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Abstract

Let X — P! be an elliptically fibered K 3 surface, admitting a sequence w; of Ricci-
flat metrics collapsing the fibers. Let V be a holomorphic SU (n) bundle over X, stable
with respect to w;. Given the corresponding sequence E; of Hermitian—Yang—Mills
connections on V, we prove that, if E is a generic fiber, the restricted sequence E;|g
converges to a flat connection Ag. Furthermore, if the restriction V| is of the form
69’}:1 Ok (g; — 0) for n distinct points ¢; € E, then these points uniquely determine
Ag.

Keywords Hermitian-Yang-Mills - Holomorphic degenerations - Elliptic fibrations -
K3 surfaces
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1 Introduction

In this paper, we study degenerations of Hermitian—Yang—Mills connections on a K3
surface. We are motivated by the work of Gross—Wilson [1], and later Gross—Tosatti—
Zhang [2,3], who study Ricci-flat metrics on elliptically fibered Calabi—Yau’s as the
volume of the fibers tends to zero (see also [4—7]). These types of degenerations relate
to the conjectural picture of mirror symmetry put forth by Strominger—Yau—Zaslow [8],
who postulate that mirror Calabi—Yau manifolds are given by dual torus fibrations over
areal base with a singular affine structure. One major challenge when confronting this
conjecture is the difficulty associated with constructing Lagrangian torus fibrations on
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a given Calabi—Yau. However, if one instead considers degenerations of Calabi—Yau’s,
the fibration structure often becomes apparent in the limit.

Vafa’s extension of the mirror symmetry conjecture to include holomorphic bundles
raises the question of how Yang—Mills connections behave under these degenerations
[9]. For a general abelian fibered Calabi—Yau, Fukaya makes the following conjecture:
Given a sequence of Yang—Mills connections on a family of Calabi—Yau metrics with
collapsing fibers, there exists a rectifiable set in the base of real codimension at least
2, such that on all fibers away from this set, the connections have bounded curvature,
and the restriction to each torus fiber converges to a flat connection [10, Conjecture
5.5]. In the context of SYZ mirror symmetry, a fiberwise flat connection will define a
Lagrangian submanifold £ in the mirror Calabi—Yau, and Fukaya further conjectures
there exists a corresponding mirror sequence of Lagrangians converging to £. In this
paper we partially address the vector bundle portion of Fukaya’s conjecture, in the
case of a fixed holomorphic SU (n) bundle over a K3 surface.

Our setup is as follows. Let 7 : X — P! be an elliptic K3 surface. Let wp1 be a
Kihler form on P!, and wy a Kihler form on X. Consider the family 7 *wp1 + 2w X
which approaches the boundary of the Kéhler cone as t — 0, and let w; be the unique
Ricci-flat metric in the class [7*wp1 + 2wx] given by Yau’s theorem [11]. Next, let
(V,dzg) be a holomorphic SU (n) bundle over X, with a fixed metric Hy. Assume
there exists a sequence #; — 0 such that the bundle V is stable with respect to w,.
By the theorem of Donaldson, Uhlenback—Yau [12,13], there exists a corresponding
sequence of connections E; solving the Hermitian—Yang—Mills (HYM) equations:

Fg, Ao, =0 and (Fg)"?=0.

Furthermore, each E; is complex gauge equivalent to E, so they define the same
holomorphic structure (see (3.1)). We now state our main result:

Theorem 1.1 With the set-up as above:

(1) There exists a finite subset Z C P!, such that for any x e P'\ Z, if E = n ! (x),
then the restriction &; } g converges smoothly, along a subsequence and modulo
unitary gauge transformations, to a flat connection on the fiber.

(2) Furthermore, if the restriction V|g is isomorphic to a direct sum of line bundles
69;'.:1 Okg(q;j —0) for n distinct points q; € E, then the limiting flat connection is
uniquely determined, and given by

T . - _ . -
Ao = —— (diag{q1, ..., gn}dz — diag{q1, ..., gx}d2) , (1.1)
Im(7)

where z is the holomorphic coordinate on the fiber, and t determines the complex
structure. In this case, we also have the following convergence:

|Eilg — AOHL%(E,H(),go,A()) — 0.

Here gg is a flat reference metric on E, and the flat connection Ay is used to
compute derivatives.
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Note that in the second point above, no gauge transformations are needed for conver-
gence. The first point follows from a bubbling argument. Our sequence of connections
has bounded Yang—Mills energy, thus there can only be a finite number of bubbles, and
we show away from these bubbles the curvature of &, | p must approach zero in the C°
norm. This step closely follows two cases from Dostoglou—Salamon, from their proof
of the Atiyah—Floer conjecture [14,15]. The key difference here is that our Ricci flat
metric wy, is not a product metric, so we rely on certain convergence results for wy, .

It then follows that E;| g must approach some limiting flat connection, and the main
contribution of this paper is the explicit identification of the limit, under the assumption
that the restriction of the holomorphic bundle V| is isomorphic to a direct sum of
line bundles 69’]’.:1(95 (g; — 0). We use the observation that, because our sequence
of connections E; all define a fixed holomorphic structure, there exists a sequence of
Hermitian endomorphisms s; satisfying E;|g = €% (Ag) (where this action is defined
by (3.1)). Although there is no hope of achieving C° control of s;, we prove a gauge
fixing result, and demonstrate that there exists a suitable normalization s/, defining
the same connection, which in addition satisfies a uniform C° bound. This significant
step is detailed in Theorem 5.1, which in particular hinges on a Poincaré inequality
(5.1), where the explicit form of V|g is used. From here, convergence of E;|g to Ag
stated in Theorem 1.1 follows from standard theory.

Next, we turn to a specific geometric setup where Theorem 1.1 applies. Although
this setup requires more assumptions, it has the benefit of producing explicit examples
of bundles where the the limiting flat connection can be identified on a generic fiber.
We now assume 7 : X — P! is a projective, elliptic K3 surface with a section o
and singular fibers of type I or I1. Assume the restriction of V to a generic fiber
is semi-stable and regular (see Sect. 3 for relevant definitions). Then by the work of
Friedman—Morgan—Witten in [16], there exists a divisor Dy € |no (P') + kl|, called
the spectral cover associated to V, where [ denotes the effective divisor class of the
fibers, and k € Z satisfies 0 < k < ¢ (V). If Dy is reduced and irreducible, then V is
stable with respect to 7 *[wp1 ] + 2[wx] for any ample class [wx] on X, for 0 < 12 <

%cz(V))_l. Thus, for any sequence #; — 0 we can always find a corresponding
sequence of HYM connections E; on V. More importantly, the intersection of the
spectral cover Dy with a generic fiber E precisely picks out the points gy, ..., qn
from (1.1), and so the limiting flat connection is uniquely determined away from the
ramification points of Dy.

Corollary 1.2 Assume v : X — P! is a projective, elliptic K3 surface with a section,
with singular fibers of type 11 or I1. Let V be a holomorphic SU (n) bundle where
the restriction to a generic fiber is semi-stable and regular, and assume the spectral
cover Dy is reduced and irreducible. Then for any sequence t; — 0, there exists a
sequence of HYM connections 2; on V corresponding to wy,. Furthermore, away from
a finite number of fibers, there exists a HYM connection E¢ uniquely determined by
Dy, satisfying Eolg = Ao, where Aq is defined via (1.1). Specifically, on a generic
fiber E the points qy, ..., q, defining Ao are given by

DyNE=q+--+qu.
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On E we again have the convergence
|Eilg — ‘:‘0|E||L%(E,H()‘g(),Ao) — 0.

The above setup is particularly attractive in that it allows for us to specify the limiting
flat connection in a family that varies homomorphically in the base. Thus our result is
a natural starting place to explore convergence in general, as opposed to only in the
fiber direction.

