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Chapter 1

Introduction

General Relativity, motivated by Einstein’s ideas and developed in a series of papers
that culminated in the gravitational field equations [4], [5], is the most accurate
classical theory of gravitation we have so far. It entailed a huge change of paradigm
in the conception of the nature of the universe, by replacing the rigid Galilean
space and time by a dynamical, (in general curved) spacetime. The newborn theory
had a critical success in explaining the precession of the perihelion of Mercury, the
deflection of light by the Sun and, later on, the gravitational redshift experienced
by light (see, for example, [6]).

However, even the astonishing success of General Relativity had a chink: sin-
gularities [7]. They appeared, loosely, as points where spacetime breaks down or
has an ‘end’. The two most famous instances of singularities are, perhaps, the
one in Schwarzschild black holes and the initial singularity of Friedman-Lemaître-
Robertson-Walker cosmological models. Although the formalism allows such situ-
ations, singularities are largely regarded as undesirable and signal our lack of un-
derstanding of the more profound physics needed to completely understand these
physical situations. In a sense, the theory itself strongly suggests that something
is still missing and nicely tells us where to look. There was some hope of resolving
this conundrum with the help of (also very recent) ideas in Quantum Mechanics.
In particular, since General Relativity is a field theory, one would like to find a
relativistic Quantum Field Theory for the gravitational field (or as usually said,
to quantize gravity), along the lines successfully followed to understand other filed
theories, in particular, in Quantum Electrodynamics, which eventually gave rise to
the celebrated Standard Model of Particle Physics [8].

However, as it was conceived, Quantum Field Theory frontally clashes with Gen-
eral Relativity. Firstly, the privileged Minkowski spacetime is used as a background.
Worse, the perturbative techniques that allowed to extract the relevant physical in-
formation from path integrals by employing Feynmann diagrams completely fails
when trying to quantize gravity. The main obstacle for the development of the tra-
ditional quantization programme for General Relativity is its non-renormalizability.
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This issue arises because the coupling constant of the theory, Newton’s constant in
this case, is dimensionful. This fact is made apparent in the one loop corrections,
which diverge and can not be absorbed [9]–[11].

A possible explanation for this failure is that usual perturbative treatments in
physics assume that the spacetime is a continuum at all scales. This works for
particle physics, since the scales of particles are much larger than the Planck length,
the scale in which quantum gravity effects should manifest themselves. However,
for a theory of quantum gravity, this hypothesis may be completely wrong and
there is no reason a priori to assume it. This fact motivated the development
of non-perturbative theories for quantum gravity that can account for the micro
structure of spacetime, with the benefit that this approach completely avoids the
non-renormalizability issue. Among the plethora of proposals, two of them have
had the largest impact and a number of results over the years; these competing
approaches are String Theory and Loop Quantum Gravity. Although String Theory
[12], [13] is not just a theory of quantum gravity (in fact, it is quite more ambitious),
it has paid close attention to how gravity manifests itself in the whole of the theory
[14], [15], and has produced numerous results on black holes [16] and cosmology
[17]–[19] On the other hand, Loop Quantum Gravity is a very natural continuation
of the ideas that arose in the development of General Relativity, that can be found
in the extensive literature on the topic, for instance, [20]–[22]. This approach has
also achieved some results on black holes [23]–[25] and in cosmology [26]–[28] under
the name Loop Quantum Cosmology, a quantization of the cosmological sector of
General Relativity.

However, after more than 30 years of intense scientific activity, no one has been
able to achieve a full theory of quantum gravity yet. In view of this fact, it may be
an interesting possibility to pursue perturbative approaches again. Evidently, since
the traditional approach does not work, we need to come up with new methods to
deal with the problem. In [29], Smolin sketched a new perturbative framework. One
of its prominent features was that general covariance was not broken at any order;
moreover, no background structure (such as the Minkowski metric) was needed. This
is an important point since many of the obstacles seem to come from the breaking
of the 4-diffeomorphism symmetry. Then, if the theory chosen as the unperturbed
starting point is integrable, one can then use it as the zeroth order of a perturba-
tive expansion. However, an additional requirement must be met in order for this
approach to work in a reliable and systematic way, namely, the perturbation that
recovers the full solution must be regular. If a perturbation is singular rather than
regular, a perturbative scheme could still be built, however, the usual expansions
do not work in this context, requiring an ad hoc scheme for the particular problem
at hand. These type of ideas are connected to several currently relevant topics. In
particular, the U(1)3 model, which can be seen as a zeroth order perturbation model
for General Relativity, has recently raised some interest [30]–[32]. One of the main
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goals of this work is precisely to study this approach.

This thesis is structured as follows. Chapter 2 is devoted to reviewing the Hamil-
tonian formalism, in particular, three different geometrical approaches to get the
Hamiltonian description derived from an action are presented. Chapter 3 provides
several examples of gravitational theories (apart from the interesting exception of
the scalar field) as well as their Hamiltonian descriptions using the three meth-
ods described in Chapter 2. Chapter 4 studies the anti-self-dual Palatini action by
means of the GNH method. Chapter 5 explores the ideas about consistent defor-
mations and internal Abelianizations and applies them to the previously presented
gravitational theories.

A few words on notation. The spacetime manifold (either in 3 or 4 dimensions)
will be denoted by M, will be assumed globally hyperbolic M ∼= R × Σ and the
leaves of foliations will be deonted by Σt

∼= Σ. Differential forms in M will be
written in boldface (e.g. e,A) and differential forms in Σ in standard face (e.g.
e, A). Differential forms in M that are adapted to the foliation Σt will be written
in boldface and marked with a t subscript or underlined (e.g. et, e). The spacetime
or foliation leaf exterior derivative will be written as d, while the exterior derivative
in the configuration space will be written as d . All spacetimes M are assumed to
have no boundary.
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Chapter 2

Hamiltonian analysis

Hamiltonian analysis has become a staple method in the study of dynamical systems
[33]. Using the tools of symplectic geometry in a phase space of positions and
momenta and a Hamiltonian function, this approach is able to correctly predict the
dynamics of a physical systems whose energy equals the Hamiltonian function. In
particular, the integral curves of the Hamiltonian vector field are the curves that
leave the Hamiltonian invariant along their trajectories, implementing the physical
requirement that the energy be conserved. In mechanics, where the phase spaces are
finite dimensional, there are no major technical difficulties in pursuing this approach.
However, in field theories, infinite dimensional phase spaces enter into play making
the (sometimes subtle but very important) functional analytic details much harder
to deal with in comparison with the finite dimensional case [34]. In particular,
Poisson brackets are hard to compute in some instances (for example, in field theories
formulated in regions with boundaries), which is a big obstacle for the approaches to
the Hamiltonian analysis that rely heavily on their computation. A more productive
strategy is to think in a more geometrical way as in the work of Gotay [35], which
besides achieving a better and clearer picture of the relevant structures, is also
computationally more efficient. In this chapter we review three different geometric
methods to obtain the Hamiltonian or Lagrangian formulation of a theory that will
be used in the next chapters. The most basic concepts discussed in this chapter can
be found in greater detail in [35], [36].

2.1 The Gotay, Nester and Hinds algorithm

A (pre)symplectic system is a triple (Q, ω, α), where Q is a manifold called the phase
space, ω ∈ Ω2(Q) a (pre)symplectic form and α ∈ Ω1(Q) a closed 1-form. The
dynamics of the system is given by the vector field Z determined by the generalized
Hamiltonian equation

ıZω = α , (2.1)
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whose integral curves give the evolution of the system. Note that the requirement
of α being closed is equivalent to demanding that LZω = 0, since ω is itself closed.

If ω is a symplectic (i.e. closed and strongly non-degenerate) form, equation (2.1)
has a unique (global) solution. In contrast, if ω is merely presymplectic (it has some
degeneracy), the equation is globally inconsistent and has no solution. In this case,
since one is still interested in the particular dynamics encoded by the presymplectic
system, one can instead reinterpret equation (2.1) by seeking and restricting to a
suitable submanifold of Q where it can be properly solved globally. Hence, in the
case of presymplectic systems we need a systematic method of finding the maximal
submanifold N of Q where equation (2.1) can be consistently solved by a vector
field of N. This is provided by the GNH algorithm [37], [38] (named after Gotay,
Nester and Hinds), a procedure that outputs the so-called final constraint manifold.
Note, however, that even when such a solution exists and is integrable, it will be
non-unique in general.

A first necessary condition for equation (2.1) to be solvable is that α is in the
image of the map

♭p : TpQ −→ T ∗
pQ

X ↦→ ıXω .

Then, one might try to solve (2.1) restricted to the submanifold defined as

Q1 =
{︁
p ∈ Q | αp ∈ Im ♭p

}︁
.

Note that even though there exist solutions Z in Q1, there might be some points
p ∈ Q1 where the vector field is not tangent to Q1, i.e. Xp /∈ TpQ1 but rather
Xp ∈ TpQ \ TpQ1, which is crucial in order to obtain a genuine vector field in Q1

rather than a vector field of Q along the inclusion of Q1 in Q. Physically, the
reason why one wants the solution to be a vector field in the constraint manifold is
because, otherwise, the own dynamics of the system would make it evolve ‘out of
it’. This is known as the consistency problem and motivates further restrictions to
the submanifold

Q2 =
{︁
p ∈ Q1 | αp ∈ ♭p

(︁
TpQ1

)︁ }︁
,

where we have used the notation TQ1 := TQ1|Q1 ⊂ TQ and Q1 is the closure of
Q1 in Q. However, after restricting ourselves to Q2, the tangency of the solution to
Q2 may still not be guaranteed, similarly to what happened with Q1. In order to
ensure consistency one generates a sequence of submanifolds defined by

Qi+1 =
{︁
p ∈ Qi | αp ∈ ♭p

(︁
TpQi

)︁ }︁
. (2.2)

Note that the actual restrictions imposed by the algorithm do not require tangency
to the submanifold but rather to its closure. This relaxation of the desirable strict
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tangency condition is due to the fact that in field theories – with an infinite number
of degrees of freedom – one can obtain a countably infinite chain of constraint
submanifolds leading to a final constraint manifold defined by the intersection of all
of them. This poses a problem in the functional-analytic sense, since the resulting
submanifold might be very difficult to work with (for example, it can be a Fréchet
manifold instead of a Banach one). The final solution proposed by Gotay was the
relaxed condition (2.2) introduced in an effort to make the algorithm stop in a finite
amount of steps. Note that this problem does now show up for systems with a finite
number of degrees of freedom in which case the strict tangency condition can be
used instead.

The behaviour of the sequence (Qk)k determines the outcome of the algorithm,
which is one of the four possibilities:

1. For some k, Qk = ∅.

2. For some k, Qk ̸= ∅ and dimQk = 0.

3. For some k, Qk = Qk+1 := N.

4. There is an infinite number of constraints.

Let us make some comments on each case.

1. The system is inconsistent: there is no solution.

2. The system is consistent, but the final constraint manifold consists of isolated
points, hence the evolution vector field must vanish, which yields no evolution.

3. The solution is consistent in the final constraint manifold N and a solution to
(2.1) tangent to N exists. The Hamiltonian vector field describes the dynamics
of the system but is, in general, not unique, since one can add to it any element
of kerω∩TN and will still satisfy (2.1). In the case kerω∩TN ̸= 0, this implies
the existence of gauge symmetries. Also, an important and desirable property
of the Hamiltonian vector field is its integrability. While the GNH algorithm
guarantees the existence of a consistent Hamiltonian vector field, it does not
say anything about its integrability, which is a separate and hard problem.

4. The algorithm never stops and produces an infinite chain of constraints. How-
ever, one still can take as final constraint manifold the intersection of all the
submanifolds, N := ∩kQk with the topology induced by that of the full phase
space. Note that since we have an infinite intersection, the resulting induced
topology of N may be much more complicated than that of each Qk. Note that
this can only happen for field theories. The resulting final constraint manifold
N can then be of the form of any of the cases 1, 2 or 3.
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2.2 Physical systems

A popular way to determine the dynamics of field theories and mechanical sys-
tems is through action principles. Actions give rise to presymplectic systems in a
canonical way through the Lagrangian used to define them. Given a configuration
space Q (a differential manifold of finite or infinite dimension) of a physical system,
the Lagrangian L is a real function on the tangent bundle TQ. Given the pair
(Q,L) there are two canonical constructions producing presymplectic systems, one
in the cotangent bundle T ∗Q and the other in the tangent bundle TQ, usually called
Hamiltonian and symplectic Lagrangian approaches, respectively.

Given a Lagrangian L : TQ −→ R, the fiber derivative is the fiber preserving
vector bundle map FL : TQ −→ T ∗Q defined by

FL(v)(w) =
d

dε
L(v + εw)

⃓⃓⃓
ε=0

, (2.3)

where w ∈ TQ. With the help of this map we can identify and transport some
objects between TQ and T ∗Q. First, let us define the canonical momenta as

p(w) = FL(v)(w) ,

and the energy function EL : TQ −→ R as

EL(v) = p(v)− L(v) , (2.4)

The Hamiltonian is then defined as the function H in T ∗Q (or a submanifold of it)
such that

H ◦ FL = EL . (2.5)

The properties of FL are very important and determine the character of the theory.
If FL is not a diffeomorphism, then (2.5) only defines H in the image of FL. It is
then possible to extend that function to the whole space T ∗Q although such exten-
sions are not unique. We say that a Lagrangian L is regular if its fiber derivative FL
is a local diffeomorphism and L is singular if FL fails to be a local diffeomorphism.
If L is a global diffeomorphism it is called hyperregular.

The main advantadge of working in the cotangent space T ∗Q is that it has a
canonical symplectic form. First define the symplectic potential Θ ∈ Ω1(T ∗Q) at
each point p ∈ T ∗Q as

Θp(X) = p(TπQX) ,

for vectors X ∈ Tp(T
∗Q) (hence TπQX ∈ TπQ(p)Q). Then, the canonical symplectic

form is the 2-form

Ω = −dΘ .
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If L is hyperregular, the image of the fiber derivative FL is the whole T ∗Q. In
particular, the Hamiltonian is defined in all of T ∗Q and the dynamical Hamiltonian
equation

ıZΩ = dH ,

is also defined in all T ∗Q. Since Ω is symplectic, this equation has a unique solution
for Z, which is

Zq = DpH , Zp = −DqH .

Here DqH,DpH are the usual partial Fréchet derivatives (with respect to q and p)
in a Banach space [34], where if

ıq : U −→ T ∗Q ,

ıp : Q
∗ −→ T ∗Q ,

are the canonical inclusions to the first and second factor on a chart U ×Q∗ of T ∗Q,
respectively, then

Dqf = d (f ◦ ıq) ,

Dpf = d (f ◦ ıp) ,

so that

df(X) = Dqf ·Xq +Dpf ·Xp .

The situation is quite different in the singular case. Singular Lagrangians are
important because the physically relevant field theories are typically of this type.
In this case, the image of the fiber derivative is not all T ∗Q but a submanifold of
it and we refer to Q = FL(TQ) ⊊ T ∗Q as the primary constraint submanifold. In
this case, the Hamiltonian function is only defined in Q (although it can often be
extended in multiple ways to a function in the whole T ∗Q). Moreover, since the
presymplectic system can only be defined in the domain of H, we need to use the
presymplectic form ω = ȷ∗Ω induced by the symplectic form Ω via the pullback
of the inclusion ȷ : Q ↪→ T ∗Q. Note that even if ω is the pullback of a strongly
non-degenerate symplectic form, its degree of degeneracy depends on the character
of FL; in general it will only be presymplectic.

Hence, the presymplectic system of interest in physical theories is then
(︂
Q, ω,dH

)︂
,

and the dynamical equation (2.1) reads in this case

ıZω = dH . (2.6)

Then, one can use the GNH algorithm described in Section 2.1 to find a suitable
solution to the system.
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A second option is working in the tangent bundle, which unlike the cotangent
bundle, does not have a canonical symplectic structure. We then need an alternative
way to build a (pre)symplectic structure for a given Lagrangian L. Let us first see
some canonical constructions in TQ. Given a curve γ in Q, its canonical lift is the
curve in TQ (or alternatively, the vector field of Q along γ) given by

γ̇(t) =
d

dε
γ(t+ ε)

⃓⃓⃓
ε=0

,

i.e., built with the tangent vectors to γ at each of its points.

The double tangent bundle TTQ
πTQ−−→ TQ has a canonical subbundle defined by

V (TQ) := kerTπQ, called the vertical subspace. For each v ∈ TxQ tangent vector,
one can define a vertical lift ξv : TxQ −→ Vv(TQ) to the fiber over v as

ξv(w) :=
d

dε
(v + εw)

⃓⃓⃓
ε=0

,

where w ∈ TxQ.

The almost tangent structure is the vector-valued 1-form
Jv : Tv(TQ) −→ Tv(TQ) — which can also be regarded as a (vertical) linear
endomorphism — defined by [38], [39]

J(Z) := ξ ◦ TπQ(Z) ,

for Z ∈ X(TQ). It is clear by the definition that V (TQ) = Im J = ker J and hence
J2 = 0. Since J is an endomorphism, it induces a derivative ıJ of degree 0 defined
by:

ıJα (X1, · · · , Xp) =

p∑︂
i=1

α(X1, · · · , JXi, · · · , Xp) ,

and also defines the vertical derivative

d J := ıJd − d ıJ .

Note that up to this point, the objects discussed are canonical in TQ. In the same
way as in the canonical approach in the cotangent bundle, we need to introduce a
Lagrangian function L : TQ −→ R (or an action from which a Lagrangian can be
derived) to define and study physical systems. From this, the Lagrangian canonical
1-form and the (pre)symplectic Lagrangian form are respectively defined as

θL := d JL ,

ωL := −dθL = −dd JL . (2.7)

The (pre)symplectic Lagrangian form ωL is clearly closed. Again, the properties
of L determine the character of these structures. If the Lagrangian L is regular,
then ωL is symplectic and the symplectic-Lagrangian equation

ıZωL = dEL , (2.8)
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has a unique solution Z which also satisfies the second order condition

JZ = V , (2.9)

where V is the Liouville vector field on TQ, defined at each point v ∈ TQ by

Vv := ξv(v) , (2.10)

and we write the energy (2.4) as

EL = ıVdL− L .

The fact that the unique solution Z of (2.8) with L regular satisfies the second order
condition (2.9) easily follows by acting with ıJ on both sides of (2.8) and then using
Lemma 2 and Lemma 3, stated below, to rewrite each side

−ıVωL
Lemma 3

= ıJdEL = ıJıZωL
Lemma 2

= −ıJZωL =⇒ ıJZ−VωL = 0 ,

and since ωL is symplectic it follows that Z satisfies JZ = V.

The second order condition (2.9) for the vector field Z can equivalently be written
as

Tπ(Q)Z = πTQZ .

In local coordinates (q, v), the expressions of V and J are

V(q,v) = (0, v) ,

J(q,v)(X) = (0, Xq) ,

which implies that the second order condition (2.9) for a vector X reads Xq = v.
This guarantees that X is actually the double lift of a curve γ in Q (i.e., Xv is the
second derivative of γ), hence the name second order.

If L is singular, ωL will only be presymplectic and the equation (2.8) will not
have in general a unique solution over all TQ. In such a situation it is possible to
resort to the GNH algorithm for the presymplectic system (TQ, ωL, EL).

Note that both constructions are canonical for the pair (Q,L) (in the sense that
given those objects, their constructions are natural), though in a different way. The
cotangent space T ∗Q has a canonical symplectic form Ω, which naturally induces a
(pre)symplectic form in every submanifold of T ∗Q via the pullback of the inclusion.
Then, the relevant subaminfold is determined by the Lagrangian L through its fiber
derivative. On the other hand, the tangent space TQ has no canonical symplectic
form. In this case, the Lagrangian L is used jointly with the canonical structures of
TQ to build a (pre)symplectic form.

The presymplectic system (TQ, ωL, EL) is equivalent to the variational principle
induced from L in the following sense.
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Proposition 1. [40] Let S : P(Q) −→ R be the action

S(γ) =

∫︂ t2

t1

L(γ̇(t)) dt ,

defined for paths γ(t) with fixed endpoints. The action has a stationary point if, and
only if, there exists a vector field Z ∈ X(TQ) satisfying the Euler-Lagrange equation

ıZωL = dEL , (2.11)

and the second-order condition

JZ = V .

Before proving the theorem let us state two lemmas.

Lemma 2. ([41] p.3759) ıJXωL = −ıJıXωL .

Proof. Let us first prove that ıJωL = 0. Indeed,

ıJωL = −ıJdd JL = −(d J − d ıJ)d JL = d ıJd JL = d ıJ(ıJd + d ıJ)L = d ıJıJdL ,

but since dL is a 1-form,

ıJıJdL(X) = dL(J2X) = 0 ,

since J2 = 0.

Let X,Y ∈ X(TQ). Since ıJωL = 0, we have

0 = (ıJωL) (X,Y) = ωL(JX,Y) + ωL(X, JY) = (ıJXωL + ıJıX) (Y) ,

which proves the result.

Lemma 3. ıJdEL = −ıVωL

Proof. Let us first prove that

d JıV + ıVd J = ıJ .

It is enough to do it for 0-forms and exact 1-forms since any differential form can be
written as α = fi1,...,ipdx

i1∧· · ·∧dxip in a coordinate chart. For a 0-form f ∈ C∞(M),(︂
d JıV + ıVd J

)︂
f = ıVıJdf = 0 = ıJf .

For an exact 1-form df ∈ Ω1(M), keeping in mind that JV = 0,[︂(︂
d JıV + ıVd J

)︂
df
]︂
(Y) = ıY

(︂
−ıVd ıJ + ıJd ıV

)︂
df = ıY (−LVıJ + ıJLV)df

= ıJYd ıVdf − V
(︂
ıJYdf

)︂
+ ıJ[V,Y]df = [JY,V]f + (J[V,Y]) f

= (JY) f =
(︂
ıJdf

)︂
(Y) ,

11



since

JY = J[V,Y] + [JY,V] .

Using this result and the fact that for functions f the operator d J is just d Jf =

ıJdf we obtain

ıJdEL = d JEL = d J
(︂
ıVdL− L

)︂
= ıJdL− ıVd JdL− d JL

= −ıVd JdL = ıVdd JL = −ıVωL .

Proof of Proposition 1. Let

E = ıZωL − dEL . (2.12)

Consider a 1-parameter family of curves γλ in Q with fixed endpoints such that
γ0 = γ. The variation of the action along the one-parameter family is

dS(γλ)

dλ

⃓⃓⃓
λ=0

=

∫︂ t2

t1

d

dλ
(L ◦ γλ̇)

⃓⃓⃓
λ=0

dt =

∫︂ t2

t1

dLγ̇λ

(︃
d

dλ
γ̇λ

)︃ ⃓⃓⃓
λ=0

dt

=

∫︂ t2

t1

(︂
ıYdL

)︂
(γ̇(t)) dt ,

where Y = d
dλ
γ̇λ ∈ X(TQ). Also, since the endpoints of γλ are fixed for every λ

and JY(γλ(t),γ̇λ(t)) =
(︁
0, d

dλ
|λ=0γλ(t)

)︁
, then JY = 0 at γλ(t1), γλ(t2). By construction,

Z = γλ̈ satisfies the second order condition JZ = V. Moreover, since Z,Y generate
flows in the t and λ parameters, respectively, and the action of the flows commute,
[Z,Y] = 0.

Using the definitions of E and ωL, and then using the expresion for the exterior
derivative of a 1-form we can write

ıYdL
(2.4)
= ıYd ıVdL− ıYdEL

(2.12)
= ıYd ıVdL+ ıYE − ıYıZωL

(2.7)
= Y

(︂
ıVdL

)︂
+ ıYE + Z

(︂
ıYd JL

)︂
− Y

(︂
ıZd JL

)︂
− ı[Z,Y]d JL

Lemma 2
= ıYE + Y

(︂
ıV−JZdL

)︂
+ Z

(︂
ıJYdL

)︂
− ı[Z,Y]d JL .

(2.13)

By means of these expressions we can now prove the implications of the proposition.

( ⇐= ) Let us first prove the reverse implication. Assume there is a vector field
Z satisfying E = 0 and JZ = V. Then, there exists a curve γ such that γ̈ = Z.

Then, by (2.13) we can write, since (2.9) and [Z,Y] = 0 hold,

dS(γλ)

dλ

⃓⃓⃓
λ=0

=

∫︂ t2

t1

ıYdL dt =

∫︂ t2

t1

Z
(︂
ıJYdL

)︂
dt =

∫︂ t2

t1

d

dt

(︂
ıJYdL

)︂
dt

=
(︂
ıJYdL

)︂
(γ(t2))−

(︂
ıJYdL

)︂
(γ(t1)) = 0 ,
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since JY vanishes at the endpoints. Hence, γ is a stationary curve of the action S.

( =⇒ ) Assume that there is a curve γ which is a stationary point of S. Hence,
any 1-parameter family of curves γλ such that γ0 = γ must satisfy that dS(γλ)

dλ
|λ=0 = 0.

By (2.13), we can rewrite this as

0 =
dS(γλ)

dλ

⃓⃓⃓
λ=0

=

∫︂ t2

t1

ıYE dt ,

since JZ = V, [Z,Y] = 0. From this we cannot conclude that E = 0 because there
are conditions on the vector field Y. Note that Y is not a vertical vector since
TπQY = d

dλ
γλ ̸= 0 and lifting it again

(︁
d
dλ
γλ
)︁̇ = d

dλ
γ̇λ = Y we recover the original

vector field Y, hence Y has no vertical component. This means that if we add an
arbitrary vertical vector field JW for arbitrary W ∈ X(TQ), the linear combination
Y+ JW is an arbitrary vector field in TQ.

Using Lemmas 2, 3 we can write

ıJE = ıJıZωL − ıJdEL = −ıJZωL + ıVωL = ıV−JZωL ,

and the integrand as

ıYE = ıY+JWE − ıWıV−JZωL = ıY+JWE .

Then,

0 =
dS(γλ)

dλ

⃓⃓⃓
λ=0

=

∫︂ t2

t1

ıY+JWEdt ,

where now Y+ JW is an arbitrary vector field, which implies that E = 0.

