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Abstract

Neutrino oscillation experiments are designed to measure neutrino masses and mixing pa-

rameters by scattering them off nuclei such as carbon, oxygen, and argon in detectors.

Predictions of neutrino-nuclei cross sections from the Standard Model are needed to extract

these parameters, but their theoretical uncertainties remain large due to the complexity of

nuclear and hadronic physics. This situation needs to be improved in order to satisfy the

precision needs of future experiments.

In this dissertation, we focus on working towards a first-principles calculation of the

nucleon axial form factor with lattice quantum chromodynamics (QCD). Nucleon axial form

factor, which parametrizes the weak responses of a proton or neutron, is difficult to measure

experimentally, and it is a dominant uncertainty in neutrino-nuclei cross-section calculations

for incoming neutrino energies at around 1 GeV. So a theoretical calculation with lattice

QCD provides a non-ambiguous determination of the form factor that could help reducing

the uncertainty.

The notorious signal-to-noise problem renders calculations of nucleon observables compu-

tationally intensive in lattice QCD. In this work, we investigate the use of staggered fermions

in nucleon calculations. Staggered fermions are the most computationally efficient fermion

discretization in lattice field theory, but certain theoretical issues have so far prevented their

applications to nucleon physics. As a stepping stone towards a full calculation of the nu-

cleon axial form factor, this dissertation provides a comprehensive theoretical framework on

how to calculate the nucleon mass, vector charge, and axial charge with staggered fermions,

together with numerical results demonstrating the methodology. This framework can be

generalized to the form factor calculation that will appear in the near future.

x



Chapter 1

Introduction

1.1 Probing new physics with neutrinos

Within the Standard Model of particle physics, masses of elementary particles are derived

from the vacuum expectation value of the Higgs field after spontaneous symmetry break-

ing. The Higgs mechanism generates equal masses for both left- and right-handed par-

ticles, and because we have yet to observe any right-handed neutrinos, this would then

imply that (left-handed) neutrinos must be massless to conform to the Standard Model.

In 1998, the Super-Kamiokande (Super-K) experiment announced the first discovery of

masses to neutrinos [5] through detecting atmospheric neutrino oscillations. To under-

stand why this result demonstrates neutrinos have non-zero masses, we have to under-

stand why neutrinos oscillate. Similar to six flavors of leptons, neutrinos also come into

six different flavors: νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ . Six flavors of neutrinos are interaction eigen-

states of the Standard-Model Lagrangian but not the mass eigenstates. A direct conse-

quence of this is that massive neutrinos have to transform into different interaction eigen-

states as they propagate through space. The mixing of neutrino flavors are character-

ized by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, which is similar to the

Cabibbo–Kobayashi–Maskawa (CKM) matrix in the quark sector except the CKM matrix

is found in experiments to be mostly diagonal whereas the PMNS matrix is found to have

large off-diagonal entries; see [6] for estimates of neutrino parameters from global analyses of

oscillation experiment data as of 2020. The existence of small neutrino masses is therefore

one of the few telltales of physics beyond the Standard Model.

What makes neutrinos even more interesting is the fact they also play important roles

in cosmology and astrophysics. For one, massive relic neutrinos from the Big Bang is one

of the known components of hot and warm dark matters that leaves imprints on many
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cosmological observables such as the cosmic microwave background spectrum; see [7, 8] for

reviews on this topic. Neutrinos are also emitted in abundance in core-collapse supernovae.

Depending on the precise condition in which the star collapses, the event may be difficult to

detect electromagnetically so studying the neutrino spectrum is irreplaceable to understand

the nature of such phenomenon [9]; also, a possible solution to the puzzle of the observed

asymmetry between particle and antiparticles in our Universe is provided by the leptogenesis

[10], which introduces new species of neutrinos through the seesaw mechanism; see [11] for

a review.

Motivated by the tremendous phenomenological interest, many experiments are currently

underway or planned to investigate many facets of neutrinos with different sources. For

examples, the neutrinoless double-beta-decay experiments [12], such as CUORE [13], Gerda

[14], KamLAND-Zen [15], and KATRIN [16], are designed to search for double beta decays of

heavy nuclei. If experiments are able to discover such events without emitted neutrinos, we

can confirm that neutrinos are Majorana fermions through the black box theorem [17]. This

will be the first observed Majorana particle in the Nature. The absolute masses, as opposed

to mass squared differences, of neutrinos can also be constrained; see the latest results in

[18]. Another example is neutrino oscillation experiments, such as DUNE [19], JUNO [20],

NOvA [21], and MicroBooNE [22], which measure neutrino fluxes produced by either nuclear

reactors or particle accelerators to extract neutrino oscillation parameters. Many of these

aforementioned experiments are also looking for atmospheric, solar, and cosmic neutrinos

which can provide better estimates on neutrino parameters, help understand the working

mechanisms of those neutrino sources, or provide hints towards beyond-the-Standard-Model

physics.

2



1.2 Neutrino oscillation experiments and neutrino-nuclei cross

sections

This thesis is motivated primarily by the need of the future long-baseline neutrino experi-

ment DUNE. The Deep Underground Neutrino Experiment (DUNE) is designed to deliver

a neutrino beam of unprecedented intensity by upgrading the existing accelerator facility at

Fermilab to investigate the fundamental properties of neutrinos. Neutrino masses and mixing

parameters are extracted by comparing event rates at both the near and far detectors located

1300 km apart. Given that the incoming neutrinos are nearly invisible, oscillation experi-

ments measure the final states of neutrino interactions and, through the use of Monte-Carlo

event generators such as GENIE [23], GiBUU [24], and NuWro [25], reconstruct probabilis-

tic distributions of neutrino events based on the observed kinematics and topologies to infer

neutrino energies. A relatively heavy nucleus, 40Ar, is used in the DUNE time-projection

chamber to maximize the sensitivity to the weak interaction, so an accurate determination

of the neutrino-argon cross sections for energy reconstruction is necessary to unleash the

full discovery potential of DUNE. This poses significant challenges to our understanding of

nuclear physics. Further, the sooner such results mature, the better chance they have of

informing analyses at current and near-term oscillation experiments, such as ICARUS [26],

MicroBooNE, MINERvA [27], NOvA, SBND [28], and T2K [29].

Calculating the neutrino-nucleus cross section is a multi-scale problem. In the energy

regime from about 0.5 to 5 GeV relevant to DUNE, three distinct neutrino-nucleus scatter-

ing mechanisms come into play: quasielastic scattering (QE), resonance production (RES),

and deep-inelastic scattering (DIS) [30]. Figure 1.1 shows the total neutrino and antineutrino

cross sections per nucleon for all three regions and how they overlap. In future long base-

line experiments, the theoretical uncertainties on cross sections will become the dominant

sources of systematic errors [31], so better cross-section estimates to within a few percent

of all interaction processes are needed to avoid limiting the precision of extracted neutrino
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parameters. This is a challenge that requires ingenious solutions from both experimentalists

and theorists; see [30] for a review of the current status.

In this dissertation, we focus on how lattice quantum chromodynamics (QCD) calcu-

lations can contribute to our understanding of neutrino-nucleus scattering. Lattice QCD,

first proposed by Kenneth Wilson in 1974 [32], is a non-perturbative regularization scheme

of QCD on Euclidean lattices. Any lattice results with complete error budgets should be

treated as the predictions of QCD. Even though 40Ar nucleus is too complex to be simulated

on the lattice directly, lattice QCD can provide systematically improvable calculations based

solely on QCD, which will serve as inputs to nuclear models and are essential to reduce

the cross-section systematics to the required level. The USQCD collaboration has published

a white paper [33] that demonstrates how lattice-QCD predictions are integral parts of the

cross-section calculations in all three aforementioned neutrino-nuclei scattering processes. In

some cases, such as the overlap between the RES and DIS regions, lattice QCD is the only

tool that is able to produce consistent predictions. We will come back to a quick overview

of the lattice QCD methodology in Section 1.4.

This dissertation is part of a research program aiming at providing a first-principles cal-

culation of the nucleon axial form factor with quantifiable uncertainties to reduce systematic

errors in the QE scattering region. Neutrino-nucleus QE scattering is the dominant inter-

action process for neutrino energies between few MeV and about 1 GeV. It is mediated

by a weak current exchange contributed by both neutral- and charged-current (CC) inter-

actions. Technical difficulties in lattice QCD render the neutral-current calculations more

challenging compared to their CC counterparts. Neutral-current interactions are also less

important in oscillation experiments because the scattered neutrinos cannot be observed,

so only the charged-current QE (CCQE) cross section will be considered in this work. The

complete description of neutrino-nucleus CCQE cross section requires careful nuclear physics

modeling. A recent paper [34] demonstrated the successful calculation of the CCQE cross

4
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Figure 1.1: Total neutrino and antineutrino cross sections per nucleon on a isoscalar target
as functions of incoming energy reproduced from [1]. Data points show results from different
experiments.
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section of 12C with a nuclear ab inito method. In their work, they highlighted the need for a

more precise lattice-QCD calculation of the nucleon axial form factor for their models, stat-

ing “first-principles LQCD calculations of nucleon (and, possibly, nucleon-to-∆) electroweak

form factors potentially have a significant impact on calculations of neutrino-nucleus cross

sections, since these form factors constitute essential inputs to the nuclear CC.”

The nucleon axial form factor parametrizes the weak response of a nucleon and is respon-

sible for a large theoretical uncertainty of the neutrino-nucleon CCQE scattering depicting in

figure 1.2. Three different deuterium bubble chamber experiments [35–37] performed in the

1970s and 80s have access to the nucleon cross section with small nuclear corrections. Modern

neutrino experiments use heavy nuclei as targets, so the form factor cannot be cleanly ex-

tracted without significant systematics from nuclear modeling. Recent studies [38, 39] found

that the uncertainties of the nucleon axial form factor were underestimated by previous anal-

yses, and with no planned experiments in sight, lattice-QCD calculations are then needed

to achieve the precision goals of DUNE. Note that the vector form factor also contributes

to the electroweak cross section in figure 1.2. However, it can be extracted precisely from

high statistics study of electron-nucleon scattering data from experiments such as the ones

conducted by the A1 [40] and PRad [41] collaborations.1 Once we have the techniques to

properly control systematic errors in the axial form factor calculation, the same techniques

can be easily generalized to a calculation of the vector form factor in the future.

There have been many activities in the lattice-QCD community to calculate the nucleon

axial form factor (for example, see [43–45]), but the statistical and systematic uncertainties

on those results are large due to high computing costs to calculate nucleon observables. This

work focuses on working towards building the theoretical foundation for a calculation of the

nucleon axial form factor with fully controlled systematics in lattice QCD in the near future.

1. It was pointed out recently in [42] that there are still unresolved systematic errors in vector form factor
global analyses due to tensions between different datasets. This leads to larger-than-expected uncertainties
on the vector form factor, comparable to those of the axial form factor, at large energy transfers. It is
therefore desirable to calculate it with lattice QCD to cross check results.
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Figure 1.2: Charged current (anti)neutrino-nucleon interaction. N, P, ν̄l, and l are neutron,
proton, antineutrino, and lepton, respectively. The blob denotes the non-perturbative contri-
butions from vector and axial form factors which are amenable to lattice QCD calculations.

Our work distinguishes itself from others by the use of the staggered fermion discretization

which is one of the most efficient lattice fermions to simulate. Despite the appeal of staggered

fermion simulations, their applications to nucleon observables are complicated by unresolved

theoretical issues and no nucleon matrix element calculations had been performed with this

formalism. In this work, we present the first-ever calculation of the nucleon mass, vector

charge, and axial charge with the staggered formalism based on our results in [2, 3]. The

nucleon axial charge gA = 1.2756(13) [46] is the nucleon axial form factor at zero momentum

transfer at zero momentum that is related to the neutron lifetime of 15 minutes. We also

calculate the conserved nucleon vector charge gV = 1 which serves as a validation observable

for our new lattice methodology. These three observables are necessary stepping stones

towards a full calculation of the nucleon axial form factor, and our results are consistent

with expectations. This work enables calculations of the nucleon axial form factor with

staggered fermions that we are currently working on. We expect the first full result on the

nucleon axial form within the next couple of years from the publication date of this thesis.
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1.3 Notations in this work

Throughout this work, we will use the natural units of particle physics by setting the speed

of light and reduced Planck constant c = ~ = 1. In addition, we will also adopt the

lattice natural unit by setting the lattice spacing a = 1 unless explicitly shown. To restore

dimensional quantities, we can simply insert unique combinations of c, ~, and a to the

expressions.

1.4 A (short) introduction to lattice QCD

There are many excellent textbooks and preprints offering pedagogical introductions to lat-

tice QCD (for example, see [47–52]). The goal of this section is therefore to only give a

high-level overview of lattice QCD methodologies by highlighting some aspects of calcula-

tions that are important to this particular work. The materials presented here should give

sufficient background to understand the rest of this thesis.

In the path integral formulation of the quantum field theory (QFT) [53] in the Euclidean

metric, the expectation value of an observable O can be calculated via

〈O〉 =

∫
DψDψDA

(
eiS[ψ,ψ,A]

Z

)
O[ψ, ψ,A],

Z ≡
∫
DψDψDAeiS[ψ,ψ,A]

(1.1)

where Z is the partition function, S is the action, ψ, ψ are fermion fields, and A is the gauge

field. In calculations of hadron masses and matrix elements, we only need to consider two

types of observables: two-point and three-point correlation functions (or simply correlators)
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which are defined by

C2pt(t) ≡
〈
O(t)O(t = 0)

〉
,

C3pt(t, τ) ≡
〈
O(t)J(τ)O(t = 0)

〉 (1.2)

where t > τ > 0. O is a so-called source interpolating/creation operator which has the

same quantum numbers as the state we want to study located at t = 0, and O(t) is its sink

counterpart located at t. J(τ) is a current operator located at τ and interacts with particles

created by O. Two-point correlators allow us to extract hadron energies, and three-point

correlators allow us to extract matrix elements when combined with data from two-point

correlators.

(1.1) in its present form is divergent and ill-defined. A regularization scheme is thus

required to make predictions in not only the path integral but also in the canonical formu-

lations of QFT. The most commonly used one is the MS scheme based on the perturbative

expansion with Feynman diagrams. Regardless of the regularization scheme used, physical

observables should all agree with one another after renormalizations and removing regu-

larizers. Many regularization schemes such as MS and Pauli-Villar rely on theories having

well-defined perturbative expansions at the energy range considered. For low-energy systems

in QCD, however, the strong coupling is large due to asymptomatic freedom and there are no

well-defined expansion parameters so perturbative regularization schemes cannot be applied.

Rather, a non-perturbative regularization scheme is needed, which in this case is provided

by discretizing the theory on a four-dimensional Euclidean lattice.

To obtain lattice regularized QCD, we start with (1.1), rotate the time coordinate to the

imaginary axis (Wick rotation), and discretize the QCD action and observable using your
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preferred lattice action. This results in a discretized path integral

〈OL〉 =

∫ ∏
dψ
∏

dψ
∏

dU

(
e−SL[ψ,ψ,U ]

Z

)
OL[ψ, ψ, U ],

Z ≡
∫ ∏

dψ
∏

dψ
∏

dUeiS[ψ,ψ,U ]

(1.3)

where we are integrating over field values at all lattice sites. In the continuum QCD, the

path integral in (1.1) is integrating over the su(3) Lie-algebra valued fields Aµ. But on the

lattice we work with gauge link fields Uµ that take values in the SU(3) Lie group. They are

simply Wilson line operators or parallel transporters

Uµ = eiaAµ (µ = 1, 2, 3, 4) (1.4)

which are simple to work with to preserve the exact gauge invariance even when we break the

spacetime symmetry. Intuitively, we can think of fermion field ψ and ψ as living on the lattice

sites and gauge links Uµ as links connecting different sites. Because of the Wick rotation,

the factor in the bracket of (1.3) can now be interpreted as a probability density function

(pdf) of a given fermion and gauge field configurations, which they are usually referred to

as simply “gauge configurations” or “gluon configurations”. After performing importance

sampling of the pdf, we obtain a set of gauge field configurations in which the observable

can be calculated. The same observable has to be calculated on multiple “ensembles” – or

sets of gauge configurations – with the same lattice action but different lattice parameters

such as lattice spacing, quark masses2, volumes, etc. QCD predictions can be obtained by

first renormalizing results on all ensembles if necessary then extrapolating to a result at

the physical quark masses (chiral extrapolation), infinite volume, and zero lattice spacing

(continuum extrapolation). Here we summarize important steps in a lattice calculation:

2. Simulations at unphysically high quark masses are much cheaper to perform due to smaller correlation
lengths; see, for example, [54] for details. Many calculations, therefore, choose to simulate at multiple quark
masses and extrapolate results to the physical point.
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1. Determine the lattice gauge and fermion actions to use in simulations as long as they

belong to the same universality class as QCD in the continuum limit a→ 0.

2. Generate multiple ensembles at different lattice bare parameters tuned to the critical

surface.

3. Measure correlation functions on each lattice configuration in different ensembles.

4. Perform statistical analyses to extract physical observables in physical units.

5. Perform necessary extrapolations (chiral, continuum, and infinite volume) to obtain

predictions of QCD.

There are many subtleties involving in each step of the process, and we have greatly

simplified them here just to give an idea of the necessary ingredients that go into a lat-

tice calculation. The bottlenecks for all lattice simulations right now are prohibitive costs

involving steps 2 and 3 which limit the statistical precision of lattice results. Generating

ensembles in step 2 is the more expensive of those two and it boils down to repeatedly

solving for systems of linear equations Ax = b for a large, sparse matrix A on the order of

10-million-by-10-million and applying numerical integrations. At small lattice spacing near

the continuum limit, generating statistical independent samples becomes much harder due

to the well-known phenomenon of critical slowing down. Fortunately, once the gauge ensem-

bles are generated with large computing resources for a given lattice action, we can reuse

them over and over again to measure different observables. In this work, we use the gauge

ensembles generated by the MILC collaboration [4, 55].

