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1. INTRODUCTION

An extremely interesting and promising develop-
ment of the theory of strong interactions has recently
been proposed on the basis of a concept regarding
moving poles of the scattering amplitudes as angular
momentum functions, i.e., the concept of Regge-
pole ) trajectories.

The attractiveness of this concept lies, first of all,
in the fact that the Regge poles connect the spectra
of particles and resonances to the asymptotic be-
haviour of high energy scattering. Besides, the
asymptotic behaviour of the scattering, particularly
in the region of small angles, proves to be compara-
tively simple and universal, though lacking any
simple classical description. From the point of view of
the Regge-pole concept, the pole trajectories, not the
elementary particles, should become the main object
of investigation in the theory of strong interactions.

The boson Regge-pole trajectories, particularly those
of a pole having the quantum numbers of the vacuum

(namely the Pomeranchuk trajectories), have been

discussed in some detail %> 3% %,

Here we are going to show that the Regge-pole
trajectories describing the fermion family (having a
direct physical meaning at half-integer values of the
angular momentum) possess a number of properties
substantially different from those previously discussed
and shown by non-relativistic quantum mechanics.
Namely, we shall show that the poles of the scattering
amplitudes f% (1) and fZ(u) (referring to states with
angular momentum ; and parity (—1)’*%) must
coincide when the squared energy in the C.M. system u
tends to zero, and become complex conjugate for
u<0. This leads to an absolutely characteristic
behaviour of meson-nucleon elastic scattering am-
plitudes in the region of angles close to 180° (for-
mulae (9)-(11)).

The fact that the poles of f7(x) and fJ(u) should
coincide at « = 0 can be understood almost without
calculations. Let us suppose that a pole of one of
the amplitudes at ¥ = 0 has j = 15; then there would



548 Session H 1

be a corresponding particle with zero mass and
l45 spin, i.e., a “neutrino”. A contribution to the
meson-nucleon scattering amplitude due to such a
particle is represented by the Feynman graph shown
below (Fig. 1):

\
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Fig. 1

With a non-gradient coupling this contribution is

given by — ! ~ OF Y5 : —iys depending on the parity
p+k p+k

of the “ neutrino ™ with respect to the nucleon and

the meson. In the former case there must be a pole

in the amplitude f7(u) (a Sy,-state), in the latter case

the amplitude f(u) must have a pole (a P\ ,,-state).

: I I , o
However, since iys;——=iys = ——= the interaction in

p+k p+k

both cases is the same; consequently there must be
poles in both the amplitudes 7 () and f{(«). Thereby,
a well-known circumstance is manifested, namely,
because of ys-invariance of the Dirac equation for a
zero mass particle, the neutrino parity concept has
no meaning even in a theory with parity conservation.
Since poles of fi(u) and f?(u) become complex
conjugate for u<0, a close connection between these
amplitudes is demonstrated. This connection is due
to the kinematic singularity \/u occurring in the spinor
amplitudes. ./u enters in the expressions for f1(u)
in such a manner that it is possible to introduce the
function f7(,/u) so that *

Sy =), fiwy=r(-Vu) W)

each pole of //(\/u) in the variable j = j(,/u) appearing
in both amplitudes, and having simple properties as
a function of \/u.

Due to the explicit dependence of the equation
determining the trajectory of the pole on \/ﬁ, the

momentum of the state will necessarily become complex
when u is negative.

Thus, from purely kinematic considerations we
conclude that there exist no fermion Regge-poles
corresponding to states with real momenta and
imaginary masses.

There arises a question whether, in the boson case,
the momentum of states with imaginary mass must
always be complex in spite of the absence of any
kinematical reasons. We have no answer to this
question for the present time. Let us only note
that if such behaviour is supposed to be characteristic
of the Pomeranchuk trajectory the partial wave with
[ =0 will have, generally speaking, complex non-
physical poles as a function of energy.

2. FERMION REGGE-POLES CLOSE TO u=10

To prove the statements made let us consider meson-
nucleon scattering. Regge-poles in the amplitudes
of this process have been considered in a number of
papers > * % where however the above situation has
not been remarked. The scattering amplitude in a
state of definite isotopic spin has the following form

F = a(u, 1)+ b(u, 4k +k) (2)

u = (p1k)?*is the square of the energy in the C.M.
system, —t = —(p’'—p)* is the square of the mo-
mentum transfer.

Considering the matrix elements {A'|F |/l> between
the states of nucleons with definite helicities A and
A" = either +4 or —/, it is easy to obtain the con-
nection between a (u, 1), b (u, t) and the partial am-
plitudes ¢1.,(u) ©.