Proposition 1 says that the Euler-Lagrange equations obtained from the varia-
tional principle and the symplectic Lagrangian equations are equivalent as long as
the second order condition is satisfied. More precisely, the Euler-Lagrange equations
of a variational principle written in an invariant form (i.e., without coordinates)
are the symplectic Lagrangian equation (2.11), and if a curve γ is a stationary
point of the action, then the vector field Z along the curve γ̇(t) ⊂ TQ given by
Zγ̇(t) = γ̈γ̇(t) :=

(︁
γ̇γ(t), γ̈γ̇(t)

)︁
is a solution to (2.11). Of course, by construction, Z

satisfies the second order condition (2.9) since at the point γ̇(t) ∈ TQ its value is
(Zq)γ̇(t) = γ̇(t). Conversely, obtaining a solution to the symplectic Lagrangian equa-
tion (2.11) is not enough to provide a solution to its related variational principle.
The obstruction is that the solution vector field Z may not be the (double) lift of a
curve in Q. Consider a general curve ψ in TQ given by ψ(t) = (q(t), v(t)) and its
tangent curve ψ̇ in TTQ given by ψ̇(t) = (q(t), v(t); q̇(t), v̇(t)). If ψ is not the lift of
any curve in Q, then q̇(t) ̸= v(t) and ψ̇ does not satisfy the second order condition.
Hence, it is necessary that both (2.11) and (2.9) are simultaneously satisfied in order
to recover a curve which is solution to the variational principle.

13



Thus, while one can apply the GNH algorithm to the presymplectic system(︂
TQ, ωL,dEL

)︂
, as a consequence of Proposition 1, there is an extra condition that

we need to take into account, namely, the second order condition (2.9), that the GNH
algorithm does not implement and that has to be separately taken into account. This
can be simply done by applying the GNH algorithm but adding as an extra step
condition (2.9):

Q2 = {v ∈ Q1 | ∃Zv solving (2.11) and JZv = Vv} .

Note that this additional constraint is particular from the tangent bundle and has
no analogue in the cotangent bundle.

In mechanics, where configuration fields are finite dimensional, the construction
proceeds as explained. However, most physical field theories are modelled on L2

spaces. In particular, the presence of derivatives in the Lagrangian makes it nec-
essary to use discontinuous functions. A solution to this problem is to restrict the
domain of such functions to the so-called manifold domains, an approach introduced
by Chernoff and Marsden [34]. A clear example where this is useful is given by the
scalar field, further studied in Section 3.1 and in [35], [42]. In these cases, one
should replace TQ by the corresponding manifold domain in the previous construc-
tions, while keeping in mind that the appropriate manifold domain might not be
reflexive, a property which is relevant for the constructions in the next section.

As a remark, it is interesting to compare the Hamiltonian and Lagrangian for-
malisms presented in this chapter. Since in physical theories both the Lagrangian
and the Hamiltonian approaches are derived from the Lagrangian function, it is
reasonable to ask whether they give rise to the same dynamics. This issue was first
addressed in [35], [38] and later completely solved in [43]. The fiber derivative of the
Lagrangian FL : TQ −→ T ∗Q is the map that connects both (pre)symplectic sys-
tems. When the Lagrangian is regular its fiber derivative is a local diffeomorphism,
hence one can translate the symplectic structure from the cotangent to the tangent
bundle and viceversa (via pullback or pushforward). However, this is not so clear in
the singular case. The main result of [43] is that solutions to either (2.11) or (2.6)
can be transformed to solutions to the other, and its constraints mapped into the
others, making the dynamics equivalent.

2.3 The STL simplification

The procedure described in Sections 2.1 and 2.2 can be used to study physical sys-
tems. Nevertheless, in the form the constraints are written, it can be difficult to
find the successive constraint submanifolds. Let us take the chance to describe the
geometric constraint algorithm in tangent spaces TQ which also are STL manifolds
(defined below), which simplifies the application of the GNH algorithm by charac-
terizing the constraint submanifold as the zero set of some functions [44]. A pair
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(Q, ω) is said to be an STL manifold (named after Śniatycki, Tulczyjew and Lich-
nerowicz) if Q is reflexive and, similarly to the map ♭ in T ∗Q, the map ♭ induced by
ω defined according to

♭ :TTQ −→ T ∗TQ

X ↦→ ıXωL ,

restricted to each fiber of Q maps closed subspaces into closed subspaces. In a
certain sense, the STL hypothesis ensures that some desirable properties of finite
dimensional systems are still valid in infinite dimensions. The reason why these
precise conditions are needed for field theories will become clear in the technical
Proposition 4. Intuitively, we do not want the spaces to become too big in order
for ♭ to be able to map to the adequate elements. Under these conditions the GNH
algortihm in Q can be simplified by characterising the submanifold Q1 as the zero
set of some functions. We will be denoting the successive constraint manifolds by
S.

As per the GNH algorithm, the first constraints to be taken into account are
given by

S1 =
{︁
v ∈ TQ |

(︂
dEL

)︂
v
∈ Im ♭v

}︁
.

In the STL case, one can actually simplify this condition into a form more suitable
for practical computations.

Proposition 4. S1 =
{︁
v ∈ TQ |

(︂
ıZdEL

)︂
(v) = 0 , ∀Z ∈ kerωL

}︁
.

Proof. • (⊆) Let v ∈ S1. Then, there exists a solution to (2.11), i.e., a vector
X ∈ TvTQ such that ıXωL = dEL is satisfied at v. But this implies that for
Z ∈ kerω

0 = ıZıXωL = ıZdEL .

• (⊇) [37] Let v ∈ TQ such that
(︂
ıZdEL

)︂
(v) = 0 , ∀Z ∈ kerωL. If V ⊂ TQ

is a subspace, denote the annihilator of V by V ⊢ ⊂ T ∗Q, the set of α ∈ T ∗Q

such that α(v) = 0, ∀v ∈ V . Then,
(︂
dEL

)︂
v
∈ (kerωv)

⊢.

On the other hand, Z ∈ kerωL means that ωL(Z,X) = 0, ∀X ∈ TQ, but
naming α = ıXωL ∈ Im ♭ we can write α(Z) = 0, which means that Z ∈
(Im ♭)⊢, hence kerωL = (Im ♭)⊢. Therefore

(︂
dEL

)︂
v
∈
(︂
(Im ♭v)

⊢
)︂⊢

.

Lemma 5. If Q is reflexive,
(︁
Q⊢)︁⊢ = Q.

Since TQ is an STL manifold, by Lemma 5,
(︂
dEL

)︂
v
∈ Im ♭v, and since the

image of the fibers under ♭ are closed, then Im ♭v = Im ♭v. Hence, v ∈ S1.
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Actually, the vertical vectors automatically satisfy the condition stated in Propo-
sition 4. Let us introduce now the useful notation

K =
{︁
X ∈ X(TQ) | JX ∈ kerωL

}︁
.

Lemma 6. ıZdEL = 0 , ∀Z ∈ kerωL ∩ V (TQ)

Proof. Since Z is vertical, it can be written as Z = JX. Then, for X ∈ K,

dEL(JX) = ıXıJdEL = −ıXıVωL = −ıXıJYωL = −ıXıJıYωL = (ıJX − ıJıX) ıYωL = 0 .

In the submanifold S1, equation (2.11) has solutions, but they do not satisfy the
second order condition (2.9) in general. This is not addressed by the original GNH
algorithm since it is an independent condition that must be specifically taken into
consideration in the tangent bundle, hence next we impose this requirement. To
this end we define the submanifold

S2 =
{︁
v ∈ S1 | ∃Z ∈ TvTQ : ıZ (ωL)v =

(︂
dEL

)︂
v

and JZ = Vv

}︁
Proposition 7. Let Z be a particular solution to (2.11) and Y ∈ X(TQ) such that
J (Z+ Y) = V. Then,

S2 =
{︁
v ∈ S1 | (ıXıYωL) (v) = 0 , ∀X ∈ K

}︁
(2.14)

Proof. • The set S2 is independent of the choice of vector field Y. Choose two
vector fields Y1,Y2, in such a way that Z+Yi satisfy the second order condition.
Then,

J (Y2 − Y1) = (V− JZ)− (V− JZ) = 0 ,

hence Y2−Y1 is a vertical field, which in turn implies that there exists a vector
field U such that JU = Y2 − Y1.

ıXıY2−Y1ωL = ıXıJUωL = −ıXıJıUωL = −ıJıXıUωL − ıJXıUωL = −ıJXıUωL = 0 ,

since X ∈ K, hence JX ∈ kerωL. Then, ıXıY2ωL = ıXıY1ωL and S2 is indepen-
dent of the choice of vector field Y.

• (⊆) Let v ∈ S2. Then, there are vectors Z and Y such that J (Z+ Y) = Vv

with Y ∈ kerω. Hence, ıYω = 0.

• (⊇) Let v ∈ S1 such that (ıXıYω) (v) = 0 , ∀X ∈ K for Y satisfying the
hypothesis.

16



The previous two conditions can be summarized in a single one.

Proposition 8. For any U satisfying the second order condition (2.9),

S2 =
{︁
v ∈ TQ |

(︂
ıX

(︂
ıUωL − dEL

)︂)︂
(v) = 0 , ∀X ∈ K

}︁
.

Proof. We will see that this takes into account both conditions. Since kerωL ⊆ K,
we distinguish two cases for X ∈ K:

• If X ∈ kerωL, then ıX
(︂
ıUωL − dEL

)︂
= −ıXdEL .

• If X /∈ kerωL, restrict to the submanifold S1 where there exist solutions to
(2.11) and write U = Z+Y, where Z is a particular solution to (2.11). Then,
ıX

(︂
ıUωL − dEL

)︂
= ıXıYωL .

Finally, we have a characterization of the submanifold S2 where there exists a
simultaneous solution Z to both equations (2.11) and (2.9). However, Z might not
be tangent to S2 at all the points and, hence, not a vector field in S2. We now need
to follow again the GNH algorithm. Let us then define the sequence of stabilization
constraints

Si+1 =
{︁
v ∈ Si | ∃Z ∈ TSi solution to (2.11) and (2.9)

}︁
.

These are the analogues of the constraint submanifolds (2.2) in the Hamiltonian
case studied in Section 2.1. Hence, as explained there, the GNH algorithm reaches
one of its possible outcomes depending on the behaviour of the generated chain of
constraints.

2.4 Field equations method

Consider the family of actions S̃I : Q̃→ R labelled by an interval I of R, defined in
some configuration space Q̃ by the expression

S̃I(q̃) =

∫︂
I×Σ

L , (2.15)

where L ∈ Ωn(M) ⊗ C∞(Q̃) is a top form in a spacetime M and also a function
in Q̃. The space Q̃ induces a new configuration space Q of objects defined in Σ in
the following way. Given a dynamical field q̃, denote by Πt(q̃) and Π(q̃) the two
adapted components of q̃ as described in Appendix A. Recall that they are fields
in M. Define the curves γ q̃t (s) = ȷ∗sΠt(q̃), γ q̃(s) = ȷ∗sΠ(q̃), where here ȷ∗s means the
actual pullback for differential forms and the restriction for vector fields (since the
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adapted components are already tangent to the leaves). If Q̃ =×i
Q̃i, define the

configuration space

Q =
∏︂
i

(︂
Πt(Q̃i)× Π(Q̃i)

)︂
,

where the product is performed over all the dynamical fields q̃ of the configuration
space Q̃. Then, one can rewrite S̃I(q̃) as a function SI : P(Q) → R of the space of
curves γ in Q with fixed values in the extrema of I as

SI(γ) =

∫︂
I

dt

∫︂
Σ

(ȷ∗t i∂tL) (γ̇) . (2.16)

Note that the curve γ has components in each of the spaces Πt(Q̃i) and Π(Q̃i). Note
that the Lagrangian function defined by the action (2.16) is L =

∫︁
Σ
ȷ∗t i∂tL.

Since S̃I(q̃) = SI(γ
q̃
t , γ

q̃), the two formulations are equivalent and the critical
points of (2.15) are in one-to-one correspondence with stationary curves of (2.16).

The critical points of S̃I are characterized by

d S̃I =

∫︂
I×Σ

Eq̃ ∧ d q̃ = 0 ,

where Eq̃ are the Euler-Lagrange forms. Note that the Euler-Lagrange equations
are Eq̃ = 0.

As discussed after Proposition 1, a solution γ to the variational principle induces
a vector field Z = γ̈ that satisfies (2.11) and (2.9). Then, if Ψ is an Euler-Lagrange
equation, the equations

ȷ∗tΨ = 0 ,

ȷ∗t ı∂tΨ = 0 ,
(2.17)

give the solution to the symplectic Lagrangian equation (2.11).

In the particular case that all objects in the equations of motion are differential
forms, this formulation is specially simple because the pullback in (2.17) interacts
nicely with the natural operations of the exterior algebra. In the generic case, the
first set of equations in (2.17) will produce the constraints. The second set will
typically produce equations for the Hamiltonian vector field, since derivatives with
respect to the curve parameter t might appear, and as discussed, derivatives of the
fields correspond to their velocities and double derivatives of fields correspond to
the evolution vector field Z. Notice that, a priori the resulting vector field need not
necessarily be tangent to the submanifold defined by the constraints, hence we still
need to implement the chain of consistency constraints as in the GNH algorithm.
Also note that the presymplectic form implicitly used in this procedure is the one
described in Proposition 1. This method is useful because it gives a priori the
constraints (and possibly in a simpler form than the obtained by using the other
methods) and Hamiltonian equations in a much quicker and simpler way.
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2.5 Lagrangians linear in velocities

Let us consider the special case of Lagrangians linear in velocities. These systems
hvae been studied, for example, in [45]. Although this is a fairly restrictive condition,
since most gravitational theories admit a first order formulation, they can be written
in this form and as we will see, they have very interesting properties. Every 1-
form µ ∈ Ω1(Q) in Q induces a linear function in the velocities in TQ given by
µ̂(v) = µπQ(v)(v) by the linear nature of covectors. Then, an arbitrary function L in
TQ linear in velocities can be written as

L = µ̂+ π∗
Qh ,

with µ ∈ Ω1(Q) and h ∈ C∞(Q).

It is interesting to study both the Hamiltonian and Lagrangian symplectic set-
tings for such a Lagrangian and to compare them. First, the energy is

dL = dµ ∧ dq + µq(dv) + π∗
Qdh ,

ıVdL = µ̂ ,

EL = −π∗
Qh .

In the Hamiltonian scheme one needs to compute the fiber derivative and find
the Hamiltonian function

FL(v)(w) = µq(w) ,

H = −π∗
Qh .

Then, the canonical symplectic form and its pullback are computed as

Ω(Z,Y) =
∑︂
i

(︁
Yi(Z

i)− Zi(Y
i)
)︁
,

Xi(w) = dµ(X i,w) ,

ω(Z,Y) =
∑︂
i

(︁
dµ(Y i, Zi)− dµ(Zi, Y i)

)︁
= −2

∑︂
i

(︁
dµ(Zi, Y i)

)︁
,

ω = −π∗
Qdµ .

Hence, the Hamiltonian equation (2.6) in this case reads

ıZπ
∗
Qdµ = π∗

Qdh .

In the symplectic Lagrangian scheme one needs to compute the symplectic struc-
ture associated with the Lagrangian

d JL = µq(dq) ,

ωL = −dµ(dq) = −π∗
Qdµ .
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Both ωL and EL are pullbacks by the projection πQ to TQ of objects in Q.

The first step in the algorithm that we are going to use here is given by Propo-
sition 4. In this case, the condition is

ıZπ
∗
Qdh = 0 , ∀Z ∈ kerπ∗

Qdµ .

However, due to Lemma 6, the vertical vectors do not impose any condition. Thus,
we can only consider ‘horizontal’ vectors, in which case we can project the equation
to

ıZdh = 0 , ∀Z ∈ kerdµ ,

hence, the dynamical constraints are functions in Q and do not involve the velocities.

Next, we must implement the constraints given by (2.14), which in this case read

ıXıYπ
∗
Qdµ = 0 , ∀X : JX ∈ kerπ∗

Qdµ and J (Z+ Y) = V ,

for Z a particular solution to (2.11). Since ıJπ∗
Qdµ = 0, the condition on X is always

satisfied. Then, the second order condition translates to Zq+Yq = v for Yq ∈ kerdµ.

Finally, the Hamiltonian equation (2.11) in this case has the form

(DqDvµ̂−DvDqµ̂)Zq = Dqh ,

Zv arbitrary ,

which should be solved together with the second order condition. Nevertheless this
is still not the solution to the problem, since the issue of the tangency remains and
as discussed so far, in general one will need to impose further constraints to ensure
tangency of the Hamiltonian vector field to the constraint submanifold.
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Chapter 3

Gravitational theories in tetrad and
connection variables

This chapter is devoted to presenting some important examples of physical theo-
ries and their Hamiltonian analysis by means of the methods described in Chapter
2. In particular, the focus is set on a varied selection of gravitational theories of
interest. Nevertheless, we start the list of examples with a very important but non-
gravitational theory: the scalar field. Since it is of a very different nature than the
rest of examples considered here, it is worth studying since it will provide further
insight into the Hamiltonian methods.

Recall that we assume that the spacetimes M are manifolds without boundary.

3.1 Scalar fields

The action of the free, massless scalar field ϕ on the Minkowski spacetime M is

SScalar(ϕ) = −1

2

∫︂
M

dϕ ∧ ∗dϕ ,

where ∗ is the Hodge dual defined by a background (i.e., non-dynamical) Lorentzian
metric g of M.

Varying the action we obtain

d

dε
SScalar(ϕ+ εδϕ)

⃓⃓⃓
ε=0

= − d

dε

1

2

∫︂
M

(dϕ+ εdδϕ) ∧ ∗ (dϕ+ εdδϕ)
⃓⃓⃓
ε=0

= −
∫︂
M

dδϕ ∧ ∗dϕ =

∫︂
M
δϕ d ∗ dϕ ,

hence the equations of motion are

d ∗ dϕ = 0 . (3.1)
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We will now choose an inertial foliation Σt. A similar discussion can be done with
a general foliation, however, that would give rise to a time-dependent Lagrangian,
for which the methods discussed in the previous chapter are not appropriate. Since
this example is meant to illustrate some points in the Hamiltonian analysis, we will
restrict ourselves to this simpler case. The Lagrangian is

LScalar(v) =
1

2

∫︂
Σ

(vϕ ∧#vϕ − dϕ ∧#dϕ) ,

where # is the Hodge dual associated to the pullback of g to Σ. Note that this
depends on the foliation chosen, in particular, on the choice of lapse and shift func-
tions, which ultimately is a choice on how to decompose the metric of M. In this
case a lapse N = 1 and a shift N = 0 were chosen. The configuration space of
this Lagrangian is not straightforward. Note that it is not L2 (Σ) as one might
initially think, since the field ϕ appears differentiated, operation that is not defined
for generic elements of L2 (Σ). It seems then reasonable to require Q = H1(Σ) (the
first Sobolev space where it makes sense to talk about first derivatives), however,
note that the velocities need not be differentiable, hence we would unreasonably
restrict the domain of our Lagrangian if we used TQ = H1(Σ)×H1(Σ). An appro-
priate balance is reached by using the so called manifold domains, introduced by
Chernoff and Marsden in [34], which are fiber bundles with a certain restriction on
the base while keeping the fibers untouched. In our case, the appropriate manifold
domain to use is TH1L2(Σ) := H1(Σ)× L2 (Σ), with H1(Σ) in the base to ensure ϕ
is differentiable but L2(Σ) in the fibers since there is no need to restrict it further.

3.1.1 Hamiltonian analysis

The Hamiltonian analysis of the scalar field is extensively discussed in [35], [42].
The energy (2.4) is

ELScalar =
1

2

∫︂
Σ

(vϕ ∧#vϕ + dϕ ∧#dϕ) ,

and the fiber derivative (2.3) is FL : H1(Σ)×L2(Σ) → H1(Σ)×L2(Σ)∗ ∼= H1(Σ)×
L2(Σ) defined by

pϕ(w) := FLScalar(v)(w) =

∫︂
Σ

v ∧#w ,

hence the primary constraint submanifold is Q = H1(Σ) × L2(Σ)∗ ∼= H1(Σ) ×
L2(Σ) = TH1(Σ)L

2(Σ). Note that the Riesz-Fréchet representative (in L2(Σ)) of pϕ

is v. For a generic point p ∈ T ∗Q let us denote its Riesz-Fréchet representative as
p ∈ L2(Σ). Then, the Hamiltonian (2.5) is

H(p) =
1

2

∫︂
Σ

p ∧#p+ dϕ ∧#dϕ ,
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whose differential is

dH(Y) =
∫︂
Σ

Yp #p− Yϕ d#dϕ . (3.2)

The canonical symplectic form of T ∗Q is

Ω(X,Y) = Yϕ(Xϕ)−Xϕ(Yϕ) ,

and its pullback to the primary constraint submanifold is

ω(Z,Y) =
∫︂
Σ

Yp #Zϕ − Zp #Yϕ , (3.3)

with Zϕ, Yϕ ∈ H1(Σ) while Zp, Yp ∈ L2(Σ).

Equating (3.2) and (3.3) we see that the Hamiltonian vector field is given by

Zϕ = p , (3.4)

Zp = −#d#dϕ =: ∆ϕ , (3.5)

where ∆ stands for the Laplacian of Σ. It is important to notice that the form of the
Hamiltonian vector field introduces a new subtle constraint. Recall that ϕ ∈ H1(Σ),
however, (3.5) requires that the Laplacian of ϕ exists, which is only possible in
the submanifold H2(Σ) ⊂ H1(Σ). In turn, because of (3.4), then we must have
p ∈ H1(Σ), giving rise to the constraint submanifold

Q1 = {(ϕ, p) ∈ H2(Σ)×H1(Σ)} .

It remains to check the tangency conditions. Since the closure of Q1 in Q is
Q1 = H1(Σ) × L2(Σ), it is clear that Z ∈ TQ1 and the GNH algorithm stops.
It is interesting to see in this example why this modified tangency condition is
useful. Were the condition of strict tangency, the vector field Zp = (p,∆ϕ) /∈
Tp(H

2(Σ) × H1(Σ)) = H2(Σ) × H1(Σ) because ∆ϕ ∈ L2(Σ) but in general not in
H1(Σ). Hence, we should further restrict to

Q2 = {(ϕ, p) ∈ H3(Σ)×H2(Σ)} ,

but this causes the same problem again, since now ∆ϕ ∈ H1(Σ) but by strict
tangency it should be in H2(Σ). This generates an infinite chain of constraint sub-
manifolds yielding as final constraint submanifold C∞(Σ)×C∞(Σ) with the induced
topology, which makes it a Fréchet (rather than a Banach) manifold [35]. This is in-
convenient because many useful properties and theorems available in Banach spaces
are not valid in Fréchet spaces.
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3.1.2 Equations of motion analysis

By decomposing the equations of motion (3.1) one obtains

d ∗ dϕ = dt ∧
(︂
−L∂t

(︂
#ϕ̇
)︂
+ d#dϕ

)︂
− d#ϕ̇ = dt ∧

(︂
−ϕ̈ volΣ + d#dϕ

)︂
.

Since this decomposition only has a dt component, we obtain no constraints and
the equation that we get for the evolution vector field by projecting to Σ is

Zv volΣ = Zϕ
̇ volΣ = d#dϕ .

By taking the Hodge dual #, we obtain

−Zv = #d#dϕ ,

which together with the equation

Zϕ = v ,

is equivalent to the equation (3.5) found in the previous section. The tangency
analysis proceeds essentially as before.

3.2 Chern-Simons

In 1974, Chern and Simons studied invariant polynomials of the curvature in a prin-
cipal bundle [46], obtaining as a particular result invariants of 3-dimensional man-
ifolds. The constructions and the result are purely geometrical and topological in
nature, however it was quickly realized that they could be leveraged in physics. The
invariant quantity would be later known as the Chern-Simons action and attracted
attention in the context of gravitational field theories and specially in string the-
ory, where topological invariants are relevant. In 3-dimensional manifolds, it turns
out that adequately written, the Chern-Simons action describes any 3-dimensional
gravitational theory, making it play a very important role in this area.

In order to present the necessary elements for the Chern-Simons theory, we first
review some ideas about Lie groups. A good presentation of these topics is made
in [47]. Let G be a Lie group, g its Lie algebra with Lie bracket [·, ·] and ⟨·, ·⟩ be a
G-invariant non-degenerate metric on g. The invariance of the metric means

⟨Ad(g)v,Ad(g)w⟩ = ⟨v, w⟩ , ∀g ∈ G , v, w ∈ g ,

where the map Ad(g) : g → g is the differential at the identity of the map ADg :

G → G defined by ADg(h) = hgh−1. By computing this differential one obtains that
G-invariance of the metric implies

⟨[T, v], w⟩+ ⟨v, [T,w]⟩ = 0 , ∀T, v, w ∈ g . (3.6)
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The invariant bilinear forms of g are just the quadratic Casimir operators of g.

The Lie bracket of g induces a multiplication operation on g-valued forms. Let
ω1,ω2 be g-valued p and r-forms respectively. Define the g-valued (p + r)-form
Jω1,ω2K as

Jω1,ω2K(X1, ..., Xp+r) =
∑︂

σ∈Sp+r

[ω1(Xσ(1), ..., Xσ(p)),ω2(Xσ(p+1),...,Xσ(p+r)
)] .

Note that this operation is bigraded

Jω1,ω2K = (−1)pr+1Jω2,ω1K .

In particular, for a 1-form ω, we have

Jω,ωK(X, Y ) = [ω(X),ω(Y )]− [ω(Y ),ω(X)] = 2[ω(X),ω(Y )] .

If we choose a basis Ti of g, one can write g-valued differential forms as the sum
ω = ωiTi, where now each ωi is a differential form. As a consequence,

Jω1,ω2K = ωi
1 ∧ ωj

2 [Ti, Tj] ,

⟨ω1,ω2⟩ = ωi
1 ∧ ωj

2 ⟨Ti, Tj⟩ .

Also, we denote the components of the metric ⟨·, ·⟩ in the basis Ti as

gij = ⟨Ti, Tj⟩ .