Even when gauge ensembles are readily available, computing correlation functions in

step 3 still requires a non-trivial amount of computing resources that are typically done on

supercomputers for large lattices. The problem here is again solving for systems of linear

equations with the same dimensions as in step 2. For nucleon observables we are interested

in this work, the signal-to-noise ratios are exponentially damped for large t and τ in (1.2)
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due to well-known reasons [56, 57], so they require many more measurements on different

gauge configurations to achieve the desired precision. We will come back to this problem

when we discuss our work in Chapter 4.

The main novelty of this work comes from solving theoretical issues associated with

calculating nucleon observables with staggered quarks and presenting the first numerical

results using this formalism. This method has the potential to be one of the fastest nucleon

simulations in lattice QCD, which could translate into the most precise measurement of

nucleon properties in the near future. In the next section, we will briefly describe what the

problems are and how we plan to tackle them in the rest of the chapters.

1.5 Problem statement

Discretizing fermions on the lattice is a complicated issue. In the continuum QCD, we have

the free, Euclidean fermion action

S =

∫
d4x

(
ψ(x)γµ∂µψ(x) +mψ(x)ψ(x)

)
(1.5)

To simulate it on the lattice, we have to choose an approximation to partial derivatives ∂µ.

The choice is not unique and one of the simplest one is the finite difference

∂µf(x) ≈ 1

2a

(
f(x+ µ̂)− f(x− µ̂)

)
(1.6)

(1.6) is the so-called naive quark discretization and it leads to a theory with 2d = 16, d = 4

fermions even though we only put one in (1.5). This is the well-known fermion doubling

problem which is deeply intertwined with the difficulty in preserving chiral symmetry on the

lattice. The Nielsen-Ninomiya no-go theorem [58–60] states that under some mild assump-

tions on the form of the action, the theory cannot be both chirally symmetric and free of

fermion doublers. This is also the reason why we have yet to see any lattice regularizations

12



of chiral gauge theories such as the Standard Model that work well; see [61–63] for reviews.

Fortunately, QCD is not a chiral gauge theory as the chiral symmetry here is a global one,

but we still have to reduce the number of quarks to match what the Nature has provided to

us. For Wilson fermions [32], this is done by explicitly breaking the chiral symmetry via an

irrelevant operator to decouple fermion doublers; and for some others such as domain wall

[64, 65] and overlap fermions [66, 67], their actions satisfy the Ginsparg-Wilson equation [68]

which ensures the existence of a remnant chiral symmetry on the lattice.

In this work, the action of choice is the staggered fermion [69, 70]. This lattice dis-

cretization is special in that it represents quarks with one-component spinor fields instead

of the usual four-component ones. In addition, it also has a remnant chiral symmetry on

the lattice which has many additional benefits compared to non-chirally symmetric fermions.

These two features have also made the staggered action one of the most efficient, if not the

most efficient, lattice actions to simulate. However, the price we have to pay for is that

fermion doublers are in fact not completely eliminated in this discretization. Instead of 16

fermion doublers in the naive quark action, we are now left with 4 fermion doublers which

are degenerate in the continuum limit. They are usually called the four tastes of a staggered

fermion. This is problematic as the Nature does not give us four degenerate quark species

in QCD, so they must be removed.

The problem of redundant tastes can be partially dealt with in the ensemble generation

process by employing the so-called fourth-root trick. We first integrate out fermions in (1.3)

and rewrite it as

〈OL〉 =

∫ ∏
dU
∏
i

det[D(mi)]

(
e−Sg[U ]

Z

)
OL[U ] (1.7)

where D is the lattice Dirac operator, Sg is the gauge part of the action, and mi are the

explicit mass terms we put into the theory. Note that we have performed Wick contractions

to remove the fermionic dependence of OL. Each determinant factor represents one sea

13



quark contribution with mass mi in an undoubled theory but represents four degenerate sea

quarks contributions for the staggered action. So in the so-called rooted staggered fermion

simulation, each quark determinant is replaced by

det[D(mi)]→ det[D(mi)]
1/4 (1.8)

The rooted determinant is then expected to represent one sea quark contribution in the

continuum limit. There was a debate in the mid 2000s about the validity of such a procedure

in a field theory context [71–73]. Backed by many theoretical and numerical evidence, it is

now believed that the rooting procedure gives the correct continuum limit of QCD and has

since produced many results that are consistent with experiments; see, for example, [74–77].

The rooting procedure eliminates redundant fermion tastes in the sea, but it does not

eliminate them in the valence sector. This is because when we try to calculate observables

in (1.7) with rooted determinants, we still have to invert the Dirac operator to construct

OL according to the Wick theorem. Even though the sea action used for constructing quark

determinants is undoubled, the valence action used for constructing OL is agnostic about

the rooting procedure, so there are still four valence tastes left. Now the question this thesis

tries to answer is how can we relate observables calculated in this rooted-staggered-fermion

theory to the ones in physical QCD without explicitly removing valence taste degrees of

freedom? For mesonic observables, the answer is known for a long time [78, 79] and some

of the most precise predictions there nowadays are calculated with staggered fermions [80];

for nucleon observables, there were some initial work on relating baryon masses calculated

with staggered fermions to their physical counterparts [81, 82] but the progress stalled ever

since. This has so far prevented any calculations of nucleon matrix elements with staggered

fermions.

In this work, we extend the arguments in [81, 82] to nucleon matrix elements and show,

for the first time, i) a complete calculation of the nucleon mass based on those two references
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and ii) how to calculate nucleon vector and axial charges with a method which relies on the

generalized Wigner-Eckart theorem of SU(4) taste symmetry that we developed. Materials

here are based on our published work of [2, 3] but we have provided a more detailed account

of the group theory aspect of our calculations.

The rest of the chapters are organized as follows: in Chapter 2, we provide an introduction

to the group theory of SU(4) taste group and show how to relate staggered observables to

physical QCD observables with the generalized Wigner-Eckart theorem in the continuum

limit; in Chapter 3, we study the staggered action in details on the lattice to derive nucleon

creation/annihilation operators and their continuum quantum numbers. In combination

with results in the previous chapter, a complete description of how to calculate nucleon

matrix elements with staggered fermions can be obtained; in Chapter 4, we highlight some

numerical computations on the nucleon mass and charges appearing in [2, 3] using results

derived in previous two chapters; and finally in the last chapter, we give a summary and

future directions of this work.
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Chapter 2

On SU(4) ⊃ SU(2)× SU(2) symmetries and staggered observables

We learned in Section 1.5 that QCD simulations with staggered valence quarks and rooted

staggered sea quarks result in a theory, which will be oftentimes referred to as staggered

QCD to distinguish it from the actual QCD, with one sea quark and four degenerate valence

quarks for each quark species in the continuum limit. That is four too many quark tastes

for QCD. Staggered simulations can only be useful to extract QCD observables if we are

able to somehow deal with this extra multiplicity, which shows up as the extra SU(4) taste

symmetry for valence quarks in the continuum action. For observables constructed from

simple quark bilinears such as meson spectra, decay constants, and matrix elements, the

relationship between QCD and staggered QCD can be inferred by rewriting staggered quark

bilinears as four-component naive quark spinors – see [49, 78, 79, 83] for discussions. This

approach, however, has proven to be difficult for staggered quark trilinears that are needed

for baryon calculations because of large degrees of freedom in tastes.

We offer here a complementary approach that works well for both meson and baryon

observables based on group-theoretical arguments. We can even extend its result to show

that for any observables we want to calculate in QCD, there are corresponding observables

in staggered QCD that we can simulate that would be identical up to normalization factors

in the continuum limit. It turns out, these factors are easy to derive for mesonic observables

but become non-trivial for baryonic observables. The idea of this approach is that for a given

observable we want to calculate in QCD, there are single-taste observables made of valence

quarks with the same taste, which otherwise are identical in constructions to the QCD one,

that are equivalent. We can then apply a series of flavor and taste symmetry transformations

to show that other non-single-taste observables can also be used to infer the QCD observable

given we know how to relate the single-taste to non-single-taste observables, which are direct

applications of the generalized Wigner-Eckart theorem.
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We need two components for this approach to work: i) knowing the generalized Wigner-

Eckart theorem in a basis that is the most convenient to work with, and ii) knowing the

continuum flavor and taste quantum numbers for the nucleon states we create on the lattice.

This chapter addresses the former question and Chapter 3 addresses the latter. Most current

lattice simulations are done in the isospin limit where up and down quarks are identical. So

in principle we need the generalized Wigner-Eckart theorem for SU(8). It turns out for our

applications here, we can simplify the problems by solely performing SU(4) transformations

in different SU(4) subgroups of SU(8), so the Wigner-Eckart theorem for SU(4) is all we

need.

The theorem requires the knowledge Clebsch–Gordan (CG) coefficients which are basis-

dependent quantities. Working with a suitable basis is crucial as using the “wrong” basis will

greatly obscure the transformation properties of observables and render the analyses almost

impossible; if we do not care about the basis, there are algorithms readily available [84] that

computes SU(N) CG coefficients. In this work, we adopt a basis in which the states have

definite quantum numbers in the subgroup of SU(2) × SU(2) ⊂ SU(4). States created by

lattice operators take simple forms in this basis as this is the first in many steps in breaking

the taste symmetry under lattice discretization that will be discussed in Chapter 3.

Most group theory materials presented here are based on the discussions in [85], which

have worked out all the relevant SU(4) CG coefficients in the context of nuclear physics. We

will start with a short introduction to the SU(4) group theory then go into details on how

they can be applied to relate observables in staggered QCD, especially the ones with SU(2)

isospin symmetry, to experimental values.
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2.1 Fundamentals of SU(4) ⊃ SU(2)× SU(2)

The fundamental representation of the SU(4) taste group is represented by 4-by-4 unitary

matrices with unit determinants. We can write any SU(4) element U locally as

U = eiH = ei
∑15
a=1 caρa (2.1)

where H is a Hermitian matrix in the Lie algebra su(4). H can then be expanded in the

basis of 42 − 1 = 15 Hermitian traceless generators ρi with real coefficients ci, which satisfy

the commutation relations

[ρa, ρb] = ifabcρc (2.2)

with the totally antisymmetric structure constant fabc = f[abc]. Here we adopt the Einstein

notation so the repeated indices are summed over.

We can find an explicit representation of ρa’s by noticing that the four-dimensional

fundamental representation of SU(4) is still irreducible1 under the decomposition SU(4) →

SU(2)S × SU(2)T . In [85], SU(4) corresponds to the Wigner supermultiplet of spin (S) and

isospin (T) symmetries in nuclear systems; whereas SU(4) corresponds to the taste symmetry

of staggered quarks in this work. Nevertheless, we will keep the S and T subscripts in this

chapter to distinguish those two SU(2) subgroups and their quantum numbers, but one

should not take them literally as spins and isospins; in other chapters, we will use SU(2)D4

and SU(2)Q8
to denote the same SU(2)S and SU(2)T subgroups, respectively.

This group decomposition means that the fundamental representation of SU(4) can be

written as the tensor product of the two-dimensional fundamental representations of SU(2)

4 =
1

2
⊗ 1

2
(2.3)

1. We are not considering the decomposition in which the irrep is reducible and becomes 4 = 1
2 ⊕

1
2 .
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An irrep is always denoted by its dimension with a potential subscript of S (symmetric),

A (antisymmetric), or M (mixed) to distinguish various irreps with the same dimensions,

or a bar on top to denote a conjugate representation. However, an irrep of SU(2) is always

denoted by the conventional spin notation. Because the Pauli matrices σa, a = 1, 2, 3 form a

basis of the fundamental representation of su(2), together with the identity matrix σ4 ≡ I,

their Kronecker products then form a fundamental representation of ρa in su(4) given by

Mµν ≡ σµ ⊗ σν , (µ, ν = 1, 2, 3, 4) (2.4)

The identity matrix M44 is not one of the generators because it is not traceless. In practice,

the most convenient basis of Mµν that we will be using is defined via the ladder operators

S0 ≡
1

2

(
σ3 ⊗ I

)
, T0 ≡

1

2

(
I ⊗ σ3), E00 ≡

1

2

(
σ3 ⊗ σ3),

S± ≡
1

2
√

2

(
σ± ⊗ I

)
, T± ≡

1

2
√

2

(
I ⊗ σ±

)
,

E±± ≡
1

4

(
σ± ⊗ σ±

)
, E0± ≡

1

2
√

2

(
σ3 ⊗ σ±

)
, E±0 ≡

1

2
√

2

(
σ± ⊗ σ3

) (2.5)

where

σ− = σ1 − iσ2,

σ+ = σ1 + iσ2

(2.6)

Note that the operators defined here are identical to those in Table. I of [85]. This matrix

representation of ρa provides an easy way to compute the commutation relations between

all 15 operators, and the structure constants are normalized to be either ±1 or 0.
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2.2 Classifying states of SU(4) irreps

From (2.5) we can work out that four operators S2 = S0 + S2
0 + S−S+, T2 = T0 + T 2

0 +

T−T+, T0, and S0 are mutually commuting. So the states in an irrep of SU(4) can be

specified by orthonormal kets

∣∣∣[f][jS ,mS]
S

[
jT ,mT ]

T

〉
(2.7)

where f is the irrep label, and j and m are the usual SU(2) spin quantum numbers for S or

T operators. The states are constructed to eigenvectors of S0 with eigenvalue of mS , S2 with

eigenvalue of jS(jS +1), T0 with eigenvalue of mT , and T2 with eigenvalue of jT (jT +1). It

is clear that S and T can be derived from the operators in the SU(2)S and SU(2)T subgroups,

respectively. The E operators are the unique ones that only exist in the full SU(4) group.

As we shall see later, they can be used to construct step operators that raise or lower the

values of jS and jT .

Irreps in this basis have definite quantum numbers in both SU(2)S and SU(2)T subgroups.

This is particularly important for our purpose because SU(4)→ SU(2)S×SU(2)T is the first

step in decomposing the continuum symmetry group of the staggered action to the lattice

one. Hence, all the states we excite on the lattice can be expressed simply in this basis. In

Table 2.1, we have listed all the irreps of SU(4) that will be considered in this work, along

with their irrep components
(
jS , jT

)
in the SU(2)S×SU(2)T subgroup and Young diagrams.

Similar to the eightfold way of SU(3) flavors, these irreps completely classify the tastes of

single-particle staggered mesons and baryons.

As an example, the fundamental representation of SU(4) can be labeled by the four basis

vectors ∣∣∣∣∣
[
4

][
1

2
,±1

2

]
S

[
1

2
,±1

2

]
T

〉
(2.8)

because 4→
(1

2 ,
1
2

)
. Another example is the 15-dimensional adjoint representation of SU(4)
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Table 2.1: SU(4) irreps and their irrep components
(
jS , jT

)
in the SU(2)S × SU(2)T sub-

group. These irreps completely classify the tastes of staggered mesons and baryons.

SU(4) irrep
SU(2)S × SU(2)T Young diagram
irrep components

1 (trivial, meson) (0, 0)

4 (fundamental)
(1

2 ,
1
2

)
4̄ (anti-fundamental, baryon)

(1
2 ,

1
2

)

15 (adjoint, meson) (1, 1)⊕ (1, 0)⊕ (0, 1)

20S (baryon)
(3

2 ,
3
2

)
⊕
(1

2 ,
1
2

)
20M (baryon)

(3
2 ,

1
2

)
⊕
(1

2 ,
3
2

)
⊕
(1

2 ,
1
2

)

which can be labeled by the 15 basis vectors

∣∣∣[15
][

1,mS]
S

[
0, 0
]
T

〉
,∣∣∣[15

][
0, 0
]
S

[
1,mT ]

T

〉
,∣∣∣[15

][
1,mS]

S

[
1,mT ]

T

〉 (2.9)

because 15→ (1, 0)⊕ (0, 1)⊕ (1, 1).

A general irrep of SU(4) needs 6 quantum numbers from the 6 commuting operators to

uniquely label its components. However, for all the irreps we will be working with in this

work, those four quantum numbers are sufficient to label all their components.
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2.2.1 Step operators and state normalizations

Consider the example of the basis of the adjoint representation defined in (2.9), we can apply

S± and T± to raise or lower the z-component angular momenta mS and mT , respectively.

However, for those kets to belong to the same irrep, this means that there exists a suite of

new step operators O’s that can raise or lower the total angular momenta jS and jT . A

particular set is defined in Table II of [85]. As an example, let’s consider the action of the

step-up operator

O0+ = E0+ + S−E++(S0 + 1)−1 (2.10)

Using the representation in (2.5), we find the commutation relations

[S0, E0+] = 0, [S0, S−] = −S−, [S0, E++] = E++ (2.11)

which implies

[S0, O0+] = 0 (2.12)

as expected. Similarly, the commutation relations

[T0, S0] = [T0, S−] = 0, [T0, E0+] = E0+, [T0, E++] = E++ (2.13)

imply

[T0, O0+] = E0+ + S−E++(S0 + 1)−1 = O0+ (2.14)
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So if we act O0+ on
∣∣[15

][
1, 1
]
S

[
0, 0
]
T

〉
, we will find that

T0O0+

∣∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉
= [T0, O0+]

∣∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉
= O0+

∣∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉 (2.15)

In other words,

O0+

∣∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉
∝
∣∣∣[15

][
1, 1
]
S

[
1, 1
]
T

〉
(2.16)

We can repeat the same exercise with T2 and S2 to further confirm (2.16). In general, if

we apply a step operator to a state with jS = mS and jT = mT , it will raise and/or lower

jS ,mS and/or jT ,mT by one unit. The resulting state will be zero, however, if it is not one

of the states in the irrep, just like how applying the raising operator to the highest weight

states in SU(2) will be zeros.

The step operators are key ingredients for constructing CG coefficients. But to uniquely

determine the action of O’s onto the basis kets, we need to adopt a set of phase conventions

to normalize the states. In the SU(2) case, the Condon-Shortley convention [86] is used

throughout the literature that defines the commonly seen CG coefficients. However, no such

consensus exists for other SU(N) groups partly because there is not a single natural basis to

use. The most popular one is the Gelfand-Tsetlin basis and there is a program [84] that can

readily compute their CG coefficients. But it is cumbersome to work in the Gelfand-Tsetlin

basis and mapping it to our preferred basis is also difficult. In this work, we will follow the

same normalization conventions as defined in [85].

