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The possible coexistence of kaon condensation and hyperons in highly dense matter [the
(Y + K) phase] is investigated on the basis of the relativistic mean-field theory combined
with the effective chiral Lagrangian. Two coupling schemes for the s-wave kaon–baryon
interaction are compared regarding the onset density of kaon condensation in hyperon-
mixed matter and the equation of state for the developed (Y + K) phase. One is the contact
interaction scheme related to the nonlinear effective chiral Lagrangian. The other is the
meson exchange scheme, where the interaction vertices between the kaon field and baryons
are described by an exchange of mesons (σ , σ ∗ mesons for scalar coupling, and ω, ρ, φ

mesons for vector coupling). It is shown that in the meson exchange scheme, the contribu-
tion from the nonlinear scalar self-interaction gives rise to a repulsive effect for the kaon
effective energy, pushing up the onset density of kaon condensation as compared with the
contact interaction scheme. In general, the difference in kaon–baryon dynamics between
the contact interaction scheme and the meson exchange scheme relies on the specific forms
of the nonlinear self-interacting meson terms. They generate many-baryon forces through
the equations of motion for the meson mean fields. However, they should have a definite
effect on the ground state properties of nuclear matter only around the saturation density. It
is shown that the nonlinear self-interacting term is not relevant to repulsive energy leading
to stiffening of the equation of state at high densities, and that it cannot be compensated
with a large attractive energy due to the appearance of the (Y + K) phase in the case of
the contact interaction scheme. We also discuss what effects are necessary in the contact
interaction scheme to make the equation of state with (Y + K) phase stiff enough to be
consistent with recent observations of massive neutron stars.
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1. Introduction
Multi-strangeness systems in dense hadronic matter have been investigated extensively from
nuclear and astrophysical points of view. As a possible form for neutron stars, Bose–Einstein
condensation of anti-kaons (K−) (kaon condensation) has been attracting much interest as a
macroscopic form of strangeness degree of freedom [1–12], and its implications for astrophys-
ical phenomena related to compact stars have been discussed: It has a large impact on the
structure and thermal evolution of neutron stars through softening of the equation of state
(EOS) [7,10] and enhancement of neutrino emissions [2,5,6].

It has been shown that the s-wave kaon condensation can be discussed model independently
on the basis of current algebra and partial conservation of axial-vector current (PCAC) [2,3,5].
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A series of works based on chiral symmetry have shown that kaon condensation arises at
baryon number density ρB = (3−4)ρ0, with ρ0 being the normal nuclear density, for the value
of the KN sigma term, �KN = (300−400) MeV, which simulates explicit chiral symmetry break-
ing [3,5,7,9,10]. In these approaches, the s-wave kaon–baryon (K–B) interaction is represented
within the contact interaction (CI) scheme, where the structure of K–B and kaon–kaon (K–K)
interaction vertices becomes nonlinear and is inherently determined from chiral symmetry.

As another hadron phase with multi-strangeness, it has been suggested that hyperons (Y =
�, �−, 	−, …) are mixed (Y-mixing) in the ground state of neutron star matter by the use of
the relativistic mean-field (RMF) theories [13–21], many-body approaches based on reaction
matrix theory, variational methods, and so forth [22–28]. The mixing of hyperons also leads
to softening of the EOS [13,18–20,22–26,28] and provides another candidate for rapid cooling
of neutron stars [29,30]. The onset density of hyperons, ρc

B(Y ), has been estimated to be ρB =
(2−4)ρ0. Thus it may be plausible that kaon condensates and hyperons may coexist in dense
neutron star matter.

One of the authors (T. Muto) has considered the possible coexistence of a kaon-condensed
phase and hyperon-mixed matter [abbreviated to the (Y + K) phase in this paper] in neutron
stars using the effective chiral Lagrangian for the s-wave K–B interaction and a phenomeno-
logical potential model for baryon–baryon (B–B) interactions [31]. One of the serious prob-
lems resulting from the existence of the (Y + K) phase is that both kaon condensates and
Y-mixing in dense matter lead to significant softening of the EOS, which is not compatible
with recent observations of massive neutron stars with (1.928 ± 0.017) M� for PSR J1614-2230
and (2.01 ± 0.04) M� for PSR J0348+0432, where M� is the solar mass [32–34]. Pulsars defi-
nitely exceeding 2 M� have been detected, such as (2.08 ± 0.07) M� for the 2.8 ms radio pulsar
PSR J0740+6620 [35,36] and (2.13 ± 0.04) M� for PSR J1810+1744 [37]. The coexistence of
kaon condensation and hyperons in dense matter has also been discussed by several authors in
terms of RMF theories [14–17,38,39], effective chiral models [40,41], and quark–meson cou-
pling models [42,43]. Most of the models including the (Y + K) phase predict maximum neutron
star masses of less than 1.85 M� except for recent works with density-dependent meson–baryon
coupling strengths in the RMF [44–46].

Recent progress in observational facilities and satellites has provided new information on the
structure of compact stars. The detection of gravitational waves from neutron star mergers
(GW170817) by the LIGO-Virgo collaboration [47] has shed light on constraining the EOS of
dense matter by setting limits on the tidal deformabilities of compact stars [48,49]. The precise
measurement of masses and radii of neutron stars has become possible from the X-ray observa-
tions of Neutron star Interior Composition ExploreR (NICER) [50,51]. The mass and radius
for the above-mentioned pulsar PSR J0740+6620 has been detected as R = (12.35 ± 0.75) km
for M = 2.08 M� [52] and R = (12.39+1.30

−0.98) km for M = (2.072+0.067
−0.066) M� [53]. The EOS includ-

ing the (Y + K) phase should be in conformity with stringent constraints deduced from these
observations.

Studies of kaon condensation in neutron stars have triggered research on deeply bound
kaonic states which may be formed in terrestrial experiments [54–61], and associated kaon dy-
namics in the nuclear medium has been extensively studied theoretically and experimentally
[60–62]. Recently, the formation of basic kaonic clusters, K−pp, has been reported in the E27
and E15 experiments at J-PARC [63–66].
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In order to find out the connection between deeply bound kaonic states in nuclei and kaon
condensation in dense matter, we have studied multi-anti-kaonic bound states in nuclei based
on the RMF theory coupled to the effective chiral Lagrangian [57]. In this framework, we have
adopted the meson exchange (ME) scheme for the s-wave K–B interaction, where the CI vertices
between the nonlinear kaon field and baryons in the original effective chiral Lagrangian are
replaced by an exchange of mesons (scalar mesons σ , σ ∗ and vector mesons ω, ρ, φ). (We called
this interaction model the “chiral model” in Ref. [57].) Thus, many-body effects on the K–B
interaction coming from the meson exchange in a nuclear medium can be taken into account in
the ME scheme. In a series of works we have considered not only possible bound states of kaons
and hyperons in nuclei (kaon-condensed hypernuclei) but also the (Y + K) phase in neutron
stars within the same interaction model based on the ME scheme and discussed the interplay
of kaons and hyperons in multi-strangeness systems in a unified way for both nuclei and neutron
stars [67]. It is to be noted that the “chiral model” based on the ME scheme reduces essentially
to the meson exchange model in the limit of linear approximation for nonlinear kaon fields [57].
The meson exchange model has been utilized by several authors to describe kaon condensation
[14–17,38,40] and multi-anti-kaonic nuclei [58] in the context of the RMF theories.

Toward a description of the (Y + K) phase consistent with the recent observations of massive
neutron stars or gravitational waves from neutron star merger, we should start by removing the
uncertainties stemming from the s-wave K–B interaction, since this is a driving force for kaon
condensation and may crucially affect the onset density and the EOS of the (Y + K) phase,
depending on the choice of coupling schemes for the s-wave K–B interaction.

In this paper we first discuss in detail the validity of the CI and ME coupling schemes for the
K–B interaction vertices based on the effective chiral Lagrangian coupled to the RMF model.
We take into account the nonlinear self-interacting (NLSI) potential term of the σ mesons, Uσ ,
which is usually introduced phenomenologically, in addition to the two-body B–B interactions
which are mediated by scalar and vector mesons in the RMF framework. [Throughout this
paper, we call this two-body B–B interaction part of the model the “minimal RMF” (MRMF).]
The results on the onset density and characteristic features of the (Y + K) phase in these two
schemes based on the (MRMF+NLSI) model are compared. It is shown that the effect of
the NLSI term is propagated to the kaon self-energy in the ME scheme as a derivative term,
dUσ /dσ , through the equation of motion for the σ meson. (Similar results have been pointed
out in Refs. [15,16].) Such a model-dependent term is added as an extra repulsive contribution
to the lowest kaon energy in the ME scheme beyond the scope of chiral symmetry. As a result,
kaon condensation from hyperon-mixed matter does not occur in the case of the ME scheme
unless �KN is taken to be very large. On the other hand, in the CI scheme, the K–B and K–K
interactions are controlled model independently within chiral symmetry. It will be shown that
the onset density for kaon condensation realized from hyperon-mixed matter and the EOS with
the (Y + K) phase are obtained with moderate values of �KN [= (300−400) MeV].

Second we consider the role of the NLSI term, which generates many-baryon forces through
the equations of motion for the meson mean fields, as a possible origin of repulsive forces at
high densities in view of a solution to the “hyperon puzzle.” It will be shown that the NLSI
term poses quite different aspects for the saturation mechanisms of symmetric nuclear mat-
ter (SNM) from those in the conventional variational methods with phenomenological three-
baryon forces. Further, the NLSI term becomes only a minor contribution to the repulsive
energy at high densities, not being able to make the EOS stiff enough to be consistent with
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recent observations of massive neutron stars. We address that the universal three-baryon re-
pulsive forces (UTBR), as introduced phenomenologically in place of the NLSI meson terms
in our recent work [68], can make the EOS with the (Y + K) phase stiff enough to reconcile
theories with observations. It is also pointed out that the kaon self-energy in hyperon-mixed
matter with such UTBR is formally equivalent between the CI and ME schemes.

The paper is organized as follows. Section 2 gives an overview of the (Y + K) phase in the con-
text of chiral symmetry. The s-wave K–B interaction in the CI scheme and the baryon–baryon
(B–B) interaction in the (MRMF+NLSI) model are described in Sects. 3 and 4, respectively.
Section 5 gives the energy expression for the (Y + K) phase in the CI scheme. In Sect. 6, the
formulation in the ME scheme is explained, and the CI and ME schemes are compared. The
numerical results on the onset density of kaon condensation are presented in Sect. 7, where
the effects of the NLSI term as many-baryon forces are discussed. In Sect. 8, the roles of the
NLSI term on saturation mechanisms in SNM and on the EOS of the (Y + K) phase in the
CI scheme are described. In Sect. 9, properties of the (Y + K) phase, for instance the density
dependence of particle fractions and hyperon potentials in the CI scheme, are addressed with
the (MRMF+NLSI) model as common features in the presence of kaon condensates. The self-
suppression effect of the s-wave K-B attraction unique to the case of kaon condensation in the
RMF framework is also discussed. In Sect. 10, our alternative model with the UTBR in the
RMF in place of the NLSI term is described, and circumventing the problem caused by the
NLSI term, which is connected with avoiding the extra many-body effect in the ME scheme, is
discussed. A summary and concluding remarks are provided in Sect. 11. In Appendix A, the
allowable value of �Kn is evaluated. In Appendix B, the K− optical potential depths are derived
in both the CI and ME schemes and related to the s-wave scalar K–N interaction, the KN sigma
terms.

2. Overview of the (Y + K) phase
To describe the (Y + K) phase, we use the SU(3)L×SU(3)R chiral effective Lagrangian, where
the nonlinear representation of the kaon field is given as U = exp [2i(K+T4+i5 + K−T4−i5)/f],
with T4±i5 (≡ T4 ± iT5) being the flavor SU(3) generators and f the meson decay constant. The
numerical value of f is set to that of the pion decay constant (fπ = 93 MeV) instead of the kaon
decay constant (fK = 113 MeV) following our previous papers [3–6,10], which corresponds to
taking the lowest-order value in chiral perturbation theory under the SU(3) flavor symmetry.
On the basis of chiral symmetry, the s-wave kaon-condensed state, |K〉, is represented by chiral
rotation from the normal state, and the classical kaon field stands for an order parameter for
kaon condensation [2,3,12]. Here it is taken to be spatially uniform with momentum k = 0:

K± = f√
2
θ exp(±iμKt), (1)

where θ is the chiral angle, and μK is the K− chemical potential. U is expressed explicitly in
terms of Eq. (1) as

U = 1 + iA sin θ + A2(cos θ − 1), (2)

with the matrix A being defined by

A =

⎛⎜⎝ 0 0 K+/|K|
0 0 0

K−/|K| 0 0

⎞⎟⎠ , (3)
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where |K| ≡ (K+K−)1/2 = f θ/
√

2 [1].
The (Y + K) phase consists of kaon condensates, degenerate baryons, and leptons in beta

equilibrium. We take into account only protons (p), neutrons (n), �, �−, 	− for octet baryons,
since degenerate leptons assist mixing of neutral or negatively charged hyperons through beta
equilibrium conditions. For leptons, muons may appear at a density slightly higher than that of
the electrons under consideration. However, the quantitative effects of muons on the properties
of matter are expected to be small, so that we take into account only electrons (e−) for simplicity.
We impose the charge neutrality condition and baryon number conservation, and construct
the effective energy density Eeff by introducing the charge chemical potential μ and the baryon
number chemical potential ν as Lagrange multipliers. The resulting effective energy density is
then written in the form

Eeff = E + μ(ρp − ρ�− − ρ	− − ρK− − ρe) + ν(ρp + ρ� + ρn + ρ�− + ρ	− ), (4)

where E is the total energy density of the kaon-condensed phase, and ρ i (i = p, n, �, �−, 	−,
K−, e−) is the number density of the particle i.