A clarification is in order here. In some texts on this topic where G is a matrix
group one sees expressions such as ω1∧ω2 with ω1,ω2 two Lie algebra valued forms.
This actually means

ω1 ∧ ω2 = ωi
1 ∧ ωj

2 TiTj ,

where now TiTj is the matrix product. Note that since the matrix product was used
instead of the Lie bracket, ω1 ∧ ω2 is not, in general, a Lie algebra valued form (at
least in g). Then, if ω is a Lie algebra valued 1-form, by the antisymmetry of the
wedge product, one has the relation

ω ∧ ω =
1

2
Jω,ωK .

The Maurer-Cartan form of a group G is the g-valued 1-form θ defined by

θg : TgG → TeG ∼= g

v ↦→ (Lg−1)∗ v ,

where Lg is the left and Rg the right multiplication of G. It satisfies the properties

L∗
gθh = θgh ,

R∗
gθh = Adg−1θhg ,
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and the structural equation

dθ +
1

2
Jθ, θK = 0 .

A G-connection A in a principal G-bundle P π−→ M can be understood as having
a Maurer-Cartan form θx in each fiber Px = π−1(x) for each x ∈ M. Then, if
ıx : Px ↪→ P is the inclusion of the fiber, θx = ı∗xA. Clearly,

R∗
gA = Adg−1A .

The curvature of the connection A is

F = dA+
1

2
JA,AK .

Note that due to the structural equation of the Maurer-Cartan form, the pullback
of the curvature to each fiber ı∗xF = 0 vanishes. Then, F is actually horizontal.

We are interested in G-invariant forms f(F, · · · ,F) on g of the curvature of a
connection. Such forms are closed, hence, they define characteristic cohomology
classes in P . The relevant property for field theory is that they are actually exact
and their antiderivatives are also invariants, in some sense that will be made explicit
later on, and which are obtained by integrating a certain function in the space of
connections of P . These are the contents of the following theorem.

Theorem 9 (Chern-Simons [46]). Let f be an invariant symmetric multilinear map
f : gk → R with k ∈ N and A a connection on a principal G-bundle P over M.
Write At = tA and

Ft = dAt +
1

2
JAt,AtK .

Then, the (2k − 1)-form ωk(A) ∈ Ω2k−1(P ) defined by

ωk(A) := k

∫︂ 1

0

f(A,Ft, · · · ,Ft)dt ,

satisfies

f(F, · · · ,F) = dωk(A) .

The proof and further considerations can be found in [46], [48].

Let us continue the construction of the action in the particular case of a 3-
dimensional manifold M (hence k = 2), where ωCS := ω2 is called the (3-dimensional)
Chern-Simons form. Since ωCS ∈ Ω3(P ) is a form in the principal bundle P , in order
to proceed with the variational treatment we would like to pull it back and integrate
it on M first. For simplicity, let us restrict the discussion to trivializable bundles
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P , for which global sections exist (a similar result exists for general bundles). Let
σ : M → P be a section and define

SCS(σ,A) =

∫︂
M
σ∗ωCS(A) .

We need to understand how this quantity depends on the section chosen.

A gauge transformation is a fiber preserving map φ : P → P , which can be
characterized by a map g : P → G defined by φ(p) = p◁ g(p), where ◁ denotes the
right action of the bundle. Any two sections σ1,2 : M → P are related by a gauge
transformation φ21 according to σ2 = φ21 ◦ σ1, hence the action changes as

SCS(σ2,A) = SCS(φ21 ◦ σ1,A) = SCS(σ1, φ
∗
21A) ,

so we need to compute the pullback of the connection by a gauge transformation.
Since

φ∗A = Adg−1A+ g∗θ ,

φ∗F = Adg−1F ,

we get

φ∗ωCS(A) = ωCS(A) + d⟨Adg−1A, g∗θ⟩ − 1

6
⟨g∗θ, Jg∗θ, g∗θK⟩ .

Then,

SCS(φ ◦ σ,A) = SCS(σ,A)− 1

6

∫︂
M
⟨g∗θ, Jg∗θ, g∗θK⟩ ,

so that the difference between the actions induced by two different sections is the
integral of g∗ωCS(θ) ∈ Ω3(M). At this point, the usual requirement for the metric
⟨·, ·⟩ is that for any closed 3-submanifold X ⊂ G of G, the integral [49], [50]∫︂

X

ωCS(θ) ∈ Z ,

is an integer. In the end this means that

SCS(A) = SCS(σ,A) (mod 1) .

Hence, SCS(A) is an invariant in R/Z.

The construction of the invariant action can be extended to any odd dimension
2k−1 by choosing an appropriate f : gk → R. Then, since f(F, · · · ,F) is a 2k-form,
its antiderivative will be the (2k − 1)-dimensional Chern-Simons form.

Let us now consider the particular case of the function f(A,B) = ⟨A,B⟩ (which
is indeed invariant since ⟨·, ·⟩ is) in a 3-dimensional M. By Theorem 9, f(F,F) =
⟨F,F⟩ is exact and its antiderivative is

ωCS(A) = 2

∫︂ 1

0

f(A,Ft)dt = 2

∫︂ 1

0

⟨A, tdA+
t2

2
JA,AK⟩dt = ⟨A,dA+

1

3
JA,AK⟩ .
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From now on, denote by A ∈ Ω(M)⊗g a g-valued connection 1-form on M (rather
than a connection on P ). The (3-dimensional) Chern-Simons action is

SCS(A) =
1

2

∫︂
M
⟨A,dA+

1

3
JA,AK⟩ . (3.7)

Note that, although the global factor is determined by the integrality requirement
for the metric, in the variational approach it is unimportant since it does not affect
the field equations. Nevertheless, we follow the convention used in, for instance [51],
with a global factor of 1

2
. In components, the action reads

SCS(A) =
1

2

∫︂
M
gij

(︃
Ai ∧ dAj +

1

3
f j

klA
i ∧Ak ∧Al

)︃
,

where f j
kl are the structure constants of g in the chosen basis Ti and [Ti, Tj] = fk

ij Tk.

Varying the action with respect to the field A we obtain

d

dϵ
SCS(A+ ϵδA)

⃓⃓⃓
ϵ=0

=

∫︂
M
gijδA

i ∧ Fj ,

hence the equations of motion are

Fi = 0 , (3.8)

where Fi = dAi + 1
2
f i

jkA
j ∧Ak is the curvature of Ai.

The configuration space is Q = C∞ (Σ)3 × Ω1 (Σ)3 and the Chern-Simons La-
grangian is

LCS(v) =

∫︂
Σ

gij
(︁
2Ai

tF
j − Ai ∧ vjA

)︁
(3.9)

Note that the action depends on the choice of the Lie algebra g (or equivalently,
Lie group G) and the choice of an invariant non-degenerate metric. The requirement
that the metric is non-degenerate yields an action with kinetic terms for all the
components Ai of the field, while requiring invariance of the metric yields a gauge
invariant action.

3.2.1 Variations on the Chern-Simons action

It turns out that a wide variety of theories can be written in the simple Chern-
Simons form (3.7). The trick is to write the g-valued 1-form A in a certain basis Ti
of g with the components in that basis being 1-forms [51], [52].

We say that a group G is inhomogeneous if we can decompose it as G = H ×
N , where N is an Abelian normal subgroup and H a closed subgroup such that
N ∩H = {Id}, in that case we write G = H ⋉ N and call it a semidirect product.
Consider the particular case of the canonical inhomogeneous group IG = G ⋉ g∗ ∼=
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T ∗G associated with any Lie group G, where the dual of the Lie algebra g∗ is to be
thought as an Abelian group in the addition operation. The inhomogeneous algebra
is ig = g⊕ g∗ and its Lie bracket is given by

[(v, α), (w, β)]g⊕g∗ = ([v, w], [w, α]g∗ − [v, β]g∗) , v, w ∈ g , α, β ∈ g∗ ,

where

[v, α]g∗ = α([v, ·]) ∈ g∗ .

From now on, the subscript of the brackets indicating the algebra in which they are
defined will not be indicated since there will be no room for confusion. Choosing
the basis Ji of g and the basis P i of the dual g∗, with the convention that by Ji, P i

we mean (Ji, 0), (0, P
i) ∈ ig respectively, we have

[P i, P j] = 0 , [P i, Jj] = f i
jkP

k , [Ji, Jj] = f k
ij Jk ,

where f i
jk are the structure constants of g. In IG there is a canonical invariant

metric determined by

⟨P i, P j⟩ = 0 , ⟨Ji, Jj⟩ = 0 , ⟨P i, Jj⟩ = ηij . (3.10)

Since the P i form an Abelian ideal, the elements of g∗ can be interpreted as
the generators of ‘translations’, while the elements of g can be interpreted as the
generators of ‘rotations’. Note that by construction, there is the same number
of generators for the translations than rotations. This is not usually the physical
case, where one uses the Poincaré group (or inhomogeneous Lorentz group) in d+1

dimensions defined by

ISO(1, d) := SO(1, d)⋉Rd .

Only in the particular case of d = 3, where dimSO(1, 2) = dimR3 = 3, the canon-
ical inhomogeneous Lorentz group and the Poincaré group coincide ISO(1, 2) =

ISO(1, 2).

We can write a ig-valued 1-form A in the mentioned basis A = eiP
i+ωiJi, with

ei,ω
i ∈ Ω1(M) for i = 1, . . . , dim g. Then,

JA,AK =2
(︁
ei ∧ ej[P

i, P j] + 2ei ∧ ωj[P i, Jj] + ωi ∧ ωj[Ji, Jj]
)︁

=2
(︁
2ei ∧ ωjf i

jkP
k + ωi ∧ ωjf k

ij Jk
)︁
,

1

3
⟨A, JA,AK⟩ =2

3

(︁
2el ∧ ei ∧ ωjf i

jk ⟨P l, P k⟩+ el ∧ ωi ∧ ωjfk
ij ⟨P l, Jk⟩

+ 2ωl ∧ ei ∧ ωjf i
jk ⟨Jl, P k⟩+ ωl ∧ ωi ∧ ωjfk

ij ⟨Jl, Jk⟩
)︁
,

⟨A,dA⟩ =ei ∧ dej⟨P i, P j⟩+ ei ∧ dωj⟨P i, Jj⟩
+ ωi ∧ dej⟨Ji, P j⟩+ ωi ∧ dωj⟨Ji, Jj⟩ .
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By using the metric (3.10) then the IG-Chern-Simons action (3.7) becomes

SCS(e,ω) =
1

2

∫︂
M

ei ∧ dωi + ωi ∧ dei +
2

3
3f i

jk ei ∧ ωj ∧ ωk

=

∫︂
M

ei ∧
(︁
dωi + f i

jkω
j ∧ ωk

)︁
=

∫︂
M

ei ∧ Fi .

The term

S3-P(e,ω) =

∫︂
M

ei ∧ Fi , (3.11)

is the G-Cartan-Palatini action in 3 dimensions. Hence, the G-Cartan-Palatini theory
is equivalent to the IG-Chern-Simons theory.

There is another interesting construction from a Lie group G. Denote λg = g⊕g∗

equipped with the Lie bracket

[P i, P j] = λf ijkJk , [P
i, Jj] = f i

jkP
k , [Ji, Jj] = f k

ij Jk . (3.12)

Note that this is no longer an inhomogeneous algebra, but the previous ig is recovered
for λ = 0. Then, the group λG is the image under the exponential map of λg. A
shortcoming of this construction is that for λ = 0, if the exponential map is not
surjective, one does not recover the original group.

In addition to the metric (3.10), for λ ̸= 0, in this algebra there also exists the
(non-degenerate) metric

⟨P i, P j⟩ = λ ηij , ⟨Ji, Jj⟩ = ηij , ⟨P i, Jj⟩ = 0 . (3.13)

Note that this is not a metric on ig because, if λ = 0, then the bilinear form becomes
denegerate.

We then have two choices of metric when writing the λG−Chern-Simons action.
If we use the metric (3.10), we obtain

SΛ(e,ω) =

∫︂
M

(︃
ei ∧ Fi +

λ

6
fijk e

i ∧ ej ∧ ek
)︃
,

which is the G-Cartan-Palatini action with the addition of a cosmological constant
term. On the other hand, using the metric (3.13) one obtains the so-called Witten’s
exotic action [52]

SExotic(e,ω) =

∫︂
M

(︃
λei ∧

(︁
dei + 2f i

jkω
j ∧ ek

)︁
+ ωi ∧

(︃
dωi +

2

3
f i

jkω
j ∧ ωk

)︃)︃
.

Note that since both (3.10) and (3.13) are metrics, one can consider a more
general metric given by

⟨P i, P j⟩ = µ1η
ij , ⟨Ji, Jj⟩ = µ2η

ij , ⟨P i, Jj⟩ = µ3η
ij ,
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where µ1, µ2, µ3 ∈ R are constants. By changing from the basis (Ji, Pi) to the new
basis (Ji, Ti) where Ti = Pi +

q
2
Ji with q constant, the algebra and metric read

⟨T i, T j⟩ = σ1η
ij , ⟨Ji, Jj⟩ = σ2η

ij , ⟨T i, Jj⟩ = σ3η
ij ,

[T i, T j] = f ij
k

(︁
qT k + pJk

)︁
, [T i, Jj] = f i

jkT
k , [Ji, Jj] = fijk J

k ,

where the new constants are related to the old ones by

σ1 = µ1 +
q2

4
µ2 + qµ3 ,

σ2 = µ2 ,

σ3 = µ3 +
q

2
µ2 ,

p = λ− q2

4
,

(3.14)

with the additional condition required by the invariance of the metric (3.6) given by

⟨[Ji, T j], T k⟩+ ⟨Ji, [T j, T k]⟩ = 0 ,

which is equivalent to

σ1 = pσ2 + qσ3 .

It is straightforward to check that by using the relations (3.14), this condition trans-
lates to

µ1 = λµ2 .

Using this basis to write A = ωiJi+eiT
i in the Chern-Simons action (3.7) leads

to the most general gravitational action in 3 dimensions, first introduced by Mielke
and Baekler [53], [54]

SMB(e,ω) =

∫︂
M

(︁
σ1ei ∧Dei + σ2ωi ∧

(︃
dωi +

1

3
[ω,ω]i

)︃
+ 2σ3ei ∧ Fi +

σ4
3
fijke

i ∧ ej ∧ ek
)︁
.

Similarly, one can obtain the Husain action [55] by using a deformation (different
from the λ deformation presented before although we use the same symbol) of the
group ISO(2), whose algebra has generators Pi, J , i = 1, 2. The deformation consists
in making the generators of the transations P i non-commuting

[P i, P j] = λϵijJ , [J, P i] = ϵijP
j ,

with the metric

⟨P i, P j⟩ = λ δij , ⟨J, J⟩ = 1 , ⟨P i, J⟩ = 0 .
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Note that for λ = 0 we recover the algebra iso(2), while for λ > 0 and λ < 0 it is
isomorphic to so(3) and so(2, 1), respectively. If we write A = ωJ +eiP

i we get the
action

SHusain(e,ω) =

∫︂
M

ω ∧ dω + λei ∧
(︁
dei − ϵijω ∧ ej

)︁
.

This action is interesting on its own and we study it in detail in Appendix C.
The reason why this is a relevant model is that it describes 2-geometries (surfaces
modulo diffeomorphisms) of constant curvature. Moreover, in some sense, it is a
2 + 1 dimensional version of the Husain-Kuchař action (that will be discussed in
Section 3.3), which is a theory of 3-geometries.

3.2.2 Hamiltonian analysis

We start by computing the fiber derivative (2.3) of the Lagrangian (3.9)

FLCS(v)(w) = −
∫︂
Σ

gijA
i ∧ wj

A .

This defines the canonical momenta

pAt(w) = 0 ,

pA(w) = −
∫︂
Σ

gijA
i ∧ wj .

Clearly, FLCS : TQ −→ T ∗Q is not an diffeomorphism, hence the system is singular.

The energy (2.4) is

ELCS(v) = −2

∫︂
Σ

gijA
i
tF

j , (3.15)

and, hence, the Hamiltonian (2.5) is

H(p) = −2

∫︂
Σ

gijA
i
tF

j ,

and its differential

dH(Y) = −2

∫︂
Σ

gij
(︁
Y i
At
F j −DAi

t ∧ Y
j
A

)︁
. (3.16)

Notice that the energy is independent of the velocities and the Hamiltonian is inde-
pendent of the momenta.

The canonical symplectic form of T ∗Q is

Ω (Z,Y) = YAt(ZAt)− ZAt(YAt) +YA(ZA)− ZA(YA) ,
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and its pullback to the primary constraint submanifold Q is

ω (Z,Y) = 2

∫︂
Σ

gijZ
i
A ∧ Y j

A . (3.17)

Equating (3.16) and (3.17) tells us that the submanifold where the Hamiltonian
equation (2.6) has solutions is characterized by

F i = 0 .

and the Hamiltonian vector field of H is given by

Zi
A = DAi

t ,

while Zi
At

remains undetermined. We still need to check tangency to the constraint
submanifold. This is easily done

ıZdF i = DZi
A = D2Ai

t = f i
jkF

jAk
t = 0 ,

which are automatically satisfied, hence we do not need any further constraints.

3.2.3 Lagrangian analysis

Since the configuration space for the Chern-Simons Lagrangian (3.9) is

Q = C∞ (Σ)3 × Ω1 (Σ)3 ,

we can use the STL simplification described in Section 2.3. Then, a typical vector
field at a point v ∈ TQ is of the form

Xv =
(︁
XAt , XA, XvAt

, XvA

)︁
∈ TvTQ .

The presymplectic form (2.7) is

ωLCS (Z,Y) = 2

∫︂
Σ

gijZ
i
A ∧ Y j

A ,

hence, its kernel is obviously given by

kerωLCS = {X ∈ X(TQ) | XA = 0} .

Now we find the constraints as per the STL version of the GNH algorithm. By
Proposition 4, and since

ıX

(︂
dELCS

)︂
= −2

∫︂
Σ

gij
(︁
X i

At
F j + Ai

tDX
j
A

)︁
= −2

∫︂
Σ

gijX
i
At
F j ,

one concludes that the submanifold S1 is given by the constraints

F i = 0 .
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Next, we apply Proposition 7 by computing the constraint (2.14). The condition
in X is empty and since YA = 0, ıXıY (ωLCS)v = 0 is automatically satisfied. Then,
solving the Hamiltonian equation (2.11) together with the second order condition
gives

DAi
t = viA ,

Zi
At

+ Y i
At

= viAt
.

One still needs to check the tangency conditions, which is done in the same way as
in Subsection 3.2.2 since the expressions involved are identical.

3.2.4 Equations of motion analysis

We are now going to use the equations of motion method described in Section
2.4. We need to compute (2.17) for the Chern-Simons equations of motion (3.8).
Decomposing it as described in Appendix A one obtains

Fi = dt ∧
(︁
L∂tA

i − dAi
t

)︁
+ dAi +

1

2
ϵijk
(︁
dtAj

t +Aj
)︁
∧
(︁
dtAk

t +Ak
)︁

= dAi +
1

2
ϵijkA

j ∧Ak + dt ∧
(︁
L∂tA− dAt − ϵijkA

j ∧Ak
t

)︁
= DAi + dt ∧

(︁
L∂tA

i −DAi
t

)︁
= Fi + dt ∧

(︁
L∂tA

i −DAi
t

)︁
.

Then, extracting the adapted components and projecting them to Σ, we obtain the
constraints

F i = 0 ,

and the equations for the Hamiltonian vector field

Zi
A = DAi

t .

The constraints and the expression of the Hamiltonian vector field are identical to
the ones obtained previously. Hence, the tangency analysis is identical to the one
discussed in Subsection 3.2.2 and the implementation of the second order condition
follows as in Subsection 3.2.3.

3.3 Husain-Kuchař

Let M be an orientable 4-dimensional manifold. Let ei be 3 linearly independent
1-forms and Fi = dωi+ 1

2
ϵijkω

j ∧ωk the curvature of an SO(3) connection ωi. The
Husain-Kuchař action proposed in [56] is

SHK (e,ω) =

∫︂
M
ϵijke

i ∧ ej ∧ Fk , (3.18)
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where ϵijk is an SO(3) volume form. This action is invariant under diffeomorphisms
of M and under SO(3) gauge transformations.

Taking variations of the action with respect to the fields gives

d

dϵ
SHK(e+ ϵδe,ω + ϵδω)

⃓⃓⃓
ϵ=0

=

∫︂
M
ϵijk

(︂
2δei ∧ ej ∧ Fk + ei ∧ ej ∧D(δωk)

)︂
=

∫︂
M
ϵijk

(︂
2δei ∧ ej ∧ Fk −D

(︁
ei ∧ ej

)︁
∧ δωk

)︂
,

hence the equations of motion are

ϵijke
j ∧Dek = 0 ,

ϵijke
j ∧ Fk = 0 .

(3.19)

The action (3.18) is structurally very similar to the Cartan-Palatini action (3.32)
which will be studied in Section 3.4, however, the subtle but big difference between
the two is the internal group, which in the Cartan-Palatini case is SO(1, 3) rather
than SO(3). A direct consequence of this is the fact that we only have 3 linearly in-
dependent 1-forms ei in a 4-dimensional manifold, that is, we do not have a coframe.
We can still build a 3-metric γ by taking γ = δije

i ⊗ ej, which is degenerate. An-
other possible construction form the ei is the vector density (actually defined as an
element of the double dual)

U(·) =

(︄
· ∧ ϵijkei ∧ ej ∧ ek

vol

)︄
,

which characterises the degenerate directions of γ, since it satisfies U(ei) = ıUe
i = 0

and hence

γ(U, ·) = δij ıUe
i ej = 0 .

If we take the interior product of Equations (3.19) with the distinguished vector
field U , we get the equations

ϵijke
j ∧ ıUDek = 0 ,

ϵijke
j ∧ ıUFk = 0 ,

which by using Lemma 21 of Appendix B, are equivalent to

ıUDek = 0 ,

ıUF
k = 0 .

By making use of ıUei = 0, these are equivalent to

0 = ıUDei = ıU

(︃
dωi +

1

2
ϵijkω

j ∧ ωk

)︃
= LUω

i − dıUω
i + ϵijkıUω

jωk

= LUω
i −D

(︁
ıUω

i
)︁
,

0 = ıUF
i = ıU

(︁
dei + ϵijkω

j ∧ ek
)︁
= LUe

i + ϵijkıUω
j ∧ ek ,
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and by identifying τ i := ıUω
i, we can write

LUω
i = Dτ i ,

LUe
i = −ϵijkτ jek .

Thus, Lie-dragging the fields ei,ωi along the direction of U is equivalent to perform-
ing an SO(3) gauge transformation on them with parameter τ i. Since the 3-metric
is just γ = ei ⊗ ei, it will remain invariant under Lie-dragging along the integral
curves of U , since

LUγ = LUei ⊗ ei + ei ⊗ LUe
i = −ϵijkτ jek ⊗ ei − ei ⊗ ϵijkτ

jek = 0 .

Hence, this model describes 3-geometries, i.e. metrics on a 3-manifold, modulo
diffeomorphisms.

The Lagrangian defined in TQ is

LHK(v) =

∫︂
Σ

(︁
2ϵijke

i
te

j ∧ F k + ϵijke
i ∧ ej ∧

(︁
vkA −DAk

t

)︁)︁
, (3.20)

with the configuration space being Q = C∞(Σ)3 × Ω1(Σ)3 × C∞(Σ)3 × Ω1(Σ)3.

3.3.1 Hamiltonian analysis

The fiber derivative (2.3) of the Lagrangian (3.20) is

FLHK(v)(w) =

∫︂
Σ

ϵijke
i ∧ ej ∧ wk

A ,

then the canonical momenta are given by

pet = 0 ,

pe = 0 ,

pAt = 0 ,

pA(w) =

∫︂
Σ

ϵijke
i ∧ ej ∧ wk

A ,

and define the primary constraint submanifold Q of T ∗Q. Clearly, FLHK : TQ −→
T ∗Q is not a diffeomorphism, hence the system is singular.

The canonical symplectic form of T ∗Q is

Ω(Z,Y) =YAti
(Zi

At
)− ZAti

(Y i
At
)+YAi

(Zi
A)−ZAi

(Y i
A) (3.21)

+Yeti(Z
i
et)−Zeti(Y

i
et)+ Yei(Z

i
e)− Zei(Y

i
e ) , (3.22)

and its pullback to the primary constraint manifold Q is

ω(Z,Y) = 2

∫︂
Σ

ϵijk
(︁
Y i
e ∧ Zj

A − Y i
A ∧ Zj

e

)︁
∧ ek . (3.23)
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The energy (2.4) is

ELHK =

∫︂
Σ

(︁
ϵijke

i ∧ ej ∧DAk
t − 2ϵijke

i
te

j ∧ F k
)︁
, (3.24)

and since it does not depend on the momenta, as in the Chern-Simons case in
equation (3.15), the Hamiltonian (2.5) can be written with the same expression as
(3.24):

H =

∫︂
Σ

(︁
ϵijke

i ∧ ej ∧DAk
t − 2ϵijke

i
te

j ∧ F k
)︁
.

Then,

dH(Y) =
∫︂
Σ

(︂
2ϵijkY

i
e ∧ ej ∧DAk

t + ϵijke
i ∧ ej ∧

(︁
DY k

At
+ ϵklmY

l
AA

m
t

)︁
− 2ϵijkY

i
ete

j ∧ F k − 2ϵijke
i
tY

j
e ∧ F k − 2ϵijke

i
te

jDY k
A

)︂
= 2

∫︂
Σ

(︂
Y i
etϵijke

j ∧ F k − Y i
At
ϵijkDe

j ∧ ek

+ Y i
e ∧ ϵijk

(︁
ej ∧DAk

t + ejtF
k
)︁

− Y i
A ∧ ϵijk

(︁
D(eite

j)− ei ∧ ejAtj

)︁ )︂
.

