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Abstract. A link is established between the geometric quantization programme and the 
decomposition theory of the regular representation of the Weyl group for homogeneous 
manifolds of constant curvature K __. 0. 

1. M o t i v a t i o n  and  resul ts .  

The purpose of this review is to look at geometric quantization in a novel light, namely 
the general contexts of the decomposition theory of regular representations and of the 
Tomita-Takesaki theory of modular algebras [30]. 

In this Section, we give our motivation and state the main results~ the proof of which 
is sketched in Section 2. With this apparatus in hand, we present in Section 3 an 
application of these results to the passage from prequantization to quantization, as well 
as some general comments on the scheme outlined in Section 1 . 

Recall first that, traditionally~ three mathematical categories are involved in the dis- 
cussion of quantization: 

(a) unitary representations of Lie groups; 
(b) symplectic geometry of classical mechanics; 
(c) non-commutative operator algebras of quantum theories. 
While it should be clear that the philosophical primacy of one of these categories 

over the others is largely a matter of personal taste, each of the possible choices of one 
of them, as the starting point of a quantum theory of dynamical systems, has its own 
history and disciples. The elusive passage from (b) to (c) is known as the Dirac problem; 
in its most restritive formulations this problem was proven to have no solution (see e.g. 
[1] and references quoted there; a version of this proof can also be found in [8]). The 
formulation of (c) in terms of (a), but independently of (b), is examplified by the system 
of imprimitivity approach of Mackey [21]. The passage from (c} to (b) is known as the 
classical limit; for the homogeneous manifolds, discussed later in this section, this part 
of the programme was discussed in [8] using techniques from non-commutative harmonic 
analysis. Finally, the geometric quantization programme [1~13,16,26,27,28], at its most 
schematic level, is mostly motivated by (a); it starts by classifying the co-adjoint orbits 
of the group considered; as these are homogenous manifolds, naturally equipped with 
a symplectic form [16], a link with (b) is established; this structure is then used to 
construct a reducible (and hence partial) solution to the Dirac problem: this is known 
as the prequantization stage of the theory; the third step of the geometric quantization 
programme is the reduction of this representation into irreducible representations by 
the so-called polarization method. 

The motivation for the approach taken in this lecture comes from the following remark 
[29], the origins of which may be traced back to [15,24]. 

356 



While the prequantization map [1,13,16,26,27,28] is a solution of the Dirac problem 
that produces a reducible representation of the CCR, acting in the space )l of square 
integrable functions on phase-space: 

(1-1) P = - ihaq , Q = +ihap + q , 

the Hilbert space )4 also harbors an anti-representation of the CCR, namely 

(1-2) , Q ' = - i a o p  , 

which commutes with the representation (1-1). 
The contact between this observation and the theory of modular algebras is estab- 

lished by the following result. 

SCHOLIUM [7,10].  The prequantization representation (i-1)generates a von Neu- 
mann algebra )¢ which is a factor of type I, while the antirepresentation (1-2) generates 
the commutant 

(i.3) J¢'= { A e B()I) [ [A,N] = 0  Y N e )¢ } 

of )4; moreover, there exists an involutive anti-unitary operator J that establishes an 
isomorphism between ]4 and J¢', i.e. 

(i-4) .,V" = J)4J 

As usual, a technical remark should be made here, namely that  all the operators 
appearing in (1-1) and (1-2) are evidently unbounded; they can nevertheless all be 
defined in such a manner that  they axe self-adjoint, and thus generate unitary groups, 

(1-5) {U(a) = e x p ( - i a P ) l a e R }  ; {V(b) = e x p ( - i b Q ) I b e R }  

(1-6) 

s~tisfying 

a~d 

{ U ' ( a ) = e x p ( - i a P ' )  l a e R }  ; {V'(b) =exp(- ibQ')  I b e R }  

v(b) = exp(-iab) v(b) 

(1-8) U~ (a) V' (b) = exp(+iab) V' (b) U ~ (a) 

When we say that  the yon Neumann algebra J¢ [resp. N'] is "generated" by (1-1) [resp. 
(I-2)], we mean that  ,~/ [resp. )/'] is the algebra of operators obtained as the weak- 
operator closure of all finite linear combinations of the unitary operators appearing in 
(1-5) [resp. (1-6)]. 
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The commutation relations, written in the Weyl form (1-7), suggest the introduction 
of the "Weyl group " 

