWC). Keeping the two systems separate proved useful for identifying and measuring
relative position offsets between the SSD and PWC regions.

The tracks from the two systems are then “linked.” Linked tracks generally con-
sist of long-lived particles (electrons, muons, pions, protons, kaons). Unlinked tracks
arise from particles that either decay to longer lived particles, or which leave the spec-
trometer acceptance before reaching the PWC’s. A typical charm event contains a
“primary” vertex where the photon-nucleon interaction produces the charmed parti-
cles (typically a charm containing and an anti-charm containing particle) along with
a number of other particles (five charged primary tracks is typical), mostly pions.
Although they have no momentum measurement, unlinked tracks are included in the

primary vertex to further pin down the position of the primary.
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IV.1.1 SSD Tracks

The formation of SSD tracks proceeds in three stages. First clusters are formed,
then clusters are used to make separate projections in each view (measurement di-
rection), and finally the projections are combined into tracks. Only the four silicon
microstrip stations downstream of the target are used for track finding. The target
silicon (TSSD) is used later to improve track and vertex parameters.

Groups of up to three active strips are used to form clusters. The integrated
charge collected by the clustered strips, as determined from ADC (analog-to-digital
converter) counts is required to be consistent with the expected charge for a single
minimum ionizing particle (MIP). By weighting the position of each strip in a cluster
by its ADC counts, the centroid of the cluster is determined (this approach is referred
to as “pulse height sharing”). Projections are created from the cluster positions.

Hits in at least three of the four planes in a given view are required to form a
projection. Each projection is required to be consistent with a line with a x?/dof (chi-
square per degree of freedom) less than 3. A group of projections from the three views
is considered a track if they are consistent with a line with a y2/dof < 8. Tracks with
shared projections are arbitrated by using the one with the lowest y?/dof. Tracks
with nearly identical parameters are reduced to a single track.

The efficiency for reconstructing SSD tracks increases with increasing momentum.
The resolution also improves with increasing momentum, since there is less multiple
Coulomb scattering. For a track traversing the central region of the SSD’s, the res-

olution of the intercept of a SSD track projected back to the center of the target in
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where p is the track momentum and 11.0 um and 7.7 um account for the SSD strip
granularities. Tracks traversing the outer portion of the SSD have a resolution twice
as large. Instead of using the centroid for the the cluster position, E687 used the
position of the strip with the most ADC counts. The centroid approach provides a
roughly 10% improvement over the errors in Eq. (20). In addition, the target silicon

typically improves the resolution by a factor of 1.2—1.5.

IV.1.2 PWC Tracks

The search for PWC tracks is “seeded” with the z-measuring components of the
SSD tracks (the magnets bend trajectories predominantly in the y direction). Hits in
the PWC z views are matched to the extrapolated SSD tracks. Projections in the y,
u, and v PWC views are then combined with the x projection to form tracks. Unused
x hits are then used to form more projections for additional tracks.

A number of requirements are made on tracks. The x projections found from SSD
tracks must have hits in PO. A track must have hits in at least three chambers. There
can be no more than four missing hits, with a maximum of two missing in a single
chamber. A least squares fit is performed on tracks to determine track parameters
(slopes, intercepts, and M2 magnet bend) and x?/dof. Various corrections are made
to the least squares fit to account for the full spatial variation of the magnetic fields.

Tracks with hits in all five chambers are confusingly called “tracks” and tracks

with hits only in the first three chambers (before M2) are referred to as “stubs.”
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Tracks terminate in the inner region of the spectrometer; stubs terminate in the
outer region.

There are other categories of tracks which do not have to meet the same restrictions
as those discussed above. These include four chamber tracks which miss P3 or three
chamber tracks missing both PO and P3 (the smaller chambers). The later generally
arise from halo muons, which are useful for various studies. Also, wide angle tracks
with hits only in PO and P1 are seeded with microstrip tracks. Tracks from particles
which decay upstream of P2 need not have hits in P0. These include “vees” (vertexed
tracks) and “kinks” (charged particles which decay into a charged particle and a
neutral particle). A discussion of vees and kinks can be found in Secs. 4.1.5 and.
4.1.6 of Ref. [31].

Events containing more than 30 tracks or 600 PWC hits are discarded since these

take a long time to reconstruct. This discards a few percent of the events.

IV.1.3 Linking
In order to associate a momentum with a SSD track, the SSD track must be
“linked” to a PWC track. The slopes and intercepts of SSD and PWC tracks are
required to be consistent at the M1 bend center. If this is the case, a global least
squares fit is made using both PWC and SSD hits. The x?/dof resulting from this
fit is used to arbitrate links. A maximum of two PWC tracks is allowed to be linked
to each SSD track. Excluding double links reduces e*e™ pair contamination (the

initially close pairs are split apart by the M1 magnetic field).

ol



IV.2 Momentum Determination

Momentum is computed from the bend induced by the two analysis magnets.
The bend is found by comparing track parameters upstream and downstream of each
magnet.

The momentum of five chamber tracks is determined from M2 (which has a higher
field and therefore larger bend than M1). The track parameters and magnetic field
are input to the fit. The computed momentum and improved track parameters are
fit iteratively.!

The momentum for linked stubs and four chamber tracks is determined from
SSD track parameters and the PWC track parameters between M1 and M2, and the
magnetic field of M1. Again, the computed momentum and track parameters are fit
iteratively.

Unlinked stubs have no SSD track, so the origin of the stub is approximated to

2 Unlinked tracks and unlinked stubs are not used in the

estimate the momentum.
analysis in this thesis.

In E687, the momentum resolution for stubs was

op D 17 GeV/c\?

— =0.034 x —————/1 _ 21

P x 100GeV/c\/ + < P (21)
and the momentum resolution for tracks measured in M2 was

ap D 23GeV/c\>

—+ =0.014 x ————4/1 . 22

P . 100GeV/c\/ * < P (22)

Slight changes were made in some of the PWC positions and wire spacings for FOCUS.

!For five chamber tracks, the momentum is also separately computed from the M1 bend. The
energy lost due to bremsstrahlung of electron candidates is less in the weaker field of M1. In this
case, M1 can give a more accurate determination of the initial momentum.

2To approximate the origin, the z-projection of the stub is extrapolated back to the target region
and the nearest vertex is selected as the origin. If there is no vertex, the center of the target material
is used as the origin.
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IV.3 Vertexing

In FOCUS, the calculation of vertices is made with a software package called
DVERT. The search for vertices is “candidate driven,” meaning tracks which pass
some requirements decided by the user are selected as candidates for coming from
the same vertex. The candidates are “booked” in DVERT. Based on a x? calculation,
DVERT then computes a vertex position for the selected tracks, and a confidence level
for this vertex hypothesis. This “Dee” confidence level (or DCL) is usually required
to be greater than 1% (the user decides the level appropriate for his or her particular
analysis). Information from the target silicon is incorporated in this calculation.

DVERT also contains specialized routines for locating primary (production) vertices
as well as various algorithms for determining the degree of isolation of a vertex from

other decays. The algorithms used in this analysis are detailed below.

IV.3.1 Primary Vertex

The algorithm most commonly used in FOCUS to locate primary vertices in
semileptonic analyses is called DVFREE. DVFREE is called a “free form” vertex finder
to distinguish it from candidate driven vertex finders. When a D° decays semilepton-
ically, the full energy of the D° cannot be computed from the D° decay daughters, so
the D° momentum direction is not available to point back to the primary. However,
the candidate D° daughters, which form a “secondary” vertex, are excluded from
consideration as primary tracks.

DVFREE works as follows. A seed track is selected arbitrarily. Then tracks are
combined with the seed track to form a vertex. A track is kept in the vertex if the

confidence level of the vertex remains above 1%. The tracks are not accumulated in
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any particular order. When all tracks have been tried, a new seed track is selected
from among the tracks that haven’t been included in a primary and the process is
repeated to create another candidate primary vertex. Each track can appear in any
number of primary vertices, except for a seed track which can only appear in the
primary that it spawned. This procedure is repeated until no more seed tracks are
available.

From among the list of candidate primaries, some criteria is used to select one. A
common choice is to select the primary containing the most tracks. This is what is
done for this thesis analysis. Ties are arbitrated by selecting the most upstream of
the tied primaries. A new set of primaries is found for each secondary (D° candidate),

since this changes which tracks are excluded from the primary.

IV.3.2 Vertexing Cuts

Detachment and isolation variables are among the most powerful tools for reject-
ing non-charm and combinatoric backgrounds. The optimal values of cuts on these
variables depends on the particular analysis. Consequently, the most generic data re-
duction stages (“skims” discussed in Secs. IV.5.2 and IV.5.3) usually have very loose
detachment requirements and no isolation requirements.

The detachment between a primary and secondary vertex is quantified by L/oy,
where L is the distance between the two vertices and o is the error on L. Since
charmed particles tend to be long-lived, a cut on this variable is highly effective at
rejecting short-lived non-charm backgrounds.

A related quantity is the number of sigma outside of the targets of the secondary

vertex position. Most charm produced in FOCUS decays outside the target material,
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so this is an effective variable for eliminating backgrounds arising from interactions
in material. It is not used at the skim level.

Once modest particle identification and detachment requirements are made, the
isolation variables are the most effective cut variables in this analysis. They are
evaluated as the maximum confidence level (CL) that additional tracks are consistent
with a vertex. Therefore, cuts on these variables eliminate high CL’s. The three
isolation variables used in this analysis are described below.

Isol cuts require the secondary candidates be inconsistent with coming from the
primary vertex. The CL of the primary is recomputed with each secondary track
included in the primary. The highest resulting CL is the value of isol.

Iso2 cuts require all tracks except the secondary candidates and tracks from the
primary be inconsistent with coming from the secondary vertex.® The secondary and
primary tracks are added to an exclusion list. Each track not in the exclusion list is
separately added to the secondary, and the CL of the secondary (DCL) is recomputed.
The highest resulting CL is the value of is02.4

Iso3 is the same as iso2 except rather than adding all tracks from the primary
to the exclusion list, only one of the tracks from the primary is excluded (e.g., the
pion candidate in D** — DYz ").5 This is a more restrictive cut than iso2 and is
used in this analysis only to arbitrate among different 7 candidates for the decay

D*t — D™,

3Tracks from the primary tend to point roughly towards the secondary vertex, so isolating them
from the secondary would lead to an overly harsh cut.

4This is sometimes labeled iso2ex, to distinguish it from the case where primary tracks are not
included in the exclusion list.

5A note to FOCUS collaborators: this is not the same “iso3” in SEZDEE.
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IV.4 Particle Identification

Information gathered from the detectors described in Secs. III.5-II1.8 is used to
identify the type of particle (electron, muon, pion, kaon, or proton) associated with
each track. The algorithms used to identify these particles are described below.

The Cerenkov detectors are used to distinguish between electrons, pions, kaons
and protons. The masses of muons and pions are too close for the Cerenkov to
be useful in distinguishing them, so dedicated muon detectors are used for muon
identification. The momentum thresholds for the Cerenkov detectors prevents them
from distinguishing between electrons and pions at high momentum (above about
8.5 GeV/c for stubs and 17.4GeV/c for tracks). The electromagnetic calorimeters

are needed for electron identification at these higher energies.

IV.4.1 Cerenkov

The FOCUS Cerenkov identification algorithm [46] is called CITADL (Cerenkov
Identification of Tracks by an Algorithm using Digital Likelihood). The algorithm
computes a firing probability for all cells within a tracks 8 = 1 Cerenkov cone. For an
expected number of photoelectrons, u, produced for a given particle hypothesis and
momentum, the likelihood that a cell will fire is given by (1 —exp(—pu)). An accidental
firing rate, a, is also incorporated into the likelihood (a is often proportional to the
beam intensity). The total likelihood for a cell to be on is then (1—e™#)+a—a(l—e*),
while the likelihood for a cell to be off is 1 — [(1 — e ) +a — a(1 — e *)].

In analogy with a x2, the sum over cells of the log-likelihoods for a given particle

hypothesis, 7, is combined into a variable W (i) = —2log(likelihood). An example of
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how this is used is with the cut W(r) — W(K) > 1, which requires that the kaon

hypothesis be preferred over the pion hypothesis.

IV.4.2 Electron Calorimetry

The electromagnetic calorimeters contain most of the electromagnetic energy pass-
ing through while capturing little hadronic energy. Thus for an electron entering the
calorimeter with a momentum of p and a measured deposited energy of E, E/p ~ 1.
For the IE, a requirement of 0.8 < E/p < 1.2 is made to identify electrons. This
window is slightly wider for the OE. Confirmation from the Cerenkov detectors can
be used to enhance electron identification with the IE.

The OE algorithm combines information from E/p, Cerenkov, and the shower
evolution as a function of z into a discriminant score.

Electron identification with the IE or OE is not used in this thesis analysis. Semi-
electronic modes could potentially double the statistics used in this analysis, however,

they are beyond the scope of this thesis.

IV.4.3 Muon Identification

Inner Muons

Muons are identified in the inner muon system (described in Sec. II1.6) by comput-
ing a confidence level that a track is consistent with hits in the MH (muon hodoscope)
planes. The confidence level is based on a x? calculation which incorporates errors
due to multiple Coulomb scattering in the steel filters and granularity of the MH

paddles. The highest confidence level that a second track shares the same hits is also
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computed to serve as an isolation variable.

For muon candidates with momentum greater than 10 GeV/c, at least four of the
six MH planes are required to have hits. At lower momentum, muons can be absorbed
in the steel, so only two planes are required to have hits. These lower momentum
inner muons candidates are typically cut out in most analyses in order to eliminate

backgrounds.

Outer Muons

Muons are identified in the outer muon system (Sec. II1.7) by computing a con-
fidence level that a track is consistent with hits in the RPC’s. Like the inner muon
confidence level, the outer muon confidence level is based on a x? incorporating er-
rors from multiple Coulomb scattering and detector granularity. The calculation of
correlations between the hits in the measuring stations is simplified by having all of
the RPC’s at the end of the filters. However, the magnetic field within the M2 steel
must be accounted for in projecting the trajectories of tracks to the RPC’s. Also, a
more detailed treatment of energy loss is needed since outer muons are considerably
lower momentum. The algorithm treats muons down to 4 GeV/c which is the lowest
momentum at which muons will penetrate through the OE and M2.

The outer muon analysis and simulation code was primarily developed by the
author of this thesis. A more complete description of this work can be found in

Appendix B.
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IV.5 Data Processing

FOCUS recorded roughly 6.5 billion photon interactions on 6000 8 mm tapes.
This corresponds to about 25 terabytes of information. In order to make this more
manageable for individual analyses, the data was reduced and split in three stages. In
the first stage, “Passl,” all the data was reconstructed. In the second stage, “Skim1,”
events were split into broad physics topics. In the final stage, “Skim2,” the data was

further divided into subtopics.

IV.5.1 Event Reconstruction (Passl)

Passl reconstructed the raw data and wrote the output to another 6000 8 mm
tapes. Passl ran from January 1998 to October 1998.

Since each event (photon interaction) recorded on a tape is independent, the events
need not be processed sequentially. Rather than running a single fast (expensive)
process, it is more efficient to have separate CPU’s process different events. For
Pass1, the software that coordinated this division of labor was the Fermilab product
CPS (Cooperative Process Software).

Each Fermilab computer “farm” which utilizes CPS consists of a server node and
about ten worker nodes. The server node runs software for reading and writing data
as well as sending events over a high-speed network to worker nodes. FOCUS used
up to eight farms, but the availability varied considerably since the farms were shared
with other experiments. More details on Passl processing can be found in [47].

Passl reconstructed data for all the detectors. Passl also wrote out raw data so

that improvements and corrections to the reconstruction code could be made without
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Table 3: Skim1 superstreams and Skim2 processing institutions. Skim1 output tapes
served as input to Skim2. Skim2 split the Skim1 superstreams into smaller sub-
streams.

Superstream Description Skim2 Institution
1 Semi-leptonic, di-leptonic Puerto Rico
2 Topological vertexing and K3 Ilinois
3 Calibration and rare decays CBPF, Brazil
4 Baryons Fermilab
5 Diffractive (light quark states) UC Davis
6 Hadronic meson decays UC Davis

going back to the raw data tapes. In order to fit the Pass1 output on the same number
of tapes as the raw data, raw ADC information was compressed. Also reconstructed
calorimetry was not written out, events with reconstruction errors were discarded,

and some very minimal selection cuts were made. About 10% of the events were

discarded by Passl.

IV.5.2 Event Selection (Skiml)

Skim1 divided the files output by Passl into six streams (denoted as superstreams
to distinguish them from Skim2 output streams). The physics topics targeted in each
of these superstreams are summarized in Table 3. Each superstream was written to
200-500 8 mm tapes, for a total of about 2500 tapes. Roughly half of the events in
Pass1 survived the more restrictive cuts of Skim1l. Summaries were saved rather than
raw data. Calorimetry reconstruction was re-run. Improvements were made to the
vee and Cerenkov reconstruction algorithms, so they were re-run in Skim1 as well.

In Skim1, computer clusters also processed data in parallel. Each CPU used in

Skim1 processed an input file containing about 40,000 events before reading another
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input file. This differs from Passl, where a worker node would process about 80 events
at a time. In Skiml, input files (from Passl tapes) were dumped to disk with tape
stackers. Each node (CPU) in the cluster would process one input file and output six
files (one for each superstream) to disk. When enough output files were accumulated,
they would be written to tape (one tape for each superstream).

Skim1 was primarily processed on computer farms at Vanderbilt and the Univer-
sity of Colorado at Boulder. At each institution, approximately 3000 input Passl
tapes were processed on 20-30 workstations/PCs. Skiml ran from March 1998 to

April 1999.

IV.5.3 Final Splitting (Skim2)

The hundreds of tapes in each Skiml superstream are still unwieldy to analyze.
Skim2 split each superstream into 5—12 substreams. Tapes from each superstream
served as input for processing at Skim2 institutions (indicated in Table 3). Skim2
processing was similar to Skim1. For Skim2, most of the skims used control software
called the Generalized Skim Framework.

Cuts applied in Skim2 reduce the number of tapes to a manageable level but
are loose enough to optimize particular analyses. The Skim2 substream used in this
thesis analysis was the semimuonic substream, which contains 26 tapes. Requiring a
primary and secondary vertex with CL > 0.01, L/oy, > 3, and W(r) — W(K) > 1

reduced this down to four tapes.
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CHAPTER V

MONTE CARLO SIMULATION

This chapter describes the FOCUS Monte Carlo simulation, MCFOCUS. The
shapes used in the fit for r,;, in this analysis come entirely from MCFOCUS. Vali-

dation of MCFOCUS is largely the topic of Chapters VI and VII.

