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In English:

This thesis presents a comprehensive exploration in the realms of cos-
mology and gravitational wave physics, investigating various aspects and
challenges within the standard ACDM model while also scrutinizing mo-
tivated alternative theories. Our purpose is to shed light on unresolved
dilemmas within the ACDM framework (such as the singularity problem,
the origin of cosmological perturbations, the Cosmic Microwave Background
(CMB) anomalies on large scales, the dark energy and the dark matter prob-
lems) and on possibly new phenomena in the realm of gravitational wave
resonance (such as the conversion of gravitational waves to photons and the
gravitational wave resonance in Ultralight Dark Matter (ULDM) halos). By
scrutinizing a plethora of scenarios, we aim to elucidate fundamental aspects
of cosmological physics, offering new perspectives to longstanding puzzles in
the field.

The first chapter presents a novel nonsingular cosmological model ex-
hibiting a rich evolution, which encompasses a contracting phase, a bounce,
a quasi-de Sitter inflationary epoch, and a subsequent radiation-dominated
expansion. The bounce and the quasi-de Sitter phases appear due to quantum
effects originating from the Wheeler-DeWitt equation. The model is compat-
ible with the observed almost scale invariant scalar power spectrum, while
further developments are needed to address the magnitude of the tensor-to-
scalar ratio.

Chapter two investigates non-Gaussianities in bouncing models aimed
at mitigating large-scale anomalies in the CMB data. While these models
exhibit interesting features, they are excluded wih high significances when
comparing the CMB reduced bispectrum with the Planck data. Although
the bispectrum decays exponentially, the signal surpasses the noise for very
large scales, leading to a large cumulative signal-to-noise ratio. This result
highlights the sensitivity of the Planck data to scales beyond the pivot scale.

The third chapter investigates the implications of holographic dark energy
(HDE) on single-field slow-roll inflation, demonstrating compatibility with
observational constraints on both scalar and tensor power spectra.

Gravitational wave physics takes center stage in the fourth chapter, where
we explore the possibility of damping gravitational waves via parametric
resonance with an electromagnetic field. We elucidate the conditions under
which such damping occurs and discuss potential astrophysical implications.

Lastly, the fifth chapter investigates the amplification of gravitational
waves due to parametric resonance with the gravitational potentials of Ultra-
light Dark Matter (ULDM) halos. We explore various masses of Ultralight
Axions (ULA) and halo densities, considering their implications for current
gravitational wave amplification.

Throughout these chapters, we probe diverse aspects of the early Universe
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and gravitational wave physics, shedding light on fundamental questions
and paving the way for further exploration and refinement of theoretical and
phenomenological frameworks.

In Polish:

Ta praca doktorska przedstawia wszechstronne badania w dziedzinach
kosmologii i fizyki fal grawitacyjnych, badajac rézne aspekty i wyzwania
w ramach standardowego modelu ACDM, a takze analizujac motywowane
alternatywne teorie. Naszym celem jest rzucenie $wiatta na nierozstrzyg-
niete dylematy w ramach modelu ACDM (takie jak problem singularnoéci,
pochodzenie perturbacji kosmologicznych, anomalie w mikrofalowym tle
kosmicznym (CMB) na duzych skalach, problemy z ciemna energia i ciemna
materiq) oraz na ewentualnie nowe zjawiska w obszarze rezonansu fal graw-
itacyjnych (takie jak konwersja fal grawitacyjnych w fotony i rezonans fal
grawitacyjnych w halo Ultralekkiej Ciemnej Materii (ULDM)). Poprzez analize
wielu scenariuszy, naszym celem jest wyjasnienie fundamentalnych aspek-
tow fizyki kosmologicznej, oferujac nowe perspektywy dla dtugotrwatych
zagadek w dziedzinie.

Pierwszy rozdzial przedstawia nowy model kosmologiczny bez osobli-
wodci, ktéry wykazuje bogata ewolucje, obejmujaca faze kurczenia, odbicie,
quasi-epoke de Sittera i nastepujaca po niej ekspansje dominujaca promienio-
waniem. Fazy odbicia i quasi-de Sittera pojawiaja sie z powodu efektéw
kwantowych wynikajacych z réwnania Wheelera-DeWitta. Model jest zgodny
z obserwowanym prawie skoficzonym skalarnym spektrum mocy, podczas
gdy potrzebne sa dalsze prace rozwojowe, aby zaja¢ sie amplituda stosunku
tensorowo-skalarnego.

Drugi rozdziat bada niewielkogausowskie w modelach odbijajacych maja-
cych na celu ztagodzenie duzych anomali w danych CMB. Cho¢ te modele
wykazuja interesujace cechy, sa one wykluczone z duza istotnoscia, poréwnu-
jac zredukowany bispektrum CMB z danymi Plancka. Chociaz bispektrum
maleje wyktadniczo, sygnat przewyzsza szum dla bardzo duzych skal, prowa-
dzac do duzego stosunku sygnat-szum. Ten wynik podkresla wrazliwosé
danych Plancka na skale poza skala odniesienia.

Trzeci rozdziat bada implikacje holograficznej ciemnej energii (HDE) na in-
flacje wolno-pola, demonstrujac zgodnos¢ z ograniczeniami obserwacyjnymi
zaréwno dla skalarnych, jak i tensorowych spektréw mocy.

Fizyka fal grawitacyjnych zajmuje centralne miejsce w czwartym rozdziale,
gdzie badamy mozliwos¢ thumienia fal grawitacyjnych poprzez rezonans
parametryczny z polem elektromagnetycznym. Wyjasniamy warunki, w
ktérych takie tlumienie wystepuje, i omawiamy potencjalne implikacje as-
trofizyczne.



Na koniec, piaty rozdziat bada wzrost fal grawitacyjnych z powodu re-
zonansu parametrycznego z potencjalami grawitacyjnymi hal Ultralekkiej
Ciemnej Materii (ULDM). Badamy rézne masy Ultralekkich Aksjonéw (ULA)
i gestosci hal, rozwazajac ich implikacje dla aktualnego wzrostu fal grawita-
cyjnych.

Przez wszystkie te rozdzialy sondujemy réznorodne aspekty wczesnego
Wszechs$wiata i fizyki fal grawitacyjnych, rzucajac $wiatto na fundamentalne
pytania i torujac droge dalszej eksploracji i doskonaleniu teoretycznych i
fenomenologicznych ram.
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Chapter 1

Introduction

Historically, the quest to understand the origin, evolution and structure of
the Universe has been marked by paradigm-shifting observational discover-
ies and theoretical breakthroughs, which jointly formed the comprehensive
description of the cosmos that we currently have.

One such milestone is the theory of inflation, proposed in the early 1980s [1,
2,3, 4]. It posits that the universe underwent a period of exponential expansion
in its beginning, resolving long-standing puzzles such as the horizon and
flatness problems (discussed in 3.1) and predicting the almost scale invariant
power spectrum of cosmological scalar perturbations [5].

Observational cosmology has also made significant strides, with pivotal
discoveries shedding light on the Universe’s early history and structure. The
Cosmic Microwave Background (CMB) radiation, discovered in 1965 [6],
serves as a relic of the hot, dense primordial Universe. Measurements of the
CMB by missions such as the Cosmic Background Explorer (COBE) [7], the
Wilkinson Microwave Anisotropy Probe (WMAP) [8], and the Planck satellite
[9, 10, 11] have provided maps of temperature fluctuations, offering a way to
infer the Universe’s composition, geometry, and evolution.

More recently, the detection of gravitational waves has opened a new
window onto the cosmos, allowing us to directly probe extreme phenomena,
such as the mergers of black holes and neutron stars [12]. Groundbreaking
experiments such as the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) [13] and the Virgo Collaboration [14] have detected multiple
gravitational wave events, while the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav) has recently reported the first-ever
evidence of the gravitational wave background [15].

All the aforementioned milestones have played pivotal roles in advancing
our understanding and solidifying the foundation of the standard cosmo-
logical model (SCM), commonly known as the Lambda Cold Dark Matter
(ACDM) model. Remarkably, this model, characterized by merely six param-
eters, aligns exceptionally well with contemporary cosmological data [9, 10,
11].
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Despite its achievements, the ACDM model still faces several challenges
and tensions. One major challenge is the identification and understanding
of dark matter. While its gravitational effects are evident, its nature remains
unknown. Numerous experiments aim to directly detect dark matter particles,
but so far, no conclusive evidence has been found [16, 17, 18].

Another significant challenge lies in the nature of dark energy, whose
existence is required to explain the observed accelerated expansion of the
Universe [19, 20]. Understanding the origin and properties of dark energy is
arguably one of the most critical questions in cosmology, and although many
proposals have been made [21, 22, 23], a conclusive explanation has not been
found.

Additionally, the ACDM model encounters tensions when comparing
observations at different cosmic scales. These include discrepancies in the
measured expansion rate of the universe, the Hubble parameter, when com-
paring local measurements to those derived from the CMB radiation [24, 5, 25].
Another discrepancy involves the amplitude of matter fluctuations on large
scales, denoted by o3 (the level of matter density fluctuations at a scale of 8
Mpc). Measurements of g from different cosmological observations, namely
the Planck satellite and galaxy surveys data, do not agree within their respec-
tive uncertainties [26, 27]. In addition to these tensions, whose significance is
relatively high (for cosmology standards), there exist the so-called anomalies.
These are features observed on large scales in the CMB radiation that have a
very low probability of happening within ACDM, but that in principle might
appear due to new physics in the early Universe [28, 29].

Another extremely important concern in ACDM is the singularity problem,
which arises when we trace back the expansion of the Universe and reach a
point of infinite density known as the Big Bang singularity [30]. At this point,
the equations of General Relativity (GR) break down, and they cannot provide
a meaningful description of the space-time. This singularity problem implies
that our current laws of physics are inadequate to describe the Universe’s
behavior under such extreme conditions, where quantum or modified gravity
effects might become important.

In this thesis, we explore various aspects and challenges encountered
within the ACDM model of cosmology and motivated alternative theories.
We aim to scrutinize a number of scenarios that may either offer solutions to
some of the dilemmas previously mentioned or provide remarkable insights
into gravitational and cosmological physics. The chapters are arranged in
descending order of redshift, or ascending order in time.

Firstly, in Chapters 2 and 3, we delve into the realm of bouncing cos-
mologies, which arise as solutions to the initial singularity problem. Our
study encompasses investigations within the frameworks of both the Wheeler-
DeWitt equation [31, 32] and phenomenological bounces (motivated by the
scale factor of matter bounces from loop quantum cosmology [33]), probing
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how these approaches may address fundamental issues within the SCM. For
the Wheeler-DeWitt case, we propose a radiation-dominated bouncing model
that intrinsically presents an almost de Sitter expansion, akin to inflation,
without the need of any extra field or reheating [34]. For the phenomeno-
logical cases, we investigate whether the bounce is able to mitigate the CMB
anomalies on large scales, as it was believed in the literature [29]. We show
the scenarios that alleviate the anomalies are excluded by the Planck data due
to their high non-Gaussianities [35, 36].

Secondly, in Chapter 4, we scrutinize an inflationary mechanism within
the context of a modified gravity theory designed to account for the nature of
dark energy, namely the holographic dark energy model [37]. We investigate
its implications during a single-field inflationary phase and its compatibility
with current cosmological constraints [38]. We show the scalar field that
drives inflation, the so-called inflaton, dominates the dark energy components.
Additionally, we compute both the scalar and tensor power spectra and obtain
the modified gravity corrections to it, which decay very quickly after the first
inflationary e-folds.

Thirdly, in Chapter 5, we investigate the possibility of gravitational wave
conversion into photons via parametric resonance, a phenomenon situated
within the realm of GR [39]. We show that a non-negligible conversion takes
place in a medium with sub-luminal speed of light, which allows the resonance
to occur in the so-called first resonance band.

Lastly, in Chapter 6, we explore the phenomenon of gravitational wave
resonance in Ultralight Dark Matter (ULDM) halos, which arises due to the
time-dependent characther of the gravitational potentials [40]. We show that
non-negligible gravitational wave amplification nowadays can happen in very
dense regions in the halos.

In Chapter 7, we summarize our findings and discuss the main implica-
tions of this thesis.

The notation used within each chapter is distinctly defined in order to en-
hance readability and facilitate comprehension of the subject matter presented
therein.






Chapter 2

Radiation-Dominated Bouncing
Model with Slow Contraction and
Inflation

2.1 Introduction

The standard cosmological model, solidly grounded in GR theory and a
variety of cosmological observations (the Cosmic Microwave Background
(CMB) radiation and its anisotropies [41], the abundance of light elements [42],
the features of the distribution of large scale structure and cosmological red-
shifts [43, 44], among others), asserts that the Universe is expanding from a
very hot era dominated by radiation, when the geometry of space was highly
homogeneous and isotropic, with very small deviations from this special,
symmetric state. However, extrapolating the standard cosmological model
back to the past using GR, one necessarily encounters a singularity, where
physical quantities diverge. Hence, the model is incomplete: GR is pointing us
to its own limits, requiring new physics to understand these extreme situation,
which is still under debate.

Assuming that the Universe had a beginning immediately followed by a
hot expanding phase implies some important new puzzles, related to initial
conditions. The size of regions in causal contact in the Universe is given
by the Hubble radius, Ryy = |1/H| = |a/a|, where a is the scale factor, and
the overdot represents a derivative with respect to cosmic time. The Hubble
radius Ry evolves with respect to the scale factor a as

dIn(Rpy) ia
— = 1- . 2.1
dIn(a) a? @1)
If the cosmic fluid has non-negative pressure in the hot era, the Friedmann
equations imply 4 < 0, so that dIn(Ryg)/dIn(a) > 1. Hence, in the past
of an expanding universe the size of cosmological scales we are able to see
today, which evolve with the scale factor, were much larger than the Hubble

radius. This implies that the basic properties of the CMB, its temperature
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isotropy and its tiny anisotropies, cannot be explained by causal physics,
as the scales presenting these observed properties contained hundreds of
causally disconnected regions on the last scattering surface. This is called the
horizon problem. Furthermore, the observed matter and dark energy density
of the Universe today, py, is very close to the total energy density of a Universe
with flat spatial sections, p.. Using again the Friedmann equations, the ratio
Q(t) = p(t)/pc(t) evolves as
d|Qt)—1| i
5 = 2. 2.2)
Asa > 0and i < 0, if Q(t) is close to unity today, it must have been much
closer to unity at earlier times, a spectacular fine tuning of initial conditions.
This is the so called flatness problem.

A simple solution to these puzzles is to evoke that at some early stage a
new field dominates the Universe evolution, for which p/p < —1/3 which
implies 4 > 0, such that dIn(Ry)/dIn(a) < 1 and d|Q(t) —1|/dt < 0.
This primordial phase is called inflation [1, 2, 3, 4], usually driven by a
simple scalar field, which can be investigated in the framework of standard
quantum field theory in curved spacetime. It not only solves the above puzzles,
but it also predicted the observed almost scale invariant marginally red-
tilted spectrum of primordial cosmological scalar perturbations [45]. Inflation
became an essential part of any cosmological model in which the Universe
has a beginning.

However, there is an alternative simple solution to the above puzzles if
one assumes that the Universe had a very long contracting decelerating phase
before the present expanding era. In this case, Eq. (2.1) implies that the Hubble
radius was much bigger than any cosmological scale of physical interest in
the far past of the contracting phase, because a contracting universe running
backwards in time implies larger scale factors. Also,asd < 0,d < 0, and
i/a® > 0, Eq. (2.2) implies that flatness becomes an attractor in the contracting
phase, rather than a repeller. Hence, the Universe looks spatially flat to us
now because it has not expanded long enough in comparison with the very
long contracting phase it experienced in the past.

In realistic models with a contracting phase, there must be a bounce con-
necting it to the present expanding phase. In GR contraction generally leads
to the time reversal of the Big Bang singularity, the Big Crunch. To avoid
this, bouncing models must necessarily involve new physics. In other words,
bouncing models must face the cosmological singularity problem, which is
not addressed by inflation. A realistic bouncing model then not only solves
the above puzzles related to initial conditions, but it is also complete, i.e., free
of singularities.

The new physics required for bouncing models can be classical extensions
of GR [46, 47, 48, 49, 50, 51, 52, 53], or quantum gravity effects [54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65]. Different models have been investigated in the
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last decades, and it has been shown that many of them [66, 67, 68, 69, 70]
satisfy the constraints imposed by cosmological observations on the properties
of primordial cosmological perturbations, and other cosmological features,
without the need of an inflationary phase. Nevertheless, bouncing models are
not incompatible with inflation. Indeed, in some scenarios, bouncing models
lead to the appropriate initial conditions for inflation [71].

In this chapter, we present a cosmological model where the bounce and an
expanding inflationary phase are both induced by quantum effects, without
any inflaton field. The quantum effects arise from a canonical quantization of
gravity restricted to the mini-superspace configuration of homogeneous and
isotropic geometries, with a constant perfect fluid equation of state parameter
w = p/p satistying —1/3 < w < 1, leading to an effective Schrodinger
equation for the cosmological wave function. As is well known, this simple
quantum geometrical approach can be viewed as an approximation of a more
involved quantum theory of gravity, hence we limit the maximum energy
density and spacetime curvature of the effective model to be some few orders
of magnitude below the Planck scale, where this simple approach can be
reliable [72]. The wave function solution is interpreted using the de Broglie-
Bohm quantum theory [73, 74], where a quantum scale factor evolution can
be calculated.

The initial wave function is chosen to be a Gaussian moving in configura-
tion space. The time-dependent solution is calculated, leading to a bouncing
non-singular asymmetric scale factor, reaching its standard classical evolution
in the asymptotic past and future of the model. Depending on the sign of
the momentum of the wave function, the classical contraction can be either
much slower or faster than the classical expansion, with a huge creation or
annihilation of particles between these phases, respectively. In the sequel, it is
noticed that, specifically for w ~ 1/3, the model experiences either a quantum
inflationary or deflationary era during its evolution. Clearly, the physically
interesting possibility is the former, on which we focused our attention.

The resulting model is a radiation-dominated universe classically and
slowly contracting from an almost flat spacetime up to a quantum bounce,
followed by an era of a quantum quasi-de Sitter expanding phase, which
changes smoothly to the classical radiation-dominated era before nucleosyn-
thesis (thus a transition opposite to that obtained in [75]). In order to have
inflation during a sufficiently long period, the wave function from which
it originates must be moving with high momentum in configuration space.
During the quantum era, a large amount of radiation is quantum created.
Therefore, surprisingly, we obtain a very simple radiation-dominated, non-
singular cosmological model, the primordial era of which combines the three
main ingredients of the primordial Universe that have been investigated so
far: a slow contraction [76, 77] (although in a very different way, with possible
different consequences), a bounce and inflation. The scalar power spectrum of
cosmological perturbations is calculated, presenting an almost scale invariant
behavior and an amplitude compatible with observations for very reasonable
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parameter choices; namely, that the minimum curvature scale of the model
(1/R'/2, where R is the Ricci scalar) is around four orders of magnitude bigger
than the Planck length.

Concerning the slow contraction, in the present model it happens because
there is much less matter-energy in the contracting phase then in the expand-
ing phase. In ekpyrotic models, the slow contraction arises from the fact that
the matter content dominating contraction has an equation of state parameter
much bigger than the equation of state parameters of the fluids dominating
the expanding case. As a consequence, in ekpyrotic models anisotropies
generally become irrelevant during contraction, which is not automatically
the case in the present model. However, in our view, the homogeneity prob-
lem (the infinitely many fine tunings of initial conditions in order to have a
homogeneous spacelike hypersurface geometry) is vastly more serious than
the anisotropy issue. If some yet unknown physical mechanism or theory
of initial conditions is capable to justify such an extremely fine-tuned state,
then it would not be a big surprise that it could also make identical the three
remaining time functions characterizing the three directions of space. Once
one assumes a homogeneous and isotropic universe, it has been proved in [78]
that shear perturbations coming from vacuum fluctuations in usual bouncing
models will generally not overcome the background degrees of freedom, even
growing as fast as 1/a° in the contracting phase. This is because the shear
perturbation in such models is multiplied by a very small number - the ratio
between the Planck length and the Hubble radius squared - and it can be
shown that if the bounce is not very deep, the shear will remain sufficiently
small.

In Sections 2.1.1, 2.1.2 and 2.1.3 we review the foundations of the cosmo-
logical model considered in this chapter - the ADM formalism, the canonical
quantization, a minisuperspace filled with a perfect fluid and a de Broglie-
Bohm bounce. In Section 2.2 we obtain the wave function which originates the
class of scale factors we will investigate. The free parameters are connected to
physically meaningful cosmological quantities. A very simple expression for
the scale factor and the independent free parameters of the theory is exhibited,
and its properties in different phases are described in detail. It is shown that
the case w ~ 1/3 implies an era of quantum quasi-de Sitter expansion after
the bounce. In Section 2.3 we make analytic estimations of the primordial
scalar perturbations originated from quantum vacuum fluctuations in the
asymptotic past of the model, first for general w, then for w ~ 1/3, calculating
their amplitude and spectral index. In Section 2.4, the numerical calculations
are shown, confirming the analytical estimations: an almost scale invariant
spectrum of scalar perturbations, with an amplitude compatible with observa-
tions if the minimum curvature scale of the model is around three orders of
magnitude larger than the Planck length. We conclude in Section 2.5 with a
discussion and the possible future developments of the model.
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2.1.1 Hamiltonian Formulation of General Relativity

The Hamiltonian formulation of GR was developed by Richard Arnowitt,
Stanley Deser, and Charles Misner, and became known as the ADM formal-
ism [79]. The formulation relies on geometric quantities that characterize a
foliation of spatial hypersurfaces® in the time direction.

Such hypersurfaces are defined through the constancy of a function f of
the coordinates, i.e., f(x#) = constant, and their normals 7. By introducing
the temporal coordinate t = xY, we can write My =—N 52, where N is called
the lapse function and is normalized through ¢"'5,17, = —1. We can also
define the projector h*" = ¢ + 7", so that its inverse matrix hy, is the
metric tensor of the hypersurfaces. Finally, we define the so-called shift
vector N = ¢'ON?, which describes the rate of change of the displacement
of x from one hypersurface to another. In Figure 2.1, these definitions are
geometrically presented. The lapse function, the shift vector, and the metric of
the hypersurfaces are then used to describe the metric of the four-dimensional
spacetime in question:

wo— _ﬁ ZZ\\I]_; - (2.3)
8 T\ N i _NN | '
N2 N2

An important quantity in the context of differential geometry when con-
sidering hypersurfaces embedded in a manifold is the extrinsic curvature. In
the present considered scenario, such quantity is given by

1

i =aN

[hij — ViNj — V;N{, (2:4)

where VuV, =9,V, — F;}V V) is the covariant derivative of the spacetime in
question (derivative along tangent vectors of the manifold), and V; is the
three-dimensional covariant derivative. The quantity

1
rﬁ” = EgAp (9v8on + 9ugpv — Ipguv) (2.5)

represents the Christoffel symbols, which describe the affine connection of the
spacetime. The dot represents the time derivative.

The Lagrangian density of this system can be written in terms of the
previously defined quantities as

L = Nh2 (R<3> + KK — K2> ) (2.6)

!Hypersurfaces are algebraic varieties of dimension 7 — 1 embedded in an n-dimensional
space. In the case of GR, the varieties encompass the 3 spatial dimensions, and time is
described as the extra dimension in the n = 4 space.



1 OChapter 2. Radiation-Dominated Bouncing Model with Slow Contraction
and Inflation

hi]- (t+dt,x,y,z)

t+dt

h;; (tx,y,2)

FIGURE 2.1: Two hypersurfaces separated in the time direction

by an infinitesimal interval dt. The lapse function N and the

shift vector N’ are geometrically represented. The normal 7, to

the surface h;;(t, x,y, z) is represented through its corresponding
unitary 7.

where R®) is the Ricci scalar of the hypersurfaces, which quantifies the cur-
vature of the variety, K = Kf, and # is the determinant of the metric of the
hypersurfaces. Since this Lagrangian density does not depend on dyN or
doN', the conjugate momenta of the lapse N and the shift function N are
zero. Such non-dynamic variables must be included in the system’s action as
multiplicative factors of the constraints, the so-called Lagrange multipliers.
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Thus, the gravitational action S can be written as

1 3
S = o ] [0+ N2V

- N <Gijk1HifHkl - h%R@)] dtd3x,

» oL 1
1] = — —Nh2 R ..
I = ENG) h? (Kjj — hiiK) ,
h—2
Gijg = —= (hixhy + hithj — hijhy) - (2.7)

The quantities accompanied by the Lagrange multipliers N and N; are the
secondary constraints of the theory and are respectively called the super-
Hamiltonian H and supermomentum 7/ constraints?

H = Gl — 2RO =0, (2.8)
H = -2V, ~o0. (2.9)

The first one is related to the covariance of the theory under general time
transformations, while the second one describes covariance under spatial
coordinate transformations.

In turn, the Hamiltonian density ./ = IT7 hl-]- — L takes the following form

A = NH + N/H. (2.10)

2.1.2 Canonical Quantization and The Wheeler-DeWitt Equa-
tion

The Theory of GR is covariant under coordinate transformations. In other
words, physical laws take the same form in all reference frames. Mathemati-
cally, this property leads to constraints, which reduce the degrees of freedom
of the system. The quantization of constrained systems was developed by Paul
Dirac [80] and provided the basis for the procedure of canonical quantization
of GR.

First, we promote the canonical variables of the theory to quantum oper-
ators, so that the Poisson brackets { X, Y} will be identified as commutators,
ie., in{X,Y} = [X,Y]. Thus, the metric of the hypersurfaces /;; becomes an

operator flij, which acts on wave functionals Y.

2The weak equality denoted by =~ is due to the fact that the equations are satisfied only
when the constraints are applied.
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From the Hamiltonian density (2.10), we can write the following functional
Schrédinger equation:

i9,¥ = / (N# -+ NAT) ¥, 2.11)

where the right-hand side of the equation represents the Hamiltonian H.
The constraints of the super-Hamiltonian and the supermomentum take the
following form:

HY = 0, (2.12)
HiY = 0. (2.13)

The wave functional must, therefore, satisfy not only equation (2.11) but also
constraints (2.12) and (2.13). Equation (2.12) is called the Wheeler-DeWitt
equation, while (2.13) is the so-called diffeomorphism constraint.