The classical kaon field equation is given from ∂Eeff/∂θ = 0. From the extremum conditions
for Eeffwith respect to variation of ρ i, one obtains the relations

μK = μe = μ, (5a)

μp = −μ − ν, (5b)

μ�− = μ	− = μ − ν, (5c)

μ� = μn = −ν, (5d)

where μi (i = p, �, n, �−, 	−, K−, e−) are the chemical potentials, which are given by μi =
∂E/∂ρi. Obviously, Eqs. (5a)–(5d) imply that the system is in chemical equilibrium for the weak
interaction processes n � p + K−, n � p + e−(+ν̄e), n + e− � �−(+νe), � + e− � 	−(+νe),
and n � �(+νeν̄e).

3. S-wave K–B interaction in the contact interaction scheme
The effective chiral Lagrangian for kaons and baryons in the CI scheme [1] is given by

LK,B = 1
4

f 2 Tr∂μU †∂μU + 1
2

f 2�χSB(TrM(U − 1) + h.c.) + Tr�(iγ μ∂μ − MB)�

+ Tr�iγ μ[Vμ, �] + DTr�γ μγ 5{Aμ, �} + F Tr�γ μγ 5[Aμ, �]

+ a1Tr�(ξM†ξ + h.c.)� + a2Tr��(ξM†ξ + h.c.) + a3(TrMU + h.c.)Tr��, (6)

where the first and second terms on the right-hand side are the kinetic and mass terms of
kaons U in the nonlinear representation, respectively, �χSB is the chiral symmetry breaking
scale (∼1 GeV), and M the quark mass matrix, M ≡ diag(mu, md, ms) with the quark masses mi

[1]. The free kaon mass is identified with mK = [�χSB(mu + ms)]1/2 and is set to be the empirical
value (= 494 MeV). The third term in Eq. (6) denotes the kinetic and mass terms for baryons,
where MB is the baryon mass generated by spontaneous breaking of chiral symmetry. The
fourth term in Eq. (6) gives the s-wave K–B vector interaction corresponding to the Tomozawa–
Weinberg term, with Vμ being the mesonic vector current defined by Vμ ≡ 1/2(ξ †∂μξ + ξ∂μξ †)
with ξ ≡ U1/2. The fifth and sixth terms are the K–B axial-vector interaction with the mesonic
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axial-vector current defined by Aμ ≡ i/2(ξ †∂μξ − ξ∂μξ †). Throughout this paper we simply
omit these axial-vector coupling terms and retain only the s-wave K–B vector interaction in
order to figure out the consequences from s-wave kaon condensation. The last three terms in
Eq. (6) give the s-wave K–B scalar interaction, which explicitly breaks chiral symmetry.

Using Eq. (1), the Lagrangian density Eq. (6) is separated into a baryon part LB and kaon
part LK in the mean-field approximation. For LB one obtains

LB =
∑

b=p,n,�,�−,	−
ψb(iγ μ∂μ − M∗

b )ψb, (7)

where the s-wave K–B scalar interaction is absorbed into the effective baryon mass M∗
b :

M∗
b = Mb − �Kb(1 − cos θ ), (8)

with Mb (b = p, n, �, �−, 	−) being the baryon mass defined by

Mp = MB − 2(a1mu + a2ms) − 2a3(mu + md + ms),

Mn = MB − 2(a1md + a2ms) − 2a3(mu + md + ms),

M� = MB − 1/3 · (a1 + a2)(mu + md + 4ms) − 2a3(mu + md + ms),

M�− = MB − 2(a1md + a2mu) − 2a3(mu + md + ms),

M	− = MB − 2(a1ms + a2mu) − 2a3(mu + md + ms), (9)

and �Kb being the “K-baryon sigma term” which simulates the K–B attractive interaction in
the scalar channel [4,31]:

�K p = �K	− = −(a1 + a2 + 2a3)(mu + ms), (10a)

�Kn = �K�− = −(a2 + 2a3)(mu + ms), (10b)

�K� = −
(

5
6

a1 + 5
6

a2 + 2a3

)
(mu + ms) (10c)

(see Appendix A1). In the following, Mb (b = p, n, �, �−, 	−) [Eq. (9)] are identified with the
empirical baryon masses, i.e. Mp = 938.27 MeV, Mn = 939.57 MeV, M� = 1115.68 MeV, M�−

= 1197.45 MeV, and M	− = 1321.71 MeV.
Following Ref. [1], the quark masses mi are chosen to be mu = 6 MeV, md = 12 MeV, and ms =

240 MeV. Together with these values, the parameters a1 and a2 are fixed to be a1 = −0.28, a2 =
0.56 to reproduce the empirical octet baryon mass splittings [1]. The remaining parameter a3 is
fixed to give the KN sigma term, �KN. Throughout this paper we consider two cases as allowable
values of �Kn: �Kn = 300 MeV and 400 MeV, for which a3 = −0.89 and −1.1, respectively. In
these cases one also obtains, from Eqs. (10a)−(10c), �K�− = 300 MeV, �Kp = �K	− = 369 MeV,
and �K� = 380 MeV for a3 = −0.89, and �K�− = 400 MeV, �Kp = �K	− = 469 MeV, and �K�

= 480 MeV for a3 = −1.1. According to the lattice QCD result, the current quark masses have
been fixed to be rather smaller values, (mu, md, ms) = (2.2, 4.7, 95) MeV [70], than adopted in
this paper. However, it can be shown that the �KN is little altered by the use of different quark
masses as far as (mu + ms)/m̂ (∼14) is almost the same in both set of quark masses [68].
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For LK one obtains [69]

LK = 1
2

{
1 +

(
sin θ

θ

)2
}

∂μK+∂μK− + 1 − ( sin θ
θ

)2

2 f 2θ2

{
(K+∂μK−)2 + (K−∂μK+)2

}

− m2
K

(
sin(θ/2)

θ/2

)2

K+K− + iX0

(
sin(θ/2)

θ/2

)2 (
K+∂0K− − ∂0K+K−)

= 1
2

( f μK sin θ )2 − f 2m2
K (1 − cos θ ) + 2μKX0 f 2(1 − cos θ ). (11)

The last term on the right-hand side of Eq. (11) stands for the s-wave K–B vector interaction,
with X0 being given by

X0 ≡ 1
2 f 2

∑
b=p,n,�,�−,	−

Qb
V ρb = 1

2 f 2

(
ρp + 1

2
ρn − 1

2
ρ�− − ρ	−

)
, (12)

where Qb
V ≡ 1

2

(
I (b)

3 + 3
2Y (b)

)
is the V-spin charge with I (b)

3 and Y(b) being the third component

of the isospin and hypercharge for baryon species b, respectively. The form of Eq. (12) for X0 is
specified model independently within chiral symmetry. From Eqs. (11) and (12), one can see that
the s-wave K–B vector interaction works attractively for protons and neutrons, while repulsively
for �− and 	− hyperons, as far as μK > 0.

In Ref. [71] we improved our model for the s-wave K–B interaction by introducing the range
terms and a pole contribution from �(1405) (denoted as �∗) so as to reproduce the on-shell
s-wave KN scattering lengths [72]. It has been shown that the range terms work repulsively,
and that the onset density of kaon condensation realized from hyperon-mixed matter is slightly
pushed up to a higher density as compared with the case without the range terms. Nevertheless,
the repulsive effect from the range terms (∝ μ2

K ) on the EOS of the (Y + K) phase is tiny over
the relevant densities as far as μK � O(mπ ). The contribution from the �∗ pole to the energy
is also negligible over the baryon density ρB � ρ0, since the kaon energy in matter lies well
below the pole position of M�∗ − MN . Therefore, these effects of the range terms and the pole
contribution from �∗ are omitted in this paper.

4. B–B interaction in the RMF
4.1 Lagrangian density for baryons and mesons
In the RMF framework, the B–B interaction is mediated by scalar (σ , σ ∗) and vector (ω, ρ,
φ) mesons. The scalar meson σ ∗ (∼ s̄s) and the vector meson φ (∼ s̄γ μs), both of which carry
the strangeness and couple only to hyperons (Y), are introduced according to the extension
of baryons to include hyperons. The quark structure of the φ meson comes from the assump-
tion of an ideal mixing between ω and φ mesons. The scalar meson–baryon couplings lead to
modification of the effective baryon masses in Eq. (8) to

M̃∗
b = Mb − gσbσ − gσ ∗bσ

∗ − �Kb(1 − cos θ ), (13)

with gσb (b = p, n, �, �−, 	−) and gσ ∗Y (Y = �, �−, 	−) being the scalar meson–baryon cou-
pling constants. The vector meson–baryon couplings are introduced by the covariant deriva-
tives at the baryon kinetic terms as ∂μ→D(b)

μ ≡ ∂μ + igωbωμ + ĩgρb�I (b) · �Rμ + igφbφμ, where
ωμ, �Rμ, and φμ denote the vector meson fields for ω, ρ, and φ mesons, respectively. The ar-
row attached to the ρ-meson field �Rμ refers to an isovector with the isospin operator �I (b) for
baryon b. The gωb, g̃ρb, and gφb in the covariant derivative are the vector meson–baryon cou-
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pling constants. It is to be noted that the ρ-meson–baryon coupling constant, gρb, is factorized
as gρb ≡ g̃ρb · |I (b)

3 | with the third component of the isospin for the baryon b. The ρ-meson–
baryon coupling constants utilized in the other RMF models mostly correspond to g̃ρb in our
model.

The baryon part of the Lagrangian density LB is then modified from Eq. (7) to

LB =
∑

b=p,n,�,�−,	−
ψb(iγ μD(b)

μ − M̃∗
b )ψb. (14)

In addition, the meson part of the Lagrangian density, LM , including the σ self-interaction is
introduced:

LM = 1
2

(
∂μσ∂μσ − m2

σ σ 2) − Uσ (σ ) + 1
2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2)

− 1
4
ωμνωμν + 1

2
m2

ωωμωμ − 1
4

�Rμν · �Rμν + 1
2

m2
ρ
�Rμ · �Rμ − 1

4
φμνφμν + 1

2
m2

φφμφμ.(15)

The second term on the right-hand side of Eq. (15) is the scalar self-interaction potential given
by Uσ (σ ) = bMN(gσNσ )3/3 + c(gσNσ )4/4, with b = 0.008659 and c = −0.002421 [13,57]. Uσ (σ )
is introduced to set the incompressibility at the nuclear saturation density to be 240 MeV, which
is consistent with an empirical value; Uσ (σ ) is solely considered here as the NLSI term. The
kinetic terms of the vector mesons are given in terms of ωμν ≡ ∂μων − ∂νωμ, �Rμν ≡ ∂μ �Rν −
∂ν �Rμ, and φμν ≡ ∂μφν − ∂νφμ. Throughout this paper, only the time components of the vector
meson mean fields and the third component of the isovector ρ mean field are considered to
describe the ground state of the system. We simply denote these components as ω0, R0, and φ0.
Then the ρ–B coupling term in the covariant derivative is rewritten as ĩgρbI (b)

3 R0 = igρbÎ (b)
3 R0

with gρb (= g̃ρb · |I (b)
3 |) and Î (b)

3 ≡ I (b)
3 /|I (b)

3 |, where Î (b)
3 is assigned as Î (p)

3 =+1, Î (n)
3 = Î (�− )

3 =
Î (	− )

3 = −1.
In the CI scheme there is no direct kaon–meson (m) coupling (m = σ , σ ∗, ω, ρ, φ) [see Eqs. (11)

and (15)].