V.1 MCFOCUS
MCFOCUS consists of three parts: beam simulation, event generation, and spec-
trometer simulation. (The same reconstruction code used with the data is used with
MCFOCUS.) In event generation, particles produced from the photon-nucleon inter-
action are simulated. These particles are decayed and traced through the spectrom-

eter. Particle interactions in each detector are simulated.

V.1.1 Beam Simulation

The positions and energies of the positrons and electrons incident on the radiator
(Sec. I1.2) are read from a library produced by a detailed simulation of the beamline.
The detailed beamline simulation was generated using the the Fermilab program
TURTLE (Trace Unlimited Rays Through Lumped Elements). Additional components
are added to the beam library trajectories which incorporate position and energy
smearing, acceptance, and run dependent positions.

The electron or positron is showered in the radiator. In the radiator, the electron

can scatter or emit bremsstrahlung, and the photons may re-interact to produce
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pairs'. Photon energies are selected with a rejection method. The photons are

stepped through the target segments where they can convert, shower, or produce

charm according to the charm cross-section used by PYTHIA (discussed below).

V.1.2 Event Generation

Particles arising from the photon-nucleon interaction are simulated using PYTHIA
[48] version 6.127. PYTHIA has a large number of adjustable parameters. These in-
clude (but are not limited to) choices of various baryon production models, amount
of energy shared by the remnant baryon, different spin counting rules, parameters
describing the string, cross sections for various processes, upper limits on momen-
tum transfers, and charm quark masses. These parameters were tuned to give good
agreement with FOCUS data in secondary momentum, secondary transverse momen-
tum, primary vertex multiplicity, and charm-anticharm asymmetries in number and
average momentum.

In order to save time generating simulated FOCUS events, PYTHIA is set up to
only generate the photon-gluon (c-¢) process illustrated in Fig. 16.> This is the
dominant mechanism for charm photoproduction. A completely generic “minimum
bias” generation would be on the order of 100 times slower. The trade-off is that for
some analyses reconstructed events have to be subjected to harsher cuts to obtain
good agreement between data and Monte Carlo.

The particles generated using PYTHIA are then traced through the spectrome-

ter and decayed. The particle trajectories, decays, and detector responses are all

!Photons that convert to pairs in the radiator are removed from the simulation.
2There is also an option for directly producing J/v particles, but this is run separately.
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Figure 16: Feynman diagram for the photon-gluon fusion process. The gluon comes
from a nearby u or d quark in the nucleon. The solid lines represent a ¢ and ¢. This
is the dominant mechanism for charm photoproduction.

simulated using code written by the E687 and FOCUS collaborations called ROGUE.
Particle properties and decay modes are specified in a particle “dictionary” file [49].
The decay modes are grouped into long lived “final states,” which are reached by a
number of decay paths. If a final state has been studied sufficiently to account for
quantum interference between decay paths, the decay paths are replaced by a matrix
element. Also if the form of a decay is known, such as pseudoscalar?® to pseudoscalar
lepton neutrino for D° — K~ p*v, then a matrix element is used to correctly model

the angular distribution of the decay.

V.1.3 Spectrometer Simulation
Multiple Coulomb scattering, elastic, and inelastic scattering are simulated as
particles are stepped through the spectrometer. For electrons bremsstrahlung is sim-

ulated. Photon conversions are also simulated. For inelastic scattering, the particle

3«Pseudoscalar” means the particle has a spin of zero with a negative parity quantum number.

4MCFOCUS also allows the user to specify particular decay paths be present in every event [49)].
This is accomplished by rejecting generated events which do not contain the specified paths. This
facility was not used in this analysis.
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is destroyed producing a hadron shower in the process.®

Multiple Coulomb scattering is simulated with the distributions derived by
Moliere. This includes corrections to the Gaussian approximation. The author of
this thesis developed a fast algorithm to implement Moliéere scattering in ROGUE. Fur-
ther details of this work are presented in Appendix A.

Each detector has a separate simulation for determining the detector’s response to
various particles, written by experts on that particular detector. Sometimes this in-
volves analytic approximations. In other cases this involves parameterizing calibration
data and/or parameterizing more detailed simulations (e.g., the general purpose but
very slow detector simulation program GEANT). Showers in calorimeters are frequently
modeled by sampling a library of representative events, since detailed simulations are
expensive in CPU time.

It is beyond the scope of this thesis to describe the details of each detector sim-
ulation. However, the muon simulations will be described in the following section,
since this is particularly relevant for this thesis analysis and the author of this thesis

was largely responsible for the outer muon simulation.

V.2 Muon Detector Simulations

Essentially all hadrons are absorbed in filters for the inner muon (IM) and outer
muon (OM) detectors, so hadronic punch-through is not simulated.® The IM system

has roughly 21 nuclear interaction lengths from the inner electromagnetic calorimeter,

>The shower is created by converting a Feynman-Field jet [50] into hadrons. This produces mostly
pions and rhos.

®Knock-on electrons (also called delta rays) are not simulated either. These arise from electrons
kicked out of material by a high energy particle. These can escape if produced near the surface of
the filters.
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hadron calorimeter, and additional steel filters. The OM system has roughly 18
nuclear interaction lengths arising from the outer electromagnetic calorimeter and
the second magnet (M2).”

The muon simulations assume all particles incident on the filters are absorbed
except for muons. Gaussian approximations are used for multiple Coulomb scattering
(MCS) and statistical variations in energy loss (energy “straggling”) are ignored. For
inner muons, energy loss and MCS are simulated as the muons are stepped through
cuboids (rectangular blocks) of material.

A similar procedure is followed for outer muons, except there is the added compli-
cation of the magnetic field inside M2. Also, since outer muons have lower energies
than inner muons, a more careful accounting of the effect of energy loss on MCS is
required.® The approach used is to trace the trajectory of a muon through cuboids,
accounting for energy loss and the magnetic field, but ignoring MCS. The MCS exit
angle and spatial displacement is added to the trajectory after exiting the downstream
M2 mirror plate. The MCS scattering widths are computed the same way scattering
errors are computed for the OM reconstruction code (described in Appendix A). De-
cays of muons are not simulated between the OE and RPC’s (over this 4.9 m distance
10 GeV/c muons decay about 1% of the time).

The determination of efficiencies for the inner and outer muon detectors is dis-

cussed in Sec. VII.2.9. To a good approximation, the inner muon detectors are treated

"For inner muons, a requirement that the number of muon hodoscope planes missing hits be
no more than two insures muon candidates pass though most of the filters. For outer muons, a
requirement that a least 150 cm of material be traversed cuts out tracks passing through the lip of
M2, which traverse less material.

8The mean momentum of detected outer muons in c-2 Monte Carlo is about 10 GeV/c with
about 40% of incident muons absorbed. Muons below 10 GeV/c in the inner muon system are
usually discarded to eliminate backgrounds.
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as 100% efficient (no efficiency simulated). For the outer muon detectors, separate
efficiencies are simulated for each of the 24 RPC planes in six run periods. The

efficiency for each plane is assumed to be independent of the other planes.
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CHAPTER VI

METHOD

The quantities of interest are rp;y, the fraction of D’s decaying as D%’s, and 7y,
the fraction of D”’s decaying as D°’s. If C'P is conserved, then rpix = 7mix. For the
simplicity, C' P will be assumed conserved and charge conjugate modes will be implied
in this thesis.

Decays of D** produce an initial pure flavor eigenstate, either a D° or D°. The
initial flavor is identified from the charge of the pion: D** — D%+ or D*~ — D°r~.
The final flavor is identified from the charges and flavors of the D° daughters.

The value of r.; can be computed from the number of non-mixed events mea-
sured, the number of mixed events measured, and the time dependence for mixing

(or equivalently the relative efficiency between mixed and non-mixed events).

VI.1 Calculation of D** Mass and D° Proper Decay Time

Figure 17 illustrates the semileptonic decay mode to be reconstructed.

K-

s V,LL
Figure 17: Decay topology for D** — D7t — (K uty,)nt.
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Charges and three-momenta of the 7%, K, and p* are measured with the tracking
detectors and analysis magnets. The D** production vertex is determined by selecting
the primary with the most tracks. Ties are arbitrated by picking the most upstream
primary vertex. The primaries are found using the DVFREE algorithm (Sec. IV.3.1).
Both primary (D** production) and secondary (D° decay) vertices are required to
form a confidence level of at least 1%. The direction and decay length of the D°
are determined from the position of the primary and secondary vertices. To compute
either the proper decay time of the DY or the D** mass, we must determine the
energy of the D°. There are two solutions for the D° energy which arise because the
neutrino is not measured. Energy-momentum conservation at the D° decay vertex

can be expressed with four-vectors as:

Po = Pkpu + Py (23)

where pr, = px + p, and po is the four-momentum of the D°. The neutrino momen-

tum can be eliminated as follows

Dv = Do~ PKp (24)
p. = (po—pku)? (25)
P, = Dy+ Dk — 2P0 Pru- (26)

Define m, as the total energy of the K and p in the frame where px, + p, = 0.
Since the scalar product of a four-vector is Lorentz invariant, p%{# = m%{“. Likewise,
ps = m? and p? = m?2, where my is the D° mass and m, is the neutrino mass.

Defining p as the three-momentum magnitude of the D°,

m2 =mg + miu — 2EoEr, + 2ppo - Py (27)
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Figure 18: Reference frame with py - px, = 0.

where Py is the unit vector along the D direction. Defining the invariant M? =

2

v

2 2
my + Mg, — M

2EOEK,u = M2 + 2p]50 . ﬁK,u (28)
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Squaring both sides and collecting terms leads to the following quadratic equation for

A o 2 2\ 2

Do - Pkrp M ) 2

— ] -1 —mg| =0. 30
< EK;L > (2EKH 0] ( )

This equation becomes simple in the reference frame with py - P, = 0, where there

p:

M?fo - .

is only one positive root.! This frame is reached by boosting along the direction of
the D until the component of px, along the boost direction is zero (see Fig. 18).
However, in this frame, the D° can point either along the boost direction or against

the boost direction. This leads to two solutions for py, when boosting to any other

!There is also only one positive solution in any frame where the constant term in the quadratic
equation is positive. With ap? + bp + ¢ = 0, the product of the two solutions is p1p2 = c/a, but a is
negative so c is positive for p;ps < 0.
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frame. One of the two solutions can be eliminated when, in the lab frame, px,-po < 0.
However this never occurs with the beam energy in FOCUS.

Apart from simplifying the quadratic equation, this frame with py - px, = 0
also allows one sometimes to reduce the effect of measurement errors (and increase
reconstruction efficiency) by requiring p> > 0 in the boosted frame. Due to mea-
surement errors, Eq. (30) often gives a negative value for p?>. Rather than discard
these events, p is set to zero before boosting back to the lab frame. Rare outliers
with p? < —1GeV?/c? are discarded. At high enough energies, measurements with
p* ~ 0 in the boosted frame become unavoidable. As the D** momentum in the lab
frame increases, the two solutions for the D° energy converge. Equivalently, the D
is essentially at rest in the boosted frame compared to the boost velocity, for a high
energy D*T.

Once the D energy is found, calculation of the D** mass is straightforward.

Applying energy-momentum conservation at the D*t decay vertex:

Pe = Drtpo (31)
P = pPi+Dg+2p. Do (32)
m2 = m2+mi+2E.Ey — 2ppo - Py (33)

The solution for p giving the lowest D*™ mass (m.) is used. Monte Carlo indicates that
by choosing this solution, the reconstructed proper time distribution of D° — K~ p*v
events agrees much better with the generated (true) proper decay time than using
either the high or low momentum solution exclusively.

The D° proper decay time is found from the D° energy and the distance between

the two decay vertices.
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VI.2 Calculating the Mixing Fraction

Tmix 18 defined as the fraction of D%’s decaying as a D°. In terms of the number

of mixed signal produced, Ty, and the number of non-mixed signal produced, Txwm:

Tw

_— 34
Ty + Tnm (34)

I'mix =

Since Ty < Tnwm, the following approximation holds and is chosen to simplify error

analysis:

T'mix =

(35)

Tnm

In the remainder of this thesis, rp;, will refer to Eq. (35).
In terms of the number of mixed events measured, Ny, and the number of non-

mixed measured, Nxy, Eq. (35) becomes

Num
(0%
NNM

(36)

T'mix

where « is the ratio of efficiencies between non-mixed and mixed signal. « is less
than one because the spectrometer is more sensitive to long lived decays and mixing
extends the life of the particle. By using efficiency corrected Monte Carlo shapes in
the fit, rnix is computed directly in the final fit without referring to a. Mixing is
not simulated in the Monte Carlo, so the mixing shape is determined by weighting
the non-mixed D° shapes by the expected mixing functional time dependence. The
generated proper time is used in computing the weights. Note since any D° can mix,
D%s not from D**’s are also included in the mixing shape (and included as signal).

The procedure for isolating 7., can be expressed symbolically as follows. The

average non-mixed DV signal distribution can be expressed as

dNnm = T Fe_rth(t, m) dt dm
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where T is the reciprocal of the DO lifetime, ¢ is the reconstructed proper decay time,

t, is the generated (or true) proper decay time, and m is the reconstructed D** mass

(whether a D** is present in the event or not). The function M (¢,m) accounts for

resolution and efficiency. This is normalized to give the average number of non-mixed

DY signal measured, Nyy

Nav = Tu // Fe_rth(t, m) dtdm.

For a mixed signal, this is modified by %Iatf}:

1
Ny = Tu / / <§F2t§> Te Tt9M(t, m) dt dm.

From Egs. (37), (38), and (35),

Iv — Nu

ANV, ff Fe‘”gM(t, m) dt dm
Tmix = -
TNM NNM

Txm [[(5T%t2) Te TtaM(t, m) dt dm

The quantity in brackets is a. Substituting Eq. (37) into Eq. (39) gives

Num
Tmix =
Tnu [[ (5T%t2) De~TtaM(t, m) dt dm

or

1
Tmix <§F2t§> dNny = dNy.

(38)

(39)

(40)

(41)

This says the mixing signal shape is the non-mixed signal shape (normalized to the

number of measured non-mixed signal) scaled event-by-event by rmix(31%2).

The mixing shape used in the fit is determined by weighting non-mixed Monte

Carlo D° events by 3Tt and swapping the reconstructed sign (right sign or wrong

sign). Further details of this procedure will be discussed in the following sections.

73



VI.3 Monte Carlo Contributions

The shapes used in the fit for ry;, come entirely from the MCFOCUS Monte
Carlo (MC) simulation described in Chapter V. The various MC contributions are
described and illustrated below. D*' mass distributions are used to contrast D** —
D signal with combinatoric (non-peaking) contributions; D° proper decay time

distributions enable mixed and non-mixed shapes to be distinguished.

VI.3.1 Relative Amounts in Data

Results from fits to data are illustrated in the following figures. The two dominant
contributions are tied together in the fit, so there are two parameters fit, representing
the dominant and mixing contributions. The two dominant contributions are events
containing non-mixed D** — D%+ and all remaining non-mixed events.

Results of a simultaneous right sign (RS), wrong sign (WS), D*™ mass, D° proper
decay time fit to data are shown in Figure 19. The mass distributions are shifted by
the fixed D° mass. Mixing occurs mainly in WS, so the error on 7pix (shown later)
is dominated by the combinatoric background in WS.

Figure 20 shows the D° semileptonic, D° hadronic, and non D° contributions
predicted from MC and the fit illustrated in Figure 19. Note that even combinatoric
(non-peaking) shapes consist mostly of DY decays. These are included as signal since

any D° can mix. The non D° contribution is quite low.

74



Right Sign - Wrong Sign
chi-square/dof = 60.7/48 = 1.26 chi-square/dof = 48.8/48 = 1.02
l + 1052 data
* 7414 data ol 536D D%
I 556 non D** _ D° i
[ 67230 - D’ [ -14 mixin

400
M 667 nonD*" - D° "

[ -2 mixing
300

20

200

10
100

P T R M P R
0.14 0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165

D** mass - D° mass (GeV/c?) D*" mass - D° mass (GeV/c?)
Right Sign Wrong Sign
1200 160 - .
chi-square/dof = 19.2/18 = 1.07
chi-square/dof = 21.1/19 = 1.11
wor - 1052 data

1000 * 7414 data

120 L [ 536D . D"

[ 6723D* . D1

800 | I 556 non D** . D° "

+ 0 __+
I 667 nonD*" - D" T 100
B -2 mixing [ -14 mixing

600 80

60
400

40

200

20

0

0 0.01 0.0200.03 004 005 0.06 0.07 0.08 0.09 0.1 0 0.01 0.0200.03 0.04 005 006 007 008 009 01
D" proper decay time x ¢ (cm) D" proper decay time x ¢ (cm)

Figure 19: Results of a two parameter, two-dimensional fit to data with Monte Carlo
(MC) shapes used in the fit overlaid. The inner and outer muon samples are merged.
The low bias bin merging algorithm is used. The first MC shape is from events
containing a D*t — D%+, The second shape is all events without a D** — D™,
The MC shapes contain slight branching ratio corrections. The ratio of the amounts
of the two dominant MC shapes are tied to the MC predicted ratios. AM runs from
0.138 GeV/c? to 0.165 GeV /c? with 50 bins (0.54 MeV /c? wide bins). The proper time
runs from 0 cm to 0.1 cm. The first sixteen time bins have widths of 0.00375 cm. The
last four time bins have variable widths. In these units, the mean D° lifetime is at
0.0124 cm.
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Figure 20: D° semileptonic, D° hadronic, and non D° contributions in the D** mass
and D° proper time dimensions. AM runs from 0.138 GeV/c? to 0.165 GeV/c? with
50 bins (0.54 MeV /c? wide bins). The proper time runs from 0 cm to 0.1 cm. The first
sixteen time bins have widths of 0.00375cm. The last four time bins have variable
widths. In these units, the mean D° lifetime is at 0.0124 cm.
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VI1.3.2 Comparisons of Monte Carlo Shapes

Due to the different scales of the contributions illustrated in the cumulative plots,
Figs. 19 and 20, it is difficult to discern some of the shapes. The following plots show
these shapes separately.

Figure 21 shows the mass and time distributions for the MC shapes used in the
fit. Note the WS mixing mass peak is more narrow than the RS dominant mass peak.
This is because mixing emphasizes long-lived decays which have better resolution
than short-lived decays. Also note the dramatic rise above ¢t = 0.06 cm due to
the t* mixing dependence. The proper time binning was chosen to make the RS
D*t — D%t ct distribution nearly level for the last four bins, so the mixing plots
would be roughly level for ¢t > 0.06 cm without the > enhancement. The drop-off
at low ct is due to a L/oy > 7 detachment cut (L/o; was defined in Sec. IV.3.2).
Figure 22 compares the combined D° contributions (scaled to data levels) with the
mixing shapes. The mixing shapes in Figure 22 are scaled so that multiplying them

by rmix gives the average number of mixed events in the data.