2.1.3 Minisuperspace Filled with a Perfect Fluid

Superspace is the name given to the space of three-dimensional hypersurfaces
hij, which has infinite dimension. In turn, a minisuperspace is a reduced form
of superspace, obtained by reducing the degrees of freedom of the system
through the use of symmetries. Such symmetries arise from the homogeneity
and isotropy of the Universe.

In order to incorporate the symmetries of the system, we consider the
homogeneous lapse function, thatis, N = N(f), and the shift vector N' = 0,
indicating the isotropy of spacetime®. Thus, the line element* can be written
as

ds? = —N?(t)dt + hij(x, t)dx'dx). (2.14)

The metric h,-]-, in turn, can be restricted to

hii(x, )dxidx = a?(+)dO3, (2.15)

g
where dQ% is the line element of a three-sphere and a(t) is the so-called
scale factor, which parametrizes the Universe’s expansion. More generally,
it is possible to restrict h;; with a finite number of parameters g%(t), with
a = 1,...,n. In the present case, g'(t) = a(t) and the remaining g* correspond
to the degrees of freedom of matter. The conjugate momenta to the parameters
g* will be denoted by p,.

3These conditions for the lapse function and the shift vector are used at the so-called
background level, where cosmological perturbations are not yet considered.

4The line element can be understood as the line segment associated with an infinitesimal
displacement vector in a metric space. Its terms are directly related to the metric tensor
through ds? = g, dxtdxV.
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Thus, the quantities used in the Hamiltonian formulation of GR can be
written in terms of N(¢) and a(t). The action of the theory, including the
matter Lagrangian density Ly in terms of fields ¢4, then takes the form

s = [ Nn2 (RO 4+ KKy — K) dtd’x +
+ / L (¢A,h,-j, N;, N) N2 dtd3x
1 1
_ - s ﬁ o
[ |t~ )] 2.16)

where f,5(q) is Gjj defined in (2.7) reduced to minisuperspace and U(g) is a
function of g that can be understood as a potential. The integration limits 0 and
1 are obtained by appropriately adjusting the lapse function and time. Note
that the action (2.16) corresponds to the description of a relativistic particle in
a curved spacetime, containing both kinetic and potential contributions. Thus,
the challenging task of solving the Wheeler-DeWitt equation (2.12) and the
diffeomorphism constraint (2.13) in superspace is simplified to the problem
of a particle in minisuperspace. For consistency, the equations of motion that
can be obtained from this action should correspond to the Einstein equations,
which describe GR in the classical regime.

The corresponding Hamiltonian H = p,4* — L is given by
1
H=N |5 f*pupp+U(q)|, (2.17)
from which we obtain the constraint of the super-Hamiltonian

1
5f* pupp+ U(g) ~ 0. (2.18)

Traditionally, minisuperspace models have been understood as an ap-
proximation to extract information from the Universe as a whole. However,
there is no confirmation that this approach leads to a faithful and complete
representation of the theory. An alternative is to interpret the quantization
of minisuperspace as the quantization of the smallest representative unit of
spacetime, an approach known as the single-patch approach [81]. In this
chapter, we adopt the more traditional approach, in which the Universe is
represented by a minisuperspace.

Considering the line element of a homogeneous and isotropic Universe,
also known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) line ele-

ment (in spherical coordinates r, 8, & and with spatial curvature k = —1,0, 1)
2 200 o dr 2 102
ds* = —N4dt"+a° | —— +r°do°+
1—kr?

+ sin? 9d<I>2> , (2.19)
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we obtain the Lagrangian density (2.6) in the ADM formalism

ia®> aNa®> d%a
= — ———> +— +kN 2.2
L N~ Nz TN TkNa (2.20)

=2
= —% + kaN (2.21)

having used integration by parts in the last equality.

The system’s Hamiltonian, in turn, is given by

i
H =N|——=—ka|, 2.22
(~ 32 —ka) 222)
where P, = —2aa/N is the canonically conjugate momentum to the scale

factor a.

Now let’s consider that minisuperspace is filled with a perfect fluid de-
scribed by the following matter Lagrangian

Ly=+/—8 <%g”1’8y4}8vcp> , (2.23)

where 1 is an integer and ¢ is a scalar field related to the four-velocity of the
fluid
O

U, = ————.
8 V8" 0upoy e

The parameter of the equation of state of the fluid can be obtained through
the definition of the momentum-energy tensor’

(2.24)

2 dLpy

and is given by
1
= . 2.26
YT o1 (2.26)
The system’s Hamiltonian is then written as
14+w
1
S Py (2.27)

- w(v2n)Hw a3

SFor a perfect fluid, the momentum-energy tensor can be written as Ty = (o + P)U, Uy, —
Pguy, where p is the energy density and P is the pressure. On the other hand, the parameter
of the equation of state is given by w = P/p. Combining such expressions with definition
(2.25), we obtain w in terms of n.
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where py represents the canonically conjugate momentum to ¢. By consider-
ing the following coordinate transformation

) 1+w 1 14w
T CE) A S <_’9"’ ) , (2.28)
1+ w Py w \\2n
we obtain P
T

An alternative derivation of this result is obtained in [82].

Considering the Hamiltonians obtained for the gravitational part (2.22)
and for the matter part (2.29), we arrive at the description of a homogeneous
and isotropic minisuperspace, with spatial curvature k = 0 and filled with a
perfect fluid:

P2 p
Hiotal = N (—ﬁ + a?)_z;) (2.30)

214 De Broglie-Bohm Quantum Cosmology

In this section, we will address the quantization of the Universe according to
the De Broglie-Bohm interpretation, which has a deterministic nature, with the
probabilistic properties of Quantum Mechanics being merely statistical. Such
interpretation makes use of the so-called hidden variables, which determine
the development of the quantum system. The predictions of the theory agree
with the traditional Copenhagen interpretation, as long as the Schrodinger
equation is maintained. In this section, the quantities necessary to perform
the quantization will be briefly introduced. A more comprehensive approach
to the interpretation can be found in [83].

First, we will apply Dirac quantization to the Hamiltonian (2.30) by pro-
moting it to a quantum operator and by using equation (2.12). By choosing an
operator ordering®, we obtain

A, 4T [ 2w1d

which represents the Wheeler-DeWitt equation. The variable T, related to the
perfect fluid, can be understood as time.

In the De Broglie-Bohm interpretation, we write the wave function as
Y = RexpliS], where R is the amplitude and S is the phase of the wave.

®The need to choose an ordering is related to Heisenberg’s uncertainty principle, according
to which two complementary operators cannot be measured simultaneously. Mathematically,
this fact is described by the non-commutativity of such operators. In equation (2.31), the scale
factor a and its conjugate momentum d/da do not commute, making the choice of ordering
necessary.
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Defining p = 2T [¥|2, we obtain that (2.31) results in two equations:

S g3l <as>2
_|_

oT 4 \oa
3w—1
a2z 0 | sw-10R
+ T [a 2 %] =0, (2.32)
dp 9 [a*~las ]
ﬁ_ﬁ{ 5 %]_0' (2.33)

Moreover, the configuration space has a deterministic nature, being described
by the so-called guidance equation

a3w—1 9S

4= 2 9da

(2.34)

Note that equation (2.32) takes the form of a Hamilton-Jacobi equation within

. . ot sw-1 .
the scope of Quantum Mechanics, with Q = —%% % [a “2 %—1;] being a

quantum potential character. This potential is responsible for altering the
trajectory of the scale factor 4, replacing the initial singularity of the Universe
with a finite scale factor. In turn, equation (2.33) takes the form of a continuity
equation for p.

Equation (2.31) can be written in a simpler form considering the following
coordinate transformation

2 3(1-w)
=_—— g4 7 2.
A= 30— (2.35)
which results in )
Y  10°Y
The same transformation modifies (2.34) to
dx 10S
IT= 23y (2.37)

In the context of Quantum Cosmology, ¥ is called the wave function of the
Universe, which must satisfy (2.36). In order to solve this equation for ¥, we
need a boundary condition. An interesting choice is given by

Y 0¥
(T ax ax )

=0, (2.38)

x=0

where Y* represents the conjugate of ¥, since it leads to unitary solutions of

the wave function”’.

"We call unitary the wave functions whose temporal evolution is represented by a unitary
operator, which is closely related to measurement probabilities.



2.1. Introduction 17

For the initial wave function, as an example, we can choose

1
8 \4 X2

since the boundary condition (2.38) is satisfied. The expression of the wave
function for any time T is then given by

Y(x,T) = /0 N G(x, x0, T)¥o(xo0, T)dxo, (2.40)

where G(x, xo, T) is the propagator related to the Wheeler-DeWitt equation
(2.36). Note that the latter is similar to the Schrodinger equation, except for
the sign of the kinetic energy. Thus, the propagator is given by

Gt xo T) = —niT{exp {—M——TX‘))Z] ¥
Toexp {_ZM” (2.41)

where, in order to ensure the unitarity of the evolution, we sum one propaga-
tor for xo and another for —xo. By applying (2.41) to (2.40), we obtain

_ 80—2 1 0'2)(2
Y(x,T) = {—n(a‘l—l—TZ)] exp {——04+T2] X
. 2 1 o7
X |:—l <m + § arCtanT — Z)} , (242)

which can be decomposed into the form ¥ = Rexp [iS].

Solving the guidance equation (2.37), we obtain

X=X |1+ (;) ] , (2.43)
which is related to the scale factor a by the transformation (2.35), resulting in
1
T 2| 3(1-w)
a=a, |1+ (;) . (2.44)

The parameters x; and a;, represent the values of x and a when the Universe
has its smallest size. Figure 2.2 presents the scale factor (2.44) as a function
of time T, where we can identify a contraction regime of the Universe for
T < 0 and an expansion regime for T > 0. The meeting of these phases
at T = 0 occurs in the quantum realm, where the potential Q identified in
(2.32) plays a fundamental role. Thus, the classical singularity is replaced by a
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minimum scale factor a;. Note that this bounce is symmetric, meaning that
the contracting phase mirrors the expansion. In the next section we obtain an
asymmetric bounce, which has interesting cosmological implications.

: ' - : ; T
-4 -2 0 2 4
FIGURE 2.2: Resolution of the initial singularity through a
bounce model obtained in De Broglie-Bohm Quantum Cosmol-
ogy. In this figure, 2, = ¢ = 1 and w = 1/3, representing a
perfect fluid of radiation.

2.2 Background Evolution

Let us start by recalling the main results of the previous sections, which will
now be applied to a different boucing solution (generated by a different anzats
of the initial wave function).

We consider a homogeneous and isotropic Universe filled with a perfect
fluid governed by a barotropic equation of state of the form p = wp, with con-
stant w. The Einstein-Hilbert action may be written using the ADM variables
[79], considering a foliation of spacetime into space-like hypersurfaces. As
we have seen in Section 2.1.1, neglecting boundary terms, the corresponding
FLRW action reads

. i 2
s = 1 / d*xvhN {Ki]'Kl]—<hl]Kij> +(3)R}

~ [N (__ + ak) (2.45)

The quantities N, h;;, K i Kij, (3)R, a, and k are the lapse function, induced metric of
the spacelike hypersurfaces, extrinsic curvature of the spacetime foliation, the
Ricci scalar of the spacelike hypersurfaces, the scale factor, and the constant
curvature of the homogeneous and isotropic spacelike hypersurfaces, respec-
tively. An overdot corresponds to a derivative with respect to coordinate time
t.
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In the case of spatially flat hypersurfaces, which we consider from now
on, the Hamiltonian is given by (2.30). The dynamical variables are the scale
factor g, its conjugate momentum P,, the perfect fluid variable T, related to
the velocity field of the fluid, and its conjugate momentum Pr, related to
the classically conserved total number of particles of the fluid. The latter
appears linearly in the Hamiltonian, which leads to a natural interpretation
of T as a time variable. This is one of the proposed solutions to the problem
of time in quantum cosmology, where the degree of freedom corresponding
to the perfect fluid plays the role of a time variable. This approach has been
used both in canonical quantum gravity [84, 85] and in modified gravity
[86]. The cosmic time 7 is related to T through Hamilton’s equations by
dt = Ndt = a3*dT. Note that for dust (w = 0) T is cosmic time, while in the
case of a radiation fluid (w = 1/3) T corresponds to conformal time 7.

In order to perform the canonical quantization of the system, one must
specify an operator ordering, which in this case is such that we obtain a
covariant Laplacian under redefinitions of the scale factor a [87, 88]. With
this choice, the Wheeler-DeWitt equation 7:[0‘{’ = 0, where ¥ denotes the
minisuperspace wave function, reads

i—a Y(x,T) = 1—82 Y(x,T) (2.46)
aT WX 4 9x2 X 2D '
where 5
— 3(1—w)/2
X= 31— 5 )a . (2.47)

The concrete solutions for the scale factor are obtained by proposing an ansatz
for the initial wave function, which must be propagated to lead to the wave
function at any time T.

Let us turn our attention to the conceptual implications of this quantiza-
tion procedure for a system that is the universe as a whole. The standard
Copenhagen interpretation demands an external classical domain in order to
collapse the wave function, as a result of a measurement process performed
on the system. This external domain is by definition absent in a cosmological
setting. One of the alternative interpretations of quantum mechanics that
allows for consistent cosmological scenarios is the de Broglie-Bohm (dBB)
Quantum Theory [73, 74], which we shall adopt from now on. This approach
consists of a deterministic interpretation of quantum mechanics in which the
particles or field amplitudes describe trajectories in configuration space which
are objectively real, regardless of a measurement process. These trajectories
satisfy judiciously chosen guidance equations, in which the initial particle po-
sitions or field configurations are not known - only a probability distribution
thereof -, thus constituting the hidden variables of the theory. If this proba-
bility distribution is given by the Born rule, then all probabilistic predictions
of quantum theory are recovered. The compatibility of this interpretation
with quantum cosmology is a result of the so called effective collapse, which
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describes the occupation of one of the branches of the wave function in a
measurement process by the point particle in configuration space, depending
on its initial particle positions or field configurations. Since this effective
collapse does not require an external observer, the dBB theory can be applied
to the universe as whole. Moreover, the "particle trajectory", which in this case
is related to the evolution of the scale factor, is part of an objective reality. The
resulting cosmological models might be able to avoid the initial singularity
problem, replacing it with a bounce, which is preceded by a contracting phase
and followed by the usual expansion of the universe [89, 90, 91].

2.2.1 Asymmetric Bounce

In reference [91] it is shown that, within the dBB interpretation, an initial state
of the form

1
8 \1 2
Yo(x) = (W) exp (—% +1PX> , (2.48)

with p,o € R, can be evolved by the propagator

NU _ i i(x — x0)?
GN (X0, T) = |/~ exp {—T] , (2.49)

yielding the following solution for all times

¥(x, T) =Rw(x, T)exp [iS¢(x, T)], (2.50)

802 1/4
Ree D = e

X exp

o P_
04 + T2 2
pT T P
+ 1 arctan 1
2 ¢ o? )

The quantum parameters ¢ and p are related to the initial width (with
a standard deviation ¢/+/2) and momentum of the Gaussian in configura-
tion space, respectively. The associated Bohmian trajectories for the variable
X, which can be translated to the trajectories of the scale factor a through
definition (2.47), are a solution to the Bohmian guidance equation

)

dy __19S¢| _ T _  po
dT — 2 oy X(T)_U4+T2X 2(c*+T2)’ (251)
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which can be integrated to give

1
X(T) = xt [1 + (%)2 + (%)2 ((74 + Tzﬂ T %T, (2.52)
where yx, is the value of the variable x at the bounce, occurring at T, =
pat/ (2xp)-
Defining
T

T
ﬁ, Xp = —, = -, (253)

we can rewrite (2.52) in the simple form

xX(T) = xv <yT+ V1+1y2V/1 +T2) .

As a result, the scale factor reads

2
a(T) = ay (yT +1/1+2V1+ Tz) e , (2.54)

where ay, is the scale factor at the bounce, and T, = —y corresponds to the
time at which the bounce occurs. When |T| > ¢2, or |T| > 1, we have

_ _ 2
a(T) o |T|30-%) which, translated to cosmic time, corresponds to a classical

2
single-fluid Friedmann evolution a(t) o |7|30+@),

Looking at Eq. (2.54), we can see that the time asymmetry of the model
comes from the linear term in T, with the property a(—y,T) = a(y,—T).
Hence, changing y — —y is equivalent to time-reversing the original solu-
tion. From now on we will choose y > 0 (or p < 0), the case y < 0 being
straightforwardly obtained by time reversing the conclusions.

The Hubble function is given by H = a/(Na) = a~3(1+®)/2 (dy/dT). Its
expression squared reads

3(1—w)
- 4 a,

yom i
HAT) = 50— gt gy F ) (2.55)

where

- 2
F(T) = (y-l— \/1+y2\/%) : (2.56)

In the asymptotic limits we get

2
li F(T) =: FL = +4/1 2 , 2.57
A (T) =: Fx (y \/ +y) (2.57)
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which is a constant. Thus, we get

Fi

ai(lJrZU) (T)

H3(T) & « p+(T), (2.58)

which are the asymptotic classical Friedmann equations at both limits, as ex-
pected (the subscripts £ refer to the asymptotic future and past, respectively).

Fixing the same scale factor at both asymptotic classical phases, we have

2 Fy
H?% (a) i) <P (a), (2.59)

showing that the model is not symmetric. In fact, the conserved quantities Fs.,
which can be understood as the total number of particles inside a volume cell
for a given scale factor in both asymptotic phases, are different, see Eq. (2.57),
with creation of particles from the asymptotic past to the asymptotic future:

2
p+(a)a® ) F <y+ v 1+y2> >1

(2.60)

o_(a)ad(+w) — F_ (]/ B W)Z

For y > 1, this growth can be huge: from (2.59) and (2.60), evaluating at the
same scale factor, we have that the respective ratio of the energy densities at
the asymptotic future and past is given by

o1 (@0 . (a) _ H(a)
p—(a)a3+w) — p_(a)  HZ(a)
implying both a large creation of particles, and a very slow asymptotic con-

traction when compared to the asymptotic expansion rate for the same a,
Hy > |H_|. The ratio of Hubble radii R+ then reads

~ 16yt > 1, (2.61)

R(a) _ H.()
Ro(a) ~ [H-(a)]

The classical scale factor in both asymptotic limits simplifies to

~ 4> 1. (2.62)

_ 2
Aexpansion ~ ab[(zy)T] 3(1-w) (2-63)
2

Acontraction ~ ﬂbHT!/(Zy)]“l*w) . (2.64)

Comparing H2 (T) with the late time Friedmann equation H?/Hj3 =
Qw,0x3(1+w), where x = a¢/a and (), is the ratio between the fluid energy
density and the critical density when H = Hj, we can relate (), ¢ and the
Hubble radius today Ry, = 1/ Hj to the free parameters of the model:
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2Ry, (y+ 1+ 72)
)t = w3 , (2.65)
3(1 —w)x, Oy

7

which will be very useful in the next section.

2.2.2 Quasi de Sitter Phase

A noteworthy feature in the scenario with y > 1 arises from the fact that for
T <0,|T| > 1andy > 1 the scale factor (2.54) reads

- 2
_ |T| Y 3(1-w)
The classical contraction is recovered when the first term in (2.66) dominates,
143w
3(1—w

i.e. when |T| > y. In this case, 4 |17|1+%, as |n7| o |T|30-%), On the other
hand, when |T| < y, which happens after the bounce, the second term in

_ 5%
(2.66) dominates and, since in this case || o< |T|30-@), we have

2
a(n) o [n| 5. (2.67)

Hence, an intermediate phase between the bounce and the classical expansion
arises naturally, corresponding to a quantum accelerated expansion when
1/3 < w < 5/98. Ifw = 1/3, i.e. in a radiation-dominated universe, this phase
is in fact a de Sitter expansion, where a(77) « 1~1. Moreover, since (2.67) comes
from an approximation, the quantum accelerated expansion is indeed a quasi-
de Sitter (qdS) phase. Accordingly, we find the Hubble parameter around
this stage to be almost - but not exactly - constant. The corresponding scale
factor is depicted in Figure 2.3, where a comparison between the quantum
accelerated phase and the de Sitter scale factor is exhibited.

Since y > 1, this quantum accelerated expansion might last for a long time,
around —y < T < —1. Afterwards, when T >> 1, the classical decelerated
expansion of the standard cosmological model takes place. In other words,
the scenario determined by the condition y > 1 and w ~ 1/3 encompasses a
bounce regulated by quantum effects, followed by a large period of accelerated
quantum expansion, which gracefully exits into the usual classical regime.
Therefore, this scenario is analogous to inflation without an inflaton and
without the usual reheating phase, as it is smoothly followed by the classical
decelerated expansion dominated by radiation. As discussed after Eq. (2.61),
there is a huge creation of photons during the quantum phase.

8Note that for w < 1/3, which includes the matter bounce scenario, one gets an inter-
mediate phantom accelerated expansion. This is an interesting possibility, which might be
explored in future investigations.
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FIGURE 2.3: Evolution of the scale factor a in the scenario with a

subtle contraction, compared to the de Sitter evolution a o ;7_1.

We use y = 10° and w = 1/3, corresponding to a radiation fluid.
The vertical line indicates the bounce time T, = —y.

The effective energy density of this inflationary period can be obtained by
expanding the Hubble parameter for large y and then large T. The dom-
inant constant term, present only in this phase, is found to be equal to
Qqas = (xp/ ¥)*Q),0. We shall later express this in a more suggestive way.

The scale factor (2.54) contains three parameters: two from the initial
Gaussian wave function (o, p), and one as an integration constant (a; or,
equivalently, x;) of the guidance equation (2.51). They are tied together by the
late time Hubble parameter expansion, see Eq. (2.65), leaving the set {y, x; } as
free parameters. A physically important parameter is the minimum curvature
scale [, of the model, which cannot be very close to the Planck scale, where
the above quantization scheme is not reliable. It is given by

1

vmax[R(T)]’

where R(T) =6 (i/a+ Hz) is the Ricci scalar computed from the background
trajectory (here an overdot denotes a cosmic time derivative). It reads

I, (2.68)

40{72(%:%)
_ X
2
(1—w) (c2a3?)

2
VI+12 1—3w (d_o_c) ] ’ 269

A+712372% T30 —w) \aT

where v = yT + /1 +y>V1+ T2
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In the case of interest, i.e. w = 1/3, which leads to the qdS expansion, and
large asymmetry (y > 1), the maximum curvature happens when [91]

Tinax = —\/(,/1+y2—1> /2~ —\/y/2. (2.70)

Hence, from Egs. (2.65) and (2.69), the minimum curvature scale in terms
of the previous parameters and cosmological observables reads

o= —2 Ry, 2.71)

where ), o & 9 x 107° is the density parameter of radiation today. The curva-
ture scale is bounded from below so as not to be too close to the Planck scale,
Ip ~ 107%'Rp,, at an energy scale of about 10! GeV. Both the minisuperspace
approximation and the Wheeler-DeWitt quantization cease to be valid or
meaningful close to this boundary, requiring a full, yet unknown, theory of
quantum gravity®. On the other hand, the model must recover its standard
FLRW evolution much before nucleosynthesis, in order not to spoil its good
agreement with observations, thus leading to an upper bound for ..

Using Egs. (2.54) and (2.55) for w = 1/3, we can estimate the Hubble
parameter in the classical limit around nucleosynthesis:

s 1 o
o2ay(2yT?)  8y/31. T2’

(2.72)

This approximation is good from T ~ 10 onward, where the relative error
with respect to classic evolution is about 0.5%. From the characteristic energy
density at the dawn of the nucleosynthesis era, ;e ~ 101 gcm ™2, and
using the Friedmann equation H? = H3Q)(T) we get

[ 1
HZ/H(% > Onucleo — — <

RHO 8\/5(10)2 \ Qnucleo '

Thus, demanding that the transition of the quantum background to the classi-
cal behavior must take place much before nucleosynthesis, and does not reach
the Planck scale by three orders of magnitude, we find the constraint

(2.73)

10° < ZZ—C < 10%. (2.74)
P

Having introduced I, the effective qdS energy density may be rewritten

9The Wheeler-DeWitt equation is considered valid at least as an approximation to a more
fundamental theory of quantum gravity [72]. For this reason, the most conservative approach
is to take some orders of magnitude of distance from the Planck scale, where the fundamental
theory would be required.
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as Ogas = (Rpy,/ I.)?/12, which in turn gives an effective primordial cosmo-
logical constant directly related to the minimum curvature scale,

1
Aggs = — 2.7
qdS 413 ’ ( 5)

being responsible for driving the almost exponential expansion. Note this can
also be obtained by comparing a ~ y/(2|T|) with the de Sitter scale factor
a= (H|y|)~!, with H=+/A/3.

Furthermore, an initial estimate of the e—folds of this model can be made
through

i (M an [220) ]
N =In (ﬂ_1) ~ In L(_y)} ~Iny, (2.76)

where we considered the beginning of the inflationary period to be the bounce
and itsend tobeat T = 0 1°.

To accommodate for e.g. N’ > 60 we should require

y > 1.14 x 10%. (2.77)

2.3 Cosmological Perturbations: Analytical Results

The variable generally used to describe the evolution of scalar perturbations
on a homogeneous and isotropic spacetime with a single perfect fluid is the
gauge invariant curvature perturbation ¢, which is a combination of fluid
and (scalar) metric linear perturbations [92]. The appropriate variable to be
quantized is the Mukhanov-Sasaki variable, which in the perfect fluid case is
related to the curvature perturbation ¢ in momentum space through vy = a(y.
It satisfies the equation of motion

1
o) + (c§k2 - %) o =0, (2.78)

where a prime denotes derivative with respect to conformal time.

In the sections below, we will present the analytical results for arbitrary w,
and then particularize tow = 1/3.