2.2.2 Continuum staggered meson irreps of SU(4)

In the seminal work [87, 88] of Murray Gell-Mann and Yuval Ne’eman in 1961, they proposed

to understand the observed hadron spectrum of QCD using irreps of SU(3). Gell-Mann,

inspired by the Noble Eightfold Path in Buddhism, coined the term “Eightfold Way” to
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describe this classification scheme that we are familiar with today.

The classification scheme is rather easy to understand from the modern perspective. We

start with the approximate isospin symmetry of SU(3) where up, down, and strange quark

have equal masses and transform in the fundamental 3 irreps of SU(3). The meson and

baryon wavefunctions can be constructed from the tensor product of 3 irreps

3⊗ 3̄ = 8M ⊕ 1

3⊗ 3⊗ 3 = 10S ⊕ 2 · 8M ⊕ 1

(2.17)

So to understand the spectrum of staggered QCD, we also need to classify the states of

staggered mesons and baryons starting with the fundamental staggered quark fields of SU(4).

Staggered mesons can be constructed from the tensor product

4⊗ 4̄ = 1⊕ 15 (2.18)

If we denote the four tastes of a continuum staggered quark as

ψ =



ψ1

ψ2

ψ3

ψ4


≡



∣∣∣[4][1
2 ,

1
2

]
S

[1
2 ,

1
2

]
T

〉
∣∣∣[4][1

2 ,
1
2

]
S

[1
2 ,−

1
2

]
T

〉
∣∣∣[4][1

2 ,−
1
2

]
S

[1
2 ,

1
2

]
T

〉
∣∣∣[4][1

2 ,−
1
2

]
S

[1
2 ,−

1
2

]
T

〉


(2.19)

where only the SU(4) labels are included. Other quantum numbers, such as flavors and

colors, are ignored. We define a Hermitian matrix of tensor products Πµν ≡ ψµψ̄ν . The

state in the trivial representation is then proportional to its trace

∣∣[1][0, 0]S[0, 0]T 〉 ∝ Tr
(
Π
)

=
4∑

µ=1

ψµψ̄µ (2.20)
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where ψ̄µ transforms in the conjugate 4̄ representation. This state corresponds to the so-

called tastes-singlet meson that plays important roles in determining the properties of flavor-

singlet mesons [74]. As we will show in Section 2.3, the taste-singlet quark bilinears are also

necessary for computing three-point correlators with flavor-singlet currents.

We can take out the singlet component by defining a Hermitian, traceless matrix Π̃ ≡

Π− 1
4 Tr

(
Π
)
. Under a finite SU(4) transformation U , Π̃ transforms by conjugation

Π̃→ UΠ̃U† (2.21)

which is the definition of the adjoint representation. (2.9) devises a standard basis for this

irrep with definite SU(2)S and SU(2)T taste quantum numbers, so we have to find a set of

15 matrices Π̃
µν
(a)
, a = 1, · · · , 15 from Π that maps onto that basis. Fortunately, we already

have those matrices in hand – they are just the generators S’s, T ’s, and E’s defined in

(2.5). Furthermore, these generators are constructed from the tensor products of SU(2)

ladder operators, which transform as spin-1 spherical vectors with definite j and m quantum

numbers. This means we can easily map those SU(4) generators or Π̃
µν
(a)

onto the basis

vectors
∣∣[15

][
1,mS

]
S

[
1,mT

]
T

〉
,
∣∣[15

][
1,mS

]
S

[
0, 0
]
T

〉
, or

∣∣[15
][

0, 0
]
S

[
1,mT

]
T

〉
according

to their transformation properties.

In the staggered fermion literature (see, for example, [79, 83]), 16 tastes of staggered

mesons (15 adjoint tastes + one singlet taste) are conventionally labeled by the products of

Euclidean gamma matrices ξµ. If we write ξµ in the Dirac representation

ξi = σ2 ⊗ σi,

ξ4 = σ3 ⊗ I
(2.22)

that satisfies

{ξµ, ξν} = 2δµνI (2.23)
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we observe that the generator matrices in (2.5), hence the tastes of staggered mesons, can

be written as linear combinations of ξµ and vice versa. For example, a staggered meson with

ξ4 taste corresponds to the S0 operator which has quantum numbers
∣∣[15

][
1, 0
]
S

[
0, 0
]
T

〉
.

So the gamma matrices prescription is just another convenient method to label the states

in the trivial and adjoint representations. In Table 2.2, we have enumerated all 16 tastes of

the staggered mesons in both notations.

The third column of Table 2.2 represents either the eigenkets for staggered mesons or the

quark-bilinear tensor operators for currents – they both transform identically under SU(4)

rotations – even though we abuse the notations and write them as kets. The absolute nor-

malizations of the kets/tensor operators are arbitrary, however, the relative normalizations

(if there is one) are fixed again by the normalization conditions defined in [85]. For example,

the ξ5 taste transforms as

S+ + S− = T [15][1,1]S [1,0]T − T [15][1,−1]S [1,0]T (2.24)

where a relative negative sign is placed between two tensor operators T , which are denoted

by their SU(4) quantum numbers in the superscripts. This can be understood in the context

of SU(2) rotations, in which the spherical tensors can be defined as

V+ = − 1√
2
J+, V− =

1√
2
J−, V0 = Jz (2.25)

where J ’s are the angular momentum operators. V± transform as the plus and minus compo-

nents of a spin-1 operator, and a relative negative sign and 1/
√

2 are needed when we define

them via the ladder operators J±. Table I of [85] has listed all the proper normalizations for

the tensor operators that we adopt here. The second column of Table I shows the non-zero

entries of the gamma matrices, and the normalization factors in front, along with the sign

in the fourth column, are needed to properly normalize the tensor operators T that will be
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needed by the Wigner-Eckart theorem. We will come back to this issue in the later section.
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Table 2.2: Tastes of staggered mesons and their generators and quantum numbers. Basic
kets/tensor operators are arbitrarily normalized.

Taste Generators Basis ket/Tensor Operator

1 I
∣∣[1][0, 0]S[0, 0]T 〉

ξ4 S0

∣∣[15
][

1, 0
]
S

[
0, 0
]
T

〉
ξ1ξ2 T0

∣∣[15
][

0, 0
]
S

[
1, 0
]
T

〉
ξ3ξ5 E00

∣∣[15
][

1, 0
]
S

[
1, 0
]
T

〉

ξ5 S+ + S−

∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉
−∣∣[15

][
1,−1

]
S

[
0, 0
]
T

〉

ξ4ξ5 S+ − S−

∣∣[15
][

1, 1
]
S

[
0, 0
]
T

〉
+∣∣[15

][
1,−1

]
S

[
0, 0
]
T

〉

ξ2ξ3 T+ + T−

∣∣[15
][

0, 0
]
S

[
1, 1
]
T

〉
−∣∣[15

][
0, 0
]
S

[
1,−1

]
T

〉

ξ1ξ3 T+ − T−

∣∣[15
][

0, 0
]
S

[
1, 1
]
T

〉
+∣∣[15

][
0, 0
]
S

[
1,−1

]
T

〉

ξ3ξ4 E+0 + E−0

∣∣[15
][

1, 1
]
S

[
1, 0
]
T

〉
−∣∣[15

][
1,−1

]
S

[
1, 0
]
T

〉
(continue on the next page)
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(Table 2.2, continued)

ξ3 E+0 − E−0

∣∣[15
][

1, 1
]
S

[
1, 0
]
T

〉
+∣∣[15

][
1,−1

]
S

[
1, 0
]
T

〉

ξ1ξ5 E0+ + E0−

∣∣[15
][

1, 0
]
S

[
1, 1
]
T

〉
−∣∣[15

][
1, 0
]
S

[
1,−1

]
T

〉

ξ2ξ5 E0+ − E0−

∣∣[15
][

1, 0
]
S

[
1, 1
]
T

〉
+∣∣[15

][
1, 0
]
S

[
1,−1

]
T

〉

ξ1 E++ − E−+ + E+− − E−−

∣∣[15
][

1, 1
]
S

[
1, 1
]
T

〉
+∣∣[15

][
1,−1

]
S

[
1, 1
]
T

〉
−∣∣[15

][
1, 1
]
S

[
1,−1

]
T

〉
−∣∣[15

][
1,−1

]
S

[
1,−1

]
T

〉

ξ2 E++ − E−+ − E+− + E−−

∣∣[15
][

1, 1
]
S

[
1, 1
]
T

〉
+∣∣[15

][
1,−1

]
S

[
1, 1
]
T

〉
+∣∣[15

][
1, 1
]
S

[
1,−1

]
T

〉
+∣∣[15

][
1,−1

]
S

[
1,−1

]
T

〉

ξ1ξ4 E++ + E−+ + E+− + E−−

∣∣[15
][

1, 1
]
S

[
1, 1
]
T

〉
−∣∣[15

][
1,−1

]
S

[
1, 1
]
T

〉
−∣∣[15

][
1, 1
]
S

[
1,−1

]
T

〉
+∣∣[15

][
1,−1

]
S

[
1,−1

]
T

〉
(continue on the next page)
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(Table 2.2, continued)

ξ2ξ4 E++ + E−+ − E+− − E−−

∣∣[15
][

1, 1
]
S

[
1, 1
]
T

〉
−∣∣[15

][
1,−1

]
S

[
1, 1
]
T

〉
+∣∣[15

][
1, 1
]
S

[
1,−1

]
T

〉
−∣∣[15

][
1,−1

]
S

[
1,−1

]
T

〉
In practice, the gamma matrix scheme is particularly useful for constructing correlators

that conserve taste quantum numbers. Consider an n-point correlator consisting of operators

that transform in the adjoint representation

C
(g1,··· ,gn)
npt =

〈
O

(g1)
1 · · ·O(gn)

n
〉

(2.26)

O
(gi)
i is an operator with gi taste. For example, using the definition of ψ in (2.19) we can

construct the simplest ξ5 taste quark bilinear

O(ξ5) = ψξ5ψ (2.27)

where the spinor structure is irrelevant in this discussion, and therefore, omitted. Note that

(2.26) can also accommodate for anti-quark operators because the adjoint representation is

real. We claim that the correlator is non-vanishing if the product of gamma matrices is the

identity matrix up to a sign, namely,

g1 × · · · × gn = ±I (2.28)

In other words, the taste gamma matrices must “cancel out” in order to obtain non-zero

answers. We can prove this by considering the n-point correlator as a tensor product of 15
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irreps and decomposing it to irrep components

15⊗ · · · ⊗ 15︸ ︷︷ ︸
n times

= 1

non-trivial irreps︷ ︸︸ ︷
⊕ · · · (2.29)

The trivial irrep 1 can only appear once due to Schur’s lemma. (2.29) implies that (2.26) can

be written as a linear combination of a new set of operators Õ(r) that transform as irreps of

SU(4)

C
(g1,··· ,gn)
npt = c1〈Õ(g1)〉+ · · ·+ ck〈Õ(gk)〉 (2.30)

cj are some coefficients and the sum terminates at the k-th term. By the Great Orthogonality

theorem,

〈Õ(r)〉 = 0 if r 6= trivial irrep (2.31)

The only way to form the trivial irrep is to satisfy the condition in (2.28), so this proves our

claim.

For example, suppose we want to study the mass of a ξ5 taste meson from a two-point

correlator. The only way to construct it is by enforcing the same taste for both operators

C
(ξ5,ξ5)
2pt = 〈O(ξ5)

1 O
(ξ5)
2 〉 (2.32)

Similarly, if we want to study the matrix element of a ξ5 taste meson with a ξ4 taste current

operator, the only non-vanishing three-point correlators will be

C
(ξ4ξ5,ξ4,ξ5)
3pt = 〈O(ξ4ξ5)

1 O
(ξ4)
2 O

(ξ5)
3 〉 (2.33)

and

C
(ξ5,ξ4,ξ4ξ5)
3pt = 〈O(ξ5)

1 O
(ξ4)
2 O

(ξ4ξ5)
3 〉 (2.34)
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As we can see, the gamma matrix scheme simplifies all group-theoretical considerations

into gamma matrix multiplications, and it is used ubiquitously in all staggered meson cal-

culations. Unfortunately, this method only works if all operators in an n-point correlator

transform in the trivial or adjoint representations. In calculating baryon matrix elements,

only the current operator transforms in those representations, whereas the baryon creation

and annihilation operators transform in other baryonic irreps such as 20S or 20M . We have

to then carefully construct correlators that conserve the taste quantum numbers. This is

why Table 2.2 will be particularly useful in those situations.

2.2.3 Continuum staggered baryon irreps of SU(4)

In the previous section, we have gone to great lengths to figure out the exact valence taste

wavefunction of quark bilinears using the fundamental quark fields. As we will show later, it

is particularly important to know the taste compositions of quark bilinears which are used

for current insertions in matrix elements as it will affect the overall normalizations of physical

observables.

However, it is not so important to know the precise valence taste wavefunction of stag-

gered baryons for the observable of interest except for the so-called single-taste baryons [82],

which are the baryons that consist of a single valence taste.2 Knowing the quantum num-

bers of these single-taste baryons will allow us to normalize the matrix elements with the

Wigner-Eckart theorem.

The 64 tastes of continuum staggered baryons transform as the tensor product

4⊗ 4⊗ 4 = 20S ⊕ 20M ⊕ 20M ⊕ 4̄ (2.35)

We can use Table 2.1 to enumerate all the basis kets for each irrep. If one inclines, he or she

2. Analogously in QCD, we have single-flavor baryons of ∆++ and ∆− which consist of only up or down
quarks in their valence wavefucntions.
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can compute the valence wavefunction of each ket by successively applying step and ladder

operators to the highest weight states just like in SU(2). In this work, however, we will only

need the single-taste valence wavefunctions listed in Table 2.3.

Table 2.3: Taste of single-taste baryons and their quantum numbers.

Taste Basis ket

ψ1ψ1ψ1

∣∣∣[20S
][3

2 ,
3
2

]
S

[3
2 ,

3
2

]
T

〉
ψ2ψ2ψ2

∣∣∣[20S
][3

2 ,
3
2

]
S

[3
2 ,−

3
2

]
T

〉
ψ3ψ3ψ3

∣∣∣[20S
][3

2 ,−
3
2

]
S

[3
2 ,

3
2

]
T

〉
ψ4ψ4ψ4

∣∣∣[20S
][3

2 ,−
3
2

]
S

[3
2 ,−

3
2

]
T

〉

We notice two things from Table 2.3: all single-taste baryons reside within the totally

symmetric representation 20S because three valence quarks are identical, and their quantum

numbers are such that
∣∣jS∣∣ =

∣∣jT ∣∣ =
∣∣mS

∣∣ =
∣∣mT

∣∣ = 3
2 which can be easily derived from the

definitions in (2.19). Single-taste baryons play prominent roles in relating the observables of

four-taste, staggered QCD to physical ones without taste degrees of freedom. We will come

back and discuss how to achieve this in Section 2.3.

We will not list the valence taste wavefunctions for all states in this section, as they

are not needed for our purposes here. But for completeness, we list the states with highest

weights in Table 2.4. The relative normalizations of states are fixed, but their absolute

normalizations are again arbitrary. Other states can be obtained by applying step operators

defined in Table II of [85].
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Table 2.4: Tastes of states with highest weights and their quantum numbers.

Taste Basis ket

ψ1ψ1ψ1

∣∣∣[20S
][3

2 ,
3
2

]
S

[3
2 ,

3
2

]
T

〉
ψ1ψ2ψ1 + ψ2ψ1ψ1 − 2ψ1ψ1ψ2

∣∣∣[20M
][3

2 ,
3
2

]
S

[1
2 ,

1
2

]
T

〉
ψ1ψ2ψ1 − ψ2ψ1ψ1

∣∣∣[20M
][3

2 ,
3
2

]
S

[1
2 ,

1
2

]
T

〉
∑3
i,j,k=1 εijkψiψjψk

∣∣∣[4̄][1
2 ,

1
2

]
S

[1
2 ,

1
2

]
T

〉

2.3 Clebsch–Gordan coefficients, Wigner-Eckart theorem, and

physical observables

The goal of this work is to compute physical observables, such as masses, decay constants,

and matrix elements, with the staggered action. For example, after performing analyses to

eliminate lattice systematic errors (finite lattice spacing, finite volume, excited contamina-

tion, etc.), we arrive at a matrix element

M =
〈
r2|J(r3)|r1

〉
(2.36)

The bra and ket are mesons or baryons transforming in the r2 and r1 irreps of SU(4),

respectively, and J(r3) is a quark bilinear that transforms in the r3 irrep. In this example,

let

|r1〉 = |r2〉 =

∣∣∣∣∣
[
20S

][
1

2
,±1

2

]
S

[
1

2
,±1

2

]
T

〉
,

J(r3) = ψξ3ξ5ψ

(2.37)

Now the question is how can we, if at all, relate the result of (2.37) to the physical QCD

one? Fortunately, this can be done since there are no gluon exchanges in the continuum
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staggered QCD that can alter the tastes of quarks (see, for example, [83]). So if all the

operators are constructed from staggered quarks of the same tastes, we know the correlator

must coincide with the physical ones; on the other hand, if the hadrons in a correlator are

not of single tastes as in (2.37), we can still apply the Wigner-Eckart theorem to rotate it to

the single-taste ones with appropriate Clebsch–Gordan coefficients.

In the next section, we will provide a quick overview of the Clebsch–Gordan coefficients

and Wigner-Eckart theorem of SU(4). In Section 2.3.3 and 2.3.4, we will examine observables

with meson and baryons and show how to apply the theorem we just learned to extract

physical observables.

