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1 Introduction

Conformal Field theories (CFT) are interesting to Physicists for their roles in critical
points of phase transition and studying RG flows. In the study of CFTs it is important to
understand how to determine the operator spectrum of a theory. The conformal bootstrap
is an approach, introduced in the pioneering works of [1-5] that is solely based on using
the symmetries of a CFT. The last decade has seen a revival of the conformal bootstrap
program following the work of [6]. This involved the equality (crossing symmetry) of the
Operator Product Expansion (OPE) in the direct channel and crossed channel. It has been
very successful in obtaining numerical results, in theories like Ising model [7-9]. The idea
here is to constrain the space of CFTs starting with some given assumptions which are
usually based on symmetries or unitarity of the theory (see [10]-[71] for related works.)

Another goal of the boostrap program is to solve a CFT analytically. One aspect is
using the bootstrap equation in a lightcone limit, introduced in [72, 73]. This assumes a
higher spin sector of operators in a theory, whose anomalous dimensions and OPE coeffi-
cients can be computed in terms of a lower twist operators present in the spectrum. There
has been many subsequent works [74]-[84], that has taken this approach further. In these
works a systematic approach has been developed to compute the anomalous dimension of
large spin double trace operators as an asymptotic expansion in inverse spin.



This brings us to the other aspect of analytic approach, which is to give an alternative
way to Feynman diagrams, to calculate the OPE spectrum in CFTs with a perturbative
parameter. In perturbative CFTs, such as the Wilson-Fisher fixed point in ¢* in d = 4 —¢,
Gross-Neveu model [85-88] have shown various techniques of obtaining OPE data under
expansion in a small parameter. The twist conformal blocks can be used efficiently to
extract the leading order anomalous dimension in 4 — e dimensions [76]. In [89] a dispersion
relation-based technique was used, that was inspired from the original work of Polyakov [4].

A new approach to bootstrap, also based on Polykov’s work [4], was chalked out
in [90, 91]. This involved replacing conformal blocks with a manifestly crossing symmetric
basis of Witten diagrams in the Operator Product Expansion. The use of Witten dia-
grams requires the description to be in Mellin space. Consistency with the usual OPE
then requires satisfaction of certain equations. These equations, referred to as bootstrap
equations in Mellin space, can be used to solve OPE data order by order in a perturbative
parameter. It gave many results for the Wilson-Fisher model and was generalized for global
symmetries in [92]. The method was also successful in reproducing the large spin results
in lightcone bootstrap, treating the inverse of spin as a small parameter. The equivalence
of this new approach to bootstrap with usual one has been studied recently in [93].

All the analytic approaches mentioned above reach their limits at certain orders in
perturbation. The large spin literature gives a systematic expansion in all orders of large
spin. These results have then been used to obtain higher spin anomalous dimensions per-
turbatively, for example in Wilson-Fisher up to O(e?) order [76]. The Mellin bootstrap
equations are successful in giving both higher spin OPE coefficients and anomalous dimen-
sions up to O(e?), with significant ease [90-92]. There are certain complications that arise
beyond this order which makes it difficult to get higher loops results. Even though such
difficulties are expected at higher orders, it is desirable to know how much can be done
with the present bootstrap-driven techniques and without further intricacy.

The goal of this paper is to present some calculations for the higher spin double trace
operators with the tools of the known methods. The calculations are simple but will take
us to some high orders in perturbation. The results presented are mostly unknown in the
Feynman diagram literature. In the first half of the paper we have used the large spin
analysis from the usual bootstrap approach to compute anomalous dimensions and OPE
coefficients of up to O(e®) and O(e?) respectively for the Wilson-Fisher theory in d = 4 —e.
This computation takes in information of infinite higher spin minimal twist operators. This
comes from existing e-expansion results obtained with Mellin bootstrap as well as those
from Feynman diagram literature. In [93] it is shown that the difference between the usual
and Mellin bootstrap starts at O(ﬁ) for the double trace operators having dimensions
A =d — 2+ ¢+ . For higher spin operators in ¢* theory, v, ~ ZLZ in the large spin limit.
Hence the large spin expressions from usual and Mellin approach should agree uptil O(1/¢%).
Since we calculate up to O(€®/#3) we can safely use these formulae. The second half of
the paper uses the ideas of Mellin bootstrap. The theory used is ¢3 theory in d = 6 — €,
for convenience. Here we compute OPE data at one loop. We also present a calculation
that takes us to a higher order in €. The main objective of this part is to understand how
Mellin bootstrap ideas can be used to systematically compute higher loop results.