VI1.3.3 Determining the Shapes
The “dominant” type is what was directly generated by the MC, which did not
simulate mixing.? The mixing shape is found by weighting MC events which contain
a D by the mixing time dependence %F%g, where ¢, is the MC generated decay time
of the DO, If there is both a D° and a DP in the event, the one that is reconstructed is

selected. Which one is reconstructed is determined using matching between microstrip

2DCS and DCS-mixing interference was not simulated either. This contamination is assessed as
a systematic error (discussed in Sec. VIIL.2.5).
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Figure 21: D** mass and D° proper time distributions for the Monte Carlo shapes
used in the fit. The top two rows are mass distributions; the bottom two rows are
time distributions. The left two columns are non-mixed distributions; the right two
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columns are mixed distributions.
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Figure 22: Monte Carlo D*t mass and D° proper time distributions comparing the
non-mixed D°, mixing, and non D° shapes. The D° shapes have hadronic and
semileptonic contributions combined. Non-mixed shapes are scaled to data levels,
mixing shapes are scaled so that multiplying by 7.,ix gives the average number of
mixed events in the data.
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tracks and MC particle trajectories. Instead, which D° to weight can be selected at
random, but this results in more statistical spread in the weighted reconstructed
proper time distributions which in turn degrades the error on i by about 34%.3
With more MC, selecting the D° at random might be a better approach. Cases
where mixing occurs in both the D and D° are ignored since they should occur with
negligible frequency.

All of the shapes also contain branching ratio corrections. Except for the D° —
K~ p"v branching ratio, these have a fairly minor effect on the shapes used in the fit.

These corrections are discussed at length in Sec. VII.2.1.

VI.4 Fitting Procedure and Fit Parameters

The amounts of the contributions are determined from a binned Poisson log-
likelihood fit to the data, with shapes for each contribution from MC. Errors due to
finite MC statistics are incorporated directly in the likelihood function. Data and MC
distributions used in the fit are binned in two-dimensional histograms of D** mass
versus D proper decay time. The right sign (RS) and wrong sign (WS) samples are

fit jointly.

VI.4.1 Likelihood Function
The log-likelihood function is the same one used by the CERN HBOOK [51] library

routine hmclnl [52].% The likelihood to be maximized is the product of Poisson

3When simulating the mixing time dependence with rejection both the D° and D° in an event
are independently allowed to mix.

4Rather than use hmclnl, the author wrote an equivalent routine which does additional error
checking and also provides greater flexibility in defining the fit parameters.
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distributions in each bin, for both data and Monte Carlo. This likelihood function
accounts for errors due to finite MC statistics.

This log-likelihood function is maximized using the CERN software package, Mi-
nuit [53]. Parabolic errors are computed with MIGRAD and asymmetric errors are
found with MINQS.®

The log of the likelihood is

Inf = Zdilnfz’—fi‘l‘zzajilnAji_Aji (42)
i=1 i=1 j=1
fi = ijwjiAji' (43)
j=1

fi is the expected mean number of data events in bin ¢. Aj; is the most probable
mean number of MC events in bin i for source j, which is determined bin by bin
from a set of non-coupled equations, one for each bin (discussed below). a;; is the
actual number of MC entries in bin ¢ for source j. d; is the number of data entries
in bin 7. wj; is the weight applied to source j in bin ¢. Weights are used in this
analysis to adjust the proper time dependence of non-mixed MC events to simulated
mixed events (Sec. VI.3.3), to correct the branching ratios used to generate the MC
(Sec. VIL.2.1), and to correct the relative efficiency between the inner and outer muon
detectors (Sec. VII.2.9). The parameters p; are found from the fit and are related to
the proportions of each distribution in the data, P;, by p; = NpP;/N;, where N; =
> wjiAj; and Np =Y. d;. Each p; is the factor needed to multiply NN, by to obtain
the expected amount in data. (With sufficient MC, N; = > w;;Aji >~ >, wja;.) If

the MC were a perfect representation of reality, the p; would be independent of cuts

SMINOS computes errors by finding the point where the log-likelihood changes by an amount
selected by the user (0.5 for one standard deviation errors). Perhaps a more rigorous approach
would be to convert the log-likelihood back into a probability and integrate this probability.
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(apart from statistical fluctuations). Determining A;; is facilitated with the change

of variables: t; =1 —d;/f;. Aj; is computed from

Wi (44)
1+ pjwjiti

ji =

where ¢; is found by numerically solving

- Z L (45)

1+ pjwjit;

If one or more a;; are zero, special considerations apply. Further details are found in
Ref. [52]. Errors in wj; are neglected in the fit, but can be assessed as a systematic
error by fluctuating the weights.

Shapes weighted event-by-event can be incorporated in the fit in the following way.
In this case, wj; is just the ratio of the histogram with event-by-event weighting to
the histogram of the same events without weighting, and a;; is the histogram without
weighting. Weights for bins with no MC entries are computed by averaging over all

the mass bins within a given time slice.5

Pathologies in the Likelihood Function

The minimizing routine (MIGRAD) can search values of p; which result in negative
fi- This only occurs in bins with d; = 0 and one or more p; < 0. Note with d; = 0,
the term d; In f; vanishes and the only term constraining f; (in that particular bin) is
— fi, which gives a higher In £ for lower f;, including negative values. Negative f; are
only problematic in their statistical interpretation. There is still a unique maximum

of In £, and automatic normalization is obtained even with negative f;. However,

6 Averaging only over nearby bins instead of all bins in a slice gives almost exactly the same fitted
Tmix and errors.
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allowing negative f; leads to a negative bias in 7, of roughly 0.3 times the statistical
€error.

Skipping bins with f; < 0 can give rise to discontinuities in In £ as MIGRAD scans
different values of p;. Adding a penalty term for these bins also can produce a sharply
changing In £, which MINOS has trouble handling. Placing constraints on the negative
pj does not resolve this problem, since the values of p; which maximize In £ can occur
outside the physical region.

Initially, this pathology was eliminated as follows. Bins with d; < 1 were merged
with nearby bins with d; > 1. First, time slices with d; < 1 are merged with adjacent
time slices with d; > 1. Then within each time slice, bins with d; < 1 are merged
with the nearest bin along the mass dimension containing d; > 1. In this way, as
much information about the time dimension is retained at the expense of the mass
dimension. Unfortunately this bin merging procedure leads to a positive bias in 7y«
of about 0.4 times the statistical error. Systematic errors were determined using this
high bias algorithm.

An approach which is nearly unbiased is to merge bins based on the expected
number of entries, f;, rather than the data d;. For the likelihood function to be
well defined, the binning must be fixed prior to fitting. Since f; is a function of the
fit parameters, f; is estimated by the f; with the mixing parameter fixed to zero
(no adjustable binning is needed with mixing absent, since the single remaining fit
parameter is well above zero). Denote this estimate by f;(0). In each bin, i, f;(0)
should be large enough that the addition of a negative mixing contribution would still

give f; > 0. From the equations in Ref. [52], the maximum mixing contribution in a
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bin is

WA j;
fi,mix = Tmin P1 ]2( (1 i riin;hwﬁ) (46)
where r,;, is the lowest value of r;, MINUIT is expected to search, p; is the dominant
(non-mixing) fit parameter, and the sum is only over terms for the mixing shapes.
Bins are then merged so that ), fi(0) > — ). fimix, where the sum denotes the
process of merging.

For 2250 fits to MC subsamples, i, = —4.5 x 1073 guarantees f; > 0 for all bins
after merging. A lower value, 7, = —6.0 x 1073, is used since it eliminates nearly
all bias from the fit (discussed further in Sec. VII.2.11).

As with the original approach, time slices are merged before mass bins within each
time slice. This insures there are enough entries in the mass bins within each slice to
merge. Unlike the original approach, no attempt is made to merge with the closest
bins. Instead, bins are merged sequentially in the positive mass direction first, then in
the negative direction (to pick up sparse bins on either end of the mass boundaries).

For plots and goodness-of-fit tests the histograms prior to merging are used.” The
merged bins are only used in the likelihood function.

An alternative way to handle this problem is to compute confidence intervals
using simulated data as suggested by Feldman and Cousins. This approach is not

implemented for this thesis but is described more fully in Appendix C.

"The merging discussed here is completely separate from the adaptive binning used for the
goodness-of-fit tests discussed in Secs. VI.5b and VI.7.4.
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Table 4: Description of the fit parameters. The first two are constrained to be equal.

Fit parameter | Description
¢ Dominant D** — D%+
0 Dominant non D*t — D+
q3 Mixing

VI1.4.2 Fit Parameters
There are only two variable parameters in the fit, but a total of eight MC sources.®
Equation (43) has a separate parameter, p;, for each MC source, but these are com-
puted from the fit parameters. RS and WS parameters are constrained to be equal.

Each MC source is described by three categories: reconstructed sign (RS or WS),
type of event generated (event contains a D** — D%t or not), and type of decay
(dominant or mixing). These categories produce 2 X 2 x 2 = 8 sources.

RS and WS events occupy separate ¢ bins. WS bins for RS MC sources are empty
(for both the a;; and w;; described in Sec. VI.4.1). Likewise, RS bins for WS MC
sources are empty. Data occupies both RS and WS bins. In this way, mixing in both
the RS and WS sample can be accounted for (D%s not from a D** occupy RS and
WS roughly equally).

Tables 4 and 5 summarize the MC shapes incorporated in the fits and show how
the eight p; are computed from three fit parameters, g;. ¢; and g2 are constrained to

be equal for the final fit, but are allowed to be fit separately when selecting cuts.

Separate mixing shapes are determined for the four categories: RS D** — D7,

WS D*t — D%+ RS not D*t — D%+, WS not D** — DOt

8This can be reduced to four MC sources if the two dominant sources are combined. This gives
virtually identical results.

9Since the mixing shape is determined from non-mixed MC, the non-mixed RS and WS categories
are swapped to model mixing.
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Table 5: The eight p; “strengths” for the MC contributions in the likelihood function
are determined from the three fit parameters.

‘ “Strength” ‘ p; value ‘ Description ‘

D1 1 RS dominant D** — D%+

Do 0 RS dominant non D*t — D97+
D3 q3q1 RS mixing D*t — D7

D4 7302 RS mixing non D** — D7t

Ds Q1 WS dominant D*t — Doz

De g2 WS dominant non D** — DO+
pr g3q1 | WS mixing D** — D7 *

Pg q3q2 | WS mixing non D*t — DOr™

VL5 Goodness-of-Fit

Standard chi-square tests can be done for the proper time or mass histogram
dimensions. For the two dimensional histograms in this analysis, bins must be merged
to perform a standard chi-square confidence level test. This is because the bin entries
are sparsely populated which results in deviations from Gaussian errors.

To compute a standard chi-square on a two dimensional distribution, a crude
adaptive binning procedure is employed. Bins are combined until the expected num-
ber of entries in bin 7, ) ; DjWjiaj;, is at least 15. Since the procedure allows variable
bin shapes, bins are non-contiguous in a few places. The effect of non-Gaussian errors
was investigated using mini-MC (Poisson fluctuating the bin entries with scaled down
MC replacing data). For the adaptively binned chi-square, the number of bins are the
same, on average, between the original data and fluctuated data and typically varies
within three bins from one sample to the next. The adaptively binned chi-square
tends to be higher, on average, than the number of degrees of freedom. This means
the Gaussian approximation underestimates the confidence level.

Goodness-of-fit confidence levels for fits to data are presented in Sec. VI.7.4.
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VI.6 Confidence Intervals

The approach used to compute the limit is a Gaussian approximation which ex-
cludes unphysical negative values from the confidence interval and gives an auto-
matic transition between an interval and an upper limit. This method is described
in Sec. IV-B of the Feldman-Cousins article [54]. A Gaussian resolution function suf-
fices, since the errors determined from the likelihood function are nearly parabolic.
The positive (larger) error is used to compute the limit.

The Feldman-Cousins paper also suggests how to generalize this to a non-parabolic

likelihood function using simulated data. See Appendix C for further details.

VI.7 Event Selection and Error Optimization

The plots shown in the preceding sections use cuts selected by an optimization pro-
cedure. The MC used to simulate backgrounds in this analysis only simulates events
containing charm decays. Even in events containing charm, backgrounds occurring
from decays within material are less well understood. In order to reject non-charm
backgrounds, it is necessary to apply more restrictive cuts than are optimal for the
statistical sensitivity. The problem of optimizing the sensitivity then is to find the
loosest set of cuts where the MC is an accurate model of the data.

Most of the cuts were selected with the value of r;, hidden. This was done by
adding a constant unknown offset to r;.. After removing the offset, it was necessary
to change two cuts to further reduce statistical and systematic errors.

For the final result, the inner and outer muon samples are merged. Separate fits to
the inner and outer samples were made when selecting cuts and cross-validating the

MC. The shapes used for separate inner and outer muon fits are very similar to the
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merged sample shapes illustrated above. For the sake of completeness, the separate

inner and outer muon shapes are illustrated in Appendix D.

VL.7.1 Procedure for Optimizing Cuts

Since mixing is a tiny contribution, it can be ignored for assessing the match be-
tween data and MC. Excluding mixing, with the final cuts the MC is a good match
to data in the reconstructed D*t mass and D° proper decay time distribution.'® If
the MC is accurately modeling data, the ratio of data to MC should remain con-
stant (within statistical fluctuations) as the cuts are tightened. When fitting, the
same should be true for ry;x and any p; parameters (Secs. VI.4.1 and VI.4.2) in the
likelihood function.

Since the MC shapes are not reliable representations of the data for arbitrary cuts,
each cut variable was scanned individually while leaving other cut variables fixed.
Cuts were adjusted and scans repeated iteratively until nearly optimal statistical
errors were found with fair agreement between data and MC.

Five types of plots are used to make the cut selections. These are illustrated in
Fig. 23 for the inner muon K-y invariant mass. The top two plots are the fitted
rmix and rpi errors as a function of the cut variable. A unknown offset is added
to rmix. The middle two plots are the dominant fit parameters as a function of cut.
The middle left plot uses the default fit with one dominant parameter. The middle
right plot shows what happens when the two dominant contributions are allowed to

float separately in the fit. The two dominant contributions are D** — D%+ events

10Tn fact, for the mass distribution alone, two adjustable parameters are all that is required to
match data with MC even with fairly loose cuts. The proper time is more sensitive to non-charm
backgrounds than the mass.
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Table 6: Minimal cuts applied prior to optimizing with cut scans.

DVFREE primary with highest multiplicity
(most upstream primary as tie-breaker)
L/O’L >3

CLgec > 0.01

CL, > 0.01

No missing planes for inner muons

Material traversed > 150 cm for outer muons
1P| > 5GeV/c

W(m) —W(K) > 1 of kaon candidate
0.8GeV/c? < Mk, < 1.855GeV/c?
30GeV/c < |pp=+| < 350 GeV /c for both D° momentum solutions
0.138 < Mp«+ — Mpo < 0.243 GeV /c?

ct <0.1lcm

Exclude double links.

(smaller errors) and all the rest (larger errors). The bottom plot shows the ratio of
data to MC as a function of the cut variable. The MC contributions are combined
in amounts determined from the (mass-time) fit using the final cuts (shown with the
arrow). The amounts also have the same branching ratio corrections as the fitted
shapes. The qualitative features of the plots are not very sensitive to the relative
amounts of the contributions.

Plots for all the optimized cut variables are shown on separate pages. Zero is sup-
pressed on all of these plots. Outer muon plots are shown after the inner muon plots.
Which cut variables to optimize was decided based on experience from preliminary
studies (described in Appendix E) as well as previous semileptonic analyses. The
remaining cuts were fixed at the minimal values listed in Table 6. The following cut
variables were optimized with these scans: K-y invariant mass, L/o;, isol, iso02,

11
L,

number of sigma out-of-target for the secondary vertex, muon confidence level,”* muon

1 The inner muon confidence level was not selected with cut scans. The scans for this variable are
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momentum, and pion momentum.

For most of the cut variables illustrated in Figs. 23 through 40, the value of ry;y
is fairly stable as the cut is tightened (as seen in the upper left plots). For three of
the cut variables, r,;x does not appear stable as the cut is tightened. In each case,
the variation seen in the r;, cut scan is comparable to amount of variation expected
from statistics alone in that variable (this will be shown in the next chapter).

The first of these potentially problematic variables is the OM muon momentum
(Fig. 38). Above 12 GeV /¢, combinatoric backgrounds (non D** — D7) increase
more rapidly over signal (D** — D%r") in data than MC. This is indicated by the
center right plot. The statistics also rapidly degrades above 12 GeV/c, as can be seen
from the increasing error bars, so the observed split may be a statistical fluke. The
ratio plot (bottom) indicates a systematic trend. A similar trend is seen in the inner
muon momentum plots (Fig. 29), but the inner muon r;, scan exhibits only a slight
drop near 12 GeV/c. If a variable is not accurately simulated and the discrepancy
cannot be definitely ascribed to background, then the safest cut to place is the loosest
possible one. Outer muons below 4 GeV /¢ are absorbed in the magnet steel, so a cut
of 5 GeV/c is reasonable. The center right plot in Fig. 38 indicates the two dominant
(non-mixed) fit components track well with loose cuts, so this is further verification

that 5 GeV/c is a reasonable choice.

shown in any case.
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The second potentially problematic cut variable is the inner muon confidence level
(Fig. 28). The ratio plot for this variable suggests a cut of 0.1 is justified. On the
other hand, the center right plot indicates that the two dominant contributions agree
very well for any cut from 0.01 to 0.2. Cut scans were not made for this variable
when selecting cuts. The minimal cut, 0.01, was chosen based only on the ratio plot
and the fact that a cut of 0.05 gave a virtually identical r;, and errors as 0.01.

The last potentially problematic cut variable is W (e) — W () for pion candidates
(Fig. 31 for the inner muon sample; Fig. 40 for the outer muon sample). Both the
center plots and the ratio plots indicate a strong systematic trend. The fact that the
ratio plot is level over a wider range for the outer muon sample than for the inner
muon sample is a strong indication that the systematic trend is momentum dependent.
This can be seen more clearly by splitting the data and MC in momentum ranges
according to the Cerenkov momentum thresholds for pions listed in Table 2. Data
and MC W (e) — W(n) distributions in the four pion momentum ranges are shown
in Fig. 41 for inner muons and Fig. 42 for outer muons. For W (e) — W (m) > 3, the
agreement between data and MC is spectacular in every momentum range except
45 < |p;| < 84GeV/c. From these plots and the center right plots in Figs. 31
and 40 it appears likely that requiring W (e) — W (mr) > 3 eliminates non-simulated
backgrounds without seriously distorting the pion momentum distribution. (Ratio
plots for the pion momentum distributions are at the bottom of Figs. 30 and 39.)