Since adiabatic limits of Yang—Mills connections are fairly well studied, we now
put our work in the context of previous results. Working on the product of two com-
pact Riemann surfaces with trivial fibration 7 : £; x X5 — X1, J. Chen considers a
family of metrics collapsing the fibers, and analyzes the convergence of a correspond-
ing family of anti-self dual Yang—Mills connections [17, Theorem 4.10]. Assuming
that > has genus at least two, he proves that, modulo a sequence of gauge transfor-
mations and away from a bubbling set, the fiber component of the connection will
converge continuously to a flat connection. Following this work, and using Fukaya’s
gauge fixing theorem [18, Theorem 1.7], T. Nishinou improves upon Chen’s result,
demonstrating smooth convergence away from a finite number of fibers and modulo
gauge transformations, where the restriction of the limit to a fiber will be flat [19,
Theorem 1.2]. This result requires the moduli space of flat connections over X, to be
smooth and of expected dimension, with no reducible flat connections. The failure of
such an assumption to hold over an elliptic curve is a major obstacle to extending the
above results to elliptic fibrations.

In the case of SU (2) bundles over the product of elliptic curves, in [20] Nishinou
is able to partially extend his above results, after utilizing his gauge fixing theorem
from [21, Theorem 3.11]. In some ways, our Theorem 5.1 can be thought of as a
generalization to higher rank of this gauge fixing theorem, although we have already
assumed existence of a fixed holomorphic structure. In fact, this assumption serves
as a major simplification throughout our paper, compared to the general case of a
sequence of anti-self dual Yang—Mills connections considered in [14,17-20]. The most
notable simplification is that, because our sequence of connections E; are all complex
gauge equivalent to E, we can bypass working with a sequence of holomorphic maps
(which plays a role in [17,19,20]), as well as the more difficult type three bubbles
of Dostoglou—Salamon [14,15]. Additionally, this assumption allows us to prove the
convergence in the second point of Theorem 1.1 directly, without relying on unitary
gauge transformations.

Although our main result only applies to the restriction of E; to each fiber, one may
hope to demonstrate convergence on any compact set away from a finite number of
fibers. Nishinou achieves this in [19] and [20], as his assumptions allow a Poincaré
type inequality in a neighborhood of a fiber, even in the elliptic curve case (this
follows from the estimate in Lemma 6.43 from [18]). This estimate implies that once
CO control of the complexified gauge transformation is demonstrated on one fiber, it
holds for nearby fibers. Unfortunately we are unable to extend Lemma 6.43 from [18]
to our setting, as our Poincare inequality (Proposition 5.2) requires a normalization
that only holds fiberwise. Another result in this direction is proven by Fu in [22],
who considers a specific rank two bundle over the product of two elliptic curves
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which is given by a two sheeted spectral cover. He defines a reference metric which
satisfies desired asymptotic behavior near the ramification points of the cover, and
then demonstrates that the a sequence of HYM metrics will converge smoothly to this
reference metric. Because in our setting we consider a spectral cover as well, one may
hope to extend Fu’s result to the K3 surface case. Here, one major difficulty is the
problem of constructing a reference metric near the singularities of the fibration. It
is possible that the asymptotics of the metrics constructed in [23-25] may provide a
clue, and we hope to investigate these types of constructions in future work.

Finally, we remark that after an earlier draft of this paper appeared, building on
this work, the authors, along with Y. Zhang, were able to demonstrate convergence
of E; on compact sets away from a finite number of fibers, under the assumptions of
Corollary 1.2. We direct the reader to [26] for details.

Our paper is organized as follows. In Sect. 2 we describe in detail semi-flat Kéhler
metrics on a K3 surface, which serve as a local model for our degenerating Ricci-flat
metrics away from the singular fibers. Next in Sect. 3 we introduce the necessary
background on holomorphic vector bundles over elliptic fibrations, and state some
preliminary results. Our bubbling argument in described Sect. 4. We then turn to
identifying the limiting flat connection, and prove our gauge fixing result is Sect. 5.
In Sect. 6 we complete the proof of our main theorem, and demonstrate convergence
of our connections.

2 Semi-Flat Kahler Metrics

In this section, we review the construction of semi-flat Kihler metrics on a K3 surface.
These metrics will not only describe the limiting behavior of the Ricci-flat metrics in
dilated coordinates, and thus play a role in our bubbling argument, but they will also be
useful for our understanding of the holomorphic structure of V. To begin, we introduce
the notion of a special Kéhler metric, which lives on the base of our elliptic fibration,
and are a useful starting place to defining the semi-flat metric. We will closely follow
the paper of Freed [27].

Let B be a Riemannian manifold of real dimension two. Assume 7 B admits a
flat, torsion free connection V2, which gives a covering of B by local affine coordi-
nate charts. Furthermore, assume the coordinate transformations lie in SL(2, R). Let
(x!, x2) be coordinates in a local chart, and let oij dx'dx’ be a Hessian metric solving
the real Monge-Ampere equation

det(q&i.,') =1. 2.1
Here, we use the notation ¢;; := % for a smooth function ¢ on B. We also denote
% by ¢;.

Consider the locally defined 2-form wp = dx' A dx2. Because SL(2,R) =
Sp(2, R), any matrix A € SL(2, R) preserves wp, and thus wp is well defined on
all of B. It defines both a natural symplectic form and a volume form. Furthermore,
VBwp =0, and so V& is a symplectic connection. Taken together, wp and ¢; j define
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an almost complex structure / on 7' B, which in coordinates can be expressed by

RV
axk ) = TRy Haxz

for k = 1, 2. One can show explicitly that Nijenhuis tensor of I vanishes and thus it
is integrable.

Definition 2.1 (B, wp, I) is special Kihler if it admits a real, flat, torsion-free, sym-
plectic connection V? satisfying

deI = O

To see that B is special Kihler, note in affine coordinates the flat connection VB is
simply given by d, and so

d d
9 9p % gp, _
Bxkl a aqu k=0,

which follows because ¢;; is a Hessian metric.
Given the complex structure /, we can give holomorphic coordinate functions on
B.

Lemma 2.2 The functions
w=x"+ipy and &=—x>+id.

are holomorphic with respect to the complex structure 1.

Proof Taking the exterior derivative gives dw = (1 + i¢12)dx] + i¢22dx2 and d§ =
ip11dx! — (1 —ig12)dx>. By our explicit representation of 7 it is easy to check that
I(dw) = idw and I(d&) = id&. O

For the remainder of the paper we choose w as our holomorphic coordinate on the
base. We would like to better understand the holomorphic vector field % First, note
that the coordinate transformation 7 (x!, x2) — (w, @) has pushforward matrix

. . 1 1 1
T* _ 1 + f¢12 1?522 and T*_l = — s P11 s d11 )
1 —ig —ig2n 2\ 5e; Yisien

where we have used (2.1). We now compute the partial derivative

Yt

A o ax! 9 9x?
dw  ox! ow = 9x2 dw

(1) (1) b1 +ign) (jL)

2 2 1+ig12
i I—ig) . ou _ .1—-igp
Ecbn (1+ 1+i¢12> _11+i¢12 -! ¢

2.2)
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where the last equality follows from (2.1). For simplicity we will use the notation

T = g—i, as t will define the complex structure of our elliptic fibers. Then, by the

explicit formula from Freed [27, Equation (1.12)], we see

d 1 d d
— =———-1t—).
dw 2 \ox! 9x2

Next we construct a hyper-Kihler structure on 7' B. Quotienting out 7' B by a lattice
A will give a local model for our elliptic fibration X away from the singular fibers. To
begin, consider the following extension of our Hessian metric to T B:

g = ¢ij (dxidxj + dyidyj> .

With this metric we define three complex structures which make up a hyper-Kéhler
triple.