4.2 Choice of meson–baryon coupling constants
The values of gσN, gωN, and gρN, which are related to the N–N interaction, are determined so
as to reproduce not only the properties of normal nuclear matter with saturation density ρ0

= 0.153 fm−3, the binding energy (= 16.3 MeV), and the symmetry energy (= 32.8 MeV), but
also the proton-mixing ratio and density distributions of proton and neutron for normal nuclei
[57]. One obtains gσN = 6.39, gωN = 8.72, and gρN = 4.27. The σ ∗–N and φ–N couplings are
not taken into account since they should be suppressed due to the OZI rule.

The vector meson couplings for the hyperon Y are obtained from the relations in the SU(6)
symmetry [73]:

gω� = gω�− = 2gω	− = 2
3

gωN, (16a)

gρ� = 0, gρ�− = 2gρ	− = 2gρN, (16b)

gφ� = gφ�− = 1
2

gφ	− = −
√

2
3

gωN . (16c)

The scalar (σ , σ ∗) meson–hyperon couplings are determined from phenomenological analyses
of recent hypernuclear experiments as far as possible. The scalar σ meson coupling for the
hyperon Y, gσY, is related to the potential depth of the hyperon Y (Y = �, �−, 	−) at ρB = ρ0
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in SNM, V N
Y , which is written in the RMF as

V N
Y = −gσY 〈σ 〉0 + gωY 〈ω0〉0, (17)

with 〈σ 〉0 and 〈ω0〉0 being the meson mean fields at ρB = ρ0 in SNM. For Y = �, the single-�
orbital energies in ordinary hypernuclei are fitted well with the �-nucleus single-particle po-
tential with depth ∼ −27 MeV [74]. Based on this result, V N

� is set to be −27 MeV. One then
obtains gσ� = 3.84 from Eq. (17).

The depth of the �− potential V N
�− has been shown to be repulsive, according to recent the-

oretical calculations [75,76] and phenomenological analyses of (K−, π±) reactions at BNL
[77,78], (π−, K+) reactions at KEK [79–81], and the �− atom data [82]. Following Ref. [78],
V N

�− is set to be 23.5 MeV as a typical value, from which one obtains gσ�− = 2.28 from Eq. (17).
The depth of the 	− potential in nuclear matter is set to be attractive, V N

	− = −14 MeV, with
reference to the experimental results deduced from (K−, K+) reactions, (−14) − ( −20) MeV
[83,84]. One then obtains gσ	− = 1.94 from Eq. (17).

The σ ∗ meson couplings for the hyperon Y, gσ ∗Y , are relevant to the Y–Y interaction as well
as the binding energy of hypernuclei. From recent detection of double-� hypernuclei in the
KEK-E176-E373 experiments, separation energies for two �s, B��, have been obtained for
several double-� hypernuclei [61]. For the “Hida event,” the experimental value of the separa-
tion energy for the ground state of 11

��Be has been estimated to be 20.83 ± 1.27 MeV [61,85]. We
determined gσ ∗� so as to reproduce the empirical values of B��( 11

�� Be) using the present B–B
interaction model in the RMF extended to finite nuclei [57,67]. One finds gσ ∗� = 7.2, for which
Bth

��( 11
��Be) ≡ Bth( 11

��Be) − Bexp(9Be) = 20.7 MeV with Bexp(9Be) = 58.16 MeV [86]. [Through-
out this paper, the superscript “exp” (“th”) denotes an experimental value (a theoretical value
obtained in our B–B interaction model).] In this case, the �-separation energy for 10

�Be is es-
timated to be Bth

� (10
�Be) ≡ Bth(10

�Be) − Bexp(9Be) = 9.95 MeV, whereas the experimental value
for the ground-state peak (mixture of 1− and 2− states) at J-Lab is reported as 8.55 MeV [87].
It is to be noted that our B–B interaction model applied to finite nuclei assumes the local den-
sity approximation and spherical symmetry for the profiles of baryon density distributions,
whereas the 11

��Be nucleus has a clustering structure [85]. Furthermore a quantitatively accu-
rate estimation in our model may not be expected for a few-body system such as 6

��He (the
“Nagara event”), although a precise extraction of the �� binding energy B��( 6

��He) and the
bond energy �B��( 6

��He)≡ B��( 6
��He)−2B�(5

�He) has been done experimentally [88,89].
For the σ ∗–	− coupling, the bound on the 	− hypernucleus was detected through the “Kiso”

event, 	− + 14N → 15
	C → 10

�Be + 5
�He [90]. In Ref. [91], 15

	C was assumed to be an excited
state with the 	− being in the 1p state, and the estimated separation energies of 	− for both

15
	(p)C and the ground state of 12

	(s)Be were shown to be consistent with the empirical values,
i.e. Bexp

	 ( 15
	(p)C) = 1.11 ± 0.25 MeV and Bexp

	 ( 12
	(s)Be) ≈ 5 MeV. In this case, B	( 15

	(s)C) for the
ground state of the 15

	C was estimated to be (8.0–9.4) MeV within the RMF calculation [91].
This interpretation concerning the energy-level structure and the binding energy of the 	−–14N
system has been confirmed by the recent observation of the twin-� hypernuclei (the “IBUKI”
event) at the J-PARC E07 experiment [92,93]. In our B–B interaction model, gσ ∗	− is taken
to be 4.0, for which one obtains Bth

	 ( 15
	(s)C) = 8.1 MeV and Bth

	 ( 12
	(s)Be) = 5.1 MeV, which are

consistent with the empirical values.
The remaining parameter for the σ ∗–�− coupling, gσ ∗�− , is simply set to be zero since there is

little experimental information on the � hypernuclei. As seen in the numerical result (Sect. 7.2),
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Table 1. The coefficients b and c in the σ self-interaction potential Uσ (σ ) and the meson masses ma (a =
σ , σ ∗, ω, ρ, φ) used in our RMF model. See the text for details.

b c mσ mσ ∗ mω mρ mφ

(MeV) (MeV) (MeV) (MeV) (MeV)

0.008659 −0.002421 400 975 783 769 1020

Table 2. The meson–baryon coupling constants gaB (a = σ , σ ∗, ω, ρ, φ and B = N, �, �−, 	−) used in
our RMF model.

N � �− 	−

σ 6.39 3.84 2.28 1.94
σ ∗ 0 7.2 0 4.0

ω 8.72
2
3

gωN
2
3

gωN
1
3

gωN

ρ 4.27 0 2gρN gρN

φ 0 −
√

2
3

gωN −
√

2
3

gωN −2
√

2
3

gωN

the �− hyperons are not mixed over the relevant densities due to the strong repulsion of the
V N

�− . Therefore, it may safely be said that the simplification gσ ∗�− = 0 little affects the results in
this paper. It is to be noted that gσ ∗Y (Y = �, �−, 	−) is also related to the s-wave K–B scalar
attraction in the ME scheme [see Eq. (49) in Sect. 6.1].

Together with these coupling constants, the meson masses are taken to be mσ = 400 MeV,
mσ ∗ = 975 MeV, mω = 783 MeV, mρ = 769 MeV, and mφ = 1020 MeV. The parameters rele-
vant to the meson–baryon interaction used in our RMF model are listed in Tables 1 and 2. In
our approach, the parameters such as the meson–baryon coupling constants are fixed in con-
formity with empirical results, so that these parameters necessarily include experimental and
model-dependent uncertainties. Recently, complementary approaches, where large variation of
the parameter space is considered with Bayesian analysis by the use of the multi-messenger
observations, have been carried out by many authors [94–96].

5. Energy expression in the CI scheme
5.1 Effective energy density
The total Lagrangian density L in the CI scheme for the description of the (Y + K) phase is
given by Eqs. (11), (14), and (15), together with the electron part Le: L=LB+LM+LK+Le. The
energy density of the (Y + K) phase, E (= EB + EM + EK + Ee), is obtained from the ground-
state expectation value of the Hamiltonian density, H = HB + HM + HK + He, with

HB =
∑

b

(∂LB/∂ψ̇b)ψ̇b − LB, (18a)

HM =
∑

m

(∂LM/∂ϕ̇m)ϕ̇m − LM, (18b)

HK = (∂LK/∂K̇−)K̇− + (∂LK/∂K̇+)K̇+ − LK , (18c)

He = (∂Le/∂ψ̇e)ψ̇e − Le, (18d)
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where ϕm (= σ , σ ∗, ω0, R0, φ0) is the meson field mediating the B–B interaction, and ψe the
electron field. From Eqs. (18a) and (7), one obtains

EB =
∑

b=p,n,�,�−,	−

{
2

(2π )3

∫
|p|≤pF (b)

d3|p|(|p|2 + M̃∗2
b )1/2 + ρb

(
gωbω0 + gρbÎ (b)

3 R0 + gφbφ0

)}
,

(19)

where pF(b) is the Fermi momentum of baryon b. From Eqs. (18b) and (15), one obtains

EM = 1
2

m2
σ σ 2 + U (σ ) + 1

2
m2

σ ∗σ
∗2 − 1

2
m2

ωω2
0 − 1

2
m2

ρR2
0 − 1

2
m2

φφ2
0 . (20)

The kaon part of the energy density, EK , is expressed from Eq. (18c) as

EK = μKρK− − LK , (21)

where the first term is obtained by rewriting the first two terms on the right-hand side of
Eq. (18c) using the time dependence of the classical kaon field, K̇± = ±iμKK±, which follows
from Eq. (1) [1,97], and the number density of kaon condensates,

ρK− = −iK−(∂LK/∂K̇−) + iK+(∂LK/∂K̇+). (22)

Substituting Eqs. (1) and (11) into Eq. (22), one obtains

ρK− = μK f 2 sin2
θ + 2 f 2X0(1 − cos θ ), (23)

where the first term is the kaon kinetic part and the second term comes from the s-wave K–B
vector interaction. With Eqs. (23) and (11), Eq. (21) reads

EK = 1
2

(μK f sin θ )2 + f 2m2
K (1 − cos θ ). (24)

The electron part, Eq. (18d), is simply written as

Ee � μ4
e/(4π2) (25)

for the ultra-relativistic electrons.
With Eqs. (5a)–(5d) the effective energy density Eeff (the thermodynamic potential density,

which is equal to the sign-reversed total pressure, −P) is separated into

Eeff = Eeff,B + Eeff,M + Eeff,K + Eeff,e, (26)

where

Eeff,B = EB −
∑

b=p,n,�,�−,	−
μbρb, (27a)

Eeff,M = EM, (27b)

Eeff,K = EK − μKρK− = −LK , (27c)

Eeff,e = Ee − μeρe = μ4
e/(4π2) − μe · μ3

e/(3π2) = −μ4
e/(12π2). (27d)

5.2 Classical kaon field equation and equations of motion for meson mean fields
The classical kaon field equation is obtained as ∂Eeff/∂θ = 0, which reads

μ2
K cos θ + 2X0μK − m∗2

K = 0 (28)

with

m∗2
K ≡ m2

K − 1
f 2

∑
b=p,n,�,�−,	−

ρs
b�Kb, (29)
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where ρs
b is a scalar density for baryon b:

ρs
b = 2

(2π )3

∫
|p|≤pF (b)

d3p
M̃∗

b

(|p|2 + M̃∗2
b )1/2

. (30)

The equations of motion for the meson mean fields in the CI scheme are given from
∂Eeff/∂ϕm = 0 (ϕm = σ , σ ∗, ω0, R0, φ0). Using Eqs. (19), (20), and (13) one obtains

m2
σ σ = −dUσ

dσ
+

∑
b=p,n,�,�−,	−

gσbρ
s
b, (31a)

m∗2
σ σ ∗ =

∑
Y =�,�−,	−

gσ ∗Y ρs
Y , (31b)

m2
ωω0 =

∑
b=p,n,�,�−,	−

gωbρb, (31c)

m2
ρR0 =

∑
b=p,n,�,�−,	−

gρbÎ (b)
3 ρb, (31d)

m2
φφ0 =

∑
Y =�,�−,	−

gφY ρY . (31e)

The diagrams of the interaction vertices in the CI scheme are depicted in Fig. 1(a) for the
nonlinear K–B interaction and the B–m interaction. In the CI scheme, the structure of the s-
wave K–B and K–K interactions is uniquely determined from chiral symmetry, and the mesons
m do not directly couple to kaons but only to baryons. A many-body effect appears at the σ–B
vertex through the coupling of B to the multi-σ mesons (∝ dUσ /dσ , shown as (i) in Fig. 1(a)).