A(u, t) = 2ma(u, 1)+ (u* —m* — 1*)b(u, 1)
= 25 L[ P} ()~ P y(2)]
J
B(u, 1) = (u*+m* — 1 *)a(u, 1)+ (> — m*+ p>)mb(u, t)
= 2V/; Z 9/”— /1).(“)[’)} (@) +P; L(z)] )
J

Here z is the cosine of the scattering angle:

z = 14+ 2ut[u? —2u(m®-+- 1) +(m* — 1)1 L

(®) I am indebted to V. M. Shekhter who has brought my attention to this point. The detailed proof of this formula and its applica-

tion will be discussed elsewhere.
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The “spiral 7 amplitudes ¢7.,(u) are connected to
the amplitudes f4(u) with definite angular momentum
and parity through the following relations

O, 1) =3[ f1 ) £ (u)] (4)

If we use the dispersion relations for A(u, f) and B(u, t)
in the momentum transfer ¢ at fixed u, by analogy
with what was done in >7 we can introduce the
analytic functions of j, ¢;i(u), having a decreasing
asymptotic behaviour for j—oo, satisfying the unitarity
condition, and coinciding with the physical partial waves
at even (+) and odd (—) j respectively. If, with the
help of (3), we express ¢ ,(u) through A(u, f) and
B(u, t), by continuing the obtained expressions to the
point ¥ =0 and taking into consideration that
A(u, t) and B(u, t) have no singularities at u = 0,
we shall be led to the almost obvious conclusion
(from the stand-point of (3)) that for any j, ¢_7,(u),
tends to infinity or to zero at u—0, while ¢, (1) remains
finite. This is possible only under the condition
that the singularities of f(u) as functions of j coincide
at u = 0. This statement holds irrespectively of the
character of the singularities of ¢}, .

If one makes the conjecture that in any case, the
nearest singularities on the side of large j are poles,
one can trace their trajectories in more detail. In
order to do that let us consider the asymptotic behav-
iour of A(u, 1), B(u, 1) at u>0 and t—>—oo, i.e. s—>oc0:

s=(p—k')?, SH14u=2m*+2% .
By passing in the usual manner from the sum to the
integral, assuming the poles at u>0 to be on the real
axis, and taking into account only the nearest poles
in the amplitudes ¢ we obtain

AF(uys) = 5[ TR (=9 M —
cos 7j

)

B*(u,s) =ur? u[* F(—s) __]

cos j’

Here j=j(u), j'=j'(u) are the positions of the poles
of ¢’ ,,(u) and ¢ ,,(u), t;, are the residues of the
partial-wave amplitudes multiplied by

’“\/2 u[u —2u(m®+ )+ (m* =)’

[t is easy to convince oneself 2 that the absorptive
parts 4,(u, s) and B;(u, s) are equal:
Af(u,s) = +15u)s’ %
+ faana 3 1 (6)
Bi(u,s) = +~utt,,(u)s’ ~*

If we do not assume that there is a degeneration over
parity, the poles #4(u) and f%(u) do not coincide for
u>0. Therefore, in the asymptotic behaviour of
A and B the contribution is given only by the pole
of one of the amplitudes, the one having greater ; at

given u. In this case, according to (4)
T = £Tos J= (7
and consequently
Bli(u,s) = i\/;A,i(u,s) (8)

At u = 0 the equality (8) makes no sense at all, since
the poles of f4(u) and f%(u) coincide. If we consider
that the poles of f4(u) and f7(u) remain on the real
axis, for u<0, as before, one of the poles will again
become dominant and the expression (8) will be
re-established. However, in this case because \/ﬂ is
imaginary, (8) will be in contradiction with the reality
of the functions A,(u, s) and B,(u, s) for u<(m-+p)>.

If the poles f4(u) and f7(u) retreat to the complex
plane but do not remain complex conjugate, we shall
again come to a contradiction with the reality of
Ay and By .

Thus, we come to the conclusion that the poles of
the amplitude f4(u) and fZ(u) should be complex
conjugate for u<0.

By the same reason the residues at the poles should
also be complex conjugate.

3. THE ASYMPTOTIC BEHAVIOUR OF BACKWARD
SCATTERING

Denoting the residues of £/ (u) and £ multiplied by

2’“\/2 u[u —2u(m® + B+ (m* =2

(J +2)
by pet® we obtain
“Feos (j'E+¢)
-l_-\/:pi(u).s

+ _ + J’
Al (“a S) - _’tﬂ (M)S (9)

Bi(u,s) = “Esin(jE+¢)
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where & =Ins; j' =j'(u), j” = j"(u) are the real and
imaginary parts of the function j = j(u) determining
the position of the pole. The formulae (9) go into (6)
for u positive so that A; and B; have no singularities
at u =0, if j'(u) = o/ —u and P(u) = ,B\/j; for
small u, where o and B have no singularity at v = 0.

The real parts of the amplitudes 4 and B at u<0
have the form

ReA* =, p*(u)cos(j'E+dT B’ ~*
ReB* = aipi(u)\/’:sin(j”cf-{—d)?ﬁ)s’”_'}

chnj” Fsinnj’ sh nj ,
ot = M AN g Y (10)
~ chnj”+sinmj’

The expressions (9) and (10) define the asymptotic
behaviour of meson-nucleon scattering in the channel
where s is the energy and in the region of scattering
angles close to 180°. Analogous formulae hold for
the asymptotic behaviour of the process of a two-
meson annihilation (where ¢ is the energy).