By a slight abuse of notation, let I denote the complex structure on 7'B induced
from the complex structure / on the base. In particular / can be expressed as

) 2o ton w12 2 g g
axk ) T TR rre ayk )] k23y1 klayz

for k = 1, 2. The corresponding Kéhler form is given by
wr = dx! /\d)cz—dy1 /\dyz. 2.3)

In this complex structure the fibers are holomorphic subvarieties.
Next, we consider a complex structures J where the fibers are special Lagrangian,

defined by
7 d d d 7 ad ad
—)=—an — ) =—.
dxk ayk dyk dxk

Using the metric g the corresponding Kéhler form is
wy = ¢,‘jdxi A\ dyj.

Finally, one can define the complex structure K = J I, which together with g gives
the Kéhler form

wg = dx! /\dy2 — dx? /\dyl.

It is easy to see that w;, w; and wg are closed, and by a lemma of Hitchin [28] it
follows that I, J, and K are integrable complex structures. In the standard fashion we
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can construct the following top dimensional holomorphic forms:

Qr=wg +iwy
Qj=w; +iwg
Qg =w; +iwy,

giving hyper-Kiher triple. Note the metric and complex structures defined above are
invariant under translation in the y—coordinates. Thus, if A is the standard lattice
(1, 1), the entire setup will descend to the elliptically fibered manifold 7B/ A.

We now construct complex coordinates on 7' B/A. We have a complex coordinate
w on the base B, and in the fiber direction we define

2=ty + )% (2.4)

Here, 7 represents the complex period of the elliptic curve, and is defined above in
(2.2). By definition t := %, and since £ is a holomorphic function, t is holomorphic
in w as well. This leads to the following:

Lemma 2.3 The coordinates (w, z) are holomorphic coordinates on T B/A with
respect to I.

Proof Lemma 2.2 shows that w is holomorphic, and so it remains to be seen that
dz(V) = 0 for all vector fields V of type (0, 1). Taking the exterior derivative of z
gives

3
dz = tdy' + ylﬁdw +dy?, 2.5)

where we used 7 is holomorphic. At first glance, the term y1 T qw may seem out
of place, however, it is important to remember that unless 7 is constant, our local
picture is not the cartesian product of the base with an elliptic curve, and so this term
is expected.

Consider the vector field

9 1/ ign D
3z 2\ay!  1+ipay?

From the explicit form of dz, we see that in order for aiz to be anti-holomorphic, it
needs to be killed by the form dw on the base.
Using the definition of 7, and the fact that det(¢;;) = 1, we compute

0 _l 91102 i l ip11912 d
I(a—z)—2<¢12 —1+1¢12) 2( o11 +1+1¢12>
1 . d 1 ¢11 a _
gt (- 1+1¢1)—2—
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which demonstrates this vector field is of type (0, 1). By Lemma 2.2 it follows that
dw (&) = 0. Additionally, we have

1
(tdy1 +dy2) (8%) = 5(‘[ —1)=0.

So dz(a%) = 0. Since % and aiz span all local (0, 1) vector fields, we conclude that
(w, z) are holomorphic coordinates. O

We conclude this section with a more detailed discussion of how the Ricci-flat
Kihler metrics behave in the limit. We recall our setup from the introduction. Let
7 : X — P! be an elliptic K3 surface, and denote by Z,, the image of the singular
fibers. Let wp1 be the Fubini-Study metric on on P!, and wy a Kihler form on X. Let
w; be the unique Ricci-flat metric in the class [7*wp1 + ?wx]. The convergence we
need is local, so we fix a small, simply connected open set U C P! away from Z,,
and define Xy := 7! (U). On U we can consider the Kihler form wp along with
the Hessian metric ¢;;, which on this small open set is equivalent to wp1. On Xy we
have the fixed background metric wy, but we also have the Kihler form w; as defined
above, called the semi-flat metric, and we denote it by w; =: wgr for emphasis.

We will need the following uniform equivalence result. By [2, Lemma 4.1], there
exists a constant C so that for # small enough

c! (n*wpl + 12 a)x) <w <C (n*wﬁpl 42 a)x) : 2.6)

We also need a result that demonstrates how w; degenerates. Consider the projection
p:UxC— (UxC)/A =: Xy, and the coordinate transformation L; : U x C —
U x C defined by

Li(x.y) = (x, §>. Q.7)

This coordinate transformation is a dilatation, designed so that the size of the fibers
of  with respect to the metric L} p*w; are fixed. We will use the following result of
Hein-Tosatti from [4, Proof of Theorem 1.1], which demonstrates how the semi-flat
metric serves as a model for the limiting behavior of wy.

Proposition 2.4 (Hein-Tosatti [4]) There exists a constant C so that for t small enough
C™'p* (n*wp + wsr) < L} p*or < Cp* (m*wp + wsF) .

This estimate also appears in [7], with the extra assumption that X is projective. For
more details on convergence results, we direct the reader to [2,3].
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3 Holomorphic Bundles over Elliptic Manifolds

In this section, we provide the necessary background on holomorphic vector bundles,
including the relevant notions of stability needed to construct our sequence of HYM
connections. We also introduce the construction of a spectral cover associated to V,
following Friedman—Morgan—Witten [16] (see also [29-31]), and conclude the section
with the construction of E¢ used in Corollary 1.2.

To begin, suppose (X, w) is a compact Kihler manifold of complex dimension m.
Let (V, dg) be a holomorphic bundle over X. For any Hermitian metric Hy on V,
there exists a unique connection, called the Chern connection, compatible with both
the metric and the holomorphic structure, which we denote by E. The degree of V is

defined by the following integral:
deg(V,w) = i/ Tr(Fz) A o™ L.
X

Given two metrics on V, the curvatures of the two corresponding Chern connections
will differ by a dd-exact term, demonstrating that the degree is independent of a choice
of metric. Furthermore, the degree does not depend on the representative of the Kihler
class [w]. However, for m > 1, changing the class may change the degree.

Definition 3.1 (V, w) is stable if, for all proper, torsion-free subsheaves F C E,

deg(F,w) deg(V,w)
KF) - k(V)

(V, w) is semi-stable if the above expression holds with a weak inequality.

Note that if F is not locally free, its degree is defined by computing the degree of
det(F), which is always a line bundle.

On any complex manifold, the space of one forms decomposes into the eigenspaces
for £1i with respect to the complex structure. This allows us to write the any connection
Eas 8 = 810 4 291, Using this decomposition, one can define an action of the
complexified gauge group on the space of connections. Specifically, if 0 € GL(V),
then

o0(B)=0*"18M6" + 0¥ 190* + 0 2% 67! — o0, (3.1

Note that if ¢ is in fact unitary, the above action reduces to the standard action of the
unitary gauge group. In this case, we use the standard notation #*& for the unitary
action.

We now turn to the HYM equations on a general Kéhler manifold:

m—1 _ mdeg(V, w)
~ tk(V)Vol(X)

m

iFs Aw and (Fg)"?=0. (3.2)
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For any metric g on X and connection E on V, the Yang—Mills energy is defined by
the following integral

yM(E» g) :/;(|FE|%-I(),ngg

Critical points of this energy functional are called Yang—Mills connections, and one
can check using the Kihler identities that HYM connections are are special class of
Yang—Mills connections which are compatible with the complex structure on X.

Note that second equation in (3.2) stipulates that E is compatible with the holo-
morphic structure on V. By definition this second equation is satisfied by the Chern
connection &, and one can check this compatibility is preserved along the action (3.1).
This leads to the following question: Given a holomorphic vector bundle with fixed
metric Hy, does there exist a solution E to (3.2) in the orbit of (3.1)? A definitive
answer to this question was given by Donaldson, Uhlenbeck—Yau, in the following
fundamental result.