10Since there is a very slow contraction, the initial time for a; is very close to the start of the
qdS phase; similarly, the transition to the classical expansion occurs around T ~ O(1), and
does not change the estimate significantly.
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2.3.1 Arbitrary Perfect Fluid

Let us begin by analyzing the limiting cases of (2.78) and matching them at
the crossing c2k? ~ a” /a '*. When c2k? >> a'/a, the solution is given by

o /= C1(k)elM  Cy(k)e ek, (2.79)

while for ¢2k? < a”’ /a the solution can be approximated as

o~ ArR)a+ Ax(K)a W row). (2.80)

For the perturbation modes that cross the potential V = a’/a during the
contracting phase, the A;(k) term - which grows when a decreases - dominates
in the decelerated expansion.

On the other hand, for modes that cross the potential during the quantum
accelerated expansion after the bounce, it is Aj(k) that dominates in the
decelerated expansion.

In order to find A; (k) and A, (k), we match both approximate solutions at
the crossing c2k? = V. Since for T — —o0, a’ /a — 0, we can choose the initial
condition as the normalized adiabatic vacuum vy ~ exp (—icskn)/+/2csk. Far
from the bounce into the remote past, T < —y, we can approximate the
potential a” /a using the first term in (2.66), yielding

2(1+3w)

1 3(1-w)
V (m) . (2.81)

2
This phase corresponds to a classical contraction with a(y) ~ |n| ™%, |5| «

_ 143w
|T|30-%], Since the term that dominates the potential is proportional to || 72,
we have the horizon crossing at conformal time 77, when c2k? ~ 7.2. From
the approximation (2.80) we then have
—1+3w

o = Ay (k)T 4 ¢ Ag (k) T (2.82)

Note that the classical FLRW Ricci scalar may be written as R = 64’ /a® (for the case
of exact radiation it vanishes identically). Moreover, for the (classical) pure de Sitter or
perfect fluid cases, R o« H2. The physical curvature scale R~/2 may be written as a¢, where
¢ o< \/a/a" is the comoving curvature scale. Therefore, apart from a factor of order unity,
the potential crossing condition ¢2k?> = a'’/a can also be understood as the time when the
physical scale a/k becomes equal to the curvature scale, sometimes called Hubble crossing.
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where c; is a constant of order unity. Matching the adiabatic vacuum and
(2.82) at 17 ~ k™! for both v and v;” we find
3(1—w)

Aq(k) o< k21+30) (2.83)

3(1—w)

Ap (k) o k201530 | (2.84)

As Aj(k) dominates for modes that cross the potential during the deceler-
ated contraction, the scalar power spectrum reads [90]

12w

P; (k) o< k3| A (k) [* o kT+5w . (2.85)

The almost scale invariant behavior, compatible with observations, is then
obtained for w ~ 0. This corresponds to the result in [90] for the quantum
symmetric bounce, to which the present asymmetric case reduces as y — 0 1.

Let us now investigate the quantum accelerated phase, considering the
potential obtained from the second term in (2.66). For —y < T < —1, we
have (2.67), and the potential is approximately

2(5—9w)

1 3(1—w)
V (m) « |n|72. (2.86)

Consequently, 77 ~ k~! also for this phase. Using (2.80) we find

7—9%w

v & A1 (k)59 + 0y Ag (k) 550 . (2.87)

Matching both vy and v}’ with the adiabatic vacuum at 17, ~ k!, we find

9(1—w)

Ay (k) ok~ 25-9a] (2.88)
9(1—w)
Ay (k) o k2690] (2.89)

The quantum accelerated expansion is dominated by A (k) and, therefore, the
scalar power spectrum has the following k—dependence:

6(1-3w)

Pr (k) o< kP Aq (k) |* o< k5 (2.90)

Note that almost scale invariance is attained for w ~ 1/3, as expected

121t is worth noting that the main |17|~2 contribution to the potential in the contracting

phase vanishes for w = 1/3. One finds that the next contribution corresponds to a |7| TR
behavior, thus leading to V| ,_; 3 & |1] —4. This is typical of an evolution which is almost,
but not exactly, classically dominated by radiation. Proceeding in the same way as before, the
dominant term A (k) goes as k~1/2, leading to a blue tilted power spectrum P; 1 /53(k) o k?,
which coincides with (2.85) evaluated for radiation.
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from the qdS behavior for this choice of fluid. Thus, if the background is
dominated by a radiation fluid and the cosmological scales that we observe
today cross the potential during the quantum accelerated expanding phase,
then their power spectrum will be almost scale invariant. In this case, the
accelerated period is a qdS expansion akin to inflation, with the advantage of
happening naturally within the model, without an inflaton. The inclusion of
other subdominant matter fields, so as to maintain the quasi-de Sitter behavior,
does not change substantially the duration of the inflationary period nor the
number of e-folds, which are corrected by O(e) for w = 1/3 + ¢, |e] < 1.
Such inclusion will be investigated in future works. Let us then focus our
attention to the radiation fluid, w = 1/3.

2.3.2 The Case of Radiation

In this case, the scale factor has the simple form

a(7f) = ay (yﬁ+\/1 +y2\/1+172> , (2.91)

and the bounce happens when 77 = —y. Recall that for w = 1/3 the time T
is a dimensionless conformal time, which we have named 7. Equation (2.78)
reads

_ a//
vy + (k2 - 7) v =0, (2.92)
where the primes now denotes derivatives with respect to 77, k = 0%csk, and
" 2 72\ —3/2
a1+ (1+7)
@ yn+ 1+

We will assume from now on that y > 1.

1% (2.93)

Let us make a brief qualitative summary of the history of the background
and perturbations. The periods (1-3) in what follows are for 77 < 0, the period
(4) is the transition from 7] negative to 77 positive, and period (5) for 7 > 0.

1) For —77 > v

In the far past of the model, the universe is contracting from 77 — —co as
a ~ —ayij/(2y), a classical contraction dominated by radiation. The potential
V = a"/a, also called the effective Hubble parameter, goes as 2y*/7j*. Note
that V is not zero because a is not exactly —a,77/(2y). This is typical of an
evolution which is almost, but not exactly, classically dominated by radiation.

As we have seen in the previous section, the wavenumbers that cross the
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effective Hubble parameter at this epoch will not be scale invariant, with an
associated power spectrum scaling as k%, so we must guarantee that they are
very small (very large scales, much bigger than the Hubble radius today).

2) For —77 = v

In this phase the quantum effects become important, they realize the
bounce and launch the universe in a quantum expanding phase.

3)Forl < —77 <y

The universe enters in a expanding phase with a ~ —a,y/(27), which is
typical of a de Sitter expansion. It is a quantum effect (note that the back-
ground fluid is always radiation)!3. The potential V = a” /a goes as 2/7>.

The wavenumbers that cross the effective Hubble parameter at this epoch
will be almost scale invariant because they cross the potential in a qdS phase,
as in inflation'*. Hence, we have a bounce naturally followed by an infla-
tionary phase. The cosmological large scales observed in the Planck satellite
should cross the effective Hubble parameter in this epoch.

4)For —0O(1) <771 < O(1):

In this phase the maximum of the potential, or of the effective Hubble
parameter, is reached. With y > 1, it happens for 7 = —+/2/4, and the
maximum value of the effective Hubble parameter is V = 32/27 ~ 1.18.
Wavenumbers larger than this value will never cross the effective Hubble pa-
rameter, hence they behave typically as the ultraviolet limit of the Minkowski
vacuum. This means that there is a cutoff for the perturbation modes, beyond
which no crossing occurs. The comoving wavenumbers which are bigger than
the maximum effective Hubble parameter, k% > Vimax = 1.18, never feel the
evolution of the universe. Therefore, kmax = v/1.18 = 1.09 is our cutoff scale.
The physical scales of these wavenumbers will be evaluated below.

5) For 77 > 1:

In this era we have a ~ a,(2y7), and the potential is such that V « 1/7*.
The classical radiation-dominated expanding phase is recovered. Therefore,

3The quantum gravity effects remain important until the so-called quantum potential of
the de Broglie-Bohm theory becomes negligible in the Hamilton-Jacobi equation [91]. In the
present case, this happens after the end of the accelerated expansion, since it is the quantum
potential that drives any behavior of the scale factor other than the classical a ~ a,(2y7).
Note that this is a direct consequence of the fact that the classical limit depends on the form
of the wave function, as discussed in [93].

M Note that for w = 1/3 exactly the spectral index is not sufficiently red-tilted, see Fig. 2.7
below. Only for w =1/3 4+ €, € = 3.83 x 1073, one can get ns ~ 0.96. In the Conclusion we
will return to a discussion about this point.
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FIGURE 2.4: Perturbation potential a” /a for the radiation case

and its limiting regimes for y = 40: in green, V during the

classical contraction and expansion; in red, V during the qdS

phase. The vertical line represents the bounce, while the shaded

area depicts the range of observable co-moving wave-numbers
k, which constrains the parameters of the model.

we have a natural graceful exit from inflation to the standard model radiation-
dominated era.

Figure 2.4 shows the potential V given in Eq. (2.93) for a representative
value of y, highlighting its approximate regimes discussed above. The crossing
condition k = \/V for a given comoving wavenumber within the observable
range is set to take place in the accelerated phase. As mentioned above, one
can see the maximum value of the potential for y > 1 is given by

32

E ~ 1.18 = kmax ~ 1~09/ (2'94)

V (fjmax) =

V2

at fjmax = —5". Finally, we point again that the time parameter in Fig. 2.4 and
subsequent ones is, forw = 1/3, T/0? = 11/0* = 7.

Relations Between the Free Parameters and Physical Scales

Let us define

kg = kRy,/a0 = Ryy/ Aphysical,0 -
which is the ratio of the Hubble radius today to the physical wavelength of
the mode k today. Hence, the large cosmological wavelengths observed in
the CMB are in the approximate range 1 < ky < 103 [94], which corresponds
approximately to 10 Mpc < Appysicalo < 10 Gpc today.

The relationship between ky and k reads



3 Chapter 2. Radiation-Dominated Bouncing Model with Slow Contraction
and Inflation

RHO -
— k. 2.
Cs (Uzab)xb (2.95)

Using Egs. (2.65) and (2.71) forw = 1/3 and y > 1 we get

ky =

kH — RHQ (QT’,O

1/4 I_( _
2 12) Ck. (2.96)

2¢5

Note that C is a very large constant, so that the cosmological wavenum-
bers are associated with very small k. We impose that these cosmological
wavenumbers cross the effective Hubble parameter in the quantum inflation-
ary phase, namely, when 1 < —7j < y, yielding kcross = 1/ |7 poss], Which
makes 7cross Very big. This is another reason to take y > 1, as this crossing
must happen when —7 < y.

Knowing that Ry, /Ip ~ 10°!, and from the range for . given in Eq. (2.74),
we get

10" <« C < 10?8, (2.97)
andy > C.

These huge values of y may be frightening, but in fact they are good
because the effective Hubble parameter (the potential) becomes very closely
independent of y in this regime,

1
Vo~ (2.98)

1+ 722+ /1+77)

This approximation is excellent for any 7 > —y, but it is not good otherwise.
However, as we are interested in wavenumbers that cross the effective Hubble
parameter only when the quantum inflationary expansion is under way -
which takes place after the bounce - we can say that, for a period satisfying
—i] < y, these modes satisfy k> > V. Hence, we can pose vacuum initial
conditions there, and all the numerical calculations are made when Eq. (2.98)
is an excellent approximation.

Analytical Estimates of the Power Spectrum

The curvature perturbation {; satisfies the general equation in arbitrary time:

k+ gék +17 =0, (2.99)
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where m and v are the generalized time-dependent mass and frequency. All
GR linear scalar perturbations with one field as the source term can be put
in this form. The generalized Mukhanov-Sasaki variable is vy = \/m i, and
satisfies,

By + (1/2 — \%) v =0, (2.100)

For perfect fluids, m and v can be read from the GR action as (see equations
(92-94) of [95]),

(p+p)a , — Nkes
Nc¢2H? a ’

where N is the lapse function and p = wp.

m = (2.101)

The vacuum (or WKB) initial condition for {; can be set in the epoch when
v2 > /m/+/m, yielding |0}"¥B| = 1/+/2v. In our case, this phase includes
the period of classical evolution, where we can use the Friedmann equation in
the contracting branch of the evolution. We therefore obtain that

WKB
0
sy = 1% L b | _dme (2.102)

\/ﬁ - \/2mv - a 3(1—|—ZU)k’

where in our convention G = 1123-

On the other hand, we will work with the equation with dimensionless
variables and parameters,

B A//

where we take

A Eyﬁ+\/1+y2\/1+172,
as a, disappears from Eq. (2.103), and
Ck,(2) = Uk2)/ A-

The WKB curvature perturbation §kw(§;3 arising from Eq. (2.103) reads

P = osP Al =1/ (AV2E) .

Then, we can express the dimensional curvature perturbation in terms of the
dimensionless one through
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Al 8mcsk
WKB| __ P S WKB

This relation of proportionality must be valid always, hence we can write
the physical power spectrum for the dimensional curvature perturbation {; in
terms of the power spectrum for the dimensionless curvature perturbation
Ck,(2) calculated from Eq. (2.103):

k3 2

Gl = 5

P — - J
¢ 367es(1+ w) 12

|§k | . (2.105)

Let us evaluate semi-analytically |Cy () |- First of all, in the de Sitter expan-
sion, the vacuum initial condition we have set is the well known Bunch-Davies
vacuum associated with this spacetime,

e W] 2.106
= (1-75) (2100

This solution is valid whenever the de Sitter expansion is taking place,
even when k7] < 1, where the super-Hubble expansion [87] is also valid:

Ay (F) { ar O(kz) ] . (2.107)

Comparing Eq. (2.106) for kfj < 1 with Eq. (2.107), knowing that {; (») =
Uk,(2)/ A, we can evaluate the amplitude of the dominant constant mode A, (k),
yielding

KB 1 13
Pe= 2_7'(2‘&" - 1671cs 12

where we substituted w = 1/3.

(1 LR+ ) (2.108)

Hence, we get the amplitude of the power spectrum and its spectral index,
which is 0 assuming the ideal case w = 1/3.

Note that in the numerical calculation of vy (), the result can only depend
on k and 77, nothmg more. The appearance of y? in Eq. (2.105) was canceled
because | (2) ? = 0,2 /A] |0, (2)277 /y|?. Again, the presence of a very
large y does not pose any problem to the model, it in fact helps the calculations.
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2.4 Cosmological Perturbations: Numerical Results

The analytical results obtained in Section 2.3 can be confirmed by means of a
numerical analysis, which is detailed in what follows.

In order to perform the numerical integration, the initial condition can be
given as the adiabatic vacuum at very negative 7j. However, in order to speed
up the computation, we obtain corrections to the adiabatic vacuum and set
the initial condition at not so large |7j|. This adiabatic expansion is made by
firstly expanding the potential a” /4, equation (2.98), for —y < 7,

1 2 5
V = ~N — — 5 + O 70 , (2109)
T PG+ A+ 7P 20 (1)

where the second approximation is valid for |7j| > 1. Following the procedure
described in [96], we obtain the initial condition

qds e i 5k 1 4 }
I % - T o7 . (2.110
Ko V2k ki 12 (kip;)? <171 ) )

—ik7j;

The first correction to the adiabatic vacuum is just the de Sitter term, see
Eq. (2.106), as expected. We then solve equation (2.103) with the potential
(2.109) and the above initial condition at a negative time |7;| < y set before
the crossing k% = Vgas(7c).-

The computational time is significantly reduced by using action-angle
variables [97], which we denote by 6, I, ¢ and |. In terms of these variables,
the equation of motion (2.92) reads

o = I_c—%%ﬂsinZG,
(In) = %%ﬂsm(ZG),
1/)’ = l_c—%147//511r12 ,
(In]) = %%ﬂsin(th), (2.111)

while the initial condition (2.110) becomes

I_ﬂh Iqu q1/2
tanei = W, 11:71+2_I—</
kqo kg3 | "
tan lpi = W ’ ]1' = T + ﬁ ’ (2112)
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FIGURE 2.5: Modulus of the curvature perturbation mode {; =
v/ A for w = 1/3, showing the horizon reentry.

where
g1 = 23 [vggﬂ , go=2R {vggﬂ . (2.113)

The usual Mukhanov-Sasaki variable and its derivative are then recovered as

1
) = ok

Uk,(z)/ = %\/g (ﬁcos@ +14/] cos 1,b> : (2.114)

<\/Tsin9—i—i ]Sil’ll[)) ,

Since the qdS potential does not depend on y, the crossing condition
leads to the usual relation kij & 1 (which corresponds precisely to csknp = 1),
provided that the modes cross the potential not too close to 7 ~ —1. This
is the case for the frequencies (2.96) satisfying (2.97). The initial time for the
integration must then be in the range —10% < #; < —10%. Since this must
happen after the bounce and within the qdS period, it follows that y > —7;.

Figure 2.5 shows the results of the numerical integration for the curvature
perturbation {x = vy (2)/a, where one can identify the frozen regime and the
oscillations after horizon reentry (for a mode with kg = 1.0). The initial time
of integration was set at 7j; = —10'°, as the initial condition (2.110) remains
appropriate even after the crossing time for this case, 7. ~ —3 x 10%. The
real and imaginary parts of vy () (their absolute value), as well as |y ()|, are

displayed in Figure 2.6. The initial adiabatic oscillations e k7 change, after
crossing the horizon, to a growing mode proportional to the scale factor, being
dominated by the imaginary part.
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Now let us use the numerical results for { () to calculate the scalar power
spectrum given in Eq. (2.105) expressed in terms of ky = Ry, / Aphysicat,0 for
2
w=c;=1/3,

2 P Ip \* [Ru, 5 o)
Pr= /=2 0 3, & ) 2.115
¢ \/gn(30r,0)3/4 (RHO> I, H A2 ( )

Our analytical estimates can be read in Eq. (2.108) for w = 2 =1/3,

3 (Ip)? .
P@‘l_c|17\<1 Ry % (f) X [1 + 0O (kﬁ)z + .. } , (2.116)
which of course corresponds to (2.115) evaluated with the dominant term in
(2.110) at horizon crossing. We computed the scalar power spectrum numeri-
cally from the perturbation amplitude on super-horizon scales by means of
expression (2.115), which is shown in Figure 2.7. Note that the dependence on
172 given in Eq. (2.116) is confirmed. We also went beyond the observational
range, and deviations from scale invariance only occur close to the cutoff
scale (2.120). The scalar amplitude compatible with the CMB observations
As = 2.3424 x 107, where P; = Ay (k/k,)" !, leads to the numerical value
lc/Ry, = 5.01 x 10758, which in turn translates to

[
Z—C —2.868 x 103h71. (2.117)

P
As discussed in Section 2.2, this is a very reasonable value (see Eq. (2.74)),
taking the usual CMB/Supernovae values 0.67 < h < 0.74.

From this value of the minimum curvature scale we obtain through the
energy density provided by (2.75) the characteristic energy scale in the qdS

phase
A
H* = \/%‘S ~ 101 GeV, (2.118)

which is similar to that of usual inflationary models.

It was also noticed that the power spectrum does not depend on y for
y > 1. However, since y > C and from Eq. (2.97) , we obtain that

y > 107, (2.119)

which is in remarkable agreement with the inflationary e-folds lower bound
(2.77) (note that y can be even larger, the only effect being pushing the start of
the qdS phase farther into the past and increasing the number of e-folds). The
observational constraints are thus contained in the allowed parameter space
of this model. From these values of asymmetry y and minimum curvature
scale I. one finds through Egs. (2.71), (2.65), (2.53) the values of a;, and the
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FIGURE 2.6: Absolute value of the Mukhanov-Sasaki variable

|0k, (2)| related to the scalar perturbations, as well as its real and

imaginary parts, for y = 5 x 10%°,1./1p = 2.868 x 103h~! and
kg = 1.0.

original Gaussian parameters. The values (2.117), (2.119) therefore lead to
a ~ 10~ gg and a very wide Gaussian traveling in configuration space (x, T).
This is in accordance with a model which naturally transits from the very
small scales around the bounce to the large scales arising from inflation.

We observe that, as expected for the case w = 1/3, the power spectrum is
very nearly scale invariant, with a deviation from 7s = 1 in the fifth decimal
place (this makes the normalization by the pivot scale k. of little effect to the
amplitude of Ay).

The cutoff scale (2.94) may now be evaluated quantitatively. From k2 ,, =
V (fimax) we find

KHmax = 1.6 X 107 — kmax =~ 5.3 x 101 Mpc !, (2.120)

being well beyond the modern observational limits. Any perturbation mode
above this value will never cross the horizon, remaining "sub-Hubble" through-
out the entire evolution of the universe. For h ~ 0.67 they correspond to
Aphysical,0 &~ 0.54 m, which at the time of perturbation generation would be
below the Planck scale.

In summary, the numerical results are consistent with previous analytical
estimates and the amplitude of almost scale invariant scalar perturbations
are in agreement with current observational constraints, indeed mimicking
inflation. The fact that a qdS phase can be achieved due to quantum effects,
both at the background and perturbation levels, is remarkable.
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FIGURE 2.7: Scalar power spectrum obtained numerically for

w = 1/3,1./Ip = 4.22 x 10? and initial conditions (2.113) at

initial time 7; = —10'. In addition, the scalar power spectrum
as a function of /., with the observed scalar amplitude in red.

2.5 Conclusions and Discussion

In this chapter we presented a very simple nonsingular cosmological model
which contains a classical slowly contracting phase, a bounce, a quasi-de Sitter
inflationary phase, and finally reaches the usual classical radiation-dominated
expanding phase before nucleosynthesis. The unique matter component is a
radiation fluid. The bounce and the inflationary phase result from quantum
effects arising from a Gaussian wave function solution of the Wheeler-DeWitt
equation, which reduces to a Schrodinger equation in this case, traveling with
high momentum in configuration space. During the quantum phase, there is
a huge creation of photons, so that the contracting phase corresponds to an
almost empty universe.

All this rich phenomenology is described by the astonishingly simple
analytical scale factor given in Eq. (2.91) evolving in conformal time:

a(ij) = ay (yﬁ+\/1 +y2\/1+172> , (2.121)

Independently of its origin, Eq. (2.121) is a new, so far unknown, scale factor
evolution which is amazingly interesting in itself, and it is really worth looking
for other theoretical contexts where it can be obtained. For instance, the
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classical contracting phase happens with a very tiny number of photons in a
given cell with physical volume Vs = a°Veom, where Veom is the comoving
volume of the cell,

N (a) 1
Ni(a) = 16y

where N (a) is the total number of photons in the same cell with a given a at
the classical expanding (contracting) phase, respectively. In order to obtain
Eq. (2.122), we used Egs. (2.61) and (2.119). Taking the cell to have the volume
of our universe today, which contains around 10% photons, the same volume
in the classical contracting phase would have 10~ photons or less, so it was
practically empty!®. Hence, one may think that the scale factor (2.121) might
have been originated from some quantum gravity instability of a primordial
Minkowski spacetime, leading to a tiny number of massless particles, which
is substantially increased at the bounce and inflationary quantum phases
afterwards.

—109
; <1079, (2.122)

Note that the generalization of Eq. (2.121) to any w = p/p = const. is also
very simple, see Eq. (2.54), where dT = a'~3*d7, allowing many different
scenarios and possibilities. For instance, in the case of the matter bounce
scenario, w ~ 0, there is a phantom-like expanding phase after the bounce
without any phantom, the consequences of which might be interesting to be
investigated.

Taking the background as given by Eq. (2.121) for y > 1, we found out
that the scalar cosmological perturbations are almost scale invariant and with
the right amplitude for the scales observed in the Planck satellite [94]. The
value of y for which these observed scales acquire their observed properties
should satisfy the inequality y = 10%, which coincides with a number of
e-folds N during inflation given by N’ > 60, see (2.77). Furthermore, the
observed value of the amplitude of scalar perturbations by Planck imposes
that the minimum curvature scale of the background model /. should be

ll—" =2.868 x 103h71, (2.123)
P

where Ip is the Planck length, which is consistent with the quantum approach
we are using: it is not of the order of the Planck length, where a yet un-
known full theory of quantum gravity should be used inescapably, but it
still corresponds to energy scales far bigger than that of nucleosynthesis,
where quantum cosmological effects may begin to be important. It was also
obtained that the energy scale of the quantum inflationary phase is about
Eqi ~ 10 GeV, see Eq. (2.118).

I5Note that the scale factor corresponding to today’s Hubble radius yields a much bigger
Hubble radius in the classical contracting phase, see Eq. (2.62), compatible with the fact that
spacetime in this era is close to Minkowski spacetime.
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Concluding, this astonishingly simple non-singular cosmological model
yields many observed features of the standard cosmological model, and it
naturally contains three key ingredients of the primordial universe which have
been investigated so far: a very slow contraction (although with a different
origin than that of the usual ekpyrotic scenarios - see Eq. (18), showing
that the slow contraction in the present model arises from the fact that the
contracting phase is almost empty, while in the ekpyrotic models it arises from
the fact that the field dominating contraction has a huge equation of state
parameter), a bounce, and a inflationary phase, reaching the standard classical
radiation-dominated phase before nucleosynthesis. All these different phases
are continuously connected within the simple expression given in Eq. (2.121).

Of course, this very simple model is an important first step, but it is not
the final word, and it must be supplemented by new ingredients. For instance,
and perhaps most importantly, it does not lead to a red-tilted spectral index,
unless we take w = 1/3 4 € with 0 < € < 1 in order to give n; ~ 0.9649 [94]
(see the analytic result (2.90)), nor to primordial gravitational waves with the
right amplitude. In order to understand this last point, take the tensor metric
perturbations w;; = Chei]-, where ¢;; is the transverse-traceless polarization

3-tensor [98]. It can be shown that the perturbation mode UZ =al Z satisfies
equation (2.78) with ¢; = 1. After calculations similar to those employed in
the scalar case, we find that the tensor power spectrum P;, will also be scale
invariant for modes that cross the horizon during the qdS phase, but with the
tensor-to-scalar ratio given by

A 2
At 32 1848, (2.124)

AS_\/g

where P, = A;(k/k,)™, with k. a selected pivot scale.

r

Complete numerical computations are in full agreement with the analyt-
ical predictions given in (2.124), to a percentage error of around 10~°. This
clearly violates the observational constraint r < 0.063 [94]. Loop Quantum
Cosmology (LQC) matter bounce models (e.g. the bounces in Chapter 3) suffer
with the same difficulty to reproduce a correct tensor-to-scalar ratio upper
bound [99]. Note that this specific issue is not present in a fluid matter bounce
model, as shown in [90] for a symmetric bounce.