The paper is organized as follows. In section 2 we begin by the computation of the
anomalous dimension and OPE coeffient in the large spin limit for the ¢* theory in 4 — €
dimension using the known results from large spin analytic bootstrap. Section 3 is dedicated
to the study of ¢3 theory in 6 — ¢ dimensions using the ideas of Mellin bootstrap. We
conclude in section 4 with a brief discussion of the future directions. The appendices give
the calculational details of the paper.

2 Higher orders of Wilson-Fisher from large spin

In this section we derive the anomalous dimensions and OPE coefficients of the operators
in € expansion for ¢* theory in 4 — € dimension in the large spin limit.

Let us take the OPE of the scalars ¢ x ¢. We know that the operator content of this
OPE consists of higher spin double-field operators of the schematic form,

O2m,€ ~ ¢(82) w1 "t u4¢7 (21)
with conformal dimension,
A =204 +2m+L+7. (2.2)

We consider such operators at large spin, for which it was shown in [72, 73] that the leading
anomalous dimension is determined from the operator(s) having the minimum nonzero twist
Tm- If we assume that the anomalous dimension at large spin has the following expansion,

T=v0+ 2+ (2.3)

then we have [72-74, 93],
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Note that there is a sum over £, in case there are multiple operators with the same minimal

(2.4)

twist 7,,,. The OPE coefficient of each operator is given by Cy, .
In a similar way, the OPE coefficients of these operators at large spin, can be expressed

in terms of the minimal twist operator(s) as follows,
5C
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where we have,
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The subsequent orders of vy and §Cy in 1/¢ can also be computed easily using the techniques
in [74, 93]. However for simplicity we will focus only on the leading order terms.

2.1 Anomalous dimension

This section deals with the e expansion of ¢* theory in d = 4 — e dimensions (Wilson-Fisher
fixed point). We will use the above formulas to get the OPE data of double field operators
at large spin. The dimension of the fundamental scalar ¢ reads

1 1 109 4) (5)
Apg=1-cet+—e+—3+60 4504+ 0(5). 2.7
P 26+108€+116646+¢6+¢6+(6) (2.7)
For this theory the minimal twist operators are the double-field operators ¢d%¢ themselves.
This is because under the e-expansion (eq (2.2)), their twists are 7, = 7 = 2 4 O(¢) . For

l, = 0 we have the scalar ¢? operator. Its twist and OPE coefficient are respectively

given by,
Tm =2 — §e+ %62+6(()3)e3+5(()4)e4+6(()5)65+O(66)7
2¢  34e?
Co=2-2 -2 + 0P + 0 + 0P +0(). (2:8)

Substituting (2.8) in the first term of (2.4) for ¢, = 0 we get,
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Here 70ls,,—0 is what one gets from (2.4) with only ¢, = 0.

Now let us consider the contribution from higher spin minimal twist operators of (2.1).
Note that the operators Os,, ¢ with m > 0 can contribute at orders suppressed as = or
beyond, and hence would not contribute at £=2 or £~3, which we consider in this paper. It
is the same for other higher twist operators (like those composed of four or more ¢-s) too.
For O = $9'¢, the OPE coefficients and twists are respectively,
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Substituting (2.10) in (2.4) we obtain the following,
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Here volg,, >0 is the contribution of all spins ¢, > 0 to vp. This sum is over even spins ¢,
and can be performed exactly. For the O(e?) term it gives,

> 1+ 24, T2 —12
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Hence the anomalous dimension at O(e*) in the large £ limit is given by,
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Now if we take the €3 dimension of ¢? as an external input i.e. 5(()3) = B — %(73) [94-96]

(computed using Feynman diagrams), then the anomalous dimension at O(e*) in the large
£ limit reads,