Theorem 3.2 (Donaldson [12], Uhlenbeck—Yau [13]) A holomorphic bundle V over
(X, w) admits a unique Hermitian—Yang—Mills connection in the complex gauge orbit
of the Chern connection if and only if it is stable.

In fact, one can prove that if Z is the unique Hermitian—Yang—Mills connection, it can
be expressed as & = ¢*(8), where s is a trace free Hermitian endomorphism of V.

Given this background, we return to our setup. Let 7 : X — P! be an elliptically
fibered K3 surface, and let w; be the unique Ricci-flat Kidhler metric in the class
[T*wp + 2 wx]. Assume (V, dzg) is a holomorphic SU(n) bundle over X. This
implies the curvature Fg is trace free, and so deg(V, w;) = O for all . Furthermore,
assume that (V, E_Jg) is stable with respect to w;, for some sequence #; — 0. Let g, be
the Kéhler metrics associated to wy,. By the theorem of Donaldson—Uhlenbeck—Yau
there exists a corresponding sequence of HYM connections E; on V. Note that in our
particular setting, the HYM equations take the simpler form

FsAw=0 and (Fg)*?>=0.

We will need the following Lemma, which states that the Yang—Mills energy of a
HYM connection is a topological invariant. This result is standard, and can be found,
for instance, in [32]. We include a proof for the reader’s convenience.

Lemma 3.3 The Yang—Mills energy of E; with respect to the metric g, is fixed, i.e.
YM(Ei, g,) = YM(E, gy)-
Proof Let iA, denote the adjoint of wedging with the Kihler form w. Then, the

equation Fg A w = 0 can be equivalently expressed as iA, Fgz = 0. Equality (4.4.5)
in [33] shows that for any complex surface X one has

2 . 2
/}(Tr(FEi A FEI) = ||FEi||L2(H0,gti) - ||1Aw,l. FE’“LZ(H(),gt’.)'
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Since Fg, is HYM with respect to g;,, the right most term vanishes, and so
YM(E ) = [ To(Fs, A F).
X

The right-hand side above yields a topological invariant [c2(V) — %c%(V)] U X, and
is thus independent of i, proving the lemma. O

We now review the Friedman—Morgan—Witten construction of stable holomorphic
bundles on elliptic fibrations with sections, and is needed for Corollary 1.2. We begin
by looking at a single fiber. Let E be an elliptic curve, and 0 € E the identity of the
group law. Denote the trivial line bundle by O, and given a pointg € E,let Og(g —0)
be the line bundle associated to the divisor g — 0. We also define a sequence of rank »
bundles (denoted Z, ) inductively, with Z; = O and Z, the unique nontrivial extension
of Z,_1 by O. Recall the following theorem of Atiyah (Theorem 5 from [34]):

Theorem 3.4 (Atiyah [34]) Any semi-stable, degree zero bundle V over E is isomor-
phic to a direct sum of bundles of the form Og(q — 0) ® Z,, i.e.

12
V= 0Orq -0,
j=1

Definition 3.5 A semi-stable bundle is called regular if in the above direct sum ¢; # ¢;
fori # j.

Note that bundles of the form Of(g; — 0) ® Z,; do not admit flat connections unless
rj = 1. However, we can instead replace Og (q; —0) ® Z,; with its Seshadri filtration
Or(q; — 0)®"7, and define all bundles with the same Seshadri filtration to be S-
equivalent. We then see the S-equivalence class of an SU (n) bundle is determined by
n points qi, . . ., g, (counted with multiplicities) satisfying g; + --- + ¢, = 0.

Thus, we can describe the moduli space of S-equivalence classes of SU (n) bundles
as follows. Let W := HO(E, O(n0)) be the space of meromorphic functions ¢ that
have a pole of at most order n at 0, with no other poles. By Abel’s Theorem ¢ must
have n zeros satisfying g1 + - - - + g, = 0. If ¢ has a pole of order less than n at 0, we
interpret this as some of the g; are 0. The zeros of ¢ are preserved under multiplication
by an element of C*, and so the moduli space is PW = P"~1,

Next consider a projective elliptic fibration 7 : X — P!, with singular fibers of
type I or 11 (this extra assumption gives that X coincides with its Weierstrass model).
Over each generic point x in the base there is an elliptic curve E, := 7 1(x) and a
moduli space Pﬁ_l of SU (n) bundles. Friedman—-Morgan—Witten demonstrate that the
projective spaces glue together to form a P*~! bundle over the base, which we denote
by W. A holomorphic SU (n) bundle V over X which restricts to a semi-stable bundle
on each fiber determines a section s of VV, which in turn defines a divsor Dy C X.
Specifically, each point x in the base determines n points in E, thus Dy is an n-fold
ramified cover of P!. More precisely, in Sect. 4 of [16] it is demonstrated:
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Theorem 3.6 (Friedman-Morgan—Witten [16]) Let 7 : X — P! be an elliptic fibra-
tion with a section o, with singular fibers of type I} or I1. Let V be a holomorphic
bundle of rank n over X. Assume that the restriction of V to a generic fiber of 7 is
semi-stable and regular. Then, there exists a divisor

Dy € |no (P + k|,

called the spectral cover associated to V, where | denotes the effective divisor class
of the fibers of m, k € 7 satisfies 0 < k < c(V). For a generic x € P'\Z, if
Vig, = @' Orlqj — 0) ® L, then

J4

DyNE, = erqj € |no (x)|.
j=1

If V admits a spectral cover Dy which is reduced and irreducible, then Dy has a
finite number of ramification points. Let Zp denote the image of these ramification
point under 7. Then, for any x € P! \(ZrUZp),wehave Dy N E, = Z'}zl q;j with
all g; distinct, and thus

Vig, =0e(@ —0) @& - ® Or(gn — 0).

This verifies the holomorphic structure assumption on V |g_ in Theorem 1.1. Further-
more the points ¢g; vary holomorphically in x. The condition that Dy be reduced and
irreducible also guarantees that the bundle V is stable with respect to w; for small
t. This can be used to construct many examples of connections E; that satisfy the
assumptions of our main theorem.

Theorem 3.7 (Theorem 7.4 in [16]) If the spectral cover Dy constructed above is
reduced and irreducible, then V is stable with respect to w*[wp1] + wyx] for any

ample class [wx] on X, for all 0 < 12 < (%cz(V))_l.

We end this section with the construction of E( from Corollary 1.2, which is a local
HY M connection that determines the limit Ag = Eg|g on each fiber. Although the
limiting connection Ay is expressed in holomorphic coordinates in (1.1), here we find
it easier to work with our coordinates (xl X2, y1 , y2) from the previous section. Both
viewpoints are, of course, equivalent.

Consider Xy := 7 ~1(U) for some simply connected U C Pl\(Z,T UZp). Asa
first step, we consider the case where V has rank one. Since it has degree zero, the
bundle V is topologically trivial along each fiber and thus topologically trivial on X;.
We equip V with a trivial metric Hy, and fix a unitary frame. For a fiber E, we have
assumed the restriction V|g, = Og(g — 0), with g varying holomorphically in the
base. We decompose ¢ as follows

g(x', x?) =01(x", x?) — 16, (x", x?). (3.3)
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Recall E, is determined by the quotient 7, B/ A, and so the point ¢ can be lifted to
apoint § in Tx B = C. Now, if 7(x!, x?) gives the complex structure on E,, we can
define the holomorphic structure on V by

_ d ,
Im(z) °*

where 7 is the complex coordiante defined in (2.4). At the end of the section we will
demonstrate that the connections we construct are independent of the lift from ¢ to g,
and therefore well defined.

Given the above holomorphic structure, and using that Hy is the trivial metric, the
Chern connection can be computed as

=0 = 27i <91dy1 + szyz) .

