

THE POSITRON SPECTRUM OF ^{22}Na AND THE NEUTRINO REST MASS

E. Beck and H. Daniel

Max-Planck-Institute for Nuclear Physics, Heidelberg,
Germany

Since Pauli formulated the neutrino hypothesis the neutrino rest mass has been assumed to be very small with respect to the mass of the electron, or even equal to zero¹⁾. In the beta continuum the influence of a finite rest mass is most striking near the endpoint. The most accurate values from tritium measurements yield a certain upper limit of the antineutrino mass of 1 keV^{2,3)}. However, no β^+ spectrum has been measured for the determination of the neutrino mass. Of course, the reason are better experimental conditions of β^- decay, namely the small tritium endpoint energy of 18.6 keV.

In the last few years a new interest in the neutrino mass has resulted from the following facts:

1. The two-component theory of the neutrino can be applied only in the case of vanishing rest mass.
2. The μ -neutrino has been found to be different from the e -neutrino.
3. As has been shown by Weinberg⁴⁾ some cosmological

models imply that the universe is filled with a degenerate neutrino or antineutrino gas. Since neutrinos obey the Fermi statistics, there can exist a Fermi energy E_F up to which all neutrino levels are occupied. The effect of a degenerate neutrino gas on a β spectrum is qualitatively the same as that of a finite rest mass.

Measurements on the β^+ continuum of ^{22}Na have been carried out at the Heidelberg $(\pi/2)\sqrt{13}$ iron-

free β -ray
spectro-
meter⁵.

Contrary to the usual double focusing spectrometer the Heidelberg spectrometer has no axial focus at the exit slit which

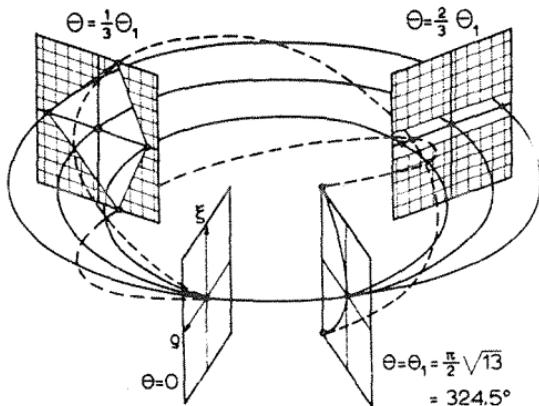


Fig. 1. Drawing of some electron orbits.

is curved. Figure 1 shows a schematic drawing of some electron orbits. The focusing angle is $\theta = (\pi/2)\sqrt{13} = 324.5^\circ$. The radius of the stationary orbit is $r_0 = 30$ cm. The whole spectrometer is built up without iron in an iron-free building. The

earth's magnetic field is compensated by two Helmholtz coil systems for the horizontal components and a system of four coils for the vertical component. At a resolution of $\eta = 0.1$ per cent the fractional solid angle is $\omega = 1.5$ per cent. The sources were prepared by vacuum evaporation of carrier-free NaCl.

In figs. 2 and 3 a momentum spectrum of ^{22}Na and the Fermi plot are shown, respectively. The end-point energy E_0 and the rest mass $m_r c^2$ have been determined simultaneously by a least square fit. The results of three independent measurements at two different sources are:

1. The end-point energy is $E_0 = 545.7 \pm 0.5$ keV.
2. The most probable value of the rest mass is zero, with a standard deviation of 4.1 keV.

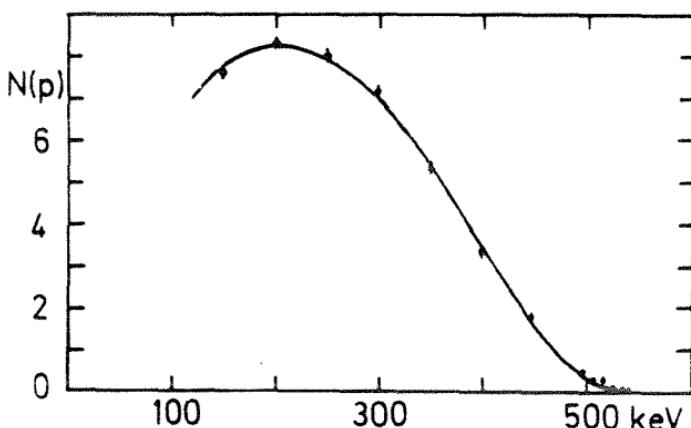


Fig. 2a. Momentum spectrum of ^{22}Na .