2.3.1 Clebsch–Gordan coefficients and the Wigner-Eckart theorem of

SU(4)

Clebsch–Gordan (CG) coefficients (or Wigner coefficients as called in [85]) are the factors

appearing in front of the state when we decompose the tensor product of two irreps to its

irrep components. In SU(2), they are given by the inner product

〈j1,m1; j2,m2

∣∣J,M〉 (2.38)

where m1, m2, and M are the z-component angular momenta, and j1, j2, and J are the

total angular momenta. Following the same notation, SU(4) CG coefficients are given by

[85]

〈[
r1
][
jS1 ,m

S
2

][
jT1 ,m

T
1

]
;
[
r2
][
jS2 ,m

S
1

][
jT2 ,m

T
2

] ∣∣∣ [r3][JS ,MS][JT ,MT ]〉
ρ

(2.39)

where m’s and M ’s are again z-component angular momenta, and j’s and J ’s are total

angular momenta. r’s are the irrep labels. The S and T superscripts differentiate between

quantum numbers in the SU(2)S and SU(2)T subgroups. (2.39) is similar in structure to
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(2.38) except for an additional index ρ which can take on the value of 1 and 2, depending

on r1, r2, and r3. We need this additional index in SU(4) because an irrep can appear more

than once in the irrep components of a tensor product. For example,

15⊗ 15 = 15⊕ 15⊕ · · · (2.40)

and

20M ⊗ 15 = 20M ⊕ 20M ⊕ · · · (2.41)

where the 15 irrep appears twice on the right-hand side of (2.40) and the 20M irrep (conjugate

of the 20M irrep) also appears twice on the right-hand side of (2.41). We then need ρ

to distinguish between two unique irrep components. A general irrep of SU(4) needs six

quantum numbers to completely classify their states. Even if we are to include the extra two

quantum numbers in our basis, we will still need the extra label of ρ in (2.39). In comparison,

the tensor product of any two irreps of SU(2) always decompose into irrep components that

have multiplicities of one, so ρ label is not needed there. In this work, the ρ labels are needed

only when {r1, r2, r3} = {15, 15, 15} or {r1, r2, r3} = {20M , 15, 20M}.

We can further factor out (2.39) as products of SU(2) CG coefficients

〈[
r1
][
jS1 ,m

S
2

][
jT1 ,m

T
1

]
;
[
r2
][
jS2 ,m

S
1

][
jT2 ,m

T
2

] ∣∣∣ [r3][JS ,MS][JT ,MT ]〉
ρ

=
〈[
r1
]
[jS1 , j

T
1 ];
[
r2
]
[jS2 , j

T
2 ]
∣∣∣∣∣∣ [r3][JS , JT ]〉

ρ
×

〈jS1 ,m
S
1 ; jS2 ,m

S
2

∣∣JS ,MS〉〈jT1 ,m
T
1 ; jT2 ,m

T
2

∣∣JT ,MT 〉

(2.42)

The last two factors are the SU(2) CG coefficients for SU(2)S and SU(2)T subgroups, and the

first factor is the coefficient unique to SU(4) that needs to be determined. The factorization is

easy to understand if we consider a state with height weights for both of its SU(2) subgroups,
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namely,

jSi = mS
i , j

T
i = mT

i (i = 1, 2),

JS = MS = jS1 + jS2 , J
T = MT = jT1 + jT2

(2.43)

In this case, the SU(2) CG coefficients are trivial and (2.42) simplifies to

〈[
r1
][
jS1 ,m

S
2

][
jT1 ,m

T
1

]
;
[
r2
][
jS2 ,m

S
1

][
jT2 ,m

T
2

] ∣∣∣ [r3][JS ,MS][JT ,MT ]〉
ρ

=
〈[
r1
]
[jS1 , j

T
1 ];
[
r2
]
[jS2 , j

T
2 ]
∣∣∣∣∣∣ [r3][JS , JT ]〉

ρ

(2.44)

The first factor in (2.42) is no more than the CG coefficients for states with height weights

on both of its SU(2) subgroups. Given a set of conventions, we can find CG coefficients of

SU(4) by applying step operators to obtain their recursion relations. The procedures and

final results are described in details in [85] and will not be repeated here.

Once we have CG coefficients of SU(4), we can state the Wigner-Eckart theorem

〈[
r1
][
jS1 ,m

S
1

][
jT1 ,m

T
1

] ∣∣∣ T [r2][jS2 ,m
S
2 ][jT2 ,m

T
2 ]
∣∣∣ [r3][JS ,MS][JT ,MT ]〉

= F
([
r1
]
[jS1 , j

T
1 ]; T [r2][jS2 ,j

T
2 ];
[
r3
][
JS , JT

])
×

〈jS1 ,m
S
1 ; jS2 ,m

S
2

∣∣JS ,MS〉〈jT1 ,m
T
1 ; jT2 ,m

T
2

∣∣JT ,MT 〉

(2.45)

where

F
([
r1
]
[jS1 , j

T
1 ]; T [r2][jS2 ,j

T
2 ];
[
r3
][
JS , JT

])
≡∑

ρ

〈
[r1]

∣∣∣∣∣∣T [r2]
∣∣∣∣∣∣[r3]

〉
ρ

〈[
r1
]
[jS1 , j

T
1 ];
[
r2
]
[jS2 , j

T
2 ]
∣∣∣∣∣∣ [r3][JS , JT ]〉

ρ

(2.46)

Similar to the reduced matrix element in SU(2),
〈
[r1]

∣∣∣∣∣∣T [r2]
∣∣∣∣∣∣[r3]

〉
ρ is the reduced matrix

element of SU(4) that also depends on the ρ index. Note that the reduced matrix element

is a function of r1, r2, and r3 only, we can only obtain its value via direction simulations.
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T [r2][jS2 ,m
S
2 ][jT2 ,m

T
2 ] is a tensor operator that has the same transformation properties as the ket∣∣[r2][jS2 ,mS

2

]
S

[
jT2 ,m

T
2

]
T

〉
. We write (2.45) as the product of the newly defined F function

and the SU(2) CG coefficients. In this way, the F function contains all the ρ dependencies

and is independent of the z-component angular momenta m’s and M ’s.

The most common application of the Wigner-Eckart theorem is to relate two matrix

elements that belong to the same irreps. For example, suppose we have two matrix elements

M1 =
〈[
r1
][
jS1 ,m

S
1

][
jT1 ,m

T
1

] ∣∣∣ T [r2][jS2 ,m
S
2 ][jT2 ,m

T
2 ]
∣∣∣ [r3][JS3 ,MS

3

][
JT3 ,M

T
3

]〉
,

M2 =
〈[
r1
][
jS4 ,m

S
4

][
jT1 ,m

T
1

] ∣∣∣ T [r2][jS5 ,m
S
5 ][jT5 ,m

T
5 ]
∣∣∣ [r3][JS6 ,MS

6

][
JT6 ,M

T
6

]〉 (2.47)

If we assume that

F
([
r1
]
[jS1 , j

T
1 ]; T [r2][jS2 ,j

T
2 ];
[
r3
][
JS3 , J

T
3

])
= αF

([
r1
]
[jS4 , j

T
4 ]; T [r2][jS5 ,j

T
5 ];
[
r3
][
JS6 , J

T
6

])
(2.48)

for some constant factor α, then we can relate M1 and M2 by

M1

M2
= α
〈jS1 ,m

S
1 ; jS2 ,m

S
2

∣∣JS3 ,MS
3 〉〈j

T
1 ,m

T
1 ; jT2 ,m

T
2

∣∣JT3 ,MT
3 〉

〈jS4 ,m
S
4 ; jS5 ,m

S
5

∣∣JS6 ,MS
6 〉〈j

T
4 ,m

S
4 ; jT5 ,m

S
5

∣∣JT6 ,MT
6 〉

(2.49)

Up to the extra α factor, (2.49) is the direct generalization of the SU(2) Wigner-Eckart

theorem to SU(4).

There is a couple of different scenarios where (2.48) is valid. The first case is where there

are no irreps appearing more than once in the tensor product decomposition so the ρ label

is redundant. α is then simply the ratio

α =

〈[
r1
]
[jS1 , j

T
1 ];
[
r2
]
[jS2 , j

T
2 ]
∣∣∣∣∣∣ [r3][JS3 , JT3 ]〉〈[

r1
]
[jS4 , j

T
4 ];
[
r2
]
[jS5 , j

T
5 ]
∣∣∣∣∣∣ [r3][JS6 , JT6 ]〉 (2.50)

that we could look up in [85]. Even in the case where ρ indices are necessary due to the
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multiplicities, the symmetries of SU(4) CG coefficients could enforce (2.48). For example,

from Table A4.6 of [85] we know that for all ρ

〈[
15
]
[jS1 , j

T
1 ];
[
15
]
[jS2 , j

T
2 ]
∣∣∣∣∣∣ [15

][
0, 1
]〉
ρ

=
〈[

15
]
[jT1 , j

S
1 ];
[
15
]
[jT2 , j

S
2 ]
∣∣∣∣∣∣ [15

][
1, 0
]〉
ρ

(2.51)

Then again,

α =
F
([

15
]
[jS1 , j

T
1 ]; T [15][jS2 ,j

T
2 ];
[
15]
[
0, 1
])

F
([

15
]
[jT1 , j

S
1 ]; T [15][jT2 ,j

S
2 ];
[
15
][

1, 0
]) = 1 (2.52)

The two SU(2) factors in the SU(4)→ SU(2)S×SU(2)T decomposition are indistinguishable

from one another. Hence, the CG coefficients have to be invariant under switching the S

and T labels as in (2.51). We will use this relabeling symmetry extensively in the following

sections.

Lastly, (2.48) holds trivially if we only perform rotations in its SU(2) subgroups. In other

words, α = 1 if jS1 = jS4 , jS2 = jS5 , and JS3 = JS6 in (2.50).

In general, (2.48) does not hold because there are two unknown reduced matrix elements〈
[r1]

∣∣∣∣∣∣T [r2]
∣∣∣∣∣∣[r3]

〉
ρ , ρ = 1, 2. We then need to compute two independent matrix elements

with the same irreps and solve a system of two-by-two linear equations and get their values.

Nevertheless, (2.48) holds for all our applications in this work.

We would also need to establish a normalization convention for the quark bilinears (tensor

operators). Throughout this work, we assume the quark bilinears with definite gamma tastes

are normalized in such a way that when you expand their valence wavefunctions using (2.19),

the factor in front of each term is ±1. For example, the ψξ4ξ5ψ quark bilinear is equal to

ψξ4ξ5ψ = −ψ1ψ3 − ψ2ψ4 + ψ3ψ1 + ψ4ψ2 (2.53)
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One can simply multiply the taste gamma matrix using the representation defined in (2.22)

to obtain the valence wavefunction. This is how the lattice operators in Chapter 3 are

normalized. However, this creates some slight complications for applying the Wigner-Eckart

theorem – the theorem assumes that the tensor operators, or quark bilinears, are normalized

in the canonical fashion as defined in the second and fourth columns of Table I in [85]. Using

that table, we can write ψξ4ξ5ψ in terms of canonically normalized tensor operators

ψξ4ξ5ψ =
√

2
(
T [15][1,1][0,0] + T [15][1,−1][0,0]

)
(2.54)

which then can be passed to the Wigner-Eckart theorem. Normalizing quark trilinears for

baryon operators is irrelevant as their normalizations cancel when we take the ratio of three-

and two-points correlators to extract matrix elements.

This concludes our short introduction to the SU(4) CG coefficients and Wigner-Eckart

theorem. The interested readers could read more about them in [85]. In the following two

sections, we will apply these results to staggered mesonic and baryonic observables.

2.3.2 Adding SU(2)F flavor quantum numbers

All simulations in this work are done the in SU(2)F isospin limit in which the up and

down quarks have equal masses. This extra quantum number is crucial in relating staggered

QCD matrix elements to the physical quantities. In the next few sections, we will consider

operators with definite SU(2)F quantum numbers. The extra set of quantum numbers will

be denoted with the extra [j,m]F label where j in the total isospin and m is the z-component

isospin in the standard spin notation. We will also introduce vectors of up- and down-quark

fields, U/D, in the taste space, with components of ui/di, i = 1, 2, 3, 4.

It may seem that if we add the extra SU(2)F to the existing SU(4), we have to consider the

full SU(8) Wigner-Eckart theorem with eight species of degenerate quarks in the continuum.
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Fortunately, in all the problems we have encountered in this work, we can simply perform a

series of SU(4) Wigner-Eckart rotations to achieve the same effects.

2.3.3 Staggered meson masses and matrix elements with SU(2)F quantum

numbers

Mesonic operators and quark bilinears transform in either the trivial or 15 irreps. The mass

of a meson mg can be measured from the two-point correlator

C
(g,g)
2pt (t) = 〈O(g)(t)O

(g)
(0)〉 ∼

(
〈Ω|O(g)|πg〉

)2
e−mgt (as t→∞) (2.55)

where g denotes the taste of quark bilinears and 〈Ω|O(g)|πg〉 is the real overlap factor between

the ground state meson πg and the vacuum |Ω〉. g can be one of the fifteen gamma matrices

plus the identity matrix. For a moment, we will assume the πg is composed of valence quark

and antiquark of different species, so no disconnected diagrams (quark and antiquark from

the same meson annihilate to gluons) are contributing to the amplitude. By the trivial

applications of the Wigner-Eckart theorem, we can conclude that meson in the adjoint irrep

have degenerate masses in the continuum limit. We can also show that any mesons in the

adjoint irrep are degenerate with the same physical mesons without taste quantum numbers

in the continuum limit. Let’s consider a correlator with g = ξ3ξ5 taste in the adjoint irrep.

Using the quark fields defined in (2.19), we can write the correlator as

C(ξ3ξ5,ξ3ξ5) =
〈
(q1q

′
1 − q2q

′
2 − q3q

′
3 + q4q

′
4)(q′1q1 − q

′
2q2 − q

′
3q3 + q′4q4)

〉
=

4∑
i=1

〈
qiq
′
iq
′
iqi

〉 (2.56)

where qi and q′i correspond to two different quarks with tastes i = 1, 2, 3, 4. In going from the

first to second line, we use the fact that there are no taste-changing currents allowed in the
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continuum limit, so cross talks between different quark tastes are prohibited. Because each

term in the second line of (2.56) involves only quarks with the same taste, it is equivalent to

four times the result that one would get in the physical QCD when we remove the i indices.

This multiplicative factor does not affect the meson mass, so the conclusion above follows.

In the absence of disconnected contributions, the same argument can be also applied to

trivial taste mesons to show that mesons in both the trivial and adjoint irreps are degenerate,

hence, physical. In general, if an observable is completely made of quarks of the same tastes,

it is equal to that of the physical QCD. We will use these principles over and over again in

the next few sections to derive staggered observables that are useful.

We can infer the physical overlap factor from (2.55) by

(
〈Ω|O(g)|πg〉phy

)2 ≡ 1

4

(
〈Ω|O(g)|πg〉

)2
(2.57)

or

〈Ω|O(g)|πg〉phy ≡
1

2
〈Ω|O(g)|πg〉 (2.58)

where 1/4 comes from our observation in (2.56). In the continuum limit, 〈Ω|O(g)|πg〉phy will

become the overlap factor we want to compute in the physical QCD. The 1/
√
Nt, Nt = 4

normalizing factor is known for a long time [78] and has been applied in many staggered

calculations to correctly extract decay constants (see, for example, [77].) In addition to this

group theoretical factor, our statement assumes that the quark bilinears are normalized in

the way we defined at the end of Section 2.3.1. The overall normalizations of the two-point

functions or the quark bilinears are not needed if we are only interested in masses.

If we now include isospin quantum numbers, there are two cases that we need to separately

consider: isospin-1 and isoscalar targets. If we go back to our example in (2.56) and replace all

the quark bilinears with isospin-1 operators uid or uidi, the conclusion remains unchanged
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– all the states in the adjoint and trivial irreps have identical masses and are physical.

Their overlap factors can be normalized with (2.58) to obtain the physical decay constants.

Isospin-1, trivial taste mesons and isospin-1, adjoint taste mesons all live in the same irrep

of SU(8) ⊃ SU(2)F × SU(4), so we can rotate an adjoint taste correlator to the trivial taste

one.

However, the masses and decay constants of isoscalar mesons such as η or η′ can be only

obtained from operators with trivial tastes. To demonstrate this, let’s consider replacing

quark bilinears in (2.56) with isoscalar operators

C
(ξ3ξ5,ξ3ξ5)
isoscalar =

1

2

〈
(Uξ3ξ5U +Dξ3ξ5D)(Uξ3ξ5U +Dξ3ξ5D)

〉
(2.59)

where

U ≡



u1

u2

u3

u4


, D ≡



d1

d2

d3

d4


are vectors of ui and di respectively, and the 1/2 factor normalizes the isoscalar operators.

Isoscalar mesons receive contributions from disconnected diagrams, but we realize that (2.59)

does not have disconnected contributions as the traces of gamma matrices are zeros. However,

if we only consider connected contributions, (2.59) similarly gives four times the physical

QCD result. In general, operators with tastes will work equally well in estimating the

connected contributions and we can write

C
(g,g)
isoscalar,conn. = 4Cconn. (2.60)

The extra “conn.” subscript for C
(g,g)
isoscalar denotes the connected contribution to that corre-
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lator, and Cconn. denotes the connected contributions to the physical QCD correlator. To

incorporate disconnected contributions back to its amplitude, we can only calculate them

with trivial taste operators

C
(I,I)
isoscalar,disconn. =

1

2

〈
(UU +DD)(UU +DD)

〉
disconn.