Since each ¢; only depends on the base coordinates, Eg|E, is flat on each fiber. Using
(3.3), one can check that the expression for Zg|g, =: Ao is equivalent to (1.1) in the
statement of the main theorem. The holonomy around each period in E, is given by
e?™10 and 2712 respectively.

Proposition 3.8 The connection Eq is HYM with respect to all three complex structures
I,J,and K, on Xy.

Proof As a first step we show
¢ —6,=0 (3.4)

and

a 0

To see this, because both T and g are holomorphic in the base, one can compute

0 2 L o — v
gl T2 \oxt T T2 ) T

1/ 8 9 9 9
=—(—6 —7T—6 —1—10 2__6,).
2<8x1 R 2)

Now, using (2.2), the norm of 7 is given by

o2 = (i) tid) _ 1+6h _ ou
¢§2 ‘15%2 ¢’
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where for the last equality we used det(¢;;) = 1. Thus

1

0
= 5 (¢22 0+ (i— ¢12)—91 — i+ ¢>12) 92 + ¢>11 > .
P22

Since both the real and imaginary parts vanish, (3.4) and (3.5) follow. In particular
(3.5) allows us to simplify our notation and denote 0 as 6;;, where the indices
commute.

The curvature of E¢ is now given by

Fz, = 2mib;jdx' Ady’.

Rightaway it follows that Fg, Aw; = Oforallz. Furthermore, (3.4) implies Fg,Aw; =
0 and (3.5) gives Fg, A wg = 0. Thus E is a holomorphic and HYM with respect to
each complex structure. O

We now turn to the general case. Assume V|g = EB’}:] Og(gq; —0), with each g

is distinct. As before write g; = Olj — 192/ , and construct diagonal matrices ® and

®, with eigenvalues Qlj and 921‘ , respectively. Consider the connection

20 = 2ri (®1dy1 n ®2dy2) , (3.6)
Its curvature is given by
Fg, =2mi @i.,'dxi A dyj.

It is clear that Fg,|g, = O for every fiber in X . Furthermore, by Proposition 3.8 we
have

Fgy ANwj = Fgy ANwy = Fgy Aok =0.

Thus Ej is a local HYM connection with respect to each complex structure, although
we only focus on [ in this paper.

Finally, we demonstrate that the lift of each point ¢; in E, to C is well defined.
Recall that in the coordinates (yl, y2), our lattice A is the standard lattice given by
(1, 1). Now, suppose we have another connection W satisfying

20— U = 27i (Mldyl + Mzdyz) ,
where M| =diag(«1, ..., o,) and M, =diag(By, ..., B,) are both diagonal matrices
of integers, which means both Eg and W define the same points on E,. If u is the

gauge transformation given by

. . 2 oy 2
U= dlag(eZM(Olly +B1y )’ o, e2mi@ny +Bny ))’
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we have 2) — W = —duu~!. Furthermore because all the «; and Bi are integers, u
descends to a smooth gauge transformation on the torus fibers, and thus the connections
are gauge equivalent on X ;. Finally, since the points ¢; add up to 0 in the group law
on E,, we can find a lift to C where the points still add to 0, and Eq will be trace free.

4 Bubbling

We now present our bubbling argument, following the first two cases from [14].
Consider a sequence of Hermitian—Yang—Mills connections E;, corresponding to
wy; € [wp + tl.zwx] as t; — 0. Currently our argument depends on the sequence
of connections we choose, although one can hope that with further analysis the set
where bubbles occur can be uniquely identified by (V, dg).

Choose a compact set K C P!\ Z,,, where as before Z,; is the image of the singular
fibers under m. In a neighborhood U of any point x € K, we can choose affine
coordinates (xl,xz) where x is at the origin, and coordinates (xl,xz, yl, y2) on
Xy := n Y (U). The curvature of E; can be decomposed as

Fg, = Fp, + Fa, + ki,

where Fp, and F 4, denote the base and fiber directions of the curvature, and «; denotes
the mixed terms. For each x € K we define the quantity

) 2
m;(x) := || Fp;||L°(E,,Ho,gx) T t_2||FA,-||L°°(Ex,Ho,gX) Hllxillz oo, Ho 0x)°
;

where gx is the metric associated to the fixed Kihler form wy.

Proposition 4.1 There exists a finite number of points {p1, ..., pe} C K such that for
any compact set K' € K \ {p1, -+, pe},

11m fl~2||mi||LOO([(/) =0.
11— 0

In particular, for any x € K \ {p1, -, pe},
Lim [|Fa;llLeE,) = 0.
1—> 00

Proof Let x; be a sequence of points in K for which tizm i (x;) does not approach zero.
We will show a finite amount of energy must bubble off along this sequence. Thus, by
the total energy bound (Lemma 3.3), there can only be a finite number of points in K
where bubbling occurs.

The proof closely follows the arguments of [14,17,19,21] and is divided into two
cases. The first case occurs when tizm i (x;) isunbounded, and the second when tl.zmi (x;)
stays bounded above, yet is also bounded away from zero. Unless mentioned otherwise,
all bundle norms in this section are with respect to Hy, so we suppress Hy from our
notation for simplicity.
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Case 1 tl.zmi (x;) is unbounded.

Given our sequence of points x;, there exists corresponding points ¢; in E,; where
the supremum is obtained, and without loss of generality we can assume (x;, @;) —
(x0, ap). Let D,(x;) denote a disc of radius r in the metric gpi (corresponding to
wpt) in the base. We will show there exists a universal constant €9 > 0, so that the
inequality

lim inf / 1 |Fg,|3,dVy > € 4.1)
7 (D ()

i—00

holds for any small » > 0. Since the total energy is finite, a standard covering argument
then shows that there can only be finitely many bubbles of this type.
Suppose (4.1) does not hold. Then there exists an r( so that for sufficiently large 7,

/ |Fg,|,dVg, < €.
a1 (Dro (xi))

It follows from (2.6) that there is a universal constant ¢ > 0, so that the g;-geodesic ball
B; := By, (xi, a;) is contained in 7 -1 (Dyy(x;)). In particular we have the following
bound

2
/ | Fg, |g,-dvgi < €.
B;
We now rescale our coordinates and metrics. Consider the coordinate change
Ai(x,y) = (li (x +xi),y +ai>,

and let @; = ti_z)\l’.‘wi. To compare this to the scaling L;,, defined in (2.7) in Sect. 2,
note that pulling the metric back by L, dilates the shrinking fibers, while @; is a
combination of shrinking the base coordinates and then dilating the metric. Thus both
scalings have the same effect, although with different coordinates.

By (2.6), @; is uniformly equivalent to the Euclidean metric in the scaled coordi-
nates, which we denote by go. Moreover the ball B; pulls back to a g;-geodesic ball
éi, which contains a Euclidean ball B. The ball B can be chosen to have uniform size
independent of 7.

Now, if é,- is the pull-back connection to these new coordinates, then the HYM
equation is again satisfied

Fz A@;=0 and (Fg)**=0. 4.2)

=

i

Change of variables, and the scale invariance of the Yang—Mills energy in dimension
four, implies
2 2 2
F = ~ < = ~ = . < .
1Fg 23 50y = Wil ) = 1FEil205, 4 = €0
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Since g; is uniformly equivalent to o on B for large i, and E; satisfies (4.2), we can
apply the standard e-regularity argument for Yang—Mills connections on a fixed ball B
[35, Theorem 4.8]. Thus, for €p small enough (depending only on the real dimension
4 of X), the above L? control implies

|Fz 13,(0) < C,

for some constant C independent of i. Equivalence of metrics implies control of Fg
with respect to gg, which in components gives the following bound

|Fj120(0) + | F 5 15,(0) + |13, (0) < C.
Scaling back, we see
2 2,12
171 FBilgx (0) + [ Fa;lgx (0) + 7 |kilg, (0) < C.