The differential cross-section for the elastic scatter-
ing in the region of the angles close to 180° takes the
form

fl_az p’z(u){l + \/(1 —9)(1=6%)cos 2(j"E + (/)'(u))}

dQ
5 \2 -1
X|— 1
<m,u> (i)

oy sinfi

1+o%

0 =

dm*u(m® — 1)+ u(u+m* — 1) u—3m* — )
2mP[u? + (m? = 1]~ u[(u—m? — p?)* +4m?]

Y

As it was pointed out to the author by I. Ya. Pome-
ranchuk, the asymptotic behaviour (9)-(11) is due to

an effective radius proportional to Ins if j”(u)N\/ —u.
According to Froissart ® this is the maximum possible
increase of the effective radius of the interaction.
On the other hand, the increase of the effective radius
of interaction accounting for the diffraction scattering
is proportional to In%s 2.

It should be noted that since the backward scattering
amplitude does not increase with increasing energy,
as is the case in forward scattering, the poles determin-
ing the asymptotic behaviour may, at small «, be in
the region of Re j<0. If the poles are in the region

Re j <0, the asymptotic behaviour may not be deter-
mined by them both because of the presence of the
singularities of other types and because of the fact that
for Rej<0, the Legendre functions again become
increasing with increasing z, and (9)-(11), generally
speaking, do not follow from (3). To obtain these
formulae it is convenient in this case to proceed by
analogy with what was done by Mandelstam * for
spinless particles.

The Mandelstam method consists of the following:
by passing from the sum (3) to the integral and deform-
ing the integration contour it is necessary to replace
Pj.,(—z) according to the formula

_P}t;-(—z)

1 ! /
cos ) = .[jS—‘i(_z)—Q—(ji%)—l(—z)]

nsin mj
(12)

The behaviour of ¢?,, for large j allows one, by calcul-
ating the contribution from the first term, to close the
integration contour in the right-hand plane and to
reduce it to the sum of the residues at the poles 1/sin 7j.
The second term for large z behaves like z/** ™!, and
therefore in the calculation of its contribution, it is
helpful to deform the integration contour to the left-
hand plane. Then it runs against the poles 1/sin 7j.
As a result, if the contour is deformed sufficiently
to the left, the amplitudes 4 and B will, besides
the conventional contribution from the poles of ¢?.,,
contain some additional terms of the form

N
L [#340)+610;-5(~2) (13)
=
which at large z behave like z~©®/**"_ The quantities
% ,+ ¢, 5 contained in (13) may be equal to zero,
the asymptotic behaviour being determined only by
the poles of ¢4, .

It may be shown that the amplitudes ¢/, in the
case of the scattering of a spin l4-particle on an
external field will satisfy the condition ¢%., = — ¢}/ .
We do not know whether this is valid in a real case.
[t may be only stated that if the partial waves have no
singularities except the poles, do/dQ at high energies
either has the form (11), or the following one

do

1

where n is an integer number, or otherwise equals zero.
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It should be noted that formulae (3) and (9)-(11)
are, generally speaking, inapplicable in the region
of such a small u that us/(m*—pu*)* <1, since in this
region z<1, and we have no reasons for confining
ourselves to only one pole.

ERRATA ADDED IN PROOF
(received on October 1st 1962)

When calculating the elastic scattering differential
cross-section (11) from formulae (9) and (10) for the
scattering amplitudes an error was committed. The

do
correct expression for — has the form

dQ

d“__ 2_£ 2| N2 -1
o= n[IAI u‘B] ]—C(u)s

Cu) = np*(1+a?),

-1
n= —u[u2—2u(m2+u2)+(m2—u2)2] (1)

d
It follows from this expression that é does not

oscillate as a function of the energy, despite the
oscillations of the amplitudes 4 and B. All the other
scattering characteristics are oscillating ones. For
instance, the nucleon polarization { for the scattering
on the non-polarized target does not decrease but
oscillates as a function of the energy.

sinrj\* T~ -
- (1 _chznj”> Sm[zj (")sz(‘")w(u)}
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LoveLAace: Can you say anything about the slope of the

Fermion trajectories? The experimentalists have suggested that
there may be a very sharp backward zp peak sharper than the
forward peak.

GriBov: The differential cross-section at small backward
angles is that given by Equation (11) of the paper.

The behaviour of the cross-section for backward angles is of
this type, see Fig. A, The cross-section decreases and shows
oscillations. The width of the peak is of the order of u/p In%s.
The width of the oscillations is of the order or u/p Ins. The
oscillation has a smaller range than the decrease of the cross-
section. The radius ¢ of this interaction is growing faster than
in forward scattering;

Osorw ln% o s, Ql)ack o« ln S.
This is the maximum growth of the interaction radius according
to Froissart.

8cm
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Fig. A 180