The ground state energy for the (Y + K) phase is obtained so as to satisfy Eqs. (28), (31),
under the charge neutrality condition ∂Eeff/∂μ = 0, and chemical equilibrium conditions for
weak processes, ∂Eeff/∂ρi = 0(i = K−, e−, p, n, �, �−, 	−) with the total baryon number density
ρB being fixed. From the last conditions the relations between the chemical potentials, μ = μK

= μe = μn − μp, μ� = μn, μ�− = μ	− = μn + μe [Eqs. (5a)–(5d)] are assured. Here, the baryon
chemical potential μb (for b = p, n, �, �−, 	−) is obtained from Eqs. (19), (20), and (24) with
the help of Eqs. (12), (13), (23), and (28)–(31) as

μb = ∂E/∂ρb = (
pF (b)2 + M̃∗2

b

)1/2 + gωbω0 + gρbÎ (b)
3 R0 + gφbφ0 − μQb

V (1 − cos θ ). (32)

From Eq. (32), the baryon potential Vb (b = p, n, �, 	−, �−) reads

Vb = −gσbσ − gσ ∗bσ
∗ + gωbω0 + gρbÎ (b)

3 R0 + gφbφ0 − (�Kb + μQb
V )(1 − cos θ ). (33)

By setting ρY = 0 (Y = �, 	−, �−), the description of the energy expression for the (Y +
K) phase in the CI scheme reduces essentially to the one studied for kaon-condensed phase in
neutron star matter without hyperon-mixing [10].

6. Meson exchange (ME) scheme
6.1 Correspondence between the ME scheme and the CI scheme
We recapitulate here the meson exchange (ME) scheme for the s-wave K–B interaction [57,67] in
comparison with the CI scheme. In the CI scheme, the s-wave K–B scalar interaction is absorbed
into the effective baryon mass M̃∗

b [Eq. (13)] in the baryon part of the Lagrangian LB [Eq. (14)],
and the effect of the s-wave K–B scalar interaction on kaons is involved in the effective kaon
mass squared m∗2

K [Eq. (29)] through the classical kaon field equation in Eq. (28).
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Fig. 1. (a) Diagrams of the interaction vertices in the CI scheme for the nonlinear K–B interaction and
the B–m (m = σ , σ ∗, ω, ρ, φ) interaction. The bold dotted line with a cross (×) stands for the classical
nonlinear K− field U, the solid line for the baryon B, and the dashed line with a cross (×) for the mean
field of the meson m (m = σ , σ ∗ for the scalar mesons, ω, ρ, φ for the vector mesons). The dashed line
with no cross at both ends, when connected to the interaction vertices, gives a propagator (= 1/mm

2) for
the meson m with mass mm in the Hartree approximation. In the dotted box, the equations of motion
for the σ [Eq. (31a)] and those for the other meson fields (σ ∗, ω, ρ, φ) [Eqs. (31b)–(31e)] are depicted by
the diagrams. The diagram (i) comes from the self-interaction term of the multi-σ mesons (∝ dUσ /dσ ).
(b) As (a) but in the ME scheme. In the dotted box in the ME scheme, the diagram (ii) stands for the
expansion of the kaon source terms in Eqs. (46a)–(46e) in Sect. 6.1 in powers of the kaon field (∝ θ ) with
the dotted lines.

In the ME scheme, not only baryons but also the kaon field couple only directly with the
mesons m (m = σ , σ ∗, ω, ρ, and φ) [57,67], and the K–B interaction is mediated by exchange of
these mesons. The s-wave K–B scalar interaction in the ME scheme is introduced accordingly
as follows. The effective baryon mass [Eq. (13)] appearing in the baryon part of the Lagrangian
density LB [Eq. (14)] should be modified as

M̃∗
b → M∗

b (ME) = Mb − gσbσ − gσ ∗bσ
∗, (34)

since there is no direct K–B coupling in the ME scheme. Also, the kaon mass squared in the
kaon part of the Lagrangian densityLK [Eq. (11)] is replaced by the effective kaon mass squared
m∗2

K (ME), i.e.

m2
K → m∗2

K (ME) = m2
K − 2mK (gσKσ + gσ ∗Kσ ∗), (35)

which should be compared with the m∗2
K in the CI scheme [Eq. (29)]. [See also Eq. (48) and

subsequent discussion.]
For the s-wave K–B vector interaction, X0 defined by Eq. (12) appearing in LK [Eq. (11)]

should be replaced as

X0 → X0(ME) = gωKω0 + gρKR0 + gφKφ0. (36)
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With the above modification for the K–B scalar and vector interactions, one obtains the La-
grangian density in the ME scheme as L(ME)=LB(ME)+LM+LK (ME)+Le with

LB(ME) =
∑

b=p,n,�,�−,	−
ψb(iγ μD(b)

μ − M∗
b (ME))ψb, (37)

LK (ME) = 1
2

( f μK sin θ )2 − f 2m∗2
K (ME)(1 − cos θ ) + 2μKX0(ME) f 2(1 − cos θ ). (38)

The energy density in the ME scheme naturally follows from L(ME): E(ME) =
EB(ME)+EM+EK (ME)+Ee, with

EB(ME) =
∑

b=p,n,�,�−,	−

{
2

(2π )3

∫
|p|≤pF (b)

d3|p| (|p|2 + (M∗
b (ME))2)1/2

+ ρb

(
gωbω0 + gρbÎ (b)

3 R0 + gφbφ0

)}
, (39)

EK (ME) = μKρK− (ME) − LK (ME) = 1
2

(μK f sin θ )2 + f 2m∗2
K (ME)(1 − cos θ ), (40)

where the number density of kaon condensates, ρK− (ME), is given from Eq. (22) by the replace-
ments m2

K → m∗2
K (ME) [Eq. (35)] and X0 → X0(ME) [Eq. (36)] in LK [Eq. (11)]:

ρK− (ME) = μK f 2 sin2
θ + 2 f 2X0(ME)(1 − cos θ ). (41)

The effective energy density in the ME scheme, Eeff (ME), is given as

Eeff (ME) = Eeff,B(ME) + EM + Eeff,K (ME) + Eeff,e, (42)

where

Eeff,B(ME) = EB(ME) −
∑

b=p,n,�,�−,	−
μb(ME)ρb, (43a)

Eeff,K (ME) = EK (ME) − μKρK− (ME) = −LK (ME). (43b)

In Eq. (43a), μb(ME) is the baryon chemical potential in the ME scheme:

μb(ME) = ∂E (ME)/∂ρb = (
pF (b)2 + M∗2

b (ME)
)1/2 + gωbω0 + gρbÎ (b)

3 R0 + gφbφ0. (44)

Note that the meson part, Eeff,M (= EM), and the electron part, Eeff,e, are the same as those in
the CI scheme.

In accordance with the above modification, the classical kaon field equation reads

μ2
K cos θ + 2X0(ME)μK − m∗2

K (ME) = 0, (45)

which should be compared with the one in the CI scheme, Eq. (28). The equations of motion
for the meson mean fields in the ME scheme are modified to

m2
σ σ = −dUσ

dσ
+

∑
b=p,n,�,�−,	−

gσbρ
s
b(ME) + 2 f 2gσKmK (1 − cos θ ), (46a)

m2
σ ∗σ

∗ =
∑

Y =�,�−,	−
gσ ∗Y ρs

Y (ME) + 2 f 2gσ ∗KmK (1 − cos θ ), (46b)

m2
ωω0 =

∑
b=p,n,�,�−,	−

gωbρb − 2 f 2gωKμK (1 − cos θ ), (46c)

m2
ρR0 =

∑
b=p,n,�,�−,	−

gρbÎ (b)
3 ρb − 2 f 2gρKμK (1 − cos θ ), (46d)

m2
φφ0 =

∑
Y =�,�−,	−

gφY ρY − 2 f 2gφKμK (1 − cos θ ), (46e)
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with

ρs
b(ME) = 2

(2π )3

∫
|p|≤pF (b)

d3p
M∗

b (ME)

(|p|2 + M∗2
b (ME))1/2 (47)

being the scalar density for baryon b in the ME scheme. Source terms appear in the equations of
motion for meson mean fields in the presence of kaon condensates (θ > 0) (the last terms on
the right-hand sides of the equations of motion Eqs. (46a)–(46e)), originating from the kaon–
meson (K–m) couplings in the ME scheme. In Fig. 1(b), the diagrams of the interaction vertices
in the ME scheme for the nonlinear K–m interaction and the B–m interaction are depicted. In
the dotted box in the ME scheme, diagram (ii) represents the expansion of the kaon source
terms in Eqs. (46a)–(46e) in powers of the kaon field (∝ θ ) with the dotted lines.

In the ME scheme, the mesons (m) couple not only to the baryons (B) but also to the kaon
field U [Fig. 1(b)], while they couple only to baryons in the CI scheme [Fig. 1(a)]. As a result, two
kinds of many-body effects appear on the K–m couplings in the ME scheme: (i) the derivative
term of the σ self-interaction potential Uσ (σ ) with respect to the σ [denoted as (i) in Fig. 1(b)],
and (ii) the kaon source terms in the equations of motion for the mesons m [denoted as (ii)
in Fig. 1(b)]. Both effects (i) and (ii) lead to differences in the quantities associated with kaon
properties between the CI and ME schemes. On the other hand, the nonlinear kaon (U)–B
interactions in the ME scheme are generated from the components of mesons (m) connected
to baryons in the U–m couplings [the second term on the right-hand side of the σ mean field
diagram and the first term of the other meson mean fields diagram in Fig. 1(b)], which are
identified with the U–B contact interactions in the CI scheme in Fig. 1(a). For instance, the
expression of the effective kaon mass squared, m∗2

K (ME) [Eq. (35) ], is rewritten with the help
of Eqs. (46a) and (46b) as

m∗2
K (ME) = m2

K − 1
f 2

∑
b

ρs
b�Kb(ME) + 2gσK

mK

m2
σ

dUσ

dσ

− (2 f mK )2

{ (
gσK

mσ

)2

+
(

gσ ∗K

mσ ∗

)2
}

(1 − cos θ ), (48)

where �Kb(ME) (b = p, n, �, �−, 	−) is defined as

�Kb(ME) ≡ 2 f 2mK

(
gσKgσb

m2
σ

+ gσ ∗Kgσ ∗b

m2
σ ∗

)
, (49)

which is generated from the U–m couplings through exchange of scalar mesons [the second
term on the right-hand side of the σ meson diagram and the first term on the right-hand side
of the σ ∗ meson diagram in Fig. 1(b)], and is identified with the kaon–baryon sigma terms
[Eq. (10)]. As compared with the effective kaon mass squared in the CI scheme [Eq. (29)], there
are two additional terms in the third and last terms on the right-hand side of Eq. (48) in the ME
scheme: the derivative term proportional to dUσ /dσ (= bMNg3

σNσ 2 + cg4
σNσ 3), coming from

the equaiton of motion of the σ mean field [Eq. (46a)], represents the many-body effect (i) and
has a repulsive effect on the effective kaon mass squared, pushing up the lowest kaon energy
ωK as compared with that in the CI scheme (see Sect. 7.1). This many-body effect (i) entails
a difference between the CI and ME schemes for quantities associated with kaon properties
such as the effective kaon mass even in the normal phase (θ = 0). On the other hand, the last
term, coming from the nonlinear kaon field–scalar meson couplings through the source terms
of Eqs. (46a) and (46b), represents the many-body effect (ii), and it works attractively in the
presence of kaon condensates, leading to a reduction of m∗2

K (ME).
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To compare X0, which represents the s-wave K–B vector interaction, between the CI and ME
schemes, the expression of X0(ME) [Eq. (36) ] is rewritten with the help of Eqs. (46c)–(46e) as

X0(ME) = 1
2 f 2

∑
b

Qb
V ρb − 2 f 2μK

{ (
gωK

mω

)2

+
(

gρK

mρ

)2

+
(

gφK

mφ

)2
}

(1 − cos θ ), (50)

where the first term on the right-hand side of Eq. (50) results from the following constraints
among the vector meson–K and vector meson–B coupling constants:

2 f 2

(
gωKgωN

m2
ω

+ gρKgρN

m2
ρ

)
= 1, (51a)

2 f 2

(
gωKgωN

m2
ω

− gρKgρN

m2
ρ

)
= 1

2
, (51b)

2 f 2

(
gωKgω�

m2
ω

+ gφKgφ�

m2
φ

)
= 0, (51c)

2 f 2

(
gωKgω�−

m2
ω

− gρKgρ�−

m2
ρ

+ gφKgφ�−

m2
φ

)
= −1

2
, (51d)

2 f 2

(
gωKgω	−

m2
ω

− gρKgρ	−

m2
ρ

+ gφKgφ	−

m2
φ

)
= −1. (51e)

These constraints are imposed in order that the terms depending on the number densities of
baryons in Eq. (50) correspond to the Tomozawa–Weinberg terms prescribed by chiral symme-
try. From Eqs. (51a)–(51c), one obtains the kaon–vector meson coupling constants as

gωK = 3m2
ω/(8 f 2gωN ) = 3.05,

gρK = m2
ρ/(8 f 2gρN ) = 2.01,

gφK = 3
√

2m2
φ/(8 f 2gωN ) = 7.33, (52)

where the SU(6) relations for the vector meson–baryon coupling constants, gω� = (2/3)gωN,
gφ� = (−√

2/3)gωN , have been used (see Sect. 4.2). The values in Eq. (52) should be compared
with those obtained with the quark and isospin counting rule, gωK = gωN/3 = 2.90, gρK = gρN =
4.27, and gφK = gρππ/

√
2 = 4.27 from the SU(6) relation with gρππ = 6.04 [67]. It should be

noted that the remaining constraints in Eqs. (51d) and (51e) are shown to be automatically
fulfilled using the relations in Eq. (52) for the vector meson–kaon couplings together with the
SU(6) relations for the vector meson–�− and 	− coupling constants in Eq. (16).