Hence we achieve control of tl.zm i (0), which we have assumed diverges, a contradic-
tion. Let W denote the set of points in K at which bubbles of this type appear.
Case 2 tizm i (x;) is bounded above and away from zero.

In this case an instanton on C x E bubbles off. We follow the outline of [19,21],
and use an energy quantization result of Wehrheim.

Suppose x; — xo € K\Wj, and let Dy, (x;) denote a disc of radius 2 in the metric
gp! in the base. Suppose there exists constants § and A so that

S < tizmi(xi) < sup tl~2mi < A.
Dop(xi)

The rightmost inequality holds since for large enough i we can assume Dj,(x;) C
K\W;. By making p smaller if necessary, we can furthermore assume that
a1 (D2y(x;)) is topologically a product between a ball in C and an elliptic curve
E, although the complex structure may vary.

We preform the same scaling as in Case 1, and define @; = tfz?\;.“a),-. Again this
involves rescaling the metric and applying a dilation. The disk D5, (x;) pulls back to
D, o/ (0), the geodesic disk with respect to the Euclidean metric go in the scaled coor-
dinates. Starting from Proposition 2.4, the arguments used in the proof of [36, Theorem
1.1] (cf. pages 2936-2937) give that @; converge sub-sequentially and smoothly to a
limiting flat product metric ws, on C x E.

Our sequence of scaled connections E; is defined on 77! ([)Zp/z,- (0)), and for any
point p € sz/tl. (0), we have

1F3, 15 (P) + 1 Fi 130 (P) + |Ri13,(P) = 17 1F 8,100 (P) + | Falgo (P) + 17 lici I3, ()

< sup t,-zm,- < A.
DZp(x[)

This implies IFg 1 is uniformly bounded. By strong Uhlenbeck compactness [37,
Corollary 1.4 and Theorem 1.5], this bound implies there exists a subsequence of
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connections which converges smoothly, modulo unitary gauge transformations, to a
limiting connection Eoo On the trivial SU(n) bundle over C x E. The connection
Eo will be ASD with respect to the limiting product metric wso. Furthermore, by
assumption, we have

|F5,150(0) + 1F7 15, 0) + [&i1%, (0) > 6.

and it follows that the limiting connection is not flat. An energy quantization result of
Wehrheim [38, Remark 1.2] implies there exists a universal constant €y > 0 so that

VM (Exo, §0) > 2¢0.

This implies that there exists an R > 0, so that for i sufficiently large,

€0 < /~ |F§i|§idvgi 2/ |F5i|§idvi'
D§(0)><E 7N (DRy; (x0))

Thus there can be only finitely many bubbles of this type, and denote the set of all
such bubbles by W,. This concludes the proof of Proposition 4.1. O

We conclude this section by noting that Proposition 4.1, in conjunction with our
convergence argument in Sect. 6, implies that on a generic fiber, the connections A;
will converge to a limiting flat connection Ag. The following section is devoted to
identifying this limiting flat connection explicitly.

5 Gauge Fixing over an Elliptic Curve

In this section we work on a fixed fiber of 7, denoted E for simplicity, satisfying
Vig = @?:1 Okg(q; — 0) with each ¢; distinct and g1 + - - - + g, = 0. By the results
of Sect. 3, if V defines a spectral cover Dy which is reduced and irreducible, this
happens generically.

Equip E with the fixed Kihler form wy = dy' A dy? and let go denote the corre-
sponding metric. Recall that E carries the complex coordinate z = ty! 4+ y?. Denote
the restriction V| g by V. Since V) is of the form @?:1 Og(g;—0), it can be naturally
identified with E x C", equipped with the complex structure

Bag =3 — =2 gz,
Im(7)

where Q is a diagonal matrix with entries g; (recall g; are the lifts of the points ¢; to
C). Let Hy be the trivial metric on C", and let Ag be the Chern connection associated
to Z_)AO and Hy. Using (3.3), in addition to dz|p = tdy' + dy?, one can explicitly
check that that Ag = Eg|g, where E¢ is given by (3.6).

Now, given our sequence of connections E; on V, we have the sequence of restricted
connections A; := E;|g on V. Again, because our sequence of connections arises
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from the Donaldson—-Uhlenbeck—Yau Theorem, we know that A; lies in the complex-
ified gauge orbit of Ag, and thus A; and Aq define isomorphic complex structures. As
aresult, after transforming A¢ by a unitary gauge transformation if necessary, we can
write A; = €% (Ag) for a trace free Hermitian endomorphism s;. The main result of
this section is:

Theorem 5.1 Let e*(Ag) be a connection on Vy given by the action of a trace free
Hermitian endomorphism s. There exists constants €y > 0, and Cy > 0, depending
only on go, Ao, and Hy, so that the following holds. If the curvature of e* (Ag) satisfies

2
||Fes(A()) | |C0(go,H0) =< €p,
then there exists another trace free Hermitian endomorphism s’ which satisfied both
’
¢ (Ag) = ¢ (o) and  [Is'l|cogg. 1y < Co-

Because V) is poly-stable, and not stable, the above theorem is the best C 0 control
that one can expect. For example, since A is flat, if ¢* is a diagonal matrix of constants
1, ..., Cp, then e®(Ag) will still be flat. However, one eigenvalue ¢; can be arbitrarily
large while still preserving the condition det(e®) = 1 (recall that ¢* € SL(Vp)). Thus,
one can never expect C* control for s. The main idea of the above theorem is that,
by a suitable choice of normalization, one can construct a related complex gauge
transformation that yields the same connection, yet with the desired C° control.

We first demonstrate several preliminary results. For the remainder of the section,
unless specified, all norms are taken with respect to the metrics go and Hp, and we
remove this from our notation for simplicity.

Proposition 5.2 Let s be a trace free Hermitian endomorphism such that the diagonal
entries of s have zero average when integrated over E. Then there exists a constant
Cp, independent of s, so that

sl z2(zy < Cplldagsllz2e)- (5.1

Proof Note that diagonal entries of s can always be defined as the entries that preserve
each subbundle Og(q; — 0) C V. Now, assume that the inequality does not hold.
Then there exists a sequence of endomorphisms s satisfying the assumptions of the
proposition, along with the inequality

_ 1
/ 19a05k]* < —/ sk 12
E k JE

Let 5k := sk/|lskll2(g)- Then

&=

. =2
/ |8A0sk| =<
E
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Because s is Hermitian with respect to Hy, we have |5Ao§k| = |04,Sk|. This allows us
to conclude that the sequence 5 converges weakly in L% (and strongly in L?) to an
endomorphism s, satisfying

||Soo||L2(E) =1 and ||5Aosoo||L2(E) =0.

Now, because Q is diagonal, if 5o has entries (a;;), then the diagonal entries of
9 AoSoo are of the form d a;;. Since ||5 AoSoollz2 = 0, we see the diagonal entries of 5o
are constant. Furthermore, by assumption the diagonal entries of §; have zero average,
and by strong convergence in L? we conclude the diagonal entries of s, must also
have zero average. Thus these entries vanish entirely. Now, because the points g; are
distinct, the automorphism group of Vj is precisely n dimensional [16, Lemma 1.13].
Thus if the diagonal entries of s, vanish, soc must vanish entirely. In other words, if
Soo had any non-vanishing off diagonal entries, they would define a holomorphic map
between line bundles Of (¢g; —0) and Og(g; — 0) for distinct points g; and g ;, which
is impossible. So 500 = 0 yet [|sollz2(g) = 1, a contradiction. O

Next consider the following function spaces, equipped with the L norm.