(2.61)

The subscripts “disconn.” denote the disconnected contributions to the correlator. In the

isospin symmetric limit,

〈uiuidjdj〉disconn. = 〈uiuiujuj〉disconn. = 〈dididjdj〉disconn., (i, j = 1, 2, 3, 4) (2.62)

so (2.61) simplifies to

C
(I,I)
isoscalar,disconn. = 16× 1

2
〈(u1u1 + d1d1)(u1u1 + d1d1)〉disconn. = 16Cdisconn. (2.63)

where Cdisconn. is the disconnected contributions to the physical QCD correlator. This

relationship only holds if we use taste-singlet operators. Combining the results of (2.60)

and (2.63), the isoscalar two-point correlators in the physical QCD can be calculated with

staggered correlators by summing together the connected and disconnected contributions

with different weights

C ≡ Cconn. + Cdisconn. =
1

4
C

(g,g)
isoscalar,conn. +

1

16
C

(I,I)
isoscalar,disconn. (2.64)

This linear combination between the taste-singlet and non-taste-singlet correlators have been

studied and tested (see, for example, [74]), and it behaves as expected.

Why is it that only the isoscalar mesons require such special treatments? The answer

is quite simple when we think in terms of SU(8) ⊃ SU(2)F × SU(4) representation theory.
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Isoscalar mesons with trivial tastes transform as the trivial irrep of SU(8). Correlators made

of trivial irrep operators are special because they cannot be rotated to correlators made of

other states, so their correct values can only be obtained from direct simulations with trivial-

taste operators. The same principles apply whenever we encounter n-point correlators with

isoscalar operators, and we must always use trivial-taste operators to correctly estimate their

values.

We now shift our attention to matrix elements derived from three-point functions with

isospin symmetries

M
(g1,g2,g3)
[j1,m1]F [j2,m2]F [j3,m3]F

≡
〈
[j1,m1]F [g1]

∣∣O(g2)
[j2,m2]F

∣∣[j3,m3]F [g3]
〉
, g1 × g2 × g3 = ±I

(2.65)

where g1, g2, g3 again denote the meson tastes, and [j,m]F denotes the isospin quantum

numbers. To conserve tastes, the product of g’s have to be the identity matrix up to a sign

per our previous discussion. We will not consider isospin-singlet operator and states here -

their physical matrix elements can only be estimated with taste-singlet operators. Suppose

we are instead interested in calculating the matrix element

M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

≡
〈
[1, 0]F [ξ4ξ5]

∣∣Uξ4D∣∣[1, 1]F [ξ5]
〉

(2.66)

where U/D is again a vector of up/down-quark field ui/di, i = 1, 2, 3, 4 in the taste space.

We expand their valence wavefunctions using Table. 2.2 to obtain

M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

=
1√
2
〈u1u3 − d1d3

∣∣u3d3

∣∣d3u1〉+ · · · (2.67)

where “· · · ” denotes three other similar terms and 1/
√

2 is a normalization factor for the

bra wavefunction. We realize that the taste subscript on each quark is redundant – up-ness

and down-ness of the quark fields have already set them apart. For instance, writing d1u3 is
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equivalent to writing du since up and down quarks are already different. Removing the taste

indices will then have no effects in the values of the matrix element, so we can establish the

relationship between physical and staggered matrix elements

M
phy
[1,0]F [1,−1]F [1,1]F

=
1

4
M

(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

(2.68)

where M
phy
[1,0]F [1,−1]F [1,1]F

is the physical matrix elements with the same isospin quantum

numbers but without tastes. This argument holds as long as the product of three taste

gamma matrices is the identity. Note that the same 1/4 factor is also necessary to normalize

the two-point correlators in (2.57), so in practice, this normalization cancels out when we

derive matrix elements from ratios of three-points to two-points functions.

We can also show with Wigner-Eckart theorem that as long as the taste is conserved,

matrix elements with different tastes will all give the same continuum results in (2.68). First,

we define the canonical matrix element M (I)

M (I) ≡M
(I,I,I)
[1,0]F [1,−1]F [1,1]F

=
〈
[1, 0]F [I]

∣∣UD∣∣[1, 1]F [I]
〉

(2.69)

By the same argument above, we assume the canonical matrix element takes on the physical

value if we normalize it by the 1/4 factor. We will then show that through two applications of

the Wigner-Eckart theorem in both isospin and taste spaces, we can rotate matrix elements

with any tastes to the canonical matrix element with normalization factors of ones. So they

would all be equal to the physical matrix element once we normalize them by the 1/4 factors.

We will use M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

as an example here, but it works equally well for all

other tastes. It is impossible to apply the Wigner-Eckart in the taste space to rotate it

to the canonical matrix element - the adjoint and trivial tastes do not mix under taste

transformations. We can, however, perform rotations in both the isospin and taste quantum

numbers to reach the trivial-taste states. We first matrix elements using Table 2.2 to write

46



it as

M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

≡
〈
[1, 0]F [ξ4ξ5]

∣∣Uξ4D∣∣[1, 1]F [ξ5]
〉

=
1√
2

(〈
[1, 0]F [1, 1]S [0, 0]T

∣∣+
〈
[1, 0]F [1,−1]S [0, 0]T

∣∣)×(
2T [1,0]S [0,0]T

[1,−1]F

)
×

1√
2

(∣∣[1, 1]F [1, 1]S [0, 0]T
〉
−
∣∣[1, 1]F [1,−1]S [0, 0]T

〉)
(2.70)

where T is the tensor operator that follows the normalization condition in Table I of [85].

States and operators are now labeled by their [j,m] quantum number of the three SU(2)

subgroups SU(2)F×SU(2)S×SU(2)T ⊂ SU(2)F×SU(4) ⊃ SU(8) identified by the subscripts.

The irrep labels that distinguish between the adjoint and trivial tastes are unnecessary and

omitted here – only [0, 0]S [0, 0]T tastes can belong to the trivial irrep while other tastes

must belong to the adjoint irrep. The factor of 2 normalizes the current operator to the

tensor operator T so the Wigner-Eckart theorem can be applied, and the factors of 1/
√

2

normalize the states to unit norms. We can simplify the expression by applying the SU(2)

Wigner-Eckart theorem to get

M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

=
〈

[1, 0]F [1, 1]S [0, 0]T

∣∣∣2T [1,0]S [0,0]T
[1,−1]F

∣∣∣[1, 1]F [1, 1]S [0, 0]T

〉
(2.71)

This matrix element can be rotated to M (I) by applying the SU(4) Wigner-Eckart theorem

in the flavor-taste space. What this means is that we can imagine embedding the product

SU(2)F × SU(2)S from our group decomposition into a SU(4)FS group that will simulta-

neously rotate flavor and taste quantum numbers. In other words, we can decompose the

SU(8) symmetry group as

SU(8) ⊃ SU(4)FS × SU(2)T ⊃ SU(2)F × SU(2)S × SU(2)T (2.72)
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By doing so, we can transform a state with the adjoint taste to the taste-singlet one and

reduce the problem to a rotation in SU(4) instead of SU(8). We can see from (2.71) that

the states and operator transform in the adjoint irrep of SU(4)FS . To transform the matrix

element to the taste-singlet one, we apply the Wigner-Eckart theorem using Table A4.6. of

[85]3 to get

M
(ξ4ξ5,ξ4,ξ5)
[1,0]F [1,−1]F [1,1]F

= M (I) (2.73)

In general, we can rotate the matrix elements of arbitrary tastes to the singlet-taste one,

thereby showing that they all give rise to physical matrix elements in the continuum limit.

In practice, all we have to do is to write down a matrix element that “cancel out” all the

taste gamma matrices to obtain the desired physical observable.

2.3.4 Staggered baryon masses and matrix elements with SU(2)F quantum

numbers

Baryons are more complicated than mesons as there are simply more tastes or irreps available.

There is not a simple set of rules, like the gamma matrix arithmetic for mesonic observables,

to write down correlators that conserves the quantum numbers. In this section, we will focus

only on the 20S and 20M irrep of staggered baryons because those are the ones that we use

in Chapter 4 to deduce nucleon masses and charges. The same principle can be applied to

the 4̄ irrep.

A baryon state will be denoted by its SU(2)F flavor and SU(4) taste quantum numbers

∣∣∣[jF ,mF ]
F

[
jS ,mS]

S

[
jT ,mT ]

T

〉
(2.74)

3. There are typos in the table that needs to be considered.
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where for baryons, all j’s and m’s are denoted with the spin notations. Note that it is in

general ambiguous to denote the taste of a baryon only by their SU(2)S and SU(2)T quantum

numbers – both 20S and 20M have states with jS = jT = 1/2 according to Table 2.1. For

any other jS and jT , however, it is clear which irrep it belongs to. We will always be explicit

which irrep the state belongs to when we have jS = jT = 1/2, then the notation should be

unique.

For rooted, staggered fermions, the physical baryon masses can be obtained from the

masses of single-taste baryons defined in Table 2.3 [82]. This does not preclude other states

from having physical masses. Using flavor-taste rotations, there are in fact many states that

all have the correct masses. Suppose we are interested in finding the mass of an isospin-1/2

baryon. We denote the highest-weight, single-taste baryon as

∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉
≡

∣∣∣∣∣
[

1

2
,
1

2

]
F

[
3

2
,
3

2

]
S

[
3

2
,
3

2

]
T

〉
(2.75)

We can show that states in

168M →
(

3

2
, 20M

)
⊕
(

1

2
, 20S

)
⊕
(

1

2
, 4̄

)
⊕
(

1

2
, 20M

)
(2.76)

where flavor and taste irreps are labeled in the parentheses, and 168M is a baryon irrep of

the SU(8) flavor-taste symmetry group that will be used in our nucleon simulations. Baryons

within the 168M are degenerated and have physical masses [82] because single-taste baryons

are members of the irrep. It is interesting to note that that baryons with “wrong” isospin

quantum numbers could still have the physical masses, considering that the isospin symmetry

is only a subgroup of the full symmetry group SU(8). In our calculations later, we will find

out that nucleons with isospins 3/2 are the most convenient to simulate. To distinguish them

from the physical nucleons, we will oftentimes refer to them as nucleon-like states.

It is natural to extend the statements to say that those matrix elements consisting of
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single-taste baryons and single-taste quark bilinears are physical. However, single-taste quark

bilinears are linear combinations of different operator tastes defined in Table 2.2, and it is

much easier to work with current operators with are irreps of the lattice symmetry group. So

for non-isospin-singlet operators, the physical matrix elements can be obtained with single-

taste baryons and current operators with tastes I, ξ4, ξ1ξ2 or ξ3ξ5, which we will sometimes

be referred to as taste-diagonal operators. Again, we have to use the taste-singlet operator

for isospin-singlet operators to obtain the correct disconnected diagram contributions. But

for non-isospin-singlet cases, we are free to use any one of the four tastes given that we have

normalized the current operators according to the discussion at the end of Section 2.3.1.

This means that, for example,

Mphy =

∣∣∣∣∣
〈[

1

2
,
1

2

]
F

; 111T

∣∣∣∣∣ 1√
2

(
UU −DD

)∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉∣∣∣∣∣ =∣∣∣∣∣
〈[

1

2
,
1

2

]
F

; 111T

∣∣∣∣∣ 1√
2

(
Uξ4U −Dξ4D

)∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉∣∣∣∣∣ =∣∣∣∣∣
〈[

1

2
,
1

2

]
F

; 111T

∣∣∣∣∣ 1√
2

(
Uξ1ξ2U −Dξ1ξ2D

)∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉∣∣∣∣∣ =∣∣∣∣∣
〈[

1

2
,
1

2

]
F

; 111T

∣∣∣∣∣ 1√
2

(
Uξ3ξ5U −Dξ3ξ5D

)∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉∣∣∣∣∣

(2.77)

where Mphy is the physical matrix element without taste quantum numbers. We have taken

absolute values of the matrix elements because of the potential ±1 and ±i factors from the

gamma matrices. These relations can also be proven by applying the Wigner-Eckart theorem

using Table A4.2 of [85].

The extend SU(8) flavor-taste symmetry allows us to relate the matrix elements of

baryons with 20M to those with 20S tastes just like how it works for meson matrix ele-
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ments. Let’s consider the matrix element

M20M ≡

〈[
3

2
,
3

2

]
F

[
3

2
,
3

2

]
S

[
1

2
,
1

2

]
T

∣∣∣∣∣ 1√
2

(
Uξ3ξ5U −Dξ3ξ5D

)
×∣∣∣∣∣

[
3

2
,
3

2

]
F

[
3

2
,
3

2

]
S

[
1

2
,
1

2

]
T

〉 (2.78)

This shows up in the calculation of the nucleon axial charge in Chapter 4. Notice that the

baryons transform in the isospin-3/2, 20M representation. The goal is to relate M20M the

one of the physical matrix elements defined in (2.77) with isospins 1/2. Note that the current

is already taste diagonal in this example, so we know the physical matrix elements is equal

to

Mphy =

〈[
1

2
,
1

2

]
F

; 111T

∣∣∣∣∣ 1√
2

(
Uξ3ξ5U −Dξ3ξ5D

)∣∣∣∣∣
[

1

2
,
1

2

]
F

; 111T

〉
(2.79)

The current operator transforms as the tensor operator

1√
2

(
Uξ3ξ5U −Dξ3ξ5D

)
= 2T [1,0]S [1,0]T

[1,0]F
(2.80)

where the factor of 2 comes from the normalization condition, and various parentheses denote

the quantum numbers of SU(2) subgroups. We apply the Wigner-Eckart theorem on the

SU(4)FT ⊃ SU(2)F × SU(2)T subgroup with CG coefficients defined in Table A4.5. of [85]

to obtain

Mphy = M20M (2.81)
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which relies on the symmetry property of these particular CG coefficients

〈[
20M

]
[jF1 , j

T
1 ];
[
15
]
[jF2 , j

T
2 ]
∣∣∣∣∣∣ [20M

][
J − 1, J

]〉
ρ

=〈[
20M

]
[jT1 , j

F
1 ];
[
15
]
[jT2 , j

F
2 ]
∣∣∣∣∣∣ [20M

][
J, J − 1

]〉
ρ

(2.82)

In other words, we can use isospin-3/2 baryons in (2.78) to simulate a matrix element in

(2.79) with isospin-1/2 baryons, which is what we will be doing in the following chapters.

Alternatively, we observe that when we decompose SU(8) to the products of three SU(2)

subgroups, the decomposition is completely symmetrical, meaning that there is a symmetry

of exchanging subscript labels of the irreps. We can simply exchange the F and T labels on

(2.78) to obtain (2.79).

It should be emphasized that when we perform simulations with the rooted, staggered

quark action, we are not simulating QCD because of the four extra tastes for each quark

species. In order to extract physical observables, we have to think carefully about which

observables are identical in those two theories. This is achieved in this work by realizing

that observables consist of a single taste in staggered QCD must coincide with the one in

the physical QCD. One can then apply symmetry transformations presented in this chapter

to relate other staggered observables to the single-taste ones. In a way, this theoretical

complexity becomes the strength of staggered simulations, as for a given QCD observable

we want to calculate, there are many equivalent staggered observables that we can simulate

which all give rise to the same continuum results. We have so far focused only on the

calculations of masses and matrix elements of single-particle mesons and baryons, but the

same underlying principles can be derived for other observables such as the spectrum of

multi-particle states, four-point functions, etc.
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Chapter 3

Spectrum of staggered baryons

3.1 Symmetries of the staggered action

This section will give an overview on how to construct staggered baryon interpolators and

states based on the symmetry group of the staggered lattice action. The free staggered action

for one quark flavor is given by

SF = χ( /D +m)χ =
1

2

∑
n

4∑
µ=1

ηµ(n)χ(n)
(
χ(n+ µ̂)− χ(n− µ̂)

)
+m

∑
n

χ(n)χ(n) (3.1)

where n ≡ (n1, n2, n3, n4); unless specified otherwise, we omit the color indices in this chapter

as they play no roles in the following discussions.

There are four convention-dependent phase factors, ηµ, ξµ(n), SRµν
(n), and ε(n), that

act as “gamma matrices” for one-component spinor fields. In the convention we are working

with, they are defined as

ηµ(n) ≡ (−1)
∑
ν<µ nν

ξµ(n) ≡ (−1)
∑
ν>µ nν

ε(n) ≡ (−1)n1+n2+n3+n4

SRµν
(n) ≡ 1

2

(
1± ηµ(n)ην(n)∓ξµ(n)ξν(n) + ηµ(n)ην(n)ξµ(n)ξν(n)

)
, µ ≶ ν

(3.2)

which are the same as those in [78, 79, 81]. The symmetries of the action that are relevant

to classifying baryon operators are [81]:

• shift Sµ: χ(n)→ ξµ(n)χ(n+ µ̂)

• rotation Rµν : χ(n)→ SRµν
(R−1

µν n)χ(R−1
µν n)

• spatial inversion Is: χ(n)→ η4(n)χ(Isn), Isn = (−n1,−n2,−n3, n4)
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The antiquark fields χ(n)’s transform identically as the quark fields χ(n)’s for these oper-

ations, so we restrict our discussions to χ(n) only. We note that each symmetry operation

defined above contains a phase factor that depends on n. Intuitively, this is because the

staggering procedures mix the spacetime symmetries with internal taste symmetries, so any

spacetime symmetry operations on the staggered fields χ(n) will inadvertently transform

both the locations of and tastes, which show up as n-dependent phase factors.

On the lattice, the taste and spacetime symmetries are deeply intertwined and cannot be

separated exactly, as the spinor components of naive quarks are distributed across different

lattice sites under the staggering procedure. One common strategy to approximately isolate

each fermion taste is by blocking χ(x) within the hypercube to select out the appropriate

spin and taste (see the section on staggered fermions in [49] for a detailed exposition. See

also the appendices of [83] for examples), thereby effectively moding the lattice dimensions

by two in each direction. To achieve this, we separate the shift symmetries into two sets

[78, 81]

• translation Tµ ≡ S2
µ: χ(n)→ χ(n+ 2µ̂)

• taste transformation Ξµ ≡ SµT
−1/2
µ

Without loss of generality, assume we always have even lattice sites in each direction. Then

the translation defined this way is free of taste transformation, and states transforming in

the irrep will have definite energy and momentum in the continuum limit; on the other

hands,
[
Ξµ, Tµ

]
= 0 and

[
Ξµ,Ξν

]
= 2δµν , and Ξµ can be interpreted as the subgroup of

the continuum taste transformation on the lattice. We only consider the action of Ξµ on

eigenstates of Tµ, so the action of T
−1/2
µ is well defined.