One way out usually implemented to solve these types of problems is
to evoke the presence of a curvaton field (maybe associated to dark matter,
which is here absent) [100, 101, 102, 103], which does not affect the background
evolution, but whose presence can increase the amplitude of scalar perturba-
tions with respect to tensor perturbations. Also, one can induce a red-tilt in
the spectrum index of scalar perturbations by considering an effective global
equation of state parameter w = 1/3 + €, as mentioned above, where the
small deviation is due to the presence of the curvaton field.
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Chapter 3

The CMB Bispectrum from
Bouncing Cosmologies and Planck
Constraints

3.1 Introduction

As discussed in Chapter 2, inflation is a simple idea which not only solves
some important puzzles arising in Big Bang Cosmology [104], but which has
also predicted from weak assumptions the red tilted, almost scale invariant
spectrum of scalar cosmological perturbations [105], afterwards confirmed by
detailed observations of the Cosmic Microwave Background (CMB) [94]. How-
ever, inflationary models generally make use of a scalar field called inflaton,
which is not observed in Nature (except in the case of Higgs inflation [106]).
They also do not address the initial singularity of the standard cosmological
model [30], turning the resulting scenario incomplete in this sense.

Bouncing models without singularities emerged in the last decades as
possibilities to complete the standard cosmological model [107, 108, 109, 89,
88, 87, 110, 111, 112, 113]. In fact, such models do not contain the puzzles
inherent to the Big Bang Cosmology [90, 87], and some of them can also
lead to almost scale invariant spectra of scalar cosmological perturbations,
although only in some specific cases. Some bouncing models have a unique
bounce, usually with a matter dominated contraction in order to yield the
correct spectrum of perturbations [114, 115, 103], and others are cyclic, with a
very slow contracting phase [76]. Usually, bouncing models do not require
an inflationary phase [90], but they are not incompatible with inflation, with
many scenarios containing both phases [116]. In many cases, the bounce
itself helps in yielding initial conditions for inflation. However, contrary to
inflation, where the physical requirements on the inflaton field Lagrangian
are standard, the bounce itself requires some new physics. It can come ei-
ther from non-minimal couplings [107], semi-classical corrections leading
to nonlinear curvature terms in the gravitational action and/or an effective
energy-momentum tensor of matter violating the null energy condition [108],
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or quantum corrections arising from quantum gravity approaches applied to
Cosmology [89, 116, 117, 118].

The next step in this investigation is to find observable "fingerprints",
which indicate the existence of a previous contracting phase and a bounce.
In [29], in the context of bouncing models with inflation, it was shown that
non-Gaussianities originating from the contracting era before inflation [119]
can substantially alleviate the large scale anomalies detected in the CMB [120].
The model contains a canonical scalar field with potential V(¢), and the scale
factor around the bounce is generically parametrized as

a(t) = ay(1+ bt?)", (3.1)

where t is cosmic time, the bounce happens at t = 0, a;, is the scale factor at
the bounce, and b is a constant parametrizing the Ricci scalar at the bounce,
Ry = 12nb. The parameter n controls the way the model enters and leaves the
bouncing phase and starts classical expansion. For n ~ 1/6, the scalar field
energy density just after the bounce is concentrated in the kinetic term (this is
the case of Loop Quantum Cosmology (LQC) models [64]), and inflation starts
later, while for larger values of n the scalar field potential is already relevant
at the bounce, and inflation starts earlier. Hence, the features of this class of
bouncing models are controlled by the bounce Ricci scalar R, and by n.

The initial quantum state for the perturbations is chosen to be the adiabatic
(Minkowski) vacuum in the far past of the contracting phase. Therefore
quantum state of cosmological perturbations at the onset of inflation deviates
from the Bunch-Davies vacuum. In terms of the modes one can write as

o) = a0 () + Brog™ (), (3.2)

where 7 is conformal time, implying that the ratio between the primordial
dimensionless power spectrum Pg (k) and the pure Bunch-Davies primordial
dimensionless power spectrum P2P (k) reads

PRI )t gy 2 3.3
,P%D (k) | k ;Bk | 3.3)

This class of models has two fundamental scales: the bounce scale given by
the comoving wave number k;, = a;+/R}/6, and the (comoving) inflation scale
k; = 2ma;\/R;/6, where a; and R; are the scale factor and Ricci scalar at the
beginning of inflation, respectively. As the energy scale of the bounce is larger
than the energy scale of inflation, k; < kj. One has three different regimes for
the power spectrum: k > ky, k; < k < kp, and k < k; (corresponding to length
scales smaller than the bounce length scale, bigger than the bounce length
scale but smaller than the inflation length scale, and bigger than the inflation
length scale, respectively). Scales smaller than the bounce scale do not feel
the bounce, hence they will not deviate from inflationary (Bunch-Davies)



3.1. Introduction 45

results. However, the two other scales are affected by the bounce, leading to
different physical effects. Indeed, it is shown in [29] that non-Gaussianities
arise, correlating super-horizon modes with infrared scales, enhancing the
probability of the appearance of CMB anomalies at large scales. If the duration
of inflation is very long, such effects are suppressed, yielding the constraint
n < 1/4 for these effects to be significant. The scales which contribute most to
the non-Gaussianity are in the range k; < k < k;, which is larger for a bounce
closer to the Plank scale. Hence, models with bounce phases occurring at
length scales larger than the Planck length need a larger f,,) parameter to yield
the desired effects, some of them require f, of order 10*. As the non-Gaussian
correlations obtained in [29] are restricted mostly to super-horizon modes, the
authors suggest that these large values of f,,; should not be directly observed.
However, the CMB bispectrum of these models is not calculated, and it is not
clear under which conditions the model satisfies the Planck constraints on
it [121].

The aim of this chapter is to fill this gap. In Sections 3.1.1 and 3.1.2 we
introduce the large-scale anomalies and briefly explain how the bounce cos-
mologies considered are able to mitigate them. In Sections 3.2.1 and 3.2.2 we
calculate the bispectrum for the two representative models mostly studied in
[29]: the LQC case n = 1/6 [64], and the n = 0.21 case, which best mitigates
the CMB anomalies according to [29]. For these two cases, we consider the
minimum and maximum values of f,;; allowed (3326 and 8518 for n = 1/6,
and 959 and 4372 for n = 0.21). In Section 3.2.3 we compute the cosmic
variance related to the CMB bispectrum measurement. The Signal-to-Noise
Ratio (SNR) of the bispectrum is computed in Section 3.2.4 in order to decide
whether it can be measured in a CMB experiment which is cosmic variance
limited at low multipoles, ¢ < 30, like the Planck experiment [122]. We find
that the cumulative SNR for a cosmic variance limited CMB experiment with
70% sky coverage becomes larger than 10 for all models that are able to miti-
gate the large-scale anomalies in the CMB. In Section 3.2.5 we explain why
the Limber approximation could not be used to compute the bispectrum. The
comparison with the actual Planck data is given in Section 3.3, excluding all
of the scenarios that mitigate the CMB anomalies with high significances. In
Section 3.4 we present the main conclusions.

3.1.1 The CMB Anomalies on Large Scales

One of the most debated problems of standard cosmology are the large-
scale anomalies of the CMB data, namely the power suppression, the dipolar
asymmetry and the parity asymmetry [123, 120, 121]. Even though these
anomalies have a statistical significance around 2 to 3¢ and may be accepted
as coincidences, they could be less anomalous in scenarios that introduce new
physics, e.g. a model with significant non-Gaussianity on very large scales
(this is exactly what the bouncing models investigated in [29] predict). In the
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present section, let us review the anomalies and how they are quantified in
the Planck data.

Let us start recalling that a temperature fluctuation 6T (1) in a direction 7
in the sky can be decomposed in spherical harmonics as

) -T _ Y @omYom(12), (3.4)

5T(R) -
{m

where T = 2.275 4+ 0.002K is the mean temperature, Y, are the spherical
harmonics and ay,, are the coefficients of the decomposition.

From a cosmological model, e.g. ACDM, we can only predict the statistics
of CMB quantities. Therefore, we are interested in the correlators of the
coefficients ay,,, which tell us how much a number of points in the sky are
correlated with each other. The largest correlator is the one related to two
points in the sky, i.e. the two-point correlation function

<ﬂgmﬂz/m/> = Cgégg/émm/, (35)

where C; is the so-called angular power spectrum. The deltas, as well as the
independence of C, on m, are related to the cosmological principle (homogene-
ity and isotropy) predicted by ACDM. The even-point correlators (especially
the two-point, as it is the largest) are the only ones that matter for a Gaussian
distribution. On the other hand, if non-Gaussianity is present, one is also
interested in the three-point correlator, which is related to the bispectrum
[124].

Note that such statistical properties cannot be obtained as it is usually
done for other physical systems. In the case of CMB, we only have one
single realization of the temperature map. In practice, we average over many
directions in the sky and assume this corresponds to averaging over "many
Universes". On large scales, however, our ensemble is still very limited,
leading to an intrinsic uncecrtainty to our measurements, which is known as
cosmic variance.

This statistical character of a model’s prediction implies that we need a
statistical way to quantify departures from the theory. For this purpose, we
use the so-called p-values, which represent the probability that, given ACDM,
a given event can happen. More details can be found in [125], where one can
have a good understanding from Figure 1.

The CMB anomalies on large scales are features that have a very low prob-
ability of happening assuming ACDM. The associated p-values are smaller or
equal to 1%. As mentioned above, this corresponds to statistical significances
of 2 to 30, which are not extremely high. But since the features appear in
different surveys [8, 11, 7] and can be mittigated by introducing new physics,
they have been receiving attention in the community.
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Power Suppression

The power suppression anomaly refers to the lack of two-point correlators in
angular scales larger than 60. It has been observed by COBE [7], WMAP [8]
and Planck [11]. The estimator used to quantify this anomaly is given by

S = /_ 11/2 C(6)%d(cosh). (3.6)

While the Planck data indicate Sy ,, = 1209.2uK* [126], ACDM predicts S
42000uK*.

~

1
2

Parity Asymmetry

The parity properties of the temperature field can be investigated by means
of the difference in power between even and odd multipoles in the CMB due
to the properties of the spherical hamonics decomposition. An even or odd
preference indicates parity violation [29]. Since ACDM predicts the parity
neutrality of primordial perturbations, very large scales in the CMB (which
correspond to very long wavelengths) are expected to be parity neutral.

This feature is quantified by means of the following quantity

RTT(Emax) = %/ (3.7)
where
+
Di(lp) = = ¥ +l)e (3.8)

gtOt Zzzrgmax 2 T

+ refer to even or odd multipoles and ¢, is the total number of multipoles in

the sum. Therefore, RTT ({;max) = 1 indicates parity neutrality, RTT (max) > 1
indicates even parity preference and RTT (/) < 1 indicates odd parity
preference. The latter is what is observed in both WMAP [8] and Planck [11].

Dipolar Asymmetry

The dipolar asymmetry refers to correlations between the multipoles ¢ and
¢ + 1. The name of the anomaly is related to dipole modulation and not to
the dipole ¢ = 1, which appears in the data due to our motion with respect
to CMB. This type of correlation indicates a violation of isotropy or, in other
words, a departure from ACDM.

In order to undedrstand how this anomaly is quantified, let us introduce
the Bipolar Spherical Harmonics (BipoSH) {Y/, (1) @ Y¢, (712) } m, which are
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related to the usual spherical harmonics via

{Ye, (1) Q Yo, (i)Ym= Y, Crmivymy Yerm1 (1) Yoz (2), (3.9)

nmymyz

where CLM

0im1tym, AT€ the so-called Clebsch-Gordan coefficients.

We can use the BipoSH as a basis to decompose the temperature fluctua-
tions, namely

<(5T(ﬁ1)(5T(ﬁ2)> = Y ALY, () @ Yo (A2) b ims (3.10)

(6 LM

from where we obtain the BipoSH coefficients AZ]\ZIZ . These coefficients are
related to the usual ay,, via

LM
Aélfz Z <a€1m1a;2m2>( 1)mzcelm1,52, o (3.11)

mymy

In ACDM cosmology, one can use the properties of the Clebsh-Gordan
coefficients to obtain [29]

Aﬁlﬁz 1)£1 /201 + 1C£15L05M05€1€2/ (3.12)

meaning that only A% exist. Therefore, a BipoSH coefficient of L > 0 indicates
departure from ACDM. The WMAP [8] and Planck [11] data report a non-
vanishing BipoSH coefficient A} -

3.1.2 Alleviating the CMB Anomalies in a Bouncing Cosmol-
0gy

Let us now review the scenario proposed in [29, 125], which introduces a
bouce preceeding inflation. Instead of focusing in one specific theoretical
bouncing model, the authors make use of a quite general parametrization of
the scale factor

a(t) = ag(1+ bt?)", (3.13)

where b is a constant related to the Ricci scalar at the bounce, Rg = 12nb, and
n is a constant that encodes the new physics that generates the bounce. As
examples, in Chapter 2 we have obtained the scale factor (2.44) in the scope of
the Wheeler-DeWitt equation, while n = 1/6 has been obtained in the context
of LQC [127].

This bounce modifies the initial condition at the onset of inflation, since
the adiabatic vacuum is now set much before the bounce. The new initial
state for the inflationary phase has non-Gaussianities, which correlate super-
horizon and very large scale modes. Such non-Gaussianities can be described
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in Fourier space by

(1) = /m A @R - DD (0, (314

where fy quantifies the magnitude and shape of the non-Gaussianity, ¢; is
Gaussian field and the subscript NL stands for non-linear.

The effects caused by the presence of the non-Gaussianity can be investi-
gated by considering a spectator mode (a concrete realization) of the Bardeen
potential CIDJ. This spectator mode is a super-horizon mode, which is corre-

lated to other modes k by means of the non-Gaussianity, therefore affecting
their statistical properties. In the case of the two-point correlation function,
we obtain! [29]

<<I>z1<I>]§2>|q>ﬁ = (zn)Ba(%l—Ez)p(l)(}’l)Jr
! fNL(El’_EZ)%[P4’(E1)+P¢(Ez)] ¢7  (3.15)

where we have used ¢2 = ¢_z, i.e. $(¥) € R,and <¢(%1)¢*(%2)> = (2m)36(ky —

EZ)P¢(E1) (therefore, § = k; — ky is required). The second term is the extra
contribution that appears because of the spectator mode, which is known as
the non-Gaussian modulation of the two-point function.

The above modulation is forwarded to the temperature covariance matrix

<a omAp >, since the coefficients ay, are related to the Bardeen potential ®;

via
Pr .
P / W(—I)ET(k,e)ygm(k)% (3.16)

where T (k, £) are the so-called temperature radiation transfer functions. In
[29] it is shown that, for |7] < |ki|, the temperature covariance matrix reads

(am8ny ) = CobppSymy + (= ZA%YICZW, - (3.17)

Therefore, the non-Gaussianities introduced by the presence of the bounce
before inflation induce anisotrpies in the CMB.

In the angular power spectrum, the monupolar modulation (i.e. L = 0)
takes the form

mod 1 4 A%
Cl=Ci{1+ (1) —=—=—= |, 3.18
¢ Ce( ) 20+1 (3.18)

where Cy is the usual Gaussian power spectrum.

'We neglect contributions that are higher order in fyy .



50 Chapter 3. The CMB Bispectrum from Bouncing Cosmologies and Planck

Constraints
The square mean value of such modulation reads
002

1 (1A%2)

2 _ 1L\t
w(t) = C2 20+1 (3.19)

1 1 ’ 0 )

- C_%gnz/dqq Py(9)1Cee(9) 1, (3.20)

where
2 N
Chla) = = [ dkid (i) T (ks €T (hkr, €)Pylir)
1 -
X /1d#fNL(k1,q,u)PL(y), (3.21)

Pr(u) are Legendre polynomials and y = ki -§. See [29] for more details.
The larger the non-Gaussianity (encoded in the parameter fy), the higher
the square mean value 03, and therefore, the higher the probability that a
suppression of the observed power spectrum happens in a concrete realization
of the temperature map. This is the reason why these bounce scenarios
mitigate the power suppression anomaly - they make the suppression more
likely (or less anomalous), without affecting the homogeneity and isotropy
of the undedrlying cosmology. Therefore, one can compute the amount of
non-Gaussianity required in order to have a p-value of, for instance, 20%.

By requiring a p-value of 20% to the power suppression, the authors of [29]
also alleviated the dipole anomaly (due to an analogous dipole modulation
for L = 1), the parity anomaly and the issue with the lensing parameter in the
Planck data?.

3.2 The Bispectrum in a Bouncing Model

3.2.1 The Theoretical Expressions

The bouncing model discussed in [29] has the following dimensionless power
spectrum, Pg (k), and bispectrum, B(ky, kp, k3), of the curvature fluctuations
in Fourier space.

2The lensing parameter A; was introduced in the Planck analysis as a consistency check.
It was kept as a free parameter to be best fitted, but the expect value for internal consistency
is A; = 1. This value is more than 20 away from the obtained best fit.
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| n | v | q [fauaforRg=11,7] fuforRg=10"1,7
1/6 [ 0.6468 | —0.7 3326 8518
021 ] 0751 [ —124 959 4372

TABLE 3.1: The values of the parameters considered in this work.

The f, parameter is chosen according to [29] in order to alleviate

the power suppression anomaly (with a p-value of 20%). The

two different values correspond, respectively, to the space-time

curvature at the bounce Rp equal to 1 l;lz and to 1073 l;lz, where
Ip is the Planck length.

(k/k)2(ki/ky)0 if k<K
Pr(k) = A (k/ky)T  if ki <k <k, (3.22)
(k/kb)ﬂs—l if k>kp.

3., 2w, |Pr(ki) Pr(k2) = Pr(ki) Pr(ks)
—(2
5(27) f“[ T B X R

PR(kss)PR(kz)] ( k1+k2—|-k3)
exp(—vy—— | -
K8 K,

B(kllkZI k3) —

+ (3.23)

Here ns = 0.9659 and A, = 2.3424 x 1077, corresponding to the Planck values
[5]. The inflation and bounce (pivot) scales are, respectively, k; = 10_6Mpc_1
and k;, = 0.00ZMpcfl. Note that k; = 107 Mpc_l, is a very large scale, below
which perturbations are significantly suppressed. Our results are not sensitive
to this scale. The scale k;, = 0.002 Mpc~! is the pivot scale above which the
bispectrum is exponentially suppressed. Its value is related to fyi. Making
it smaller in order to suppress also lower k-values, we have to increase fni,
to achieve the goal of removing the CMB anomalies. On the other hand, by
making it larger we would obtain a power spectrum which no longer agrees
with the Planck observations. We therefore choose the largest possible value
for k; which is of the order of the smallest values of k which are well measured
in the CMB power spectrum observed by Planck. The parameters g, f, and
v = +v/nmn/2T [1 —n] /T [3/2 — n] depend on the details of the bounce, being
related to the parameter n in Eq. (3.1). The values of g and f,;; used in this
chapter are shown in Table 3.1. The power spectrum for n = 1/6 is shown in
Figure 3.1.

The bispectrum (3.23) is decaying exponentially for k > k;. Since k; is
close to the horizon scale, the authors of [29] argue that the model is not
excluded by observations, even for quite large values of f,,;. Apart from this
exponential decay, which is of course crucial to render a bispectrum with
such a large value of f, viable, the bispectrum (3.23) is actually just the local
bispectrum. Due to the strong exponential decay, however, its overlap with
the local bispectrum is small. The values requested for f,; given in Table 3.1
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FIGURE 3.1: The power spectrum Pg (k) versus k for n = 1/6.
Note the three different regimes separated by the inflationary
and the bounce scales.

are much larger than the Planck limit for the local shape which is f,;; < 10
[128]. This is in principle possible since most of the Planck constraint comes
from smaller scales, where the LQC bispectrum is exponentially suppressed.

In this work we check quantitatively whether the LQC bispectrum with
the parameters given in Table 3.1 is compatible with observations. Clearly,
this non-Gaussianity is best constrained on very large scales corresponding
to k < ky,. This motivates us to compute the CMB bispectrum induced by it,
concentrating on the largest angular scales. Expanding the CMB temperature
fluctuations in spherical harmonics,

A_g(n) = ZaﬁmYEm (n) ’ (3.24)
m

the bispectrum is defined by

RPN (b b 4
(At B tymytymy) = Givinoms Dty 0105, = ( My my s Bo,tyes - (3.25)

Here Qﬁ}fﬁé%s is the so-called Gaunt factor which can be expressed in terms of
the Wigner 3j-symbols as

[T_1(26+1) /g, ¢, ¢ 0 by 0
gﬁ%%%=\/” ’ (g;g)(l ; 3)(326)

47 my mp m3
b by Y
&&@(%é %). (3.27)

The m;-dependent prefactor is a consequence of statistical isotropy [124]. The
model dependent quantity by, ,¢, is called the reduced bispectrum. It depends
only on the values /1, ¢, /3 and vanishes if these do not satisfy the triangle
inequality, |¢1 — l2| < l3 < {1 + {5 or if the sum ¢1 + ¢, + {3 is odd.

Within linear perturbation theory, the reduced CMB bispectrum is entirely
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determined by the primordial bispectrum of the curvature fluctuations in
Fourier space. More precisely,

by, = (E) /dex /Odkl/odkz/o ks x

3
ll"[ T (kj, ;) jgj(ij)] (kikokz)?B(ky, kp, k3), (3.28)
i=1

where T (k,¢) is the CMB transfer function and j, is the spherical Bessel
function of index ¢ [124]. On large scales, considering only the Sachs Wolfe
term, we can approximate the transfer function by

Tk 0) =~ elk(to — face)). (3.29)

The times ty and £ g4, are the (conformal) present time and the decoupling time
respectively, given by (we set the speed of light to c = 1)

to ~ 14093.023 Mpc,  fgec ~ 279.529 Mpc. (3.30)

Our bispectrum in k-space is separable, i.e., it can be written as a sum of
products of functions of k;,

B(kqkoks) [f (k1) f(k2)g(ks) + f(k1)f(k3)g(ka) + f(k3)f (ka)g(k1)]

By - (k1koks)? (33D
where

By = 27 fu, (3:32)

fk) = PRk(k) exp(—7k/ky)  and (3.33)

g(k) = Kexp(—vk/ky). (3.34)

Setting
Xo(x,k) = Tk €)jo(kx)f(k) and (3.35)
Zy(x, k) = Tk £)je(kx)g(k) (3.36)

with Eq. (3.28) we obtain

2 3 o0 o0 o0 o0
biiye, = (;) By /O dx 22 /0 dky /0 dk, /0 ks x

[Xgl (x, kl)ng(x, kz)ZgB(x, kg) +
+ Xgl (x, kl)ng(x,k3)Zg2(x,k2) +
+ X€3(x/ k3)X£2 (X, kZ)Zfl (x/ kl)i| . (337)

X
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FIGURE 3.2: The functions X;(x) and Z,(x) for n = 1/6 with the

integration over k performed up to kmax = 10~2 Mpc~!. Note

the sharp peaks at x = ty — tge. and the oscillatory behavior

that is especially visible for higher multipoles. Left: £ = 10 and
¢ = 15; right: £ = 95 and ¢ = 100.

This is the sum of three separable k-integrals. We introduce
Xo(x) = /0 dkX,(x,k)  and (3.38)
Zi(x) = [ dkzi(x,R), (3.39)

such that the bispectrum becomes the following integral:

2\° [
o (;) Bo [ 2[4, () X0, (1) 20, (6) +

+ Xpy () Xy (%) Zg, (%) + X, () Xy, (%) Zg, (x)] - (3.40)

3.2.2 Numerical Calculations

The functions X,(x, k) and Z,(x, k) are heavily oscillating as functions of k
(containing products of two Bessel functions of different arguments) and
difficult to integrate. However when x = fy — fge. the product j,(k(ty —
tqec))je(kx) becomes a square and both X,(x,k) and Z,(x, k) are positive
definite functions of k for this value of x. We therefore expect that the integrals
overk, X;(x) and Zy(x) peak at x = ty — t4ec. As an example, see the functions
Xy(x) and Z,(x) in Figure 3.2 for n = 1/6 and in Figure 3.3 for n = 0.21. We
see that both functions decay rapidly for growing |x — (to — fqec)| for the two
values of n considered. One might hope, that due to this feature which is
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FIGURE 3.3: The functions X,(x) and Z;(x) for n = 0.21 with

the integration over k performed up to kmax = 1072 Mpc ™.

Again we see the sharp peaks at x = ty — 4. and the oscillatory

behavior for higher multipoles. Left: £ = 10 and ¢ = 15; right:
¢ =95and ¢ = 100.

the basic idea behind the Limber approximation, the Limber approximation
might be relatively good. However, as we show in Section 3.2.5 this is not the
case. The Limber approximation actually overestimates the signal by more
than one order of magnitude at low /.

The bispectrum (3.40) can be computed numerically if one takes into
account the peaked behavior described above, restricting the integration
range for the integral over x to an interval around x = ty — tge.. As we can
see in Figs. 3.2 and 3.3, the width of the central peak is larger for low values of
the multipole ¢. For this reason we choose an x-range around fy — tge. of 104
Mpc for £1 + £, 4 £3 < 90 and 2000 Mpc for ¢1 + £, + £3 > 90, encompassing
a large percentage of the total contribution. For the latter cases, the difference
with respect to the width 10% is less than 1%. Also for the low ¢’s the difference
between the ranges 10* and 1.5 x 10* is always less than 1%. We first perform
the computation for a number of allowed sets of multipoles, i.e. with an even
sum and satisfying the triangle inequality, starting from the value ¢; = 4,
j = 1,2,3, and such that ¢, = ¢3 = ¢. This is a suitable choice in order
to depict the bispectrum in a three-dimensional plot. Configurations with
¢y # l3 are considered in Section 3.2.4. The results are plotted in Figure 3.4
both for n = 1/6 (left) and n = 0.21 (right), where we identify a fast decaying
behavior as the multipoles increase. The dots represent the values of the
bispectrum obtained via numerical computation for f;; = 8518 in the case
n =1/6 and f, = 4372 in the case n = 0.21. The gray planes correspond to
the fits obtained in Section 3.2.4, namely Egs. (3.48) and (3.50).

