Journal of Physics: Conference Series

PAPER « OPEN ACCESS You may also like

Application of pivoting adversarial networks in  uari piogucion associaied wih 2 neural

gauge boson in future lepton colliders

search for four top quark production in CMS Sara Khatbi anl Mehmossh Mollemi

- Constraining gatt operators from four-top

. . ) . . production: a case for enhanced EFT
To cite this article: V Wachirapusitanand et al 2019 J. Phys.: Conf. Ser. 1380 012069 sensitivit

Cen Zhang and

- The top quark (20 years after its discovery)
E E Boos, O E Brandt, D S Denisov et al.

View the article online for updates and enhancements.

@ The Electrochemical Society
Advancing solid state & electrochemical science & technology

242nd ECS Meeting | e

M. Stanley Whittingham,
Oct 9 - 13, 2022 « Atlanta, GA, US Binghamton University

. Nobel Laureate -
Presenting more than 2,400 2019 Nobel Prize in Chemistry

technical abstracts in 50 symposia

This content was downloaded from IP address 128.141.192.153 on 15/09/2022 at 13:15


https://doi.org/10.1088/1742-6596/1380/1/012069
/article/10.1088/1361-6471/ac09dd
/article/10.1088/1361-6471/ac09dd
/article/10.1088/1361-6471/ac09dd
/article/10.1088/1674-1137/42/2/023104
/article/10.1088/1674-1137/42/2/023104
/article/10.1088/1674-1137/42/2/023104
/article/10.1088/1674-1137/42/2/023104
/article/10.1088/1674-1137/42/2/023104
/article/10.1088/1674-1137/42/2/023104
/article/10.3367/UFNe.0185.201512a.1241
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstrikgJ_Bf-0E7uvqHDnpfuximeGcjlYEh0uKkit2cmKIso4k9OCDmIbjAfXjBgmjlCGTU22CgEwkz6gyzDEd0G3KMe07iR_5JtkbHXR13NTOVzFfXuoHT2ZHziB4Kf7Fjs6grsNK0xTa95NzFj79GxgZ0k6CggjksX1dWbq2WqeM-ybvCn-qAMylHAIT2_3DGsxt-zX6EDXlakGmA4k1KE-j68XxGE9mXCNyJmsHXSGSE8Gii2j3dUGUmuJLy0VrQD_Losl-VbLbt541G3Cq-P2pG8R8lKqSxrgSjj7DA0aQ&sai=AMfl-YRilZ6ZJ6PtYT2sEiVzbViJt7_m3XdwPfTfg3WkLCDIYPvSRFou0T4KvdIq6H1Zv_-o6Mke4XE4SpraGeU&sig=Cg0ArKJSzENCWJvzI7J0&fbs_aeid=[gw_fbsaeid]&adurl=https://community.electrochem.org/eWeb/DynamicPage.aspx%3Fwebcode%3DEventInfo%26Reg_evt_key%3Dcdc97533-dd9f-4411-a7c2-faa5b85a1388%26utm_source%3DIOP%26utm_medium%3DADV%26utm_campaign%3D242Reg

Siam Physics Congress 2019 (SPC2019): Physics beyond disruption society IOP Publishing
Journal of Physics: Conference Series 1380 (2019) 012069  doi:10.1088/1742-6596/1380/1/012069

Application of pivoting adversarial networks in
search for four top quark production in CMS

V Wachirapusitanand', N Srimanobhas'? and F Blekman?

!Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd
Wangmai Pathumwan Bangkok 10330, Thailand

2CERN, European Organization for Nuclear Research, Geneva, Switzerland

3Physics Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

E-mail: vichayanun.wachirapusitanand@cern.ch

Abstract. One burden of high energy physics data analysis is uncertainty within the
measurement, both systematically and statistically. Even with sophisticated neural network
techniques that are used to assist in high energy physics measurements, the resulting
measurement may suffer from both types of uncertainties. Fortunately, most types of systematic
uncertainties are based on knowledge from information such as theoretical assumptions, for
which the range and behaviour are known. It has been proposed to mitigate such systematic
uncertainties by using a new type of neural network called adversarial neural network (ANN)
that would make the discriminator less sensitive to these uncertainties, but this has not yet been
demonstrated in a real-life LHC analysis. This work investigates ANNs using as a benchmark
the search for the production of four top quarks, an extremely rare physics process at the LHC
and one of the important processes that can prove or disprove the Standard Model. The search
for four top quarks in some cases is sensitive to large systematic uncertainties. The expected
cross section upper limit for four top quark production is calculated using traditional neural
networks and adversarial neural networks based on simulated proton-proton collisions within the
Compact Muon Solenoid detector within Large Hadron Collider, and are compared to existing
results. The improvement and further considerations to the search for rare processes at the
LHC will be discussed.