(1-o) 
~o = {w = (a,b,0) { a e Rn ,b  e Rn,O E R} 

(a ,b ,O)(a t ,b ' ,O ' )=(a+a' ,b+b' ,O+O'-~(a l  - b ' - a  t -b) )  

While in the physics literature, this group usually shows up in connection with quan- 
tum mechanics, it must be noted that it arises in classical mechanics as well when the 
momentum map is introduced (1]. It is important for our purpose to note that this 
group is a central extension 

(1-1o) O--~ R ~ ~o ~ R:--~ O 

of the group of translations R 2 which acts transitively and freely on the phase space 
T ' R .  The generalization to T*R ~ is straightforward. 

The new question we want to address here is whether the above Scholium is itself a 
consequence of a deeper result. In answering this question, we were led to an alternate 
derivation of the prequantization representation, summarized in the following statement. 

THEOREM. The prequantization algebra )4 appears as a /ac tor  in the central decom- 
position of ~he regular representation of ~he Weyl group. 

Together with the Scholinm, this Theorem shows that: (i) the prequantization rep- 
resentation of the CCR can be obtained directly from the central decomposition of the 
regular representation of the Weyl group; and (ii) it generates a yon Neumann algebra 
spatially anti-isomorphic to its commutant. This a~uti-isomorphism is at the heart of 
the Tomita-Takesaki theory of modular Hilbert algebras [30]. 

REMARK: This theorem is not a peculiarity of the flat configuration space R ~ and 
it extends, in particular, to the Weyl group ~ for simply-connected n - dimensional 
homogeneous manifolds )/~ of constant negative curvature K = _~;2 < 0. 

For illustrative purposes, in the first case of interest, namely r~ = 2, ~ can be 
described explicitly as follows. 

For K = - 1 ,  ~ is the Poincare half-plane, which is isometrically isomorphic to 
the unit space-like hyperboloid in the (2 -k 1)- dimensional Minkowski space, where the 
Riemann metric om ~/~ is induced from the Minkowski metric. In order to be able to 
interpolate readily between the results relative to the curved configuration manifold )/12 
and those obtained for the corresponding flat manifold R 2, it is convenient to consider 
the Minkowski metric d82 = dx 2 + dy~ - c2gt 2 for which the corresponding unit space- 
like hyperboloid ~ has curvature K = _~2 with tc = 1/c. The considerations to be 
presented explicitly below for ~ extend, for instance, to the three-dimensional unit 
space-like hyperboloid X~ in (3 + 1) - Minkowski space. 

We showed elsewhere [11] (see also [8,25,31]) that  the natural generalization of the 
Weyl group ~o to the case where the configuration space is ~/~ is a 5 - dimensional, 
simply-connected, exponential and tame Lie group ~g~ on which a coordinate system 
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can be chosen in such a manner that the only non-vanishing brackets in its Lie algebra 
are: 

(1-11) 

Clearly this group contracts, in the flat case limit ~ ~ 0 to the Weyl group Y~o for the 
configuration manifold R 2 . It is a central extension 

(1-12) o R o 

of a 4 - dimensional group G~ that acts transitively and freely on phase space, i.e. on 
the cotangent bundle 

(1-13) T'N~ ~- ~ / Z o  

where Zo ---- R is the center of SP~. In (1-12), the group G~ is itself an extension 

(1-14) 0 --+ R 2 --+ G,~ - *  H,¢ --~ 0 

where H,~ is the group of lower-diagonal 2 × 2 matrices, that occur in the Iwasawa 
decomposition (see e.g. [14]) K - ~ ,  of SL(2, R) (where K is the compact isotropy 
group of rotations). 

2. Sketch  of  the  p r o o f  for the  ma in  t heo rem.  

For the sake of simplicity, the proof of the main theorem is conducted in this Section 
for the flat case R'*; see the concluding comments in Section 3 for an indication of some 
among the technical precautions that have to be taken when dealing with the non-flat 
manifolds )t~. The proof proceeds in two steps: the first is an explicit application of 
the central decomposition theory of the regular representation for the Weyl group ~o; 
the second step establishes the link between the primary representations so obtained 
and those obtained by prequantization. 