4
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(2.14)
This matches precisely with the =2 term known in literature [57, 97].1
Now we will compute the O(e%) anomalous dmension of these operators in the large ¢
limit. In order to do that we need to perform the £, sum in (2.11) at O(¢?). We will first
focus on the terms in (2.11) without the Harmonic numbers. This sum (over even spins
only) can be easily done resulting in the following expression,
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The remaining terms in (2.11) reads,
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Adding (2.9), (2.15) and (2.16) we obtain the following contribution at O(€®),
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Here we have used the €3 order OPE coefficient of ¢ i.e. C'é?’) = 23&3) — 463% which can be
computed using the €2 anomalous dimension of ¢? as the external input [91]. Now we take
the values of (5(()4) and (55)4) as an external input from [94-96, 98]
119¢(3) ~ 40¢(5 4 24857 2¢(3 7217
s — _119%6(3) | 40¢(5) _ 7 R (. ) . (218)
1458 81 810 = 1889568 243 1259712

Plugging these values in (2.17) we obtain the large spin anomalous dimension at O(e®),
5
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Now we will consider the anomalous dimension term subleading in /¢,
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Substituting (2.8) in the (2.20) for £, = 0 we get,
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" _i €3(18log(¢) + 18y —47)
Cl, —g 963 24303
64 2
+ seiiE | 2592¢(3)+162log(6) (410g(0) +87p —23) +162yp (4yn —23) +1627° +2297
€ () ) 2 )
+W((37791365¢ +18895688. " —3385872 + 547 (24vp (1275 —113) +21672+3941)
—12259+54log(¢) (24log(¢) (1210g(£) +36y5 —113) +48vp (1875 —113) +21672 +3941)
+324§(3)(1901—432(10g(€)+’YE)>)) : (2.21)

The higher spin exchanges give,
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Adding the O(e*) contribution from (2.21) and (2.22) we get,
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Now we focus on the O(€®) term. The sum in (2.22) can be done in two steps. First
we sum over the terms without the Harmonic numbers. This is given by,

5 (20 +1)
Z 43746363 . +1)3(€m(125€m+54ny(€m+1)17)9€m(€m+1)(log(64)610g(€))+54>

€
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Now the terms in (2.22) with the Harmonic numbers are given by,

o0
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We can use the following identity for the Harmonic number,
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to write,
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Hence adding the contribution from (2.21) and (2.22) we obtain,
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This completes the derivation of the anomalous dimension upto O(€®/£3).

2.2 OPE coefficient

In this section we will compute the large spin correction to the OPE coefficients in e.
Substituting (2.8) in the first term of (2.6) for ¢, = 0 we obtain,
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Similarly, the higher spin contribution (2.10) gives,

et (20, +1) (log(2) — Hy,)) 4 21¢(3) — 4 (7 — 12) log(2)
6Cole,,>0 = Z SICE Uy +1)° = 398872 .

(2.30)
Adding (2.29) and (2.30) we finally obtain the correction to the OPE coefficient at O(e?),

64

Oty 5248802
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(2.31)
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The subleading correction in € to the OPE coefficients can also be computed easily. We
are stopping at O(e*) since general spin OPE coefficients are known only till O(e3).

2.3 Alternative way of computing scalar OPE coefficient

One can compute the OPE coefficients of ¢? using the known results from Feynman diagram
as follows. We denote the twist and OPE coefficients of ¢? as,

Tm=2— €+ — +5(3)63+5((]4)64+5(()5)65—|—O(66),
Co=CV+cMet+cPe+cPe + Vet + P+ 0(e5) . (2.32)

We would like to compute the C¢’s using the known results of the higher spin anomalous
dimension. From the first term of (2.4) we obtain,

€2 €3
0=-Cy 1802 48602 <180(()0) log(€)+2(9’YE—1)CéO) —1—270(%1))
4 5 .
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2 972
Note that the anomalous dimension of the double trace operators A is known from Feynman
diagrams upto O(e*) [57, 97],

+ +0(e). (2.33)
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where H é2) is the generalized harmonic number of power 2 and (") () is the polygamma

function. Now we take the large spin limit of (2.34) and compare it with (2.33). This
results in the following solution for the OPE coefficients of ¢?,
2 2) 34

C(O) =9 C(l) - __ C’( = — 2.35

0 ? 0 3 ’ 0 81 ( )

This gives an alternative way of computing the OPE coefficients of ¢? using the known

results from bootstrap and Feynman diagrams.