1. Introduction

The production of four top quarks (tttt) is one of the important particle production processes to
determine whether or not the standard model (SM) can provide precise predictions. However, the
measurement of the process suffers from its dominant background, ¢ production. tttt production
has its cross section, as predicted by SM at NLO and /s = 13 TeV, is 9.2 fb. On the other
hand, the background process has its cross section, as predicted by SM at NLO and /s = 13
TeV, to be 831 pb, which is 90000 times larger than the cross section of the tttt production.
To make matters worse, the search also suffers from large uncertainties, both systematically
and statistically. Fortunately, most systematic uncertainties are modelled from well-known
theoretical uncertainties and estimates, and can be modelled with particle collision simulations,
while statistical uncertainties can be diminished by acquiring larger data samples over time. The
most recent search conducted by the Compact Muon Solenoid (CMS) collaboration [1] uses a
boosted decision tree (BDT), which can be trained to discriminate between tttt production and
tt production, but the BDT itself is not designed to be resilient against systematic uncertainties.
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To handle issues with systematic uncertainties, Louppe et al. [2] suggested that a new type of
neural network called a pivoted Adversarial Neural Network (ANN) can deliver a discriminator
that is resilient to certain systematic uncertainties. This, however, has only been tested with toy
examples and has never been used in real-world cases such as a complete analysis at the LHC.
In this work, we are applying the adversarial neural network approach to investigate possible
gains of pivoted ANNs in the search for ¢ttt production, particularly in single lepton channel.

2. Four top quark analysis with traditional neural network

The adversarial neural network approach contains two parts: a discriminator network and an
adversarial network. Before training with the adversarial network, it is important to get the
structure of the discriminator network right first. In this section, we will go through the design
of the discriminator neural network (NN) and use the network to calculate the expected cross
section limit and expected significance of the search, and will be compared to previous results.

As with every supervised ML model training, data is required to train the neural network.
The data used to train the discriminator network are simulated datasets, the same as used in [1],
containing simulated proton-proton collision events at 13 TeV centre-of-mass energy. Events in
the dataset are required to contain only a single muon with 7 jets or a single electron with 8 jets
and follow the same corrections and basic selections as in [1]. These simulated collision events are
created using Monte Carlo techniques and include the simulation of the CMS detector with 2016
condition using Geant4 (v.9.4) [3]. Events simulated from ¢#t¢ production are classified as signal
events, while events simulated from ¢t production are classified as background events. There
are also smaller background processes which account to approximately 13% of all backgrounds
and are not included in the training. Only collision events containing 9 or more reconstructed
particle flow (PF) jets [4] in the training dataset are used to train the discriminator network,
since they have more signal to total events ratio than events containing fewer jets.

The input variables for the discriminator neural network are derived based on the difference,
both kinematic and topological, between tttt production and tt production. The final list of
input variables to be inputted into the discriminator network contains 48 variables, such as HT
(scalar sum of the transverse momentum of each reconstructed jet) and 5th and 6th highest
jet transverse momentum. Fifteen variables in the list are also used in the previous search
mentioned in [1].

Regarding the network structure, the discriminator network contains one batch normalization
layer after an input layer, which automatically normalizes the input, allowing us to input the
data directly without normalizing the variables first. Several hidden layers and neurons follow
the batch normalization layer and are permutated with hyperparameter adjustment procedure,
whereas the final hidden layer is set to use tanh activation function. The hidden layers are
followed by an output layer with sigmoid activation.

Hyperparameter adjustments are carried out to find the optimal configuration of the hidden
layers within the discriminator network. The search considered the number of hidden layers and
the number of neurons in each layer. Studies have shown that a configuration with three hidden
layers with 200, 200, and 100 neurons, respectively, has the best area under Receiver Operating
Characteristic (ROC) curve. This can be considered as a measure of the performance of the
network structure.