We want to compare the present model and the bispectrum for the local
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FIGURE 3.4: The bispectrum by,¢,/, as a function of ¢; and
¢ =1l = U3 forn = 1/6 (left) and n = 0.21 (right). The dots
correspond to numerical results for f,; = 8518 in the case n =
1/6 and f; = 4372 in the case n = 0.21. For the other values
of fu in Table 3.1, the plots are re-scaled by the ratios of the
fn1’s, the factors of 0.390 and 0.219 for n = 1/6 and n = 0.21,
respectively. The gray planes correspond to the product fits
obtained in Section 3.2.4, Egs. (3.48) and (3.50).

shape. To do so, we first fix {; = 4, require { = {3 = ¢ and perform
the numerical computations for the bispectrum of the current work. Then,
recalling that the reduced bispectrum of the local shape is given by [124]

b(local) _ 3fn1(2772As)2 ( 1
tilals 4 x 54 lq (£1 + 1)52(62 + 1)
1 1
O1(0 +1)03(03 +1) - 52(52+1)53(53+1)>’ (

_|_

T 3.41)

we substitute /1 = 4, {p = {3 = ¢ and f,; = 5.0, this value of f is chosen
based on the Planck constraint on local non-Gaussianity [121]. In Figure 3.5,
we plot the power spectra versus .

The bispectrum of the bounce followed by an inflationary phase is larger
than the local bispectrum for all the low multipoles considered here. However,
this does not mean that it is ruled out by the Planck observations, as most
of the observational power from Planck limiting the bispectrum comes from
higher values of ¢ which are not present in this plot and for which b(1o®@) ig
much larger than the bispectrum from our bouncing models.
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FIGURE 3.5: The bispectrum of the current work withn =1/6
(left) and n = 0.21 (right) and the local bispectrum with f,;; = 5.0,
considering multipoles such that /1 = 4 and ¢, = {3 = {. The
dots correspond to fn; = 8518 for n = 1/6 and to f, = 4372 for
n = 0.21. For the other values of f, in Table 3.1, the bispectrum
is re-scaled by factors of 0.390 for n = 1/6 and 0.219 for n = 0.21.
The local bispectrum and cosmic variance are depicted as the
black and gray lines, respectively.

3.2.3 Cosmic Variance

In order to decide whether the bispectrum of the bouncing models discussed
here can be ruled out, we consider its SNR by adding cosmic variance as the
dominant noise source on large scales. This is the minimal error on by, ,¢,.
Here we follow [129]. Let us introduce the random variable

A b b A

Bg ol = E ( Ay m1%0m-, 00 . (3.42)

1€2€3 1M1 " Lamip = Ep 3
my i3 mq mp Mms

This is an estimator of By,y,,, defined in (3.25), i.e. <Bgl to05) = Bryo,e,- Inthe
same way as
Co=(20+1)71Y |agl? (3.43)
m

is an estimator of the power spectrum C; = (|ay,,|?). Using identities of the
Wigner 3j symbols and neglecting terms involving the bispectrum, which are
much smaller than the terms from the power spectrum to the third power, one
finds for the variance of our estimator B 01620

Var(Bflfzés) = <B%1€2£3>
~ Cg1Cg2Cg3 (1 + 5g1€2 + 5glg3 + (5g3g2 + 25@1@55253) . (3.44)

For the reduced bispectrum this yields

var (by,,,) = 84.7.0.Co,CeyCoy (14 8,0, + 80,0 + Sty + 200,0,00,05) - (3.45)



58 Chapter 3. The CMB Bispectrum from Bouncing Cosmologies and Planck
Constraints

Of course this equality is only valid when gy, ¢,¢, # 0,i.e., for values of 1, {5, (3
which satisfy the triangle inequality and are such that /1 + ¢, + /3 is even,
since otherwise by, ¢,¢, = 0 with vanishing variance.

The minimal error on by, o, ¢, for an experiment measuring all @y, ,, @¢,,20,m,
with negligible instrumental noise is (the square root of) the cosmic variance.
The latter is computed using the values of C, obtained with the Cosmic Linear
Anisotropy Solving System (CLASS) [130, 131] and compared to the amplitude
of the bispectrum of the bouncing model in Figure 3.5. Clearly, the ampli-
tude of the square root of the cosmic variance is larger than the bispectrum
for all values of /. This precludes a measurement of the individual b, ¢,s,’s,
but in order to investigate whether the model can be ruled out due to its
non-Gaussianity, we have to go on and compute the total SNR.

3.2.4 Signal-to-Noise Ratio

For each individual triple (¢1, {2, ¢3) with ¢; > 4,i = 1,2,3, cosmic variance is
larger than the value of the bispectrum. However, this does not mean that such
a bispectrum is not detectable. To decide on that, we estimate the cumulative
SNR of the entire bispectrum for ¢; < {inax. We choose £max = 80 to make sure
that the Sachs-Wolfe term calculated here really is the dominant contribution.
However, as we shall see, the SNR saturates already at max ~ 30.

( ° )2 (£max) me Vit (3.46)
NT max) — —_— Y. .
N (1la0=2 Var (b£1£2€3)

In order to perform this computation, we fit the numerical results of the
bispectrum obtained for different sets of multipoles by a product ansatz,
including the ones where {1 # ¢ # /3. The fits of our product approximation
read

In(bpyre,) = —3.727 x 1078(¢14203) — 2.225In(¢14203) — 25.607 (3.47)
forn =1/6 and f,,; = 3326,

In(bp,re,) = —3.727 x 1078(414203) — 2.225In({1£o03) — 24.667 (3.48)
forn =1/6 and f,,; = 8518,

In(by,e,0,) = —3.204 X 1070(£16503) — 2.661In(¢1605) —22.491  (3.49)
forn = 0.21 and f,;; = 959 and

In(by,e,0,) = —3.204 X 1070(£14503) — 2.661In(¢162¢5) —20.974  (3.50)
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FIGURE 3.6: The bispectrum by, ¢,¢, vs ¢1/243 for n = 1/6 (left)

and n = 0.21 (right). The dots correspond to f, = 8518 for

n=1/6 and to f, = 4372 for n = 0.21. The lines represent the

tits, given by Egs. (3.48) and (3.50). For the other values of f,;; in

Table 3.1, the approximations are simply re-scaled by the ratios

of the f, values, namely the factors 0.390 for n = 1/6 and 0.219
for n = 0.21.

for n = 0.21 and f,,) = 4372. Two of them are shown in Figure 3.6, while the
other two are simply re-scaled by the ratios of the f,,; values.

The variance is obtained from Eq. (3.45), as before. Summing all the terms
corresponding to allowed sets of multipoles, i.e. with ¢; 4 ¢, + {3 even and
|61 — £| < ¢3 < {1 + £, we obtain the cummulative SNR as a function of the
maximum multipoles £max.

Our purpose it to investigate whether we achieve a value of order O(10)
within the low £ regime, i.e. £ < 200, which corresponds to the validity of the
transfer function given in Eq. (3.29), and which is also the regime in which the
non-Gaussianitiy of these models is larger. The results are shown in Figure 3.7.
In order to consider a sky coverage of 70%, we multiply the cosmic variance
by 1/0.70. Clearly, the SNR saturates very fast, namely roughly at {max = 30,
but it achieves a value larger than 25, both for n = 1/6 and n = 0.21 for
the larger value of f,,;. For the smaller values of f the cumulative SNR for
n =1/61s 10.3 while for n = 0.21 it is 10.6. In all cases these bispectra should
be detectable in the Planck data.

Even though the individual by,,, are below cosmic variance if ¢; > 4,
i = 1,2,3, the cumulative SNR of the bispectrum with ¢« = 30 is larger
than 10 for all the models proposed, when assuming a sky coverage of 70%
and considering only temperature data. Note that the largest contributions to
the SNR come from triples (1, {5, ¢3) where at least one multipole is smaller
than 4, for which the signal is larger than or comparable to the square root
of the variance. For the higher values of f; the cumulative SNR is about
26.5 (n = 1/6) and 48.2 (n = 0.21) respectively. To get an impression of the
amplitude of the SNR of these models, one may want to compare it to the
one of CMB lensing, which is about 40 in the Planck 2015 data [132]. Note
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FIGURE 3.7: The signal-to-noise ratio, considering 70% of sky
coverage, versus maximum values of the multipoles rax for
n = 1/6 (left) and n = 0.21 (right). The dots correspond to
fn1 = 8518 for n = 1/6 and to f,,; = 4372 for n = 0.21. For the
other values of f, in Table 3.1, the bispectrum is re-scaled by
factors of 0.390 for n = 1/6 and 0.219 for n = 0.21.

that already at /max = 5 the SNR s larger than 15 (n = 1/6) and 35 (n = 0.21).
But also for the two models with the lower value of f,;;, the cumulative SNR
is actually just slightly above 10, so that the bispectrum can in principle be
detected. In order to obtain an undetectable bispectrum one would have to
reduce the f, by about a factor of 10, so that the cumulative SNR would
become of order unity. However, when reducing f,; to these values, the CMB
large scale anomalies can no longer be resolved efficiently by these models
and they lose one of their main attractive features.

These findings motivate us to perform a search for this bispectrum in the
actual Planck data. Before doing so, let us consider the reduced bispectrum
computed by means of the Limber approximation.
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FIGURE 3.8: The Limber approximation (dashed) is compared
with our product approximation (solid) for ¢, = ¢3 = 30 fixed,
as a function of /;. Even though the Limber approximation is
probably better for ¢ > 50, it is much worse than our excellent
product approximation in the relevant regime, ¢; < 30.
3.2.5 Limber Approximation
Let us now solve the integrals (3.38) and (3.39) with T (k,¢) = j,(k(to —
tqec)) /5 using the Limber approximation [133]. This yields
, 1 . .
Xo(x) = [ dKT(k, 0)je(k) f(K) = = [ dkjo(k(to = taee))je (k) £ (K)
7 Bl — taee — %) (L+1/2
10 (L+1/2)2 to — tdec
7T to — tdec {+1/2 —y A2
= 0ty — tgee — X) 7ot o~ ldec)
10 (0 dec x>(€+1/2)3PR (to_tdec e b0 d
. 1 . .
Zi(x) = [Tk 0jeR)3K) = 5 [ dkje(kto — taee) e (k)3 (k)
~ lé(to_tdec_x) (+1/2
10 (£+1/2)2 to — tdec
7T 1 —y 2
— _5 t _ t _ . kb(tO’tdec) . 351
10 ( 0 dec x) (tO - tdec)ze ( )

Here we used the functions f and g defined in Egs. (3.33) and (3.34). Of course,
the product of three delta functions cannot be integrated, but replacing them
by narrow Gaussians we obtain up to an unknown constant A, related to the
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b€1€2€3) = (;) BO / dxx Xgl (X)XKZ(X)ZKS(X)
ABy 61 + Uy + 13
-_— exp X
125 tO - tdec
61+1/2 lh+1/2
X PR ( t; i_tde > ( t§+tdec ) (3 52)
(01 +1/2)3 £2+1/23 '

Here O indicates that the two permutations (¢, {) — (¢1,¢3) and ({1, ¢;) —
(£3, ;) have to be added. We have tested this approximation with our nu-
merical computations and found that for the relevant values of ¢, £ < 30,
which contribute most to the SNR, it is much less accurate than the product
approximation that we have used in Section 3.2.4, as seen from Figure 3.8.

3.3 Limits from Planck

In order to adapt the parameters of the bouncing model to the Planck conven-
tions [134], we rewrite the bispectrum (3.23) as

6 Pr(ki) Pr(k
B(ki, ko, k3) = _g(ZNZ)ZfNL[ Rk(3 1) Rk(3 2)
1 2
Pr(ky) Pr(ks) | Pr(ks) Prk
+ Rgl) R(33)+ R(33) R(sz)]X
ky ks K K3
X exp (—'rklﬂlz—ﬁkg’) (3.53)
b

Therefore, the definition of fyr in (3.23) differs by a factor —2 from the one
used here. This explains for example why there is a factor +3/5 instead of
—6/5 in the expression (3.23) and why the numbers in Table 3.2 differ by a
factor of —2 from the ones in Table 3.1. In addition, we change the notation
in (3.28) from by 1,1, to By, to keep notation consistency with the Planck
analysis.

L, L,

From now on we consider the two scenarios included in Table 3.1 and add
a third model for completeness. As previously mentioned, the parameters of
model 2, with g = —0.7, correspond to LQC, while model 3, with g = —1.24,
is a phenomenological bouncing model which provides the best fit to the
Planck data in a Markov Chain Monte Carlo (MCMC) analysis performed
with Planck TT and low-¢ EE power spectra carried out in [29]. The fit is
excellent, even somewhat better than ACDM. This value is also close to the
smallest value of ¢ which can still resolve the large-scale anomalies as we
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’ model ‘ q ‘ Y ‘ fNL 20% ‘ fNL 10% ‘ fNL 5% ‘
1 —0.5 | 0.588 | —2516 —1661 | —1283
2 —0.7 | 0.6468 | —1663 —1098 —848
3 —124 | 0.751 —480 —-317 —245

TABLE 3.2: The values of the parameters considered in this

section. The fyi parameters are chosen according to [29] in

order to alleviate the power suppression anomaly (but note the

factor —2 difference in definition here as compared to [29]). We

also give the values of fni. needed to obtain a probability of 10%

and 5%, respectively, to observe the power suppression anomaly
using the definition of [29].

require here. The value of | fNi.| needed in this model is significantly smaller.
Finally, we also study a somewhat larger value than the one of LQC, 4 = —0.5,
which correspondingly requires a larger value of fny. to resolve the large-scale
anomalies. We call this model 1. In all three cases we assume the smallest
possible values for fyi such that the large-scale anomalies appear with a
probability of 20%. This requires that the curvature scale of the bounce is the
Planck scale. We also give the values of fni. for the 10% and 5% probabilities.
Note, however, that in standard ACDM this probability is about 2%, hence
not so much smaller than the last value. The analysis in the next section is
performed for fnp, of 20% in Table 3.2. The results for the other probabilities
can be obtained by linear rescaling.

The reduced CMB bispectrum is obtained in terms of the Fourier space
bispectrum via (3.28), where one uses 7T (k, ¢), the CMB transfer function,
which is defined such that the CMB temperature power spectrum is given by

C, = 4n / Ak k2 (T (k, €))*Pr(k), (3.54)

where Py, is the dimensionless curvature power spectrum [124]. Note that
the normalization of the transfer functions depends on the definition. This
transfer function, e.g., differs by a factor \/¢(¢ + 1) /2 from the one given in
[135].

Now let us compute the CMB bispectrum exactly using the numerical
transfer functions as determined by CAMB? (or CLASS*) and search for the
signal in the truly observed Planck data. The comparison between the ap-
proximated and fully numerical transfer functions can be seen in Figure 3.9
for { = 2 and ¢ = 15. We employ the binned bispectrum estimator described
in [136, 137] and used in the Planck analyses [138, 128, 121]. We analyze
the cleaned CMB temperature and E-polarization maps of the Planck 2018

3http://camb.info
“nttps://lesgourg.github.io/class-tour-Tokyo.html
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FIGURE 3.9: Comparison between the analytical transfer func-

tion (2.35) and the fully numerical transfer function obtained

from cLASS(or CAMB) for ¢ = 2 and ¢ = 15. Although the

agreement is relatively good for ¢ = 15, for lower multipoles the
difference is not negligible.

release, created by the SMICA component separation method [139], which
have an angular resolution of 5. We mask them using the common masks of
the Planck 2018 analysis, which leave a sky fraction of 78%. Error bars and
linear correction terms are computed using 300 simulations. For more details
about the data, see [121].

Figure 3.10 shows the comparison between the bispectrum fit from Section
3.2.4 and the exact numerical bispectrum. While there are obvious differences,
we see that the fit gives a reasonable approximation, despite the shortcomings
of the analytic approximations on which it was based. These shortcomings are
for example the fact that the integrated Sachs-Wolfe effect was ignored, even
though it is important at the lowest values of £ where this template peaks. Also
the contributions from the acoustic peaks are not accounted for in the previous
sections. However, we expect these to be negligible due to the exponential
decay of the bispectrum. Furthermore, the integration routine used previously
was different and computationally much more demanding, so that it cannot
be used efficiently with the full numerical transfer functions. In Section 3.2.4
simple fits for the bispectra as functions of the product L = ¢; - {5 - {3 were
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introduced. While these capture well the overall shape of the numerical
results, they somewhat overestimate it at high L and also, more importantly,
at the dominant lowest values of L. Here the analytical fit is just shown for
illustration but it is not used in the data analysis.

The bispectrum amplitude fy is determined from the data by template
titting. The theoretical bispectrum template (3.28) determined from (3.53) is
multiplied by the observed bispectrum By, ,¢, of the CMB and divided by the
expected bispectrum variance (which in the case of weak non-Gaussianity is
just a product of the three measured power spectra C,, Cy,Cy,), summing over
all values of /1, {5, £3. This expression must finally be multiplied by a factor to
normalize the inverse-variance weights, and this factor is exactly the expected
variance of fyr. In the case that polarization data is included as well as
temperature data, the division by the variance becomes a multiplication with
the inverse covariance matrix, and the sum is also over polarization indices.
The whole expression for fyi, can simply be viewed as the normalized inner
product of the bispectrum template with the observed bispectrum of the CMB:

< Bth, Bobs>
N (B0, B (3.55)
In the simple case of temperature only and no binning, this inner product is
given by

A pB B?f l B?E 14
(B4,BP) = —hbh 006 (3.56)
€1§£2§Z3 V£1£2£3

where V is the variance of the observed bispectrum, which depends on the
noise and beam characteristics of the experiment. For the explicit definitions
of the inner product in the case of binning or when polarization is included,
as well as for other expressions and more detailed explanations, see e.g. [137].

Computing the observed bispectrum for all values of /1, {5, {3 is compu-
tationally too expensive, hence estimators must use approximations. The
binned bispectrum estimator used in this paper makes the approximation
that the bispectrum templates we are looking for are sufficiently smooth and
slowly changing, that it is enough to only compute the average value of the
bispectrum in each bin of ¢ values. This is a good approximation for the
bouncing bispectrum under consideration: it was explicitly tested that the
standard binning with 57 bins used for the Planck 2018 analysis [121] gives a
negligible increase in variance compared to the exact non-binned template.
The Planck binning was determined by minimizing the increase in the the-
oretical variance for the local, equilateral and orthogonal shapes due to the
binning, taking into account the noise and beam characteristics of the Planck
experiment for both temperature and polarization.

The bouncing bispectrum template has the property that it decreases
extremely fast as a function of ¢ because of the exponential factor in (3.53).
It was shown that cutting off the analysis at {max = 36 does not change the
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FIGURE 3.10: Top panel: The bouncing bispectrum computed
with the numerical transfer functions (blue dots), fit to the bispec-
trum obtained in [35] (cyan) and the local bispectrum (yellow),
for g = —0.7 (multiplication by fnr. included). The bispectrum
is plotted as a function of the product L = ¢1¢,¢3, which allows
plotting all values of the 3D bispectrum in a 2D plot, at the price
of having multiple (¢, {2, {3) configurations corresponding to
the same value of the product L.
Bottom panel : The same bispectrum for ¢; = 2 fixed as a function
of ¢, and /3, compared to the local bispectrum with the same
value for fyr. Only values of ¢; which satisfy the triangle in-
equality are plotted. The fitting formula is indicated as a cyan
surface.
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bouncing | bouncing | bouncing
(gq=-05) | (g=-07) | (g=—124)
local 0.018 0.013 0.006
equilateral 0.011 0.006 -0.002
orthogonal -0.046 -0.039 -0.028
point sources -10-10 -10~10 -10- 11
CIB -1077 -1077 1078
galactic dust -0.13 -0.11 -0.066
lensing -0.002 -0.002 -0.001
bouncing (g = —0.5) 0.98 0.82
bouncing (g = —0.7) 0.91

TABLE 3.3: Correlation coefficients of the bouncing template (for
the three different values of g) with the standard primordial and
foreground bispectrum templates of the Planck analysis [121],
as well as with the galactic dust bispectrum template from [140].

expected Fisher error bar at all compared to the {nax = 2500 used in the Planck
analysis. However, in the actual data analysis it is still important to use this
much higher /1, in order to disentangle the bouncing bispectrum from other
sources of non-Gaussianity that are present in the data, like extra-galactic
point sources and the lensing bispectrum. Table 3.3 gives the correlation
coefficients of the bouncing template (for the three different values of q) with
the standard primordial and foreground templates of the Planck analysis (for
temperature only, in order to also show extragalactic point sources and the
Cosmic Infrared Background). These correlations coefficients are defined as

F
Cyj = ——2 (3.57)

VFiE)

where [ and | are indices labeling the templates and F is the Fisher matrix
defined as F;; = (B!, B/). We see that, once the full Planck range is used,
the correlation with all the other templates is very small (although the 3-5%
correlation with the orthogonal shape is not completely negligible). Not
surprisingly, the correlation between the three bouncing templates, on the
other hand, is very large. There is also some correlation with the galactic dust
template from [140], but as the analysis was performed on the cleaned CMB
map from which the dust has been removed, this has no impact on our final
results.

Table 3.4 presents the final results for the analysis of the Planck 2018
SMICA CMB maps with the bouncing template. They have been computed
using a full temperature plus E-mode polarization analysis. However, the
addition of polarization does not help at all, one obtains exactly the same
error bars using temperature only. We see that there is no detection of any
of the three templates. Given the size of the error bars in this Table and the
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| template \ L |
bouncing (g = —0.5) 240 £ 470
bouncing (g = —0.7) 160 £ 260
bouncing (g = —1.24) 19+ 34

TABLE 3.4: fni (with 1o error bars) of the bouncing template

(for the three different values of q) as determined from the 2018

Planck SMICA CMB temperature and polarization maps using
the binned bispectrum estimator.

predicted values of fni, (20%) given in Table 3.2, we see that model 1 with
g = —0.5is ruled out at 5.4c, the LQC model with g = —0.7 is ruled out at
6.40, while model 3 with g = —1.24 is ruled out at 14¢.

3.4 Conclusions and Discussion

In this chapter we have investigated the non-Gaussianities of bouncing models
that mitigate the large-scale anomalies in the CMB data. Despite the fact that
the bispectrum of these scenarios decays exponentially below the pivot scale,
for k > k, = 0.002 Mpc~!, these models are excluded by the Planck data
with high significance. This shows the sensitivity of the Planck data to scales
beyond the pivot scale. This is especially evident when comparing models 2
and 3. While the LQC model has much larger fnip and therefore a larger
bispectrum on all scales k > k, it is less significantly excluded, namely by
6.40, than the third model with g = —1.24 which is excluded at 140. The
bispectrum of this model is smaller than the one from LQC for k > k;, but
is larger for k < k;/3.3. These large scales are imprinted in the CMB since
the CMB transfer function is by no means a Dirac delta and a given ¢ value
obtains contributions from a rather broad band of wave numbers k.

As lowering fnr, in these models goes in pair with rendering g even more
negative, this implies that solving the large-scale anomaly puzzle with these
models is excluded by the Planck data.

If one reduces the probability for the large-scale anomalies to appear from
20% to 10 % or even 5%, this reduces the exclusion by the same factor as fnr,
see Table 3.2, leading to only 3.5¢ or 2.7¢ exclusion for model 1 but still 9.3¢
and 7.2¢ for model 3. For the LQC model 2 the corresponding limits are 4.2¢
and 3.30, respectively.

It is very likely that our results actually go beyond the models studied
here. If we want the large-scale anomalies to be less improbable by skewed
statistics, this introduces a bispectrum. Even if this bispectrum is significant
only on very large scales, the Planck data are sufficiently precise to exclude it.
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It is of course possible that this might be evaded by some very exceptional,
faster than exponential decay of the bispectrum. Nevertheless, ours does
appear to be a quite solid conclusion.
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Chapter 4

Inflation in the Presence of
Holographic Dark Energy

4.1 Introduction

In 1998, observations of type Ia supernovae led to the conclusion that the
Universe is under an accelerated expansion [19, 20], which gave rise to the
concept of dark energy [21]. In the following years, the presence of this
dark component was corroborated by many other observations, such as the
Cosmic Microwave Background (CMB) radiation [141, 9, 10, 11], the large
scale structure [142], the late-time integrated Sachs-Wolfe effect [143, 144] and
the direct measurement of the Hubble parameter [145]. However, although its
existence is widely evidenced, the nature of dark energy remains unknown.
The standard cosmological model, namely ACDM, is currently favoured by
observations [146, 147], meaning that a cosmological constant A would be
responsible for driving the accelerated expansion.

On the other hand, the holographic principle [148, 149], which states that
the physics inside a volume can be described by a theory on its boundary,
has been considered as a principle of quantum gravity and, therefore, could
shed some light on the dark energy problem. According to the holographic
principle, the vacuum energy density arising from the quantum fluctuation of
the UV cut-off quantum field theory should relate to the boundary surface of
a system in the way [150],

p M%L_z, 4.1)

where M, is the reduced Planck mass and L is a length scale. On the UV side,
the quartic divergence of the vacuum energy is cut off at the scale A ~ M, /L.
Therefore, it can serve as one of the solutions to the cosmological constant
problem [151]. It was suggested to adopt the future event horizon R;, as the
IR cut-off scale of the universe [152], and the cosmic expansion is speeded
up by the associated vacuum energy given by eq. (4.1). The model is dubbed
as Holographic Dark Energy (HDE), and has drawn a lot of attention, being
widely studied. See [153] for a comprehensive review on the topic.
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A general covariant local field theory of HDE was presented in [37], where
it is shown that the low energy effective theory corresponds to a massive
gravity, whose graviton has 3 polarisations, including 1 scalar and 2 tensor.
The UV cut-off of the HDE stems from the strong coupling nature of the
scalar mode above some certain energy scale that relates to the graviton’s
Compton wavelength. It provides a physical interpretation for the UV-IR
correspondence of HDE.