As compared with the X0 [Eq. (12)] in the CI scheme, the first term in Eq. (50), which is gen-
erated from the U–m couplings through exchange of vector mesons [the first term on the right-
hand side of the vector meson diagram in Fig. 1(b)], is identified with the one in Eq. (12) cor-
responding to the Tomozawa–Weinberg term in the CI scheme. In addition, a term appears on
the right-hand side of Eq. (50) coming from the nonlinear kaon field–vector meson couplings
through the source terms of Eqs. (46c)–(46e) as a many-body effect (ii) in the ME scheme. This
term works repulsively in the presence of kaon condensates to weaken the s-wave K–B vector
attraction as far as μK > 0.

It should be noted that the K–K interaction is inherent in the nonlinear kaon field in the
CI scheme. The resulting K–K scattering length agrees with the current algebra prediction,
−mK/(16π f 2

K ) [98]. On the other hand, in the ME scheme there is an additional contribution
to the K–K scattering length arising from the kaon–scalar meson couplings as a positive contri-
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bution and the kaon–vector meson couplings as a negative contribution, leading to a negatively
overestimated value of the K–K scattering length. Nevertheless, there is still uncertainty about
the experimental value of the K–K scattering length. Therefore, throughout this paper we leave
the problem associated with the K–K interaction in the case of the ME scheme as it is, until
a consistent description of the nonlinear kaon field with the meson exchange picture becomes
possible in a future study.

As for the baryon (B)–meson (m) couplings in the ME scheme, the first three terms on the
right-hand side of the σ mean field diagram and the first term on the right-hand side of the
other meson mean fields diagram in Fig. 1(b) are common to those in Fig. 1(a) in the CI scheme.
Further, the B–m couplings through the many-body effect (ii) arising from the kaon source term
in the ME scheme [the fourth term on the right-hand side of the σ mean field diagram and the
second term on the right-hand side of the other meson mean fields diagram in Fig. 1(b)] are
identified with the nonlinear kaon field (U)–B contact interactions in the CI scheme in Fig. 1(a).
Therefore, in contrast to the quantities associated with kaon properties, there is no difference for
quantities associated with baryons between the CI and ME schemes. For example, the effective
baryon mass M∗

b (ME) [Eq. (34)] is shown to be equal to the M̃∗
b [Eq. (13)] in the CI scheme,

after being rewritten using Eqs. (46a) and (46b) for M∗
b (ME) and Eqs. (31a) and (31b) for M̃∗

b

together with the “Kb sigma term” �Kb (ME) [Eq. (49)].
In a similar way, the baryon chemical potential μb(ME) (for b = p, n, �, �−, 	−) in the ME

scheme, which is given by Eq. (44), is shown to be equal to the μb [Eq. (32)] in the CI scheme.
In order to reach this result, the former is rewritten using Eqs. (46c)–(46e) for the vector mean
fields, together with Eq. (51) to identify the Qb

V in μb [Eq. (32)], and the latter is rewritten using
Eqs. (31c)–(31e).

In terms of μb(ME), the chemical equilibrium conditions for the weak processes are im-
posed as μ = μK = μe = μn(ME) − μp(ME), μ�(ME) = μn(ME), μ�− (ME) = μ	− (ME) =
μn(ME) + μe. The charge neutrality condition is written as ρp − ρ�− − ρ	− − ρK− (ME) = 0
with the number density of kaon condensates ρK− (ME) [Eq. (41)].

6.2 Meson–kaon coupling constants in the ME scheme
In the ME scheme there remain unknown parameters: the scalar meson–kaon coupling con-
stants, gσK and gσ ∗K . As seen from Eq. (49), gσK is related to the Kn sigma term as gσK

= �Kn(ME)m2
σ /(2 f 2mKgσN ) with gσ ∗N = 0. Here, the value of �Kn(ME) is adjusted to be

(300−400) MeV, the value adopted in the CI scheme. Then, gσK is determined to be gσK = 0.88
(1.17) for �Kn(ME) = 300 MeV (400 MeV). The scalar σ ∗ meson coupling to kaons is chosen
to be gσ ∗K = 2.65/2 from the decay of f0(975) [16,38].

The scale of the s-wave K–N attractive interaction can be measured by the K− optical poten-
tial UK defined at ρB = ρ0 in SNM. The UK in the CI scheme and that in the ME scheme are
related by UK (ME) = UK (CI) + gσK

m2
σ

(dUσ /dσ )σ=〈σ 〉, as shown Eq. (A5). UK(ME) is pushed up

to a larger value than UK(CI) due to the repulsive contribution from the kaon–multi-σ meson
coupling. The parameters relevant to the meson–kaon interaction in the ME scheme of our
RMF model are listed in Table 3. Also, the kaon–baryon sigma terms �Kb (b = p, n, �, �−,
	−) and UK adopted for both the CI and ME schemes are listed in Table 4. In this paper, the
two cases of �Kn = 300 MeV and 400 MeV are mainly considered in both CI and ME schemes.
Recently, the inclusive missing-mass spectrum of 12C (K−, p) reactions has been measured by
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Table 3. The meson–kaon coupling constants gmK (m = σ , σ ∗, ω, ρ, φ) used in the ME scheme. The K−

optical potential UK for symmetric nuclear matter at saturation density is given as UK(ME) � −(gσK〈σ 〉
+ gωK〈ω0〉), where 〈σ 〉 and 〈ω0〉 are the meson mean fields at ρp = ρn = ρ0/2. See the text for details.

�Kn UK(ME) gσK gσ ∗K gωK gρK gφK

(MeV) (MeV)

300 −77 0.88 2.65/2 3m2
ω/(8 f 2gωN ) m2

ρ/(8 f 2gρN ) 3
√

2m2
φ/(8 f 2gωN )

400 −87 1.17 2.65/2 (= 3.05) (= 2.01) (= 7.33)

Table 4. The “K–baryon sigma term”�Kb (b = p, n, �, �−, 	−) and K− optical potential UK in symmetric
nuclear matter at ρB = ρ0 for both the CI and ME coupling schemes. Equation (10) [Eq. (49)] is used for
�Kb in the CI scheme [in the ME scheme]; Eq. (A4) [Eq. (A5)] is used for UK in the CI scheme [in the
ME scheme].

�Kn �Kp �K� �K�− �K	− UK

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

CI 300 369 380 300 369 −98
400 469 480 400 469 −118

ME 300 300 266 107 139 −77
400 400 326 143 169 −87

the J-PARC E05 experiment [99]. The measured spectrum shape has been reproduced with the
real part of the K̄-nucleus potential depth UK = −80 MeV and with the imaginary part W0 =
−40 MeV, while it is difficult to reproduce the spectrum with a very deep potential such as |UK|
∼ 200 MeV. As seen in Table 4, our deduced values for the potential depth UK corresponding
to each �Kn for the CI and ME schemes are consistent with these experimental implications for
the K− optical potential depth.

7. Onset density of kaon condensation
We discuss the onset of kaon condensation realized from hyperon-mixed matter in both CI and
ME schemes based on our model interaction and compare the results of the two schemes.

7.1 Lowest K− energy in hyperon-mixed matter in the CI and ME schemes
We will show, in Sect. 7.2, that hyperon-mixing precedes kaon condensation at lower densities
for the allowable range of �Kn = (300−400) MeV. We therefore consider a continuous phase
transition from pure hyperon-mixed matter to the (Y + K) phase. At the onset of kaon con-
densation, the lowest kaon energy ωK(ρB) at ρB meets the kaon chemical potential μK, which
is equal to the charge chemical potential μ due to chemical equilibrium for weak processes,
n � p + K−, n � p + e−(+ν̄e) [3]. Therefore, the onset density ρc

B is given by

ωK (ρc
B) = μ, (53)

where ωK(ρB) is given as a pole of the kaon propagator at ρB, i.e. D−1
K (ωK; ρB) = 0. The kaon

inverse propagator is obtained through expansion of the effective energy density Eeff with re-
spect to the classical kaon field,

Eeff (θ ) = Eeff (0) − f 2

2
D−1

K (μ; ρB)θ2 + O(θ4), (54)
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Fig. 2. The diagrams for the kaon propagator DK (the bold dotted line) and the kaon self-energy �K(ωK;
ρB) in the CI and ME schemes (the shaded circle). The thin dotted line denotes a free kaon propagator
D(0)

K [=1/(ω2
K − m2

K )]. The diagrams for the self-energy in the CI scheme, �K(CI), correspond to Eq. (56),
and those for the ME scheme, �K(ME), to Eq. (57). See the text for details.

which gives

D−1
K (ωK; ρB) = ω2

K − m2
K − �K (ωK; ρB) (55)

with �K(ωK; ρB) being the self-energy of kaons. In the CI scheme, it is given by

�K (ωK; ρB)(CI) = m∗2
K − m2

K − 2X0ωK = − 1
f 2

∑
b=p,n,�,�−,	−

(
ρs

b�Kb + ωKρbQb
V

)
, (56)

which is read off from Eq. (28) by setting μK → ωK, θ → 0, and using Eqs. (12) and (29). In
the ME scheme, one has

�K (ωK; ρB)(ME) = (
m∗2

K (ME) − m2
K − 2X0(ME)ωK

)
θ→0

= −2mK (gσKσ + gσ ∗Kσ ∗) − 2ωK (gωKω0 + gρKR0 + gφKφ0)

= 2gσK
mK

m2
σ

dUσ

dσ
− 1

f 2

∑
b=p,n,�,�−,	−

(
ρs

b�Kb(ME) + ωKρbQb
V

)
, (57)

where the second and third lines on the right-hand side are obtained from the first line using
Eqs. (35) and (36) or Eqs. (48) and (50), respectively. The diagrams for the kaon propagators
DK in the CI and ME schemes are shown in Fig. 2. The dotted line represents kaons and the
solid line the baryon b (= p, n, �, �−, 	−). In the ME scheme, the dashed line represents the
σ meson. Comparing Eqs. (56) and (57), one can see that the kaon–multi-σ meson coupling,
stemming from the dUσ /dσ in the ME scheme denoted as (i), induces an additional repulsive
term in the kaon self-energy with nonlinear density dependence, which is absent in the case of
the CI scheme.

7.2 Numerical results for the onset density of kaon condensation realized from
hyperon-mixed matter

In Fig. 3, the lowest kaon energy ωK is shown as a function of baryon number density ρB for
the CI case (solid lines) and the ME case (dashed lines). The bold lines (thin lines) are for �Kn =
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Fig. 3. The lowest kaon energy ωK as a function of baryon number density ρB for the CI case (solid lines)
and the ME case (dashed lines). The bold lines (thin lines) are for �Kn = 300 MeV (�Kn = 400 MeV). The
dependence of the charge chemical potential μ (= μe = μK− ) on ρB is also shown by the dotted line. See
the text for details.

Fig. 4. The particle fractions in pure hyperon-mixed matter with θ = 0 as a function of the baryon number
density ρB. The total strangeness fraction (the dashed line) is given by (ρ� + 2ρ	− )/ρB.

300 MeV (�Kn = 400 MeV). The dependence of the charge chemical potential μ (= μe = μK−)
on ρB is also shown by the dotted line.

In the CI scheme, the energy ωK decreases almost linearly with ρB from the mass in the vac-
uum to a value of O(200 MeV) at ρB = 0.6 fm−3 (0.5 fm−3) for �Kn = 300 MeV (400 MeV).
The onset density of kaon condensates is read as ρc

B(K−) = 0.548 fm−3 (= 3.58ρ0) for �Kn =
300 MeV and ρc

B(K−) = 0.433 fm−3 (= 2.83ρ0) for �Kn = 400 MeV. For reference, we show
particle fractions in pure hyperon-mixed matter (θ set to zero) as a function of ρB in Fig. 4. In
pure hyperon-mixed matter, � hyperons start to be mixed in nucleon matter at ρB = ρc

B(�) =
0.384 fm−3 (= 2.51ρ0), and subsequently 	− hyperons appear at a higher density ρB =ρc

B(	−)
= 0.508 fm−3 (= 3.32ρ0). It is to be noted that �− hyperons are not mixed over the relevant den-
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sities, since the potential V N
�− (ρ0) is taken to be strongly repulsive and 	− hyperons are mixed

in place of �− hyperons.
As the number density of � hyperons increases with ρB, the number densities of proton and

electron decrease through the weak process, p + e− → � + νe, keeping with ρp = ρe, so that the
charge chemical potential μ [= μe = (3π2ρe)1/3] decreases as ρB increases after the onset density
of the � hyperons. Similar to the �-mixing case, mixing of 	− hyperons suppresses μ as ρB

increases, through � + e− → 	− + νe, as seen in Fig. 4. As a result, the onset density ρc
B(K−)

is pushed up to a higher density in hyperon-mixed matter as compared with that realized from
neutron star matter without hyperon mixing [14,16]. For �Kn = 300 MeV, kaon condensation
occurs at a higher density than the onset density of the 	− mixing. For �Kn = 400 MeV, the
lowest kaon energy ωK is smaller than that for the case of �Kn = 300 MeV at a given density
due to stronger K–B scalar attraction, and kaon condensation occurs at a density just after the
onset density of the � mixing and before the density at which the 	− mixing starts.