The eigenstates of Is do not have well defined parities since Is contains taste transfor-

mations, as evidenced by the presence of ηµ(n) phases. The parity operators can be defined

via [78, 81]
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• parity P ≡ IsΞ4

which commute with both Ξµ and Rµν . States with definite P quantum numbers will also

have the same continuum parities. Now we can understand why staggered fermions stagger.

We see from the definition of P that it contains the temporal taste transformation Ξ4 which

cancels out the taste transformation in Is so that P is taste invariant. This means that if we

are to construct states with definite parity, we have to use interpolators that span multiple

time slices on the lattice which could be problematic on the lattice; see [52] for a discussion.

Instead, states with both positive and negative parities will show up when interpolators are

restricted to a single time slice, which gives rise to the characteristic oscillation of staggered

correlators (see figures in [2, 3] for some correlator examples).

3.2 Staggered baryons at zero momenta on the lattice

Staggered baryons at zero momenta transform as irreps of the geometric rest-frame group

(GRF) [81]

GRF ≡
{

Ξµ, Rµν , P
}

(3.3)

Note that it is equivalent to replace the parity operator in the group definition as both Is

and P are in GRF.

As usual, we first find the maximal set of commuting operators within GRF to classify

baryons, which can be chosen as R12, Ξ4, Ξ1Ξ2, and P . Following the same notations as in

[81], the lattice baryons are labeled by kets

∣∣mrσ;σt
〉

(3.4)

where m is the mass, r denotes both Ξ4 and R12 eigenvalues, σ = ± is the parity, and σt is
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the eigenvalue of Ξ4.

Baryon interpolators are constructed from quark trilinears that are irreps of the symmetry

group on a single time slice, or geometric time slice group (GTS)

GRF ⊃ GTS ≡ {Ξi, Rij , Is} (3.5)

Note that GRF = GTS × Z2(P ), where Z2(P ) is the Z2 group generated by the parity

operators, so σ, the parity quantum number, is the only missing one.

Let O(t) be a baryon interpolator transform in an irrep of GTS at time slice t. The

two-point correlator has spectral decomposition

〈O(t)O(0)〉 = 〈Ω|O(t)O(0)|Ω〉

=
∑
n

〈Ω|O(t)|mnrσn;σt,n〉〈mnrσn;σt,n|O(0)|Ω〉

=
∑
n

〈Ω|St4O(t)S−t4 St4|mnrσn;σt,n〉〈mnrσn;σt,n|O(0)|Ω〉

=
∑
n

(σt,n)te−mnt〈Ω|O(0)|mnrσn;σt,n〉〈mnrσn;σt,n|O(0)|Ω〉

(3.6)

In the first line we assume the lattice has an infinite time extent LT so thermal terms

proportional to exponentials in LT are ignored; in line 2, note that we are summing over

eigenvalues m, σ, and σt, but not r since irreps of GTS always have definite r quantum

numbers; in going from the third to the fourth line, we use the definition S4 = Ξ4T
1/2
4 (T4

is the transfer matrix) to write it as the product of Ξ4 and T4 eigenvalues. Let σs = ±1 be

the eigenvalues of O(t) under Is, we can then rewrite (3.6) as

〈O(t)O(0)〉 =
∑
n

(σsσn)te−mnt〈Ω|O(0)|mnrσn;σt,n〉〈mnrσn;σt,n|O(0)|Ω〉 (3.7)

In other words, if σs = 1, the positive parity states will have prefactors (σsσn)t = 1 while the

56



negative parity states will have (σsσn)t = (−1)t, which shows up as the staggering pattern

in correlation functions.

We are now ready to construct operators from χ(n) fields that we can actually put into

a numerical simulation. The irreps of GTS can be classified into baryonic (unfaithful) and

fermionic (faithful) irreps. Operators constructed from products of even/odd numbers of

χ(n) is always baryonic/fermionic. In this work, we will focus only on quark trilinears so we

will only work with fermionic irreps – see [79] for explicit constructions of quark bilinears.

Fortunately, there are only three fermionic irreps – 8, 8′, and 16 where the number denotes

the dimensions of an irrep. The fundamental quark fields at zero momentum transform in

the 8 irrep

∑
~n∈even



χ0(~n)

χ1(~n)

...

χ7(~n)


(3.8)

We assume all fields reside on the time slice n4 = 0 and omit n4 in ~n = (n1, n2, n3); ~n ∈ even

is summing all lattice sites that are even in all three coordinates. χA(~n) ≡ χ(~n+ ~DA) where

~DA is one of the eight corners of a spatial cube, with its coordinate given by the binary

representation of i, namely,

~D0 = (0, 0, 0) = (nx, ny, nz)

~D1 = (1, 0, 0)

~D2 = (0, 1, 0)

...

~D6 = (1, 1, 0)

~D7 = (1, 1, 1)

(3.9)
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When we define staggered baryon operators later, we will oftentimes denote a corner by its

scalar subscript A = 0, · · · , 7.

One can check easily that (3.8) transforms in the zero momentum irrep of GTS by

explicitly applying group elements to the operators. The sum here is only on the even sites

as the translational symmetry shift the field by two lattice units.

We take the tensor products of three fundamental 8 irreps to construct baryonic irreps

8⊗ 8⊗ 8 = 5 · 8⊕ 2 · 8′ ⊕ 4 · 16 (3.10)

The multiplicities of all baryonic irreps are larger than one, meaning there is more than one

way to arrange three quark fields on the cube to construct the same irrep. In staggered

baryons literature, different constructions of the same irrep are referred to as “classes” [81,

82], and we will follow the nomenclature here. All operators in specific irrep will excite the

same spectrum of states regardless of the operator classes.

Class 1 of the 8 irrep is the simplest to understand, which has the same construction as

(3.8) besides replacing one quark field with three quark fields on the same site. However,

while being the simplest to illustrate, its spectrum is one of the most complicated out of

all three irreps. In Section 3.3, we will show that the isospin-3/2, 8 irrep operator creates

three nucleon-like and two ∆-like ground states in the positive parity channels, while its

isospin-1/2 counterpart creates five nucleon-like and one ∆-like ground states. Again, we

refer to them as nucleon-like and ∆-like states instead of nucleons and ∆’s to emphasize that

they have the same continuum masses as physical nucleons and ∆’s, but they could have the

wrong isospin and taste quantum numbers.

Simulations with 8 irreps have proven to be difficult from our experiences. On the lattice,

these nucleon-like states are nearly degenerate, with their mass gaps dictated by the size of

taste-breaking effects in the lattice action. Disentangling different states thus requires precise

determinations of the correlation functions that are difficult to attain. Instead, we focus on
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the isospin-3/2, 16 irrep operators in this thesis that has the simplest spectrum of all irreps

with one nucleon-like and three ∆-like ground states.

To construct such operators, we introduce the symmetric shift operator [81, 82]

DiχA(~n) ≡ 1

2

(
χA(~n+ î) + χA(~n− î)

)
(3.11)

where i = 1, 2, 3. Then, as an example, a class-2, 16 irrep operator can be constructed as

O16+,0;cls2 ≡ 1√
6

∑
~n∈even

∑
a,b,c

εabc

{
χa(~n)D1

(
χb(~n)χc(~n)

)
+

χa(~n)D2
(
χb(~n)χc(~n)

)
− 2χa(~n)D3

(
χb(~n)χc(~n)

)} (3.12a)

O16−,0;cls2 ≡ 1√
2

∑
~n∈even

∑
a,b,c

εabc

{
χa(~n)D1

(
χb(~n)χc(~n)

)
− χa(~n)D2

(
χb(~n)χc(~n)

)}
(3.12b)

where the color indices a, b, and c are antisymmetrized. The 16 irrep is separated into two

sets, 16+ and 16−, where the plus and minus signs denote the eigenvalues of O16±,0;cls2

under R12 rotations. Each set contains eight irrep components and each component resides

on one of the eight corners of a spatial cube given by the sum of quark positions modulo

two. In this example, we show the zeroth-corner operators denoted by the subscripts 0. We

can obtain other components, O16±,A;cls2, A = 0, · · · , 7, by applying the appropriate spatial

shift operators. See [81] for definitions of other operators.

It is a straightforward exercise to add isospin quantum numbers to baryon operators.

The simplest ones, also the ones that we will use in practice, are the isospin-3/2 operators

with the highest weights. In this case, no extra work is needed – all we have to do is to

replace χ’s in (3.12) by the up-quark fields. See [82], which builds upon the results of [81],

for the complete set of operators with isospin quantum numbers.

It is convenient to separate the 16 irrep components into 16± so they each occupy eight
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corners of the cube. This also has important group-theoretical consequences in the continuum

limit which will be discussed in Section 4.2.4. The bottom line is that ratios of matrix

elements constructed from 16± interpolators are given by the ratios of the appropriate CG

coefficients that we will derive. We use this fact in Section 4.2.4 to perform consistent checks

on our simulation data.

Non-local operators defined in (3.12) are not gauge invariant as the gauge links are not

included. We can either i) include gauge links to make the operators gauge invariant, or ii)

perform simulations on gauge-fixed configurations. Note that gauge fixings are completely

optional in lattice simulations to obtain finite results unlike in continuum calculations. It

is costly in our simulations to include gauge links for both source and sink interpolators,

as doing so would require 82 = 64 propagator solves to construct one set of correlators

if we are to include all correlators that are equal on the ensemble average, compared to

eight propagator solves for sources emanating from eight corners of a cube if gauge links are

ignored. Instead, we gauge fix all configurations to the Coulomb gauge [49]. We observe that

simulations on gauge-fixed configurations have added benefits of being less noisy because we

restrict path integrals to a specific gauge choice thereby reducing the observable variance.

So in practice, we always calculate correlators with Coulomb-gauge-fixed configurations, and

since the nucleon masses and matrix elements we try to compute are gauge invariant, this

choice does not affect our final results.

3.3 Spectrum of staggered baryon operators with SU(2)

quantum numbers

Now that we have constructed baryon irreps on the lattice, we want to now know their

ground state spectra. Specifically, we will focus on operators with either isospin-1/2 or 3/2

quantum numbers. To answer this question, we have to start with the continuum symmetry

group and work our ways down following the symmetry breaking pattern until we reach the
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GTS group.

Nucleon-like (N -like) and ∆-like states are the lowest-lying baryons which the operators

can excite. They reside in the continuum irreps [82]

SU(2)S × SU(8)FT ⊃ SU(2)S × SU(2)F × SU(4)T

N -like =

(
1

2
, 168M

)
→
(

1

2
,
3

2
, 20M

)
⊕
(

1

2
,
1

2
, 20S

)
⊕
(

1

2
,
1

2
, 4̄

)
⊕
(

1

2
,
1

2
, 20M

)
(3.13a)

∆-like =

(
3

2
, 120S

)
→
(

3

2
,
3

2
, 20S

)
⊕
(

3

2
,
1

2
, 20M

)
(3.13b)

We use a different group labeling scheme here than the one that appears in chapter 2: SU(2)S

is the spin group, SU(2)F is the isospin symmetry group, and SU(4)T is the taste group.

In section 2.3.4, we have discussed the spectrum of staggered nucleons in the continuum,

and proven in (2.76) that, because (3.13a) contains the physical single-taste nucleons which

transform in the spin-1/2, isospin-3/2, 20S irrep, all N -like states in that equation will be

degenerate with the physical nucleon, despite potentially having the wrong isospin or taste

quantum numbers. Similarly, we extend the same arguments to ∆-like states to state that

all ∆-like states in (3.13b) are degenerate with the physical ∆ baryons.

We further decompose the taste group into the product of SU(2) subgroups [2]

SU(4)T ⊃ SU(2)Q8
× [(SU(2)D4

× Z4)/Z2] (3.14)

Eventually, we will subdue [(SU(2)D4
×Z4)/Z2] to the finite D4 ⊂ GTS group, the dihedral

group of order 8, on the lattice, hence the D4 label on SU(2). Since D4 is not a subgroup

of SU(2), we need a Z4 phase factor to correct for this. For the fermionic (faithful) irrep

we need here, Z4 = {±1,±i}; the Z2 quotient factor ensures we are not overcounting group

elements by identifying (−1,−1) = (1, 1) and (−1, 1) = (1,−1). This combination is referred
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to as the central product of SU(2)D4
and Z4. The ZN factors1 are there to ensure the group

subduction is correct, however, they have few physical consequences and we will ignore their

labels. On the other hand, we have another SU(2) group factor labeled with Q8, which can

be decomposed to the quaternion group Q8 ⊂ GTS [2]. Note that the SU(2) labeling scheme

here is different from the one used in chapter 2.

Further decomposing the taste irreps in (3.13) according to (3.14) can be done by using

results in the second column of Table 2.1. The relevant entries read

SU(4)T ⊃ SU(2)Q8
× [(SU(2)D4

× Z4)/Z2]

20S →
(

3

2
,
3

2

)
⊕
(

1

2
,
1

2

)
20M →

(
3

2
,
1

2

)
⊕
(

1

2
,
3

2

)
4̄→

(
1

2
,
1

2

)
(3.15)

where the first number in each parenthesis denotes the quantum number of SU(2)Q8
and the

second one denotes the quantum number of SU(2)D4
. On the lattice, D4 is generated by

operators Ξ123 and Is. The irreps of SU(2)Q8
appearing in (3.15) can be subduced to D4

irreps as

[(SU(2)D4
× Z4)/Z2] ⊃ D4

1

2
→ B

3

2
→ B ⊕B

(3.16)

where B is the only two-dimensional, fermionic (faithful) irrep of D4. We adopt the same

irrep label as [2]. In the basis where the irreps have definite Is eigenvalues, the two states

transforming in the B irrep will have ±1 eigenvalues. We will show this explicitly later when

1. We have neglected some other ZN factors in the decomposition as they are not important to our
discussions.
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we deduce the continuum quantum numbers of nucleon-like states excited by GTS operators.

After this decomposition step, the remaining subgroup becomes

SU(2)Q8
× SU(2)S × [(SU(2)D4

× Z4)/Z2] (3.17)

We have ignored the flavor SU(2)F group as it is not broken by the lattice. The last

decomposition step before matching the irreps of GTS is

SU(2)Q8
× SU(2)S ⊃ SU(2)SW3

(3.18)

where SU(2)SW3
is the diagonal subgroup. Subducing tensor products of SU(2) irreps is a

simple angular momentum addition problem, so we obtain

SU(2)Q8
× SU(2)S ⊃ SU(2)SW3(

1

2
,
1

2

)
→ 1⊕ 0(

3

2
,
1

2

)
→ 2⊕ 1(

1

2
,
3

2

)
→ 2⊕ 1(

3

2
,
3

2

)
→ 3⊕ 2⊕ 1⊕ 0

(3.19)

Furthermore, for SU(2) groups, not only do we know about how the tensor products de-

compose to irreps of the diagonal subgroup, but we also know how to write down the exact

linear combinations of those tensor-product states with CG coefficients that transform in the

irreps on the right-hand side. This is what enables us to figure out the continuum quantum

numbers of baryons excited by our lattice operators that we will discuss in the next section.

But for now, we don’t need that information to deduce the spectrum.

To see why (3.19) is useful for decomposing the continuum group irreps, let’s revisit the
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GTS irreps and decompose them further to its discrete rotation subgroup

GTS ⊃W3 ≡
{
Rij , Is

}
= SW3 × Z2

8→ A+
1 ⊕ A

−
1 ⊕ T

+
1 ⊕ T

−
1

8′ → A+
2 ⊕ A

−
2 ⊕ T

+
2 ⊕ T

−
2

16→ E+ ⊕ E− ⊕ T+
1 ⊕ T

−
1 ⊕ T

+
2 ⊕ T

−
2

(3.20)

W3 is the discrete symmetry group of a cubic lattice as defined in [78], and irreps on the

right are defined in [81].2 Noticeably, A+
1 is the trivial irrep. The superscripts denote the

eigenvalues of Is.