Given the general covariant local field theory of HDE, it is thus possible
to analyse its local dynamics. The structure formation in the framework of
the effective field theory of HDE was studied in [154], and it has been found
that the equation of motion for the matter density contrast 6,, = dp/pwm of
the Cold Dark Matter (CDM) is the same as the one in GR up to the leading
order in the small scale limit k > aH, provided the equation of state is
Quintessence-like.

Since HDE is present during the whole cosmic history, including the early
Universe, it is expected that it alters the dynamics during inflation [155, 156,
3,157, 158], which is the most accepted solution to the horizon and flatness
problems in cosmology, encompassing models in great agreement with the
observed scalar power spectrum and with the not yet detected primordial
gravitational waves. It has been pointed out that the the cosmic coincidence
problem can also be solved, provided a minimal number of e-folds during
inflation [152]. The corrections of HDE to the primordial curvature perturba-
tions were analysed in [159], leading to the conclusion that the scalar power
spectrum is generically red-tilted. However, this analysis is incomplete as
the local field theory of HDE was still missing at that time, and the analyses
did not include the perturbations of HDE itself. In this chapter, with the
general covariant and ghost free action obtained in [37] in hands, which takes
into account also the contribution of perturbations of HDE, we compute the
inflationary background and both scalar and tensor power spectra'.

The chapter is organized as follows: the main ideas behind inflation are
introduced in Section 4.1.1. In Section 4.2 we discuss the validity of the low
energy effective field theory obtained in [37] during the inflationary phase.
In Section 4.3 we obtain the background evolution of the inflaton and of the
dark components numerically. In Section 4.4 we compute the cosmological
perturbations on a FLRW background and present the quadratic actions for
the scalar and tensor parts. In Section 4.5 we compute the scalar and tensor
power spectra and discuss their compatibility with observational constraints.
Finally, in Section 4.6 we summarize the results and discussions.

In [160] the authors propose that HDE is the responsible for driving the inflationary
phase, which differs from the approach developed here.
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4.1.1 Introduction to Inflation

Although we have introduced some aspects related to inflation (namely the
horizon and flatness problems) in Chapter 2, a brief introduction to the infla-
tionary physics remains to be done. This is covered by the present section.

As we have seen in Chapter 2, the horizon and flatness problems can be
addressed if the Universe suffered an exponential expansion in its beginning.
This expansion is usually driven by a scalar field, which is called inflaton.
Let us now understand the properties of such field and how it generates the
quasi-de Sitter background that we are interested in. Consider the following
action for the inflaton yx 2:

S = / d*x\/~g [ - %glﬂ/ay?(av}( - V() |- (42)

The corresponding energy-momentum tensor leads to the following energy
density and pressure

.2
p = X +vip (4.3)
2
po= 5V, @4

from where we see that, if the inflaton moves slowly along the potential and
the potential energy dominates, we have p < 0. Therefore, for a slowly-rolling
tield, an exponential expansion of the scale factor can happen.

The Friedman equation is therefore given by

1
H? = -
3

£ v

5 , (4.5)

where we have used M%, = 1.

From the action (4.2) we also get the equation of motion, which reads
X+3HXx+Vy =0, (4.6)
where V, = dV /dx and H is the Hubble parameter.

Since the inflaton moves slowly, we have an almost flat potential (with
exactly flat corresponding to de Sitter space-time). In order to simplify the
equation of motion of the scalar field and the Friedman equation, one can
perform an expansion around de Sitter by means of the so-called slow-roll

2The inflaton is usually denoted in the literature by ¢. However, due to a notation
coincidence in the next sections, we use x.
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parameters
22
~ 2% (4.7)

_ H
€ pr _ﬁ
;
— 48

n

by requiring €, || < 1. Alternatively, one can also express the slow-roll
conditions via the potential slow-roll parameters

1 (V2
= (% 4.
€v > (V) (4.9)
_ VY
v = Vv (4.10)

with ey, |7y| < 1. They relate to € and 5 via € ~ ey and >~ yy — €.

By considering this expansion, we obtain

1
H?> ~ 5V(x) o~ constant (4.11)
Vi
¢~ ——= 4.12
X YL (4.12)

corresponding to a quasi-de Sitter space-time, where the scale factor behaves

as
a(t) ~ exp Ht. (4.13)

The duration of the inflationary phase can be quantified by means of the
number of e-folds, which can be obtained via

N = In ae;d (4.14)
fen Xend H X V

_ / " Hdt = / RPN / 2 dy, (4.15)
t X X Xend Vx

where we have used (4.11).

4.2 Validity of the Effective Field Theory During
the Inflationary Phase

In obtaining equation (4.1) via the holographic principle, one sets an UV cut-
off A to the local quantum field theory [153] and a UV-IR correspondence
takes place. In essence, one requires the energy within a Schwarzschild radius,
i.e. L3A%, to be smaller than the mass of a corresponding black hole, i.e. LM%,

so that A < /M, /L. As mentioned in Section 4.1, the IR cut-off is chosen to
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be the future event horizon R;, = aL, so that A ~ /M, /R;. Since the later
varies in time, the UV cut-off A is also time dependent.

The relevance of HDE to the cosmological scenario depends on whether
A > H is satisfied, where H is the Hubble parameter. Recalling that (4,
1/(H?R?), where Qypqe is the fractional density of the holographic term, one
finds that this condition can be rewritten as

H2
the > V7 (4.16)
MP

As we are going to show in Section 4.3, during inflation the holographic
component constitutes a tiny amount of the total energy density, i.e. Opqe < 1.
Recalling that it scales as a—2, we see that for large field inflation, for which
H?/ M’% ~ 10712 the effective field theory breaks down some time around 10
to 12 e-folds after the beginning of inflation, which is the moment when the
inflaton energy density dominates over the one of HDE. Although this time
interval is quite limited, it is enough to cover the CMB scales. For small field
inflation, the ratio H2/ M2 is much smaller and, therefore, the effective theory
has a much longer validity.

In what follows we assume that the inflationary phase continues even after
the break down of the effective theory, since it does not necessarily mean a
pathology, but rather that an UV completion is required.

4.3 Inflationary Background

We start with the covariant and ghost free action of the HDE model, as ob-
tained in [37], and the action of the matter sector corresponding to the inflaton

X:
4 3d ab5—-cd
/d X\/—84 = — c+A)Z+)\8?‘q)aygo+ e YA VA PR I

e V(X)}. (4.17)

Here g is the determinant of the metric, M% = 871G = 1, R is the 4 dimensional
Ricci scalar, V() is the inflaton potential and ¢ and d are constants. The
extra field ¢ is a time-like Stueckelberg field, which arises to recover general
covariance, together with other three space-like Stueckelberg fields ¢?, where
a, b are indices in the field space described by the metric &,,. Z% is another
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building block of the theory, given by

(99" ¢") (9v93"¢")

ab _— anu b
2R e Ippotg

(4.18)
As discussed in [37], when the four Stueckelberg scalar fields assume their
Vacuum Expectation Values (VEVs), (¢) and (¢*), they break the diffeomor-
phism invariance. This introduces a massless boson for each broken symme-
try, according to the Goldstone theorem. We then have ¢ = (¢) + 7° and
¢ = (¢") + 1"/ +/3, where 71° and 7* are the time-like and space-like Gold-
stone bosons, respectively. These Goldstone excitations satisfy the symmetry

T (t,x) — 70 (t,x) + E(t), (4.19)

which eliminates the dynamics of the 3 would-be ghosty bosons 7. In the
unitary gauge, the bosons are muted, and the graviton becomes massive. With
this gauge choice, eq. (4.18) is rewritten as Z* = kil 5“(5b /3, where h is the
induced metric of the spatial hypersurfaces in the ADM decomposition and
o7 is a pullback mapping between the space-time and the field space. The
quantities Z and §Z™ are defined, respectively, as Z = Z"4,, and §Z% =
Zab _ 3Zaczdb5cd/(ZCd5cd)-

In a Friedmann-Lemaitre-Robertson-Walker background ds?> = —dt? +
a*dx?, the equations of motion read

A 1
3H? = poges S toat 2;@2 +V(x), (4.20)
) c A 1
—H = 327 343 T ZXZ (4:21)
and
1 . 4ca
p=—=, A=-——, 422
P p @ (4.22)

where overdot denotes derivative with respect to cosmic time f and the La-

grangian multiplier was re-scaled as A — )L » for simplicity. Note that the
energy density of the dark sector includes two components

c A
= 5=+ =—, 4.23
Odark 2212 + 244 ( )
where the first term is the holographic term, and the second term is the dark
radiation term which scales as radiation at late times, when A is approximately
constant. For this reason, from now on we refer to the above contributions as
the holographic term ppg4, and the dark radiation term p,,4 respectively.
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In order to obtain the background evolution numerically, we define the
following dimensionless quantities, in analogy to [161]:

@ = H;op, A= — E(z) = — (4.24)

where H; is the Hubble parameter at the beginning of the inflationary epoch.
In terms of the above quantities, the Friedmann equation reads

3H?  py+ca 22+ A(2a%) 7! 1 ( c A

T 3H? 3H? BNV AT

E2
azp

> . (4.25)

where p, is the energy density of the inflaton, g, = p,/pc(t;), and pc(t;) =
3H? is the critical density at the beginning of inflation.

In the redshift space, equations (4.22) are rewritten as

dp 1 ar 4c
iz E@) &z A+ E@F (426)

while the equation of motion for g, is given by

dpx _ 15
W — 61+2) (- V), @27)

where V = V/p.(t;). For the latter the equation of motion reads

dv - 21, V(ox—V) (4.28)

dz ~ (1+2)E(2)

where 11 = m/H; and we have assumed the simplest chaotic inflation with
V = %mzxz.

Numerically solving equations (4.25), (4.26), (4.27) and (4.28) we obtain
Figure 4.1 and Figure 4.2, where we parametrized the scale factor as 4; = 1
at the beginning of inflation. As initial conditions, we used the initial values
of the time-like Stueckelberg field $; = @(0), the inflaton energy density
Oyi = Py(0), the inflaton potential V; = V(0) and the Lagrange multiplier
A; = A(0) such that E(z = 0) = 1. The values of the constant ¢ were chosen
according to the observational constraint obtained in [161], given by

141 < ¢ < 3.09 (4.29)

with 95.4% CL. Note that the initial conditions determine the future event
horizon L, and not the other way around. The constraint equation that allows
us to obtain L is given by L = —N/a. We could, in principle, integrate it from
—oo to nowadays

t —Ndt
L:/_oo S L), (4.30)
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FIGURE 4.1: Evolution of the fractional energy densities of the
inflaton (), the dark radiation (),,4, the holographic component
Onge and their sum Qg,,. The inflaton eventually dominates
over the dark components after the beginning of inflation (a; = 1
in our convention). In these plots, 11 = 0.1, §; = #, p; = 0.75

and V = 0.7.

where L(—oc0) is the initial condition in the infinite past. However, this initial
condition is not known and, in practice, we perform the integration from the
other side: .
®© Ndt
L= [0+ L(eo). 431
Equations (4.30) and (4.31) are equivalent, if both boundary conditions are
known. In our case, L(—o0) remains unkonwn due to our ignorance about
the quantum gravity. On the other hand, we do know the asymptotic value of
L(c0) = 0, as it is model independent [162].

From the numerical results we conclude that the inflaton eventually domi-
nates over the dark radiation and holographic components, regardless of the
hierarchy between them. In other words, at the background level the inflation-
ary phase is not spoiled by the presence of the dark sector, making the HDE
compatible with inflation. We can also see, from Figure 4.2, that (), may
become negative during the inflationary phase, but the density of the total
dark sector Qgark = Onde + Qrag is nonetheless positive. The equation of state
parameter of the inflaton, as expected, achieves w), = —1 in the inflationary
epoch, as shown in Figure 4.3.
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FIGURE 4.2: Evolution of the fractional energy densities of the
inflaton ), the dark radiation (),,4, the holographic component
. . ~ ~ 1 ~
Onge and their sum Qgq with i1 = 0.1, §; = o3 Pi = 0.4 and
V =0.36.
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FIGURE 4.3: Equation of state parameter of the inflaton x for
=01, ¢ = Lﬁ pi = 0.75and V = 0.7 (left) and 7z = 0.1,

= \/%, pi = 0.4 and V = 0.36 (right). As expected, wy = —1

‘§1

in the inflationary phase.
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4.4 Cosmological Perturbations

In this section, the general covariant and ghost free action (4.17) is used
to compute the cosmological perturbations in the unitary gauge around a
Friedmann-Lemaitre-Robertson-Walker background. We use the following
metric decomposition

goo = —a(t)2(1—|-21x),
goi = a(t)’(0ip+S),

1
gij = a(t)z (51']' + 21/751']' + aia]'E + E(aiFj + ajFi) +7ij| (4.32)

where the scalar perturbations are represented by the variables «, 8, ¢ and E,
the tensor perturbation is represented by +y;; and the vector perturbations are
represented by S; and F;. The latter obey 9;S; = 0 and d;F; = 0, while 7;; obeys
Yii = 9;7vij = 0, being traceless and transverse. As mentioned in Section 4.3, in
the unitary gauge we keep all the perturbation variables, while the Goldstone
bosons are muted and the graviton acquires a mass.

4.4.1 Scalar Perturbations
For the scalar perturbations, the quadratic action reads
s? = / d*x (Lot + Lmass + Ly), (4.33)

where Lgy is the Einstein-Hilbert lagrangian density, Limass is the lagrangian
density related to the graviton mass and L, is the lagrangian density for the
inflaton . They read, respectively,

L ) k2 1,. ; 1 .
% — 3%+ - {,’bz _ EQZE(HIP —2¢) — zazHE(l,lJ + 3H1p)}
2 2 2684y
+ w {Zk pH + ];—2(21p — a?HE) + 6Hy — 3H2a] — Zkﬁ (4.34)
Lmass = ¢ [_%kﬂmz - %CkzaE(Zoc + ) + cap(2a + gb)]
KE>  KE@p-—a)  (a+p)?
i A{_48a T T 1+

b RE
+ M( 5 T3 (4.35)
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and
% N %5')(2 - ;X@c(sz +20 —69) + 1 X (207 + Ey)
o [_kz% - %V,X(—sz + 20+ 6)
L os (_zk_; _ %) (4.36)

2
where the Lagrangian multiplier A was again re-scaled to /\4(’)7, overdot de-
notes derivative with respect to cosmic time and the sub-index , denotes
derivative with respect to the inflaton yx.

The constraints can be obtained by varying the action with respect to the
non-dynamical variables of the theory, namely «, A and B. We then have the
following set of equations:

. . 2Cl[] cE A
2 2
H(6yp — k°E) + 2(p2 (1,0—3 2)—|—124(6tp k°E)
A A >, 2\ 2KHB . _
—ﬂ+a<g—6H +x)+T—X(5)(—(5)(V,X = 0, (4.37)

KE +6a —61p = 0, (4.38)

_Xox

> +Ha—¢ = 0.(4.39)

Solving them simultaneously and substituting the solution back in the action,
we find an expression of the form

3 )22 3y
4 e x —2(c+d)a ., a’x . .

scalar / d*x [ (5)( + ZHZ(pZ lP — ?IP(S)( —+ ..., (4.40)
where the ellipsis stand for potential, gradient and (non-kinetic) interaction
terms. The diagonalization of the kinetic terms is performed by redefining the
0 variable as follows

ox — Ox — (4.41)

<
2A v
where A and C are, respectively, the coefficients of §¥? and §dx. The quadratic
diagonalized action then reads

4 2
= [ [FEo s S @42)
which requires c + d < 0 to avoid ghost instabilities. Defining the constant
b = —2(c +d) for convenience and the canonical variables ). and . as
Vb
Oxc = ady, P = H_¢¢' (4.43)
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we rewrite the action as

5@ / dtd3k—

scalar

kzcg 2
Lll/Jc +Q5XC 112 s lpc+

k? :
+ (_Q_Z - aM?() (57(% + Loxcype + 125Xc¢c] , (4.44)

where the sound speed of the scalar graviton is given by

2c 2
2 Orad
T (1 " ohde Phde ) ' (449

with pr.q = A/ (2a*) and pnge = ¢/ (a?¢?). The latter is plotted in Figure 4.4,
where we can see that it is positive definite during the inflationary phase. The
mass of the scalar mode reads

M;

2%c — G2 2
_ 2H2[6C c—b 6¢c~ 4 6b + cb .

b ' bHR,  6bH2R?  9H*R!

+

8¢ 2 4c 4c
Qg | 14+ — — — 02 —
+ rad < + b HRh 3H2 R]% ) + rad <thde 4)

1 6H2’R2Q) 20) Q) 20
XZ [__—hlfﬂe(1+ rad) __ S“hde <1+ rad) +

6 b 3 2 Ohde
RZHZ(P? 40)? 2V
_ ; hde <1+ eracl _ ?’ (4.46)
hde
while for the inflaton term we have
O 2V.x  7x2
2 _ 2 hde XX X
M2 = 2H (—1+Qrad+ 5 )+ ATt
OpgeX? 3b 2 Xt
- L (14 2) = Ok — F5 + Vi (4.47)

with Ry, = a9, Qpag = praa/ (3H?) and Opge = Phae/ (3H?). For the coeffi-
cients of the interaction terms we find

L = {—4 [Bba‘o’Hq) — (3b +8c)a*H?@? + bA@? + a*(bc — 2H2Ag04)} X +
a*¢? [(319 +2¢)a® + ZA(pz] x> +2a°Hg? [(Bb +2¢)a® + ZA(pZ} V,X} X
-1
x {6a'H2g b} (4.48)
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FIGURE 4.4: Sound speed of the scalar graviton ¢ for m = 0.1,
¢ = ﬁ g; = 0.75and V = 0.7 (left) and iz = 0.1, ¢; = J%
p; = 0.4 and V = 0.36 (right).

and

_ [(2c —3b)a* +2A¢%] X

I, = 4.49
2 PV (4.49)

From the background evolution we know that the inflaton density dom-
inates over the dark sector, namely (),,4 and Qpg4.. Therefore, in order to
simplify the quadratic action, we rewrite the Lagrangian multiplier A and the
time-like Stueckelberg field ¢ in terms of the fractional densities and expand
up to zero order in (2,4 and ()} 4.. We then end up with the following action:

2 1 .2 1 .-
s@ = / dtd3k{§a5)@ +ape +

[ ck2 2004 H?a(6c —b)  ax?(b— 4c)
_ X (q ra 2
3 < + O ) + 2 + 10 Pe +
N __k_2+ﬁ s~ Vak g0 X oy Y52 (4.50)
21 H A T | O (1%

where the graviton ., which corresponds to the scalar degree of the HDE,
and the inflaton perturbation é), decouple. With the above expression we
compute the scalar power spectrum in Section 4.5.1.

4.4.2 Tensor Perturbations

The quadratic action for the tensor perturbation, obtained from (4.17), is given
by

9 1 g .
St(er)1sor = g /deSkaz [’Y/l]'yzl‘j - (k2 + Méwaz)’)’ij’)’l]} ’ (4.51)
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where T is the conformal time, prime denotes derivative with respect to T and
the mass of the tensor mode reads

6c — b+ 12H?R3Qyaq

MGy =

(4.52)

We then define the normalized Mukhanov variable as vy = a7,/2and
rewrite the action in the form

1 A b—6c a”
Sgr)lsor = /deskE [Uklz -+ U% (—kz — @ + 6—@2 + 7>:| , (453)

which allows us to compute the power spectrum in Section 4.5.2.

4.5 Power Spectra

4.5.1 Scalar Power Spectrum

As we have seen in Section 4.4.1, the graviton ¢, and the inflaton perturbation
0xc decouple when one considers an expansion of the action for low values
of (g and Oy e, which is corroborated by the results for background evolu-
tion. In this case, we are able to compute the power spectrum for 1 and Jx
separately.

Power Spectrum of the Inflaton Perturbation

Let us start by computing the power spectrum related to dx.. From the
decoupled quadratic action (4.50) we have the action corresponding to the
inflaton perturbation, which reads

2 57( 12 k2
Sy = / drd’k [TC — 502+ E(1)ox? (4.54)
in terms of the conformal time 7, where F(7) is given by
_ 1T 4aVux! n, x* 2 2
F(r) = {— A 7y St (42 -2V )| @55)

The corresponding equation of motion reads

Sxa + [kz . 21:(1)} Sxex =0, (4.56)
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which is simplified to

Sxt + [kz — 2a%H? <1 +e— gqﬂ Sxe =0 (4.57)

up to first order in slow-roll approximation, where € and 7 are the slow-roll
parameters and we have used V ~ 3H?2.

Defining x = k/(aH) we obtain

d?5x 3
2 _ ¢ 2 _ — — =
x“ (1 — 2¢) 72 + {x 2 (1 +e 2}7)} oxc =0, (4.58)

which leads to the following leading order solution:

e =~ ) 2 o) + ()], (459)

where ], and Y, are Bessel functions of the first and second kind, respectively,
and

3
v~ §—|—2€—i7 (4.60)

up to first order in slow-roll approximation. The initial conditions were fixed
in order to obtain the commutation relation between the annihilation and
creation operators and the Bunch-Davis vacuum in the infinite past.

Considering the solution (4.59), we obtain the corresponding solution to
Oxk via equation (4.43), which, in terms of x and the Hankel function of the

first kind ngl), reads
1 TTX (1)

In the superhorizon regime, i.e. x < 1, the two-point correlation function
of ) is given by

471+1/x1721/r(v)2

(x6(0)p (7)) = (P8R + ) ——

(4.62)

where I represents the gamma function. Therefore the dimensionless power
spectrum reads
2—3+2vx3—2vr(v)2H2

° k=aH
where k = aH indicates that it must be evaluated at horizon crossing. There-
fore, the scalar spectral index is obtained as

, (4.63)

2 _
Asy =

ng—1=3—-2v =4e -2y, (4.64)

which corresponds to the standard single field result.
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FIGURE 4.5: Comparison between the dark densities (2,4 and
Ohge and the slow-roll parameter €. Here ¢ = 2.2, n = 0.1,

P = \/%, p; = 0.75and V = 0.7 (left) and ¢ = 2.2, i1 = 0.1,
@i = J% p; = 0.4 and V = 0.36 (right).

The next-to-leading order contribution to the equation of motion is of order
();, i = hde, rad, and can be considered as a source term. In the slow-roll
regime we find

a?H?%\/e
V 6Cthd€

, aH\/e
———— [(3b—2¢)Oy,5, — 4cO) . (4.65
+ lpc\/m [( C) hde c rad] ( )

Therefore in the equation of motion this contribution is not only suppressed
by the square root of the fractional densities related to the HDE, but also by
V€. For the power spectrum this means a correction of order ();e, which is
even smaller than the slow-roll correction of order €2, as one can see in Figure
4.5.

Power Spectrum of the Graviton

Now let us compute the power spectrum related to the graviton ¢. From the
quadratic action (4.50) we have the following action for ¢, in terms of the
conformal time T:

@) _ 5, [9? K, >

where prime denotes derivative with respect to T and

G(r) = 4(b— 6c)a2Hib— (b — 4c)x" (4.67)
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The corresponding equation of motion is given by
Yo' + e =26(1) | pa =0, (4:68)
which, when considering slow-roll approximation up to first order, reduces to

12ca’H? + e(b — 4c¢)a? H?
¢¢”—k{k%§——2azﬁﬁ4— é ) ]4%k=:Q (4.69)

Defining x = c;k/(aH) and s = ¢;/ (Hcs) we rewrite the equation of motion

as

4c(—3+¢€)
b

2
20 —Ze)d Yok o AWek {_2+x2_

12 P + e} Pk =0, (4.70)

which leads to the following solution:

14s5—2¢

}%kW@MMM, @.71)

1 [x(2—4e)
Yok = 2V 2 csk

where

v/ —16¢(3 —7¢) + b(9 + 2s — 24e)
2v/b(—1 + 2¢)

If v is imaginary, the power spectrum is highly suppressed, since in this
case the solution is in terms of hyperbolic trigonometric functions that decay
instead of oscillating. Therefore, from now on we assume that v is real.

v=— . (4.72)

Recalling the definition of the canonical variable given by (4.43), we have
the expression for the graviton i, with which we calculate the power spectrum.

In terms of the Hankel function of the first kind ngl) and the variable x =
—cskT, the solution reads

_ _He | nx .
P = szﬁ?m’ (4.73)

where we have neglected the parameters € and s in the exponent.

The two-point correlation function of the variable ¢ in the superhorizon
regime, i.e. x < 1, is given by

L a1 120 V252 2
(elhpue(0)) = s+ )L

which corresponds to the power spectrum

2 273+2Vx372vr(v)2a2H4(P2

A
Y 3.3 ’
br Cs csk=aH

(4.75)
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to be evaluated at horizon crossing.

Comoving Curvature Power Spectrum
In order to obtain the comoving curvature perturbation, which is given by

H
R=—¢p— — 6g, 4.76
¥ p+pq (4.76)

we compute g via 9;0q = 6T, where T, is the energy-momentum tensor.
Perturbing the latter, which encompasses the inflaton and the holographic
and radiation terms, we find?>

59 = —xox, (4.77)

while the total density and pressure read respectively

1., c A
o = EX + +2—§02+ﬂ’ (4.78)
1, c A
= X2V 4.7
P 2X 3a2p? T 6t (4.79)

Therefore, the curvature perturbation is given by

X . c the + 2()rad
2eaH OXe \/ 360 4e ea Yer (4.80)

where we have used both the re-scaling (4.41) and the canonical transforma-
tion (4.43).