(3.25)

Comparing (3.23) and (3.25) for all Y, leads to the set of contraints

CF i := ϵijke
j ∧ F k = 0 ,

Cei := ϵijke
j ∧Dek = 0 ,

(3.26)

and equations for the Hamiltonian vector field

ϵijkZ
j
A ∧ ek = ϵijk

(︁
ej ∧DAk

t + ejtF
k
)︁
, (3.27a)

ϵijkZ
j
e ∧ ek = ϵijkD(ejte

k)− ei ∧ ejAtj . (3.27b)

The solution to (3.27a) is directly given by Lemma 13

Zi
A =

(︄
ej ∧ ϵjkl

(︁
ek ∧DAl

t + ektF
l
)︁

2 vole

)︄
ei −

(︄
ei ∧ ϵjkl

(︁
ek ∧DAl

t + ektF
l
)︁

vole

)︄
ej

=ϵjkl

(︃
ej ∧ ek ∧DAl

t

2 vole

)︃
ei + ϵjkle

k
t

(︃
ej ∧ F l

2 vole

)︃
ei

− ϵjkl

(︃
ei ∧ ek ∧DAl

t

vole

)︃
ej − ϵjkle

k
t

(︃
ei ∧ F l

vole

)︃
ej

=
1

2
ϵjklϵ

jkm
(︁
DAl

t

)︁
m
ei − ϵjklϵ

ikm
(︁
DAl

t

)︁
m
ej − ϵjkle

k
t

(︃
ei ∧ F l

vole

)︃
ej

=
1

2
2
(︁
DAl

t

)︁
l
ei −

(︂(︁
DAl

t

)︁
l
ei −

(︁
DAi

t

)︁
j
ej
)︂
− ϵjkle

k
t

(︃
ei ∧ F l

vole

)︃
ej

=DAi
t + ϵjkl

(︃
ei ∧ F j

vole

)︃
ekt e

l .
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Likewise, the solution to (3.27b) is

Zi
e =

(︄
ej ∧

(︁
ϵjklD(ekt e

l)− ej ∧ ekAtk

)︁
2 vole

)︄
ei −

(︄
ei ∧

(︁
ϵjklD(ekt e

l)− ej ∧ ekAtk

)︁
vole

)︄
ej

=ϵjkl

(︃
ej ∧Dekt ∧ el

2 vole

)︃
ei + ϵjkle

k
t

(︃
ej ∧Del

2 vole

)︃
ei − Atk

(︃
ej ∧ ej ∧ ek

2 vole

)︃
ei

− ϵjkl

(︃
ei ∧Dekt ∧ el

vole

)︃
ej − ϵjkle

k
t

(︃
ei ∧Del

vole

)︃
ej + Atk

(︃
ei ∧ ej ∧ ek

vole

)︃
ej

=
1

2
ϵjklϵ

jml
(︁
Dekt

)︁
m
ei − ϵjklϵ

iml
(︁
Dekt

)︁
m
ej − ϵjkle

k
t

(︃
ei ∧Del

vole

)︃
ej + ϵijkA

k
t e

j

=
1

2
2
(︁
Dekt

)︁
k
ei −

(︁
Dekt

)︁
k
ei +

(︁
Deit

)︁
j
ej − ϵijkA

j
te

k + ϵjkl

(︃
ei ∧Dej

vole

)︃
ekt e

l

=Deit − ϵijkA
j
te

k + ϵjkl

(︃
ei ∧Dej

vole

)︃
ekt e

l .

The components that do not appear in the equations are not fixed so far. In sum-
mary, the Hamiltonian vector field is

Zi
A = DAi

t + ϵjkl

(︃
ei ∧ F j

vole

)︃
ekt e

l ,

Zi
e = Deit − ϵijkA

j
te

k + ϵjkl

(︃
ei ∧Dej

vole

)︃
ekt e

l ,

Zet , ZAt arbitrary .

(3.28)

One still needs to make sure that the resulting Hamiltonian vector field is tangent
to the solution submanifold by imposing the tangency conditions

0 = ıZdCF = ϵijkZ
j
e ∧ F k + ϵijke

j ∧DZk
A ,

0 = ıZdCe = ϵijkZ
j
e ∧Dek + ϵijke

j ∧DZk
e + ϵijkϵ

k
lme

j ∧ Z l
A ∧ em .

It is very useful to get rid of the terms containing covariant derivatives of the Hamil-
tonian vector field by taking the covariant derivative of expressions (3.27), which
yields

ϵijk
(︁
ej ∧DZk

A + Zj
A ∧Dek

)︁
= −ϵijk

(︁
Dej ∧DAk

t − ϵklme
j ∧ F lAm

t +Dejt ∧ F k
)︁
,

ϵijk
(︁
ej ∧DZk

e + Zj
e ∧Dek

)︁
(3.29)

= −ϵijkϵklmeltF j ∧ em +Dei ∧ ejAtj − ei ∧DejAtj + ei ∧ ej ∧DAtj .

By using (3.29), the expression for the Hamiltonian vector field (3.28) and the
alternative form of the constraints (3.26)

ei ∧ F j − ej ∧ F i = 0 ,

ei ∧Dej − ej ∧Dei = 0 ,

one finds that

ıZdCF = ϵijkZ
j
e ∧ F k − ϵijkZ

j
A ∧Dek
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− ϵijk
(︁
Dej ∧DAk

t − ϵklme
j ∧ F lAm

t +Dejt ∧ F k
)︁

= ϵijk

(︃
Dejt − ϵjlmA

l
te

m + ϵlmp

(︃
ei ∧Del

vole

)︃
emt e

p

)︃
∧ F k

− ϵijk

(︃
DAj

t + ϵlmp

(︃
ei ∧ F l

vole

)︃
emt e

p

)︃
∧Dek

− ϵijk
(︁
Dej ∧DAk

t − ϵklme
j ∧ F lAm

t +Dejt ∧ F k
)︁

= ϵijk
(︁
ϵklmA

m
t e

j ∧ F l − ϵjlmA
l
te

m ∧ F k
)︁

+ ϵijkϵlmpe
m
t

(︃(︃
ej ∧Del

vole

)︃
F k ∧ ep +

(︃
ek ∧ F l

vole

)︃
Dej ∧ ep

)︃
= ϵijkϵ

j
lmA

l
t

(︁
ek ∧ Fm − em ∧ F k

)︁
+ ϵijkϵlmpe

m
t

(︃(︃
ej ∧Del

vole

)︃
F k ∧ ep +

(︃
ep ∧Dej

vole

)︃
F l ∧ ek

)︃
= ϵijkϵlmpe

m
t

(︃
ej ∧Del

vole

)︃(︁
F k ∧ ep − F p ∧ ek

)︁
= 0 ,

ıZdCe = −ϵijkϵklmeltF j ∧ em +Dei ∧ ejAtj − ei ∧DejAtj + ei ∧ ej ∧DAtj

+ ϵijkϵ
k
lme

j ∧ Z l
A ∧ em

=
(︁
Dei ∧ ej − ei ∧Dej

)︁
Atj + ei ∧ ej ∧DAtj − ϵijkϵ

k
lme

l
tF

j ∧ em

+ ϵijkϵ
k
lme

j ∧
(︃
DAl

t + ϵpqr

(︃
el ∧ F p

vole

)︃
eqte

r

)︃
∧ em

= ei ∧ ej ∧DAtj + ej ∧DAti ∧ ej − ej ∧DAtj ∧ ei

+ ϵijkϵ
k
lm

(︃
ϵpqr

(︃
el ∧ F p

vole

)︃
eqte

j ∧ er ∧ em − eltF
j ∧ em

)︃
= ϵijkϵ

k
lm

(︁
ϵpqrϵ

jrmeqte
l ∧ F p − eltF

j ∧ em
)︁

= ϵijkϵ
k
lm

(︁
ejte

l ∧ Fm − emt e
l ∧ F j − eltF

j ∧ em
)︁

= ϵijkϵ
k
lme

l
t

(︁
em ∧ F j − F j ∧ em

)︁
= 0 ,

hence, Z is already tangent to the constraint submanifold and there are no further
secondary constraints.

3.3.2 Lagrangian analysis

Since the configuration space for the Husain-Kuchař Lagrangian (3.20) is Q =

C∞(Σ)3 × Ω1(Σ)3 × C∞(Σ)3 × Ω1(Σ)3, we can use the STL simplification described
in Section 2.3. Then, a typical vector field at a point v ∈ TQ is of the form

Xv =
(︁
XAt , XA, Xet , Xe, XvAt

, XvA , Xvet
, Xve

)︁
∈ TvTQ .
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The symplectic form (2.7) is

ωLHK(Z,Y) = 2

∫︂
Σ

ϵijk
(︁
Y i
e ∧ Zj

A − Y i
A ∧ Zj

e

)︁
∧ ek . (3.30)

Clearly, its kernel is given by the vectors satisfying

ϵijke
j ∧ Zk

e = 0 ,

ϵijke
j ∧ Zk

A = 0 ,

which by Lemma 13 of Appendix B is equivalent to

kerωLHK = {X ∈ X(TQ) | XA = Xe = 0} .

Then, for vectors X ∈ kerωL contracted with the differential of the energy (3.24)
gives

ıXdELHK =

∫︂
Σ

(︁
ϵijke

i ∧ ej ∧DXk
At

− 2ϵijkX
i
ete

j ∧ F k
)︁

=− 2

∫︂
Σ

(︁
X i

At
ϵijkDe

j ∧ ek +X i
etϵijke

j ∧ F k
)︁
. (3.31)

According to Proposition 4, the submanifold S1 where (3.31) vanishes for all X ∈
kerωL is then given by the constraints

ϵijkDe
j ∧ ek = 0 ,

ϵijke
j ∧ F k = 0 .

The condition (2.14) on X in Proposition 7 is satisfied by all X ∈ X(TQ), hence
we just need to ensure that ıYωLHK = 0 for a vector field Y such that J(Z+Y) = V
with Z being a solution to (2.11). But, by the explicit form of (3.30) and Lemma
13 again, one must conclude that given a solution Z, the constraint submanifold S2

is determined by

ve = Ze ,

vA = ZA .

The Hamiltonian equations (2.11) are

ϵijkZ
j
A ∧ ek = ϵijk

(︁
ej ∧DAk

t + ejtF
k
)︁
,

ϵijkZ
j
e ∧ ek = ϵijkD(ejte

k)− ei ∧ ejAtj ,

which are identical to the ones found in Subsection 3.3.1, hence their resolution and
tangency analysis are the same.
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3.3.3 Equations of motion analysis

We are now going to use the equations of motion method described in Section 2.4.
We need to compute (2.17) for the equations of motion (3.19). Decomposing the
equations of motion with the help of (A.3) and (A.4), we get

ϵijke
j ∧Dek = ϵijke

j ∧Dek

+ dt ∧ ϵijk
(︁
ejtDek − ej ∧ L∂te

k + ej ∧Dekt − ϵklmA
l
te

j ∧ em
)︁
,

ϵijke
j ∧ Fk = ϵijke

j ∧ Fk + dt ∧ ϵijk
(︁
ejtF

k − ej ∧ L∂tA
k + ej ∧DAk

t

)︁
.

Then, extracting the adapted components and projecting them onto Σ, we obtain
the constraints

ϵijke
j ∧Dek = 0 ,

ϵijke
j ∧ F k = 0 ,

and the equations for the Hamiltonian vector field

ϵijke
j ∧ Zk

e = ϵijke
j
tDe

k + ϵijke
j ∧
(︁
Dekt − ϵklmA

l
te

m
)︁
,

ϵijke
j ∧ Zk

A = ϵijke
j
tF

k + ϵijke
j ∧DAk

t .

The resolution to the equations and the consistency conditions are identical to those
discussed in Subsection 3.3.1.

3.4 Cartan-Palatini action

The Einstein-Hilbert action [4], [57]

SEH(g) =

∫︂
M
R volg ,

which depends on a metric g and where R is the Ricci curvature scalar (computed
using the Levi-Civita connection), whose equations of motion are Einstein’s field
equations was proposed in an effort to be able to obtain General Relativity from
a variational principle. Although it was successful, the equations obtained through
this method are second-order partial differential equations. This could be solved
by promoting the connection to an independent field instead of forcing it to be
the Levi-Civita connection of the metric. In this way, the equations for both the
metric and the connection become first order. This achieves an effect similar to the
standard technique of splitting a second order differential equation into two first-
order differential equations. Both actions are equivalent because the equation for
the connection forces it to be precisely the Levi-Civita one and the other becomes
Einstein’s equations. A further version of the action was developed by Einstein and
Weyl [58], [59], who introduced Cartan’s idea of moving frames into the theory by
replacing the metric by a tetrad as independent dynamical variables.
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By using a tetrad and considering the connection as an independent variable, one
obtains the Cartan-Palatini action. Besides yielding first order equations, this action
for General Relativity shares some similarities with the very important Yang-Mills
actions for gauge theories. In some sense, General Relativity can then be understood
as a SO(1, 3) gauge theory. The tetradic modern form of the action is

SCP(e,ω) =

∫︂
M
ϵIJKLe

I ∧ eJ ∧ FKL , (3.32)

where FIJ = dωIJ +ωI
K ∧ωKJ is the curvature of an SO(1, 3) connection ωIJ and

eI is a tetrad.

The variations of the action (3.32) give the equations

ϵIJKLe
I ∧DeJ = 0 ,

ϵIJKLe
J ∧ FKL = 0 .

(3.33)

For nondegenerate tetrads eI , the previous equations can be reduced [60], [61],
by using Lemma 20 of Appendix B, to

DeI = 0 , (3.34)

ϵIJKLe
J ∧ FKL = 0 . (3.35)

Equation (3.34) implies that the affine connection defined by ωIJ and eI is
torsionless and equations (3.35) are equivalent to Einstein’s field equations. In this
way we recover General Relativity.

The configuration space is then

Q = C∞(Σ)4 × Ω1(Σ)4 × C∞(Σ)6 × Ω1(Σ)6 ,

and the Lagrangian is defined by

LCP(v) =

∫︂
Σ

ϵIJKL

(︁
2eIt e

J ∧ FKL + eI ∧ eJ ∧
(︁
vKL
ω −DωKL

t

)︁)︁
. (3.36)

3.4.1 Hamiltonian analysis

The computations done in this subsection are generalized by the analysis of the
parametrized unimodular Holst action in [62]. In order to recover the expressions
for the Palatini action from that paper one must take the limit γ → ∞ and Λ = 0.
We start our analysis by computing the fiber derivative (2.3) of the Lagrangian
(3.36)

FLCP(v)(w) =

∫︂
Σ

ϵIJKL

(︁
eI ∧ eJ ∧ wKL

ω

)︁
,
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which defines the canonical momenta

pω(w) =

∫︂
Σ

ϵIJKL

(︁
eI ∧ eJ ∧ wKL

ω

)︁
,

pe = 0 ,

pet = 0 ,

pωt = 0 .

Clearly, FLCP : TQ −→ T ∗Q is not a diffeomorphism, hence the system is singular.

The Hamiltonian (2.5) is

H(p) =

∫︂
Σ

ϵIJKL

(︁
eI ∧ eJ ∧DωKL

t − 2eIt e
J ∧ FKL

)︁
. (3.37)

The canonical symplectic form of T ∗Q is

Ω(Z,Y) = Ye(Xe)−Xe(Ye) +Yω(Xω)−Xω(Yω)

+Yet(Xet)−Xet(Yet) +Yωt(Xωt)−Xωt(Yωt) ,

and its pullback to the primary constraint manifold

ω(Z,Y) = 2

∫︂
Σ

ϵIJKLe
I ∧
(︁
Y J
e ∧ ZKL

ω − ZJ
e ∧ Y KL

ω

)︁
. (3.38)

We compute the differential of the Hamiltonian (3.37)

dH(Y) =
∫︂
Σ

(︂
− 2Y I

etϵIJKLe
J ∧ FKL (3.39)

− Y IJ
ωt
ϵIJKL ∧D(eK ∧ eL) (3.40)

+ 2Y I
e ∧ ϵIJKL

(︁
eJ ∧DωKL

t + eJt ∧ FKL
)︁

(3.41)

+ 2Y IJ
ω ∧

(︁
ϵIKLMω

K
tJ eL ∧ eM − ϵIJKLD(eKt e

L)
)︁ )︂

. (3.42)

By equating (3.38) and (3.39) one sees that the Hamiltonian equation (2.6) can
only be solved in the submanifold defined by the constraints

ϵIJKLe
J ∧ FKL = 0 ,

ϵIJKLD(eK ∧ eL) = 0 ,
(3.43)

and the Hamiltonian vector field is determined by the equations

ϵIJKLe
J ∧ ZKL

ω = ϵIJKL

(︁
eJ ∧DωKL

t + eJt F
KL
)︁
,

ϵIJKLe
K ∧ ZL

e = ϵIJKLD(eKt e
L)− ϵIKLMω

K
tJ eL ∧ eM .

(3.44)

Note that the components Zωt and Zet are undetermined. A particularity that the
equations (3.44) present is that the internal indices I run from 0 to 3, while the
manifold where they are posed is only 3-dimensional. An effective way to study
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these equations is to separately consider the cases I = 0 and I = i. When doing
this, we make use of ϵijk := ϵ0ijk, where i, j, k = 1, 2, 3. We then get

ϵjkle
j ∧ Zkl

ω = ϵjkl
(︁
ej ∧Dωkl

t + ejtF
kl
)︁
,

ϵijk
(︁
2ej ∧ Z0k

ω − e0 ∧ Zjk
ω

)︁
= ϵijk

(︂
2ej ∧Dω0k

t + 2ejtF
0k − e0 ∧Dωjk

t − e0tF
jk
)︂
,

ϵijke
j ∧ Zk

e = ϵijkD(ejte
k)− ϵjklω

j
ti e

k ∧ el ,
ϵijk
(︁
e0 ∧ Zk

e − ek ∧ Z0
e

)︁
= ϵijkD

(︁
e0t e

k − ekt e
0
)︁
− ϵilm

(︁
−ω 0

tj e
l ∧ em + 2ω l

tj e
0 ∧ em

)︁
.

Note that in the previous expressions, although only spatial indices are visible, the
covariant derivatives (including the curvature) contain sums over all indices, for
instance, F kl = dωkl + ωk

m ∧ ωml + ωk
0 ∧ ω0l. By making use of the constraints

(3.43) and using Lemmas 13, 14 and 15 of Appendix B one is able to solve these
equations to obtain after a lot of work

ZI
e = DeIt − ω I

t Ke
K − 1

2
eIt ϵjkl

(︃
ek ∧Del

vole

)︃
ej − ϵjkle

j
t

(︃
eI ∧Dek

vole

)︃
el ,

Zij
ω = Dωij

t − ϵ k
ij

(︄
τkle

l +
1

4
ϵklmϵ

pqretp

(︄
el ∧ Fqr

vole

)︄
em

)︄
,

Zi0
ω = Dωi0

t − τjk

(︃
ek ∧ ei ∧ e0

vole

)︃
ej

+
1

4
ϵjkle

0
t

(︃
ej ∧ F kl

vole

)︃
ei +

1

2
ϵjkle

j
t

(︃
ek ∧ F l

0

vole

)︃
ei

− 1

2
ϵjkle

0
t

(︃
ei ∧ F kl

vole

)︃
ej + ϵjkle

k
t

(︃
ei ∧ F l

0

vole

)︃
ej

− 1

2
ejt

(︃
ek ∧ Fkl

vole

)︃(︃
ej ∧ el ∧ e0

vole

)︃
ei +

1

4
ejt

(︃
ej ∧ Fkl

vole

)︃(︃
ek ∧ el ∧ e0

vole

)︃
ei

− 1

2
etj

(︃
ek ∧ Fkl

vole

)︃(︃
el ∧ ei ∧ e0

vole

)︃
ej +

1

2
etj

(︃
ej ∧ Fkl

vole

)︃(︃
el ∧ ei ∧ e0

vole

)︃
ek ,

where the τij ∈ C∞(Σ) are arbitrary functions symmetric in ij.

Having obtained these expressions, it is still necessary to check the tangency of
the obtained solution to the constraint submanifold. This can be done as explained
in [62] by taking the appropriate limits. In that process some additional secondary
constraints appear

e(i ∧Dej) = 0 .

Note that these constraints can be easily obtained in a straightforward way by using
the equations of motion method explained in Subsection 3.4.3.

3.4.2 Lagrangian analysis

Since the configuration space of the Lagrangian (3.36) is

Q = C∞(Σ)4 × Ω1(Σ)4 × C∞(Σ)6 × Ω1(Σ)6 ,
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we can use the STL simplification. We must first compute the submanifold given
by Proposition 4. The presymplectic form is

ωLCP(Z,Y) = 2

∫︂
Σ

ϵIJKLe
I ∧
(︁
Y J
e ∧ ZKL

ω − ZJ
e ∧ Y KL

ω

)︁
,

which has the same expression as (3.38), as expected by the discussion in Section
2.5, and its kernel is given by

kerωLCP = {X ∈ X(TQ) | ϵIJKLe
I ∧XJ

e = 0 , ϵIJKLe
J ∧XKL

ω = 0 } .

By splitting indices, the expressions become

ϵijke
0 ∧X i

e − ϵijke
i ∧X0

e = 0 ,

ϵijke
i ∧Xj

e = 0 ,

ϵijke
i ∧Xjk

ω = 0 ,

2ϵijke
j ∧X0k

ω − ϵijke
0 ∧Xjk

ω = 0 ,

and by using Lemmas 14 and 15, we find that these conditions are actually equivalent
to

kerωLCP = {X ∈ X(TQ) | XJ
e = 0 , XKL

ω = 0 } . (3.45)

Likewise, the energy is

ELCP(v) =

∫︂
Σ

ϵIJKL

(︁
eI ∧ eJ ∧DωKL

t − 2eIt e
J ∧ FKL

)︁
,

which has the same expression as (3.37).

Now we use Proposition 4. For any X ∈ kerωLCP , compute

ıXdELCP =

∫︂
Σ

ϵIJKL

(︁
eI ∧ eJ ∧DXKL

ωt
− 2XI

ete
J ∧ FKL

)︁
=−

∫︂
Σ

2ϵIJKL

(︁
eI ∧DeJXKL

ωt
+XI

ete
J ∧ FKL

)︁
.

The points where this vanishes define the submanifold S1, determined by the con-
straints

ϵIJKLe
I ∧DeJ = 0 ,

ϵIJKLe
J ∧ FKL = 0 .

Because of (3.45), one has K = X(TQ), hence (2.14) of Proposition 7 requires

0 =

∫︂
Σ

ϵIJKLe
I ∧
(︁(︁
vJe − ZJ

e

)︁
∧XKL

ω −XJ
e ∧

(︁
vKL
ω − ZKL

ω

)︁)︁
,
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for any X ∈ X(TQ) and Z any solution to (2.11) in S1. Splitting the indices of these
expressions we obtain

ϵIJKLe
I ∧
(︁
vJe − ZJ

e

)︁
∧XKL

ω = ϵijk
(︁
e0 ∧

(︁
vje − Zj

e

)︁
− ei ∧

(︁
v0e − Z0

e

)︁)︁
∧Xkl

ω

+ 2ϵijke
i ∧
(︁
vje − Zj

e

)︁
∧X0k

ω ,

ϵIJKLe
I ∧XJ

e ∧
(︁
vKL
ω − ZKL

ω

)︁
= ϵijk

(︁
2ej ∧

(︁
v0kω − Z0k

ω

)︁
− e0 ∧

(︁
vjkω − Zjk

ω

)︁)︁
∧X i

e

+ ϵijke
i ∧
(︁
vjkω − Zjk

ω

)︁
∧X0

e ,

and since this must vanish for every X, by Lemmas 14 and 15 this implies that the
additional constraints S2 are given by

ZI
e = vIe ,

ZI
ω = vIω ,

which implement the second order condition. Finally, computing (2.11) yields the
equations for the Hamiltonian vector field

ϵIJKLe
J ∧ ZKL

ω = ϵIJKL

(︁
eJ ∧DωKL

t + eJt F
KL
)︁
,

ϵIJKLe
K ∧ ZL

e = ϵIKLMω
K

tJ eL ∧ eM − ϵIJKLD(eKt e
L) .

Since the constraints and equations for the Hamiltonian vector field are identical to
those found in Subsection 3.4.1, their solution and tangency analysis proceed in the
same way.

3.4.3 Equations of motion analysis

We are now going to use the equations of motion method described in Section 2.4.
We need to compute (2.17) for the equations of motion (3.34) and (3.35). As shown
in [61], the equations of motion decompose into

DeI = dt ∧
(︁
vIe −DeIt + ω I

t Je
J
)︁
+DeI ,

ϵIJKLe
J ∧ FKL = ϵIJKLe

J ∧ FKL + dt ∧ ϵIJKL

(︁
eJt F

KL − eJ ∧
(︁
vKL
ω −DωKL

t

)︁)︁
,

hence by extracting the adapted components of these equations we obtain the con-
straints

DeI = 0 ,

ϵIJKLe
J ∧ FKL = 0 ,

and the equations for Z

ZI
e = DeIT − ω I

t J e
J ,

ϵIJKLe
J ∧

(︁
ZKL

ω −DωKL
t

)︁
= ϵIJKLe

J
t F

KL ,
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while Zet , Zωt are arbitrary. The expression of the Hamiltonian vector field and the
tangency analysis proceed in the same way as in Subsection 3.4.1.

It is remarkable how using this method we directly get the constraints DeI = 0

rather than the constraints ϵIJKLD(eK ∧ eL) = 0 obtained in Subsection 3.4.1.
This happened because we were able to find the alternative expression (or partially
solve) (3.34), (3.35) for the equations of motion (3.33). In particular, notice that
the equations ϵIJKLe

I ∧DeJ = 0 are 3-forms in a 4-dimensional manifold with 2 an-
tisymmetric indices, which means that they amount to 24 equations. The equations
DeI = 0 are 2-forms with a free index, which amount to 24 equations again. How-
ever, when taking the pullback of both sets, the number of independent constraints
change. In the former case we now have 3-forms in a 3-dimensional manifold with
2 antisymmetric indices, that is, 6 equations. In the latter case we have 2-forms
with 1 free index, i.e. 12 equations. Of course, since in the first approach there
appear less constraints a priori, when properly performing the GNH analysis, six
more constraints must appear to match the twelve constraints found by the second
approach. This shows that the possibility of rewriting the field equations in different
forms may help find the constraints in a simple and direct way, much simpler, in
fact, that the standard implementation of the GNH procedure (or even the same
field equations method without rewriting the equations).
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Chapter 4

Anti-self-dual action

In the 80s and early 90s there was a particular interest in gravitational theories
of self-dual connections [63]–[65]. Since the self-dual part of the spin connection
equals the connection resulting from the equations of motion of the self-dual action,
one can see that, although self-dual connections have half as many components
as their general counterparts, the self-dual action also yields General Relativity.
Hence, the idea was to use such actions with a reduced number of fields with the
hope of dealing with a simpler theory. However, an unintended consequence of that
approach is the necessity to work with complex fields in order to recover Lorentzian
General Relativity. This gives rise to some hard technical difficulties, in particular,
in order to have real metrics one has to introduce by hand some reality conditions
whose consistency must me checked. Moreover, the Hamiltonian formulation of field
theories defined by complex Lagrangians presents some subtleties and differs in a
significant way from the real case. It is in this sense that real fields are preferred in
these treatments, since they automatically clarify or bypass many difficulties caused
by the presence of complex fields. Because of this, when the real Ashtekar variables
appeared [66], self-dual theories with complex fields were quickly forgone.