In the ME scheme, the lowest kaon energy ωK (the dashed line) lies higher than in the CI
scheme (the solid line). The main difference in ωK between the CI and ME schemes stems from
the kaon–multi-σ meson coupling term from (i) [the first term in the third line on the right-hand
side of Eq. (57)], which works to increase the energy ωK as compared with the CI scheme case.
For comparison, the lowest kaon energy obtained after this term is subtracted, denoted as ω′

K

below, is shown as a function of ρB by the bold (thin) dash-dotted lines for �Kn = 300 MeV
(400 MeV) in Fig. 3. The energy ω′

K is almost equal to the energy ωK in the CI scheme for
ρB � ρc

B(�). For ρB � ρc
B(�), the mixing of � leads to a reduction of the K–� scalar attraction

in the ME scheme as compared with the CI scheme due to the relation �K�(ME) < �K� (CI)
(see Table 4). Thus, the decrease in ω′

K with ρB becomes moderate in the presence of � hyperons,
as does the energy ωK in the ME scheme. As a result, the energy ωK in the ME scheme does
not cross the charge chemical potential μ over the relevant densities for the standard values of
�Kn = (300−400) MeV, so that kaon condensation does not occur over the relevant densities. In
our previous works based on the ME scheme, kaon condensation in the hyperon-mixed matter
appears at ρB ∼ 3.3ρ0 for UK = −120 MeV [67], which, however, corresponds to a large Kn
sigma term, i.e. �Kn(ME) = 754 MeV, estimated from Eq. (49). In this case the repulsive effect
from (i) is compensated by huge attraction given by the s-wave K–B scalar interaction. In most
of the other works in the ME scheme with the NLSI scalar potential Uσ , kaon condensation
in hyperon-mixed matter appears only for large kaon optical potential depth, |UK| � 120 MeV.

The many-body effect (i) appearing solely in the ME scheme depends on the specific form of
Uσ (σ ), which is phenomenologically introduced in order to reproduce the empirical value of
the incompressibility of nuclear matter at saturation density (K = 240 MeV).

In another example of the many-body effects (i), the nonlinear potential of the ω meson,
c(ωμωμ)2/4, which is introduced to reproduce properties of stable and unstable nuclei system-
atically in the RMF models [100], would modify the K–B vector interaction, leading to an
extra repulsive term, −cgωKω3

0/m2
ω, in the expression for X0(ME) in Eq. (36). Also, inclusion of

the ω–ρ meson coupling term λ(ωμωμ)(�Rμ · �Rμ) [101,102], which affects the symmetry energy
S(ρ0) and its slope L at ρB = ρ0, would lead to both repulsive and attractive contributions to
X0, −2λgωKR2

0ω0/m2
ω and −2λgρKR0ω

2
0/m2

ρ (R0 < 0), respectively. Because of arbitrariness of
the NLSI terms as shown above, the corresponding many-body terms entering into the kaon
self-energy cannot be fixed uniquely.
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Fig. 5. The total energy per nucleon, E(total), the energy contributions from the NLSI term, E(NLSI)
(= Uσ /ρB), and the sum of kinetic and two-body interaction energies, E(two-body), in SNM are shown
as functions of ρB by the solid lines. For comparison, E(total), E(two-body), and the energy contribu-
tions from the three-nucleon repulsion, E(TNR), and three-nucleon attraction, E(TNA), are read from
Ref. [103] by the dotted lines. See the text for details.

8. Role of the nonlinear self-interacting term as many-baryon forces
We have shown that the difference in kaon dynamics in dense matter between the CI and ME
schemes is caused by the many-body effects (i) derived from the NLSI term, Uσ in this paper. Uσ

itself is introduced commonly in both schemes in order to reproduce the empirical incompress-
ibility in SNM. Here we reconsider the role of the NLSI term as many-baryon forces associated
with the saturation mechanisms in SNM. We also examine for the NLSI term a possible origin
of the many-baryon repulsion in the context of stiffening the EOS for the (Y + K) phase at
high densities.

8.1 Effects of the NLSI term on saturation mechanisms in the SNM
The total energy per nucleon, E(total), in SNM is separated as E(total) = [E(two-body) +
E(NLSI)]/ρB, with

E (two-body) =
∑

N=p,n

2
(2π )3

∫
|p|≤pF

d3|p|(|p|2 + M∗2
N )1/2

+ 1
2

m2
σ σ 2 + 1

2
m2

σ ∗σ
∗2 + 1

2
m2

ωω2
0 + 1

2
m2

ρR2
0 + 1

2
m2

φφ2
0,

E (NLSI) = Uσ , (58)

where pF is the Fermi momentum of the nucleon in SNM, pF = (3π2ρB/2)1/3, and M∗
N (= MN

− gσNσ ) the effective nucleon mass. The B–B two-body interactions, stemming from σ , ω, and
ρ meson exchange in the RMF, are included in E(two-body). In Fig. 5, E(total), E(two-body)
(= E(two-body)/ρB), and E(NLSI) (= Uσ /ρB) are shown as functions of ρB by the solid lines.
Note that these curves are common to both CI and ME schemes. For comparison, E(total),
E(two-body), and the energy contributions from the three-nucleon repulsion, E(TNR), and
three-nucleon attraction, E(TNA), which are read from the result in Ref. [103] [LP(1981)], are
shown by the dotted lines as a reference for the standard nuclear matter calculation with the
variational method. In the case of LP(1981), the three-nucleon forces, both TNR and TNA
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Fig. 6. The energy per baryon, E/ρB (= E(total)), for the (Y + K) phase as a function of ρB in the CI
scheme for �Kn = 300 MeV and 400 MeV are shown by the bold and thin solid lines, respectively. (The
nucleon rest mass is subtracted.) The contribution from the NLSI term, Uσ /ρB, is also shown for �Kn =
300 MeV and 400 MeV by the bold and thin red dashed lines, respectively. For comparison, the one for
pure hyperon-mixed matter (set to be θ = 0), which is equal to the energy per baryon in the ME scheme,
and the one for pure nucleon matter (set to be θ = 0 and the hyperon-mixing ratio ρY/ρB = 0) are shown
by the green dotted line and the dash-dotted line, respectively. The energy contribution from the NLSI
term in the case of the pure hyperon-mixed matter (i.e. in the case of the ME scheme) is also shown in
the lower green dotted line.

[E(TNR) = 3.5 MeV and E(TNA) = −6.1 MeV] play the important role of shifting the loca-
tion of the saturation point due to E(two-body) to the empirical one, where ρB = 0.16 fm−3

and the binding energy = 16.3 MeV. On the other hand, in the present model the NLSI term
brings about a large repulsion (20 MeV) at ρ0 as compared with the TNR in LP(1981). E(NLSI)
monotonically increases with ρB for 0 < ρB � 0.6 fm−3. Further, a large cancellation between
E(NLSI) and E(two-body) maintains saturation of SNM. Therefore, the NLSI term shows
quite different aspects quantitatively with respect to saturation mechanisms from those with
the standard nuclear matter calculation.

8.2 Contribution of the NLSI term to the EOS for the (Y + K) phase in the CI scheme
Following the results on the onset of kaon condensation in Sect. 7.2, we concentrate on the CI
scheme to discuss the EOS including the (Y + K) phase and the contribution of the NLSI term
to the EOS as many-baryon forces.

In Fig. 6, the energy per baryon, E/ρB, in the (Y + K) phase with the nucleon rest mass
being subtracted is shown as a function of ρB, which is obtained in the CI scheme for �Kn =
300 MeV and 400 MeV by the bold and thin solid lines, respectively. The contribution from the
NLSI term, Uσ /ρB, is also shown for �Kn = 300 MeV and 400 MeV by the bold and thin red
dashed lines, respectively. In Fig. 7, the pressure P (= −Eeff [Eq. (26)]) for the (Y + K) phase is
shown as a function of the energy density E in the CI scheme for �Kn = 300 MeV and 400 MeV
by the bold and thin solid lines, respectively. For comparison, in both Figs. 6 and 7, the cases
for pure hyperon-mixed matter without kaon condensation (set to be θ = 0), which are equal
to those obtained in the ME scheme, and for pure nucleon matter (set to be θ = 0 and the
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Fig. 7. The pressure P (= −Eeff [Eq. (26)]) in the (Y + K) phase as a function of the energy density E in
the CI scheme, for �Kn = 300 MeV and 400 MeV by the bold and thin solid lines, respectively. The other
curves denote the same cases as those for the energies per baryon in Fig. 6.

hyperon mixing ratio ρY/ρB = 0) are also shown by the green dotted line and the dash-dotted
line, respectively.

One can see from both figures that once kaon condensation occurs in hyperon-mixed matter,
it leads to significant softening of the EOS from the one for pure nucleon matter, since the at-
tractive effect of the s-wave K–B interaction is added as well as the effect of avoiding the N–N
repulsion by making the relative number densities of nucleons lower through mixing of hyper-
ons [26]. As seen in Fig. 7, an unstable region, dP/dE < 0, appears as a result of large softening
of the EOS in the presence of kaon condensates. In such a density region, the phase equilib-
rium between the hyperon-mixed phase and the (Y + K) phase should be taken into account
under the Gibbs condition, which may lead to an inhomogeneous mixed phase consisting of
these phases [105]. It is to be noted that the EOS for the pure nucleon matter (the dash-dotted
line) is slightly stiffer than the one according to the A18+δv+UIX∗ model of Ref. [104].

From Fig. 7, one can read the density dependence of sound velocity cs [= (dP/dE )1/2]. In
the nucleon matter, cs increases monotonically with increase in density. Beyond the onset den-
sity of � hyperons, cs abruptly decreases with density, and once kaon condensates appear, the
matter becomes unstable, where c2

s < 0. At high densities, ρB � 0.7 fm−3, the (Y + K) phase
becomes stable, and cs increases as density increases. For ρB ∼ 1.0 fm−3, cs ∼ 0.6c with c being
the speed of light. Over the relevant densities, the causal condition cs < c is met within the
RMF framework.

In Fig. 8 we show the gravitational mass M to radius R relations, obtained as solutions to the
Tolman–Oppenheimer–Volkoff equation together with the minimal RMF (MRMF) + NLSI
(Uσ ) model (denoted as “this work”). The branches including the (Y + K) phase in the core
are denoted as the black bold solid line (blue thin solid line) for �Kn = 300 MeV (400 MeV).
For comparison, the branch with pure Y-mixed matter (setting θ = 0), which is equal to the
one in the ME scheme, is also shown by the green dotted line. The green and yellow bands
indicate the restricted regions of the observed masses of PSR J0740+6620 (2.01 M� ≤ M ≤
2.15 M�) [36] and PSR J1810+1744 (2.09 M� ≤ M ≤ 2.17 M�) [37], respectively. One can

24/37

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/9/093D

03/6677428 by D
ESY-Zentralbibliothek user on 12 O

ctober 2022



PTEP 2022, 093D03 T. Muto et al.

Fig. 8. The gravitational mass M to radius R relations obtained from the minimal RMF (MRMF) +
NLSI (Uσ ) model (this work). The branches including the (Y + K) phase in the core are denoted as the
black bold solid line (blue thin solid lines) for �Kn = 300 MeV (400 MeV). The branch point at which
kaon condensates appear in the center of the star is indicated by the filled circle [ �] (open circle [◦]) in
the case of �Kn = 300 MeV (400 MeV). The branch point at which hyperons (�) appear is indicated by
the filled triangle [�]. For comparison, the branch with pure Y-mixed matter, where kaon condensates
are switched off by setting θ = 0, is also shown by the green dotted line. For reference, the M–R rela-
tions obtained by taking into account the universal three-body repulsion (UTBR) and the three-nucleon
attraction (TNA) in the MRMF instead of the Uσ (abbreviated as MRMF+UTBR+TNA), taken from
Ref. [68], are shown for the slope L of the symmetry energy, L = (60, 65, 70) MeV. The meanings of
the curves and symbols ( �, ◦, �) are the same as those for the (MRMF+NLSI) model. In addition, the
maximum mass point for each branch including the (Y + K) phase is indicated by the open square [�],
and the cross point [×] corresponds to the causal limit at which the sound velocity exceeds the speed of
light in the case of the (MRMF+UTBR+TNA) model.

see that the maximum gravitational mass including the (Y + K) phase is (1.44–1.49) M� for
�Kn = (300−400) MeV, and is far below the observational masses of recent massive neutron
stars [36,37]. Further, the branches including the (Y + K) phase in the center of the star are un-
stable, reflecting the large softening of the EOS in the presence of kaon condensates as shown
in Fig. 7.