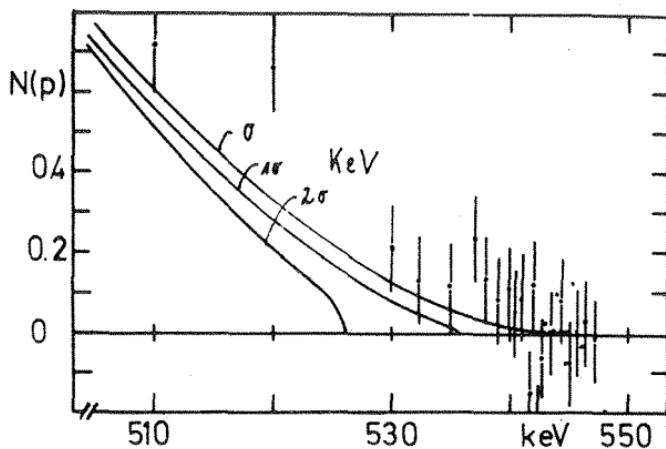


Fig. 2b. Momentum spectrum of ^{22}Na in the vicinity of the end-point energy

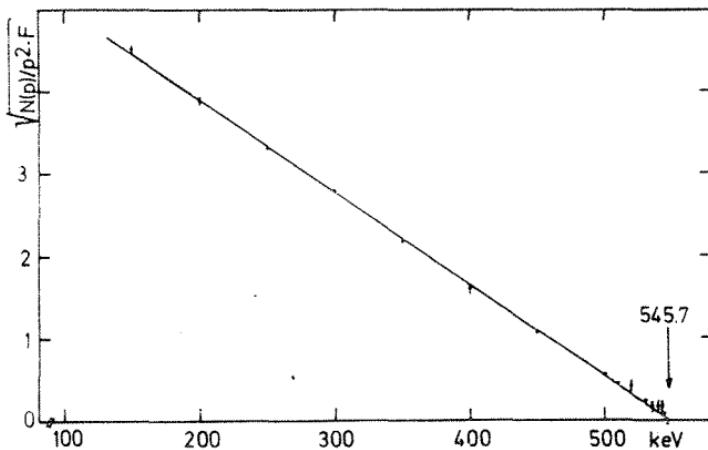


Fig. 3. Fermi plot of a ^{22}Na spectrum

Furthermore, the experimental results were analysed with a χ^2 test. The mass turned out to be smaller than 6 keV with 90 per cent confidence. The minimum of χ^2 corresponds to zero rest mass. Table 1 shows a comparison of the end-point energy

TABLE 1

End-point energy E_0 (keV)	Authors and references
542 \pm 5	Macklin et al. ref. 6
540 \pm 5	Wright ref. 7
545 \pm 2	Daniel ref. 8
547.4 \pm 1.0	Nichols et al. ref. 9
543 \pm 3	Hamilton et al. ref. 10
543 \pm 3	Leutz and Wenninger ref. 11
545.7 \pm 0.5	this work