Definition 5.3 Let Herm(V)) be the space of trace free Hermitian endomorphisms
of Vp, and furthermore let Herm=0 (V})) denote the subspace consisting of those endo-
morphisms whose diagonal entries have zero average on E.

Consider Y (-) € End(g/(Vy)), defined by
ady _ 1
ad;

e
Y(s) =

From the definition of the complexified gauge action (3.1), we have
Bes(Ag) = g + € (ape®)  and  Bes(ag) = 4y — (Bape’)e.  (5.2)
This allows one to compute
e (Ag) = Ag + Y(—5)days — Y(5)da,S (5.3)
(for instance, see [39, Appendix Al]).
Define the map N(s) := e*(Ap), which maps Hermg(Vp) into the affine space of

connections centered at Ag, equipped with the L? norm. Let A denote the image of
the map V. Using (5.3), we see the derivative of A at 0 is given by

L(s) := N(0)(s) = a8 — 0a,5-
The tangent space to Hermq (Vp) is again Hermg (V). Note that forany s € Hermq(Vp),
if § is a diagonal matrix of constants given by the averaging the diagonals of s over E,

then L(s) = L(s — §), and so both Hermg(Vp) and Hermé(Vo) have the same image
under L. Proposition 5.2 shows that L has trivial Kernel on Hermé (Vo). Thus, not only
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can we conclude that the restriction of L to Hermé (Vo) is invertible, but (5.1) shows in
addition that L has bounded inverse. The contraction mapping principle implies there
exists a small neighborhood U C A of the connection Ag, and a set V C Herm(J)-(Vo)
in the tangent space to Hermg(Vp) at 0, so that V — U is a diffeomorphism onto its
image.

Summing up, we have proved the following:

Lemma 5.4 There exist constants 5o and Ao, which depend only on Ay, Hy and go,
so that the following holds. If A € A satisfies ||A — Aollp2(g) < o, there exists

s € Herm(J)-, such that
A = e'(Ay),
and

sl L2¢g) < Aolle* (Ao) — AollL2k)-

We now turn to one final lemma. Consider the same constant 5o > O from above,
and let Cy > 0 be a fixed constant, to be determined in the proof of Theorem 5.1.

Lemma5.5 Let s be a trace free Hermitian endomorphism, and A a flat connection
on Vy. Given constants §g > 0 and Cy > 0, there exists a constant €q, depending only
on Hy, go, 8o, and Co, so that if ||s||co < Co and || Fes(a)llcogy < €0, then

)
[le*(A) — All2g) < ER

Proof To begin, we see how the curvature of A is related to the curvature of ¢*(A).
Using (5.2) one can compute

e_sFes(A)es — Fp = 5,4(6‘_2S3A625) =e > ((‘_9,48,4623 — 5A62se_2s8,4€23> ,
which implies
2s -5 2512 __ 2s -
— Ay, Tr(e™) + e " 0ae |g0 =Tr(e” i Awpy Fes(a))- 5.4

Integrating over E yields
/ le 94> > < e%0¢.
E

The Co bound for s, along with det(e®) = 1, demonstrates the eigenvalues of ¢* are
bounded above and below. Thus the left hand side above controls the L2 norm of the
difference e’(A) — A, and so

||€S(A) — A||L2(E) < CEO.

Here C only depends on Cy, go, and Hy. Choose ¢y small so Ceg < &p/2. O
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As we turn to the proof of Theorem 5.1, recall that the constants §p and Ao depend
only on A, Hp and go. Thus, by the above lemma, if we can show Cy depends only
on these quantities, g will depend only on these quantities.

Proof of Theorem 5.1 Our first task is to specify Co. Fix an endomorphism s €
Hermg(Vp) satisfying

[ Fesan g0 < €o.
Using this curvature bound, along with the inequality
—AglsI? < Il Fescap|
(see for instance Proposition A.6 in [39]), we can apply Moser iteration to conclude
max{]s|?, 1} < Cills|l 2(1 + €o). (5.5)

Here C1 only depends on gg and Hy. We now set Cq := 2C1 Ag. This shows Cp, and
subsequently €p, depends only on the initial setup.

The main idea of the proofis as follows. We construct a path of Hermitian endomor-
phisms, so that the curvature of the induced connections along this path is bounded by
€0. We show the endpoint of our path satisfies the conclusion of the theorem, and then
apply a method of continuity argument to conclude our desired result for s. Naively,
one may first try to connect ¢® to Idy, by the path ¢’* for t € [0, 1]. However, for
arbitrary initial s it is not clear that curvature stays bounded by €( along this path,
which is an important for the argument. Instead, we follow the Yang—Mills flow.

Following Donaldson [12, Sect. 1.1], we consider a path of complex gauge trans-
formations g(t), satisfying

(g1 = —ixFyuyay) g(0) = ¢’
On a Riemann surface, the above flow is referred to as the Kempf—Ness flow, and given
a solution, the corresponding connections A(¢) := g(¢)(Ao) solve the Yang—Mills heat
flow:

A@t) = —d};, Fao) A(0) = €*(Ap).

By a Theorem of Rade [40, Theorem 2], there exists a limiting Yang—Mills connection
Ao for which

1A@) = Acollz2 = et

Since Vj is polystable, the limit connection A is also flat, and in the unitary gauge

orbit of Ag, and so there exists a unitary gauge transformation u, for which Ao, =
*

uj Ao.
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Consider the trivial flow 1« (f) = uoo, which again satisfies the Kempf-Ness flow
equation

oo (Ditoo(t) ™! = —i%Fuy((Ag) = —i%Fay, = 0.

Define n(t) € Hermg(Vp), and a path of unitary gauge transformations u(¢), by the
equation

usout (e = g(1). (5.6)

Thus, u(t)e"® relates our two solutions of the Kempf-Ness flow. By Proposition 4.13
in [41], both u(#) and n(¢) are bounded in L%. In fact, this L% bound is proven follow-
ing the general argument of [42]. The authors demonstrate that if M is a complete,
connected, simply connected Riemannian manifold of nonpositive sectional curvature,
which admits a function ® : M — R which is convex along geodesics, then given two
negative gradient flow lines of @, the geodesic distance between these two flow lines
stays bounded. In our case, the role of M is taken by the space of Hermitian metrics,
and the function ® is Donaldson’s functional (see [12,41,42], for a precise definition
of ®).

The bound on 7(¢), along with convergence of Fj4(;) to zero in L2, allows us to
conclude by Lemma 5.5 that there exists a T sufficiently large, so that

(oot (TYe™ P u(T)  u ) (oo (T))* Ag) — (oot (T))* Aol < %0

For simplicity we denote the fixed unitary gauge transformation uou(7) by u, and
define the path of Hermitian endomorphism e“®) by ue”®y~!. Then the above esti-
mate can be written

k)
e D w* Ag) — u*Aoll 2 < 50 (5.7)

It is along the path () that we can now apply our method of continuity argument.
Let A(t) be the path of connections given by e“® (u*Ag). Since A@) =
(oot (t)u=1)* A(r), where A(r) solves the Yang-Mills flow and u(¢) is given by (5.6),
we conclude that ||FA([)||CO(E) < ¢ for all + € [0, T]. This follows because the
curvature is decreasing along the Yang—Mills flow, and the action of a unitary gauge
transformation will not affect this norm. Also, the path A(t) is smooth for ¢ € [0, T].
To set up the method of continuity, consider the set / [0, 7'] consisting of times ¢
for which there exists a trace free Hermitian endomorphism «’(7) which satisfies both

eK’(;)(u*AO) — el((l‘) (M*A()) (58)
and
1" )00, o) < Co- (5.9)
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We prove I = [0, T]. First, we demonstrate 7 € [ to conclude / is non-empty. By
the estimate (5.7), we can apply Lemma 5.4 to A(T'), and conclude there exists a trace
free Hermitian endomorphism «’(7") satisfying both (5.8) and an L? bound. By our
Moser iteration bound this L? control can be improved to Cp, and so «'(T) satisfies
(5.9) as well. Thus T € 1. We now need that / is both open and closed with respect
to the topology induced from the C? topology on Herm(Vj). For the rest of the proof
we use the notation A := u*Ajg.