3 ¢3 theory with Mellin bootstrap

In this section we will obtain the OPE data at large spin, for the ¢ theory in d = 6 — €
dimension and compare them with the general spin OPE data, that can be obtained using
Mellin bootstrap techniques [91]. In this theory there is a fundamental scalar ¢ with
conformal dimension,

Ay=2— ge +O(€%). (3.1)

In the OPE of ¢ x ¢ the operator spectrum contains the operator ¢ itself with the OPE

coefficient [91],

2€
Cfm:() = —g . (32)

There are also the double field higher spin operators ¢0‘¢ with dimension 204 + L+ 1.

3.1 OPE data at large spin

First we will evaluate the anomalous dimension and OPE coefficients at large spin us-
ing (2.4). Note that the minimal twist operator here is the operator ¢. Using (3.1) with

lm =0 1n (2.4) one gets,
de

0= 3m ¢ (3.3)
Similarly using (2.6) one gets the large spin OPE coefficients,
4e
We can also obtain the terms subleading in 1/¢. They are given by,
" de 0C1  €(1+46log4)
H__= = ) 3.5
L 03 { 03 (3:5)

To compute the subleading terms with 1/¢* suppression we have to incorporate the contri-
bution of the higher spin operators themselves. This is easy to see since their twists start
with 4 + O(e).

We have only computed the O(e) term. Before we discuss the O(e?) order, we will
compute the general spin anomalous dimensions and OPE coefficients using Mellin boot-
strap. Then we will discuss how to use that information to obtain O(e?) data, and also
discuss the possible difficulties.



3.2 A short review of Mellin bootstrap

Let us start with a quick review of the bootstrap in Mellin space, introduced in [90-92].
The idea is to write a 4-point of scalars as the sum over Witten diagrams. For identical
scalars we have,

(a75234) 2% (@ (1) d(x2) $l3)p(a)) = A(u, v) (3.6)

= Z cA <W§)£(u, v) + WX?Z(U, v) + Wg%(u, v)> .
A

Here Wff’u)(u, v) are the s,t and u channel Witten diagrams respectively. They are
conveniently written in Mellin space as,

W, — / Asdl st T2 (s 1+ )2 (—6)T2(Ay — )M o(s,1) (3.7)

—100 (27Ti)2
Here Mp 4(s,t) is called the Mellin amplitude of the Witten diagram Wa ¢(u,v). In the
s-channel it is given by,
MO sy = [ v i ()98 ()P (5,1 (3.8)
Aj(sv ) ' V/’LAj(V) M(s) v,0 (s,t) .
—100

where the notations are given by,

n ) = s L s S .
AL 2mi((A = h)?2 = v )T ()T (—v)(h+v —1)p(h —v — 1),

(3.9)

and

F(/\Q — S)P(;\Q — S) ‘

() (e} —
Pues) = [(Ay - 5)?

(3.10)
Here szh,e(&t) is a Mack polynomial of degree ¢. Their form is shown explicitly in
appendix B. Also Ay = (h +v —£)/2 and Ay = (h — v — £)/2. The t and u channel Mellin
amplitudes are obtained by interchanging (s =t + Ay, t = s — Ay) and (s = Ay — s — 1)
respectively.

The operator content of the OPE comes from the poles of the Mellin amplitude
M ¢(s,t). In order to have the correct u, v dependencies of a certain channel, the Mellin
amplitude must have certain poles. In particular for the s-channel OPE we require poles at,

2s = (A —¥)+2n where n =0,1,2--- | (3.11)

These poles are called the physical poles.
There are also poles that come from the measure of the Mellin integral (3.7). Such
poles occur at,
s=Ag+n wheren=0,1,2---. (3.12)

These poles do not correspond to operators present in the OPE, and hence they are called
unphysical poles. The idea of Mellin bootstrap is to equate their residues to 0. These

~10 -



equations can be summarized as,

Z (CA LA g) + 2ZCA DN Z)Z’> =0 (313)

A#£0 o
and
(1,) ) |
2472000 T Z (CA eq(u + 22% z/qu) 0. (3.14)
A£0 v

The notations are defined in appendix A. Here we point out that ¢, ¢(3%) are s-channel
contributions and ¢t g1 denote the crossed channel contributions. The two different
equations together determine the anomalous dimensions and OPE coefficients of operators
in the s-channel.