In Fig. 6, the energy contribution from the NLSI term, E(NLSI) (= Uσ /ρB), is also shown for
�Kn = 300 MeV and 400 MeV by the bold and thin red dashed lines, respectively. The E(NLSI)
in the case of the pure hyperon-mixed matter (i.e. in the case of the ME scheme) is also shown
in the lower green dotted line. E(NLSI), which should be relevant to the properties of the SNM
around ρ0, increases with density up to ρB ∼ 0.6 fm−3. In the case of the (Y + K) phase, how-
ever, the energy contribution from the NLSI term turns to decreasing beyond the density ρB =
(0.6−0.7) fm−3, and the total energy per baryon is dominated by the two-body B–B interaction.
In the case of pure hyperon-mixed matter, E(NLSI) becomes saturated around ρB ∼ 1 fm−3 and
has a minor contribution to the total energy per baryon. Thus, in the context of stiffening the
EOS at high densities, the NLSI term is not relevant to the origin of the extra repulsive energy at
high densities leading to the solution to the hyperon puzzle. Since the validity of applying such
NLSI terms to high densities cannot be assured beyond the phenomenological introduction
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Fig. 9. The particle fractions in the (Y + K) phase as functions of baryon number density ρB for �Kn =
300 MeV. The total strangeness fraction is defined by (ρK− + ρ� + 2ρ	− )/ρB.

around ρ0 for the properties of SNM, the many-body effects appearing in the kaon self-energy
in the ME scheme should not be considered as physically solid.

9. Properties of the (Y + K) phase in the CI scheme
Here we summarize the main properties of the (Y + K) phase, namely the density dependence
of particle fractions and hyperon potentials in the CI scheme with the (MRMF+NLSI) model,
and the self-suppression effect of the s-wave K–B attraction unique to the case of kaon con-
densation in the RMF framework [10]. These features may be common features in the presence
of kaon condensates in the relativistic models.

9.1 Particle fractions
The particle fractions ρa/ρB (a = p, n, �, 	−, K−, e−) in the (Y + K) phase are shown as
functions of ρB for �Kn = 300 MeV and 400 MeV in Figs. 9 and 10, respectively. For reference,
those for the pure hyperon-mixed matter (i.e. in the case of the ME scheme) are shown in Fig. 4.

One can see some common behaviors with respect to the density dependence of particle frac-
tions for both cases, �Kn = 300 MeV and 400 MeV. (I) The fraction of � hyperons mono-
tonically increases with density for both cases until kaon condensates appear at ρc

B(K−). Just
after the onset of kaon condensation, the growth rate of the � fraction with density is slightly
suppressed, but it soon recovers to a monotonic increase with density. On the other hand, 	−

hyperons appear just before the onset of kaon condensation [ρc
B(	−) (= 0.508 fm−3) < ρc

B(K−)
(= 0.548 fm−3)] for �Kn = 300 MeV, but the fraction is tiny, ρ	−/ρB � 5 × 10−3, around the
density ρB = ρc

B(	−). For �Kn = 400 MeV, the onset of kaon condensation precedes the 	−-
mixing. In both cases of �Kn, the 	−-mixing ratio vanishes once kaon condensates appear until
the 	− appears again at higher densities ρB ≥ ρc

B(	− in K−), where ρc
B(	− in K−) is the onset

density of the 	− hyperons in the presence of kaon condensates [ρc
B(	− in K−) = 1.03 fm−3 (=

6.73ρ0) for �Kn = 300 MeV and ρc
B(	− in K−) = 0.920 fm−3 (= 6.01ρ0) for �Kn = 400 MeV].

Once kaon condensates appear, they develop together with � hyperons as ρB increases. How-
ever, both kaon condensates and the �-mixing ratio gradually decrease as the 	−- mixing starts
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Fig. 10. As Fig. 9, but for �Kn = 400 MeV.

in the fully developed (Y + K) phase at ρc
B(	− in K−), and further as the fraction of 	− hy-

perons increases with density. Here one can see a competition between 	− hyperons and kaon
condensates. This competitive effect results model-independently from the fact that the number
density of kaon condensates, ρK− [Eq. (23)], decreases as the number density of 	− hyperons
increases due to the negative factor Qb

V (= −1 for 	− hyperons) in the function X0 [Eq. (12)],
which is uniquely assigned as a consequence of chiral symmetry.

(II) The electron fraction is suppressed after the appearance of � hyperons or kaon conden-
sates. In particular, the negative charge carried by electrons is taken over by that of kaon con-
densates avoiding the cost of degenerate energy of electrons and due to the K−–B attractive in-
teraction. After the onset of kaon condensation, the charge chemical potential μ [= (3π2ρe)1/3]
decreases as density increases and has a value of μ � O(mπ ). At density ρB � 1.22 fm−3 (=
7.97ρ0) for �Kn = 300 MeV [ρB � 0.960 fm−3 (= 6.27ρ0) for �Kn = 400 MeV], μ becomes neg-
ative, where positrons (e+) are present in place of electrons.

(III) The proton fraction increases along with the growth of kaon condensates, so that the
negative charge carried by kaon condensates is compensated by the positive charge of pro-
tons keeping the charge neutrality. The neutron fraction decreases with density following the
appearance of protons and hyperons due to baryon number conservation.

Here, the density dependence of the � and 	−-mixing is reconsidered in terms of the hyperon
potentials V� and V	− . The potential V� is shown as a function of ρB by the solid line, together
with the value of (μn − M�) by the long-dashed line for �Kn = 300 MeV in Fig. 11 and for
�Kn = 400 MeV in Fig. 12. For reference, V� and the value of (μn − M�) for pure hyperonic
matter (set to be θ = 0) are shown by the dotted line and the short-dashed line, respectively.
The �-mixing condition is given by μn − M� > V�. The filled circle (crossing point of the
solid line and the long-dashed line) corresponds to the onset density of the �-mixing, ρc

B(�),
which is lower than the onset density of kaon condensation, ρc

B(K−) (indicated by the vertical
dotted line). In the vicinity of ρc

B(K−), both V� and (μn − M�) decrease with density as kaon
condensation develops due to the s-wave K–� and K–n attractive interactions [the last terms
on the right-hand sides of Eqs. (33) and (32)]. The reduction of V� is more remarkable than
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Fig. 11. The � potential V� and (μn − M�) as functions of baryon number density ρB by the solid line
and the long-dashed line, respectively, for �Kn = 300 MeV. For reference, those for pure hyperon-mixed
matter (set to be θ = 0) are shown by the dotted line and the short-dashed line, respectively. The vertical
dotted line indicates the onset density for kaon condensation, ρc

B(K−). See the text for details.

Fig. 12. As Fig. 11, but for �Kn = 400 MeV.

that of μn − M�, so that the �-mixing condition is always met for the relevant densities. Thus,
beyond the density ρc

B(�), � hyperons continue to be mixed before and after the onset of kaon
condensation.

V	− is shown as a function of ρB by the solid line, together with the value of (μn − M	− + μe)
by the long-dashed line, for �Kn = 300 MeV in Fig. 13 and for �Kn = 400 MeV in Fig. 14. V	−

and the value of (μn − M	− + μ) for pure hyperon-mixed matter are also shown by the dotted
line and the short-dashed line, respectively. Beyond the onset density ρc

B(K−), both V	− and μn

decrease with density as kaon condensation develops, since the s-wave K–	− and K–n interac-
tions work attractively [see Eqs. (32) and (33).] However, owing to the decrease in the electron
chemical potential μe (= μ) with density, the term (μn − M	− + μe) decreases more rapidly
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Fig. 13. The 	− potential V	− and (μn − M	− + μe) as functions of baryon number density ρB by
the solid line and the long-dashed line, respectively, for �Kn = 300 MeV. For reference, those for pure
hyperon-mixed matter (set to be θ = 0) are shown by the dotted line and the short-dashed line, respec-
tively. The vertical dotted line indicates the onset density for kaon condensation, ρc

B(K−). See the text
for details.

Fig. 14. As Fig. 13, but for �Kn = 400 MeV.

than V	− . Therefore, the condition for 	−-mixing, μn − M	− + μe > V	− , is not satisfied, i.e.
μe is not large enough to assist the 	−-mixing. For �Kn = 300 MeV, although the 	−-mixing
starts before kaon condensation sets in, it soon vanishes just after the onset of kaon condensa-
tion. At high densities ρB � 1.0 fm−3, μn increases with density due to the dominant two-body
repulsive interaction, and the condition for 	−-mixing is satisfied again at ρB ≥ ρc

B(	− in K−)
= 1.03 fm−3 (the second crossing point of the solid line and the long-dashed line in Fig. 13). For
�Kn = 400 MeV, the onset of kaon condensation precedes the 	−-mixing, and the 	−-mixing
does not occur until ρB exceeds ρc

B(	− in K−) (= 0.92 fm−3; Fig. 14).
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Fig. 15. The density dependence of the effective kaon mass m∗
K given by Eq. (29) and X0 by Eq. (12) in

the (Y + K) phase (solid lines) and in pure hyperon-mixed matter with θ set to be zero (dashed lines).
In the case of m∗

K and X0 in the (Y + K) phase, the bold lines are for �Kn = 300 MeV and the thin lines
for �Kn = 400 MeV. In pure hyperonic matter, X0, responsible for the s-wave K–B vector attraction, does
not depend on �Kn, so only the thin dashed line is depicted.

It is to be noted that �− hyperons do not appear in the (Y + K) phase over the relevant
densities, as is the case with pure hyperonic matter (Fig. 4). The total strangeness fraction,
(ρK− + ρ� + 2ρ	− )/ρB, increases steadily with ρB in accordance with the growth of hyperon-
mixing and kaon condensates, and it amounts to 0.9 at ρB ∼ 1.5 fm−3 for both cases of �Kn =
300 MeV and 400 MeV.

9.2 Self-suppression mechanisms
Here we discuss the relativistic effects of kaon condensates on the s-wave K–B scalar and vec-
tor interactions. In Fig. 15, the density dependence of the effective kaon mass m∗

K given by
Eq. (29) and that of X0 given by Eq. (12) are shown by the solid lines for the (Y + K) phase. For
comparison, those for the pure hyperon-mixed matter with θ set to be zero are shown by the
dashed lines. In the case of m∗

K and X0 in the (Y + K) phase, bold lines are for �Kn = 300 MeV
and thin lines for �Kn = 400 MeV. In pure hyperonic matter, X0, responsible for the s-wave
K–B vector attraction, does not depend on �Kn, so only the thin dashed line is depicted. The
difference of m∗

K between the solid and dashed lines stems from the suppression of the scalar
density due to the appearance of kaon condensates. Thus, one can see that the self-suppression
mechanism of the s-wave K–B scalar interaction in the RMF framework becomes remarkable
in the presence of kaon condensates [10]: as kaon condensation develops with ρB, the effective
baryon mass M̃∗

b decreases following Eq. (13). The decrease in M̃∗
b leads to saturation of the

scalar density for baryons, ρs
b, at higher densities, which, in turn, results in the suppression of

the K–B scalar attraction in the presence of kaon condensates through the term proportional
to ρs

b in m∗
K [Eq. (29)].

On the other hand, X0, representing the K–B vector interaction, is enhanced by the appear-
ance of kaon condensates, as seen in Fig. 15. The enhancement of X0 results mainly from the
increase in proton density ρp in response to the growth of kaon condensates.
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In Ref. [31], the EOS of the (Y + K) phase is considered based on the effective chiral La-
grangian with the nonrelativistic framework for baryons by adding the schematic baryon po-
tential Vb (b = p, n, �, �−, 	−) parameterized in terms of the number densities of baryons.
It has been shown that the energy gain due to the combined effects of both kaon condensates
and the hyperon-mixing is so strong that a local minimum of the energy with respect to ρB

appears, leading to self-bound objects with (Y + K) phase for �Kn = 300 MeV [31]. However,
in the present result based on the RMF with the self-contained baryon potential Vb [Eq. (33)],
the s-wave K–B scalar interaction is suppressed at high densities due to the self-suppression
mechanism as a relativistic effect. As a result, the energy per baryon monotonically increases
with ρB (Fig. 6), and the self-bound star formed of the (Y + K) phase is unlikely to exist.