The interest for self-dual formulations of General Relativity originated a long
time ago. Plebański introduced in [67] a formulation for General Relativity where
self-dual 2-forms played a central role, which was later seen to be equivalent to
Ashtekar’s formulation [64]. Also, the vacuum Einstein equations were found to
be the condition that the curvature of a self-dual connection is self-dual in [68].
Moreover, Petrov’s classification of spaces [69] heavily relies on self-duality. It is clear
that self-dual connections have a privileged spot in the variational setting for General
Relativity. ith that in mind, it is worth paying some attention to the Euclidean
version of self-dual formulations of General Relativity, which are interesting for a few
reasons. The path integral formulation for the quantization of this type of theories
yields a Gaussian-like probability distribution, which can be computed through a
perturbative expansion [70]. Then, one can attempt to perform a Wick rotation
hoping to recover the Lorentzian version. Also, Donaldson invariants in 4-manifolds
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[71] are interesting from a mathematical point of view and are connected to Yang-
Mills theories. In this chapter, we will retake the study of (anti)-self-dual Euclidean
General Relativity, which is defined in terms of real fields as opposed to its Lorentzian
version, and carefully perform its Hamiltonian analysis.

The internal Hodge dual of an SO(n) or SO(1, n−1) connection ωI
J , depending

on the signature ε = ±1, satisfies(︁
∗2ω

)︁I
J
= εωI

J .

Note that in the Lorentzian case, ∗ is diagonalizable in the complex numbers and
its eigenvalues are ±i, while in the Euclidean case it is diagonalizable in the real
numbers with eigenvalues ±1. This implies that a Lorentzian theory of (anti)-self-
dual fields forces them to be complex, with(︁

∗ω±)︁I
J
= ±i

(︁
ω±)︁I

J
,

for the self-dual sector ω+ and the anti-self-dual sector ω−, while in the Euclidean
case we have (︁

∗ω±)︁I
J
= ±

(︁
ω±)︁I

J
.

Hence the anti-self-dual Euclidean Cartan-Palatini action is

SASD-CP(e,ω) =

∫︂
M
ϵIJKLe

I ∧ eJ ∧
(︁
F−)︁KL

, (4.1)

where (F−)
KL

= d (ω−)
KL

+ (ω−)
K
J ∧ (ω−)

JL, which is very similar to (3.32)
but with the difference that (ω−)

KL is now an anti-self-dual SO(4) connection
(∗ω−)

KL
= − (ω−)

KL, this is,(︁
ω−)︁IJ = −1

2
ϵIJKL

(︁
ω−)︁KL

.

Notice that in this form, the variations of (ω−)
KL only run through the anti-self-dual

connections, which can be an unpleasant restriction to deal with. An alternative
way to write the action (4.1) is

SASD-CP(e,ω) =

∫︂
M
ϵIJKLe

I ∧ eJ ∧ P KL
− MN FMN ,

where FIJ = dωIJ + ωI
K ∧ ωKJ and P KL

− MN is the projector onto the anti-self-
dual sector of so(4). By doing this, the variations of ωIJ can be taken now to be
arbitrary. The full expression of P IJ

± KL is

P IJ
± KL =

1

2

(︁
δIKδ

J
L − δJKδ

I
L ± ϵIJKL

)︁
.

Since (anti)-self-dual connections only have three independent components, this
relation allows us to introduce three 1-forms ωi, i = 1, 2, 3

ωi = 2
(︁
ω−)︁0i ,
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related to the other components of ωIJ by(︁
ω−)︁ij = −1

2
ϵijkω

k .

Hence, one can write (ω−)
IJ — and in general elements of the anti-self-dual sector

of so(4) — as

(︁
ω−)︁IJ =

1

2

⎛⎜⎜⎜⎝
0 ω1 ω2 ω3

−ω1 0 −ω3 ω2

−ω2 ω3 0 −ω1

−ω3 −ω2 ω1 0

⎞⎟⎟⎟⎠ .

This yields the relations(︁
F−)︁0i = 1

2
Fi ,

(︁
F−)︁ij = −1

2
ϵijkF

k ,

where F i is a new curvature defined as Fi = dωi+ 1
2
ϵijkω

j ∧ωk. Similarly, elements
of the self-dual sector of so(4) defined by

BIJ =
1

2
ϵIJKLB

KL .

can be written as

BIJ =

⎛⎜⎜⎜⎝
0 B1 B2 B3

−B1 0 B3 −B2

−B2 −B3 0 B1

−B3 B2 −B1 0

⎞⎟⎟⎟⎠ .

Let us also rename α := e0. Now rewriting the action (4.1) with the new
variables (α, ei,ωi) by splitting the indices in 0 and i = 1, 2, 3 we obtain [72]

SASD(e,ω,α) =

∫︂
M

(︁
ϵijke

i ∧ ej ∧ Fk − 2α ∧ ei ∧ Fi
)︁
. (4.2)

Note that the curvature Fi is the same as in the Husain-Kuchař model studied in
Section (3.3).

Note that we can treat i, j, k as SO(3) indices since the gauge transformation

δΛω
i := (ZΛ)

i
ω = −DΛi ,

δΛα := (ZΛ)α = 0 ,

δΛe
i := (ZΛ)

i
e = −ϵijkejΛk ,

(4.3)

which is a linear combination of a self-dual and anti-self-dual SO(4) transforma-
tions, acts as an SO(3) transformation on the fields. The gauge transformations
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corresponding to the other SO(3) factor (recall that SO(4) = SO(3) ⊗ SO(3)) are
[72]

δτω
i := (Zτ )

i
ω = 0 ,

δτα := (Zτ )α = τie
i ,

δτe
i := (Zτ )

i
e = −τ iα+ ϵijke

jτ k .

(4.4)

We use the Z notation for the gauge transformations since we can interpret them as
vectors in the kernel of the exterior differential of the action, as explained in Chapter
5. It is remarkable that setting α = 0 in (4.2) we obtain exactly the Husain-Kuchař
action (3.18), and that by adding an additional term we arrive at Euclidean General
Relativity.

The equations of motions given by the action (4.2) are

D (α ∧ ek) + ϵijke
i ∧Dej = 0 , (4.5)

ei ∧ Fi = 0 , (4.6)

ϵijke
j ∧ Fk +α ∧ Fi = 0 . (4.7)

It is actually possible to solve equation (4.5) for ωi, yielding the solution

ωi =
1

2

(︄(︁
α ∧ dα− ek ∧ dek

)︁
∧ ei − ϵijke

j ∧ ek ∧ dα

vole

)︄
α

− 1

2

(︃
α ∧ ek ∧ dek + ϵjkle

j ∧ ek ∧ del

vole

)︃
ei

+

(︃
α ∧ ei ∧ dej

vole

)︃
ej + ϵkl(j

(︃
ei) ∧ ek ∧ del

vole

)︃
ej

+
1

2
ϵijk

(︃
α ∧ dα ∧ ek

vole

)︃
ej .

Then, by using this expression in equations (4.6), (4.7), one obtains Einstein’s field
equations.

The Lagrangian obtained from the action (4.2) in the configuration space

Q = C∞(Σ)3 × Ω1(Σ)3 × C∞(Σ)3 × Ω1(Σ)3 × C∞(Σ)× Ω1(Σ) ,

is

LASD(v) =

∫︂
Σ

(︄(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
∧ vkω +D

(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
ωk
t

− 2αtei ∧ F i + 2eit
(︁
ϵijke

j ∧ F k + α ∧ F i
)︁)︄

,

and its fiber derivative (2.3) is

FLASD(v)(w) =

∫︂
Σ

(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
∧ wk

ω .
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Then, the canonical momenta, which define the primary constraint manifold, are

pω(w) =

∫︂
Σ

(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
∧ wk

ω ,

pe = 0 ,

pα = 0 ,

pet = 0 ,

pωt = 0 ,

pαt = 0 .

The Hamiltonian (2.5) is

H(p) = −
∫︂
Σ

(︄
D
(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
ωk
t − 2αtei ∧ F i + 2eit

(︁
ϵijke

j ∧ F k + α ∧ Fi

)︁)︄
,

(4.8)

and its exterior derivative

dH(Y) =

−2

∫︂
Σ

(︂
Yα ∧

(︁
etiF

i + ωtiDe
i − d(ωtie

i)
)︁

+Y i
e ∧

(︁
ϵijk
(︁
ωj
tDe

k +D(ejωk
t + F jekt )

)︁
− ωtidα +D(ωtiα)− αtFi

)︁
+Y i

ω ∧
(︁
D(etiα− αtei + ϵijke

j
te

k) + ej ∧ eiωtj − ϵijkα ∧ ejωk
t

)︁
−Yαtei ∧ F i

+Y i
ωt

(︁
ϵijkDe

j ∧ ek − dα ∧ ei + α ∧Dei
)︁

+Y i
et

(︁
ϵijke

j ∧ F k + α ∧ Fi

)︁ )︂
.

The canonical symplectic form of T ∗Q is

Ω(Z,Y) = Ye(Xe)− Ze(Ye) +Yω(Zω)− Zω(Yω) +Yα(Zα)− Zα(Yα)

+Yet(Zet)− Zet(Yet) +Yωt(Zωt)− Zωt(Yωt) +Yαt(Zαt)− Zαt(Yαt) ,

and its pullback to the primary constraint submanifold

ω(Z,Y) = 2

∫︂
Σ

(︂
Y i
e ∧

(︁
ϵijke

j + δikα
)︁
∧ Zk

ω − Yα ∧ ek ∧ Zk
ω

− Y k
ω ∧

(︁
Zi

e ∧
(︁
ϵijke

j + δikα
)︁
− Zα ∧ ek

)︁ )︂
.

The equations for the components of the Hamiltonian vector field are

etiF
i −Dωti ∧ ei = ek ∧ Zk

ω ,

ϵijk
(︁
F jekt −Dωj

t ∧ ek
)︁
+Dωti ∧ α− αtFi = −

(︁
ϵijke

j + δikα
)︁
∧ Zk

ω ,

D(etiα− αtei + ϵijke
j
te

k) + ej ∧ eiωtj − ϵijkα ∧ ejωk
t

= Zj
e ∧
(︁
ϵijke

k + δijα
)︁
− Zα ∧ ei ,
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which are better written as

etiF
i = ek ∧

(︁
Zk

ω −Dωt
i
)︁
, (4.9a)(︁

ϵijke
j
t + δikαt

)︁
F k =

(︁
ϵijke

j + δikα
)︁
∧
(︁
Zk

ω −Dωk
t

)︁
, (4.9b)

(Zα −Dαt) ∧ ei +
(︁
ϵijke

j
t − δikαt

)︁
Dek + etiDα

=
(︁
ϵijke

j − δikα
)︁
∧
(︁
Zk

e −Dekt − ϵklme
lωm

t

)︁
. (4.9c)

Finally, the constraints are

ei ∧ F i = 0 ,

D
(︁
ϵijke

j ∧ ek − 2α ∧ ei
)︁
= 0 ,(︁

ϵijke
j + δikα

)︁
∧ F k = 0 .

(4.10)

Other useful alternative expressions for the constraints are

ei ∧ F i = 0 ,

D
(︁
(ekδij − ϵijkα) ∧ ej

)︁
= 0 ,

ej ∧ F k − ek ∧ F j = −ϵijkα ∧ Fi .

Since the system of equations (4.9) is linear, in order to find the general solution
we need to both find a particular solution and the solution to the homogeneous
system, which is equivalent to finding the kernel of a linear operator. Let us first
find the solutions of the homogeneous system defined by (4.9), which is

ek ∧ Zk
ω = 0 , (4.11a)(︁

ϵijke
j + δikα

)︁
∧ Zk

ω = 0 , (4.11b)

Zj
e ∧
(︁
ϵijke

k + δijα
)︁
− Zα ∧ ei = 0 . (4.11c)

Since we are requiring that ei is a non-degenerate frame (recall that Σ is a 3-
dimensional manifold), we can write

Zi
e = µi

je
j ,

Zi
ω = ρije

j ,

Zα = λie
i .

(4.12)

By using (4.12), equation (4.11a) directly gives the condition

ρklϵ
lm

k = 0 , (4.13)

while equation (4.11b) transforms into(︁
δlkδ

m
i − δliδ

m
k + ϵjlmαjδik

)︁
ρkl = 0 ,

where αi is defined by α = αie
i, or alternatively, by Lemma 11 of Appendix B, in

terms of densities,

αi =
1

2
ϵijk

(︃
α ∧ ej ∧ ek

vole

)︃
.

53



The tensors

(Q±)
m l
i;k = δmiδ

l
k − δmkδ

l
i ± δikϵ

jmlαj , (4.14)

can be thought of as matrices in the multi-indicesmi and kl, with the former upstairs
and the latter downstairs. Note that (Q±)

m l
i;k is neither symmetric nor antisymmet-

ric in those multiindices. Since we will be interested in solving equations involving
these tensors, but with images in no particular subspace, we need to compute the
inverse of the matrix in the sense(︁

Q−1
±
)︁p i

q;m
(Q±)

m l
i;k = δpkδ

l
q .

This is given by

(︁
Q−1

±
)︁p i

q;m
=

1

2 (1 + α2)

(︄
δpqδ

i
m − 2δpmδ

i
q + α2

(︁
δpiδqm − δpmδ

i
q

)︁
+ δpqα

iαm − δpmα
iαq + δimα

pαq − δiqα
pαm − δpiαqαm − δqmα

pαi

± αr
(︁
ϵ p
r q

(︁
δim + αiαm

)︁
+ ϵ i

rm

(︁
δpq + αpαq

)︁
− 2ϵ pi

r (δqm + αqαm)
)︁

− αpαiαqαm

)︄
,

(4.15)

where α2 = αiα
i.

Interesting properties of the inverse of Q are(︁
Q−1

−
)︁p i

q;m
=
(︁
Q−1

+

)︁i p

m;q
, (4.16a)(︁

Q−1
±
)︁p i

p;m
=

1

2

(︁
δim − αmα

i ± αrϵ i
rm

)︁
, (4.16b)

ϵ q
ap

(︁
Q−1

±
)︁p i

q;m
= ϵima ± δiaαm , (4.16c)

αp

(︁
Q−1

±
)︁p i

q;m
=

1

2

(︁
αqδ

i
m − 2αmδ

i
q − αiαqαm ± ϵ i

rm αrαq

)︁
. (4.16d)

Hence, the equation for ρkl becomes

(Q−)
m l
i;k ρ

k
l = 0 ,

and since Q− is invertible, this means that ρkl = 0.

By introducing the expressions (4.12) in (4.11c), one obtains

0 =
(︁
ϵijkµ

j
l + µj

lδijαk − λlδik
)︁
el ∧ ek ,

hence the kernel of the linear operator is determined by the solutions to(︁
ϵij[k + δijα[k

)︁
µj

l] = λ[lδk]i . (4.17)
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These are 9 relations (since in (4.17) i is free and is antisymmetric in lk) between the
12 functions µi

j, λi, revealing that this sector of the kernel can be parametrized by
only 3 functions. It is thus possibly more sensible then to try to write the 9 functions
µi

j in terms of the 3 functions λi. In order to do so, one must, in a sense, invert the
relation (4.17). By multiplying by δik in the previous equation, one obtains

λl =
1

2
µj

k

(︁
δklαj − δkjαl − ϵkjl

)︁
.

Multiply both sides by the tensor

Bj
kr = ϵjkr − δjrαk ,

which is built in such a way that

1

2

(︁
δklαj − δkjαl − ϵkjl

)︁
Bj

kr = δrl .

This implies that the expression of µi
j in terms of λi is

µi
j = ϵijkλ

k − δikαjλ
k .

Then, the kernel of the homogeneous system (4.11) is given by

Z0
ω
i
= 0 ,

Z0
e
i
= ϵijke

jλk − αλi ,

Z0
α = λie

i ,

(4.18)

parametrized by the 3 functions λi. This gives the SO(3) symmetry generated by
(4.4).

Let us now find a particular solution to the system (4.9). Write Ξi = Zi
ω −Dωi

t

and Ξi = Ξi
je

j. Then, by right-multiplying equation (4.9b) by · ∧ em, it can be
conveniently written as

(ϵijk + δikαj) Ξ
k
le

j ∧ el ∧ em =
(︁
ϵijke

j
t + δikαt

)︁
F k ∧ em ,

which written in terms of densities and by expanding and making use of (4.14) yields

(Q−)
m l
i;k Ξk

l =
(︁
δlkδ

m
i − δliδ

m
k + δikϵ

jlmαj

)︁
Ξk

l =
(︁
ϵijke

j
t + δikαt

)︁(︃F k ∧ em

vole

)︃
.

By using the inverse of Q− given by (4.15), we find

Ξp
q =

(︁
Q−1

−
)︁p i

q;m

(︁
ϵijke

j
t + δikαt

)︁(︃F k ∧ em

vole

)︃
,

and hence, the expression for the ω component of the Hamiltonian vector field is

Zi
ω = Dωi

t +
(︁
Q−1

−
)︁i q

p;m

(︁
ϵqjke

j
t + δqkαt

)︁(︃F k ∧ em

vole

)︃
ep . (4.19)
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This must also be a solution to (4.9a). By plugging it into the equation, we will either
find that it is automatically satisfied or that it generates a secondary constraint. The
expression is

etiF
i =

(︁
Q−1

−
)︁i q

p;m

(︁
ϵqjke

j
t + δqkαt

)︁(︃F k ∧ em

vole

)︃
ei ∧ ep . (4.20)

Since(︁
Q−1

−
)︁i q

p;m
ei ∧ ep = ei ∧ em

− 1

2(1 + α2)
αr
(︂
ϵrpqe

p ∧ eq
(︁
δim + αiαm

)︁
− 2ϵ i

rp (ep ∧ em + αme
p ∧ α)

)︂
,

the right hand side of (4.20) becomes, by grouping terms by eit and αt,

ejt

(︄
ϵpjkδlm − 1

2(1 + α2)
αr
(︂
ϵmjkϵrpl + αmα

qϵqjkϵrpl

− 2 (δrjδpk − δrkδpj) (δlm + αlαm)
)︂)︄(︃F k ∧ em

vole

)︃
ep ∧ el

+ αt

(︄
δpkδlm − 1

2(1 + α2)
αr
(︂
ϵrpl − 2ϵrpk (δlm + αlαm)

)︂)︄(︃F k ∧ em

vole

)︃
ep ∧ el .

By using the usual relations between δij and ϵijk, the constraints

ϵijke
j ∧ F k = −α ∧ Fi ,

ei ∧ F i = 0 ,

and the relation

ei ∧ ej = 1

2
ϵklmϵ

ijkel ∧ em ,

given by Lemma 12 of Appendix B, one finally obtains that the right hand side of
(4.20) becomes just

ejtFj ,

which satisfies the equation (4.20), hence no new secondary constraints are generated
at this point.

Next, using Lemma 16, equation (4.9c) can be solved for Zα with

Zα = Dαt +
1

2
ϵijk

(︄(︁
ϵilme

l − δimα
)︁
∧
(︁
Zm

e −Demt − ϵmpqe
pωq

t

)︁
∧ ej

vole

)︄
ek

− 1

2
ϵijk

(︄(︁
ϵilme

l
t − δimαt

)︁
Dem ∧ ej + et

iDα ∧ ej

vole

)︄
ek , (4.21)
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with the restriction for Zi
e given by(︁

Zm
e −Demt − ϵmpqe

pωq
t

)︁
∧
(︂
elϵ

(i
lm − αδ(im

)︂
∧ ej)

+
(︂
eltϵ

(i
lm − αtδ

(i
m

)︂
ej) ∧Dem + et

(iej) ∧Dα = 0 .

By naming Ψi = Zi
e − Deit − ϵijke

jωk
t and defining Ψi

j by Ψi = Ψi
je

j, one can
rewrite the equation as

T ij
mqΨ

mq =

(︄
−e (i

t e
j) ∧Dα− eltϵ

(i
lm ej) ∧Dem + αte

(i ∧Dej)

vole

)︄
, (4.22)

where T ij
mq is though of as the matrix in the multiindices ij and mq given by

T ij
mq = δ(imδ

j)
q − δijδmq − αlϵ

l(i
q δj)m .

The matrix T is not invertible: its kernel is 3-dimensional and is spanned by

(Kl)
mq = δml α

q − ϵ mq
l .

The kernel of the transpose of T , T ij
mq is also 3-dimensional and is spanned by

(KT
l )ij = ϵlij ,

which tells us that the image of T are the tensors symmetric in ij. Hence, the right
hand side of (4.22) indeed is in the image of T ij

mq and a solution to the equation
exists without the need of introducing additional constraints. Hence,

Zi
e = Deit + ϵijke

jωk
t + σiα− σpϵ

pi
je

j +Ψi ,

where σp are arbitrary and Ψi := Ψi
je

j is a particular solution to (4.22). It is hard
but straightforward to check (by using the constraints (4.10) and properties (4.16b),
(4.16c), (4.16d)) that

Ψi
j = −

(︁
Q−1

−
)︁r k

p;j

(︁
ϵ i
kl e

l
t + δikαt

)︁(︃Der ∧ ep
vole

)︃
,

indeed satisfies (4.22). Hence, the ei component of a particular solution of the
Hamiltonian vector field is given by

Zi
e = Deit + ϵijke

jωk
t + σiα− σpϵ

pi
je

j −
(︁
Q−1

−
)︁r k

p;j

(︁
ϵ i
kl e

l
t + δikαt

)︁(︃Der ∧ ep
vole

)︃
ej .

(4.23)

With this expression we can rewrite (4.21) as

Zα = Dαt − σke
k + etl

(︁
Q−1

−
)︁r l

p;k

(︃
Der ∧ ep

vole

)︃
ek . (4.24)
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In summary, by joining the particular solution given by (4.19), (4.23) and (4.24)
with the homogeneous solution (4.18), the general solution for Z is given by

Zi
ω =Dωi

t +
(︁
Q−1

−
)︁i q

p;m

(︁
ϵqlke

l
t + δqkαt

)︁(︃F k ∧ em

vole

)︃
ep ,

Zi
e =De

i
t + ϵijke

jωk
t + ϵijke

jλk − λiα + σiα− ϵijke
jσk

−
(︁
Q−1

−
)︁r k

p;j

(︁
ϵ i
kl e

l
t + δikαt

)︁(︃Der ∧ ep
vole

)︃
ej ,

Zα =Dαt + λie
i − σie

i + etl
(︁
Q−1

−
)︁r l

p;k

(︃
Der ∧ ep

vole

)︃
ek .

Note that in this solution there appear 13 arbitrary functions (eit, ωi
t, αt, λ

i, σi),
however due to the particular form in which λi and σi show up, they can be combined
together by defining a new arbitrary parameter τ i := λi − σi, hence the number of
independent arbitrary functions is reduced to 10.

However, there still are more equations that the Hamiltonian vector field must
satisfy as per the GNH algorithm, namely, the tangency conditions derived from
(4.10), which are

Zei ∧ F i + ei ∧DZi
ω = 0 ,

D
(︁
ϵijke

j ∧ Zk
e − α ∧ Zei − ei ∧ Zα

)︁
+ Zj

ω ∧
(︁
ei ∧ ej − ϵijkα ∧ ek

)︁
= 0 ,

ϵijkZ
j
e ∧ F k + Zα ∧ Fi +

(︁
ϵijke

j + δikα
)︁
∧DZk

ω = 0 .

In order to work with these equations it is more convenient to rewrite them and
eliminate the covariant derivatives of the Hamiltonian vector field, since their com-
ponents are written in terms of densities. It is a better strategy to take the covari-
ant derivative of equations (4.9) and substitute the matching terms with covariant
derivatives of Z. Doing this and using the constraints when necessary yields(︁

Zei −Deti − ϵijke
jωk

t

)︁
∧ F i +Dei ∧

(︁
Zi

ω −Dωt
i
)︁
= 0 , (4.25a)

Dωk
t ∧ (ekδij − ϵijkα) ∧ ej − ejt (ϵijkα + δjkei) ∧ F k − αtϵijkF

j ∧ ek (4.25b)

− ϵklm
(︁
ϵijke

j − δikα
)︁
∧ Z l

ω ∧ em = 0 ,

ϵijk
(︁
Zj

e −Dejt − ϵjlme
lωm

t

)︁
∧ F k + (Zα −Dαt) ∧ Fi (4.25c)

+D
(︁
ϵijke

j + δikα
)︁
∧
(︁
Zk

ω −Dωk
t

)︁
= 0 .

By plugging the values of Zi
e and Zi

ω given by (4.23) and (4.19) in condition
(4.25a) we immediately find that it is already satisfied. Equation (4.25b) can also
be seen to hold by plugging the value of Zi

ω (4.19) in it and then using relations
(4.16b), (4.16c), (4.16d). One would also need to check that condition (4.25c), when
using the expressions (4.8), is satisfied.