3.3 Higher spin OPE data

Now let us use the above equations for the higher spin operators in ¢ theory. As an input
we will use the dimension and OPE coefficient of ¢ given by (3.1) and (3.2) respectively.
Let us write the unknowns as

y=6Pet+0(?)  and G =C" 1M 1 0(2). (3.15)
Using this in (3.13) we obtain for the s-channel,
20 2773+ 20512(3 + 20)

Y = O(é 3.16
ot Ti(2+ OT(3+ () ¢ + 0l (8.16)
and in the crossed channels we get,
2y _ (7'T@+20) ( 2 2
CA7£/=OqA,K\E’=O — F2(2 T €)I‘(3 T g) —§€ + O (E ) . (317)

Again in the second equation (3.14) we get from the s-channel,

o gq(l’s) _ 24+3£Cé0)(3+2€)F2(%+€) . 94-+3012 (%+£)
LEAL 7T2(2+4)T(341) al2(2+0)(3+4)

10
x C!EO)(3+2€)< 5 o ))( 0g(4)+Hyp —2H14e) (3.18)

P @+0(3+20 00 (14057 -2 (2+0)(3+2075-1-0))

+ 217

+0(€%).

and in the crossed channels,

(1) zg: 1) (34 g+0)T(3+20) ¢ g—2 2q0 2
3I'(244q)T

CALA L0 B2+ OTB+OT(1—q+0) \1+1q 1+q 2+¢

q=0
—2(3+20)Haq —4(3+2€)H1+£+2(3+2€)H2+q+£+2(3+2€)H2+2e> +0(e%),
(3.19)
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and finally the disconnected piece,

(1,0) 214+ 20) 5 x 22T (44 20) (vg — (2 + ) + (44 20) — 1)

- _ 2
G0 = " om22 10 T 9NT2(2 1 0) ¢+ 0(€).
(3.20)
With the above we can solve (3.13) and (3.14) to obtain the anomalous dimension [76, 99],
4e€
= +0(). 3.21
=3ty O (3.21)
and the OPE coefficients,
22(2+ T (3 +¢) (1) 2
= . .22
Cy AT (3 + 20) + C, e+ 0(e%) (3.22)

The C’[gl) can be expressed as a finite sum and obtained for any ¢. For the first few spins,
they are given by,

e o = 51T () _ _ 5446753
2 450’ 4 39690 ’ 6 1391349960’
29214 1364174411
ngl) _ 9214937 1 36417 (3.23)

55847241457 10 T 2280823905360

Let us now elaborate on why it was simple to obtain the O(e) results and what comes
in the way for the next order. First note that in the crossed channels, (3.17) and (3.19)
only the spin 0 exchange i.e the ¢ contributes at O(e). The other operators such as the
higher spin operators, or operators with twists greater than 2A, contribute from O(€?) or
beyond. Even in the s-channel the higher twist operators contribute from a higher order.
Thus we easily obtain the O(e) results.

In section 5 of [91] the difficulties in going beyond O(e?) for the ¢* in 4 — ¢ dimension
are described. The problems one faces in getting O(e?) for the ¢ theory in 6 — e dimension
are similar to the ones faced in getting O(e*) of the ¢* theory. There are two main problems
at these higher orders. One is the involvement of infinitely many operators as discussed
above. The other problem is the infinite number of poles of v that can contribute. In (A.7)
there are only two poles that contribute at O(e) in the crossed channels, which makes the
calculation simple. The former problem is one that is related to the intrinsic difficulty that
one expects at higher orders in perturbation. However the latter is a calculational hurdle,
that can supposedly be bypassed. In the following section, we demonstrate a calculation
that does precisely that, by writing the Witten diagrams differently and avoiding the sum
over infinite poles of v.