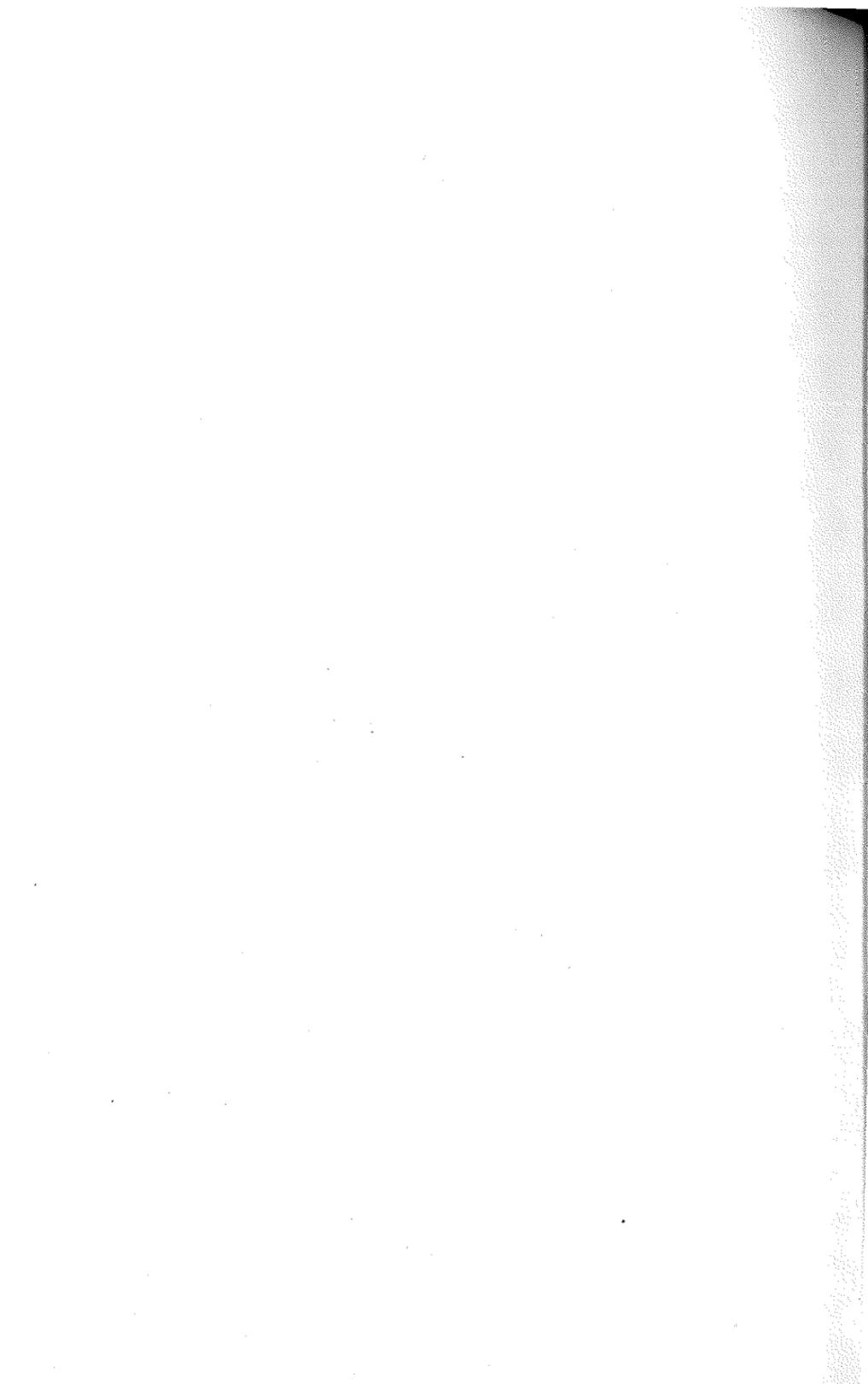
of this measurement with the result of other authors. The agreement is good.

As Weinberg has pointed out, a possible neutrino degeneration causes qualitatively the same effect in a β spectrum as a finite neutrino mass⁴⁾. The upper limit of 4.1 keV for the rest mass may therefore be also regarded as an upper limit of the Fermi degeneration energy E_F . Of particular interest are the consequences for an oscillating universe. If it undergoes a periodic cycle of expansion and contraction, then during every cycle as many neutrinos must be absorbed as are emitted. From this condition the following relation can be derived

$$\frac{E_F}{E_a} \approx \frac{R_m}{R} ,$$

where E_F is the Fermi energy, E_a is the threshold of the endothermic neutrino absorption, and R_m and R are the smallest and the present radius of the universe, respectively. From known β decays one obtains the estimate $E_a \approx 5$ MeV.

The limit for the Fermi energy, $E_F \leq 4.1$ keV, therefore, gives the ratio


$$\frac{R_m}{R} \leq 8 \cdot 10^{-4} ,$$

if the universe oscillates at all.

References

1. W. Pauli, Noyaux Atomiques, in Proceedings of the Solvay Congress, Brussels, 1933 (Gauthier-Villars, Paris, 1934) p. 324.
2. L.M. Langer and R.J.D. Moffat, Phys. Rev. 88 (1952) 689.
3. D.R. Hamilton, W.P. Alford and L. Gross, Phys. Rev. 92 (1953) 1521.
4. S. Weinberg, Phys. Rev. 128 (1962) 1457.
5. H. Daniel, P. Jahn, M. Kuntze and G. Spannagel, Nucl. Instr. and Meth. 35 (1965) 171.
6. P.A. Macklin, L.J. Lidofsky and C.S. Wu, Phys. Rev. 78 (1950) 318.
7. B.T. Wright, Phys. Rev. 90 (1953) 158.
8. H. Daniel, Nucl. Phys. 8 (1958) 191.

9. Nichols, Mc Adams and Jensen, reported in Nucl. Phys. 34 (1962) 15.
10. J.H. Hamilton, L.M. Langer and W.G. Smith, Phys. Rev. 112 (1958) 2010.
11. H. Leutz and H. Wenninger, Nucl. Phys. A99 (1967) 55.