Our next step is to show 7 is open. Let #y € I, and consider the corresponding
endomorphism ¢“°. Construct a small neighborhood of ¢“0 with radius p > 0, where
p is chosen so

|le* — €K°||c2(E) <p
implies
1€ (A) — €0 (A)] 12y < S0/2-

Now, because ¢0 € [, there exists an endomorphism o satisfying both ¢0(A) =
€“0(A) and ||x(||co < Cp. Given our choice of g, by Lemma 5.5 we have

11€0(A) — Al 12 = [€0(A) — All2 < 8o/2.

By the triangle inequality ||e“ (Ao) — Aoll;2 < &0, and thus Lemma 5.4 implies there
exists an endomorphism «’ € Herm(J)- such that e“(A) = e",(A) and

1€ ll2 < Aolle (A) — All 2 < Ag
(we assumed 8y < 1). By our Moser iteration bound (5.5), we conclude
lIkllco < 2A0C1 = Co,

which completes the proof of openness.

Finally we prove [ is closed. Let #; be a sequence of times in / converging to f,
and let «; be the corresponding sequence of endomorphisms converging to « in the C2
topology. For each i, there exists «; which are uniformly bounded in €0 and satisfy

ei(A) = e~i (A). The complexified gauge action gives

e'(i e} SA oe_K’ = eKi/ o SA oe_Ki/’
from which we conclude 94 (e % e"f/) = 0. Since A = u*Ap, this implies
9 Ao (e i u) = 0. Since Ag has only diagonal entries, we see the diagonal entries

of u~'e i ¢*i 1 must be constant. As before it then follows that the off diagonal terms
must vanish, otherwise one would have a holomorphic map between line bundles
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Og(g; — 0) and Of(g; — 0) for distinct points ¢; and ¢ ;. Taking the complex con-
jugate and using the fact that x; and ] are Hermitian, we see that i; := ulekie ¥y
will be a diagonal matrix of constants.

Now, C? convergence of k; together with the C° control of k] gives that the matrices
h; are uniformly bounded above and below. Since each h; is a diagonal matrix of
constants, after passing to a subsequence the h; converge in C° to a limit /4. This
allows us to define an endomorphism ¢ = uhu='e*, and by convergence of h; and
k; we have

’
ei = uh;u

/
— €f

—leKi
in CO. Since € is Hermitian, so is e’(_/, and thus «’ is Hermitian and satisfies (5.9).
Furthermore, since for each i we have 94 (uh;u~') = 0, we in fact have uh;ju~le*i —
¢ in C!, and as a result we conclude ¥ (A) = ¢¥ (A). Thus (5.8) is also satisfied and
tel.

Thus, 1 is open, closed, and nonempty, and as a result e ©® el particular, there
exists a k’(0) satisfying both ¢ (@ (A) = ¢ (A) and ||k (0)'||co < Co. Now, define
s’ by

e = u e Oy,
We see s’ satisfies the desired C° bound. Furthermore,
e (Ag) = u e O (4 Ap) = u KO (1 Ag) = "V (Ay).

Yet we started the flow (5.6) at g(0) = €°, so n(0) = s. This completes the proof of
the theorem. O

6 Convergence

In this section, we complete the proof of Theorem 1.1. As before, let Z,; denote image
of the singular fibers under &, and W; and W, the bubbling sets for our sequence of
connections. We fix a point x € IPI\(ZH U W1 U W), and denote the fiber over x by
E := 7~ !(x). We use the notation A4; := Ei|lr and Ag := Ep|g. As above equip E
with the fixed flat metric wy = dy' A dy?. Unless otherwise specified, in this section
all norms are taken with respect to the metrics go and Hy.

Recall our bubbling sequence at x is defined by

1
mi (@) 2= 115, oo gy + 311 Falloo ) + il lBogg, -
i

Since x ¢ W1UW2,wehaveti2m,- — 0asi — 00,80 || Fa;||cogy — 0. As mentioned
at the end of Sect. 4 (and as we shall see below), this is enough to prove that A;
converges, along a subsequence and modulo gauge transformations, to a limiting flat
connection. Our main result is identifying this limit.
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Assume Vg = Op(q1 —0) & --- ® Og(g, — 0) for qy, . . ., g, distinct. Writing
A; = €% (Ap) for a sequence of Hermitian endomorphism s;, for i large enough we
can apply Theorem 5.1 to conclude there exists gauge transformations s/, which are

uniformly bounded in CY, and satisfy A; = esi (Ap). Thus, as in the proof of Lemma
5.5,

14; = Aoll12(py < Clle™3a€™ 1125y < ClIF a1l 125y = O- (6.1)

Furthermore, since Ay is flat, we can integrate by parts and change the order of deriva-
tives to conclude:

*
IVO(A; = Aoy = / Tr(V0(e72790e2) (VO(e2190%e2)) )
Ep

Y, = *
- / Tr(VO(e 2V 0>) (Vo(e’z"f Voezs,-)> )
Ep

= |IFa 132 = ©.
Thus we have demonstrated
[|A; — AOHL%(E) — 0,

which is the stated convergence in Theorem 1.1.

Next we prove smooth convergence, allowing for the action of unitary gauge trans-
formations. Specifically, since x is away from the bubbling set, there exists a small
disk D, (x) that does not intersect Wi U W,. We use the same coordinate transforma-
tions A; in the proof Proposition 4.1 sending x to the origin and scaling. Consider the
rescaled metrics @; = tl._z?\;.ka),i. The set 77! (D, (x)) rescales to a set topologically

equivalent to D 2 (0) x E (although the complex structure will not be a product).
Our sequence of connections Z; pulls back to Z;, with fiber and base components

i g4l Bi_ L, pi
Aj_Aj and Bj—t,Bj.

As before, the connections Z; are HYM with respect to @;, and each @; is uniformly
equivalent to the Euclidian metric for large i by Proposition 2.4. Also, since D, (x)
is away from Wi, the function tizm i (x) is uniformly bounded above on the disk. This

implies the curvature | F 5, | is uniformly bounded on 77 ! (D 2 0)).

Applying strong Uhlenbeck compactness [37, Corollary 1.4 and Theorem 1.5] on
the fixed compact set

7 M (D1(0) C 7 (D2 (0)),

there exists a sequence of gauge transformations u; so that along a subsequence, u; i
converges smoothly to a limiting Yang—Mills connection E,. Restricting our attention
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to the fiber E over the origin yields a sequence of connections u;"fii which converges

smoothly to a limiting flat connection A.,. Note that our fiber coordinates are not
scaled, and the restriction of @, to E is equivalent the standard metric wy = d yiAdy?.
Thus, on E, we see u? A; converges smoothly to a flat connection A. The connection
A~ may not equal Ag, but it will lie in the unitary gauge orbit.

We conclude by remarking that estimates of the form (6.1) are common in these
types of degeneration problems, for example see Proposition 3.1 in [18] or Theorem
1 in [43]. In our estimate, the curvature term is not raised to a power, and this holds
because the specific form of our complex structure V| = EB?:]O e(g;j — 0) implies
that the Yang—Mills energy functional is Morse-Bott at A( (see Definition 7.5 in [43]).
Essentially, the argument in our proof of Proposition 5.2 gives that the kernel of the
Hessian operator of the Yang—Mills energy functional can be identified with one forms
valued in constant diagonal matrices, which also gives the tangent space to Yang—Mills
connections at Ay. We direct the reader to [43] for further details.
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