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Statistical properties of cosmic ray fluxes and anisotropy predictions
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Abstract: Spectral anomalies detected by the PAMELA and CREAM experiments could be due to the presence
of nearby and young cosmic ray sources. This can be studied in the myriad model, in which cosmic rays diffuse
from point-like instantaneous sources located randomly throughout the Galaxy. The computation of erros bars
associated to the flux (and anisotropy) turns out not to be as straightforward as it seems in the myriad model, as
the standard deviation is infinite when computed for the most general statistical ensemble. The goals of this poster
is to describe a method to associate error bars to the flux measurements which has a clear statistical meaning.
We show that the quantiles (68% confidence levels, for instance) of the flux distribution are well-defined, even
though the standard deviation is infinite. We also use the fact that local sources have known positions and ages to
reduce the statistical ensemble from which random sources are drawn in the myriad model. In this context, we also
discuss the status of the spectral features observed in the proton flux by CREAM and PAMELA.
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1 Introduction
Cosmic-ray nuclei observed in the Solar System were accel-
erated in discrete sources distributed in the Galactic Disk.
Many theoretical predictions of the fluxes and anisotropy
rely on Monte Carlo simulations in which the positions and
ages of the sources are randomly drawn in some statistical
ensemble. The mean values and the variances or the out-
come of many realizations is then used to infer the expected
quantities and their uncertainties, respectively. This proce-
dure may be flawed when the variance is infinite, which hap-
pens even in very common situations. In this poster, we first
describe the problem more precisely, and then we present
and discuss several solutions.

2 Statement of the problem
The cosmic ray density at location xo due to a unique
source of age ts located at xs is given by the propagator
G1(xs, ts→ xo). For instance, in a propagation model with
no Galactic wind, no spallation, and a diffusion volume not
limited by boundaries, and with O chosen as the origin, it is
simply given by

G1(rs) =
1

(4πDts)3/2 e−r2
s /4Dt (1)

but it may be computed in more complex models. If the
location and age of the source are drawn randomly from a
given distribution d4n(rs)/d3rsdt, the flux F1 is a random
variable. Its mean value is given by

〈φ1〉 ∝

∫
dt
∫∫∫

G1(rs)
d4n(rs)

d3rs dt
d3rs (2)

and its variance

σ
2
1 = 〈φ 2

1 〉−〈φ1〉2 (3)

where

〈φ 2
1 〉 ∝

∫
dt
∫∫∫

G 2
1 (rs)

d4n(rs)

d3rsdt
d3rs (4)

When N independant sources are present, the corresponding
moments of the total flux are simply given by

〈φN〉= N〈φ1〉 and σ
2
N = Nσ

2
1 (5)

As expected, the mean value 〈φN〉 is equal to the steady-state
model with a continuous distribution of sources. However,
for a large class of propagators, including the form given in
Eq. 1, the integral giving the variance σ2

1 (and thus σ2
N) is

divergent: the variance is infinite. Physically, the divergence
is due to rare but strong events, at the lower end of the
integration over rs and ts variables.

The standard deviation σ is commonly interpreted as the
typical spread of the random values around the mean, and a
high standard deviation could be interpreted as if the actual
value of the flux had a disturbingly high probability to be
very far from the mean value. We will see later that this may
not always be the case. Actually, this confusing situation, in
which some rare events have a very small contribution to the
mean, but give rise to a very high standard deviation, is not
uncommon in physics (Levy flights, Cauchy distribution).

In this proceeding, the presentation of the methods
and results focuses on the cosmic ray flux, but it can be
generalized to any statistical quantity, such as the anisotropy
amplitude and direction.

3 Regularization by cut-off
One could argue that the problem we considered is phys-
ically irrelevant, because we know for sure that there is
no supernova remnant with zero age and null distance to
the Earth. One can impose a lower cut-off in ages and dis-
tances, based on observations. However, even with reason-
able values for the cut-off, the variance indeed is finite but
still can have large values. From observations of the Solar
neighbourhood, we have a good idea of the distribution of
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sources that are young and close. Given the age tmin of the
youngest local supernova remnant, one can compute the
mean value and standard deviation of the total flux φ , by
applying that cut-off tmin to the age distribution.