3.4 A higher loop calculation

We have seen in section 2 that in lightcone bootstrap higher orders in perturbation are
obtained from a sum over contributions from infinite number of operators. In lightcone
bootstrap, for the ¢3 theory in d = 6 — ¢, the higher spin operators of the type Op ~
$0u, Oy, - - - ¢ contribute from O(€?) in the crossed channel. So it is not surprising to expect
the same from Mellin bootstrap, and here too these operators contribute from O(e?) in

- 12 —



the ¢t and u channels. In this section we will demonstrate a calculation that systematically
computes these contributions in the crossed channels. For simplicity we will take only
the spin 0 operator in the s-channel, and the calculation would correspond to its OPE
coefficient at O(e?) order.
Instead of (3.8) we will use the following expression for the Mellin amplitude of the
Witten diagram [91, 100],
*© (—1)sinm(A — W)T(h — A —m) Qo (1)

(s) _ :
MA,K(S’ t) - m!F(A1+A2*2A+€f2m)P(A3+A4*2A+f72m) 2s — A+ f—92m + Rg_l(S, t) )

m=0

(3.24)
The Qﬁm(t) is defined in appendix B. The last term is a polynomial ambiguity, which is
present in the definition of the exchange Witten diagram. It comes from how one chooses
the scalar-scalar-spin vertex. In the calculations of this section we will simply drop it and
come back to it in the end.

We will put this Mellin amplitude in (3.7) and compute the coefficient of u¢ log u(1 —
v)?. This term will get contribution from only the spin 0 operators. In all the three
channels, we will simply put v = 1 in order to have this particular term. Note that this is
essentially same as expanding in terms of Qy(t), since we are looking at spin 0 in s-channel.

Taking the residue at s = Ay in (3.7) and getting the coefficient of the log term from
the s-channel we get,

o0
(S dt g 20a T2(=)T(A)T(1—h+A)T? (t4+Ay)
A (u,v) ‘ 24 logu /27riv ( Z m! (2m+A—204)T4 (2)D(1—h+m+ A2 (—m—5+Ay4) )
(3.25)
For the t-integral we simply put v = 1 and use Barnes Lemma. Then carrying out the sum

over m we get,

A) (u U)‘ R _ 2Ca, (AT (1—h+A)T* (Ay) T'(—h+2A4)
7/ luT? logu (A—204)T4 (2)T(2Ap)T2 (=5 +A) T (=h+5+Ay) T (1-h+2+A4)
(3.26)
Now we put A = Ay = 2 — 2e + 62)2)62 + O(€®) for the spin 0 ¢ exchange. Also with
d=2h=6—€eand Cpap = C’(()O)e + C’él)e2 + O(€3), we get from the above,
9, (ac) 50
A (u, v)‘u% logu = C(()O)e + 162 (90 + C(()O) <_M3 + 66 )) (3.27)

Now let us come to the crossed channels. We substitute s — Ay +t,t = s — Ay and
s = Ay —s—1tin (3.24) to get the ¢t and u channel Mellin amplitudes respectively. Here
the calculation becomes tricky if one follows the same route as in s-channel. This is because
after these substitutions, the t-integral and sum over m is not straightforward. So, what
we do is to expand the expression in e first and then integrate over ¢ and sum over m. For
example, in the u-channel we get for the spin ¢/ = 0 exchange,

/ < 2CA puR?v T2 (—)T (A (1—h+A)2 (t+Ay) >
W26 logu 2mi (2m+2t+A)mIl4 (5)T(1—h+m+A)I?2 (Aqg—é—r(n) )
3.28

AW (1, 0)
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Expanding the m = 0 term from this in € we get,

dt G2 ()2 (2+t)

211 141
V'eAT2(— )2 (2+1) (18(}5”(1+t)+q§°) (10— 5(3+2t)—20(1+t)7x) —20050)(1+t)¢(2+t))
18(1+t)? '
(3.29)
The m > 0 terms give
/ dt 25 Ot T2 (02 (2 + 1) (330)
omi et 162(m —t — L)m ‘ '