The W (e) — W (m) distributions will be revisited in the next chapter to illustrate

a cross-validation procedure.
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Figure 25: Evolution of fit parameters and data to Monte Carlo ratio as a function
of isol cuts. The cut chosen is isol < 0.001. The inner muon sample is illustrated

here.
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of iso02 cuts. The cut chosen is iso2 < 0.003. The inner muon sample is illustrated
here.
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Figure 38: Evolution of fit parameters and data to Monte Carlo ratio as a function
of muon momentum cuts. The outer muon sample is illustrated here.
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of pion momentum cuts. The outer muon sample is illustrated here. No cut is placed

on the pion momentum for the outer muon sample.
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VI.7.2 Optimized Cuts

Results from optimizing cuts are presented here. Cuts were selected based on the
procedure illustrated above.

Duplicate candidates in an event were eliminated after applying the minimal cuts
(Table 6) but before applying additional cuts. (Eliminating duplicates after all cuts
is about two percent more efficient in keeping events, but makes trying different
cuts complicated.) Duplicate pion candidates for the same secondary are eliminated
by selecting the candidate giving the lowest iso3 value. It is rarely the case that
multiple secondaries for the same pion candidate are selected. This rare instance is
handled by selecting the secondary with the highest secondary vertex confidence level.
Eliminating duplicates increases the signal to background ratio by about 15% (where
“signal” here is D*T — D7t with the correct pion selected). Matching SSD tracks
to (true) MC particle trajectories indicates this is at least 80% accurate in selecting
the correct pion in a D** — D%zt event.

After eliminating duplicates, a narrower mass range cut was applied: 0.138 <
Mp-+ — Mpo < 0.165GeV /c? Including more of the “tail” beyond 0.165GeV /c?
degrades the agreement between data and MC in the My, distribution. If instead,
the narrower mass range is used before eliminating duplicate candidates, an almost
identical RS Mp«+ distribution is obtained in data.

After applying minimal cuts, the isolation variables are the most effective cut
variables in this analysis. The ranking discussed in Appendix E indicates iso3 gives
the best discrimination between signal and background in MC. Unfortunately iso3
cuts eliminate a lot of signal as well. Consequently, iso3 is only used for eliminating

duplicate pion candidates in an event.

112



Table 7: Additional cuts obtained after optimizing with cut scans.

0.138 < Mp«+ — Mpo < 0.165 GeV /c?

0.9 < Mg, < 1.7GeV/c? for inner muons
1.1 < Mg, < 1.7GeV/c* for outer muons
|| > 3.5 GeV /¢ for inner muons

W(e) — W(m) > 3 for pion candidates
|p| > 12 GeV /c for inner muons

CL, > 0.2 for outer muons

is02 < 0.003 for inner muons

is02 < 0.09 for outer muons

isol < 0.001

L/O’L > 7

number of sigma out-of-target of secondary > 1
run number > 6577¢

*Very early muon data are not well modeled by the MC.

The three isolation variables were defined in Sec. IV.3.2. Here is a brief summary:

e Isol requires the A and p candidates be inconsistent with coming from the

primary vertex.

e Iso2 requires all tracks except the K candidate, u candidate, and tracks from

the primary be inconsistent with coming from the secondary vertex.

e Iso3 requires all tracks except the K, u, and m candidate be inconsistent with

coming from the secondary vertex.

The additional optimal cuts are shown in Table 7.

VI.7.3 Optimized Errors
For optimizing cuts, separate fits were made to the inner and outer muon samples.

With the final cuts, the fitted value of 7, for the inner sample is (—1.171557) x 1073

113



Table 8: Adaptively binned goodness-of-fit chi-squares for the merged sample. The
high bias algorithm was used in these fits.

x?>  Ngot Goodness-of-fit CL

RS mass 58.14 46 0.108
WS mass 4599 44 0.390
RS ct 21.20 18 0.269
WS ct 17.08 17 0.449
RS ct vs mass 295.1 289 0.390
WS ¢t vs mass 67.82 66 0.415

and the fit to the outer sample gives (2.66753;) x 1072 (statistical errors only). The
fit to the merged sample gives ry;, = (—0.34070%57) x 1073, These results and the
results in the next chapter use the high bias bin merging algorithm (Sec. VI.4.1). The
low bias algorithm is used for the final results, which are presented in the Conclusions

chapter.

VI.7.4 Goodness-of-Fit with Optimized Cuts

The merged sample gives the adaptively binned chi-squares listed in Table 8. The
x? for the ct vs mass histograms used the adaptive binning described in Sec. VL.5.
For the remaining histograms, if a bin has fewer than 15 entries predicted from the
combined MC shape, it is merged with an adjacent bin before computing the y?
and Ngoe. The confidence levels shown all assume Gaussian errors. As mentioned in
Sec. VL5, this underestimates the CL for the ct vs mass histograms. The number of
degrees of freedom, Nyof, for the one dimensional histograms was increased by one to

account for the fits using both mass and time dimensions.
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CHAPTER VII

SYSTEMATIC STUDIES

In the previous chapter, a number of mostly qualitative checks were made of the
Monte Carlo (MC) while selecting cuts. In this chapter, more quantitative com-
parisons are made. In variables where there appears to be statistically significant
disagreement between data and MC, the data and MC are split into samples. The fit
is repeated with each of the samples left out one at a time. The splitting procedure is
repeated using 40 random mixing-free MC subsamples to determine the spread of
values expected from statistical variations alone. The frequency of large deviations in
the data is consistent with statistical variations alone. Consequently no systematic
errors are assessed from this procedure.

Systematic errors are evaluated primarily by varying uncertain quantities in the
MC and repeating the fit. Bias in the fitting procedure is also assessed by simulating
the data and MC with smoothed MC shapes serving as parent distributions. A
positive bias in the fit of roughly 0.4 times the statistical error was discovered after
finalizing all cuts and computing systematic errors. The improved adaptive binning
algorithm algorithm (described in Sec. VI.4.1) eliminates nearly all the bias. The
final results use the improved algorithm, but systematic errors were determined with

the old algorithm.
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VII.1 Cross Validation

Verification of the MC proceeds in roughly two stages. In the first stage, statistical
comparisons are made between data and MC distributions. In the second stage, the
effect of deviations between data and MC on the measurement is determined. The
first stage is used to determine which variables should be considered for the second
stage.

Data and MC distributions were compared in a large number of variables. For
each variable, the match was assessed using a Kolmogorov-Smirnov (KS) test [51,
55, 56]. The KS test is intended for unbinned data. Applying it to binned data
tends to overestimate the confidence level of the match. The results shown here use
10,000 bins, except for variables that are inherently discrete such as the primary
vertex multiplicity. Tables 9 and 10 list the matches from worst to best. Somewhat
arbitrarily, only matches that are worse than the proper time, ct, are considered for
the second stage.

To assess the effect of deviations on the fitted value of rn;,, a “leave-one-out” cross
validation procedure is used. First each variable is split into two to eight regions, then
each region is left out one at a time and the fit repeated. The regions are determined
by dividing data histograms by MC histograms for each variable and looking for
roughly level regions. Each region is fit to a flat line and the boundaries of the region
are adjusted to give a reasonable y? for the flat line fit.

This selection procedure is illustrated for the W(e) — W () variable in Fig. 43.
Bins containing fewer than 15 data entries are not used in the line fits. The regions
selected for the W (e) — W () variable are more complicated than the regions for other

variables, since the regions are divided in pion momentum as well. For 4.5 < |p,| <
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Table 9: Results of Kolmogorov-Smirnov tests comparing data and Monte Carlo for
inner muon candidates.

Variable CL Variable CL

r's no. o pri. in target 0.00000 | ws ¢* 0.20508
rs no. PWC tracks 0.00000 | ws no. PWC tracks 0.23249
rs W(e) — W(r),  can. 0.00000 | ws W (m) — W(K), K can.  0.27045
ws W(e) — W (m), 7 can. 0.00000 | ws iso3 0.29420
IS | D] 0.00000 | rs z pos. sec. vertex 0.30886
rs no. pri. tracks 0.00021 | ws no. o sec. out of target  0.32640
rs angle betw. g, and D®  0.00570 | ws |p,] 0.40302
IS |pr| 0.00714 | ws |Pk,| 0.42574
WS 2z pos. pri. vertex 0.00912 | rs L 0.42643
rs luminosity run period 0.02109 | ws |py| 0.45463
ws IM CL 0.02526 | ws no. o pri. in target 0.46515
ws L/oy, 0.02696 | rs no. o sec. out of target  0.51403
1S ¢> 0.03007 | rs isol 0.51678
rs D* mass 0.03464 | ws D* mass 0.54764
WS z pos. sec. vertex 0.04067 | rs CL sec. vertex 0.60675
rs K-p mass 0.04318 | ws K-u mass 0.60942
rs L/og, 0.05546 | ws angle betw. px, and D 0.71102
IS [Pkl 0.05685 | ws no. pri. tracks 0.77488
rs angle betw. px, and D 0.09060 | rs ct 0.79450
rs D* momentum 0.09917 | rs W(m) — W(K), K can.  0.81562
rs IM CL 0.10361 | ws D* momentum 0.90378
IS Z pos. pri. vertex 0.12297 | ws angle betw. p, and D°  0.92807
ws luminosity run period  0.12630 | ws CL sec. vertex 0.97622
ws ct 0.15656 | rs iso2 0.99349
rs iso3 0.16627 | ws isol 0.99726
ws L 0.17020 | ws iso2 0.99729
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Table 10: Results of Kolmogorov-Smirnov tests comparing data and Monte Carlo for
outer muon candidates.

Variable CL Variable CL

rs OM thickness 0.00038 | rs ¢* 0.44114
ws W(e) — W(r), m can. 0.00426 | rs iso3 0.46386
IS | P 0.00875 | rs K-u mass 0.47409
ws luminosity run period 0.01764 | rs no. o sec. out of target  0.47926
rs W(e) — W(r), 7 can. 0.02509 | ws ¢* 0.48404
ws OM thickness 0.04065 | rs |py| 0.49612
rs angle betw. p, and D° 0.09282 | rs no. pri. tracks 0.53460
r's 2 pos. pri. vertex 0.11810 | rs no. o pri. in target 0.56036
I'S 2 pos. sec. vertex 0.12321 | ws no. PWC tracks 0.59269
rs W(r) —W(K), K can.  0.14981 | ws D* 0.64764
ws angle betw. Pk, and D° 0.18063 | rs angle betw. pf, and D° 0.65831
s ct 0.18431 | ws D* momentum 0.66943
rs no. PWC tracks 0.19317 | ws W(n) — W(K), K can. 0.69476
ws is03 0.19795 | rs L 0.72446
ws no. o sec. out of target  0.23987 | ws iso2 0.75015
rs D* momentum 0.24964 | rs L/oy, 0.75085
rs luminosity run period 0.25798 | ws ct 0.76651
WS Dkl 0.25924 | ws CL sec. vertex 0.77352
rs isol 0.27005 | ws K-p mass 0.78118
WS | Py 0.27055 | ws L 0.82036
WS | Dl 0.27208 | rs CL sec. vertex 0.90144
Wws no. o pri. in target 0.28789 | rs D* mass 0.96564
ws angle betw. 7, and D°  0.31069 | ws z pos. pri. vertex 0.98656
IS [Pkl 0.31665 | ws no. pri. tracks 0.99508
ws L/oy, 0.36955 | ws z pos. sec. vertex 0.99748
ws OM CL 0.39764 | rs iso2 0.99790
rs OM CL 0.40722 | ws isol 0.99820
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Figure 43: For cross validation, data over Monte Carlo ratio plots are first split into
roughly level regions. This is illustrated here for W(e) — W () for pion candidates
in the inner muon sample. Three W (e) — W (w) regions are selected from two pion
momentum regions. The horizontal lines are results of fits. High W (e) — W (x) bins
are excluded from the line fits since the statistics are poor there.

8.4GeV/c, data and MC are split into two samples at W(e) — W(n) = 9.5. In the
remaining momentum region, no split is made.

To estimate the amount of variation due to statistics, fits were made to 40 random
mixing-free MC subsamples (the full MC was still used for the shapes). Each event in
a given subsample is independent (sampling without replacement). The leave-one-out
procedure was repeated for each of the 40 subsamples, using the same regions as the
data. The fraction of MC subsample shifts exceeding data shifts is an approximate
confidence level for the shift. The data shifts and MC subsample variation for W (e) —

W (m) is summarized in Table 11. The shifts in ry;, in data could easily be due to
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Table 11: Data shifts and RMS MC shifts for W (e)—W () in the inner muon samples.
The fraction of MC subsample shifts exceeding the data shift is denoted as “CL.”

RMS
Excluded region Fitted 7mix Data shift MC shift CL
AW < 9.5 and
4.5 < |pr| < 8.4GeV/e (—1.837159) x 1073 —0.658 x 10~3 0.566 x 10~3  0.25
AW > 9.5 and
4.5 < |py| < 8.4GeV/c (—0.057130) x 1073  1.122x 1072 0.837 x 1072  0.225
|pr| > 8.4GeV/c or
3.5 < |pr] < 4.5GeV/c (—1.547132) x 1073 —0.368 x 1073 1.008 x 10~3  0.85

none (—=1.177397) x 1073 0 0 —

statistical fluctuations, but the large RMS of the MC shifts make it impossible to be
certain. (The “RMS” here is the square root of the mean of the square shifts.)

The shifts in ry;, RMS of MC shifts, and CL for the remaining variables are
summarized in Tables 12 and 13 (separate fits are made for inner and outer muons).
Ignoring correlations between the variables, the mean and standard deviation of the
shift CL’s is 0.516 and 0.306 respectively for the inner muon sample (67 regions),

1 Even in

and 0.450 and 0.323 respectively for the outer muon sample (29 regions).
regions where there may be significant shifts, the RMS is too large to compute an

accurate systematic error from this study. How systematic errors are computed is the

subject of the next section.

VII.2 Systematic Errors

The methods used to compute the systematic errors vary in details, but the com-

mon theme is to shift variables by their error and observe how this shift effects the

'Tf the MC and data are statistically consistent (i.e., have the same parent distributions) the CL
should follow a uniform distribution, which on average has a mean of 0.5 and standard deviation of

1/4/12 = 0.289.
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Table 12: Leave-one-out cross validation for inner muons. The fraction of MC sub-
sample shifts exceeding the data shift is denoted as “CL.” 40 random subsamples

from a 10.8 times FOCUS MC were used.

| Variable | Data shift RMS MC shift CL | Data shift RMS MC shift CL |
—5.39 x 10~° 9.74 x 10~° 0.575 0.000100 0.000299 0.775
no. o pri. in target -0.000609 0.000576 0.25 —2.63x 105 0.000191 0.9
0.001210 0.000885 0.2
-0.000309 0.000322 0.4 -0.000126 0.000252 0.575
no. PWC tracks -0.000125 0.001679 0.85 0.000262 9.65 x 10—° 0.025
0.000340 0.000388 0.375
-0.000658 0.000566 0.25
W(e) — W(x), w can. 0.001122 0.000837 0.225
-0.000368 0.001008 0.85
0.000108 0.000511 0.875
[Pl 0.000568 0.000759 0.65
-0.000203 0.000840 0.85
-0.000290 0.000205 0.2
-0.000515 0.000243 0.05 0.000169 0.000354 0.65
no. pri. tracks 0.000955 0.000666 0.225 | —3.97 x 10— ¢ 0.000243 1.
-0.000993 0.000638 0.125
angle betw. pr and DO -0.001918 0.002747 0.35
0.000201 0.000615 0.75
[P | 0.000390 0.001584 0.825
-0.000249 0.000297 0.55
6.20 x 10~ ® 0.000257 0.925 -0.000113 0.000201 0.475
z pos. pri. vertex 0.000234 0.000316 0.55 0.000596 0.000535 0.3
-0.000206 0.000155 0.125 -0.000445 0.000711 0.475
0.000206 0.000515 0.675 | —3.35 x 10~° 0.000118 0.8
0.000106 0.000481 0.775
luminosity run period -0.000931 0.000494 0.05
0.001111 0.000949 0.25
0.000444 0.000356 0.15
0.000522 0.000351 0.175
IM CL 0.000244 0.000306 0.375
0.000460 0.001056 0.675
-0.000369 0.000586 0.6
0.000199 0.000645 0.825
L/og 0.000478 0.000488 0.325
0.000662 0.000377 0.05
—5.86 x 105 0.000824 0.975
q° -0.000465 0.000509 0.3
0.002752 0.002385 0.225
-0.000602 0.001714 0.725
D* mass —3.52x 105 0.000417 0.925
-0.000178 0.000120 0.15
—5.07 x 105 0.000223 0.85 -0.000415 0.000177 0.
Zz pos. sec. vertex 0.000251 0.000327 0.375 0.000491 0.000570 0.325
0.000444 0.000441 0.35 3.72 x 10~° 0.001036 1.
K-p mass 0.000127 0.001460 0.9
-0.000876 0.000897 0.325
\ﬁK;A 0.000280 0.001151 0.9
-0.000740 0.000960 0.5
6.10 x 10~ ? 0.000903 0.975
angle betw. ﬁK“ and D° 0.000180 0.000767 0.9
—5.29 x 10~° 0.000510 0.875
0.000793 0.001009 0.45
D* momentum -0.000389 0.000661 0.575
-0.000194 0.000114 0.075
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Table 13: Leave-one-out cross validation for outer muons. The fraction of MC sub-
sample shifts exceeding the data shift is denoted as “CL.” 40 random subsamples

from a 10.8 times FOCUS MC were used.

’ Variable ‘ Data shift RMS MC shift CL ‘
-0.003831 0.001602 0.025
OM thickness 0.001647 0.001479 0.3
0.003519 0.001948 0.025
0.001009 0.001023 0.35
Wi(e) — W(m), m can. 0.000807 0.001388 0.55
-0.007420 0.003451 0.025
| D] -0.004911 0.004085 0.225
0.002208 0.002053 0.3
0.000472 0.001448 0.75
0.000236 0.0012656 0.9
luminosity run period 0.000411 0.001695 0.85
0.001535 0.001466 0.325
0.000301 0.000717 0.65
angle betw. p, and DY 0.012518 0.008889 0.15
-0.004707 0.001778 0.
0.000181 0.001176 0.925
0.000494 0.001477 0.8
Z pos. pri. vertex 0.000791 0.001262 0.6
-0.000561 0.001408 0.675
-0.000352 0.000426 0.475
-0.000217 0.001883 0.9
Z Pos. sec. vertex 0.000842 0.000668 0.2
0.008459 0.009909 0.35
0.001418 0.001192 0.25
W(r) — W(K), K can. | -0.003580 0.006616 0.65
0.000206 0.000753 0.825
0.006036 0.003253 0.05
angle betw. py, and D° | -0.004570 0.002115 0.025
0.000121 0.000949 0.9
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Table 14: Systematic error summary.