For the sake of illustration, Fig. 3 features the mean
value 〈φ〉 and the standard deviation σφ of the total proton
flux using a lower cut-off of tmin = 100 yr in the source
distribution, for a realistic set of propagation parameters.
In the same figure we have also plotted the data points
from the CREAM and PAMELA experiments. With the
chosen value for the cut-off, the standard deviation at high
energies remains of the same order of magnitude as the
flux. The relative value of the standard deviation, σφ/〈φ〉,
is fairly independent of the energy. This trend can be shown
analytically to hold for sources located in a thin disk. In the
framework of a purely diffusive model (no wind/spallation),
the relative dispersion can be approximated by

σφ

〈φ〉
∼ R

4L
√

2νtmin
. (6)

This ratio does not depend on the diffusion coefficient D,
hence it does not depend on energy. It is of the order of
unity for tmin ∼ 100 yr.

For sources distributed in a disk with a finite thickness h,
one obtains the same result as before as long as h�

√
Dtmin.

In the opposite limit, one finds

σφ

〈φ〉
∝ D1/4 . (7)

In both cases, the relative standard deviation does not vary
much with energy.

One can also adjust the cut-off on a more theoretical
way, by choosing to eliminate events that make the standard
deviation very high, without contributing significantly to the
the mean value. This is the approach adopted by [1]. These
authors used a cut-off given by tmin = Rmax/

√
4νD(E),

where ν is the rate of Galactic source explosions. It is
chosen as “the time over which one source goes of within a
distance from Earth such that CR from that source reach us
within a time tmin”. Said differently, the expected number
of Galactic sources of age tmin contributing significantly to
the flux in the Solar neighbourhood is just equal to unity.
Note that this condition is now explicitly energy-dependent:
some sources will be discarded at high energy but not at low
energy. With this condition, the standard deviation gives a
fair order of magnitude of the spread of the values around
the mean. It is difficult though to interpret it in rigourous
statistical terms. Indeed, the value of the variance depends
quite strongly on the exact value chosen for the cut-off.
Choosing tmin/2 or 2× tmin rather than tmin, for instance,
has a small effect on the mean but a drastic effect on the
standard deviation. The value chosen by [1] is indicated by
an arrow in the figure. The mean obtained with this cut-off
is about 10 % lower than the true mean. A lower cut-off
would give a more precise mean value, but a much larger
variance.

4 Catalog
The situation described above occurs as long as we are
ignorant of the positions and ages of the CR sources. The
young and nearby objects are responsible for the divergence
of the flux variance and potentially lead to the problems

encountered above in the statistical analysis. However,
we do have data concerning the distribution of nearby
sources, for which catalogues are available. A natural way
to regularise the variance is then to separate the sources into
two sets. The first set contains the young and local sources,
which can be extracted from the catalogues. The second
group, about which we have little information, includes the
old or distant sources and will be treated in the same way as
in the statistical analysis of Sec. 3. This procedure allows us
to regularise the variance of the flux in the most natural way
while reducing its uncertainties. Following [2], we have
used two catalogues.
(i) The Green survey [3] compiles various informations on
supernova remnants, but fails to systematically provide their
ages or the precision with which their distances from the
Earth have been determined. A quite thorough bibliographic
work has been summarised in the appendix of [2], which
we have borrowed as a complement to the Green catalogue.
In total, we have collected 27 local SNR with their ages,
distances from the Sun and, when possible, the correspond-
ing observational uncertainties.
(ii) Pulsars are not expected to be sources of primary
CR nuclei. As residues of supernova explosions, they are
nevertheless a good tracer of old SNR that are too old to be
directly detected in radio waves. Moreover, because they
are point-like objects, their distances from the Sun is much
easier to measure. Their ages can also be estimated precisely
through spin-down. After removing millisecond pulsars
from the ATNF catalogue [4] (by selecting Ṗ > 5×10−18)
and objects associated with known SNR, we are left with
157 objects with their ages and distances.