Then, since none of the arbitrary functions have been fixed in the tangency
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conditions, the general form of the Hamiltonian vector field is

Zi
ω =Dωi

t +
(︁
Q−1

−
)︁i q

p;m

(︁
ϵqlre

l
t + δqrαt

)︁(︃F r ∧ em

vole

)︃
ep ,

Zi
e =De

i
t + ϵijke

jωk
t + ϵijke

jτ k − ατ i

−
(︁
Q−1

−
)︁r k

p;j

(︁
ϵ i
kl e

l
t + δikαt

)︁(︃Der ∧ ep
vole

)︃
ej ,

Zα =Dαt + τie
i + etl

(︁
Q−1

−
)︁r l

p;k

(︃
Der ∧ ep

vole

)︃
ek ,

(4.26)

which depend on the 10 arbitrary functions eit, ωi
t, αt, τ

i. Notice that this coincides
with the number of expected symmetries (6 coming from the SO(4) group and 4
from the diffeomorphisms). Moreover, it can be read off from their expressions that
ωi
t and τ i are the parameters of the two SO(3) gauge symmetries that arise from the

decomposition SO(4) = SO(3) ⊗ SO(3) (whose representations are given by (4.3)
and (4.4)), and that eit, αt parameterize the diffeomorphism symmetry. Also notice
that the solution depends linearly in the parameters, making all the evolution of the
system gauge. This is consistent with the fact that the Hamiltonian (4.8) vanishes
on the final constraint submanifold.

In practice, one might not want to find the general solution to (4.9), which are
complicated equations. An alternative that allows us to greatly simplify them is
fixing the gauge. In particular, one can use the so-called time gauge which forces
the timelike covector in the coframe to be aligned with the normal to the leaves Σt

of the foliation. This amounts to setting α = 0 while letting αt be arbitrary. Note
that by doing this we are removing a whole SO(3) factor from the symmetry group,
so that only the diffeomorphisms and a single SO(3) symmetry group remain. By
using this fixing, the Hamiltonian equations (4.9) become

etiF
i = ek ∧

(︁
Zk

ω −Dωt
i
)︁
, (4.27a)(︁

ϵijke
j
t + δikαt

)︁
F k = ϵijke

j ∧
(︁
Zk

ω −Dωk
t

)︁
, (4.27b)

−Dαt ∧ ei +
(︁
ϵijke

j
t − δikαt

)︁
Dek = ϵijke

j ∧
(︁
Zk

e −Dekt − ϵklme
lωm

t

)︁
, (4.27c)

and the constraints (4.10) are

ei ∧ F i = 0 , (4.28a)

ϵijkDe
j ∧ ek = 0 , (4.28b)

ϵijke
j ∧ F k = 0 . (4.28c)

From equations (4.27b) and (4.27c), using Lemma 13 from Appendix B we di-
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rectly obtain the solutions

Zi
e = Deit + ϵijke

jωk
t + ϵjkle

l
t

(︃
ei ∧Dek

vole

)︃
ej

+ αt

(︃
ej ∧Dei

vole

)︃
ej − 1

2
αt

(︃
ek ∧Dek

vole

)︃
ej −

(︃
ei ∧ ej ∧Dαt

vole

)︃
ej ,

Zi
ω = Dωi

t + ϵjkle
l
t

(︃
ei ∧ F k

vole

)︃
ej − αt

(︃
ei ∧ Fj

vole

)︃
ej .

(4.29)

It remains to check that solution (4.29) also satisfies equation (4.27a), otherwise,
the system would be incompatible. By plugging the solution one obtains

ei ∧ Zi
ω = ei ∧

(︃
Dωi

t + ϵjkle
l
t

(︃
ei ∧ F k

vole

)︃
ej − αt

(︃
ei ∧ F j

vole

)︃
ej
)︃

= −Dωi
t ∧ ei + ϵjkle

l
t

(︃
ei ∧ F k

vole

)︃
ei ∧ ej − αt

(︃
ei ∧ F j

vole

)︃
ei ∧ ej . (4.30)

The second term of (4.30) can be rewritten by using Lemma 12 on the 2-form ei∧ej:

ϵjkle
l
t

(︃
ei ∧ F k

vole

)︃
ei ∧ ej = ϵjkle

l
t

(︃
ei ∧ F k

vole

)︃
1

2
ϵpqr

(︃
ei ∧ ej ∧ ep

vole

)︃
eq ∧ er

=
1

2
eltϵjklϵpqrϵ

jp
i

(︃
ei ∧ F k

vole

)︃
eq ∧ er

=
1

2
eltϵpqr

(︃(︃
el ∧ F p

vole

)︃
eq ∧ er −

(︃
ei ∧ Fi

vole

)︃
δple

q ∧ er
)︃

=
1

2
eltϵpqr

(︃
el ∧ F p

vole

)︃
eq ∧ er = 1

2
eltϵpqr

(︃
ep ∧ Fl

vole

)︃
eq ∧ er = eltFl ,

where we have used the constraints (4.28a) and (4.28c) respectively in the last two
lines. The third term of (4.30) vanishes since ei ∧ F j is symmetric while ei ∧ ej is
antisymmetric in ij. Hence, equation (4.27a) is also satisfied by the solution (4.29).

We still need to check tangency of the Hamiltonian vector field (4.29) to the
constraint submanifold defined by (4.28). The conditions are

ϵijkZ
j
e ∧ F k + ϵijke

j ∧DZk
ω = 0 ,

Zi
e ∧ Fi + ei ∧DZi

ω = 0 ,

ϵijk
(︁
DZj

e + ϵjlmZ
l
ω ∧ em

)︁
∧ ek + ϵijkDe

j ∧ Zk
e = 0 .

As in the full case, dealing with covariant derivatives of the components of the
Hamiltonian vector field is inconvenient, so a better strategy is to take the covariant
derivative of equations (4.27) and use them to rewrite the tangency conditions. This
yields

ϵijk
(︁
Zj

e −Dejt − ϵjlme
lωm

t

)︁
∧ F k + ϵijkDe

j ∧
(︁
Zk

ω −Dωk
t

)︁
−Dαt ∧ Fi = 0 ,(︁

Zi
e −Deit − ϵijke

jωk
t

)︁
∧ Fi +Dei ∧

(︁
Zi

ω −Dωi
t

)︁
= 0 ,(︁

Zk
ω −Dωk

t

)︁
∧ ei ∧ ek − ekt ek ∧ F i = 0 .
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By plugging the expressions found (4.29) for the Hamiltonian vector field, and by
using the constraints (4.28), it is easy to check that the tangency conditions are
automatically satisfied, hence there are no new secondary constraints.

One can actually recover the result (4.29) from the more general solution (4.26).
In order to implement the time gauge, one must not only set α = 0, but in addition,
some of the arbitrary functions in (4.26) need to be fixed (since we are actually
reducing the gauge group), namely the three τi which correspond to the SO(3)

symmetry that acts on α. The right choice of these parameters is

τi = −1

2
ϵijk

(︃
Dαt ∧ ej ∧ ek

vole

)︃
− 1

2
eit

(︃
Dek ∧ ek

vole

)︃
+ elt

(︃
Dei ∧ el
vole

)︃
,

which yields Zα = 0 and recovers the expressions for Zi
e, Z

i
ω given in (4.29) as

expected. This is easily seen by using the constraint (4.28b) and the identity

0 = 8ϵ[ijkδl]r = ϵijkδlr − ϵjklδir + ϵkliδjr − ϵlijδkr .
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Chapter 5

New perturbative approaches to
gravity

Perturbative approaches to field theories have been extremely fruitful. However,
due to the non-renormalizability of gravity, standard perturbative methods do not
work in this context. In this chapter we consider a totally covariant approach to
perturbative treatments of the Einstein-Hilbert action, namely, perturbative methods
based on consistent deformations of internal Abelianizations. This procedure does
not depend on auxiliary background structures such as the Minkowski metric, but
rather relies on the exact treatment of the unperturbed theory. This chapter is
devoted to exploring this technique. In Section 5.1 we discuss the gauge structure
of an action and the structure tensors and equations that arise. In Section 5.2 we
outline the construction of the BRST antifield formalism, which is the basis for the
techniques based on consistent deformations. In Section 5.3 we apply the approach
to several important actions related to gravitational theories. Detailed and in-depth
accounts of the BRST formalism and its implications for gauge theories are given in
[73]–[77].

First, a comment on notation. The Euler forms EA are defined by

dS =

∫︂
M
EA ∧ dϕA , (5.1)

where the ϕA are the dynamical fields and A is an index running over all fields.
Then, the equations of motion are given by

EA = 0 .

In this context, the gauge symmetries are determined by dS: the vector fields Z in

the kernel of dS are called gauge generators. Henceforth these gauge transformations
will be denoted as Zα and their components as ZA

α , where α is an index running
from 1, . . . ,m where m = dimG is the dimension of the gauge symmetry group.

We will use a very convenient (and traditional) notation. Indices on tensors are
regarded as collective indices, which contain both discrete and continuous variables
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(spacetime coordinates), which are summed or integrated over, respectively. More
explicitly, what we mean is

Ka
bK

b
c =

∑︂
b

∫︂
M

dy Ka
b(x, y)K

b
c(y, z) ,

where a, b, c represent any type of index. Although a bit cumbersome, the conciseness
of this notation is useful to avoid cluttered expressions.

In this chapter we rely on the most widely used approach, which is to introduce
derivatives of the fields via Dirac delta distributions and their derivatives, which
then by integration by parts yield the wanted result of differentiating the original
field. An alternative approach is to use the space of jets of the fields, which directly
account for derivatives. However, since a priori arbitrarily high-order derivatives
could appear, one needs to work in an infinite jet space in order to include all the
possible terms. This is explored in [78].

5.1 Gauge structure of an action

A theory with a finite-dimensional gauge symmetry Lie group G has directions in the
configuration space that leave the action unchanged. These directions correspond
to the vector fields in the kernel of dS that we parametrize with the so-called gauge
generators. They will be denoted by Zα and their components by ZA

α , where α is an
index running from 1 . . . ,m and m = dimG is the dimension of the gauge symmetry
group. Note that since the gauge group is a finite-dimensional Lie group, the dis-
tribution generated by Zα must be integrable, which means that the commutators
[Zα,Zβ] must also be in the kernel of dS and hence be themselves gauge generators.
Since the algebra generated by the gauge generators — the gauge algebra — is not
necessarily closed in gauge field theories, one might need to impose the condition
that nested commutators also are gauge generators. A gauge transformation of the
field ϕA is of the form

dϕA = ZA
αϵ

α ,

where ϵα are the gauge parameters (that is, functions in the Lie algebra g) and ZA
α

is a linear distributional operator whose elements of the image are gauge transfor-
mations. In our case of interest, since we work with the exterior algebra, the gauge
transformations will be of the form

dϕA = z0Aαϵ
α + z1Aαdϵ

α + ... ,

plus other terms that preserve the exterior algebra built with, for instance, interior
products, Hodge duals (if there is a metric) and in general other terms written
with the help of background structures. For convenience, we will follow the usual
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approach in the literature, which is to consider the objects ZA
α to be distributions

of the form

ZA
α(x, y) = z0Aαδ(x, y) + z1A µ

α ∂µδ(x, y) + ... .

Note that the derivatives of Dirac deltas are meant to charge their derivatives to
the fields via integration by parts. A more rigorous approach would be to work in
the jet space J∞(g) to account for derivatives directly as coordinates. A better look
into this approach is given in [78].

A particularly simple but interesting case to look at are field theories involving
k-forms and their exterior derivatives. A particular example of such an action is

S(B) =

∫︂
M

∗dBA ∧ dBA , (5.2)

(with each BA ∈ Ωk(M) a k-form) which will be used throughout the section to
illustrate several concepts. The gauge transformations of B are dBA = dϵA, with
ϵA any (k − 1)-form ϵA ∈ Ωk−1(M), since they leave the action invariant. Hence,
the gauge generators are maps

Z : Ωk−1(M) −→ kerdS ,

given by ZA(x, y) · ϵ = ϵAdδ(x, y), or equivalently, ZA
α(x, y) = δAαdδ(x, y).

A gauge transformation is called trivial if it can be written as

dϕA = EB ∧ TBA ,

with TAB = (−1)(n−p)(n−q)+1TBA, but otherwise, arbitrary bi-forms in space-time of
degree p = deg ϕA in the first variable, q = deg ϕB in the second and degree 1 in
configuration space.

The regularity condition requires that in the submanifold where the equations
of motion hold, the Hessian of the action (which must be understood as the matrix
built with the coordinates corresponding to the second derivatives in the space of
jets) has rank equal to the number of fields that enter dynamically into the action.
Equivalently, this means that the only null vectors of the Hessian of the action are
the gauge generators. This condition is desirable because, when it holds, the box of
the Hessian corresponding to the dynamical degrees of freedom has an inverse and
there exist propagators for the dynamical fields. We will henceforth assume that
the regularity condition holds.

The general form of the gauge generators X is given by

EA ∧XA = 0 =⇒ XA = ZA
αC

α + EB ∧ TBA , (5.3)

this is, a linear combination of gauge generators plus a trivial gauge transformation,
since

dS(X) = EA ∧XA = EA ∧ ZA
αC

α + EA ∧ EB ∧ TBA = 0 ,
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where the first terms vanishes because the Zα are gauge generators and the second
term vanishes because of its symmetries.

One can regard Z as an operator from the space of gauge parameters to the space
of gauge generators. If this map is a bijection on-shell, then one can parametrize
the space of gauge generators with the m0 := m gauge parametrs ϵα. In this case,
the theory is called irreducible. On the other hand, if Z is not a bijection (which is
equivalent to saying that it is not injective) the theory is called reducible. In this
case, kerZ is not 0 and we need to characterize it. Let R1 be a linear operator with
components R α

1 α1
parametrizing kerZ with m1 parameters ϵα1 . Note that the com-

position ZA
αR

α
1 α1

ϵα1 must vanish since R α
1 α1

ϵα1 ∈ kerZ by construction. However,
since we only require it to vanish on-shell, and not in the whole configuration space,
we instead impose

ZA
αR

α
1 α1

= EB ∧KBA
α1

(5.4)

whereKBA
α1

are some functionals. Hence, instead ofm0, the amount of independent
gauge generators is m0 − rank R1.

Now, if the map R1 is not bijective itself, higher orders of reducibility appear.
In this case, kerR1 ̸= 0, hence we need to parametrize kerR1 again. To this end
we introduce the map R2 with components R α1

2 α2
parametrizing kerR1 with m2

parameters ϵα2 . Again, by construction,

R α
1 α1

R α1
2 α2

= EB ∧KBα
α2

Thus, the rank of R α
1 α1

equals m1 − rank R2, hence the amount of independent
gauge generators is m0 −m1 + rank R2. Still, the kernel of this map might not be 0

so we still do not have a proper parametrization of kerdS. This generates a cascade
of parametrizations Rk+1 with components R αk

k+1 αk+1
of kerRk with mk parameters

ϵαk . This also generates a cascade of reducibility conditions

R
αk−2

k−1 αk−1
R

αk−1

k αk
= EB ∧KBαk−2

αk
(5.5)

with αk = 1, · · · ,mk and where we use as a convention α0 := α, α−1 := A and
R

α−1

0 α0
:= ZA

α to include condition (5.4). A condition similar to (5.3) also applies
to coefficients in higher orders of reducibility

R
αk−1

k αk
Xαk = EA ∧MAαk−1 =⇒ Xαk = R αk

k+1 αk+1
Jαk+1 + EA ∧ SAαk . (5.6)

If for some L the map Rk+1 is bijective (rank RL = mL), then no more conditions
are generated and we say that it is a gauge theory of L-th reducibility order. In this
case, the number of independent gauge generators is

L∑︂
i=0

(−1)imi .
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Let us continue with our example of a k-form field B with action (5.2). As stated
before, its gauge transformations are of the form dϕA = dϵA, with ϵA ∈ Ωk−1(M)

and the gauge generators are

Z : Ωk−1(M) −→ kerdS ,

given by ZA
α(x, y) = δAαdδ(x, y). If k > 1, clearly, not every ϵA ∈ Ωk(M) yields

a non-trivial transformation, since exact (k − 1)−forms make the transformations
vanish. Hence, kerZ ∼= Ωk−2(M). We may now try to parametrize it in terms of

R1 : Ω
k−2(M) −→ kerZ ,

with R α
1 α1

(x, y) = δαα1
dδ(x, y) and parameters ϵα1 ∈ Ωk−2(M). However, if k > 2,

R α
1 α1

has as kernel the exact (k−2)-forms, which means kerR1
∼= Ωk−3(M). Hence,

we need to introduce a further parametrization

R2 : Ω
k−3(M) −→ kerR1 ,

R α1
2 α2

(x, y) = δα1
α2
dδ(x, y). This process continues until we reach the 0-forms,

which cannot be exact. Thus, this is a theory with (k − 1)-th reducibility order.

Now we turn to the restrictions that the gauge generators must satisfy in order to
constitute an integrable distribution. Since [Zα,Zβ] must also be a gauge generator,
by (5.3) we can write

[Zα,Zβ]
A = ZA

γC
γ
αβ + EB ∧ TBA

αβ (5.7)

Note that by the antisymmetry of the vector bracket, both Cγ
αβ and TBA

αβ must be
antisymmetric in αβ. In general, Cγ

αβ and TBA
αβ may be functions of the fields and

are called structure functions (or tensors). Note that if Cγ
αβ are actually constant

and all TBA
αβ = 0, then the algebra of gauge generators is a genuine Lie algebra. If

TBA
αβ = 0, the algebra is called closed, and otherwise, open.

Multiplying (5.7) by R β
1 α1

yields

ZA
γ

(︂
Zα

(︁
R γ

1 α1

)︁
− Cγ

αβR
β

1 α1

)︂
= EB ∧

(︂
Zα

(︁
KBA

α1

)︁
− TBA

αβR
β

1 α1
−KBC

α1
∂CZ

A
α

)︂
.

By (5.6), we can write

Zα

(︁
R γ

1 α1

)︁
− Cγ

αβR
β

1 α1
= Rγ

δ1
Cδ1

αα1
+ EC ∧ TCγ

αα1

which are new structural equations for the tensors Cδ1
βα1

and TCα
βα1

.

The Jacobi identity of the bracket imposes restrictions on the structure functions
C and T . In general, they do not need to be automatically satisfied if the algebra is
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not closed, in which case one needs to introduce new structure tensors and relations.
A direct computation gives

[Zα, [Zβ,Zγ]]
A = ZA

λ

(︁
Zα

(︁
Cλ

βγ

)︁
+ Cλ

αδC
δ
βγ

)︁
+ EB ∧BBA

αβγ ,

where B is a function of T and Z and the Jacobi identity is equivalent to the
vanishing of the antisymmetrization of this expression in the indices αβγ. Then it
can be written as

ZA
λJ

λ
αβγ = EB ∧BBA

[αβγ] , (5.8)

where

Jλ
αβγ = Z[α

(︁
Cλ

βγ]

)︁
+ Cλ

[α|δC
δ
βγ] ,

and which, by (5.6), implies

Jλ
αβγ = R λ

1 α1
Gα1

αβγ + EB ∧ TBλ
αβγ (5.9)

where Gα1
αβγ and TBλ

αβγ are new structure tensors. By using the general form of
(5.9) in the original equation (5.8), we find the sufficient conditions:

0 = ZA
λ

(︁
Rλ

α1
Gα1

αβγ + EB ∧DBλ
αβγ

)︁
− EB ∧BBA

[αβγ]

= EB ∧
(︁
KBA

αβγG
α1

αβγ + ZA
λD

Bλ
αβγ − EB ∧BBA

[αβγ]

)︁
,

which, as a consequence of (5.3), imply

KBA
αβγG

α1
αβγ + ZA

λD
Bλ

αβγ − EB ∧BBA
[αβγ] = ZB

λC
Aλ

αβγ + EC ∧ TCAB
αβγ ,

and gives new structure tensors CAλ
αβγ and TCAB

αβγ .

In a completely similar fashion, we need to impose that further nested commuta-
tors of the gauge generators are themselves gauge generators. Also, by multiplying
the obtained relations by the appropriate reducibility coefficients, one finds new nec-
essary equations that may give rise to new structure tensors. By doing this, one gets
at each step more new structure tensors with more indices and their corresponding
structural equations. If the theory is reasonable (finite dimensional gauge group,
finite reducibility order), this process must stop at some point. Then, the structure
tensors encode and determine the gauge structure of the action. Since the number
of structure tensors grows very quickly with the reducibility order of the theory,
studying the gauge structure is quite complicated. A better suited approach is the
one provided by the BRST formalism, which we will review in the next section.

Turning again to our example of the p-forms B, we have (5.7) that the gauge
generators commute

[ZA · ϵ, ZB · ϵ] = 0 ,
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yielding Cγ
αβ = 0, TBA

αβ and making the algebra of gauge generators a Lie algebra.
Then, clearly the Jacobi identity is automatically satisfied and expression (5.9) tells
us that the corresponding structure tensors are

Jλ
αβγ = 0, Gα1

αβγ = 0, TBλ
αβγ = 0 .

Since the algebra is commutative, further conditions are automatically satisfied and
their structure tensors are 0.

5.2 BRST antifield formalism

Ghost fields were first introduced in order to retain unitarity when performing gauge
fixings. Even after fixing the gauge, the action possesses a symmetry whose trans-
formations involve both fields and ghosts. This is the Becchi-Rouet-Stora-Tyutin
symmetry. In order to incorporate these heuristically found ideas into a system-
atic study of field theories, the BRST formalism was developed. Later, Batalin and
Vilkovisky introduced antifields [76], which acted as sources for the BRST transfor-
mation and a symplectic structure: these are the main elements of the the antifield
formalism. This turned out to be a very powerful method to quantize gauge theories.
Nevertheless, it is very much worth using the tools it provides for the study of field
theories at the classical level, since it encodes all the information about the gauge
structure of the action.

The original formalism was developed by taking into account both bosonic and
fermionic fields (commuting and anticommuting, respectively) in order to write the
usual actions of the Standard Model. Since for our purposes we only need bosonic
fields, we will omit fermionic fields from the discussion. By doing this, some signs
depending on the Grassmann parity of the fields involved are removed from most
expressions involving operations in graded spaces. The original expressions can be
found in [73].

The construction of the BRST configuration space is as follows [73], [77], [79],
[80]. For each gauge invariance at k-th order, introduce a ghost field Cαk . Next,
for each field ΦA = {ϕA, Cαk}, introduce an antifield Φ∗

A. The set of fields and
antifields {ΦA,Φ∗

A} constitute the extended configuration space in which the BRST
(sometimes even called BV) formalism takes place. In this space, several gradings
are induced by ghosts and antifields. In particular, we have a grading whose degree
is called pureghost number and a gradation whose degree is called antighost number
defined by

puregh (Cαk) = k + 1 ,

puregh (C∗
αk
) = 0 ,

antigh (Cαk) = 0 ,

antigh (C∗
αk
) = k + 2 ,
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for k ≥ −1, where we use as a convention α0 := α, α−1 := A, C∗
α−1

:= ϕ∗
A and

Cα−1 = ϕA. A further grading is defined whose degree is called ghost number given
by gh = puregh − antigh.

There exists a canonical symplectic structure in the extended configuration space

Ω = dΦA ∧ dΦ∗
A

whose Poisson bracket is called the antibracket (this name derives from the fact that
it is a bracket for fields and antifields) defined by the basic relations

(ΦA,Φ∗
B) = δAB ,

so one can think of Φ∗
A as the conjugate variable to ΦA. In particular, the antibracket

is antisymmetric and satisfies the Jacobi identity.

One can then look for a functional S called the BRST action such that gh S = 0

and

(S,S) = 0 , (5.10)

which is known as the master equation. In general, solutions to (5.10) are not
unique, however, if we additionally require that the rank of the Hessian of S equals
the number of fields, then the solution is unique up to canonical transformations.

As an additional condition we require that

S|Φ∗=0 = S .

This is needed in order for the BRST action to be able to give back the original
action.

Notice that with these ingredients we can define an operator s, that raises the
ghost number by 1 according to,

sF = (F,S) . (5.11)

As a consequence of the master equation (5.10) and the Jacobi identity of the an-
tibracket, s2 = 0, so s can be used to define a differential complex in the space
of fields and antifields. This operator is the generator of the BRST symmetry.
The functionals O such that sO = 0 but O ≠ sX for any X are called classi-
cal observables of the theory. By the properties of s, observables form an algebra.
Equivalently, observables are elements O ∈ H0(s) in the zeroth cohomology group
of s. This is a powerful identification, since it allows us to transform the problem of
finding S into a cohomological one, for which many tools are available [75], [77].

Since the ghost number of S is 0, the pureghost and antighost numbers of each
of its terms must be equal. Then, one can expand S as a series in the antighost
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number. The first few terms of the expansion are of the form

S = S

+ ϕ∗
AZ

A
αCα

+ C∗
α

(︁
R α

1 α1
Cα1 + Cα

βγCβCγ
)︁
+ ϕ∗

Aϕ
∗
B

(︁
KAB

α1
Cα1 +KAB

αβCαCβ
)︁

+ C∗
α1

(︁
R α1

2 α2
Cα2 +Kα1

β1γ
Cβ1Cγ +Kα1

βγδC
βCγCδ

)︁
+ C∗

αϕ
∗
A

(︁
KαA

β2
Cβ2 +KαA

β1γ
Cβ1Cγ +KαA

βγδCβCγCδ
)︁

+ ϕ∗
Aϕ

∗
Bϕ

∗
C

(︁
KABC

β2
Cβ2 +KABC

β1γ
Cβ1Cγ +KABC

βγδCβCγCδ
)︁

+ (terms with antighost number > 3) .

Now, using this expansion in the master equation (5.10) gives a set of conditions
on the tensors ZA

α , R
αk

k+1 αk+1
and all the K’s with different amounts of indexes.