The final discriminator network, with its structure obtained via hyperparameter adjustments,
is used to calculate the NN output for each collision event from ¢ttt production and all
background processes within the same final states. Histograms of output distributions are then
created, categorised by single electron channel and single muon channel, number of particle jets
in an event and number of particle jets tagged as originating from bottom quarks. An example
of the histograms is shown in figure 1. Each histogram is binned in such a way that each bin
contains roughly equal amounts of background events, allowing stable statistical behaviour of
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Table 1. Expected limits and significance above SM background prediction from a traditional
NN and an adversarial neural network (ANN) for single lepton channel, compared to the
sensitivity of boosted decision tree (BDT) shown in [1].

For 35.8 fb~! data For 200 fb~! data

BDT NN ANN NN ANN
Expected limit (fb) 90732 78737 83732 3677 41+79
Expected significance  0.21 0.25 0.23 0.52 0.46

the simultaneously binned maximum-likelihood fit used to constrain the data.

Numbers of background and signal events from each bin in each populated histogram, as
well as systematic uncertainties in each bin, are then used to calculate the expected limits on
the cross section and significance above SM background using CLs method [5]. Table 1 shows
the expected limits and significance for the traditional NN discriminator. BDT output values
derived in [1] are also shown to compare to results from traditional NN. As table 1 shows, the
traditional NN discriminator slightly improves uncertainty on the expected limit and increases
the expected significance.

We can also expect to use more data recorded from particle detectors to gain better results,
both in terms of expected limit uncertainty and expected significance. Expected limits and
significances are also calculated with an adjustment of integrated luminosity to 200 fb—!, which
is the approximate size of Run 2 CMS dataset recorded in 2015-2018. As shown in table 1, the
expected limit uncertainty decreases and expected significance increases when 200 fb~! data is
used. Again, traditional NN can still deliver a smaller uncertainty range and better expected
significance than BDT used in [1].

3. Adversarial neural network outlook
The discriminator network obtained in section 2 only discriminates input events into signal-like
and background-like events, and has not been trained with an adversary network. The adversary
network, added by the ANN approach, will take the discriminator output as its input and will
assess the input event that gives such output. Both networks are trained in turns, where the
adversary is trained while the discriminator is locked, and vice versa.

In our application case, we can set both network’s loss function, which is a function
determining the accuracy of NN predictions, in such a way that the adversary can guess whether
or not an event contains a specific systematic uncertainty, and the discriminator must give its
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output value so that the adversary cannot do its job. With this way, we will get a distribution of
the discriminator output to be the same for events with and without such systematic uncertainty.
In our case of training, we aim to train against a normalization uncertainty on events containing
additional heavy flavour jets in ¢t production, which is called internally as HeavyFlav.

We also introduced a hyperparameter, called A, to control the importance of how well the
adversarial network assesses the input event. The A parameter will appear in loss functions to
control such behaviour of the network. We have iterated the training with varying values of A
to find the optimal values which cause the adversarial network to be unable to assess whether
an event contains the trained uncertainty.

Single u heavyFlav (Work in progress) Single u heavyFlav (Work in progress)

) A=

Figure 2. Uncertainty distribution due to heavy flavour modelling as a ratio, calculated with
traditional NN (a) and adversary NN (b), as determined in the single muon channel.

=

After training a discriminator network with an adversary network, using the optimal value of
A, the discriminator can be extracted and used to calculate the output for signal and background
events. We observed that the distribution of HeavyFlav uncertainty from the ANN approach
becomes flattered (see figure 2), causing the data to be constrained more easily during the
calculation of expected limits. Nevertheless, we have found that the expected limit uncertainty
from ANN does not improve with our training over the results with traditional NN alone
(see table 1). With a reduction in the dependence of the shape of the considered systematic
uncertainty, observed in figure 2, future studies may focus on reducing the impact of systematic
uncertainties coming from multiple sources.

4. Summary

A discriminator based on the traditional neural network can already give us a better expected
limit uncertainty and significance for ¢ttt production. The results are more pronounced for large
data samples, which is expected to be achieved over time. We expect that, with the correct design
of the adversarial neural network, we can use the network to pivot the discriminator network
and finally achieve smaller uncertainty on expected limits and better expected significance for
tttt production searches.
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