Source Value
Branching ratios  (+1.96, —1.93) x 10~ *
Rpcs and o/ (+0.30, —1.50) x 104
Length scale +0.07 x 1074
Momentum scale +0.37 x 1074
Nominal D° mass +0.49 x 1074
OM efficiency +0.05 x 1074

Fit shape weights +0.43 x 1074

Fit bias (+0.19, —0.23) x 10~

fitted value of r,;. The change in 7., is the systematic error associated with the
shifted variable. Where possible, variables are shifted both in positive and nega-
tive directions, so the error can be asymmetric in general. Correlations between the
variables are ignored, and the positive and negative errors are separately added in
quadrature to obtain the total positive and negative error.

Except where otherwise noted, the systematic errors were assessed for fits made
with the high bias bin merging algorithm described in Sec. VI.4.1. Once corrected,
the high and low bias results are quite close, so it is sufficient to use systematic errors
computed for the high bias fit with the low bias fit. The bias corrected result for the
low bias fit is (—7.4675:32) x 10~%; the bias corrected result for the high bias fit is
(—7.03793%) x 10~* (the errors shown only include statistical errors from the fit). In
each case, the statistical error on the bias correction is about +0.22 x 10™* (the same
fluctuated samples were used for both corrections).

Table 14 summarizes the values of the systematic errors.
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VII.2.1 Branching Ratio Corrections

All of the shapes used in the fits are weighted to correct branching ratios used
by the MC. The largest systematic errors in this analysis arise from branching ratio
uncertainties. Values compiled by the Particle Data Group are used, except where
noted otherwise.

Table 15 lists the decays for which branching ratios are adjusted. These include all
significant sources which give rise to an excess in the signal region (M (D**) — M (D)
< 0.165 GeV/c?) of a ten times FOCUS MC sample.?

All the MC histograms used in the fit are filled with and without event-by-event
weighting. Each weighting function, wj;, is found by dividing the weighted his-
togram by the histogram without weighting. The event-by-event weighting factor
is BRppa/BRyc. (The event is weighted twice if more than one D in the event
decays as one of the modes from Table 15.) Two D° decays significant in this anal-
ysis are not in the most recent PDG listing. The first is D — K* pTv. Assuming
(DY — K*%utv) = T(D° — K*~u*v),® E687 obtained [59]

L'(D° - K*~utv)
I'(D° — K—utv)

= 0.62 £0.07 £ 0.09,

which translates to BR(D* — K*°utv) = 2.00%. A less restrictive assumption is

BR(D° — K* etv) BR(D°— K* u'v) (47)
BR(D+ — K*%¢tv)  BR(D* — K*utv)’

from which

BR(D° — K* e*v) _
0 *—  + _ + %0+
BR(D" = K%)= Gpipe— g s X BR(DT = Kt)

2Some of these sources are more significant for RS than WS and visa versa.
3This apparently follows from the semileptonic AT = 0 rule [58] inherent in the Glashow-
Iliopoulos-Maiani scheme of weak interactions [5].
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Table 15: Main Monte Carlo contributions, Monte Carlo branching ratio (MC BR),
Particle Data Group (except where noted) branching ratio (PDG BR), and PDG
errors on branching ratio (PDG BR error). Modes are listed from most to least
significant in the RS sample (the ranking is different for WS). D® — K* u*v is not
listed by the PDG.

Mode MC BR (%) PDG BR (%) PDG BR error (%)
D’ — K—utv 2.703 3.22 0.17
D° — K* utv 1.585 1.85% 0.44
D° — K—ntqY 13.9 13.9 0.9
D° — K—ntnO70 b 13.98 15.4¢ 2.5
D° — Kot 3.85 3.83 0.09
DY — 1ty 0.364 0.37¢ 0.06
D° — K*p* 8.10807 6.1 2.4
D’ - K K+ 0.3820 0.425 0.016
Dt — K*%utv 4.949 4.4¢ 0.6
Df — ¢utv 2.4711 2.0 0.5

®Not listed by the PDG. See text for details.

®Not including D — K*~p* which can decay to this final state.

“Not in most recent PDG listing. See text for details.

40nly D° — 7 etv is listed by the PDG. BR(D® — wev) = 1.01BR(D° — muv) is used,
following E687 [57].

¢Only peaks in RS when a K~ or 77 from the K*0 is misidentified as the soft pion from a D**.
Does not peak in WS.

fActually an average of ¢uv and pev.
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= (0.4208 +0.0815) x (4.4 £ 0.6)%

= (1.85+0.44)%

which is the value in Table 15.

The other important mode missing from the most recent PDG listing? is D° —
K~-mt7%7% which is omitted because the measurements do not exclude the pres-
ence of additional neutral pions. For the purposes of this analysis it is better to
include this mode even if it is overestimated. The PDG listed three measurements
of D° — K~=n™7%r% in the 2000 edition of the Review of Particle Physics [60].
These three measurements are averaged using the PDG method for combining re-
sults with asymmetric errors. The three measurements are 0.149 4 0.037 £ 0.030 [61],
0.177 4 0.029 [62], and 0.209759%% + 0.012 [63]. The average is 0.174790:923. Some
of these decays arise from D° — K* p™, which is accounted for separately. Using

isospin for the K*~ — K~ 7° gives
BR(D° — K* (K m%)p"(xt7°%) = éBR(D0 — K* p™)
— %(6.1 +2.4)%
— (2.0340.80)%
which is subtracted from the total BR(D® — K7t 7%70):

(17.4+2.4)% — (2.03 +0.80)% = (15.4 + 2.5)%

which is the value in Table 15.
The effect of BR uncertainties was evaluated by shifting the BR corrections applied

to the MC and repeating the fit with the modified MC shapes. To compute the

4URL: http://pdg.1bl.gov
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Table 16: Shifts in ry; resulting from one standard error shifts in branching ratios.

Mode Positive BR shift Negative BR shift
DY - K putv 0.000138 -0.000151
DY — K*putv -0.000013 0.000023
DY K—ntqn0 -0.000027 0.000029
D% — K—nta070 -0.000061 0.000070
DY —» K nt -0.000000 0.000001
DY - =ty -0.000006 0.000007
DY — K*p*t -0.000060 0.000077
DY 5> KK+t -0.000003 0.000003
Dt = K 0uty -0.000079 0.000082
Df — ¢utv -0.000013 0.000014

systematic error, the BR corrections were individually shifted by one standard error
and the fit repeated for each. So there were ten fits (one for each mode) with positively
shifted BR’s, and another ten fits with negatively shifted BR’s. Table 16 lists the

shifts obtained from these fits.

VII.2.2 Verification of the Background Model

The backgrounds can be classified into two categories: those that form a peak in
the D** mass distributions or those that do not. Those that do not peak are referred
to as “continuum” backgrounds. Events containing no D** — D" are usually
continuum. Also, D** — D%t events with the wrong reconstructed 7% candidate
are continuum.

Backgrounds which peak in the D** mass distributions are almost entirely from
misidentification of the D° daughters in D** — D" decays. The most significant
of the peaking backgrounds were listed in Table 15. Misidentification which creates
a peak in the RS sample is a relatively small effect since it results in an error in 7y

roughly proportional to ru;.. The use of the pion flavor tag eliminates most of the
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peaking background in WS since both D° daughters then have to be misidentified.
This “double misidentification” is an additive error to ru;, and therefore potentially
more significant.

Double misidentification in the WS signal can be included in the fit by allowing the
WS D*t — DOt contribution to be fit using an additional parameter. This allows
the component which peaks in the WS signal region to have a different level, relative
to RS, than predicted by MC. Since double misidentification is indistinguishable
from DCS, this is also a way to account for DCS contamination (a better way is
discussed below in Sec. VII.2.5). The fitted ry;x goes from 7y, = (—0.767093) x 1073
t0 Tmix = (—0.177139) x 102 when the WS contribution to D** — D%z is fit using
an additional parameter. (The fits for this comparison used the low bias fit.) This
shift is entirely consistent with statistical variations. Fits to 2228 simulated data and
Monte Carlo samples® indicate that a shift larger than that observed in data occurs
42% of the time.®

Since double misidentification is too small to determine with the final set of cuts,
a better idea of how well the Monte Carlo models backgrounds can be obtained by
loosening some of the cuts. Figures 44 and 45 compares data and MC for samples
with a muon confidence level (CL,) below 1%. The peak at the high edge of the
K-p mass range comes from D° — K~7t and some D° — K~K*. The peak just
below that is from D° — K-7t7% A clear WS peak appears in the D** mass

distribution for the inner sample. The WS proper time distributions indicate that

>The simulated samples are described in Sec. VIL.2.11.

6The same conclusion is obtained by adding yet another parameter for the RS D*t — DOzt
contribution, giving a total of four parameters. In this case, shifts larger than the data occur 48%
of the time.
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Figure 44: Comparisons of data and Monte Carlo for inner muon candidates with
CL, < 0.01. Dashed histograms are Monte Carlo. The Monte Carlo level is scaled
to the combined RS and WS data level. A wider K-u mass range is used in the K-y
mass plots for the purposes of illustration.

there is some source of background at long proper time which is underestimated by
the Monte Carlo.” This long proper time excess gets worse if the lower K-u mass cut
is relaxed. This is a strong indication that some of this excess results from D decays
with more than three daughters, which tend to populate the low K-y mass region
due to non-reconstructed energy. The branching ratios for many of these modes are
poorly known, particularly those involving multiple neutral pions. Correcting for this
excess would lead to a less conservative limit and is not attempted.

This low CL, data comes from the “global vertex” skim (also referred to as a

"The Monte Carlo distributions discussed here do not include mixing.

129



RS outer muon, low muon CL RS outer muon, low muon CL RS outer muon, low muon CL

20 o

i

0.14 0.15 0.16 0 0.05 0.1 1 1.5
D** mass - D° mass (GeV/c?) D° proper decay time x ¢ (cm) K-mu mass (GeV/c?)

WS outer muon, low muon CL WS outer muon, low muon CL WS outer muon, low muon CL
5 8 :
7 E 1]
4 - E [P
6 F T
3 b 5 !
; 4F
2r I - " 3 E :
Eolr HLEIT 2 b
1 HRIEl ‘—1'3 E i,
r m?‘ }H e fre 1E o
oL [ A il o E b L A
0.14 0.15 0.16 0.05 A 1 1.5
D*" mass - D® mass (GeV/c?) D° proper decay time x ¢ (cm) K-mu mass (GeV/c?)

Figure 45: Comparisons of data and Monte Carlo for outer muon candidates with
CL, < 0.01. Dashed histograms are Monte Carlo. The Monte Carlo level is scaled
to the combined RS and WS data level. A wider K-u mass range is used in the K-y
mass plots for the purposes of illustration.

topological, as opposed to a candidate driven skim). This skim first finds all combi-
nations of two track vertices and then requires at least two such vertices be separated
by greater than 4.5 sigma. In addition, the downstream vertex must contain at least
one track with W(mr) — W(K) > 1. All the usual cuts (listed in Tables 6 and 7) are
applied in addition to the global vertex requirements, except for the CL,,.

For inner muons, the requirement that there be no missing inner muon plane hits is
still retained, although in retrospect it would have been better to have an acceptance
requirement instead. Nearly all of the inner muon candidates with CL,, below 1% are

stubs (tracks with PWC hits only upstream of the second analysis magnet). In fact,
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an inner CL, is not evaluated for stubs—it is set to zero for stubs. In addition to
CL, < 1% and no missing inner planes, the predicted thickness of material traversed
in the outer muon system is required to be zero.®

With these requirements, stubs arise not only from wide angle particles which
miss the downstream PWC’s, but also from low angle particles which decay in flight.
It should be noted that although the shapes and right sign to wrong sign ratios are
well predicted by the MC for these tracks, the overall MC level is low by about a
factor of 1.8 for inner muons (1.3 for efficiency corrected outer muons) when scaled to
the level predicted from high confidence level data. The reason for this discrepancy
has not been investigated.

Muon candidates containing missing inner muon planes or a momentum less than
12 Gev/c must pass the modified outer muon requirements. These requirements are
0 < CL, < 0.01 and the usual thickness > 150 cm and momentum above 5 GeV//c.

Misidentification rates generally decrease with increasing momentum. The low

and high CL, samples have different momentum distributions as shown in Figs. 46

and 47. The momentum dependence of misidentification is considered further below.

VII.2.3 Muon Misidentification
Particles can be misidentified as muons in a variety of ways: hadrons can “punch
through” filters (described in Sec. V.2), a track can accidentally point to a muon hit,
or a hadron can decay in flight to a muon. Misidentification rates are on the order

of a percent, but vary significantly with momentum [49, 64]. Comparisons of data

8Due to a coding error, the outer muon thickness variable is not filled correctly when the thickness
is zero. However, the outer muon CL is correctly set to zero in these cases. Consequently, the actual
requirement is that the outer muon CL is zero, rather than the thickness.
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Figure 46: Comparisons of data and Monte Carlo momentum distributions for muon
and kaon candidates in the wrong sign inner muon sample. Dashed lines are Monte
Carlo. High and low CL, samples are shown.

and MC for reconstructed Dt — K~ n"x* indicate the total single misidentification
rate in MC is 7% lower than data for inner tracks and 30% lower than data for outer
tracks [64].

Using the misidentification rates as a function of momentum from Ref. [64], the
effect on rpi, due to the mismatch between data and MC was assessed. In MC, the
particle type for muon candidates and their parents was determined by matching
reconstructed SSD tracks to true generated particle trajectories. If a muon candidate
was a pion or came from a pion, the event was weighted by the data to MC ratio of the
misidentification rate as a function of reconstructed momentum. The fit was repeated

with the corrected MC sample. The resulting shift in 7, was (—0.12440.138) x 103,
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Figure 47: Comparisons of data and Monte Carlo momentum distributions for muon
and kaon candidates in the wrong sign outer muon sample. Dashed lines are Monte
Carlo. High and low CL, samples are shown.

The error on this number was found by varying the data to MC ratio by its statistical
uncertainties. Since the statistical uncertainty in this correction is larger than the
correction, and the correction would lead to a less conservative limit, no correction

or systematic error is applied for muon misidentification.

VII.2.4 Kaon Misidentification
The kaon momentum distributions shown in Figs. 46 and 47 show good agreement
between data and Monte Carlo.® Kolmogorov-Smirnov tests comparing data and MC

for these distributions give probabilities of 38% (28%) for the inner (outer) muon

9The Monte Carlo distributions discussed in this section do not include mixing.
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Figure 48: Comparisons of data and Monte Carlo W (r) — W(K) distributions for
kaon candidates in the wrong sign samples. Dashed lines are Monte Carlo. High and
low CL, samples are shown for both inner and outer muons.

high CL,, sample and 33% (18%) for the inner (outer) muon low CL, sample. (10,000
bins are used for all Kolmogorov-Smirnov tests in this thesis.) As shown in Fig. 48,
the W (m) — W(K) distributions for the kaon candidates agree well for the high CL,
sample but not the low CL, sample. Kolmogorov-Smirnov tests for the W (m)—W (K)
distributions give probabilities of 43% (72%) for the inner (outer) muon high CL,
sample and 0.23% (1.3%) for the inner (outer) muon low CL, sample. All of these
comparisons are between wrong sign data and Monte Carlo. Requiring a higher
W (n) — W(K) does not improve the low CL,, proper time distributions.

No correction or systematic error is assessed for kaon misidentification.
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VII.2.5 DCS and DCS-Mixing Interference
Since about 10% of the accepted D° decays are non-semileptonic (with the final
set of cuts), it is necessary to consider the effect of contamination from DCS and DCS-
mixing interference. (DCS was briefly described in Sec. [.4 and Fig. 5.) A contribution
from this contamination is included in the fit shapes to assess a systematic error.
As with mixing, DCS and DCS-mixing interference was not simulated in the MC

sample used. For DCS; the analogous expression to Eq. (41) is
Rpcs dNnpos = dNps, (48)

where Npcg is the expected number of DCS decays measured, Nypcs is the average
number of non-DCS non-semileptonic D° signal measured and Rpcg is the fraction

of DCS decays.!® Likewise, for DCS-mixing interference [28]

vV Rpcs y' Tty dNxpes = dNin, (49)

where Nyt is the expected contribution of DCS-mixing interference (which can be
negative) and the prime in y’ denotes an unknown rotation of x and y arising from a
possible strong phase between the DCS and Cabibbo favored amplitudes.

The DCS shape comes from all non-semileptonic D° MC events. The DCS-mixing
interference shape was determined by weighting non-semileptonic D° MC events by
I'ty. To evaluate the effect of DCS and DCS-mixing interference, these shapes were
included in the fit at fixed amounts. Tables 17 and 18 list the additional fit parameters
added to account for DCS and DCS-mixing interference. CLEO’s measurement [28],

Rp = (0.48 + 0.12 £ 0.04)% was used and the “or” of the one standard deviation

10Not all non-semileptonic D° decay modes are candidates for DCS, but at least 80% of the non-
semileptonic modes that appear in the MC sample are candidates for DCS. To make this analysis
simpler, all non-semileptonic D° decay modes are allowed in the DCS shapes.

135



Table 17: Description of the fit parameters including DCS related contamination.
The two DCS related parameters are included in the fit at fixed amounts to assess a
systematic error, but are otherwise set to zero.

Fit parameter | Description
q1 Dominant D** — DY+
Q0 Dominant non D** — DO
qs Mixing
qa DCS
qs DCS-mixing interference

Table 18: The fit is generalized to include contamination from DCS and DCS-mixing
interference. Sixteen p; “strengths” for the MC contributions in the likelihood func-
tion are determined from five fit parameters.

“Strength” | p,; value ‘ Description ‘
P1 q1 RS dominant D*t — D% T
Do 0o RS dominant non D*t — D97+
P3 g3q1 RS mixing D*t — D7+
P4 q3¢2 | RS mixing non D*t — DOx™
Ps q4q1 RS DCS D*t — DOt
De qsg2 | RS DCS non D*t — DOrt
7 g5q1 RS DCS-mixing interference D** — DV7 ™
Ps g5G2 RS DCS-mixing interference non D** — D7+
P9 a1
: : WS as above
P1s6 4592

y ranges inferred from the CLEO [28] y' and FOCUS [29] ycp values was used:
y = (—4.13 to 5.55)%. The fit was done using 5.55% and repeated using —4.13%. In
each case, Rp = 0.48% was used. (Hadronic mixing is included as signal and assumed

to have the same value of 7, as semileptonic mixing.)
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VII.2.6 Length Scale

The length scale uncertainty has been studied extensively for lifetime measure-
ments [65, 66]. Bench measurements determined the downstream microstrip (SSD)
positions to better than 3 um [35]. The upstream microstrip (T'SSD) positions were
determined from vertices reconstructed from high statistics decay modes with the
SSD and also with caliper/depth gauges. Run dependence of the positions was also
investigated from high statistics decay modes. The length scale uncertainty is about
0.1%.