Let ~/# (with ~ standing for either R or L) be the yon Neumann algebra generated 
by the (right- or left-) regular representation U # of the Weyl group ~o , i.e. 

and let J be the involutive anti-unitary operator 

(2-2) = 

Then (see for instance [5,6,16]) : 

(2-3) J U R ( w ) J  = ur'(w) , JJC~J---- )V L = {X/n] ' 

Because of (1-10), we have immediately that the central decomposition ([5,6]) 
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f • # 
(2-4) v#(w) = ]~ dAu~ (w) 

is implemented, in the sense of Gelfand triplets I12], by the Fourier transform 

(2-5) ~ ( a o , b o ) -  1 fRdOe_~oogl(ao, bo,Oo ) v ~  

namely (with # standing again for either R or L, and e/~ = +1 ,  e L = -1) :  

[V~ # (a, b, 0)#A](ao, bo) -= IV # (a, b, 0.) ~]~ (ao, bo) 
1 

(2-6) = exp{--iA[--e#O + ~ (ao-b  - a-bo)]} ~,~ (ao + e#a,  bo + e#b) 

[JA#:~](ao, bo) ---[Jq~]~,(ao, bo) = # ~ ( - a o , - b o ) *  

We read directly from these expressions: 

(2-~a) 

and, with 

(2-7b) 

j ,  v#(,~)j~ = v2 (w) 

~/~ - {U~(a,b)  } (a,b) e R2"y  ' , 

C2-7c) 

(2-7d) ~ #  n ~ 2  = C X. 

Since the R 2" part of ~o acts transitively and freely on the cotangent bundle T*R'* " 
]Vo/Zo (where Zo ~ R is the center of ~o), we introduce the coordinate identification 

(2-8) (a,b) e R 2'~ +-+ ( - q , p )  e T*R '~ 

corresponding to the classical action 

(2-9) e x p { - ( X p - a  + X q - b ) } :  (q,p)~-~ ( q - a , p  + b )  

where X~ is the Hamiltonian vector field for the Hamiltonian function H(p,  q) (i.e. 
XH ] w = -dH) ,  and w is the symplectic form dp A dq. Upon defining the generators 
of the representation U # ('IPo) by 

V#(a,0 ,0)  = e x p ( - i a - P # / h )  , V # ( 0 , b , 0 ) -  exp( - ib .Q~#/~)  

(2-10) V # (0, 0, 0) _= exp(- i0 0 r Ih) ,  
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we obtain 

(2-11) 
, = 

o ~  = -  (~h)++i 
[p~ q+~ = + ~(~)~#~ A' AJ 

In particular, for the choice 

(2-12) (~h) = -1  

' ' L L {P~,Q~} is a representation of the CCR, while {P~ ,q~}  ~ {P~ ,Q~}  is an anti- 
representation of the CCR. Moreover (2-11/12) generate two yon Neumann algebras 
J¢~ -~ ~/~ and [ ~ ] '  = )¢~ that  are the commutant of one another, and satisfy 

(2-13) j~z~ j~ = [~] ' .  

Finally, the apparent discrepency between (2-11) and (1-1/2) is only due to a residual 
ambiguity [16,18] in the usual geometric quantization proceedure, which can be "gauged 
away rq'by the unitary multiplication operator U× = expix/h with X E C°°(T*R'~), 
corresponding to the fact that, in the definition of the prequantization map, the one- 
form ~ appearing in the connection 

(2-14) Vn; x = X -  ilt-l~(X) 

is uniquely determined only up to an additive term dx. This completes the proof, for 
the flat configuration space R ~, of the results announced in Section 1. 

3. A p p l i c a t i o n  a n d  C o m m e n t s .  

The results of Section 1 (namely that there exists an anti-unitary isomorphism be- 
tween: (i) the yon Neumann algebra )¢.~ generated by the primary representation of the 
CCI~ usually obtained by prequantization; and (ii) its commutant [)CA]' ) have several 
~onsequences [2,7,10]. The most important one is that (1-4) [i.e. (2-7c}] allows one to 
identify in terms of observables quantities (i.e. in terms of elements in J]~) the maximal 
abelian algebra ~ in [X/~]' corresponding [5,6,16] to a decomposition of the primary 
representation U~ ( ~ )  as a direct integral of irreducible representations. For instance, 
if the decomposition is made with respect to 

(3-1) 

where ~ is the maximal abelian subalgebra of M~ generated by the position operators 
on ~/", the decomposition of U~(~,~) precisely produces a direct integral of irreducible 
systems of imprimitivity [8,21] for the group H~* acting on the configuration space ~ .  
In general, the choice of a decomposition with respect to a maximal abelian subalgebra 
(i.e. a complete set of commuting observables) ~A C [JVx]' = JAJC.~JA is the algebraic 
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equivalent of the geometric reduction procedure {19] associated with the choice of po- 
larization when one carries out explicitly the geometric quantization programme for the 
group ~,~. 