Note that a priori, these quantities have nothing to do with the gauge structure of
the action. The master equation should be solved order by order, i.e., the coefficient
of each ghost and antifield term must vanish separately. Notice that as we go up in
the reducibility order, the amount of terms in S, and hence the amount of conditions,
grows very fast. The first few terms give the equations

EA ∧ ZA
αCα = 0 , (5.12)

ϕ∗
A

(︁
ZA

αR
α

1 α1
− EB ∧KBA

α1

)︁
Cα1 = 0 , (5.13)

ϕ∗
A

(︁
Zβ

(︁
ZA

α

)︁
+ ZA

γK
γ
αβ − EB ∧KBA

αβ

)︁
CαCβ = 0 , (5.14)

C∗
δ

(︁
Zα

(︁
Cδ

βγ

)︁
+ Cδ

λαC
λ
βγ −R δ

1 α1
Kα1

αβγ − EB ∧KBδ
αβγ

)︁
CαCβCγ = 0 . (5.15)

Notice that the ghosts (and also the antifields in higher terms) have the effect of
symmetrizing the expressions inside the parentheses. Equations (5.12) tells us that
ZA

α actually are the gauge generators of the action. Equation (5.13) are the re-
ducibility conditions (5.4). Equations (5.14) are the equations (5.7) requiring that
the commutator of two gauge generators is a gauge generator. Equations (5.15) are
the structure equations (5.9) coming from the Jacobi identity. By continuing this,
one obtains a set of equations that match all the structure equations and reducibility
conditions of the action S. Hence, the coefficients of the expansion of S are precisely
(up to a number, which appears due to the symmetries of the terms involved and
that is unimportant since it can be compensated by modifying the factors in the ex-
pasion) the structure constants and the reducibility coefficients. Hence, a functional
S solution to the master equation encodes all the information about the gauge gen-
erators, their structure and their algebra. In particular, the gauge generators can
be extracted from the term containing ϕ∗

ACα, the coefficients satisfying all the re-
ducibility identities (5.5) can be extracted from the terms containing C∗

αk
Cαk+1 , the

structure constants can be extracted from the term containing C∗
αCβCγ, etc. More-

over, an important consequence is that S = S|Φ∗=0 is gauge invariant under the
gauge transformations generated by Zα.
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5.3 Consistent deformations from internally Abelian-
ized theories

In the early 90s, Smolin proposed in [29] a potential perturbative scheme for the
quantization of gravity. His idea was based on considering Newton’s constant G as
a coupling constant appearing in the definition of the curvature and the covariant
differential as

FIJ = dωIJ +GωI
K ∧ ωKJ ,

DeI = deI +GωI
J ∧ eJ .

Then, he used similar expressions with a self-dual connection and found that the
self-dual Cartan-Palatini action can be written as the sum of a lower order term,
independent of G, and a coupling term proportional to G. This idea can be readily
compared to the traditional perturbative approach in which the metric is written
as the Minkowski metric plus a perturbation, leading to an action with a ‘free’
part (i.e. quadratic in the fields) describing massless, spin 2 particles, known as
gravitons, propagating in a Minkowski background geometry and interaction terms
proportional to powers of G. The new approach championed by Smolin is more
desirable in the sense that the perturbed action only has two terms (the perturbation
is only up to linear terms in G), each of the terms retains diffeomorphism invariance
on its own and the procedure does not depend on any background objects. The
version of this model with the time gauge fixing is called the U(1)3 model (since it
yields a U(1)3 connection) and is studied in, for instance, [30].

However, Smolin’s proposal has some drawbacks. First, it is not clear why this
way of introducing the coupling G is the right one. More importantly, it is not
physically clear what taking G to 0 means or even how to use it as a perturbative
parameter since it is a dimensionful quantity. Even if these points were clarified,
it might still happen that the perturbative scheme is not feasible. First, the un-
perturbed theory must be integrable in order to produce suitable ‘free’ solutions.
Furthermore, in order to write the full solutions as an asymptotic expansion, the
perturbation must be regular. Neither of these properties are guaranteed and should
be checked.

A possible systematic approach that can be used to find the kind of splitting put
forward by Smolin is described in the following. Given an action S0, a deformation
of it is a new action S that can be written as a (possibly infinite) series in the
deformation parameter g and such that S|g=0 = S0; this is

S =
∑︂
k=0

gkSk . (5.16)

A deformation is consistent if it preserves the number of gauge symmetries, even
if their form changes. Note that this also implies that the number of degrees of
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freedom in the theory is mantained. If the gauge transformations of the original
action S0 are denoted by Zα

0, then the transformations of the deformed action are
also of the form

Zα =
∑︂
k=0

gkZα
k.

In a similar way, the equations of motion (and hence the Euler forms) are also
deformed

EA =
∑︂
k=0

gkEA
k.

The deformed action will induce a deformed BRST action

S =
∑︂
k=0

gkSk ,

which must solve the master equation to guarantee that the deformation from S0 to
S is consistent.

Given a theory, we build its internally Abelianized version by replacing its in-
ternal symmetry group G by a (dim G)-dimensional Abelian group. At the level of
its Lie algebra g, this is equivalent to requiring the Lie bracket to vanish. By doing
this, the interaction terms that arise from the higher order terms in the curvature
and covariant derivatives disappear. Then, if the theory given by the resulting ac-
tion is integrable, one can add as an interaction the term that was eliminated from
the original action by the process of internal Abelianization. If the deformation is
consistent, then a regular perturbative scheme can be set up as long as the solu-
tions of the Abelianized theory can be found in a sufficiently explicit form. This is
precisely the case in Yang-Mills actions, whose internal Abelianizations are multiple
independent copies of the Maxwell action.

The deformations (5.16) that we will obtain using this procedure are just of the
form

S = S0 + gS1 ,

where g is the perturbative parameter and S1 collects all the terms lost in the process
of internal Abelianization. The perturbed gauge transformations and Euler forms
are expanded in the same way. This yields a BRST generator S that must satisfy
the master equation (5.10), and in particular, (5.12) (which must always hold for
both reducible and irreducible theories). Among the theories that we will consider,
only one of them is reducible and coincidentally, the deformation that it defines is
not consistent. For the rest of them, one still must take into account the closure
of the gauge algebra (5.14) and the Jacobi identity (5.15). Hence, in the described
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particular case, this imposes, up to first order, that

0 = dS(Zα) =

∫︂
M
EA ∧ ZA

α

=

∫︂
M

(︁
E0

A ∧ Z0A
α + g

(︁
E1

A ∧ Z0A
α + E0

A ∧ Z1A
α

)︁
+O(g2)

)︁
. (5.17)

To zeroth order in g, (5.17) is automatically satisfied since this is the condition that
the internally Abelianized action is gauge invariant under its own gauge transfor-
mations Z0A

α . However, to first order (5.17) is only true when the deformation is
consistent. In this case, dS1(Z0

α) must vanish when the unperturbed equations of
motion E0

A hold. Furthermore, we can write

g

∫︂
M
E1

A ∧ Z0A
α = −g

∫︂
M
E0

A ∧ Z1A
α . (5.18)

From expression (5.18) one can read off the deformation of the symmetries Z1A
α .

Notice that, if the deformation preserves the gauge symmetries, i.e. if Z1A
α = 0,

then dS1(Z0
α) vanishes identically.

It should be noted that it is relevant which action we take as the unperturbed
theory and which one as the deformation. First, the chosen unperturbed theory
should be integrable, but even if both are, the order may change the results. As an
example, consider the 3-dimensional Cartan-Palatini and Yang-Mills actions

S3-P(e,ω) =

∫︂
M

ei ∧ Fi , SYM(ω) =

∫︂
M

Fi ∧ ∗Fi .

In 3 dimensions, General Relativity has no local degrees of freedom, while Yang-Mills
has 1× dimSO(3) = 1× 3 = 3. The sum of both actions

S(e,ω) =

∫︂
M

(ei + ∗Fi) ∧ Fi ,

yields the equations of motion

2 D ⋆ Fi +Dei = 0 ,

Fi = 0 ,

which are trivially equivalent to

Dei = 0 ,

Fi = 0 .

These are equivalent to the equations of General Relativity in 3 dimensions. Hence,
if we take as starting point the Cartan-Palatini action and treat the Yang-Mills
term as an interaction, the resulting theory has the same equations of motion and
degrees of freedom than the original one, namely, zero. On the other hand, if the
starting point is the Yang-Mills action and we add the Cartan-Palatini term as an
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interaction, the original action has 3 degrees of freedom wheras the deformed one
has none, hence, we do not have a consistent deformation.

We are now going to discuss the internal Abelianization strategy for some actions
that are relevant to study gravitational theories. Note that we are going to treat
them in a fully covariant way without turning to 3+1 decompositions or canonical
methods, since we will be able to give explicit solutions for the fields in the whole
spacetime manifold.

5.3.1 Chern-Simons

The internally Abelianized version of the Chern-Simons action (3.7) is

SCS(A) =
1

2

∫︂
M
gijA

i ∧ dAj ,

and its equations of motion are

dAi = 0 .

The solutions to these equations are easily obtained. They are

Ai = df i + λiaΦ
a ,

with f i ∈ C∞(M) an arbitrary function, λia ∈ R and Φa ∈ H1
dR(M) representatives

of the first de Rham cohomology group. One would then like to obtain all the
possible interaction terms that can be added to this theory. This has already been
studied and the main results are summarised in the following theorem:

Theorem 10. [75, page 560, eq. (14.13)] The consistent deformations of Abelian
Chern-Simons actions are Chern-Simons actions based on arbitrary groups of the
same dimension.

It is perhaps more illustrative to particularize the discussion to the 3-dimensional
Cartan-Palatini action (3.11) which arises by choosing the group SO(1, 2) in the
Chern-Simons action. Then, internally Abelianizing would mean replacing SO(1, 2)
by the Abelian group U(1)3. In this case, the curvature Fi reduces to dωi. The
resulting action reads

S0
3-P(e,ω) = 2

∫︂
M

ei ∧ dωi , (5.19)

whose Euler forms and field equations are simply

E0i
e := 2dωi = 0 ,

E0i
ω := 2dei = 0 .
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As with the general Chern-Simons case, the equations have explicit solutions on an
arbitrary manifold M characterized by the representatives Φa of the equivalence
classes of the first de Rham cohomology group H1

dR(M) of M:

ei = df i + λiaΦ
a ,

ωi = dgi + µi
aΦ

a ,
(5.21)

where f i, gi ∈ C∞(M) are arbitrary functions and λia, µ
i
a ∈ R. Note that this

fully parametrizes the space of solutions by 6 functions and 2n1 real numbers where
nk = dim Hk

dR(M). To separate the gauge degrees of freedom from the physical
ones, we must look at the presymplectic structure in the space of solutions of the
field equations [81]. The symplectic form in the covariant space is

Ω = −
∫︂
Σ

dei ∧ dωi .

By pulling it back to the solution space defined by (5.21) one gets

ΩS = −
∫︂
Σ

(︂
ddfi ∧ ddgi + ddfi ∧ dµi

b ∧ Φb

+ dλia ∧ Φa ∧ ddgi + dλia ∧ Φa ∧ dµi
b ∧ Φb

)︂
= −

(︃∫︂
Σ

Φa ∧ Φb

)︃
dλia ∧ dµib ,

since the rest of the terms are exact (the Φa are closed) and do not contribute to
the bulk of the integral. Note that the arbitrary functions f i, gi do not play any role
in the presymplectic form, hence, they are gauge degrees of freedom of the U(1)6

gauge group. In fact, Ω does not depend on any field, hence the theory has no
local degrees of freedom. It has, nevertheless, 2n1 global (or topological) degrees of
freedom described by λia, µi

a.

The symmetries of the action (5.19) are

(Z0
Diff)

i
e · ρ = Lρe

i , (Z0
Diff)

i
ω · ρ = Lρω

i ,

(Z0
T)

i
e · τ = 0 , (Z0

T)
i
ω · τ = dτ i ,

(Z0
R)

i
e · λ = dλi , (Z0

R)
i
ω · λ = 0 ,

where Z0
Diff implements the diffeomorphisms and Z0

T,Z0
R correspond to the U(1)6

gauge group. Note that the latter can be easily read off from the expressions of the
solutions (5.21). The theory is irreducible, since λi, τ i are 0-forms. The generator
algebra is given by

[ZT · τ ,ZR · λ] = 0 ,

[ZR · λ,ZDiff · ρ] = ZR · ıρdλ ,

[ZT · τ ,ZDiff · ρ] = ZT · ıρdτ .
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Let us turn to its possible consistent deformations. According to Theorem 10,
they are all of the form

S1
3-P =

∫︂
M

1

3
⟨A, JA,AK⟩ , (5.22)

where now ⟨·, ·⟩ and J·, ·K are an invariant metric and the Lie brackets of an arbitrary
6-dimensional Lie algebra. Not surprisingly, of particular relevance is the family of
algebras λiso(2, 1) defined in (3.12) with the invariant metric (3.10). If λ = 0, then
this algebra is just iso(2, 1). For λ > 0 it is isomorphic to so(3, 1) and for λ < 0 it
is isomorphic so(2, 2). By using the change of basis A = eiP

i + ωiJi (as discussed
in Section 3.2), it is possible to write (5.22) as

S1
3-P =

∫︂
M

(︃
ϵijke

i ∧ ωj ∧ ωk +
λ

3
ϵijke

i ∧ ej ∧ ek
)︃
.

Together with the original action the deformed action reads

S3-P = 2

∫︂
M

(︁
ei ∧ Fi + Λvole

)︁
, (5.23)

which is the Cartan-Palatini action for 3-dimensional gravity with a cosmological
constant Λ term. Note that Λ can be made zero, positive or negative by choosing
the appropriate group.

A straightforward computation gives

dS1
CS(Z0

α · ϵα)

=

∫︂
M

(︄
dıρ

(︃
ϵijke

i ∧ ωj ∧ ωk +
λ

3
ϵijke

i ∧ ej ∧ ek
)︃

+ 2d
(︁
ϵijke

i ∧ ωjτ k
)︁
− ϵijkE

0i
ω ∧ ωjτ k + ϵijkE

0i
e ∧ ejτ k

+ d
(︁
ϵijkλ

i
(︁
ωj ∧ ωk + λej ∧ ek

)︁)︁
− λiϵijk

(︁
E0j

e ∧ ωk + λE0j
ω ∧ ek

)︁)︄
≈ 0 .

Since all the bulk terms are proportional to the Euler forms, the deformation is
consistent. This is not surprising in hindsight, because the deformed action (5.23)
has no local degrees of freedom as in the case for its internally Abelianized version.
Hence, the deformation process did not change their number, as expected per the
features of a consistent deformation. According to (5.18), the symmetries of the
deformed action are given by

(ZDiff)
i
e · ρ = Lρe

i , (ZDiff)
i
ω · ρ = Lρω

i ,

(ZT)
i
e · τ = −gϵijkejτ k , (ZT)

i
ω · τ = dτ i + gϵijkω

jτ k ,

(ZR)
i
e · λ = dλi + gϵijkω

jλk , (ZR)
i
ω · λ = gϵijke

jλk .
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5.3.2 Husain-Kuchař

Since the internal group of the Husain-Kuchař action (3.18) is SO(3), its internally
Abelianized version is

S0
HK(e,ω) =

∫︂
M
ϵijke

i ∧ ej ∧ dωk , (5.24)

where ωi is now a U(1)3 connection.

The symmetries of S0
HK can be read directly from it. They are

(Z0
Diff)

i
e · ρ = Lρe

i , (Z0
Diff)

i
ω · ρ = Lρω

i , (5.25a)

(Z0
R)

i
e · τ = 0 , (Z0

R)
i
ω · τ = dτ i , (5.25b)

where ρ ∈ X(M) is an arbitrary vector field in M and τ i ∈ C∞(M). The symme-
tries involving ρ are the 4-diffeomorphisms of M, while those involving τ generate
internal U(1)3 rotations. The theory is irreducible. The algebra is

[ZR · τ ,ZR · τ ] = 0 ,

[ZDiff · ρ,ZDiff · ρ] = 0 ,

[ZR · τ ,ZDiff · ρ] = ZR · ıρdτ .

The Euler forms obtained by varying (5.24) are

E0i
e := −2ϵijke

j ∧ dωk , (5.26a)

E0i
ω := −ϵijkd(ej ∧ ek) . (5.26b)

The presymplectic form in the covariant space is

Ω = 2

∫︂
Σ

ϵijkdei ∧ ej ∧ dωk .

Although it is not necessary for the upcoming discussion, one would like to have a
parametrization of the space of solutions of the internally Abelianized model. Even
though the equations are not as involved as the ones appearing in General Relativity,
to this date this solution is still unknown.

The deformation that one needs to add in order to recover the full action (3.18)
is

S1
HK(e,ω) =

∫︂
M

ei ∧ ej ∧ ωi ∧ ωj .

We now need to compute (5.18) in order to check the consistency of the defor-
mation. A direct computation gives

dS1
HK(Z0

α · ϵα) =
∫︂
M

(︃
d
(︁
2τ iei ∧ ej ∧ ωj + ıρ

(︁
ei ∧ ej ∧ ωi ∧ ωj

)︁)︁
− τ iεijk

(︁
ωj ∧ E0k

ω + ej ∧ E0k
e

)︁)︃
≈ 0 .
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Hence, this deformation is consistent. We can now get the deformed symmetries by
using (5.18); they are

(ZDiff)
i
e · ρ = Lρe

i , (ZDiff)
i
ω · ρ = Lρω

i ,

(ZR)
i
e · τ = −gεijkτ jek , (ZR)

i
ω · τ = dτ i + gϵijkω

jτ k.

5.3.3 Cartan-Palatini

The internal group of the (4-dimensional) Cartan-Palatini action (3.32) is SO(1, 3),
hence its internal Abelianization must be built with a U(1)6 connection ωIJ . The
Abelianized action is

S0
CP(e,ω) =

∫︂
M
ϵIJKLe

I ∧ eJ ∧ dωKL , (5.27)

and the Euler forms (5.1) are

E0I
e = −2ϵIJKLe

J ∧ dωKL ,

E0IJ
ω = −ϵIJKLd

(︁
eK ∧ eL

)︁
.

Requiring that they vanish yields the equations of motion, which according to
Lemma 20 of Appendix B are equivalent to

deI = 0 , (5.28a)

ϵIJKLd
(︁
eJ ∧ ωKL

)︁
= 0 . (5.28b)

Equation (5.28a) is readily solved by

eI = dhI + ηIaΦ
(1)a , (5.29)

with hI ∈ C∞(M), ηIa ∈ R and Φ(1)a ∈ Ω1(M) representatives of the first de Rham
cohomology group.

Equation (5.28b) implies

ϵIJKLe
J ∧ ωKL = dgI + γIaΦ

(2)a =: BI ,

with gI ∈ C∞(M), γIa ∈ R and Φ(2)a ∈ Ω2(M) representatives of the second de
Rham cohomology group. The solution is given by Lemma 18 and is

ωKL = −1

2

(︃
BI ∧ eK ∧ eL

vole

)︃
eI − 1

2

(︃
BI ∧ eI ∧ e[K

vole

)︃
eL] . (5.30)

In the simply connected case, the solution for the metric is

g = ηIJdh
I ⊗ dhJ ,
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which is, locally, the Minkowski metric. As in other more traditional perturbative
approaches, the leading term in the metric is Minkowski.

The presymplectic form in the covariant space is

ΩS =

∫︂
Σ

ϵIJKLdeI ∧ eJ ∧ dωKL ,

and its pullback to the solution space defined by (5.29) and (5.30) is

Ω =
(︂∫︂

Σ

Φ(1)a ∧ Φ(2)b
)︂

dηIa ∧ dγIb .

As Ω does not depend on any fields, the theory has no local degrees of freedom. At
this point, one should be suspicious that the deformation leading to the full action
might not be consistent since the local degrees of freedom change abruptly. In a
moment we will check this explicitly.

Since we already know the solutions for eI ,ωKL in terms of hI ,BI , it is easy to
find the gauge generators of the action by varying hI ,BI

(Z0
T)

I
e · τ = dτ I ,

(Z0
T)

I
ω · τ =

1

2
ϵKLPQ

(︃
dτL ∧ ωPQ ∧ eI ∧ eJ

vole

)︃
eK

+
1

2
ϵKLPQ

(︃
dτL ∧ ωPQ ∧ eK ∧ e[I

vole

)︃
eJ ] ,

(Z0
R)

I
e · χ = 0 ,

(Z0
R)

I
ω · χ = −1

2

(︃
dχK ∧ eI ∧ eJ

vole

)︃
eK − 1

2

(︃
dχK ∧ eK ∧ e[I

vole

)︃
eJ ] .

Note that the theory is first-order reducible, since the parameter χK = dγK , for
γK ∈ C∞(M), makes the gauge generator ZR vanish.

The interaction term that we have to add to (5.28) to recover the full Cartan-
Palatini action (3.32) is

S1
CP =

∫︂
M
ϵIJKLe

I ∧ eJ ∧ ωK
M ∧ ωML , (5.31)

A direct computation gives

dS1
CP(Z0

α · ϵα) (5.32)

=

∫︂
M

2d
(︁
ϵIJKLτ

I
(︁
eJ ∧ ωK

M ∧ ωML + eM ∧ ωJ
M ∧ ωKL

)︁
+ χI ∧ eJ ∧ ωI

J

)︁
− 2ϵIJKLτ

Id
(︁
eJ ∧ ωK

M ∧ ωML + eM ∧ ωJ
M ∧ ωKL

)︁
+ 2χI ∧ d

(︁
eJ ∧ ωI

J

)︁
.

We wish to know whether (5.32) vanishes on-shell or not. This amounts to checking
whether the term d

(︁
eJ ∧ ωI

J

)︁
vanishes for all the solutions of the equations of

motion (5.28). Let us show that this is not the case by exhibiting a solution not
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satisfying this condition in the simply connected case. Consider an arbitrary function
hI ∈ C∞(M) and set eI = dhI , ω0i = 0 and ωij = ϵijkh

0dhk. Indeed, this a solution
to the equations of motion: equation (5.28a) is identically satisfied, and for equation
(5.28b), by separating the cases of I = 0 and I = i, we have

ϵ0jkldh
j ∧ dωkl = ϵjkldh

j ∧ ϵklmdh0 ∧ dhm = 2dhm ∧ dh0 ∧ dhm = 0 ,

ϵiJKLdh
J ∧ dωKL = ϵi0kldh

0 ∧ ϵklmdh0 ∧ dhm + 2ϵij0ldh
j ∧ dω0l = 0 .

On the other hand, we evaluate d
(︁
eJ ∧ ωI

J

)︁
and find

d
(︁
eJ ∧ ω0

J

)︁
= 0 ,

d
(︁
eJ ∧ ωi

J

)︁
= dhj ∧ dωi

j = −dhj ∧ ϵijkdh0 ∧ dhk ̸= 0 .

Since it does not vanish, the deformation (5.31) is not consistent. In hindsight,
this was expected, since the internally Abelianized theory has no local degrees of
freedom, while it is well known that General Relativity has 2. As a consequence,
although it is an integrable system, it is not possible to set a regular perturbative
scheme leading to General Relativity.

Although the most interesting possibility of recovering full GR as a consistent
deformation ultimately fails, it is worth exploring other consistent deformations. In
particular, let us deform the action by introducing a cosmological constant term.
The interaction in this case is

S1
Λ =

Λ

4!

∫︂
M
ϵIJKLe

I ∧ eJ ∧ eK ∧ eL .

It is straightforward to see that

dS1
Λ(Z0

α · ϵα) =
∫︂
M

(︃
d

(︃
Λ

6
ϵIJKLτ

IeJ ∧ eK ∧ eL
)︃
− Λ

4
τ IeJ ∧ E0

ωIJ

)︃
≈ 0 ,

hence, it is indeed a consistent deformation. Notice that the last term implies a
deformation of the τ symmetry by −gΛ

8

(︁
τ IeJ − τJeI

)︁
.

5.3.4 Anti-self-dual action

The internal symmetry group of the anti-self-dual action (4.2) is SO(4), hence its
internal Abelianization is built with the group U(1)6, yielding

S0
ASD(e,α,ω) =

∫︂
M

(︁
ϵijke

i ∧ ej ∧ dωk − 2α ∧ ei ∧ dωi
)︁
, (5.33)

whose Euler forms (5.1) are

E0
α = 2ei ∧ dωi ,

E0
e i = −2

(︁
ϵijke

j ∧ dωk +α ∧ dωi

)︁
,

E0
ωk = −d

(︁
ϵijke

i ∧ ej − 2α ∧ ek
)︁
.
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The action (5.33) has the following gauge generators

(Z0
R)ω

i · τ = dτ i , (Z0
T)ω

i · λ = 0 , (Z0
Diff)ω

i · ρ = Lρω
i ,

(Z0
R)e

i · τ = 0 , (Z0
T)e

i · λ = −λiα+ ϵijke
jλk , (Z0

Diff)e
i · ρ = Lρe

i ,

(Z0
R)α · τ = 0 , (Z0

T)α · λ = λie
i , (Z0

Diff)α · ρ = Lρα ,

where ρ ∈ X(M) is an arbitrary vector field in M and τ i,Λi ∈ C∞(M). Then, Z0
Diff

generates the diffeomorphisms and Z0
T and Z0

R generate the internal group U(1)6.
The theory is irreducible. The algebra they form is

[Z0
T · τ ,Z0

R · λ] = 0 ,

[Z0
R · λ,Z0

Diff · ρ] = 0 ,

[Z0
T · τ ,Z0

Diff · ρ] = Z0
T · ıρdτ ,

while the rest of commutators are 0.

The deformation that we need to add to recover the whole action is

S1
ASD =

∫︂
M

(︁
ei ∧ ej ∧ ωi ∧ ωj − ϵijkα ∧ ei ∧ ωj ∧ ωk

)︁
.

Then, computing (5.18) directly gives

dS1
ASD

(︁
Z0

α · ϵα
)︁
=

∫︂
M

(︁
2d
(︁
τ i
(︁
ei ∧ ej ∧ ωj + ϵijkα ∧ ej ∧ ωk

)︁)︁
+ dıξ

(︁
ei ∧ ej ∧ ωi ∧ ωj − ϵijkα ∧ ei ∧ ωj ∧ ωk

)︁
+τ i

(︁
−ϵijkωj ∧ E0k

ω − ei ∧ E0
α +α ∧ E0

e i

)︁)︁
≈ 0 ,

hence the deformation is consistent. Also, there is only one deformed symmetry
given by

(ZT)ω
i · τ = dτ i + gϵijkω

jτ k = Dτ i ,

(ZT)e
i · τ = gτ iα ,

(ZT)α · τ = −gτ iei ,

while the ZDiff and ZR transformations remain the same.