Scaling L, ct, L /oy, and number of sigma out of target by 1.001 in the MC sample,
then reapplying cuts and repeating the fit results in an increase in 7y, of 0.7 x 1075,
The above variables were modified with very loosely cut MC before applying final
cuts. Unfortunately, a cut of ¢t < 0.1 cm was present even in the loosely cut sample.
A sample with only ¢t < 0.4cm is available but would likely take a couple of days
to process. Scaling these variables by 0.999 decreases rmi, by 4.5 x 1075, but this is
questionable due to the ¢t < 0.1 cm cut. Presently, the best estimate of the systematic

error on i due to the length scale uncertainty is +0.7 x 107°.

VII.2.7 Momentum Scale
The momentum scale uncertainty is inferred from the mass scale uncertainty (since
the momentum is generally much higher than the mass, a linear relation between
momentum uncertainty and mass uncertainty is a good approximation). The mass
scale uncertainty has been studied for mass measurements [67] using the high statistics
modes D* — K—nt, D — K—ntrtn~ and D* — K~ n"n~. The mass/momentum

scale uncertainty is 0.07%.
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Scaling all the momenta used in the analysis by 0.9993 and recomputing the D*
mass, K-y mass, and ct results in a shift in 7y, of —3.7 x 107°. A correction of
1.0007 would decrease ct so is not used to assess the positive shift (because of the
ct < 0.1cm cut mentioned above in the length scale discussion). Currently, the best

estimate of the systematic error on r;, due to the momentum scale uncertainty is

+3.7 x 1075.

VII.2.8 Nominal D° Mass

In computing the D*T mass and D° proper decay time, a mass of 1.8646 GeV /c?
is used. The PDG [60] gives an average D° mass of (1.8645 + 0.0005) GeV/c%.
The D** mass and D° proper decay time are recomputed using 1.8640 GeV/c? and
1.8650 GeV/c? and the fit repeated for each. The recalculation is done using in-
formation stored in ntuples rather than the original FOCUS data files, which re-
sults in some loss of precision. If the recalculation is done with the original mass,
1.8646 GeV/c?, Tmix goes from —0.340 x 1073 to —0.336 x 1073, The systematic error
is computed as the shift from the recomputed value of r,;.. The resulting shifts are
+4.9 x 107% and —17.1 x 107°. The negative shift may change with looser cuts on
ct, so only the positive shift is used to estimate the error. (Other relevant loose cuts
applied before recomputing are M (D*t) — M(D°) < 0.243GeV/c?, L/o; > 3, and

My, > 0.8GeV/c*)

VIL.2.9 Muon Efficiencies
Efficiencies for a particular detector plane are generally estimated by computing

the fraction of hits in the plane given that all other overlapping planes have hits. To
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minimize the effect of accidental hits from detector noise or other tracks, the hits
can be required to belong to the same cluster and/or be within a certain radius of a
projected track. This calculation assumes that the probabilities for registering a hit
in each plane are statistically independent. For the sake of discussion, these will be
referred to as “independent efficiencies.” This assumption does not hold, for example,
if some fraction of the time all the planes are dead. This could arise from deadtime in
electronics shared by the planes, or from time needed for planes to recover from the
passage of previous particles. The calculation of an independent efficiency only counts
events with at most one missing plane so it gives the same value regardless of the
correlated efficiency. At present, only independent efficiencies have been accounted
for in the muon simulations.

Independent efficiencies for the MH arrays (inner muon) have been measured
with halo muons [49] and both D* — K*%u*v — (K~ 7")u*v and J/vb — putp~
samples [64]. Independent efficiencies for the MH arrays are greater than 98%. Since
analyses generally require 4 or 5 hits out of 6, this gives track efficiencies exceeding
99%. For the MH arrays, no inefficiency is simulated in the Monte Carlo.

A thorough study of independent efficiencies for the RPC’s (outer muon) is given
in Reference [64]. The efficiencies were studied with a variety of methods and samples:
with and without clustering, requiring overlap with MH arrays, using J/v¢ — p*u~,
Dt — K%y — (K nt)uty, and D** — D%t — (K pTv)nt samples. Position,
trigger, and run-dependence were also studied. Separate efficiencies are simulated for
each of the 24 RPC planes in six run periods. Efficiencies computed with a variety of

methods are available to assess systematic errors. The efficiency varies considerably
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from plane to plane: 50% to 95%. The fractional systematic uncertainty on the
efficiencies is about 5.5% [64].

There appears to be additional sources of inefficiency not accounted for in the
Monte Carlo. This could be due to “correlated efficiencies” discussed above, incor-
rect wide-angle D decay distributions, acceptance problems, tracking inefficiencies,
or some other problem. To account for this, the outer muon MC sample is multiplied
by 0.772 4+ 0.027 so that the number of outer muons relative to inner muons match
between data and MC in reconstructed D** — D7t — (K~ ptv)nt events.'!

As we have seen in previous chapters, data and MC match very well for the inner
and outer muon samples separately. It should also be possible to assess this additional
inefficiency by reconstructing J/v — pu*p~ data with no outer muon hit requirement
(geometric and energy acceptance only), but requiring the other muon be detected in
the inner muon system. This has not been done at this time.

To determine the correction, separate fits are made to the inner and outer samples.
The ratio of data to MC is returned by the dominant (non-mixing) fit parameter. The

correction, €, is the ratio of outer to inner muons for this fit parameter:

0.06287 £ 0.00204
€ =
0.08144 £ 0.00102

= 0.7720 = 0.0269. (50)

For simplicity, the larger (positive) MINOS error is used. Systematic errors from this
correction arise from the statistical error on the correction. Repeating the fit once
with 0.7720 + 0.0269 and again with 0.7720 — 0.0269 gives the one sigma range for

this systematic error.

1When a track is identified as a muon by both the inner and outer detectors, it is classified as an
inner muon. Only when a track fails the inner muon requirements is it considered a possible outer
muon candidate.
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VII.2.10 Fit Shape Weights
The MC fit shapes are weighted to account for BR corrections, mixing time de-
pendence, and the OM efficiency correction. The weights are computed from the
ratio of MC weighted event-by-event to the same MC without any weighting. The

statistical error in a bin for event-by-event weighted MC is computed by the HBOOK

Error(i) = /Z W2, (51)

where Wy, is the weight of event k in bin . Using the notation defined in Sec. VI1.4.1,

histogramming package as

the extra error (RMS) in a bin due to the error in the weights is

Extra error(i) = \/Error(i)2 — w3ajq. (52)

(Most of the error comes from error in aj;, but this is already accounted for in the fit.)
The effect of this extra error is found by adding Gaussian fluctuations to the event-
by-event weighted histograms. The fluctuated event-by-event weighted histograms
are then used to recompute the weights used in the fit. 2250 fluctuated MC sets were

used to determine the spread in ry;, due to statistical errors in the weights.

VII.2.11 Fit Bias
A positive binning related bias of about 0.4 times the statistical error on ry;y
was discovered after finalizing all cuts and computing systematic errors. Nearly all
binning related bias is eliminated by adjusting the r,;, parameter in the improved
bin merging algorithm that was discussed in Sec. VI.4.1. If no bin merging is used, a
negative bias of about 0.3 times the statistical error results.

Bias in the fit is determined using simulated data and MC generated from the
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same parent distributions. The parent distributions are formed from smoothed MC
shapes. The smoothed shapes are Poisson fluctuated to generate simulated data
and MC samples. The level of bias depends only weakly on the amount of mixing
generated so no mixing is generated in computing the bias. 2250 simulated data and
MC sets were generated to evaluate bias. For the low bias algorithm, the median of
fitted 7, values for the simulated samples is (—12733) x 107%; the sample mean is
(—8423) x 107%. Since the fit errors are slightly asymmetric, the median is a better
estimate.

As a cross check, bias was also investigated by randomly separating the full MC
sample into simulated data and MC samples. This estimate gives results consistent
with the Poisson fluctuated method, however the accuracy of such a sampling proce-

dure is limited by MC statistics.

VII.2.12 Other Tests of the Fit

A mixing signal can be added to the simulated samples described in the previous
section. The following table shows the sample means of fitted r,,;, values for different
simulated r.,;x levels (the low bias bin merging algorithm is used). The two methods
used for simulating data and MC are labeled “Poisson fluctuating” and “Random
sampling.” In MC events where there is both a D° and a D° produced, the random
sampling approach allows mixing in either D. In the Poisson fluctuating approach,
mixing is only simulated in the reconstructed D. The mean positive fit errors are

within 3% of the sample standard deviations (not shown).
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Table 19: Mean fitted ry;, values for different levels of simulated mixing.

Sample mean

Input rmix Poisson fluctuating Random sampling
0. (—8+£23)x 10°° (6 +33) x 10°°
0.001 (1.031 4 0.024) x 1073 (1.1740.34) x 1073
0.01 (1.0250 + 0.0031) x 1072 (1.147 £ 0.051) x 1072

VIL.3 Improving the Analysis

There are at least three ways the analysis might be improved for journal publica-
tion. One way is to increase the 10.8 times FOCUS sample used for this thesis to a
20 times FOCUS sample. This might improve the statistical error by 20%. The other
possibility is to include the semielectronic modes. This would give a potential factor
of two increase in statistics. This might improve the statistical error by 40%. Finally,
a more accurate limit could be computed based on simulated data (similar to what
is done in computing the bias), rather than the Gaussian approximation used here.

This is described more fully in Appendix C.
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CHAPTER VIII

CONCLUSIONS

The results of this analysis are summarized below. Results from other experiments
are also summarized and theoretical estimates are compared with experimental limits.
The results of this thesis currently represent the world’s best limit on r.;. in the

D% D° system. At present, there is no evidence for D°~D® mixing.

VIII.1 Experimental Results

The value of ry;, returned from the low bias fit is (—7.679:3) x 10~*. The fit is
illustrated in Fig. 19. Including the bias correction and systematic errors, the result
is (—7.5f3j§§f§;é) x 10~%. In computing the limit, systematic and statistical errors are
added in quadrature giving (—7.575%") x 1072

The confidence intervals are computed by approximating the resolution as a Gaus-
sian distribution with a standard deviation given by the positive error. The limit is
computed with the approach recommended by Feldman and Cousins for a Gaussian
measurement near a physical boundary. This approach was discussed in Sec. VI.6.
The results are 7y, < 10.1 x 10™% at 90% confidence level and r,; < 13.1 x 1074 at
95% confidence level.

Tables 20 and 21 list the most recently published experimental limits for rpyy
along with this result. The Feldman-Cousins method (Table 20) for computing a
limit is more conservative than the traditionally used method, since the Feldman-

Cousins confidence intervals are guaranteed to be non-negative. For comparison, these
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Table 20: Most recent limits for published measurements of r;, and this result. The
Feldman-Cousins method for a bounded Gaussian is used. The published values,
which used a a less conservative method, are shown in Table 21. Only limits for
versions of the fits assuming C'P conservation are listed (except for the E791 hadronic
fit which allows C'P violation in the interference term).

Modes Experiment 90% CL 95% CL
D’ — K putv FOCUS (this thesis) 1.01 x 10~ 1.31 x 10°°
DY — K—utv 3 5
DO s Koty E791 [30] 6.0 x 10 7.0 x 10
DY — K—nt 3 5
DO s Km ot E791 [27] 9.8 x 10 10.9 x 10
DY — Kt CLEO [28] See text.

DY — Kt ALEPH [68] See text.

Table 21: Most recently published experimental limits on r;, and this result. The
log-likelihood difference method is used: AlnL = 0.82 for a 90% CL upper limit
and AlnL = 1.31 for a 95% CL upper limit. Only limits for versions of the fits
assuming C'P conservation are listed (except for the E791 hadronic fit which allows
CP violation in the interference term).

Modes Experiment 90% CL 95% CL
D — K- ptv FOCUS (this thesis) 0.52 x 107  0.87 x 1073
DY — K- utv 3 3
DO gt E791 [30] 5.0% 107  ~6.1x 10
DY —» K-t 3 3
DO e E791 [27] 85x 1078 ~9.8x 10
D — K—nt CLEO [28] See text.

D — Kt ALEPH [68] See text.

results are also listed using the traditional method for computing a limit (Table 21).
The traditional method locates the point were the log-likelihood decreases from the
maximum by an amount determined by a corresponding Gaussian limit.!

A limit on 7y can also be estimated from CLEO’s D° — K~ 7" mixing measure-

ment [28]. Their limits are given in terms of z’ 2 and ¥/, where the prime denotes an

IThe Gaussian limit implies Aln £ = 0.82 for a 90% CL upper limit, Aln £ = 1.31 for a 95% CL
upper limit, Aln £ = 1.35 for a 90% central confidence interval, and Aln £ = 1.92 for a 95% central
confidence interval.
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unknown rotation of x and y arising from a possible strong phase between the DCS
and Cabibbo favored amplitudes. The likelihood contour for ' and vy’ is complicated
(Fig. 49), but the largest distance from the origin gives a maximum 95% confidence
level of rmix < 1.8 x 1073 for the C'P conserved fit. Although this limit is based on
a likelihood difference, using r,;x = %(m’ 24 Y 2) automatically constrains rp;, to be
non-negative, so it is most easily compared with the values in Table 20.

The ALEPH collaboration [68] also has limits on 7y, using the decay DY —
K*n~. It is not apparent from the ALEPH paper whether 7, was constrained to
be positive in computing the limits. Assuming C'P is conserved they obtain 95% CL
upper limits of ry;, < 0.92% assuming no DCS-mixing interference, ry;, < 0.96%
assuming totally constructive DCS-mixing interference, and rp;, < 3.6% assuming
totally destructive DCS-mixing interference. It is interesting to note that, like CLEO,
a wider uncertainty for destructive DCS-mixing interference (y' < 0) is obtained.

Table 22 lists published experimental limits on parameters related to rpni.. Ta-
ble 23 lists the yop measurements used to compute the average in Table 22. DCS
modes provide additional information on y through interference between the mixing
and DCS matrix elements. Also, since y = (1/2)AI'/T, measurements of the lifetime
difference between decay modes with different C'P states provides information on y.
If CP is conserved, then AT’ =T'(C'P even) — I'(CP odd) and y = ycp.

Figure 49 illustrates these limits in the z-y plane.

VIII.2 Theoretical Predictions

Experimental limits are beginning to constrain theoretical models. Of the 65

predictions compiled in Ref. [26] and illustrated in Fig. 2, 20 are near or above the
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Table 22: Most recently published experimental limits on parameters related to ry;y.
If OP is conserved, rmi, = (2% +y%) = (2" + y°).

Modes Experiment 95% CL

Most general fit
(1/2)z" < 0.041%
—5.8% <y < 1.0%
CP conserving fit
(1/2)z" < 0.038%
—5.2% <y <0.2%
See Table 23 Average  (—1.0 < ycp < 2.5)%

DY — K—n+ CLEO [2§]

Table 23: Most recently published measurements of yop. If C'P is conserved then
y = ycp. For computing the average, statistical and systematic errors are added
in quadrature. The Particle Data Group method for combining measurements with
asymmetric errors is used (see Sec. 4.2.1 of [60] for details).

Modes Experiment Yop

D - K—nt

D’ = KK+ CLEO[14] (-12+25+14)%

D — gt

D' S Kot

D0 jger Belle[69]  (-05£10%87)%

D' S Knt

Do : Kf;ﬁ FOCUS [29] (3.42 + 1.39 + 0.74)%

D' S Knt

Do : Kf;ﬁ E791 [70] (0.8 42.9+1.0)%
Average (0.761095) %
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DO-BO Mixing Limits
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Figure 49: Limit for FOCUS semileptonic mixing superimposed on published limits.
The narrow horizontal band is the limit obtained from combining the lifetime asym-
metry measurements of E791 (Mar. 1999) [70], FOCUS (June 2000) [29], CLEO (Apr.
2002) [14], and Belle (Apr. 2002) [69]. The pear shaped region is from the CLEO
hadronic mixing limit (Dec. 1999) [28] plotted assuming zero for the strong phase
angle (the smaller circular region assumes C'P is conserved), and the large shaded
circle is from the E791 semileptonic mixing limit (August 1996) [30].
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Table 24: Theoretical predictions near or above experimental limits. S stands for
“Standard Model” and NS stands for “non-Standard Model.” The notation “+”
does not indicate a 1o region, but an entire range of predictions, where unknowable
parameters govern the variation. This is an abbreviated version of the tables in
Ref. [26]. The entries are sorted by year, with the most recent (1998) at the end.

Cita-

tion S/NS T (1/2)z? Comment

[71] NS 6x1072¢ 1.8 x 1073 Family Symmetry

[72] NS 5x 1072 1.25 x 1073 Higgs Doublet

[72] NS  (5.05+1.85) x 1072 (0.51 —2.38) x 1073 Kane-Thun Model [73, 74]
[8] S (0.01 —10) x 1072 ® 5x 1079 —5 x 1073 Long Distance

[75] NS (0.15 —90) x 1073 1x1078 —4.0 x 1073 Superstring-inspired Fg

[76] NS 4.4 x 1072 0.97 x 1073 Higgs Doublets, myg = 1 TeV
[24] NS (0.1 —10) x 1072 5x10°7"-5x 103 Fourth Generation

[23] NS ~ 0.1 ~5x 1073 Quark-squark alignment
[77] NS ~ 0.11 ~6.0x 1073 Flavor Changing Scalar Int.
[78] NS  (0.006 —120) x 1072 1.8 x 10~ — 7.2 x 1073  Fourth Generation

[78] NS  (0.004 —120) x 1072 8 x 10712 —-7.2x 10"  Higgs Doublet

[78] NS (0.06 — 120) x 1073 1.8 x 1072 —~7.2x 10°3  Flavor-Changing Higgs

[79] NS  (0.06—120) x 1073 1.8x 1072 —-7.2x 10~3 Fourth Generation

[79) NS  (0.04-120) x 1072 8x 107! —7.2x 1073  Higgs Doublet

[79] NS 5 x 1072 1.25 x 1073 Tree Level FCNC

[79] NS <o0.1c¢ <5x1073 Squark-gluino box diagrams
[13] S 6 x 1072 1.8 x 1073 Upper Limit

[80] NS (0.6 —6) x 101 (1.8 —180) x 103 Higgs Doublet

[81] NS (0.06 — 600) x 107 1.8 x 10711 — 1.8 x 10=®  Singlet Quarks

“It is not obvious how this particular value was extracted from Ref. [71].
bRef. [8] also estimates y with the same range of values as .
“Nelson appears to mistake this for a prediction rather than a limit.

limit from this analysis (Fig. 50). Only two of these predictions are Standard Model
estimates. These 20 are listed in Table 24. With the exception of one early estimate,
all of these are predictions for z (all the y predictions in Ref. [26] are Standard Model

predictions).
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Figure 50: Theoretical model predictions near the experimental limits. The triangles
are Standard Model predictions for z, the squares are Standard Model predictions for
y, and the circles are non-Standard Model predictions for z. (Figure from H. Nelson

at http://hep.ucsb.edu/people/hnn/wrongd/predictions/.)
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VIII.3 The Future

The BaBar experiment has presented preliminary mixing limits using D° —
K-mt [82] with 57fb™" of data. These limits are comparable to the CLEO re-
sult [28]. The BaBar experiment should run another five years and accumulate a
total of 400fb™" of data. The same is true of the Belle experiment, which is al-
ready surpassing FOCUS and CLEO in some measurements. Over the next five
years, the combined results from BaBar and Belle should lead to roughly a factor of
/2 x 400/57 ~ 4 improvement? in the limits for r,p;y.