As a result, the power spectrum reads

A2 — X o, c(Onge +2004)% 1o
R 4€2a2H2 " 0Xe 3be2a2Opge  *
1 Onde +20rd \ 2, €(Ohde +20ra)?
= —([1—-——= A A% . (4.81
2¢a? < € OXe 3¢2ba? Oy ge g (481)

Note that the contribution coming from ¢, decays away, as the dark radiation
and the holographic components in the prefactor are dominated by the infla-
ton. Therefore, although Alz,lJc is approximately frozen after horizon crossing,
the overall contribution becomes extremely small. Note also that (4.80) cor-
responds to the comoving curvature power spectrum at the end of inflation,
which is not conserved in the presence of entropy perturbations. However,
since the second term in the right hand size of (4.80) decays rapidly, becoming
negligible after the very first e-folds, the majority of modes is approximately

3Note that in this step §x corresponds to the original perturbation, i.e. the one defined
previously to the re-scaling (4.41).
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frozen after horizon crossing. The modes that leave the horizon during the
first e-folds might still evolve, but they correspond to the lowest multipoles
in the CMB power spectrum, which are not tightly constraint due to cosmic
variance. Finally, in terms of (4.63) and (4.75), we have

1 Onge + 20 c(Qpge + 204aq)? 1
2 hde rad 2 hde rad 2 2 )

4.5.2 Tensor Power Spectrum

The quadratic action (4.53) leads to the following equation of motion:

A b c a’
vk"+vk <k2+?ﬁ_6_q)2+?_7) =0. (4.83)

In a pure de Sitter universe, it is rewritten as
" 2 2 2
(e <k -2 + M > v =0, (4.84)

where M is approximately constant* and related to the mass of the tensor
mode (4.52) as
AH?>T2 b ¢

2 2 2
=M - —— — + . 4.85
M GW4 3 64)2 + q)z ( )
The solution satisfying both equation (4.84) and the commutation relation
for the annihilation and creation operators, i.e. [dz, al] = (2m)36(k — k'), reads
k/
o—iVIR+ M2t ;

o = (1~ S (4.36)

V2(k2 4+ M2)1 VkZ + M2t

The two-point correlation function of the tensor perturbation -y is readily
obtained as

2
0
(k) = @)tk + Kl

H2(1 + k*72 + M?7?)

SaaLawy (4.87)
(2 + M2)’3

= 167°5(k + k)

4Note from equation (4.52) that the dominant terms in the mass of the tensor mode are
proportional to a2, while Q.4 decays faster, as one can see in Figure 4.5. Therefore, after a
few e-folds, M? = M2,,a? is approximately constant.
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FIGURE 4.6: Mgw/H for c = 2.2. Here 1 = 0.1, ¢; =
p;i = 0.75and V = 0.7 (left) and ¢ = 2.2, 7 = 0.1, §;
p; = 0.4 and V = 0.36 (right).

leading to the following dimensionless power spectrum:

H2k3(1+k2T2+M2T2)
(k2 + M2):

AF=2A2 =2 (4.88)

For superhorizon modes, we have

3
213 2 2 2
AF =202 =2 Tk - :g 1—MGZW , (489)
2 (k2 + M2)2 | yeve—an 7T H

where the second equality must be evaluated at horizon crossing, i.e. vk + M? =
aH. The ratio Mgy /H is plotted in figure 4.6, where we see that it decays
rapidly.

The spectral index n; can be obtained from the superhorizon power spec-
trum (4.89) via

dln A?
= (4.90)
which can be computed using the chain rule
dlnA? dN
"7 TIN dink (®51)

where N is the number of e-folds. The first factor is obtained directly from the

power spectrum, while the second comes fromInk = N +In H+ 1 In (1 - ajzw—sz> ,
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leading to
_ a2 -1
N 1+d1nH+1d1n(1—m> B
dink dN 2 dN B
' My enuMy] ™
~ |[(1—¢€) 1+ | T T , (4.92)

up to leading order in M%,,,/H?, where ey = M N/ M.

Using that H 5/ H = —e€, where y represents derivative with respect to N,
one finds

2e n
2
(1-e) (1+ ) -
3M?(—epmkt®V1 — M2T2 + MT?M Ny + TN)

nyg = -

+ —
ke2v/T— MEE2(R2 4+ M2) [(1— ) (1+ 0 ) — 247
MZ
~ —2¢+ ;2W (3 —3epy + 2€) (4.93)

up to first order in € and €y, and up to second order in Mgy /H. In the last
equality we have used that Ty = —(1 — €)1, T = —1/(aH) and Vk? + M? =
aH. Therefore, since Mgy < H from the very beginning of inflation on,
we obtain a tensor spectral index similar to the standard one for single field
inflation.

4.6 Conclusions and Discussion

In this chapter we analyzed the effects of the two components of the HDE
model, namely the holographic and the dark radiation terms, in a single
field slow-roll inflation, both in the scalar and tensor sectors. We started by
numerically computing the evolution of the components at the background
level, which led to the conclusion that the inflaton dominates after a few
e-folds, while the holographic and (especially) the dark radiation terms decay
rapidly. Therefore, at the background level, the inflationary phase is not
spoiled by the presence of HDE.

For the scalar perturbation we showed that the two scalar degrees of
freedom, i.e. the inflaton perturbation and the graviton, decouple when
expanding the quadratic action up to zero order in ()4, and ();,4. The next-
to-leading order correction to this expansion is of order /();e, i = hde, rad,
i.e. a correction suppressed not only by the square root of the tiny fractional
densities of the dark sector, but also by the square root of the first slow-roll
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parameter. The correction to the curvature power spectrum coming from the
graviton decays rapidly, as the dark radiation and holographic components
are dominated by the inflaton. Moreover, the correction to the inflaton power
spectrum also decays as (4, and (2,,; become smaller than e.

For the tensor power spectrum we find a dependence on the mass of the
tensor mode, which decays rapidly in the beginning of inflation. The resulting
power spectrum for Mgw < H is the usual single field result.

Taking all the above features into account, we conclude that HDE is com-
patible with single field slow-roll inflation, being in agreement with the current
constraints on the scalar power spectrum, since the extra contributions decay
quite fast, and on primordial gravitational waves, since it leads to the usual
tensor amplitude. In case of detection of primordial gravitational waves,
the tensor spectral index can be used as evidence in favour or against HDE,
constraining the mass of the tensor mode.
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Chapter 5

Graviton to Photon Conversion via
Parametric Resonance

5.1 Introduction

Parametric resonance is a well-known effect in classical mechanics: an oscilla-
tor with a periodically varying contribution to the mass will be exponentially
excited if the frequency of the oscillator lies in certain resonance bands de-
termined by the frequency of the variation of the mass. If the amplitude
of the varying part of the mass is small compared to the magnitude of the
time-independent part, we speak of narrow band resonance, if it is large then
we are in the realm of broad resonance. Parametric resonance is a special case
of the Floquet theory of instability of a dynamical system in the presence of a
periodic time-dependence of one of the coefficients. The equation of motion
for the special case is called the Mathieu equation.

In early univere cosmology, parametric resonance plays a crucial role in
the transfer of energy to regular matter at the end of a hypothetical period
of inflation [163, 164]. At the end of inflation, the scalar field ¢ which drives
inflation will be oscillating about the minimum of its potential. This oscillation
can induce a parametric resonance instability for any field x which couples in
an appropriate way to ¢, e.g. via a ¢?x? coupling in the case of a matter scalar
tield x. In the case of a self-interacting scalar field ¢, excitation of fluctuations
of ¢ will also occur (see [165, 166] for reviews). This instability is known as
preheating [167, 168, 169]. Note that the preheating instability can occur for
both bosons and fermions, although because of Pauli blocking the resonance
for fermions is less efficient [170].

In an expanding universe the equation of motion for a matter field x
contains a Hubble damping term, and hence the parametric resonance analysis
does not directly apply. However, if we rescale the matter field by a power
of the cosmological scale factor and also work in conformal time T instead
of physical time t, we obtain an equation of motion without damping term.
However, the bare mass term of the equation in terms of the original field
now acquires a scale factor dependence which greatly reduces the efficiency
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of the Floquet resonance. On the other hand, for massless fields we obtain a
standard Mathieu equation for the rescaled field.

Gravitational waves induce oscillating terms in the equations of motion
for all matter fields. In the case of massless matter fields such as the photon, it
is hence expected that these gravitational wave can induce instabilities. These
instabilities, in turn, will drain energy from the gravitational waves. In the
Standard Model, the only massless field is the photon'. Here, we will study
the parametric resonance instability of the photon field in the presence of a
gravitational wave. We find that there is indeed a resonance effect. In vacuum,
the resonance occurs only in the second resonance band and is hence highly
inefficient. On the other hand, in a medium in which the speed of fluctuations
of the electromagnetic field is smaller than unity?, the instability occurs in the
tirst resonance band and is hence much more efficient. In the current chapter,
we estimate the decay rate of a packet of gravitational waves passing through
a medium.

In the following we will be studying the effects of gravitational waves on
matter fields in a Minkowski space-time backgound. Provided that the time
scale of the instability is shorter than the duration which a mode spends in
the instability band, the effects of the expansion of space are small, the main
effect being that modes slowly enter and exit the resonance bands, as argued
already in the original article [163]. Note that our analysis does not make use
of any physics beyond Standard Model particle physics and Einstein gravity.

In Section 5.1.1 we review the phenomenon of parametric resonance. Then
we apply the concepts to the cases of a massless scalar field in Section 5.2 and
of an electromagnetic field in Section 5.3. The estimate of the damping rate is
computed in Section 5.4. Finally, the conclusions are presented in Section 5.5.

5.1.1 Parametric Resonance

Let us now introduce the parametric resonance mechanism in order to present
the main ideas explored in the gravitational wave damping (Sections 5.2 and
5.3) and amplification (Chapter 6).

As mentioned in the previous section, parametric resonance is a classical
phenomenon that an oscillator experiences when it receives a periodically
varying contribution to its mass. The result is an exponential amplification
of the oscillator’s amplitude if its frequency is within the so called resonance
bands, which depend on the frequency by which the mass varies.

UIf there is a massless neutrino there can also be an instability to neutrino production, but
because of Pauli blocking it will be less efficient than for photons.

2We use units in which the speed of light, Planck’s constant and Boltzmann's constant are
1.



5.2. Massless Scalar Field Resonance 95

As an example, let us consider a generic oscillator x(f) governed by the
following equation of motion

¥+ Ax —2gcos (2t)x =0, (5.1)

where A and g are parameters determined by details of the dynamics of x()
and dot denotes derivative with respect to t. This type of equation is known as
Mathieu equation and can be investigated by means of the Floquet instability
theory, which can be used to estimate the oscillator’s amplification. The
exponential growth is quantified by means of the so called Floquet exponent
i, which appears in the solution as

x(t) o< exp (pt). (5.2)

It can be computed by using the fundamental matrix, i.e. a matrix representing
the independent solutions [171]. The eigenvalues ot of this matrix at ty + T,
where t is the initial time and T is the period of the oscillating function in
(5.1), are related to the Floquet exponent y via

1
R[p*] = = In|o™], (53)
where the superscript & represents the growing and decaying solutions to
(5.1). When R[u*] > 0, x(t) is exponentially amplified, as seen from (5.2).
By following this procedure, we find the values of A that correspond to the
resonance bands and the dependence of y on g, which is given by

g f AcC(l—g,1+9)
#“{qz if Ac(d—q¢%4+q¢%)" (54)

Figure 5.1 shows the dependence of the Floquet exponent on the parameters
A and ¢, defining the so-called resonance bands.

If g, i.e. the periodically varying contribution to the mass term, is small
compared to A, the parametric resonance is said to happen in a narrow band.
As we will see in this chapter and in Chapter 6, this is exactly the case of
the gravitational wave resonance and, therefore, the first resonance band, i.e.
A C (1—g,1+ q), is the most efficient when it comes to the amplification
factor.

5.2 Massless Scalar Field Resonance

Here we consider a gravitational wave of frequency w exciting a scalar field
¢ with mass my. We consider a gravitational wave with metric tensor
travelling in Minkowski space-time. The full metric is

Suv = v + . (5.5)
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FIGURE 5.1: Floquet exponent y as a function of the parameters

A and g of the Mathieu equation. The light regions, i.e. regions

where Re(pt) > 0, are the so-called resonance bands, which are
centered around A = 1,4,9 and so on.

Specifically, we consider a standing gravitational wave with frequency w:
hi]' = h() COS wt cos wz - 61']', hOy =0, (5.6)

where hy is the amplitude, and ¢;; is the polarisation tensor

1 1 0
0 0 O

The equation of motion of a scalar field of mass m in this gravitational
wave background is

¢ — (0ij — hij) 9:0;¢p + migp = 0. (5.8)

This equation is reminiscent of the sound speed resonance mechanism [172][173],
where the sound speed of scalar modes or tensor modes receives an oscilla-
tory correction which eventually triggers the resonance instability. In Fourier
space, the equation becomes

. h
¢k + (kz + m%,) Pk — Eok‘g cos wt - [(,bk_p + gbkﬂ,} =0, (5.9)
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where k2 = €;jkik; and p is a 3-dimensional vector defined by p = (0,0, w).
Let us define the variable

D (t,ky, ky, k) = ¢ (8 ke, ky, kz) + ¢ (8 kx, by, —k2) , (5.10)

and let us choose k, = w/2. Then, quite remarkably, its equation of motion is

. h
by + (k2 n mé) Dy — ?Okﬁ cos wt (D, + Pa ) =0, (5.11)

which is a Mathieu equation with a source term proportional to ®3;_. To avoid
notational clutter we have defined ®; = ® (t, ky, ky, kz). In a first approxima-
tion, the source term can be neglected as the mode (t, ky, ky, 3kz) does not
receive a parametric resonance amplification and thus remains small®.

Inserting the value of k;, the equation of motion (5.11) then becomes the
standard Mathieu equation

@ + [Ag — 2qc0s(27)] @, = 0, (5.12)

with the rescaled time variable being T = 4!, the prime denotes the derivative

with respect to 7, and

4 <k§ + ki + mé) B hokg

7

A=1+ (5.13)

w? ow?

The Mathieu equation (5.12) undergoes broad resonance for g > 1, where
the exponential instability occurs for all sufficiently long wavelength modes,
and narrow resonance for 4 < 1, where the exponential instability occurs
only for narrow bands of k modes. We are interested in the weak field limit
where the amplitudes of both polarisations are small, i.e. iy < 1. Hence,
g < 1 and we are dealing with narrow band resonance. It is clear that we
are outside of the first resonance band where A C (1 —¢,1+ ¢q). However,
parametric resonance may still occur at the second resonance band where
A C (4—4¢%4+q%). For resonance in the second band, the amplitude of
(2) (2)

® grows as exp(p; 'T], where p;”’ is the Floquet exponent of the second

2
resonance band y](cz) ~ I, which is parametrically suppressed compared to

the Floquet exponent in the first resonance band which is u ,({1) ~ 1.
There is, however, a way to obtain resonance in the first band: if we
consider the propagation of the scalar field ¢ in a medium which leads to a

3We can include the ® ( t, ky, ky, 3kz) term and add in the equation of motion for this mode,
thus obtaining a set of coupled differential equations. In the context of a study of the effects
of inhomogeneous noise on the strength of parametric resonance, it has been shown that
considering the inhomogeneous system actually boosts the growth rate of the instability [174].
This is an consequence of Furstenberg’s Theorem [175] (see [176]). As an application, this
leads to a new proof of Anderson Localization in condensed matter systems [177].
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reduced speed of propagation cs < 1, then A becomes

4(k2 + ki) 4m§,

A=c2+c T (5.14)

In this case, for a massive scalar field it will remain impossible to obtain
resonance in the first band, unless mﬁ, < (1 — ¢2)w?/4, which in our case
is not reasonable for masses of Standard Model particles, given that the
wavelengths of gravitational waves emitted by the most of astrophysical
events are of macroscopic scale. However, for photons (which are massless)
there will be a band of (ky, k;) values which lie in the first resonance band.
Thus, in the following we will focus on gravitational waves exciting the
electromagnetic field.

One may be confused at this point, as quantum field theory tells us a
massless particle does not decay to a massive particle in the vacuum; The
process is simply forbidden by energy momentum conservation. Neverthe-
less, two colliding massless particles do decay to massive particles, as now
this process is allowed (for instance a pair of colliding high-energy photons
can decay into an electron-positron pair). This is precisely the case in our
analysis, where a standing gravitational wave, which can be understood as
the collective behaviour of two groups of massless gravitons travelling in the
opposite direction, decays into massive scalar particles (provided that mass
is smaller than the frequency of gravitational wave) due to the collision of
massless gravitons.

In passing, we shall mention that for a traveling gravitational wave in
vacuum, the parametric resonance does not occur, even if the scalar field
is massless. This is because the lightcones of the gravitational wave and
the scalar field overlap with each other. Sitting on the wavefront of the
scalar wave, one does not "feel" the oscillation induced by the gravitational
wave. However, in a medium where the scalar wave is sub-luminal, the two
lightcones do not overlap and that opens up the channel converting energy
from the gravitational wave sector to the scalar field sector, even for a pure
traveling wave. The similar effect has been observed in the framework of the
modified gravity too [178].

5.3 Electromagnetic Resonance

Here we consider the excitation of the electromagnetic field by a gravitational
wave in a medium with speed of light ¢; < 1. The metric which enters the
kinetic part of gauge field equation of motion is

Suv = Tuv + hy, (5.15)
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where 7, = (—=1,1/c¢%,1/c%,1/c2). Generally ¢? is dependent on the fre-
quency. In our idealised case where a mono-frequency gravitational wave
is considered, c? is just a constant. It can be a good approximation if the
frequency spread in a wave packet is small.

The Coulomb gauge is unavailable in the presence of the gravitational
wave, and thus we adopt the Weyl gauge instead, where Ag = 0. The i — th
component of the equation of motion reads

0 = iadu (Fog™s")
= G%A, - Czath,']' . atA] + Cga]‘Fij
—C;ll’ljka]‘Fik - C?Fk]'a]‘hik ’ (516)
and the 0 — th component gives the modified Gauss law,

8iEi = C;th’jaiEj. (5.17)

We consider an unpolarised standing gravitational wave
hij = ho cos wt cos wz - €j; . (5.18)

The generalizations to other waves and other types of polarisation are straight-
forward.

Translating (5.16) to momentum space and defining

Ax (t/ kX/ kyl kZ) = Ax (t/ kX/ kyi kZ) + Ax (t/ kJC/ kyl _kZ) 7
Ay (t/ kx/ ky/ kZ) Ay (t/ kx; ky/ kZ) + Ay (t/ kx/ ky/ _kz) s
A, (t/ ky, kyr kz) = A, (t/ ky, ky/ kz) — Ay (t/ ky, ky/ _kz) ’ 5.19)

then for k, = w/2 these equations (5.16) can be written in matrix form

V+2GY +EFY +cEMY ~0, (5.20)
where
Ax
Y= A, (5.21)
A
G is the gradient matrix
R+ —kky,  —kek
— 2
G=| “kk, R+< —kks (522)
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F is the friction matrix
1 1 0
F = hpwsinwt|[ 1 —1 0 |, (5.23)
2 0 0

and M is defined by

1
M = Zhocoswtx (5.24)

—2kky +2k; + w?  2k% — 2keky + w?  —2w (ky +ky)
X hkiky +2ky + w2k = 2kiky — w? 2w (ke —ky) |-

Note of that only two of the variables are independent since the photon has
only two dynamical degrees of freedom. Thus we need to decouple one
of variables from the other two. The gradient matrix G has only two non-
vanishing eigenvalues,

0 0 0
SGS =0 kx+kj+k 0 , (5.25)
0 0 ki + K + k2
where

ke ky 1
kﬁ( ks

S=|-g 0 1]. (5.26)
10

Introducing the new variables,

Ax
SY = ( ay ) , (5.27)
az

and linearly transforming (5.20),
S(V+EGY+EFY+ctmy) =0, (5.28)
and noting that k;ay = k;E; = O(h;;), then up to first order in the gravitational

wave amplitude we have the following two coupled differential equations
which decouple from the third variable,

Y + A Fy + 2kPy + My = 0, (5.29)
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where y = (ay, az)T, a prime denotes the derivative with respect to T = “’Tt,

k% = 4k? /w?, and

w? (kx+ky) _ w(kE—keky+k2)
- _ . 4kxk2 kakZ
J =hgsin2t W(—I2+2keky+K2)  —dkk2—w? (ketky) | 7
zkka 4kxk2
k2 k —2kx+2k
M =hgcos2t o T o A (5.30)
=hy 2% dke—dky  2ekidy g Ky | '
wky w w2 T ke

Note that a, « Fy; and 4, « Fyy are proportional to the gauge field strength
and thus gauge invariant.

The equation of motion (5.29) has the form of a Mathieu type matrix
equation with a friction term. The friction term can be removed via a field
rescaling in a similar way to how the Hubble friction term in a scalar field
equation can be removed by rescaling the field. The solution of the rescaled
variable will then display exponential growth with a Floquet exponent y in
narrow resonance bands of k. In terms of the original variables, the exponential
growth is modulated by the rescaling function. As shown explicitly in [174]
in the case of inflationary reheating, the exponential growth of the solutions
trivially extends from the scalar case to the matrix case.

We have numerically solved the equation (5.29), and the solutions for
ay and a, are shown in Figure 5.2, in the first case for propagation in the
vacuum (cs = 1) and in the second case for propagation in a medium (the
value c; = 1/1.333 for water was chosen). For ¢; = 1 the resonance occurs
only in the second band, while for ¢; = 1/1.333 we have resonance in the first
band. The growth rate in the case of first band resonance is much larger and
it takes a much shorter time for the instability to develop.

As is apparent by comparing the two figures, for c¢? < 1 (the value for water
was chosen), the amplication is much stronger (the Floquet exponent is much
larger). The time scale in the second figure is two orders of magnitude smaller
than in the first, and the amplitude at the end of the evolution period is of the
same order. The horizontal axis in the graphs is the re-scaled dimensionless
time T = wt/2.

Our analysis in this section is based on an un-polarized gravitational
standing wave in the flat space-time. The main conclusion also applies to
the traveling waves which are of more relevance in various astrophysical
phenomena. Namely a traveling gravitational wave can trigger parametric
resonance in the photon sector, at the first band in a medium where the
refractive index of light differs from unity. In this sense our mechanism is
somewhat similar to Cherenkov radiation. However, an essential difference
is that the resonant decay rate in our case is proportional to the amount of
photon produced at earlier times: namely, it grows exponentially. Moreover,
the exponential instability only occurs in a very narrow band in the Mathieu
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FIGURE 5.2: The left figure: the exponential instability of a,
and a; in the vacuum where ¢, = 1. The resonance occurs at
the 2nd band where A = 4. We set k2 = 125 = 3/2 in the
numerical plots, and we have adopted a unrealistically large
value for hy = 0.01 to reduce the CPU computing time. The
initial condition is set to a,(0) = a,(0) = a,(0) = aZ(0) = 1.
The right figure: the exponential instability of a, and a,, where
speed of light in the water ¢, = 1/1.333, IZ%C = 12; = 0.388, and
thus we have A ~ 1 in the Mathieu equation. We have adopted
an unrealistically large value for hy = 0.01 to reduce the CPU
computing time. The initial condition is set to a,(0) = a,(0) = 1
and a;(0) = a2(0) = 0.

equation, while Cherenkov radiation occurs within a wide frequency range

allowed by energy momentum conservation®.

“Note that the inverse process, namely the production of gravitational waves via para-
metric resonance from an oscillating scalar field, does not occur in a Minkowski background
in a vacuum since the scalar field only enters the source term in the gravitational wave
equation and not in the mass term (see e.g. equation (44) of [179]). However, in an expanding
background, there is the possibility of parametric resonance of gravitational waves if the
oscillating scalar fields lead to small amplitude periodic fluctuations of the Hubble expansion
rate H(t) superimposed on the regular decrease of H (see e.g. [180]).
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5.4 Estimate of the Damping Rate

In this section we will estimate the decay rate of a wave packet of gravitational
waves peaked at frequency w with a frequency spread of Aw ~ w due to
excitation of electromagnetic fluctuations in a medium with effective speed of
light ¢;. The energy density in gravitational waves is

ocw ~ G lw?nd. (5.31)

In the semiclassical approximation, we consider vector fields A; initially in
their vacuum state, i.e. with an initial amplitude Ay (t;) ~ k~1/2. In this case,
the energy density in the produced gauge fields is

04 ~ Aw /7> Pkk 12T (5.32)

where the integral runs over the two-dimensional phase space P of (ky, k)
modes which undergo resonance.

For each specific plane wave of frequency w, resonance occurs for a fixed
value of k, namely k; = w/2, and for a band of (k, k,) with width r2,,. —

2
2 W
min T 4¢2

r and radius r determined by

2
1_Cs 2

5 w
4cz

=k +k ~ (5.33)

These two equations determine the range of values of (ky, k,) for which
Ay = 1modulo g. Thus, in (5.32) we make the approximations of replacing the
modulus k by w/2 and taking u; to be independent of k. Inserting equation
(5.33), Sw ~ w and the value g ~ c2(1 — c2)hy we obtain

o4 ~ wic(1 = c2)hge® T, (5.34)

The decay rate of the gravitational wave amplitude /iy can then be determined
by equating the energy gain in p4 with the energy loss in pgw. Neglecting
the time dependence of hp in p4 (the time dependence is dominated by the
Floquet term and including the time dependence of hy would yield only a
higher order correction) yields

log(hp) ~ —Gw?c8(1 — c2)%e*T, (5.35)

Thus, we see that the decay rate of iy on the gravitational wave oscillation

time scale is suppressed by Gw? and also by the factor (1 — ¢2)2.
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5.5 Conclusions and Discussion

We have shown that gravitational waves can be damped by exciting a para-
metric resonance instability of the electromagnetic gauge field. In vacuum,
the resonance is very weak since the resonant modes lie in the second res-
onance band. In a medium in which electromagnetic waves travel with a
speed smaller than 1, on the other hand, the resonance is in the first band
and hence stronger. We have estimated the decay rate which a wavepacket of
gravitational waves undergoes.