These 27+157 sources are found to be representative
of the local environment: the number of objects found
in the catalogues agrees well with what can be inferred
from various Galactic distributions found in the literature,
provided that the supernova explosion rate is, on average,
approximately equal to 3 per century. At least, this is true
within the 2 kpc nearby the Sun, for sources younger than
30,000 years. At later ages, SNR become too dim to be
detected and the Green survey cannot be trusted anymore.
However, the catalogues agree fairly well with theoretical
expectations and do not suffer from major biases, at least not
more than the theoretical models. In this work, we define
the “local” region as the domain extending 2 kpc around
the Sun, with sources younger than 50,000 years. A rate of
one supernova explosion per century in our Galaxy is also
quoted in the literature [2]. If this is the case, we would be in
a locally high-density region of sources. We have plotted the
flux considering this low rate, but will discuss the validity
of this assumption in a forthcoming letter. The CR proton
flux produced by the SNR and pulsars of our catalogue is
presented in Fig. 1 for the “min” CR propagation benchmark
model. The sources mainly contributing to the flux at high
energy are given in [2]. In the PAMELA energy region, the
flux is dominated by pulsars, whereas SNR come into play
at the energies of CREAM.

5 Meaning of infinite variance: Toy model
The variance of the flux being infinite does not necessarily
imply that the random values are typically very different
from the mean. To illustrate this affirmation, consider the
case of a unique point-like steady-state source (no time
dependence) located in the Galactic disk, with cosmic ray
diffusion taking place in a boundless space. The solution
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Figure 1: CR proton flux plotted as a function of energy for
the SNR and pulsars which dominate over the other objects
of our catalogue.

of the diffusion equation is given by ϕ = a/r where a is a
constant. Assuming that this source is uniformly distributed
inside a disk of radius R leads to the probability distribution
function

d p =
2πr dr
πR2 =

2r dr
R2 . (8)

We can readily infer the mean flux

〈ϕ〉=
∫ R

0

a
r

2r dr
R2 =

2a
R

, (9)

and the average value of the flux squared

〈ϕ2〉=
∫ R

ε

a2

r2
2r dr
R2 =

a2

R2 ln
(

R
ε

)
, (10)

where we have introduced a cut-off value ε at the lower end
of the radial distribution to exhibit the divergence of 〈ϕ2〉.
The variance of ϕ goes to infinity as ε → 0.

However, the distribution of ϕ (which is what we are
really interested in) is well-behaved. From the relation
between r and ϕ , we can write dr = adϕ/ϕ2 so that

d p(ϕ) =
2r dr
R2 =

2a2 dϕ

R2 ϕ3 . (11)

The probability that the flux is lower than a given value Φ

may be expressed as

P(< Φ) =
∫

ϕ(R)

ϕ(r)
d p(ϕ) = 1 − a2

R2Φ2 , (12)

provided that Φ > Φ0 ≡ a/R. Introducing the Heavyside
distribution Θ leads to

P(> Φ) =
a2

R2Φ2 Θ

(
Φ− a

R

)
=
〈ϕ〉2

4Φ2 Θ

(
Φ− 〈ϕ〉

2

)
.

(13)
The probability that Φ > 10〈ϕ〉 is only 1/400, even though
the variance is infinite. Indeed, the flux is more likely to be
lower than the mean value, whereas one might have guessed
the opposite, considering the divergence of the variance.

When N sources are considered, the mean flux value and
the variance are both just multiplied by N. The probability

0 1 2 3 4 50

Figure 2: Probability distribution of φ/N for N = 1, 10
and 100 sources.