The prospects for D°~D%mixing look even more promising for CLEO-c, which
will be dedicated to investigating charm and tau particles. The CLEO experiment
is located at the Cornell Electron Storage Ring (CESR). CESR is undergoing mod-
ifications to operate at center-of-mass energies between 3 to 5 GeV, including the
¥ (3770) and (4140) resonances. The CLEO-c experiment will collect an extremely
clean sample of D decays from (3770) — DD and (4140) — yvDD. The D°D°
pairs will be produced in a coherent state with a definite C' quantum number. This
will enable the relative strong phase between DCS and Cabibbo favored decays to
be measured and z and y possibly separated [83, 84]. CLEO-c is expected to run
from 2003 to 2005. With their final data set, CLEO-c anticipates a 95% confidence
level sensitivity of 7y, < 10~* [85] which is about a factor of ten better than current
experimental limits. This would rule out or constrain some of the larger Standard
Model estimates for mixing.

The Fermilab BTeV experiment is expected to start taking data around 2007. In

2From Eq. 36, the error on ry,;, scales approximately as 6 Ny /Nnu, where 6Ny is the error on
the number of mixing events. § /N scales as the square-root of the number of background events.
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a single year, BTeV will collect roughly 1000 times as much charm as the full FOCUS
data set. Background levels for charm analyses have yet to be studied in detail for
BTeV. Optimistically, a factor of /1000 ~ 30 improvement over present 7., limits

could be obtained with only a single year of running.

VIII.4 Final Remarks

Experimental limits on D°-D° mixing provide constraints on a large variety of
theories beyond the Standard Model as well as providing guidance in computationally
challenging areas of the Standard Model. The limits produced from this analysis are
among the best in the world. The disadvantages of using semileptonic decays—
lower statistics and worse resolution—are offset by the much simpler decay time
distribution for mixing in semileptonic decays and the excellent muon identification
of FOCUS. D°-D° mixing will continue to be an active area of research. Experimental
sensitivities will likely improve by more than a factor of ten over the next five to ten

years, significantly widening the window for discovering new physics.
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APPENDIX A

MULTIPLE COULOMB SCATTERING FOR FOCUS MONTE CARLO

This appendix briefly describes multiple Coulomb scattering generated for the
FOCUS Monte Carlo by the routine rgmoliere.

The theory of small angle multiple Coulomb scattering was worked out by Moliere
in 1948 [86]. This work was clarified by Bethe [87]. Theoretical calculations for the

exit angle have been checked by numerous experiments [88, 89, 90].

A.1 The Scattering Distribution

Moliere expresses scattering in terms of two characteristic angles, x. and x,. Path
length dependence is contained in .. Dependence on the cross-section is contained

in x,. The variable y. is defined as
X2 = 0.15722[Z(Z + 1)pt /A (p~% + (mc)*p™?) (53)

where t is thickness, p is density, and z is the projectile charge. Units used are
cm, grams, and MeV. The factor Z(Z + 1) was introduced by Bethe [87] and others
(replacing Z?%) to approximately account for scattering by atomic electrons. More
rigorous, but complicated, corrections exist but the (Z + 1) prescription works well
for high energy particles [91, 90].

Moliere calculated x, for a Thomas-Fermi potential (exponentially screened Cou-

lomb charge) and included a correction to the Born approximation. His y, is

1+ 3.34(Zza)? (mc)®/p®

2 = 2007 x 10°°7%3
Xa x p? 14 3.34(Zza)?]’

(54)
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where the fine structure constant is a.

The quantity
Q= xz/xa (55)
is the mean number of collisions. 2 is nearly momentum independent for § ~ 1. For

Q2 < 20, Moliere’s calculation is not accurate (this region is called “plural scattering”).

Moliere defined an expansion parameter, B, which satisfies
B—InB=hQ+1-2C (56)

where C = 0.5772. .. is Euler’s constant.! With this, the probability distribution for

the polar angle 6 is

F(0)0 do

¥ dd[2exp(—1¥?) + B LW (W) + B 2B @) 4 -], (57)

1

9 = 0/(x.B%), (58)

and
(n) o [T L\[1 5 (1 )\]"
f(9) =n! uduJo(Vu)exp [ —=u® | |=u”In | —u : (59)
0 4 4 4

In practice, one only needs to go up ton = 2. f and f are easy to compute with
series expansions given in Bethe’s paper [87]. The author has reproduced Bethe’s
table for f1) and f® using his expansions as well as doing the integrals numerically
with Runge-Kutta.? fM)(9) and f®(9) are evaluated by rgmoliere using cubic
spline interpolation for ¥ < 10. For ¢ > 10, the asymptotic formulas Eqgs. (57) and

(58) from Ref. [92], are used. The idea of using cubic splines was also taken from

Ref. [92].

!B is nearly linear in € for materials and thicknesses of interest. In rgmoliere, B is first
approximated from a linear equation and then improved with one or two iterations of Newton’s
method.

?Equation (29) of Ref. [87] contains a typo—a missing factor of 2. However, the values in Table II
of Ref. [87] are still correct.
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A.2 Random Number Generation

To generate scattering, a rejection function whose integral can be inverted is used.
See Ref. [93], Sec. 7.3 for a description of this method. Knowing that the Moliere
distribution approaches Rutherford scattering (fr(f)) at large ¥ was very useful in

finding a rejection function. From Ref. [87],
Fr(0)0d8 = (2/B)do /9.

Near 6 = 0, Hanson et al. [94] suggest the distribution can be approximated by a
Gaussian with somewhat narrower width than Moliere’s leading term. The suggested

1/e width is

N

b = Xe(B —12)

rather than 0, = XCB%.

After some trial and error, we arrive at the following rejection function:
frej(¥) = 2exp(—9%/(1 — 1.2/B)) + (¢1 + caBY*) L. (60)
The variable ¢; is chosen so f,e; agrees exactly with the Moliere distribution at ¥ = 0:

c1 = B/(fV(0) + f2(0)/B).

The variable ¢, would be 0.5 to match Rutherford scattering at large ¢, but with
0.5 the rejection function drops below Moliere’s distribution at intermediate . To
prevent this, 0.5 is reduced to 0.17, which works for B < 79 (the largest B in the
materials file for FOCUS is about 18). A material dependent ¢, would result in a
somewhat more efficient computation.

The two terms in the rejection function can be treated as separate probability

distributions. This has the advantage that one needs to invert two simple integrals
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rather than a single complicated one. The integrals used are

/ 2exp(—02/w)ddd = w(l — exp(—9/w)) (61)

/(a + 09 MdY = 2\;% arctan ¥?1/b/a. (62)

Taking the limits of integration to oo gives the area of the two distributions, A; and

Aj. The fraction of entries taken from the first distribution is A;/(A; + As).

A3 x, and x. for Compounds

Moliere generalized x, and x. to account for energy loss and different layers of
material [95]. Energy loss is not accounted for by rgmoliere. Energy loss is treated
in Appendix B.

The following definitions will be used below:

ke = 0.157[Z(Z + 1)p/A] (63)
ke = 2.007 x 107°2%3(1 + 3.34(Za)?) (64)
a = (1+334(Za)*)7". (65)

These definitions differ slightly from those in Appendix B. The differences involve
dividing out the mass of the projectile, and setting the charge of the projectile, z, to
1. This is done in order to have constants that depend only on the material. The
values for these constants are read from an initialization file by rgmoliere.

With the above constants and assuming z = 1, x. and x, are given by

= ket ? + (mefpY) (66)
v = ]%[Ha(mc)?/p?], (67)
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Effective x, and . after traversing layers of different materials are given by summing

over the layers:

Xg = Z(x?)z (68)

)

el = D (¢l (69)

)

After generalizing these equations for compounds, we sum over elements instead:

ke = 0.157p) [wZ(Z +1)/A]; (70)
kelnk, = 0.157p [w(Z/A)(Z +1)In(2.007 x 107°Z5(1 + 3.34(a2)))];  (71)
where w; is the fraction by weight of the i’th element and p is the density of the
compound. An extensive list of densities can be found in Ref. [96]. The effective a

is found using the effective k, and solving Eq. (64) for Z numerically and then using

Eq. (65). Eq. (71) also assumes (mc)? < p*.
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APPENDIX B

OUTER MUON IDENTIFICATION ALGORITHM

This appendix describes the method used for calculating the confidence level that
a track projected to the RPC’s is consistent with being a muon. The basic elements
of the method include: a covariance matrix calculation which accounts for mate-
rial effects through different layers, a pattern recognition algorithm which identifies
separate clusters of hits, and inclusion of magnetic deflections in the M2 iron. The
following sections describe how the the confidence level calculation is done, some

Monte Carlo and data results, and ways to improve the calculation.

B.1 Confidence Level Calculation

The confidence level is the probability that a measurement will have a chi-square
equal to or greater than some specified value (assuming the measurement errors are
approximately Gaussian). If the predicted errors used in the chi-square calculation
are correct, then the confidence level distribution should be flat. If the errors are
underestimated then the confidence level will peak at less than 0.5; If the errors are
overestimated, then the confidence level will peak at greater than 0.5. (Calculation
of the confidence level as a function of chi-square and number of degrees of freedom,
for Gaussian errors, is illustrated by the function gammq in Ref. [93].)

With correlated errors, the chi-square takes the form [97]

X =D>) Ctt - Xty — X)), (72)
iJ
where the sums are over the muon planes and Cj; ! is the inverse of the covariance
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matrix. X; is the measured coordinate and ¢; is the extrapolated track coordinate.

The following sections discuss the calculation of the covariance matrix.

B.1.1 The Covariance Matrix

The covariance between two variables, x; and z;, is

Cs = [ [ dasdys (o1 = 2y~ 5)Plas ) (73)

where z; is the mean value of x; and P(xz;, z;) is the joint probability distribution for
(@i, ;). For short, this can be written as C;; = (Ax;Ax;). For i = j, the covariance
is the same as the variance (square of the standard deviation).

The probability distribution for detected muons is determined by multiple scat-
tering and energy loss through the M2 magnet and OE calorimeter. For hadrons, the
mean free path for inelastic interactions in iron is about 17 cm, so hadrons typically
dissipate their energy in showers which generally do not make it through the OE and
M2.! Electrons bremsstrahlung their energy away. This leaves mostly muons of above
4 GeV making it to the RPC’s.

The displacement, in the z-z plane, of a muon from its extrapolated track inter-

section point at the exit face of a scattering slab, can be approximated as:

Zais = Trms((1 = p?)2Cre + pCas) (74)

This is for a particle incident along the z-direction, normal to the slab face. . is the

x-component of the RMS multiple scattering displacement? and p is the correlation

1Since there is a gap in the OE for electron-positron pairs, there are two narrow bands where a
hadronic shower could leak through the magnet iron and mirror plates.

2The Root-Mean Square scattering here refers to a Gaussian approximation. The RMS of the
full distribution is much larger than the Gaussian “core.”
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coefficient between the exit angle and zg4;. The variables (i, and (5, are Gaussian
deviates with a RMS of 1. The exit angle is given by (5,09, indicating that the spatial
displacement is correlated to the exit angle. The RMS planar projected exit angle is

¢o. Similarly, the displacement in the y-z plane is:

Ydis = yrms((l - P2)%C1y + pC?y)a (75)

where ((1y, (2y) are independent of (14, C2z), and Yrms = Trms-
Egs. (74) and (75) are somewhat more general than those given in Sec. 22.6 of
the Review of Particle Properties [98]. The generalization is needed to account for

energy loss and multiple materials. The equations in [98] imply

e = 5(t60)° (76)
with pathlength ¢, which is only valid with a single material and negligible energy loss.
Even if multiple materials and energy loss are accounted for in ¢, this relationship
gives an incorrect y,,s. Calculations of ¢g, y.ms, and p which properly account for
multiple materials and energy loss are discussed in Sec. B.1.3.

Egs. (74) and (75) give the deflection at the exit face of a scatterer, in a coordinate
system where the incident track points along the z-axis. However, what is needed
is the deflection at a RPC plane. Also, the incident track has a non-zero slope. To
account for the slope of a track, ¢ can be taken as the pathlength of the extrapolated
track through the scattering slabs, rather than the slab thickness. Then zg4;s and yqis
are displacements perpendicular to the incident track. This is illustrated in Fig. 51.

The projection of yg;s in the vertical (y-z) plane is ydism. The intersection

point of the scattered track with a detector plane is then given by

Yi = Myze + Yo + My (2 — ze) + Yaisy /1 + m2. (77)
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Figure 51: Multiple scattering parameters viewed in the y-z plane. The pathlength
through the material is ¢, ¢, is the planar projected multiple scattering angle, yqis
is the scattering displacement at the exit from the material, and m, is the incident
track y-slope.

The y-slope of the incident track is m, ® and the y-intercept of the line corresponding
to the incident track is yo. The y-slope after scattering is m;. The z-position of the
detector is z;, and the z-position of the exit point from the scatterer is z.. There is a
small correction to z. which has not been included in the above equation.

Using small angle approximations,
my, =~ my + ¢, (1 +m?), (78)

where the angular deflection is ¢, = (2,¢0. To obtain this approximate m,, use has
been made of the expressions:
sin(A+¢,) ~ sinA+ ¢, cosA (79)

cos(A+ ¢,) ~ cosA— ¢,sinA, (80)

3To account for magnetic deflections, my, is reinterpreted as the slope that a muon would acquire
after magnetic deflection through M2, in the absence of multiple scattering. The variable ¢ is still
the pathlength traversed in absence of multiple scattering, but the path is now curved.
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with m, = tan A and m; = tan(A + ¢,).

From Egs. (77) and (78), the deflection in the i’th RPC plane is

Ayi - <2y¢0(1 + mz)(zz - Ze) + yrmS((l - p2)%<ly + p<2y) \/ 1+ m12! (81)

An exactly analogous expression holds for Az;. The u-view coordinate is given in
terms of the z and y coordinate through u; = z;cos A + y;sin A. For the RPC’s,

sin A =cos A = 1/\/5 For the u; coordinate then,

The expressions for Az, Ay, and Au can be inserted into Eq. (73) to find the

covariance. The integrations are simple:

[acpo = 1 (83)
/ dCCPC) = 0 (84)
/ dCCPE) = 1 (5)

Note however, the range of integration is taken from —oo to 4+o00. Technically,
the range of integration should be limited by the detector acceptance. So, tracks
near the edges of the detector acceptance are not treated correctly. By combining
each detector in a given view (z, y, or u), into one effective detector, this problem
is minimized. Still, there are tracks near the beam aperture that are not treated
correctly. Requiring a minimum amount of material traversed cuts out tracks near
the aperture.

The elements of the covariance matrix obtained from the above integrations are

as follows (with the abbreviation Az; = (z; — 2.)):

(Az;Azj) = ¢o(1+m2)(go(1+m2)AzAzj + Yemsp(Az; + Azj)y/1 + m2)
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+ Yemms (1 + 127) (86)

(AyAy;) = do(L+ml)(do(1 +mi)AziAzj + Yemsp(Azi + Azj)y /1 +m2)

+y2 (1 +m?) (87)
(Az;Ay;)) = 0 (88)
(Az;Auj) = (Az;Azj)/V2 (89)
(Aydu) = (AyAy;)/vV2 (90)
(AuAu) = ((AzmAz;) + (AyAy;))/2 (91)

For equations involving the same view (Egs. (86), (87), and (91)), it is normally the
case that ¢ = j. However, it is possible for a single track to hit two planes in the
same view since there is some overlap between RPC towers. Hits in separate towers
form separate clusters, unless there are less than three views. In this case, hits from
an overlapping tower may be added to form a three view (three degree of freedom)
cluster.

In order to approximately account for granularity of the detectors, a contribution
is added to the diagonal elements of the covariance matrix (the equations above only
include the multiple scattering contribution). A uniform distribution is assumed over
the width of a readout strip (12.4 cm in the RPC’s), and the RMS is calculated as

follows:

1 6.2 cm
o’ = dz z*
124cm J g9em
= 12.813cm’. (92)
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B.1.2 Pattern Recognition

When multiple hits occur in the RPC’s in a single event, a decision must be made
as to which hits belong to a given track. Taking the hits nearest a track as belonging
to the track sometimes results in non-overlapping strips being chosen. Nehring? wrote
a routine which remedies this problem. The routine identifies clusters of active strips
and returns their position. If adjacent strips in a given view (there are three views:
z, y, and u) are active, then the cluster coordinate is given as the midpoint between
the two strips and the granularity error is halved.’ The cluster returning the highest

confidence level for a given track is treated as a match.

B.1.3 Multiple Coulomb Scattering

The theory of small angle multiple Coulomb scattering was worked out by Moliere
in 1948 [86]. Moliere’s basic results were outlined in Appendix A. To a good approx-
imation, the Moliere distribution can be replaced by a Gaussian. The distribution,
however, has larger tails than a Gaussian. Because of the tails, determining the final
width by adding the RMS of successive approximate Gaussian scattering in quadra-
ture is only accurate for a limited range of material thicknesses.