Physically, this choice can be interpreted in terms of the choice of a measuring pro- 
cess, which in turn is reflected in the correspondance one obtains between classical and 
quantum observables, i.e. the choice of an ordering. For instance, in the quantization of 
a one-dimensional harmonic oscillator, we can choose for .g the maximal abelian algebra 
generated by the Hamiltonian H = ½P~ + ½Q~; the correspondance one obtains from 
this choice is then given by the so-called antl-normal ordering. This result, discussed in 
[2], follows from fact that the decomposition of the prequantization representation into 
irreducible representations can be implemented by a reproducing kernel K that is eas- 
ily interpreted in terms of coherent states. In fact, the prequantization representation 
itself, namely 

(3-2) P~ = --i~Oq + ~p  , Q~ = +ihOp + lq  

obtained in Section 2 as a factor in the central decomposition of the right-regular rep- 
resentation of the Weyl group ~o ,  coincides with a representation of the CCR that also 
shows up in [29], where Streater points out its relation with the Bargmann formalism 
[4] (and related works in flat-space quantum field theory [24]). 

To be more explicit about the way the quantum ordering (or correspondance "prin- 
ciple ") enters into our theory, we recall that the Hilbert space )/ (of square integrable 
functions on phase-space), recovered through (2-5), not only carries the representation 
(1-1) and the antirepresentation (1-2), recovered in (2-11), but can also be viewed as the 
Hilbert space on which the Koopman formalism [17] for classical mechanics operates: 
every classical observable f ,  being a real valued function on phase-space, can be viewed 
as the multiplication operator M f ,  acting in )/, defined by 

(s-s) [MS k~](p, q) = f (p, q) ffg(p, q) 

(we ignore here the domain questions as these can be taken care of by the usual tech- 
niques). The correspondance between classical and quantum observables is then given 
by 

(3-4) f ~-~ K M / K  

where K is the reproducing kernel introduced above; this gives directly the specific 
ordering corresponding to K and thus to the maximal abelian alegebra ~.  An explicit 
example of the construction of such an ordering is given in [2]. 

From the point of view of the mathematical structure of the theory presented here 
as compared to the usual derivation of the prequantization representation, it should be 
remarked that the choice (2-12) that selects one particular primary representation in 
the central decomposition (2-4) matches exactly the choice one makes in the geometric 
quantization programme for the value of the constant h ¢ 0 that enters in the definition 
of the prequantization map when one imposes that the curvature ~ ,  of the connection 
(2-14) is proportional to a specific multiple of the symplectic form w, namely - i h - l w .  
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Finally, we elected to present the proofs in Section 2 for the particular case where 
the configuration space is R '~ . The analysis of the central decomposition of the right- 
add left-regular representations of ~,~, with ~; ~ 0, can essentially be conducted as in 
section 2, with however two technical differences: 

(i) Y/~ is not unimodular, and neither is G~ nor even ~/~ ; 
(ii) the non-abelianness of the extension G~ of H~ also implies that the first-order 

differential operators appearing in /~ Q~.~} different from those appearing in {P~.~,  are 
{pL.~, QL.~}) (a distinction that is blurred in the fiat case); they are now the teft-(resp. 
right-) invariant Hamfltonian vector fields of the classical description. 

With these precautions, one can then indeed generalize the argument presented in 
section 2, and prove that the results stated in section 1 remain true in the case where 
the flat configuration space R '~ is replaced by the curved homogeneous manifold N'*. 

As for the short list of open questions, with: which a review should end, we would 
like to mention two directions of possible extension for the approach to quantization 
presented here. The first line of investigation would be concerned with non-tame Lie 
groups, and with group actions that appear in classical dynamical systems and lead to 
non-type I representations [20,23,32]. The second line would be to consider the special 
infinite-dimensional Lie groups that occur when one considers systems with infinitely 
raany degrees of freedom [3,9]. 
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