In each line, we have boxed an irrep of W3 that uniquely appears in that specific irrep

decomposition, which allows us to decompose the irreps of SU(3)SW3
to SW3, and hence,

GTS. Mapping continuum rotations to the discrete ones is a common task for all lattice

formulation, and has been worked out before (for example, see [89, 90]). Furthermore, we

will add back the D4 decomposition results in (3.15) and (3.16). The relevant decompositions

2. We switch the irrep labels of F ’s to T ’s, which are more commonly used in lattice literatures.
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read

SU(2)SW3
× [(SU(2)D4

× Z4)/Z2] ⊃W3(
3,

1

2

)
→ A+

2 ⊕ A
−
2 ⊕ T

+
1 ⊕ T

−
1 ⊕ T

+
2 ⊕ T2(

3,
3

2

)
→ 2 ·

(
A+

2 ⊕ A
−
2 ⊕ T

+
1 ⊕ T

−
1 ⊕ T

+
2 ⊕ T2

)
(

2,
1

2

)
→ E+ ⊕ E− ⊕ T+

2 ⊕ T
−
2(

2,
3

2

)
→ 2 ·

(
E+ ⊕ E− ⊕ T+

2 ⊕ T
−
2

)
(

1,
1

2

)
→ T+

1 ⊕ T
−
1(

1,
3

2

)
→ 2 ·

(
T+

1 ⊕ T
−
1

)
(

0,
1

2

)
→ A+

1 ⊕ A
−
1(

0,
3

2

)
→ 2 ·

(
A+

1 ⊕ A
−
1

)

(3.21)

The pattern here is clear: 1/2 irrep of SU(2)D4
will always subdue into lattice irreps with

± Is eigenvalues, while 3/2 irrep will subdue into two identical copies of that same lattice

irreps. By matching now the results of (3.21) and (3.19) to (3.20), we can easily work out

the decomposition of the continuum irreps to 8, 8′, and 16 irreps of GTS. The complete irrep
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decompositions starting from (3.13) now read

SU(2)F × SU(2)S × SU(4)T ⊃

SU(2)F × SU(2)S × SU(2)Q8
× [(SU(2)D4

× Z4)/Z2] ⊃ SU(2)F ×GTS

N -like state:(
3

2
,
1

2
, 20M

)
→(

3

2
,
1

2
,
1

2
,
3

2

)
⊕
(

3

2
,
1

2
,
3

2
,
1

2

)
⊕
(

3

2
,
1

2
,
1

2
,
1

2

)
→ 3 ·

(
3

2
, 8

)
⊕
(

3

2
, 16

)
(

1

2
,
1

2
, 20S

)
→(

1

2
,
1

2
,
3

2
,
3

2

)
⊕
(

1

2
,
1

2
,
1

2
,
1

2

)
→ 2 ·

(
1

2
, 16

)
⊕
(

1

2
, 8

)
(

1

2
,
1

2
, 4̄

)
→(

1

2
,
1

2
,
1

2
,
1

2

)
→
(

1

2
, 8

)
(

1

2
,
1

2
, 20M

)
→(

1

2
,
1

2
,
1

2
,
3

2

)
⊕
(

1

2
,
1

2
,
3

2
,
1

2

)
⊕
(

1

2
,
1

2
,
1

2
,
1

2

)
→ 2 ·

(
1

2
, 8

)
⊕
(

1

2
, 16

)
⊕
(

1

2
, 8

)
(3.22a)

∆-like state:(
3

2
,
3

2
, 20S

)
→(

3

2
,
3

2
,
3

2
,
3

2

)
⊕
(

3

2
,
3

2
,
1

2
,
1

2

)
→ 2 ·

{(
3

2
, 8

)
⊕
(

3

2
, 8′
)
⊕
(

3

2
, 16

)}
⊕
(

3

2
, 16

)
(

1

2
,
3

2
, 20M

)
→(

1

2
,
3

2
,
1

2
,
3

2

)
⊕
(

1

2
,
3

2
,
3

2
,
1

2

)
⊕
(

1

2
,
3

2
,
1

2
,
1

2

)
→ 4 ·

(
1

2
, 16

)
⊕
(

1

2
, 8

)
⊕
(

1

2
, 8′
)

(3.22b)
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Table 3.1: Spectra of staggered baryon operators transforming as irreps of SU(2)F×GTS.

SU(2)F irrep GTS irrep # N -like states # ∆-like states

1
2 8 5 1

3
2 8 3 2

1
2 8′ 0 1

3
2 8′ 0 2

1
2 16 3 4

3
2 16 1 3

We can work out the spectra of lattice operators based on the results of (3.22). For

example, we can figure out the ground state spectrum of the isospin-3/2, 16 irrep by realizing

that there is only one continuum irrep of the nucleon-like states which subduces to this lattice

irrep, while there are three continuum irreps of the ∆-like states which subdues into it. This

means that the operators transforming in this irrep can excite one nucleon-like and three ∆-

like states. Lattice discretization destroys the full continuum symmetry group, so operators

transforming as irreps of the lattice symmetry group will mix all continuum states that

subduce to the same lattice irreps. The mass degeneracy of the continuum spectrum in

(3.13) will be lifted on the lattice, with small mass gaps that depend on the lattice spacing,

and can only be restored by taking the continuum limit.

In Table 3.1, we list all the staggered baryon operators that we consider in this work

and their corresponding spectra. As promised, the isospin-3/2, 16 irrep only excites a single

nucleon-like state. Note that the isospin-1/2, 8′ irrep only excites one ∆-like state. If we

replace light quarks in the baryons with strange quarks and impose a new “isospin” symmetry

for two species of valence strange quarks, we can use this operator to excite a single omega

baryon and study its properties [82, 91, 92]. The mass of the omega baryon is particularly

useful in determining the lattice spacings with small systematic errors (well measured in
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experiments, small QED corrections compared to fπ, insensitive to light quark masses, and

so on), and we are starting to see more lattice simulations based on the omega baryon mass

scale-setting (for example, see [92, 93]) in the pursuit of higher precision.

3.4 Continuum quantum numbers of lattice baryons

It is sufficient to construct two-point correlators with staggered baryon operators defined

in [81, 82] and use Table 3.1 to derive the masses of nucleons and ∆ baryons. Going be-

yond spectrum calculations to matrix elements, we need to additionally know the continuum

quantum number of nucleon-like and ∆-like states so that we can apply the generalized

Wigner-Eckart theorem to relate the staggered QCD observables to QCD observables as dis-

cussed in section 2.3.4. A continuum state breaks into a linear combination of lattice states,

or equivalently, a lattice state can be written as linear combinations of continuum states.

The goal is then to find the exact coefficients of these linear combinations, or subduction

coefficients as they are usually referred to. In this section, we will focus on deriving the

subduction coefficients of the nucleon-like state excited by the isospin-3/2, 16 irrep that we

will use in subsequent analyses. Subduction coefficients of other lattice irreps can also be

derived similarly.

Let O
16±,A
[3/2,3/2]F

, A = 0, · · · , 7 be the sixteen zero-momentum lattice operators transform-

ing in the isospin-3/2, 16 irrep. ± denotes the eigenvalue of Is, A denotes one of the eight

corners, and the subscripts denote the quantum numbers of SU(2)F . (3.12) is a concrete

realization of this operator if all χ(~n) transform as up-quark fields. The operator class is not

important in the following discussion so its label is omitted.

These operators create sixteen different nucleon-like states

∣∣∣∣∣
[

3

2
,
3

2

]
F

[
16±, A

]
GTS

〉
(3.23)
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which are degenerate even on the lattice. The subduction coefficients of SU(2)SW3
⊃W3 is

well-known in the literature, so the first thing we do is classifying sixteen components with

irreps of W3 based on the decomposition in (3.21). We get

E+ =

 ∣∣[3
2 ,

3
2

]
F

[
16+, 0

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 0

]
GTS

〉
 , E− =

 ∣∣[3
2 ,

3
2

]
F

[
16+, 7

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 7

]
GTS

〉
 ,

T+
1 =


∣∣[3

2 ,
3
2

]
F

[
16+, 5

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 6

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 3

]
GTS

〉
 , T−1 =


∣∣[3

2 ,
3
2

]
F

[
16+, 1

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 2

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 4

]
GTS

〉
 ,

T+
2 =


∣∣[3

2 ,
3
2

]
F

[
16−, 5

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 6

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 3

]
GTS

〉
 , T−2 =


∣∣[3

2 ,
3
2

]
F

[
16−, 1

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 2

]
GTS

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 4

]
GTS

〉


(3.24)

Two things to note here: components with +1 eigenvalues in Is always reside on even corners

(A = 0, 3, 5, 6) while components with −1 eigenvalues reside on odd corners (A = 1, 2, 4, 7);

the operators are constructed in such a way that under R12 rotations, two components

of E irreps have ± eigenvalues, z-components (third components) of T1 have +1 eigen-

value, z-components of T2 has −1 eigenvalues. These properties can be checked explicitly

by going back to the definitions of baryon operators in [81, 82] and applying the corre-

sponding symmetry transformations. Using this classification and subduction coefficients of

SU(2)SW3
⊃ SW3 in [90], we can work out the continuum quantum numbers of SW3 irreps

on the lattice.

The last thing we need are the subduction coefficients of [(SU(2)D4
× Z4)/Z2] ⊃ D4 =

{Is,Ξ123} in (3.16), where ±1 eigenvalues of Is are used to label the basis vectors of the two-

dimensional B irrep. The answer is actually a bit subtle because as we restrict our attention

to the nucleon-like state, we implicitly mix the parity operator back into the discussion. So
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the actual decomposition we should consider really is

U(2)D4
× Z2(P ) ⊃ SU(2)D4

× U(1)× Z2(P ) ⊃ SU(2)D4
× Z4 × Z2(P ) ⊃ D4 × Z2(P )

(3.25)

where Z2 quotient factors are omitted for simplicity, Z2(P ) is the Z2 group generated by

the parity operator P , and the extra U(1) phase factor of the taste symmetry explains the

origin of Z4. It might seem redundant to explicitly include Z2(P ) in the decomposition as

it always commutes with any other group elements. However, Is must contain the parity

transformation because Is = Ξ4P by definition, so it is important to keep Z2(P ) in the

decomposition.

We can identify the two-dimensional matrix representation of Is in the B irrep by the

tensor product

Is = e−iσ3π/2 ⊗ e−iπ/2 ⊗ 1 = σ3 (3.26)

where σ3 is the Pauli matrix. The first factor in the tensor product comes from the spin-1/2

representation of R12(π) ∈ SU(2)D4
, the second factor comes from the U(1) (or Z4) phase,

and the third factor is the parity of a nucleon. This means the states with +1/2 z-component

spin in SU(2)D4
have +1 eigenvalues of Is, while states with −1/2 z-component spin have

−1 eigenvalues. In other words, the subduction coefficients is trivial for 1/2→ B. Although

it will not be used here, we can apply the similar technique to 3/2→ B ⊕ B by identifying

Is as

Is = eiπ×diag(3,1,−1,3)/2 ⊗ e−iπ/2 ⊗ 1 = diag(−1, 1,−1, 1) (3.27)

The only difference is that we change the spin-1/2 representation of R12(π) to the spin-3/2

one. As we can see, the components naturally split into two B irreps with ±1 eigenvalues in
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Is. The subduction coefficients here are again trivial.

We are now ready to write down the continuum quantum number of the nucleon-like

state in the isospin-3/2, 16 irrep in a two-step process. The continuum quantum numbers

that we will need are kets of

SU(2)S × SU(2)F × SU(4)T ⊃ SU(2)S × SU(2)F × SU(2)Q8
× (SU(2)D4

× Z4)/Z2 (3.28)

and the kets are

∣∣∣∣∣
[

1

2
,mS

]
S

[
3

2
,
3

2

]
F

[
jQ8 ,mQ8

]
Q8

[
jD4 ,mD4

]
D4

〉
(3.29)

where each bracket again denotes the quantum numbers of the corresponding group in the

direct product. We will for now ignore the isospin SU(2)F label as it is not broken on the

lattice. The first step is subducing irreps of SU(2)S × SU(2)Q8
to its diagonal subgroup

SU(2)SW3
as in (3.19), with the subduction coefficients being the standard CG coefficients

of SU(2). As an example, we will focus on the spin-2 irrep of SU(2)SW3
appearing in the

(3/2, 1/2)→ 2⊕1 decomposition and let SU(2)D4
be in the spin-1/2 irrep. They correspond
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to nucleon-like states in the 20M irrep of SU(4)T . The ket can be written as

SU(2)S × SU(2)Q8
× (SU(2)D4

× Z4)/Z2 ⊃ SU(2)SW3
× (SU(2)D4

× Z4)/Z2∣∣∣∣∣
[

1

2
,±1

2

]
S

[
3

2
,±3

2

]
Q8

[
1

2
,±1

2

]
D4

〉
→

∣∣∣∣∣
[
2,±2

]
SW3

[
1

2
,±1

2

]
D4

〉

1

2

∣∣∣∣∣
[

1

2
,±1

2

]
S

[
3

2
,∓3

2

]
Q8

[
1

2
,±1

2

]
D4

〉
+

√
3

4

∣∣∣∣∣
[

1

2
,±1

2

]
S

[
3

2
,±1

2

]
Q8

[
1

2
,±1

2

]
D4

〉
→∣∣∣∣∣

[
2,±1

]
SW3

[
1

2
,±1

2

]
D4

〉

√
1

2

∣∣∣∣∣
[

1

2
,
1

2

]
S

[
3

2
,−1

2

]
Q8

[
1

2
,±1

2

]
D4

〉
+

√
1

2

∣∣∣∣∣
[

1

2
,−1

2

]
S

[
3

2
,
1

2

]
Q8

[
1

2
,±1

2

]
D4

〉
→∣∣∣∣∣

[
2, 0

]
SW3

[
1

2
,±1

2

]
D4

〉

(3.30)

The second and the final step is to subduce these states into irreps of W3 = SW3 × Z2. We

have shown in (3.26) that subducing (SU(2)D4
×Z4)/Z2 to D4 gives trivial subduction coef-

ficients. The only non-trivial coefficients come from SU(2)SW3
⊃ SW3, which are standard

results that can be looked up in many other work. We will use the coefficients in [90] to get

 ∣∣[3
2 ,

3
2

]
F

[
2, 0
]
SW3

[1
2 ,±

1
2

]
D4

〉√
1
2

∣∣[3
2 ,

3
2

]
F

[
2, 2
]
SW3

[1
2 ,±

1
2

]
D4

〉
+
√

1
2

∣∣[3
2 ,

3
2

]
F

[
2,−2

]
SW3

[1
2 ,±

1
2

]
D4

〉
→ E±


∣∣[3

2 ,
3
2

]
F

[
2, 1
]
SW3

[1
2 ,±

1
2

]
D4

〉√
1
2

∣∣[3
2 ,

3
2

]
F

[
2, 2
]
SW3

[1
2 ,±

1
2

]
D4

〉
−
√

1
2

∣∣[3
2 ,

3
2

]
F

[
2,−2

]
SW3

[1
2 ,±

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
2,−1

]
SW3

[1
2 ,±

1
2

]
D4

〉
→ T±2

(3.31)
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where T±2 components are in the spherical basis. Combining these results with (3.30) and

(3.24), we obtain the continuum quantum numbers of nucleon-like states in the isospin-3/2,

16 irrep. T1 components can be obtained by subducing the spin-1 irrep of SU(2)SW3
. We

have listed the continuum quantum numbers of all 16 components in Table 3.2.
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Table 3.2: Continuum quantum numbers of the sixteen nucleon-like states in the isospin-3/2,
16 irrep.

SU(2)F ×GTS
SU(2)S × SU(2)F × SU(4)T ⊃

SU(2)S × SU(2)F × SU(2)Q8
× SU(2)D4

∣∣[3
2 ,

3
2

]
F

[
16+, 0

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
+√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 0

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
+√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∓
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16+, 1

]
GTS

〉
− ±

√
3
4

∣∣∣[1
2 ,∓

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

3
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
±

i
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16+, 2

]
GTS

〉
−1

2

∣∣[1
2 ,±

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
∓
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16−, 1

]
GTS

〉
− 1

2

∣∣∣[1
2 ,∓

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

3
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
+

i
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16−, 2

]
GTS

〉 √
3
4

∣∣[1
2 ,±

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 3

]
GTS

〉 √
1
2

∣∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
−√

1
2

∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 3

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
−√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 4

]
GTS

〉 √
1
2

∣∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
−√

1
2

∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 4

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

3
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
−√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

3
2

]
Q8
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2 ,−

1
2

]
D4

〉
(continue on the next page)
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(Table 3.2, continued)

∓
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16+, 5

]
GTS

〉
− ±

√
3
4

∣∣∣[1
2 ,∓

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
±

i
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16+, 6

]
GTS

〉
−1

2

∣∣[1
2 ,±

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∓
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16−, 5

]
GTS

〉
− 1

2

∣∣∣[1
2 ,∓

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
+

i
√

1
2

∣∣[3
2 ,

3
2

]
F

[
16−, 6

]
GTS

〉 √
3
4

∣∣[1
2 ,±

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,±

1
2

]
Q8

[1
2 ,

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16+, 7

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
+√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

1
2

]
Q8

[1
2 ,−

1
2

]
D4

〉
∣∣[3

2 ,
3
2

]
F

[
16−, 7

]
GTS

〉 √
1
2

∣∣∣[1
2 ,

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,

3
2

]
Q8

[1
2 ,

1
2

]
D4

〉
+√

1
2

∣∣[1
2 ,−

1
2

]
S

[3
2 ,

3
2

]
F

[3
2 ,−

3
2

]
Q8

[1
2 ,−

1
2

]
D4

〉

In this section, we have successfully subduced continuum states of SU(2)S × SU(2)F ×

SU(4)T onto lattice baryons and derived the corresponding subduction coefficients. Table 3.2

presents the results for nucleon-like states, which are needed to extract physical matrix

elements in Chapter 4.
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Chapter 4

Nucleon mass and matrix elements with highly-improved

staggered quarks

In Chapters 2 and 3, we have demonstrated the theoretical details of how to extract physical

baryon observables with staggered valence quarks. In this Chapter, we will show explicitly

how the formalism can be applied in practice to actual lattice simulations, and what analysis

techniques have been proven to be the most useful in analyzing staggered baryon correlators.

Our focus is on the three simplest baryonic observables – the nucleon mass and axial-

vector and vector charges – which are well known experimentally and serve as benchmarks

to our calculations. As we mentioned in the introduction, despite being “easy” observables

to simulate, extracting unambiguous lattice results free of systematic errors is still compu-

tationally difficult. The main culprit is the exponential dampening of signal-to-noise ratios

in baryon correlators as we pull operators apart in time, which is crucial in eliminating

excited state contaminations. The only method to circumvent the problem at the moment

is to increase the number of Monte-Carlo samples which are costly to compute. Neverthe-

less, thanks to both algorithmic developments and Moore’s law growth in computational

power, we have seen some impressive lattice results in the last few years with fully controlled

systematic errors – see [80] for a review of the current status of lattice calculations.

We contribute to the effort by providing the first calculations of nucleon observables

using both staggered valence and sea quarks. Especially, we are using the set of gauge

ensembles with Highly improved Staggered Quarks (HISQ) action [83] generated by the

MILC collaboration [4, 55]. The HISQ action is a variant of the improved staggered action

with all the symmetries mentioned in Section 3.1 and designed to reduce various taste-

symmetry breaking effects introduced by the lattice discretization. The MILC collaboration

was able to generate the largest set of gauge ensembles in existence and made them publicly

available due to the speed of staggered simulations. Because of the prohibitive costs of
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generating gauge ensembles for each project, the two most precise lattice results of nucleon

matrix elements to date shown in [80] are based on simulations with MILC HISQ ensembles

[94, 95]. However, both results are simulated with different valence quark actions – the Callat

collaboration used Mobiüs domain wall fermions [94] whereas the PNDME collaboration used

the Wilson-clover fermions [95] – and those simulations have the additional complication of

tuning the quark masses to ensure a unitary theory in the continuum limit. It is therefore

desirable to also use the HISQ action for valence quarks so that this complication can be

avoided1. One can also be benefited from the speed of staggered simulations to produce

more precise predictions.