Although the s-wave K–B scalar attraction is suppressed through the self-suppression mecha-
nism within the relativistic framework, such suppression is not enough to make the EOS stiff so
as to be consistent with the recent observations of massive neutron stars [32–37], as stated with
reference to Fig. 8 in the case of the MRMF+NLSI (Uσ ) model. The previous result based on
the MRMF+NLSI (Uσ ) model with coupling constants similar to those in the present paper
also shows that the maximum gravitational mass is (1.5–1.6) M� for �Kn = (300−400) MeV
[106]. In order to construct a realistic EOS including the (Y + K) phase that is compatible with
the recent observations of massive neutron stars, some mechanisms to circumvent both the
large attraction due to the s-wave K–B interaction and the energy decrease due to the hyperon-
mixing effect are still necessary.

10. Circumventing the problems caused by the NLSI term
With regard to repulsive effects for baryons, the three-body NNN, YNN, YYN, YYY forces
have been introduced as the extra repulsion in the case of hyperon-mixed matter [26]. It has
been shown that the universal three-body repulsion, derived based on the string junction model
by Tamagaki (abbreviated here as UTBR) [107], prevents the EOS from “dramatic softening”
due to the hyperon-mixing, and that massive neutron stars as high as 2 M� can be obtained
[107,108]. Recently, we introduced the density-dependent effective two-body potentials for the
UTBR based on the string-junction model 2 in Ref. [107] together with the phenomenological
three-nucleon attraction (TNA), in addition to the MRMF, where baryon interactions are sim-
ply composed of the two-body B–B interaction mediated by meson exchange, without recourse
to the nonlinear self-interacting σ , ω, or ω–ρ meson-coupling potentials [68]. In this model
(MRMF+UTBR+TNA), the UTBR is supposed to be relevant to the short-range part of the
B–B interaction, where the quark structure of baryon reveals itself. Therefore, UTBR has been
phenomenologically introduced beyond the RMF picture [106], while baryons can be viewd
as point-like within the RMF in the intermediate and long-range part of the interaction. This
baryon interaction model can describe the saturation properties of the SNM, following each
energy contribution from three-nucleon repulsion and attraction, and two-body parts similar
to those obtained by conventional nuclear matter theory [103]. It is also emphasized that, once
the NLSI term is replaced by the UTBR+TNA, the many-body effects arising from the NLSI
term in the ME scheme are removed, and that the kaon self-energy in hyperon-mixed matter (θ
→ 0) with such an (MRMF+UTBR+TNA) model is formally equivalent between the CI and
ME schemes for the kaon–baryon vertices, even though, in the presence of kaon condensates,
there still remains many-body effect (ii) only in the ME scheme [the fourth (second) term on the
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right-hand side of Eq. (48) (Eq. (50))] coming from the kaon source terms in the equations of
motion for the meson mean fields.

With this baryon interaction model (MRMF+UTBR+TNA) coupled with the effective chi-
ral Lagrangian, we considered the (Y + K) phase in Ref. [68]. It has been shown that soft-
ening of the equation of state stemming from both kaon condensation and mixing of hyper-
ons is compensated with the repulsive effect of the UTBR and the relativistic effect for two-
body B–B interaction. It has also been shown that the EOS and the resulting mass and radius
of compact stars accompanying the (Y + K) phase are consistent with recent observations
of massive neutron stars [36,37,50–53]. In Fig. 8, the M–R relations obtained by using the
(MRMF+UTBR+TNA) model are shown for the slope L [≡ 3ρ0 (∂S/∂ρB)ρB=ρ0,x=1/2] of the
symmetry energy S(ρB), L = (60, 65, 70) MeV. The result is taken from Ref. [68]. It should
be noted that the unstable region, c2

s = dP/dE < 0, which appears in the MRMF+NLSI (Uσ )
model, is washed out in the realistic calculation with the MRMF+UTBR+TNA model by
taking into account the relevant three-body interactions [68].

11. Summary and concluding remarks
We have compared two coupling schemes, the contact interaction (CI) and meson-exchange
(ME) schemes, concerning the K–B and K–K interactions in the effective chiral Lagrangian.
We have considered how the onset density of kaon condensation realized from hyperon-mixed
matter and the EOS of the (Y + K) phase are affected in these two schemes. The nonlinear self-
interacting (NLSI) σ -meson potential Uσ (σ ) has been introduced in both schemes to reduce the
incompressibility at saturation density of symmetric nuclear matter. In the ME scheme, there
appear many-body effects in the K–B interaction through the kaon–multi-σ -meson coupling
stemming from the derivative term, dUσ /dσ . The kaon–multi-σ -meson coupling term has a
sizable repulsive contribution to the kaon energy ωK. Hence, the onset condition of kaon con-
densation, ωK = μ, is not fulfilled over the relevant baryon densities in the case of the ME
scheme unless �Kn is taken to be extraordinarily large. In general, the NLSI terms bring about
extra terms for the kaon self-energy in the ME scheme beyond the scope of chiral symmetry.

On the other hand, the K–B interaction for the kaon self-energy in the CI scheme is specified
by chiral symmetry and free from such ambiguity of many-body effects brought about by the
NLSI terms. In this scheme, the onset of kaon condensation occurs at a density ρc

B(K−) =
(3–4)ρ0 for the standard values of �Kn = (300–400) MeV.

In the context of stiffening of the EOS at high densities, the NLSI term is not relevant as the
origin of the extra repulsive energy at high densities leading to a solution to the “hyperon puz-
zle,” since the contribution to the repulsive energy gradually decreases with increase in density.
Actually, in the case of the CI scheme, the EOS for the (Y + K) phase is considerably softened
even with the NLSI term after the appearance of kaon condensates in hyperon-mixed matter.

As stated in Sect. 10, the (MRMF+UTBR+TNA) model [68] reveals a satisfactory picture
for saturation of SNM in view of the standard variational nuclear matter theory with the phe-
nomenological three-nucleon forces (TNR and TNA) [103,104]. Moreover, the UTBR, intro-
duced as the effective two-body baryon potential in the model, has a decisive contribution to
stiffening of the EOS with the (Y + K) phase at high densities as a solution to the “hyperon
puzzle.” In these respects, the (MRMF+UTBR+TNA) model is considered to be more natu-
ral and plausible than the (MRMF+NLSI) model elucidated in the present paper. As a con-
sequence, the many-body effects (i) originating from the NLSI terms and the resulting extra
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terms which make the difference between the CI and ME schemes in the (MRMF+NLSI)
model should not be regarded as solid and universal. The results on the comparison of the
(MRMF+UTBR+TNA) model and the (MRMF+NLSI) model with specific NLSI terms
such as Uσ , quartic terms of the vector ω meson, and ω–ρ meson coupling terms, etc. will
be reported in detail elsewhere [109].

In this paper we have concentrated specifically on the NLSI terms in the RMF leading to the
difference in kaon dynamics in dense matter between the CI and ME schemes. As another pre-
scription for describing nuclear matter and finite nuclei, density dependence for meson–baryon
coupling constants has been taken into account within the RMF framework to be consistent
with the result of the self-energy of the Dirac–Brueckner calculation of nuclear matter [110].
Some authors have considered kaon condensation in the ME scheme with density-dependent
meson–baryon coupling strengths in place of the NLSI terms [44–46]. In this approach, the
formal expression of the kaon self-energy is essentially the same as in the CI scheme, while
density dependence of the meson–baryon coupling strengths lead to an extra nonlinear density
dependence of the kaon self-energy in addition to the density dependence of the baryon scalar
densities.

As another possible repulsion between baryons, the multi-pomeron exchange potential has
been considered as an origin of many-body forces [111]. As another example of many-body
forces, the BMM, MMM-type diagrams, which follow from the specific counting rule of the
meson–baryon diagrams, have been considered within the RMF [112].

Anti-symmetrization effects in the Hartree–Fock approximation for baryons is another issue
to be elucidated for construction of a realistic EOS of the (Y + K) phase. In Refs. [113,114] the
tensor coupling of vector mesons has been introduced in the RMF for the EOS of hyperon-
mixed matter. It has been pointed out that the Fock contribution hinders the appearance of
hyperons at middle and high densities, and also suppression of hyperon mixing at high densities.
For the (Y + K) phase, the Fock contribution may have a minor effect on the population of
kaon condensates, so that kaon condensation may be dominant over hyperons at high densities.

Throughout this paper, hadrons are considered as point-like particles even at high densities,
where they are supposed to overlap with each other, and quark degrees of freedom should be
explicitly considered. In Refs. [115–117], the hadron phase (hyperon-mixed matter) was con-
nected smoothly to the quark phase in a hadron–quark crossover picture. The resulting EOS
has been shown to be stiff enough to have massive stars as much as two solar masses. In this
context, kaon condensation may play an important role in both the hadron and quark phases.
In particular, kaonic modes may be condensed in the color–flavor locked phase [118–122]. It
will be interesting to clarify the relationship between kaon condensation in the hadronic phase
and that in the quark phase, and to construct a stiff EOS including the hadron–quark crossover,
which may be consistent with recent observations of massive neutron stars.
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Appendix A
A1. Estimation of the KN sigma term
We estimate the allowable values of the Kn sigma term, �Kn. The “K-baryon sigma term” is
defined by

�Kb = 1
2

(mu + ms)〈b|(ūu + s̄s)|b〉, (A1)

where 〈b|q̄q|b〉 is the quark condensate in the baryon species b (b = p, n, �, �−, 	− in this
paper).

In the chiral perturbation theory, one obtains the q̄q condensates from Eq. (9) using the re-
lations 〈b|q̄q|b〉=∂Mb/∂mq:

〈p|ūu|p〉 = 〈n|d̄d |n〉 = −2(a1 + a3),

〈p|d̄d |p〉 = 〈n|ūu|n〉 = −2a3,

〈p|s̄s|p〉 = 〈n|s̄s|n〉 = −2(a2 + a3). (A2)

Substituting Eq. (A2) into Eq. (A1), one obtains Eq. (10). For instance, the K–neutron σ term
is given as �Kn = −(a2 + 2a3)(mu + ms).

The quark masses mi are chosen to be mu = 6 MeV, md = 12 MeV, and ms = 240 MeV, accord-
ing to Ref. [1]. Furthermore, the parameters a1 and a2 are fixed to be a1 = −0.28, a2 = 0.56 so as
to reproduce the empirical octet baryon mass splittings [1]. We fix the remaining parameter a3

with reference to the standard value of the πN sigma term, �πN = 45 MeV, which is extracted
from the π–N scattering data [123]. Using Eq. (A2), �πN is written as

�πN = 1
2

(mu + md )〈N|(ūu + d̄d )|N〉 = −(a1 + 2a3)(mu + md ), (A3)

from which one obtains a3 = −1.1. With this value, one obtains �Kn = 403 MeV and
y ≡ 2〈N|s̄s|N〉/〈N|(ūu + d̄d )|N〉 = 2(a2 + a3)/(a1 + 2a3) = 0.44, which implies large s̄s con-
densate in the nucleon.

On the other hand, recent lattice QCD results suggest small s̄s condensate, y � 0 [124–126], for
which the expressions in Eq. (A2) followed by Eq. (9) based on lowest-order chiral perturbation
theory cannot be applied. In this case, assuming 〈N|ūu|N〉 = 〈N|d̄d |N〉 and 〈N|s̄s|N〉 = 0, one
obtains 〈N|ūu|N〉 = �πN/(mu + md) = 2.5 with �πN = 45 MeV, and the lower value for �KN is
estimated as �KN = 308 MeV.

Throughout this paper we consider the two cases of �Kn = 300 MeV and 400 MeV as the
standard values, considering the uncertainty of the s̄s condensate in the nucleon.

A2. K− optical potential
The strengh of the in-medium K–N attraction is simulated by the the K− optical potential UK

at ρB = ρ0 in symmetric nuclear matter. In the CI scheme, it is defined using the K− self-energy
[Eq. (56)]

UK (CI) ≡ �K (CI)/(2ωK (ρB))|ρp=ρn=ρ0/2 = − 1
f 2

(
ρs

0
�Kn + �K p

4ωK (ρ0)
+ 3

8
ρ0

)
(A4)
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with the nuclear scalar density ρs
0 at ρB = ρ0 in symmetric nuclear matter. In the ME scheme,

one obtains, from Eqs. (57) and (A4),

UK (ME) ≡ �K (ME)/(2ωK (ρB))|ρB=ρ0 � −(gσK〈σ 〉0 + gωK〈ω0〉0)

= UK (CI) + gσK

m2
σ

(
dUσ

dσ

)
σ=〈σ 〉0

, (A5)

where the approximation ωK(ρ0) ∼ mK has been used.
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