The m = 0 term above is the only term that contributes at O(e). The ¢ channel gives an
equal contribution. Carrying out Barnes Lemma for the O(e) part of (3.29) we get from
the crossed channels,
0
Aleresed) (y p)| ay = =C. (3.31)

This precisely cancels the O(€) term of the s-channel (3.27). The O(e) anomalous dimension
of ¢ is hence consistent with this alternative approach. Let us now go one step further and
look at the O(e?) terms. This order gets contribution from the m = 0 of (3.29) as well as
the m > 0 terms as shown in (3.30). The latter can be summed to give,

0'=0,m>0 o ﬁvt25F2(—t)F2(2 +t) (ve +Y(—1)) 2= _2562
i 243(1 + £)(1 + 20¢1) 108

AW (4, v)

(3.32)
ube log u
The last step has been done putting v = 1 and then using Barnes Lemma to integrate over t.

However there are more contributions to O(e?), and these come from the higher spin
operators in crossed channels. We will now compute these contributions systematically.
Taking the spin ¢ = 2 in u-channel and following the same route as above we get,

. (0) 2 2 (sD)?
=2 35C5 " (6 +m? +5m(1+1t) + 5t(2+t)) v'e? (0,

®) (4, v =— ) i
AT (w,v) 42+ m+t)3+m)(2+m)(1+m) (3.33)

ute logu

Here (5&1) is the O(e) anomalous dimension of the spin 2 (3.15). Summing over m and
followed by integrating ¢t we get,

0'=2

» 385 (0 1) 2
AWy, v) - —%cg ) (55 >) =3 (3.34)
u ogu
These steps can be repeated for ¢/ = 4,6, --- giving the general result,
Z’
3420
AW (4, ) - i ; (3.35)
WBologu  8(24 30 +07)

. . . o 2
This sum over even spins ¢ can be carried out and it gives % (3 — %) .
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The above demonstrates an example of how one would calculate contributions from
other operators in the crossed channels. For the ¢3 in 6—e such contributions come at O(€?)
from only the higher spin operators bilinear in ¢. Now, we leave the result undetermined
because of the presence of the polynomial ambiguity of (3.24), which we cannot fix. So,
our calculation will possibly give a part of the correct result. Let us now say a few words
on what role the polynomial pieces can play.

In [90, 91] it has been commented that this piece might be important to fix in order to
make the Witten diagrams a convergent basis, which is important for numerical analysis.
The polynomial ambiguity might also contribute to higher orders in perturbation, which
in our case is the O(e?). In [93] it was shown that they will contribute from the order of
O(~?) which is indeed O(e?) for this case (and O(e') in Wilson-Fisher d = 4 —¢€). So in
order to get the complete results at higher orders one needs to fix these ambiguities or find
an alternative way to deal with them [101]. It is yet unknown how to do this. We leave
this problem for future work.

4 Discussion

We analysed the higher spin operators at the Wilson-Fisher fixed point for ¢* theory in
4 — ¢ dimensions and ¢? theory in 6 — ¢ diemnsions.

For the former we have employed a hybrid method- we have done a large spin analysis
but at higher orders of perturbation. In doing so we used results from both the newly
introduced Mellin bootstrap and also from Feynman diagram literature. The higher order
terms hence obtained are unknown in literature, and moreover the technique also provides
a cross-check for the results of Mellin bootstrap.

For the latter we have used the Mellin bootstrap technique. We calculated OPE data
for general spin operators. We have also demonstrated how one can approach a higher
perturbative order in this approach, that involves contributions from infinite operators in
the crossed channels.