2D 3D
steady-state 〈ϕ〉 finite 〈ϕ〉 finite

〈ϕ2〉 → ∞ 〈ϕ2〉 finite
time-dependent 〈ϕ〉 finite 〈ϕ〉 finite

〈ϕ2〉 → ∞ 〈ϕ2〉 → ∞

Table 1: Divergence of the variance

distribution pN(φ) for the flux can be obtained by recur-
rence from

pN(φ) =
∫

p(ϕ) pN−1(φ −ϕ)dϕ . (14)

These are displayed in Fig. 2. The variance still diverges. In
the high-φ region, the flux is dominated by the contribution
of a single source and the probability distribution is given
by

d pN

dφ
= N

d p
dϕ

=
2Na2

R2φ 3 . (15)

For N = 100 sources, the probability that φ > 2〈φ〉 is 2.5×
10−3 and P(φ > 10〈φ〉) is vanishingly small.

If we now consider time-dependent sources spread ho-
mogeneously inside an infinite diffusive halo (DH) with
pure diffusion, the variance is given by the integral

σ
2
ϕ ∝

∫
dt
∫

4πr2 dr
1

(4πDt)3/2 e−r2/2Dt , (16)

which diverges with the lower cut-off in ages as 1/
√

tmin.
For a 3D homogeneous distribution of steady-state sources,
σϕ does not diverge (see Table 1).

6 Quantiles are finite
For any given probability density p(φ) that behaves as
p(φ)∼ φ−α as φ → ∞, the mean value

〈φ〉 ≡
∫

φ p(φ)dφ (17)

is finite and the variance, related to

〈φ 2〉 ≡
∫

φ
2 p(φ)dφ (18)

is infinite, whenever 2 < α < 3. This is not an exotic
condition, as for the CR flux due to diffusion from sources
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Figure 3: Mean value (solid line) and standard deviation
(grey band) of the distribution of flux, for plausible propa-
gation parameters.
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Figure 4: Mean flux (red curves) and envelopes (grey band)
representing the standard deviation of the flux for the min,
med, and max propagation model for ν = 3 century−1.

having a uniform distribution in a thin disk (2D distribution)
or a heavy disk (3D distribution), we have p(φ) ∼ φ−7/3

and p(φ)∼ φ−8/3 respectively, as shown in [5].
The divergence of the variance is due to the high-φ tail

of the p(φ) distribution, i.e. to the very local sources (small
r and t). It will not be removed by taking into account
spallation, Galactic wind, energy losses or escape through
the boundaries of the diffusion volume, as these processes
have a very small effect on the propagator at low r and t.
We will only present the simplest case of pure diffusion,
which captures the essence of the problem.

What we are really interested in when we perform Monte
Carlo simulations, is to know which values are likely to
be observed. One feels that one way or another, the very
rare but strong events than make the variance diverge could
be safely discarded. As discussed above, a cut-off in the
distribution is not the safest way to do it. It turns out that
when α > 1, the quantiles are well-defined. These are
defined as φ -interval in which the random variable has a
given probability q to be found (q = 0.1 for deciles, for
instance). Formally, they are obtained by adjusting the limits
φn and φn+1 in the following integral to have∫

φn+1

φn

p(φ)dφ = q (19)
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Figure 5: Blue, red, and black curves feature the total flux
φ computed as the sum of the mean external flux 〈φext〉 and
the contribution φcat from the catalogue. They correspond to
the max, med and min CR propagation benchmark models,
respectively. The bands that extend around the curves have
the same meaning as in Fig. 4. They indicate the standard
deviation of the flux associated to the observational errors
on the ages and distances of the SNR of the catalogue.

They can also be obtained from a very large set of random
realization, by sorting the outcome by values and dividing
the sorted list into 1/q bins.

Figure 4 displays the deciles obtained for the proton
flux at high energy, obtained in the case of diffusion in
a cylindrical volume of radius Rmax and half-height L,
diffusion coefficient D(E) ∝ D0(E/1 GeV)δ , where the
numerical values for the diffusion parameters L, D0 and δ

have been chosen as be reproduce the observed B/C ratio
(see [6]).

7 Conclusions
The methods presented here can be applied to the compu-
tation of the expected proton spectrum, due to the local
sources (catalog) and the rest of the sources (Monte Carlo
or continuous source distribution). An example is shown in
Fig. 5, for three benchmark sets of parameters (min, med
and max). For a complete study, see [7].
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