It is remarkable that the anti-self-dual action (4.2) can be obtained as the de-
formation of its internally Abelianized version, in contrast to the Cartan-Palatini
action (3.32), since they both yield General Relativity (though in the anti-self-dual
case it is its Euclildean version). This suggests the possibility of an action similar to
(4.2) that can be obtained as a deformation of its internally Abelianized version and
gives Lorentzian General Relativity. Notice that the same approach used to derive
the action (4.2) would not work in the Lorentzian case, since (anti)-self-dual con-
nections would be complex. Nevertheless, it is interesting to explore the possibility
of a complexified variational principle based on the Lorentizan anti-self-dual action,
which potentially could lead to a suitable perturbative scheme using the approach
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followed in this section. The main obstacle for this strategy is that the treatment
of complex variational principles is not well understood, as exemplified by the fact
that it is not clear how to consistently implement the so called reality conditions
[72], [82].

82



Chapter 6

Conclusions

This thesis has focused on two main problems. On the one hand, in Chapter 4, an
alternative action for the Euclidean version of anti-self-dual General Relativity has
been studied in detail, in particular, the GNH algorithm has been used to find its
Hamiltonian formulation. The studied action is the result of plugging the concrete
expression of anti-self-dual connections into the Cartan-Palatini action. In this
way, one obtains an action composed by two terms: the first describes the Husain-
Kuchař model while the second is linear in the 0-th element of the coframe e. A
problem we have faced is that the gauge group SO(4) is naturally split in two SO(3)
components, one of which is not so explicitly manifest in the sense that it is not
directly reflected by the internal indices of the fields used to write the action. It
appears then, that although one manages to split the symmetry in smaller groups,
which are easier to handle, their complexity still shows up somewhere else. The
solution for the Hamiltonian vector field (from which all the information can be
extracted) has been seen to depend on 10 arbitrary functions: these correspond to
the SO(4) and diffeomorphism symmetries.

On the other hand, in Chapter 5 a new perturbative scheme for field theories
has been proposed and its viability has been analysed in a variety of interesting
gravitational theories. The idea is to use internally Abelianized versions of the
theories as the starting point of a perturbative expansion, i.e., replacing the internal
symmetry group of the action by an Abelian group of the same dimension. In
terms of the Lie algebra, this has the effect of setting all the Lie brackets to 0,
which removes the quadratic terms in the connection from the action. This greatly
simplifies the resulting equations of motion and has allowed us to solve them directly
in the cases at hand without the need to resort to Hamiltonian methods.

A first requirement for the perturbative scheme to work is that the unperturbed
theory be integrable and the solution is expressible in a reasonable form in order
to serve as the starting point of the perturbative expansion. However, this is not
enough. An equally important condition is that the perturbation is a consistent
deformation of the base action (i.e., the deformation introduced to the action pre-
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serves the number of gauge symmetries, although their expressions may change).
This is equivalent to saying that the perturbation is regular rather than singular.
Indeed, for regular perturbations one can write an expansion in power series, while
for singular perturbations this is not possible. Note that in the singular case, per-
turbative schemes are still available, however they require different approaches that
may be difficult to find. Only when these two conditions hold it is reasonable to
pursue a perturbative theory along these lines. A particularly nice feature of the
method discussed in the thesis is that it does not need any auxiliary background
objects, which are fundamental in the traditional approach to perturbative gravity,
namely, the Minkowski metric. Also, each term of the perturbative expannsion of
the action is covariant, which may be beneficial since there is no breaking of the
diffeomorphism symmetry (which as mentioned before, might lead to unexpected
unpleasant effects). These two facts combined make this approach very reasonable
for a perturbative scheme for gravitational theories.

The consistent deformations method can be applied in a wide range of grav-
itational theories as shown in Chapter 5. Unfortunately, in the actions relevant
for General Relativity, namely Cartan-Palatini (and also the Holst action [2]) the
scheme does not work, since the resulting deformation is not consistent. This is due
to the fact that General Relativity has two local degrees of freedom, while its inter-
nally Abelianized version (also called the U(1)3 model) is topological, i.e., it has no
local degrees of freedom. In this sense, the model for (anti-self-dual) Euclidean Gen-
eral Relativity presented in Chapter 4 is interesting, since it actually is a consistent
deformation of its internally Abelianized version, while Euclidean Cartan-Palatini is
not. This motivates the search of an action that yields Lorentzian General Relativity
and to which the consistent deformation procedure can be applied.

It is somewhat surprising that, given two different actions for the same physical
theory, one can be consistently deformed from its internal Abelianization while the
other can not. It is also very surprising that precisely the actions that yield the phys-
ically relevant gravitational theory are not consistent deformations of their internal
Abelianizations, while other simpler actions are. It would be worth investigating
if there is some physical property of a theory that determines whether this process
works or not. Obtaining such a characterization could open the possibility for new
actions admitting consistent deformations.

An also very interesting (but also very difficult) problem would be to find all the
possible consistent deformations of a given action. The appropriate context to deal
with this problem is cohomology and the use of the BRST symmetry. Then, the task
is equivalent to computing some cohomology groups (as in [75] for the Chern-Simons
case), which is in general hard to do.

Another possible future project could be to implement the perturbation scheme
for quantization. For a given theory, first one would need to quantize of its in-
ternally Abelianized version and then find a way to implement the quantization of
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the deformation perturbatively. Of particular interest would be the Chern-Simons
action (which might be the simplest of the studied in this thesis because of the low
dimensionality), since its quantization has already been done by Witten [83] in an-
other way. Similarly, the Husain-Kuchař model is also interesting because it yields
3-geometries and it is quantizable in the Loop Quantum Gravity scheme since the
difficult-to-quantize Hamiltonian constraint is not present. It could also be interest-
ing to analyze the quantum version of the U(1)3 model, equipped with a well defined
set of observables, and study the implications it has for the full quantum General
Relativity.
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Appendix A

Some useful expressions for 3+1
decompositions

We can decompose any tensor field with the help of the (1, 1)-tensor field

Π = Id − dt⊗ ∂t ,

by contraction. Also, by extension, it is possible to decompose other types of dynam-
ical objects that act via pullbacks on tensors. As an example, consider a one-form α

pulled-back by a diffeomorphism ϕ. Then, one can use the decomposition for vector
fields to write

ϕ∗α(X) = α(ϕ∗X) = α (ϕ∗(dt(X)∂t +Π(X))) = dt(X)α(ϕ∗∂t) +α(ϕ∗Π(X)) ,

hence

ϕ∗α = α(ϕ∗∂t)dt+α(ϕ∗Π·) .

This allows us to decompose a wide variety of actions.

In the particular case (that will be the one of interest throughout the thesis) of
differential forms, one can adapt a p−form α ∈ Ωp(M) to the foliation by defining

αt := ı∂tα ∈ Ωp−1(M) , (A.1)

α := Π(α) = ı∂t (dt ∧α) ∈ Ωp(M) , (A.2)

We call αt and α the adapted components of α to the foliation. Note that although
(A.1) are fields on M, they have no component in dt, making them adapted to the
foliation Σt. Equivalently, if β is a form adapted to the foliation, ı∂tβ = 0. This also
means that when they act on vector fields X ∈ X(M) on M, only the projection of
X onto the leaves of the foliation will survive.

We denote their pullbacks to Σ as

αt := ȷ∗tαt ∈ Ωp−1(Σ) ,

α := ȷ∗tα ∈ Ωp(Σ) ,
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where ȷt : Σ −→ M is the inclusion of each leaf Σt.

It is also useful to introduce the operation d defined by

dα = ı∂t (dt ∧ dα) ,

whose application always yields an adapted form. This allows us to decompose the
exterior derivative as

dα = dt ∧ (L∂tα− dαt) + dα .

Some useful decompositions of other common objects are

Dek = Dek + dt ∧
(︁
L∂te

k −Dekt + ϵklmA
l
te

m
)︁
, (A.3)

Fi = DAi + dt ∧
(︁
L∂tA

i −DAi
t

)︁
, (A.4)

FIJ = FIJ + dt ∧
(︁
L∂tω

IJ −DωIJ
t

)︁
. (A.5)
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Appendix B

Some algebraic equations involving
differential forms

B.1 Equations in 3-dimensional manifolds

Lemma 11. Let Σ be an orientable 3-dimensional manifold, α ∈ Ω1(Σ) and ei ∈
Ω1(Σ) a nondegenerate coframe. Then,

α =
1

2
ϵijk

(︃
α ∧ ei ∧ ej

vole

)︃
ek . (B.1)

Proof. Write α = αie
i. By multiplying both sides by ∧ej ∧ ek we get

α ∧ ej ∧ ek = αiϵ
ijkvole .

Now, multiplying by ϵljk one obtains

ϵljkα ∧ ej ∧ ek = 2αlvole .

Finally, relabelling, manipulating terms and multiplying by el we obtain

α =
1

2
ϵijk

(︃
α ∧ ei ∧ ej

vole

)︃
ek .

Lemma 12. Let Σ be an orientable 3-dimensional manifold, α ∈ Ω2(Σ) and ei ∈
Ω1(Σ) a nondegenerate coframe. Then,

α =
1

2
ϵijk

(︃
α ∧ ei

vole

)︃
ej ∧ ek . (B.2)

Proof. Write the 2-form α in components in the triad basis α = αije
i ∧ ej, where

αij ∈ C∞(Σ) is antisymmetric in ij. Then, by multiplying by · ∧ ek, we get

α ∧ ek = αije
i ∧ ej ∧ ek = αijϵ

ijkvole .
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By multiplying by ϵklm·, this implies in terms of densities

ϵklm

(︃
α ∧ ek

vole

)︃
= 2αlm ,

which directly implies the desired result.

Lemma 13. Let Σ be an orientable 3-dimensional manifold. For given βi ∈ Ω2(Σ)

and ei ∈ Ω1(Σ) a nondegenerate coframe, consider the following system of equations
in the unknowns αi ∈ Ω1(Σ)

ϵijke
j ∧ αk = βi . (B.3)

Then the solution is

αi =

(︃
ej ∧ βj
2 vole

)︃
ei −

(︃
ei ∧ βj
vole

)︃
ej . (B.4)

Proof. Writing the 1-form αk = αk
me

m in components, where αk
m ∈ C∞(Σ), and

multiplying the initial equation (B.3) by el∧ one obtains

ϵijkα
k
me

l ∧ ej ∧ em = el ∧ βi .

The top form el ∧ ej ∧ em can be written as ϵljmvole, hence(︃
el ∧ βi
vole

)︃
= ϵijkϵ

ljmαk
m = δliα

k
k − αl

i .

In particular, for i = l

2αk
k =

(︃
ek ∧ βk
vole

)︃
,

which implies that

αl
i =

(︃
ek ∧ βk
2 vole

)︃
δli −

(︃
el ∧ βi
vole

)︃
.

Multiplying by ei and relabelling the indices, one finally obtains the desired formula
(B.4). This proves that a solution to (B.3) has to be of the form (B.4), but there
might be additional constraints. To check this, one must insert the solution in the
original equation and see whether it is automatically satisfied.

ϵijke
j ∧ αk = ϵijke

j ∧
(︃(︃

el ∧ βl
2 vole

)︃
ek −

(︃
ek ∧ βl
vole

)︃
el
)︃

Using (12), one can rewrite the second term as

ϵijk

(︃
ek ∧ βl
vole

)︃
ej ∧ el = ϵijk

(︃
ek ∧ βl
vole

)︃
1

2
ϵpqrϵ

pjleq ∧ er

=
1

2

(︃
ϵiqr

(︃
ek ∧ βk
vole

)︃
− ϵkqr

(︃
ek ∧ βi
vole

)︃)︃
eq ∧ er .
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Hence,

ϵijke
j ∧ αk = ϵijke

j ∧
(︃
el ∧ βl
2 vole

)︃
ek − 1

2

(︃
ϵiqr

(︃
ek ∧ βk
vole

)︃
− ϵkqr

(︃
ek ∧ βi
vole

)︃)︃
eq ∧ er

=
1

2
ϵkqr

(︃
ek ∧ βi
vole

)︃
eq ∧ er = βi ,

by use of (12) again. Since equation (B.3) is already recovered without requiring
additional conditions, the result is proved.

Lemma 14. Let Σ be an orientable 3-dimensional manifold, ei ∈ Ω1(Σ) a non-
degenerate coframe, Φ ∈ Ω2(Σ) and αjk ∈ Ω1(Σ) antisymmetric in jk. Then, the
solution to the equation for αjk

ϵijke
i ∧ αjk = Φ ,

is given by

αjk = −1

2

(︃
Φ ∧ e[j

vole

)︃
ek] + ϵjklζlme

m ,

where ζlm ∈ C∞ are arbitrary functions such that ζlm = ζml.

Proof. Write αjk = ϵjkl (ξlm + ζlm) e
m with ξlm antisymmetric and ζlm symmetric in

lm. By using this expression in the equation and multiplying by ∧ep one obtains

Φ ∧ ep = ϵijke
i ∧ ϵjkl (ξlm + ζlm) e

m ∧ ep = ϵijkϵ
jklϵimp (ξlm + ζlm) vole

=
(︁
δmjδ

p
k − δmkδ

p
j

)︁
ϵjkl (ξlm + ζlm) vole = 2ϵplm (ξlm + ζlm) vole

= 2ϵplmξlmvole .

By multiplying by ϵpab, this implies in terms of densities

ξab =
1

4
ϵpab

(︃
Φ ∧ ep

vole

)︃
,

hence

αjk = ϵjkl
(︃
1

4
ϵplm

(︃
Φ ∧ ep

vole

)︃
+ ζlm

)︃
em

=
1

4

(︁
δjmδ

k
p − δjpδ

k
m

)︁(︃Φ ∧ ep

vole

)︃
em + ϵjklζlme

m

=
1

4

(︃
Φ ∧ ek

vole

)︃
ej − 1

4

(︃
Φ ∧ ej

vole

)︃
ek + ϵjklζlme

m

= −1

2

(︃
Φ ∧ e[j

vole

)︃
ek] + ϵjklζlme

m .

Since there is no restriction on ζlm, it remains arbitrary. Plugging this expression in
the original equation one sees that it is automatically satisfied and, hence, no other
necessary conditions arise.
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Lemma 15. Let Σ be an orientable 3-dimensional manifold, ei ∈ Ω1(Σ) a non-
degenerate coframe, α ∈ Ω1(Σ), Φij ∈ Ω2(Σ) antisymmetric in ij. Then, the solution
to the equation for α

ϵijke
k ∧ α = Φij ,

is given by

α =
1

2

(︃
Φij ∧ ej

vole

)︃
ei .

Proof. Write α = αle
l and multiply the equation by ∧em. This yields

Φij ∧ em = ϵijkαlϵ
klmvole =

(︁
αiδ

m
j − αjδ

m
i

)︁
vole .

By multiplying by δjm we obtain that

2αivole = Φij ∧ ej ,

and by rearranging and multiplying by ei we obtain

α =
1

2

(︃
Φij ∧ ej

vole

)︃
ei .

Lemma 16. Let Σ be an orientable 3-dimensional manifold, ei ∈ Ω1(Σ) a non-
degenerate coframe, α ∈ Ω1(Σ), Φi ∈ Ω2(Σ). Consider the equation for α

α ∧ ei = Φi .

The solution to the equation exists if, and only if, the condition

Φ(i ∧ ej) = 0 ,

is satisfied, in which case it is given by

α =
1

2
ϵijk

(︃
Φi ∧ ej

vole

)︃
ek .

Proof. Write α = αle
l and multiply the equation by ∧ek. This yields

Φi ∧ ek = αjϵ
jikvole .

Now multiplying by ϵlik we get

2αlvole = ϵlikΦ
i ∧ ek ,

and by rearranging, multiplying by el and relabelling we get

α =
1

2
ϵijk

(︃
Φi ∧ ej

vole

)︃
ek .
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To check whether there are additional necessary conditions, we plug this expression
into the original equation, to obtain

1

2
ϵijk

(︃
Φi ∧ ej

vole

)︃
ek ∧ ep = Φp .

The left hand side can be expanded into

1

2
ϵijk

(︃
Φi ∧ ej

vole

)︃
1

2
ϵabc

(︃
ek ∧ ep ∧ ea

vole

)︃
eb ∧ ec = 1

4
ϵijkϵabcϵ

kpa

(︃
Φi ∧ ej

vole

)︃
eb ∧ ec

=
1

4
ϵabc

(︃
Φp ∧ ea − Φa ∧ ep

vole

)︃
eb ∧ ec ,

while the right hand side can be written as

1

2
ϵabc

(︃
Φp ∧ ea

vole

)︃
eb ∧ ec .

Equating both sides leads to the necessary condition
1

2
(Φp ∧ ea − Φa ∧ ep) = Φp ∧ ea ,

which can be written as

Φ(p ∧ ea) = 0 .

Lemma 17. Let Σ be an orientable 3-dimensional manifold, ei ∈ Ω1(Σ) a non-
degenerate coframe, αi ∈ Ω1(Σ), Φ ∈ Ω2(Σ). Consider the equation for αi

αi ∧ ei = Φ .

Then, its solution is

αi = −1

2
ϵijk

(︃
ej ∧ Φ

vole

)︃
ek + ζije

j ,

with arbitrary ζij ∈ C∞(Σ) symmetric in ij.

Proof. Write αi = (αij + ζij) e
j, where αij is antisymmetric and ζij symmetric in ij.

Then, the equation reads

Φ = (αij + ζij) e
j ∧ ei = αije

j ∧ ei ,

and multiplying by ∧ek, this implies in terms of densities

αijϵ
jik =

(︃
Φ ∧ ek

vole

)︃
,

and by multiplying by ϵkpq and expanding one obtains

2αpq = ϵkpq

(︃
Φ ∧ ek

vole

)︃
.

Since there is no equation for ζij, it remains arbitrary, and joining the pieces gives
the expected result. Plugging the solution in the original equation automatically
satisfies it, hence there are no additional necessary conditions.
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B.2 Equations in 4-dimensional manifolds

Lemma 18. Let M be a 4-dimensional parallelizable manifold and eI ∈ Ω1(M) a
nondegenerate coframe. The solution to

ϵIJKLe
J ∧αKL = ΦI ,

for αKL ∈ Ω1(M) antisymmetric in KL and ΦI ∈ Ω2(M) is

αKL = −1

2

(︃
ΦI ∧ eK ∧ eL

vole

)︃
eI − 1

2

(︃
ΦI ∧ eI ∧ e[K

vole

)︃
eL] .

Proof. Write αKL = αKL
MeM and multiply the equation by ∧eP ∧ eQ to obtain

ΦI ∧ eP ∧ eQ = ϵIJKLα
KL

Mϵ
JMPQvole .

Now, the contraction of two ϵ yields

ϵIJKLϵ
JMPQ = −δMPQ

IKL ,

where δMPQ
IKL is the generalised delta, which has the property that for a completely

antisymmetric tensor TMPQ

δMPQ
IKL TMPQ = TIKL .

Then,

ΦI ∧ eP ∧ eQ = −2
(︂
αPQ

I +αQM
Mδ

P
I +αMP

Mδ
Q
I

)︂
vole . (B.5)

By multiplying by δIP , we obtain the relation

1

4

(︃
ΦI ∧ eI ∧ eQ

vole

)︃
= αIQ

I ,

which we can introduce back in (B.5). By doing so we obtain

−1

2

(︃
ΦI ∧ eP ∧ eQ

vole

)︃
= αPQ

I +
1

2

(︃
ΦM ∧ eM ∧ e[P

vole

)︃
δ
Q]
I .

Finally, reordering, multiplying by eI and relabelling we obtain the claimed result.

Lemma 19. Let M be a 4-dimensional parallelizable manifold and eI ∈ Ω1(M) a
nondegenerate coframe. The solution to

ϵIJKLe
K ∧αL = ΦIJ ,

for αL ∈ Ω1(M) and ΦIJ ∈ Ω2(M) is

αI =
1

2

(︃
ΦKJ ∧ eI ∧ eJ

vole

)︃
eK − 1

6

(︃
ΦKL ∧ eK ∧ eL

vole

)︃
eI .
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Proof. By multiplying the equation by · ∧eA∧eB and writing ZI = ZI
J e

J , we have

ϵIJKLϵ
KMABZL

M vole = ΦIJ ∧ eA ∧ eB .

−2
(︁
ZB

[I δ
A
J ] − ZA

[I δ
B
J ] + ZK

K δ
A
[I δ

B
J ]

)︁
=

(︃
ΦIJ ∧ eA ∧ eB

vole

)︃
. (B.6)

By multiplying by δIAδJB, equation (B.6) yields ZK
K = −1

6

(︂
ΦIJ∧eI∧eJ

vole

)︂
, while by

multiplying by δJB, equation (B.6) yields

ZA
B =

1

2

(︃
ΦBJ ∧ eA ∧ eJ

vole

)︃
+ ZK

K δ
A
B .

Combining both results and multiplying by · ∧ eB, one arrives at the desired result.

Lemma 20. Let M be a 4-dimensional parallelizable manifold and eI ∈ Ω1(M) a
nondegenerate coframe. The solution to

ϵIJKLe
I ∧αJ = ΦKL ,

for αJ ∈ Ω2(M) and ΦKL ∈ Ω3(M) is

αJ =
1

2

(︃
ΦKL ∧ eJ

vole

)︃
eK ∧ eL +

1

2

(︃
ΦLM ∧ eM

vole

)︃
eJ ∧ eL .

Proof. Write αJ = αJ
MNe

M ∧ eN . By using this in the equation and multiplying
by ∧eP we get

ϵIJKLα
J
MNe

I ∧ eM ∧ eN ∧ eP = ΦKL ∧ eP ,

which implies in terms of densities(︃
ΦKL ∧ eP

vole

)︃
= ϵIJKLϵ

IMNPαJ
MN = 2

(︁
αJ

JKδ
P
L + αJ

LJδ
P
K + αP

KL

)︁
. (B.7)

Now, by multiplying by δLP we obtain

1

2

(︃
ΦKL ∧ eL

vole

)︃
= 4αJ

JK + αJ
KJ + αL

KL = 2αJ
JK .

Using this expression in Equation (B.7) we get

αP
KL =

1

2

(︃
ΦKL ∧ eP

vole

)︃
+

1

4

(︃
ΦLM ∧ eM

vole

)︃
δPK − 1

4

(︃
ΦLM ∧ eM

vole

)︃
δPL ,

from which we recover

αP = αP
KLe

K ∧ eL =
1

2

(︃
ΦKL ∧ eP

vole

)︃
eK ∧ eL +

1

2

(︃
ΦLM ∧ eM

vole

)︃
eP ∧ eL .
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Lemma 21. Let M be a 4-dimensional parallelizable manifold and ei ∈ Ω1(M),
with i = 1, 2, 3, be three linearly independent 1-forms and αi ∈ Ω1(M) be another
three 1-forms. Then, the solution for αi of the equation

ϵijke
j ∧αk = 0 ,

is

αi = 0 .

Proof. Let us complete the ei with a fourth 1-form e0 linearly independent with ei

such that {e0, ei} is a coframe (and vole = ϵijke
0 ∧ ei ∧ ej ∧ ek is a volume form).

Let U ∈ X(M) be the vector field such that e0(U) = 1 and ei(U) = 0.

Write αi = αi
je

j + αi
0e

0. Then, by plugging this expression into the equation
we get

ϵijke
j ∧
(︁
αk

le
l +αk

0e
0
)︁
= 0 ,

which by taking the interior product with U implies

ϵijke
jαk

0 = 0 ,

which leads to αk
0 = 0.

On the other hand, multiply the equation by e0 ∧ em ∧ · to obtain

0 = ϵijke
0 ∧ em ∧ ej ∧αk

le
l = αk

lϵijkϵ
mjlvole =

(︁
αk

kδ
m
i −αm

i

)︁
vole .

By taking the trace by multiplying by δim, we find that αk
k = 0, which in turn means

that αm
i = 0. Hence, αi = 0.
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Appendix C

Analysis of the Husain action

The Husain action in a globally hyperbolic 3-dimensional manifold M ∼= R× Σ is

SHusain(e,ω) =

∫︂
M

ω ∧ dω + λei ∧Dei , (C.1)

where ei ∈ Ω1(M) is a non-degenerate dyad, ω ∈ Ω1(M) defines an SO(2) connec-
tion 1-form ωi

j := −ϵijω ∈ Ω1(M), where ϵij is the volume form in SO(2) and the
covariant derivative is Dei = dei + ωi

j ∧ ej and λ ∈ R a real number. The action
(C.1) yields the equations of motion

Dei = 0 ,

dω +
λ

2
ϵije

i ∧ ej = 0 .
(C.2)

Given a fixed volume form vol, define the vector density as an element of the
double dual

U(·) =
(︃
· ∧ ϵijei ∧ ej

vol

)︃
.

Then,

ıUe
i =

(︃
ei ∧ ϵjkej ∧ ek

vol

)︃
= 0 . (C.3)

This vector field satisfies the particular relations, which can be found by using
(C.2) and (C.3),

LUe
i = ıUde

i + dıUe
i = ıUde

i = ıU
(︁
ϵijω ∧ ej

)︁
= ϵij (ıUω) ej ,

LUω = ıUdω + dıUω = −λ
2
ıU
(︁
ϵije

i ∧ ej
)︁
+ dıUω = d (ıUω) .

If we think of the quantity Λi
j = −ϵijıUω as a gauge parameter, then, Lie-dragging

the fields along the integral curves of U just has the effect of an SO(2) gauge
transformation

LUe
i = −Λi

je
j ,

LUω
i
j = dΛi

j .
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Choosing a foliation M = R× Σ such that the pullback of ei is non-degenerate
in Σ and U is transverse to Σ, and by taking the pullback of the equations of motion
to Σ we obtain

de1 = ω ∧ e2 ,
de2 = −ω ∧ e1 ,
dω = −λe1 ∧ e2 .

Those are Cartan’s structural equations for the surface Σ [84]. In particular, the
last equation tells us that the Gaussian curvature of Σ is constant K = λ (hence,
constant scalar curvature R = 2λ). As a consequence, since the direction along the
vector field U only has the effect of an internal rotation (gauge transformation), we
can interpret this model as describing surfaces modulo diffeomorphisms (known as
2-geometries) with constant Gaussian curvature.
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