There are several interesting future directions one can pursue:

e One can use these techniques for other theories too, like large N CFTs or theories in
other dimensions.

e It would be interesting to systematically extend the ideas to higher orders in ¢ and
¢!, This would require knowledge of higher twist operators too.

e This brings us to the question of obtaining higher twist OPE data from bootstrap.
One expects to get these from other kinds of correlators. It is an interesting open
problem how to use Mellin bootstrap for other kinds of correlators.

e Finally it is important to understand the role of the polynomial ambiguities in Wit-
ten diagrams [101]. Developing the systematics of the epsilon expansion in usual
bootstrap is one of the most exciting future directions. It may shed light to the poly-
nomial ambiguities of the Witten diagram basis and can be used to fix the ambiguity
following [93].
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A Detalils of section 3.2

A¢+TL

The residues from FZ(A¢) give u*t" logu and u dependence which are unphysical

because they do not occur in the s-channel OPE. The residues can be expanded in the

QQS-FE

basis of the continuous Hahn polynomials in the following way,

M© (s — Ay, 1) ZCAEQ 2A¢+Z(t)+"'

20,4
MO (s = D, t) = Z ea ety Qo () + -+

AL
204+
M(U)(S*)Adnt)zz CquAer ¢ () (Al)
N
where,
_C (—2)2(6+A—1)F(1—h+A)F2(£+A—1)F_g L—A+2A04 -2 A+2A,—2h+
cae=0ag T(A—1)r (&) ( 2 ) ( 2 ) '

(A.2)
The - -- denote contributions from the physical and other spurious poles. The Hahn poly-
nomials Q2 (t) are defined in terms of the Mack polynomaials PV(‘?(S, t) as

4f A—2
Qpo(t) = (A 1),2h— A 1)ZPA7h,Z (S = 2,t> . (A.3)

If we Taylor expand M (s — Ay, t) around s = Ay,
M(s — D, t) = M(Dg,t) + (5 — Ag)M'(Ag,1). (A.4)

The first term gives the logarithmic unphysical term and the second gives the nonlogarith-
mic one (or the power law). This can be applied to (A.1). In the s-channel one has,

(25 + 0 — 1) (2h — 25 — € — 1), D(h — £ — 25) i), (v)
F(A¢ — 8)2

qg?[(g) = —41_£ (A5)

If we write this as,

037 () = a8 + (= A)ak ) +O((s - 20)?) (A.6)
B AT (204 +£—h) L(s_Ay) A2 (20 +0—h+1)
((—A+20,)((+A+20,—2h) 7 TV U= AT2A,)2((+A+20,—2h)2

the first term in the second line, is related to the u®¢ logu term, and the second term is

related to the coefficient of the power law term u?¢.
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The continuous Hahn polynomials Qfo(t) are orthogonal polnomials, and their prop-
erties are detailed in appendix B. We can use this in the crossed channels to get,

0(0) = = [ 5 Tl 02 Q25 )

/duFAg—t—A¢) (Ao —t = Ag) 1, () PO (s — Ag,t+Ag)  (AT)

0 = == [ 35T+ 07 QB

x / dv T(ha —t— Ag)T(a —t — Ay) ) (v) P (s — Ay, ). (A.8)

We sum up the coefficients of the log and the power law terms individually from all the
three channels and for each ¢ equate them to 0.

B Mack polynomial and continuous Hahn polynomial

The Mack polynomials are given by [100, 102, 103],

L L—m

Po(s,) = (h+v—1)p(h—v—1) > S ul), <h+”_£ - s) (=),  (B.1)

m=0 n=0

where,

—1)mtnygl A+7 T T
0 _ g (=1 +t_ T T
Himn = 2 mIn!(¢ —m —n)! 2 " m(2 +n>é—n<2 +m+n>Z—m—n

X (L4 h—1)pm(l+A—1)py

A+
><4F3[ ml—h—|—21—h+—n—1—|—A2—2h+T, ;r —m,;+n-1]
(B.2)
and h +v = A.
The continuous Hahn polynomials are defined as [100, 102-104],
20 ((8)¢)? 4, 2s+0—1,s+t
2s+¢ s )

———————3F ;1. B.3
Qo (t) = @5t i— 1), s, s (B.3)

These are orthogonal polynomials which satisfy the following orthogonality condition,

L[ T s+ P QI QT ) = (Vs (BA)

2m i

where,
440! 4l + s)
(2s+0—-1)2(25s+20—1)(2s+£—1) "

Ke(s) = (B.5)

The more general QZJ;LE(t) are given by,

4 T
THO () P = - : B.
b ) = G D)@ 7 f Ty (3 2 +m’t> (B.6)
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