Lynch and Dahl [91] have obtained an expression for the multiple scattering width
(¢o in this thesis), from Gaussian fits to the Moliere distribution over a wide range
of materials and energies. Previous formulas for ¢y (such as the Rossi or Highland
formulas) are also found from fits to the Moliere distribution, but are functions of

radiation lengths, whereas the Lynch and Dahl formula depends on two characteristic

4Matthew Nehring, Assistant Professor of Physics at Adams State College, Alamosa, Colorado.
5This does not work when adjacent strips are activated by different muons. But this is a rare
occurrence.
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angles, x, and ., from Moliere’s theory. These angles are functions of momentum,
path length, density, atomic weight, atomic charge, and projectile charge. The Lynch
and Dahl formula is used for the outer muon simulation.®

In order to take into account different materials and changes in momentum, ef-
fective y, and x. need to be calculated through suitable averaging. Formulas for
effective y, and x. are given by Lynch and Dahl in Ref. [91], however they neglect
energy loss.

Multiple scattering with energy loss for the Gaussian approximation was derived
by Eyges [99], generalizing the work of Fermi [100]. This implies (see corrections and

useful comments in [101]):

6 = 3 s (93)
Vo = 3 [ B@(—afde (94)

wo) = 3 [ el -y (95)

Here the momentum dependence of 62(z) is regarded as a function of position z. The
factor (t — z)? indicates that scattering at the beginning of the path contributes more
to y2 . than scattering at the end of the path. Thus, the influence of low energy
scattering near the end of the path, is less than suggested by the simple formula
y2ns = 3(t¢o)?, which neglects energy loss.

Since the Gaussian approximation of Lynch and Dahl [91] is written in terms of
the characteristic angles, y, and y,. from Moliere’s theory, energy loss and multiple

layers need to be accounted for using Moliere’s notation. Most recent references only

do this for ¢g, but not y,,s or p. Fortunately, Moliere (1955) showed how to express

SEq. (7) of the Lynch and Dahl paper [91] contains a typo: o should be replaced by o2.
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distributions for y/t and (y/t+ ¢) in the same form as equivalent ¢ distributions [95].

This leads to integrals similar to Egs. (93)—(95). In order to make the integrations

dp
) dz?

simpler, the rate of momentum loss is assumed constant (within 1%) over a given
layer. This condition on the rate is checked in the code” and the layer is subdivided
if needed (there is a minimum cut-off of 8 cm). This assumption enables larger step
sizes to be taken than would be possible if the steps were so small that energy loss

was negligible over a given layer. Calculations of equivalent y, and y. are outlined

in Sec. B.4.

B.1.4 Ionization Energy Loss

Based on c¢ Monte Carlo, 40% of muons incident on the RPC’s are absorbed. It
is therefore necessary to treat muons down to a fairly low energy. Because materials
are subdivided into layers for which momentum loss rate is constant, there is no need
to use a numerical integration of the Bethe-Bloch equation. Eliminating this gives
another improvement in speed. Convergence and absorption are checked at several
stages of the calculation.

The density correction is included in ‘fi—f, but the shell correction is ignored. Cal-

culation of 2 for composite materials is discussed in Refs. [102, 103].

B.1.5 Magnetic Deflections
To approximate the mean muon trajectory, scattering is ignored and the trajectory

stepped through the magnet, assuming a constant magnetic field over each step. Since

"The thickness resulting in a 1% change in j—g was fit to a polynomial, giving thickness as a

function momentum for iron.
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the equations of motion have a p~! dependence, to account for energy loss an effective

momentum is used:

Pexit
1/peff = (pexit - pen‘crance)i1 / dp/p (96)

Pentrance

- (pexit - pentrannt:e)i1 log(pexit /pentra.nce) (97)

Convergence to within half a millimeter lateral deflection at the RPC’s is obtained
by limiting the step size to no more than 20 cm. (This assumes muons with incident
energies of at least 4 GeV. Most muons with lower energies are absorbed anyway.)
Webster® has written a routine which approximates the B field inside the M2 iron.
The routine consists of polynomial fits to a two-dimensional field map produced using
the Fermilab program, POISSON. In calculating the trajectory, the B field in the iron is
assumed to end at the edges of the magnet. To first order, only the product of magnet

thickness and B field contributes to the deflection, rather than each individually.

B.2 Results

The subroutine which computes the outer muon confidence level for each track
is called omurecon. Figure 52 shows the confidence level distribution as calculated
in omurecon from muons in ¢¢ Monte Carlo. At least one cluster is required to be
found in the RPC’s in an event and the incident track is within the RPC acceptance.
The bottom plot shows the momentum spectrum for these muons. This is merely
a consistency check between the confidence level computed in omurecon and the
simulation of muon hits in omusim. As expected, the distribution is fairly uniform.

Figure 53 shows three plots from candidate muons in J/¢ data. One muon in the

8Medford Webster, Professor of Physics, Vanderbilt University.
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Figure 52: Confidence level and momentum distributions for muons from c¢ Monte
Carlo.

pair appears in the plot, the other muon is identified in the inner muon detector. The
top plot is the confidence level (entries below 0.001 are not shown), the middle plot
is the distribution of projected track minus y-hit position, divided by the predicted
RMS (again, entries with confidence level below 0.001 are not shown). The predicted
RMS is about 3% larger than the measured RMS. The scattering RMS is about 19%
larger than the granularity RMS. The projected track includes magnetic corrections

for M2. The bottom plot is the momentum spectrum for entries in the top plot.

B.3 Improving the Algorithm

Based on Monte Carlo, the confidence level distribution for muons is flat, except

at high energy (20 GeV and up), where granularity effects become significant. This
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Figure 53: Top: Confidence level distribution for candidate J/¢) muons. Only con-
fidence levels of at least 0.001 are plotted (there are 146 omitted entries from this
cut). Middle: Projected track minus y-hit position, divided by predicted RMS. The
scattering RMS is about 19% larger than the granularity RMS. Bottom: Momentum
spectrum for entries in the top plot.

is because the confidence level is calculated assuming Gaussian errors, but at high
momentum the errors are basically rectangular. This tends to artificially push low
confidence level tracks to higher confidence level. Thus, efficiency for muons is in-
creased, but more background is accepted. Methods for handling granularity effects
in confidence level calculations were developed by Cawlfield, Ruesink, and Wiss [104]
which work well for four or more degrees of freedom (hits in four or more layers). Im-
proving the calculation for two or three degrees of freedom might improve background

rejection for higher energy muons.
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B.4 Calculation of Moliere Parameters with Energy Loss

This section outlines the calculation of effective scattering parameters, including
energy loss, in Moliere’s notation [95]. Moliere generalized his calculation of scattering
distributions to include linear combinations of the form ¢ cos A + ¥ sin A\, where ¢ =
y/t. Recall y is the y-component of lateral deflection through a thickness, t. The
parameters replacing x. and x, are x. and z,. These are given by (Egs. (3.9a) and

(3.9b) of Ref. [95]):

1
2 =t [ o)t s (98)
0

nz, = (/) /0 day X (a2)(c + saz)* In[xg(az) (c + sa2)’] (99)

with the abbreviations cos A = ¢ and sin A = s. X2 and 2 are defined as follows:

X2 = 0.1572%[Z(Z + 1)p/Al(p 2 + (me)*p ™) (100)

1+ 3.34(Zza)? n (mc)?/p?

2 = 2007 x107°2%3
Xa 2 1+ 3.34(Z2a)?

(101)

Units used in the above are cm, grams, and MeV. The fine structure constant is «
and p is mass density. The factor Z(Z + 1) was introduced by Bethe [87] and others
(replacing Z?%) to approximately account for screening of the nucleus by surrounding
electrons. The projectile charge is z.
Results of integrating Eqgs. (98) and (99) for a single layer, 7, are summarized
below. The position along the z-axis after exiting the layer is x;, and the momentum
p

after exiting is mcn;. When energy loss is present, 37 is treated as constant. Terms

higher order than =2 are generally dropped. The following notation is used:

ke 0.157[Z(Z 4+ 1)p/A]2*(me) 2 (102)

ke = 2.007 x 107°2%3(1 + 3.34(Z 20)?)(mc) 2 (103)
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a = (1+334(Zza)*)! (104)

dn
= — 1

¢ = 2 (105)
Az, = z;—Ti1 (106)
w2 o= > (22 (107)
Inz? = Z(ln z2); (108)

For ¢ without energy loss

Az;
(@2); = ke—y (109)
Uh
22(Inz?); = (22);Ink, + kAzi(an;? — 21Inn;)n; > (110)
For ¢ with energy loss:
Azx;
), = k,.—— 111
(ze) MiMi—1 (1)
1 i
2(lnz?); = (22);Ink, + k& |20 (lnn+ 1) — gan’g (112)
i1

For ¢ without energy loss:

(@) = —ket[(1 —=i/t)* — (1 — @i 1/t)°]/ (307) (113)

xg(ln 33,21)1 = (xg)l(ln ke —2Inm; + a77272)

A [0 (w0 9)5)[ o

For ¢ with energy loss:

(22); = k& '[—A’n ' +2ABInn+ Byl (115)
A =1 + (t&)ilnifl — Z‘ifl/t (116)
B = —(t&)™! (117)
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Unfortunately, the author is unable to find an analytic expression for 2 with energy
loss for ¢. The 8 point Newton-Cotes formula (see Abramowitz and Stegun [105]
Eq. (25.4.17)) works well enough for this purpose (at least for the materials, geometry,
and energies in the outer muon system).

The correlation coefficient, p, can be found from (y¢), which in turn can be found
from ((¢ + #)?). The integrals used for (¢ + ¢)/v/2 are similar to ¢ and can be
found by simple substitutions. The substitutions can be found from Egs. (98) and
(99) and a little algebra. For ¢, ¢ = 0 and s = 1; For (¢ + ¢)/v/2, ¢ = 1/4/2 and
s = 1/4/2. Aside from some constant factors, the integrals are the same for both v

and (¢ + ¢)/v/2.
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APPENDIX C

CONFIDENCE INTERVALS FOR NON-GAUSSIAN RESOLUTIONS

The Feldman-Cousins paper suggests how to construct confidence intervals for
non-parabolic log-likelihood functions with measurements near a physical bound-
ary [54]. Their paper considers a somewhat more complicated two-parameter example
than needed here. Only the one parameter case will be considered here.

With simulated data, “acceptance intervals” can be constructed using an ordering

principle based on the log-likelihood difference
AX® = =210 Lgen + 210 Ly (118)

where Lge, is the likelihood evaluated at the generated rmix, rgen, and Lypeg; is the the
likelihood evaluated at the most likely non-negative r,;, (either zero or the maximum
likelihood from a fit).! Based on many simulated experiments, a distribution for
Ax? is found for the rge,. From this distribution, a Ax? is found such that « of the
simulated experiments have Ax? < Ax? (each rge, has a single Ax?). Then Ax?(rmix)
for the real data is compared to sz(rmix) and the confidence interval for rpiy is all

points such that

Ay? (Fmix) > Axg(rmix). (119)

!Feldman and Cousins actually recommend a particular form for £. Presumably other forms for
L would work also.
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APPENDIX D

INNER AND OUTER MUON DISTRIBUTIONS

In this appendix, shapes for the inner and outer muon samples are shown sep-
arately. The final results used the merged sample but inner and outer muon sam-
ples were separated to select cuts (Sec. VI.7) and cross-validate the Monte Carlo
(Sec. VII.1). Fits made using the separate samples used the high bias bin merging

algorithm (Sec. VI.4.1).
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Figure 54: Results of a two parameter, two-dimensional fit to data with Monte Carlo
(MC) shapes used in the fit overlaid. Only the D*" mass dimension is shown. The
first MC shape is from events containing a D*t — DO%rT. The second shape is

all events without a D** — DOx™,

The MC shapes contain slight branching ratio

corrections. The ratio of the amounts of the two dominant MC shapes are tied to
the MC predicted ratios. AM runs from 0.138 GeV/c? to 0.165 GeV /¢? with 50 bins
(0.54MeV/c? wide bins). The proper time runs from 0 cm to 0.1 cm.
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Figure 55: Results of a two parameter, two-dimensional fit to data with Monte Carlo
(MC) shapes used in the fit overlaid. Only the D° proper decay time dimension is
shown. The first MC shape is from events containing a D** — D%r*. The second
shape is all events without a D** — D%+, The MC shapes contain slight branching
ratio corrections. The ratio of the amounts of the two dominant MC shapes are
tied to the MC predicted ratios. AM runs from 0.138 GeV/c? to 0.165GeV /c?. The
proper time runs from Ocm to 0.1cm. The first sixteen time bins have a widths of
0.00375cm. The last four time bins have variable widths. In these units, the mean
DO lifetime is at 0.0124 cm.
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Figure 61: Outer muon D° proper time distributions for the Monte Carlo shapes

in the fit.
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Figure 62: Monte Carlo D** mass shapes comparing the non mixed D°, mixing,
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combined. Non mixed shapes are scaled to data levels, mixing shapes are scaled so
that multiplying by rni, gives the average number of mixed events in the data.
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combined. Non mixed shapes are scaled to data levels, mixing shapes are scaled so
that multiplying by rni, gives the average number of mixed events in the data.
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APPENDIX E

RANKING CUT VARIABLES

Since a large number of variables were considered in preliminary optimizations,
some way of ranking the variables according to their ability to distinguish between
signal and background was useful in determining the order in which to try various
cuts. Once a smaller effective set of variables was found, this ranking was basically
ignored.

We can define a variable called signal which is equal to 1 for signal events and
0 for background events. Variables are ranked according to their correlation with
signal. For Gaussian variables, the linear correlation coefficient is a handy measure
of correlation. Since all of the variables are non-Gaussian, Kendall’s tau [93] is used
instead as the measure of correlation between signal and the cut variable. Kendall’s
tau is ideally suited for comparing variables with different functional forms. However,
computing Kendall’s tau, can be very slow for large samples. The algorithm can be
coded to run more efficiently when one of the variables is binary, as is signal. 3000
data points are generally sufficient.

The signal and background samples used in computing tau are from Monte Carlo.
The signal is RS D** — D%t — (K~ p*v)r™ and D*F — Dt — (K* ptv)nt.
The soft pion tracks and D° daughter tracks are required to match the Monte Carlo
particle trajectories for these decays. Mixing proper time dependence is simulated

using event rejection on this sample. The background is all WS events.
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Table 25 shows the initial ranking of variables considered using Kendall’s tau. Ta-
ble 26 ranks these same variables using linear correlation coefficients. Some powerful
cut variables have low ranking because they have already been applied (e.g., muon
confidence level, CL,). Also, some variables which are very effective for eliminating
backgrounds in data have a low ranking. In particular, the number of sigma out of
material of the secondary is essential for reducing non-charm backgrounds. Another
such variable is W(e) — W(m) of the 7 candidate.

Minimal cuts were listed in Sec. VI.7.1. The rankings shown are for inner muons.
Outer muons have similar lists. This study used an older, less accurate, Monte Carlo

sample than used in the final analysis.
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Table 25: Variables ranked according to their correlation with signal. Kendall’s tau
is used as the measure of correlation.

Rank Variable Kendall’s tau
1 iso3 -0.2283
2 Ljoy 0.1944
3 L 0.1813
4 isol -0.1752
5 iso2 -0.1737
6 W(K) —W(m) of m candidate 0.1211
7 K-p invariant mass 0.1113
8 | D 0.1018
9 [Pk + P 0.1002
10 D** momentum 0.0936
11 q* -0.0810
12 D] 0.0803
13 Pk | 0.0618
14 Angle between px + p,, and ppo -0.0513
15 No. of sigma out of material of secondary 0.0465
16 |(Px + D) X Dpol -0.0390
17 W(e) —W(m) of p candidate -0.0311
18 W(m) —W(K) of K candidate 0.0309
19 W(e) —W(m) of m candidate 0.0280
20 CL, 0.0257
21 c|At| (two solutions) -0.0121
22 CLgec 0.0113
23 No. of sigma out of material of primary 0.0098
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Table 26: Variables ranked according to their correlation with signal. Linear corre-
lation coefficients are used here as the measure of correlation.

Rank Variable Linear correlation
1 L/oy, 0.2709
2 L 0.2473
3 iso3 -0.2009
4 [Pk + Dl 0.1655
5 K-p invariant mass 0.1562
6 W(K) —W(m) of m candidate 0.1314
7 iso2 -0.1265
8 D] 0.1200
9 1P| 0.1145
10 q° -0.1093
11 Angle between px + p,, and ppo -0.0927
12 isol -0.0837
13 D* momentum 0.0809
14 No. of sigma out of material of secondary 0.0768
15 | D | 0.0762
16 W(e) — W(m) of pu candidate -0.0503
17 |(Px + Pyu) X Dol -0.0384
18 ClLgec 0.0348
19 CL, 0.0305
20 W(r) —W(K) of K candidate 0.0150
21 W(e) —W(m) of m candidate 0.0119
22 c|At| (two solutions) -0.0071
23 No. of sigma out of material of primary -0.0017
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APPENDIX F
APPROXIMATE ERROR ON A SMALL PARAMETER

It is possible to obtain a rough estimate of the error on a small parameter without
doing a full fit. For this purpose, we can ignore the error due to finite Monte Carlo

statistics. Maximizing the likelihood is then equivalent to minimizing

—InL = Z —d;In f;), (120)

where f; is the expected mean number of entries. If p; denotes the small parameter
(e.g., Tmix)
fi = prwriar; + ijwjiaji- (121)
i#1
a;; are the Monte Carlo shapes, wj; are weights, and p; are parameters determined

from preliminary fits (these would be independent of cuts if the Monte Carlo was a

perfect representation of data). The above equation can be expressed as

¢ P1w1;a1;
fi = Pjw;ia =m (122)
; T D i1 Piwsiti
p = b (123)
> i1 Piwiiti

If the second term in the [] is small compared with 1, then In f; can be expanded in

a series:
- 1
In f; ~In <ijwjiaji> +Tip1 — B wipi. (124)
J#1
Finding the point where the log-likelihood changes by 1/2 gives the error on py, dp;:

n

1 1
— ID,C — [— In ,Co] = Z {wlialiépl — dz (xﬁpl — §$$(5p1)2>:| = 5, (125)

[
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where In Ly is evaluated at p; = 0. Collecting these terms:

= d;wy;aq; 1
Z P = s<m— o | Ty T 0.

m . .. ..
: Zj;él bjWjiaji

n

2
di i01i
(0p1)? ZE (L> +dp1

m . .. .o
Zj;él bjw;iQji

2

(126)
With d; ~ fio = Z;’;l pjwjiaj; (i.e., we model the data with the Monte Carlo predicted

shape, excluding p;) this simplifies to

%

(6p1)? [Z(wuauf fml] ~ 1. (127)

Finally,

op1 ~ [Z(wliau)zfiﬁll (128)

[

which is easily evaluated. wy;ay; is, for example, the predicted mixing shape and f;o
is the expected shape for mixing free data. This approximation assumes the other

parameters are known and error free. In the limit of a single bin, this is just the

familiar result 0p; =~ \/Nbackground/Nsignal-
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