The analysis is based on a single gravitational wave with fixed frequency.
The extension to several gravitational wave modes is straightforward. As to
be expected from the general theory of Floquet instability and also studied
explicitly for inflationary reheating in [174], the instability remains, and the
Floquet exponent for a fixed value of k, = w/2 is boosted if gravitational
waves of different frequencies are added.

The conversion of gravitational waves into plasma waves has been studied
in the literature focusing on linear resonant conversion [181] or the non-linear
interaction of two plasma and one gravitational wave [182, 183, 184, 185], in
the presence of strong background magnetic fields. Our analysis fits nicely
into this area providing a new conversion process with the same order of
magnitude for the growth parameter as for the three wave interaction [183],
without requiring a strong background magnetic field to exist, provided
that the plasma mass is sufficiently small compared to the frequency of the
gravitational wave, ml%lasma < (1-c2)w?/4.

Our result is a first step in the direction of investigating possible implica-
tions of gravitational wave conversion via parametric resonance in cosmology
and astrophysics. The biggest challenge in finding straightforward appli-
cations is to achieve the necessary conditions that lead to a non-negligible
conversion rate: namely a refractive index sufficiently larger than 1 in a con-
text where there is enough time for the instability to develop. In a black
hole binary, for instance, the orbital decay is faster than the time required
for a non-negligible conversion, while the refractive index in the accretion
disk is generally not large enough. In the early universe, during radiation
domination, the refractive index is indeed significant, and a field redefined
in order to incorporate the background expansion satisfies a Mathieu equa-
tion with g ~ hy/w?. Tt would be interesting to carefully investigate the
possibility of suppression of B-modes in the Cosmic Microwave Background
if the instability is well developed until matter-radiation equality. Another
potential application consists in a novel type of gravitational wave detector,
in which gravitational waves turn into possibly detectable electromagnetic
waves whose amplitude grows as exp (ehpwt) due to the exponential instabil-
ity induced by parametric resonance, where y and w are the amplitude and
frequency of gravitational waves respectively, and € is an order one constant
depending on the relation between the momentum of electromagnetic waves
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and gravitational waves. Given the amplitude of gravitational waves, the
electromagnetic signals grow faster for high frequency gravitational waves.
It remains a challenge to detect the high frequency gravitational waves with
natural origin [186]. Nevertheless, there are already some ideas about lab
generation of high frequency gravitational waves [187, 188]. Finally, we shall
mention that the methodology developed in this chapter can be applied to in-
vestigate the inverse process, namely the amplification of gravitational waves
due to parametric resonance.
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Chapter 6

Gravitational Wave Resonance in
ULDM Halos

6.1 Introduction

The nature of dark matter represents one of the most intriguing open questions
in Cosmology and Astrophysics. Although abundant evidence points to its
existence, a detection was never made, leading to a wide range of possibilities
with regard to its fundamental character [189, 190, 191]. CDM is currently
used in the Standard Cosmological Model (ACDM), which is very successful
in describing the Universe on large scales. However, on sub-galactic scales
there still remain incompatibilities between the CDM description and the
observed data, as CDM predicts more structure on small scales than what we
observe [192]. An interesting solution to this problem comes from Ultralight
Dark Matter (ULDM), namely Ultralight Axions (ULAs) of mass 10~2%eV as a
dark matter candidate [193, 194, 195]. Apart from that, different ULA masses
can be obtained in the scope of string theory [196] and might constitute the
totality or a fraction of dark matter in the cases where m 2 10~%7 [197, 198].

On the other hand, gravitational waves have been providing us with
unprecedented tools to test our Universe and it is natural to ask how they
can shed light into the dark matter problem. A number of different dark
matter candidates have already been investigated by using gravitational wave
physics [199, 200, 201, 202], including ULDM [203, 204, 205, 206].

In this chapter we focus on a peculiar property of ULDM halos consti-
tuted by ULAs - the time-oscillation of the generated gravitational potentials
- to show its relation with gravitational wave resonance in the halo. The
mechanism corresponds to narrow band parametric resonance, enhancing
gravitational waves of frequencies equal to the ULA masses.

The chapter is organised as follows: Section 6.2 presents the description of
the ULDM halo, resulting in the expressions for the gravitational potentials.
Section 6.3 applies parametric resonance to the context of a gravitational wave
in a ULDM halo. Finally, a summary of the results is presented in Section
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6.4. Natural units with M, = 1 are used throughout the text, except when
explicitly said otherwise.

6.2 Description of the ULDM Halo

In this section we present the mathematical description of the ULDM halo,
which leads to the expressions for the oscillating gravitational potentials. As
shown in Section 6.3, this feature is of major importance for the occurrence of
resonance.

We start from an almost Minkowski space-time given by
ds? = —(1+2U)dt* + (1 —20) (dx* + dy* + dz?), (6.1)

as the expansion of the Universe is negligible on the scales considered. The
quantities U and U are the gravitational potentials generated by the ULDM
halo, which are treated perturbatively. This assumption holds even inside the
halo, where the condition U, U < 1 is still satisfied.

The ULDM is represented by an ULA field

¢(t) = ¢ cos (mt), (6.2)

where the spatial dependence of the amplitude ¢y was neglected at leading
order [203, 207]. The oscillating frequency corresponds to the particle’s energy,
which can be approximated by the particle’s mass m in the non-relativistic
limit. The corresponding energy-momentum tensor is

Ty = diag(p, p, p, p), (6.3)
where
1
po= Smies, (6.4)
p = —pcos(2mt). (6.5)

The oscillating pressure leads to an oscillating contribution to the gravitational
potentials U and U, in such a way that we can write

T = Ty+4T, (6.6)
U = Uy+dl, (6.7)
U = Uy+4éU, (6.8)
R = Rg+6R, (6.9)

where T is the trace of the energy-momentum tensor, Xy terms are time-
independent and 6X terms oscillate in time. Both U and U depend on space
and time, where the spatial dependence is restricted to Uy and Up. R is the



6.2. Description of the ULDM Halo 109

Ricci scalar associated to (6.1), which reads
R = —6U +2V?(20 — U), (6.10)
where dot denotes derivative with respect to ¢.

Now let us explore Einstein’s equations
1
RI’“/ - iRgl/{y — Tyy, (6.11)

where Ry, is the Ricci tensor, in order to relate some of these quantities. First,
from the traceless part of the ij component we obtain

U, = Up. (6.12)

Secondly, from the trace of the Einstein’s equations, we have —R = T, which
allows us to identify
Ro = p. (6.13)

On the other hand, from (6.10) we have the time-independent part of the Ricci
scalar Ry as a function of the gravitational potentials

Ry = 2V2U,, (6.14)
leading to the following Poisson equation
2V2U, = p. (6.15)

We can estimate the magnitude of Uy by switching to Fourier space

Uy (6.16)

X —
27/
ka

where k, is the wavenumber related to the ULA. Its value can be estimated
from k2 /m? = v?, where v ~ 1073 is a typical velocity in our Galaxy.

The expression for the oscillating part U is obtained from (6.10) by assum-
ing 6U > V26U and sU > V?6U", which allows us to write [207]

6T = 6511 (6.17)
By solving this equation we obtain

y
ou = g2 €05 (2mt). (6.18)

In order to find U we follow [204] and perform a change of frames, which
retains the dependence on spatial derivatives of U in the ij component of the

This assumption is consistent with (6.2), where the spatial dependence of ¢y was neglected
[203].
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Einstein’s equations. Then we switch back to the halo frame by setting the
relative velocity between the frames to zero, which leads to

sU = —4U. (6.19)

6.3 Gravitational Wave Resonance in the ULDM
Halo

Let us now consider a gravitational wave around the space-time (6.1), which
can be written as
hyy = hey, (6.20)

where /i is the amplitude and €, is the polarization tensor. Since the latter
is parallel transported along the geodesics, we can neglect its change due to
the presence of the gravitational potentials U and U and write the equation of
motion for the scalar amplitude & [208, 209]

du(v/—8g" dvh) =0, (6.21)

which leads to

h— (142U +20)V?h — Uh — 30h +
+0;h0;U — 9;h0;U = 0 (6.22)

up to linear order in U and U. By substituting (6.18) and (6.19) in (6.22), we
tind, in Fourier space,

e + K2l — 4 / A% exp (—ik - ¥)UgV2h +
— %p cos (2mt)h = 0, (6.23)

where i = exp (6U)h. This field redefinition was performed in order to kill
the friction terms present in (6.22). Defining T = mt, we obtain

_ 2 4 - _
hy + %hk — 2 /d3x exp (—ik - ¥)UyV2h +
1p -
B =0, '
5 2 €08 (2T)h =0 (6.24)

where prime denotes derivative with respect to 7. The remaining convolution
is not trivial to perform, but it can be neglected if compared to the other kinetic
term in the equation of motion. Because it is proportional to (o/k2)(k?/m?)hy,
it is very small compared to (k?/m?)hy, as p/k? < 1. For this reason, we
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approximate
- kz - 4 3 g 27
Ah, = th— W/d xexp (—ik - X)UpV*-h
K2 -
~ th, (6.25)
which leads to ) ) )
h + Ahy — 2q cos (2T)h = 0, (6.26)

where g = p/m?/4. Although the remaining convolution is not negligible
compared to the oscillating term, they play different roles in the Mathieu
equation. The first, together with the other kinetic term, establishes where the
resonance bands are centered, while the second is related to the amplification
factor and to the band width. Therefore, equation (6.26) is a Mathieu equation,
just like (5.1), in the first resonance band for k?> = m?. Solving it numerically
we obtain Figure 6.1, which shows the amplification of the gravitational wave
hy in time T for an illustrative high energy density.

According to the Floquet instability theory, the solution to (6.26) can be
approximated as? )
hy >~ hy o< exp (q7/2), (6.27)

which allows us to estimate the time required for the amplification to become
of O(1), ie. T ~ 1/4. It is important to note that g, which contains the
information about the ULA energy density p, depends on the fraction of ULAs
as dark matter f, as

o= foom, (6.28)

where ppy is the dark matter energy density.

6.3.1 Gravitational Wave Resonance Independently of Con-
straints on ULDM

Because the gravitational wave resonance could, in principle, be used to
independently test ULAs, we first assume f = 1 for all masses, ignoring the
constraints already imposed by other phenomena. In Section 6.3.2 we present
the results considering these constraints.

Let us first consider the solar region, i.e. p = 0.4GeV/cm®. In the most
standard scenario, i.e. m ~ 10~%2eV, one would wait for 3.9 x 107 years to see
an amplification of gravitational waves with frequency in the Pulsar Timing
Array (PTA) range, which is larger than the age of the Universe. For ULAs of
mass m ~ 10~%¢eV, the required time is 3.9 X 1012 years, still unfeasible for
current tests.

2Due to the fact that exp (6U) ~ 1 we can approximate fy ~ .
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FIGURE 6.1: Gravitational wave resonance for m = 10-??eV and
o = 10'° x 0.4GeV/cm?, where the factor 10'® was introduced to
speed up the resonance and reduce computational time. For the
real value in the solar region, p = 0.4GeV/ cm?, assuming the
ULA constitutes 100% of dark matter, the amplification becomes
of O(1) around T ~ 1/g ~ 2.0 x 108, equivalent to 3.9 x 107
years. The Floquet estimate corresponds to (6.27). The initial
conditions used are /;(0) = 1 and k;/(0) = 0.

On the other hand, the prospects are largely improved if one considers
very dense regions in the halos, although still satisfying p/m? < 1, which can
arise, for instance, due to the existence of a black hole in the halo [210, 211,
212, 213]. For p ~ 1.4 x 10’GeV/cm?, the ULAs of mass 10~22eV would take
1.1 x 10! years to amplify gravitational waves, which is compatible with the
time of formation of dark matter halos®. In this case, primordial gravitational
waves in the PTA range could be amplified if they keep traveling through
this region since the halo formation. Shorter, and therefore more realistic,
time intervals are achieved in denser environments. Note that for this specific
energy density, p/m? < 1 holds for m > 10~2°.

3This corresponds to the most conservative assumption and a bigger gravitational wave
amplification is obtained if one considers scenarios where dark matter halos formed earlier in
p
the Universe history [214, 215, 216].
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Figure 6.2 depicts the amplification, represented by the argument of the
exponential function in (6.27), as a function of time and ULA masses. It is
important to note that the formalism used here would break down when
the condition & < 1 is not anymore satisfied, which sets an upper bound
on the amplifications depending on the initial gravitational wave amplitude.
The most interesting gravitational wave frequencies lie in the PTA range and
correspond to 10~ 2eV< m < 1072V, resulting in large time intervals for
O(1) amplification, although still compatible with halo formation time. On
the other hand, shorter time intervals are achieved by lighter ULAs, namely
10~2%eV < m < 10-2%eV, which correspond to gravitational wave frequencies
from 2.4 x 1071%Hz to 2.4 x 107 1?Hz. Although not covered by ongoing
gravitational wave detectors, these frequencies could be explored in the future
[217, 218].

104
102
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FIGURE 6.2: Argument of the amplification factor (6.27), q7/2,
as a function of time and ULA masses assuming f = 1 for
all masses in the very dense dark matter region, i.e. 1.4 x
10’GeV/cm?. The red line indicates when p/m? ~ 0.01, rep-
resenting a left bound to the region where p/m? < 1.
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6.3.2 Gravitational Wave Resonance Considering Constraints
on ULDM

Now let us consider constraints already imposed to the ULA fraction as dark
matter f depending on the ULA mass m [219, 195], namely constraints from
the Cosmic Microwave Backgrgouund (CMB) [197], the Baryon Oscillation
Spectroscopic Survey (BOSS) [220], the Spitzer Photometry and Accurate
Rotation Curves (SPARC) [221], Eridanus-II [222], Lyman-« forest [223] and
galaxy weak lensing combined with Planck (4DES) [224]. Constraints from
UV luminosity function and optical depth to reionization [225], as well as
constraints from M87 black hole spin [226, 227, 228], are implicitly considered,
as they do not further reduce the parameter space. Constraints from 21-cm
cosmology were not taken into account, as the literature only presents results
for f = 1. In [219] forecasts are obtained by relaxing the assumption on f, and
it is expected that the Hydrogen Epoch of Reionization Array (HERA) [229]
will be very sensitive to ULDM, comparable to the forecasts for the Cosmic
Microwave Backgound Stage 4 (CMB-54) [230]. Other constrains on ULAs can
arise in specific scenarios, such as [231, 232]. Figure 6.3 presents the parameter
space and the constraints explicitly considered in this chapter.

The Floquet estimates are then computed in the very dense dark matter
region, i.e. ppy =~ 1.4 x 107GeV/cm?, assuming f from the constraints to
determine p through (6.28). The results obtained for the gravitational wave
resonance by considering all the constraints combined are shown in Figure 6.4.
As expected, the constraints to f suppress g in the Mathieu equation, leading
to reduced amplifications, although still significant for some ULA masses.
Note that small values of f can be compensated by higher dark matter energy
densities ppy, as long as the latter can be justified in at least one physical
regime and p/m? < 1.

6.4 Conclusions and Discussion

In this chapter we have shown gravitational waves are amplified due to
parametric resonance with ULAs constituting the totality or part of a dark
matter halo. All the ULA masses considered might only lead to significant
amplifications nowadays in very dense dark matter regions, which could exist
in different scenarios [210, 211].

Because the gravitational wave resonance could be, in principle, used to
independently constrain ULDM (assuming the effect could be measured in a
very dense dark matter environment), Section 6.3.1 presents the gravitational
wave amplification for f = 1 for all masses, ignoring existing constraints.
The results are depicted in Figure 6.2. On the other hand, in Section 6.3.2 the
constraints summarized in Figure 6.3 are considered, leading to the gravita-
tional wave amplifications depicted in Figure 6.4. Since smaller values of p
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FIGURE 6.3: Constraints imposed to the ULA fraction as dark

matter f depending on the ULA mass m for 107%eV > m 2

10~2%V [219], namely CMB+BOSS [197, 220], SPARC [221],

Eridanus-II [222], Lyman-« forest [223] and galaxy weak lensing
combined with Planck (+DES) [224].

suppress the parameter g in the Mathieu equation (6.26), the gravitational
wave amplifications are also suppressed compared to f = 1. A reduced f can
be compensated by a denser dark matter region, as long as it can be justified
by at least one physical configuration, such as [210], and p/m? < 1.

Note that there exists an upper bound on the amplifications established
by the condition i < 1, whose value depends on the initial amplitude of the
gravitational wave considered. This results from the fact that the Mathieu
equation (6.26) was obtained assuming perturbation theory.

Given that the parametric resonance occurs for k = m, the amplified grav-
itational waves lie in the range ~ 10~8Hz to ~ 10~ 13Hz, corresponding to
10~%2eV to 10~ ¥eV. Therefore, the possible gravitational wave sources are
primordial perturbations and supermassive black hole binaries. Due to the
large time scales for the resonance to become significant, the scenarios of
interest should provide gravitational wave emission for a long time, which
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FIGURE 6.4: Argument of the amplification factor (6.27), 47/2,

as a function of time and ULA masses, considering f according

to the constraints in Figure 6.3, in the very dense dark matter

region, i.e. 1.4 X 10’GeV/cm3. The red line indicates when

p/m? ~ 0.01, representing a left bound to the region where
p/m? < 1.

does happen for the sources mentioned. In addition, note that, although
supermassive black hole binaries suffer orbital decay, they present contin-
uous gravitational wave emission long before merger, therefore consistent
with the approach carried in this chapter. Finally, it is relevant to remember
that the frequencies in the range 10~8 Hz to 10~° Hz lie in the PTA range,

with NANOGrav recently reporting the evidence for a gravitational wave
background [233].

Throughout the whole chapter we have assumed GR and a minimal cou-
pling to the ULAs. Different results could be obtained in modified scenarios

such as [205], where gravitational wave resonance is obtained in the scope of
dynamical Chern-Simons gravity.

Appart from ULAs, other phenomena can trigger the resonance, such as
fast small oscillations in the Hubble parameter [234] or a varying gravitational
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wave speed [173].

The consideration of a gravitational wave background might further en-
hance the resonance [176, 235, 39].
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Chapter 7

Conclusions and Discussion

In this thesis we have explored different aspects and challenges of ACDM
and motivated modified scenarios, mainly focusing on early Universe and
gravitational wave physics. Our investigation included the proposal and
analysis of a bouncing model that generates inflation naturally, the exclusion
of bouncing models proposed to mitigate the CMB anomalies on large scales,
the analysis of the effects of HDE during an inflationary phase, the conversion
of gravitational waves to photons via parametric resonance and the resonant
amplification of gravitational waves in ULDM halos. All these scenarios are
motivated by different open questions in cosmology, such as the singularity
problem, the generation of cosmological perturbations, the observed features
that are anomalous within ACDM, the dark energy and the dark matter
problem and, finally, the phenomena that might arise in gravitational wave
dynamics.

Although we have provided the conclusions and discussion for each chap-
ter separately, in this section we would like to reiterate the main points and
deliberate the main implications of this thesis.

in Chapter 2 we have proposed a bouncing cosmology that addresses
the initial singularity problem, generates inflation without an inflaton and
leads to the usual radiation-dominated phase naturally [34]. All this rich
phenomenology is generated by a very simple scale factor in function of
conformal time 7, namely

a(if) = ay (yﬁ-l-\/l +y2\/1-|—172>. (7.1)

In our investigation, this scale factor was obtained due to quantum effects
introduced by means of the Wheeler-DeWitt equation in the scope of the dBB
quantum theory, but it is possible that other types of quantization might lead
to similar asymmetric evolutions!. Regardless of its origin, this kind of scale

IWe recall here that the term asymmetry in this context refers to the difference between
the contracting and expanding phases. In this concrete scenario, the contraction is almost
Minkowski, while the expansion presents an inflationary phase followed by the usual cosmic
history.
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factor presents a very interesting phenomenology, motivating the search for
this kind of evolution in different theoretical approaches. In addition, other
kinds of perfect fluids could be considered, where in this specific case the
radiation fluid is the one that generates the qdS phase.

As we have shown, this scenario generates the observed amplitude of
the scalar power spectrum, which is expected due to the existence of the
naturally generated inflationary phase. However, this phase is closer to de
Sitter than what observations indicate, leading to a spectral index too close
to one (instead of the observed n; ~ 0.96). Additionally, the tensor-to-scalar
ratio is incompatible with current cosmological constraints or, in other words,
the amplitude of the tensor power spectrum is too high. This is caused by the
similarity between the scalar and tensor Mukhanov-Sasaki equations, which
differ only by the value of cs. Therefore, given these incompatibilities, this sce-
nario has to be supplemented with other ingredients, for example a curvaton
field [100, 101, 102, 103]. The curvaton does not play a role in the background
evolution, but it increases the amplitude of scalar perturbations with respect
to the tensor ones, leading to a lower tensor-to-scalar-ratio. Additionally, the
presence of the curvaton would generate a tiny deviation € from radiation,
w = 1/3 + €, which would then push the spectral index away from 1. Of
course, the introduction of an extra field spoils one of the appealing features
of this scenario, so another option would be to look for different asymmetric
scale factors that generate a qdS phase with, for instance, matter as the perfect
fluid. In this case, it has been shown that the amplitude of the generated
primordial gravitational waves is sufficiently small [90].

In Chapter 3 we have investigated phenomenological bouncing models
inspired by LQC that were proposed in order to mitigate the CMB anomalies
on large scales. These scenarios had a very interesting phenomenological
appeal, as they could fit CMB data on the power spectrum level even better
than ACDM for some parameters. They simultaneously mitigated the power
suppression and the dipolar and parity asymmetries, making these features
more likely in a concrete realization of the temperature maps, and also al-
leviated the issue with the lensing parameter in the Planck analysis. These
achievements were possible due to very large non-Gaussianities on very large
scales, which decayed very quickly inside the horizon. Given this extremely
fast decay, it was believed in the literature that experiments such as Planck
could not impose constraints on the size of the non-Gaussianity due to cosmic
variance.

We have explicitly computed the CMB reduced bispectrum [35], which
is the quantity observed by Planck, and the corresponding SNR. Although
the bispectrum decays indeed extremely fast, for very low multipoles the
signal surpasses cosmic variance, leading to a cumulative SNR that is high
enough to be detected. Since the overlap of this bispectrum with standard
bispectrum shapes was low, we had to look for the signal in the actual Planck
data [36]. What we obtained was an exclusion of all the scenarios that were
able to mitigate the anomalies with high significances. Therefore, although
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these bouncing scenarios seemed very promising from the phenomenological
point of view, they cannot address the anomalies and they lose their most
appealing advantages.

These results show the sensitivity of the Planck data beyond the pivot
scale, rendering some features on very large scales testable despite cosmic
variance. This can be explained by the fact that the CMB transfer functions
relate each multipole to a rather broad band of wave numbers k, which can
be seen from Figure 3.9. Additionally, these results are likely valid for other
scenarios that make use of skewed statistics to alleviate the CMB anomalies.

In Chapter 4, we have considered the effective field theory of HDE, a
dark energy candidate, and investigated its effect during a single-field slow-
roll inflationary phase. We first analyzed its effects on the background level
and concluded that the inflaton dominates the holographic and the dark
radiation components, making HDE compatible with inflation. Then we
computed the cosmological perturbations and the corresponding scalar and
tensor power spectra, which contain corrections that decay very quickly in the
first inflationary e-folds. Therefore, this scenario is compatible with current
CMB constraints to the power spectra [38].

In Chapter 5 we have shown that gravitational waves can be damped due
to parametric resonance with photons. The most efficient conversion happens
when the electromagnetic field propagates in a medium with speed smaller
than 1 in natural units (this is required in order to promote the resonance to
the first band) [39].

Although our analysis has been performed in a Minkowski space-time, the
generalization to an expanding background is possible. In the case of a scalar
field, for instance, the equation of motion has a Hubble friction term, which
can be removed by a field redefinition that takes the expansion into account.
In a radiation-dominated Universe, a Mathieu equation is obtained in terms of
conformal time, leading to the amplification of the redefined scalar. Therefore,
although the field redshifts in the expanding background, the conversion still
occurs.

The main challenges behind this conversion mechanism in the context
of cosmology and astrophysics are the sufficiently high refractive index and
time intervals required for the instability to develop. As an example, if one
considers a black hole binary, one would have the resonance spoiled by the
orbital decay (in addition to a very small refractive index in the accretion
disk). Nevertheless, interesting directions to explore based on this conversion
mechanism are the possibility of B-mode suppression in the CMB and indirect
gravitational wave detection, i.e. detection of the amplified electromagnetic
tield amplified due to resonance with a gravitational wave.

Finally, in Chapter 6 we have investigated the amplification of gravitational
waves due to parametric resonance in ULDM halos. Such dark matter candi-
dates have some interesting phenomenological imprints, such as suppression
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of structure formation on small scales, therefore solving the incompatibility
between CDM simulations and observations [192]. Additionally, this kind
of dark matter introduces a time oscillation in the gravitational potentials of
the halo due to the oscillatory character of the ULA pressure. By using this
property and recalling that "gravity bends gravity", we obtained a Mathieu
equation for the gravitational wave. The first resonance band is achieved
when the gravitational wave frequency is equal to the axion mass, interest-
ingly encompassing the PTA frequency range.

We investigated the current amplification of a gravitational wave in this
context and found that significant results can only be achieved in dense re-
gions within the halo, which could arise for instance due to the presence of
a black hole. The possible gravitational wave sources are primordial pertur-
bations and supermassive black hole binaries, given the frequencies that are
amplified for axion masses between 10~22eV and 10~ >eV.

These results were obtained in GR minimally coupled to the ULAs. An
interesting possibility for future work in this direction would be to consider a
modified gravity theory where the oscillating mass term of the gravitational
wave equation of motion becomes larger (therefore increasing the amplifi-
cation). Moreover, the inclusion of a gravitational wave background might
boost the resonance, which is worth exploring.

In summary, we have delved into various facets and complexities of
ACDM and modified cosmologies, with a particular emphasis on early Uni-
verse dynamics and gravitational wave phenomena. With the findings dis-
cussed above, we have shed light on fundamental aspects and challenges and
delineated potential avenues for further research, contributing to the ongoing
discourse in theoretical and phenomenological cosmology.
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