4.1 Nucleon mass with highly improved staggered quarks

We need to construct two-point correlators with staggered baryon interpolators to extract the

nucleon mass. As mentioned in Chapter 4, we use isospin-3/2, 16 irrep operators in this work

which creates one nucleon-like and three ∆-like states in its positive parity ground states;

the spectrum of the negative parity channel is unknown and will be deduced tentatively from

fit results. The zero momentum operators will be denoted by

O
16±,D;clsR
[3/2,3/2]F

(t), (D ∈ {0, · · · , 7}, R ∈ {2, 3, 4, 6}) (4.1)

16± denotes two sets of eight components within the 16 irrep with ±1 eigenvalues of R12,

D denotes one of the eight corners of a spatial cube as defined in (3.9), R denotes the class

of the operator, and the subscript denotes the isospin quantum numbers. To simplify the

problem, we let all operators transform as the highest weight states in the isospin-3/2 irrep,

namely, all quarks fields transform as up-quark fields. See operators definitions in [2, 82].

1. Because of the fourth root in quark determinants, all simulations with rooted staggered quarks are
partially quenched and unitarity is always violated at non-zero lattice spacing [2].
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The only non-vanishing two-point correlators that we can construct are

C
16±D;(R1,R2)
2pt (t) ≡

〈
O

16±,D;clsR1
[3/2,3/2]F

(t) O
16±,D;clsR2
[3/2,3/2]F

(0)
〉

(4.2)

Note that because different operator classes excite the same states, we can get a matrix

of correlators by using different operator classes at the source and sink. Other correlators,

such as using different D components at the source and sink, must vanish according to the

lattice symmetries. Using the Hermiticity property of the staggered Dirac operator [49] and

the charge conjugation symmetry of the staggered action [78, 81], we can show that these

two-point correlators are always real.

There is a total of 256 = 16× 42 non-vanishing correlators. We can reduce this number

to 16 = 42 by noticing that

C
16±,D;(R1,R2)
2pt (t) = C

16±,B;(R1,R2)
2pt (t),

C
16∓,D;(R1,R2)
2pt (t) = C

16±,B;(R1,R2)
2pt (t)

(4.3)

for arbitrary D,B ∈ {0, · · · , 7}, which can be derived by applying shift and rotation sym-

metries. In other words, correlators constructed from any one of the 16 components within

the 16 irrep are identical in the ensemble average, so we will only consider the +0 compo-

nent C
16+,0;(R1,R2)
2pt (t). In practice, all 16 components are averaged together to reduce the

uncertainties of correlators.

To illustrate how correlators defined in (4.2) can be implemented on computers, we will

use the zeroth component class-1, isospin-3/2, 8 irrep operator, where all three quark fields

reside at the origin of the spatial cube. Following the notations in (4.1), this particular

operator is written as

O
8,0;cls1
[3/2,3/2]F

(t) =
∑

~n∈even

∑
a,b,c

εabcχ
a(~n, t)χb(~n, t)χc(~n, t) (4.4)
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where we sum over all spatial sites modulo two to excite only zero momentum states and

antisymmetrize over color indices. The correlator becomes

C
8,0;(1,1)
2pt (t) =

〈
O

8,0;cls1
[3/2,3/2]F

(t) O
8,0;cls1
[3/2,3/2]F

(0)
〉

=
∑

~n,~m∈even

∑
a,b,c

∑
u,v,w

εabcεuvw×

〈
χa(~n, t)χb(~n, t)χc(~n, t)χu(~m, 0)χv(~m, 0)χw(~m, 0)

〉
= 6

∑
~n,~m∈even

∑
a,b,c

∑
u,v,w

εabcεuvwχ
a(~n, t)χb(~n, t)χc(~n, t)χu(~m, 0)χv(~m, 0)χw(~m, 0)

= −6
∑

~n,~m∈even

∑
a,b,c

∑
u,v,w

εabcεuvwG
a;u(~n, t; ~m, 0)Gb;v(~n, t; ~m, 0)Gc;w(~n, t; ~m, 0)

(4.5)

The factor of 6 in the third line accounts for all other identical Wick contractions, and the

negative sign in the fourth line comes from anticommuting fermionic fields. Ga;u(~n, t1; ~m, t2)

are propagators that satisfy

∑
b,~n,t2

D
a;b
sg (~n1, t1;~n2, t2)Gb;c(~n2, t2;~n3, t3) = δa,cδ~n1,~n3δt1,t3 (4.6)

where D
a;b
sg (~n1, t1;~n2, t2) is the HISQ Dirac operator [83]. So to construct the correlator in

(4.5), we have to solve for the Dirac equation in (4.6) which boils down to finding the inverse

matrix of D
a;b
sg (~n1, t1;~n2, t2) on each gauge configuration. Inverting such a large matrix is

impossible with our current technology: a typical lattice simulation involves say 504 ≈ 10

million lattice sites which leads to the dimension of the Dirac matrix to be 30-million-by-

30-million when the color degrees of freedom are included. Fortunately, the Dirac matrix is

sparse with only non-zero entries on diagonal blocks, so we can imagine one day this will

become feasible. Gb;c(~n2, t2;~n3, t3) is usually called an all-to-all propagator in the lattice

jargon as it connects any lattice sites to any other sites.
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This issue can be circumvented by partially solving for the matrix inverse. The most

common example is the use of so-called the point-to-all propagator for which only a single

column of the matrix inverse is solved. If we think of the right-hand side of (4.6) as column

vectors that we call sources, by fixing them to non-zero values at a single point on the lattice

(point source) say (~n3, t3) = (~n0, t0), the problem is reduced to finding the solution to a

system of linear equations. Many efficient algorithms can achieve this task; see [96–98] for

some recent advances in algorithmic developments. In other words, we are solving for

∑
b,~n,t2

D
a;b
sg (~n1, t1;~n2, t2)G̃

b;c
pt (~n2, t2) = δa,cδ~n1,~n0δt1,t0 (4.7)

where

G̃
b;c
pt (~n2, t2) ≡ Gb;c(~n2, t2;~n0, t0) (4.8)

We can employ more complicated sources other than a point source to fit our needs. The

one that we will be using in this work is the so-called corner-wall propagators, which are

solutions to the equations [2]

∑
b,~n,t2

D
a;b
sg (~n1, t1;~n2, t2)G̃

b;c
cw(~n2, t2) =

∑
~n3∈even

δa,cδ~n1,~n3δt1,t0 (4.9)

where

G̃
b;c
cw(~n2, t2) ≡

∑
~n3∈even

Gb;c(~n2, t2;~n3, t0) (4.10)

In other words, instead of fixing the sources to be non-zeros at a single spatial coordinate

~n0, the corner-wall sources are non-vanishing on all even spatial lattice sites. The time

coordinate is still fixed at t0. We can accommodate the use of corner-wall propagators by
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modifying the creation operator in (4.5) to

C
8,0;(1,1)
2pt,cw (t) ≡

〈
O

8,0;cls1
[3/2,3/2]F

(t) O8,0;cls1
[3/2,3/2]F

(0)
〉

≡
∑

~n∈even

∑
~m1∈even

∑
~m2∈even

∑
~m3∈even

∑
a,b,c

∑
u,v,w

εabcεuvw×

〈
χa(~n, t)χb(~n, t)χc(~n, t)χu(~m1, 0)χv(~m2, 0)χw(~m3, 0)

〉
= −6

∑
~n∈even

∑
a,b,c

∑
u,v,w

εabcεuvwG̃
a;u
cw (~n, t)G̃

b;v
cw(~n, t)G̃

c;w
cw (~n, t)

(4.11)

where we have chosen t0 = 0. Compared to (4.5), (4.11) sums over spatial coordinates

separately for each source quark field so that we can write the correlator as a sum of corner-

wall propagators. For non-local operators such as those transform in the isospin-3/2, 16

irrep, the simulations are done on Coulomb-gauge-fixed configurations so the correlators will

be non-vanishing. We could instead perform non-gauge-fixed simulations by adding gauge

links for both source and sink operators, but adding gauge links at the source requires extra

propagator solves that are extremely costly; on the other hand, adding gauge links at the sink

can be done with little to no extra costs, so we are free to include them or not in gauge-fixed

simulations as we have observed in our tests that they make little difference to correlators.

We have found empirically that operators constructed with corner-wall sources give better

overlaps to the nucleon-like state. For simplicity, we will ignore the “cw” subscripts on

correlators and assume we always use corner-wall propagators.

81



4.1.1 Spectral decomposition of staggered baryon two-point correlators

C
16+,0;(R1,R2)
2pt (t), R1, R2 ∈ {2, 3, 4, 6} has a spectral decomposition of [2]

C
16+,0;(R1,R2)
2pt (t) =

∑
i=0

a
(R1)
+i b

(R2)
+i

(
e−m+it − (−1)te−m+i(LT−t)

)
+

∑
j=0

a
(R1)
−j b

(R2)
−j

(
−(−1)te−m−jt + e−m−j(LT−t)

) (4.12)

States of ± parities that can be excited by staggered baryon operators are denotes by ±k,

k = 0, 1, · · · subscripts with masses m±0 < m±1 < · · · , a
(R1)
±k and b

(R2)
±k are source and sink

overlap factors, and LT is the time extent of the lattice so t ∈ [0, LT − 1]. For two-point

functions, we can neglect terms involving e−m±kLT by redefining the correlators to be

C
16+,0;(R1,R2)
2pt (t)→

C̃
16+,0;(R1,R2)
2pt (t) ≡

C
16+,0;(R1,R2)
2pt (t)− (−1)LT−tC16+,0;(R1,R2)

2pt (LT − t)
2

(4.13)

where t is now restricted to t ∈ [0, LT /2−1] (LT is always even). As long as e−m±kLT /e−m±kt �

correlator errors within this time domain, the newly defined correlator has a simplified spec-

tral decomposition that reads

C̃
16+,0;(R1,R2)
2pt (t) =

∑
i=0

a
(R1)
+i b

(R2)
+i e−m+it −

∑
j=0

a
(R1)
−j b

(R2)
−j (−1)te−m−jt

(4.14)

Since LT is large and the data are noisy, the condition is always satisfied so we will use

(4.14) in two-point correlators analyses make no distinctions between C̃
16+,0;(R1,R2)
2pt (t) and

C
16+,0;(R1,R2)
2pt (t).

We know the first four states in the positive parity channel: mN ≡ m+0 is the nucleon-

like state, and m∆i
≡ mi, i = 1, 2, 3 are the three ∆-like states. Note that in principle,
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the sums in (4.14) can be extended to an arbitrarily large number of states as long as those

excited states have the same quantum numbers as the operators. For the staggered nucleon

operator we use here, the lowest positive parity excited states, other than the three ∆-like

states, could include nucleon-pion states with various tastes, the Roper resonance N(1440),

and other radial excitations. For the negative parity channel, the excited states could include

nucleon-pion states with negative parities, the nucleon resonance N(1520), and other higher

excitations.

On finite lattices, extracting masses and overlap factors by fitting correlators to sums

of exponentials in (4.14) is an ill-posed problem that admits many solutions. The issue

is exacerbated in practice as the Monte-Carlo data for baryon correlators are noisy, so in

practice, it is extremely difficult to extract precise parameters of states beyond the first few.

A regularization scheme has to be applied in order to properly define a solution. Fortunately,

we are only interested in the mass of the nucleon-like state in the ground state. We observe

that in the large t limit

C
16+,0;(R1,R2)
2pt (t) ∼ a

(R1)
+0 b

(R2)
0 e−mN t (4.15)

so the correlators are dominated by the ground state exponential only. We can define the

effective mass of a correlator C(t)

Meff(t) ≡ 1

τ
ln

(
C(t)

C(t+ τ)

)
(4.16)

where τ = 2 in this work. Again, in the large t limit Meff for all our correlators becomes

Meff(t) ∼ mN (4.17)

which is simply the mass of the nucleon-like state we would like to extract. If we plot
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Meff(t), we will see that as t increases, the curve plateaus to a value that gives the mass

of the hadron. The effective mass plot, and hence, the plateau method, is a useful tool in

visualizing two-point correlators to see how much excited state contaminations there are,

however, it is not a reliable method to extract masses because it relies on the fact that t has

to be large enough so other excited state contribution to the correlator can be completely

ignored. For baryon correlators, it is almost always the case that as we reach a large enough

t that excited state contributions can be neglected, the correlators are already overwhelmed

with noises. The nucleon mass extracted from the plateau method could then be biased

depending on the data fluctuation.

A better method that is used in almost all lattice analyses is to truncate the number of

states appearing in (4.14) and fit the correlator data within a portion of the time domain

tfit ∈ [tmin, tmax] where the truncated spectral decomposition is a valid model because the

omitted states are either too heavy and/or have small overlap factors to the operator. The fit

could be just a simple maximum likelihood estimation in which we find the best parameters

by minimizing the χ2 difference between our model and the data, or we can further regularize

it by including Bayesian priors for known parameters and minimize the augmented χ2 instead

[99, 100]. Regardless of the fit method one adopts in his or her analyses, there are assumptions

built into those models such as the choices of tmin and tmax, the number of states to keep

in the correlators, and priors in the Bayesian framework. Physical parameters should be

consistent with each other under reasonable perturbations of these model assumptions around

their nominal values. For example, parameters extracted from overfitted results will vary

wildly as we perturb the values of tmin. It is therefore important to make sure the extracted

nucleon mass is stable under variations which we will check explicitly.

The covariance matrix of the best-fit parameters from minimizing either χ2 or augmented

χ2 can be calculated from the inverse of the Hessian matrix, which is the second derivative

of the negative log-likelihood function with respect to those parameters. The Hessian matrix
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for our correlator models can be calculated easily with pen and paper so it requires no extra

computations. However, the covariance matrix obtained in this way is only valid if the data

have small errors, which is not always the case. Resampling methods such as bootstrap and

jackknife [101] provide more reliable estimates of the covariance matrix by relying on fewer

assumptions on our data. The price we have to pay is that they require more computation

time in addition to the χ2 minimization, but it is a price that most lattice calculations

are willing to pay nowadays as the additional computational requirement is still minimal

compared to the actual Monte-Carlo simulations.

In the bootstrap resampling method, suppose we try to estimate the variance of an

estimator from a dataset of size N . We first resample the original dataset, meaning to

randomly sample a new dataset of the same size N from the original dataset, and allow for

the possibility that the same data entry can appear more than once in the new dataset. The

estimator can then be computed on this new dataset. This procedure is performed Nb times

in total to obtain a distribution of the estimator from which the variance can be inferred.

An important assumption of the bootstrap method is that the original dataset must be

statistically independent, and the dataset is large enough such that it mimics the underlying

population distribution. We have found that for lattice data in practice, the bootstrap

method works well as long as we perform large enough bootstrap iterations, say, Nb ∼

1000, and have ∼ 1000 statistically independent samples of correlator data; in the jackknife

resampling method, we resample the original dataset N times where the i-th resampled

dataset (i ∈ [0, N−1]) of size N−1 is obtained by removing the i-th data entry. The variance

can be inferred again from the distribution of the estimator from resampled datasets. Both

bootstrap and jackknife methods are popular among lattice practitioners and work equally

well in most cases. In this work, all errors on posterior parameters are estimated from

Nb = 1000 bootstrap samples.

85



4.1.2 Variational Method for staggered baryon two-point correlators

We are only interested in the value of the nucleon-like state mass m+0 ≡ mN in (4.14) and

treat excited state contributions as nuisance parameters. A direct fit to a correlator can

yield an estimate of the nucleon-like mass, but if the operators have large overlaps to the

excited states, then it could be hard to cleanly disentangle the excited state contaminations

from the posterior estimate unless the data have small errors, which are hard to come by

for nucleon correlators. This will show up as instabilities in the nucleon-like mass estimates

when we slightly perturb the fit parameters such as tmin and priors.

It is much preferable if we can preprocess the correlators before fitting in such a way

that the procedure dampens the contributions from nuisance parameters. The variational

method [102–105] is a way to construct an improved correlator with better overlap to the

state. We start off with a matrix of correlators constructed from sets of source and sink

operators. In our applications, we have a four-by-four correlator matrix constructed from

different operator classes

C
16+,0;(R1,R2)
2pt (t) ≡



C
16+,0;(2,2)
2pt (t) C

16+,0;(2,3)
2pt (t) C

16+,0;(2,4)
2pt (t) C

16+,0;(2,6)
2pt (t)

C
16+,0;(3,2)
2pt (t) C

16+,0;(3,3)
2pt (t) C

16+,0;(3,4)
2pt (t) C

16+,0;(3,6)
2pt (t)

C
16+,0;(4,2)
2pt (t) C

16+,0;(4,3)
2pt (t) C

16+,0;(4,4)
2pt (t) C

16+,0;(4,6)
2pt (t)

C
16+,0;(6,2)
2pt (t) C

16+,0;(6,3)
2pt (t) C

16+,0;(6,4)
2pt (t) C

16+,0;(6,6)
2pt (t)


(4.18)

Note that because we are using corner-wall sources for solving propagators, the matrix is

not symmetric, namely,

C
16+,0;(R1,R2)
2pt (t) 6= C

16+,0;(R2,R1)
2pt (t) (4.19)

We can solve for the generalized eigenvalue problems (GEVPs) to obtain left/right eigenvec-
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tors and eigenvalues

C
16+,0;(R1,R2)
2pt (t)v

(i)
R = λ(i)C

16+,0;(R1,R2)
2pt (t0)v

(i)
R ,(

v
(i)
L

)T
C

16+,0;(R1,R2)
2pt (t) = λ(i)

(
v

(i)
L

)T
C

16+,0;(R1,R2)
2pt (t0) (i = 0, 1, 2, 3)

(4.20)

where v
(i)
R and v

(i)
L are column vectors and |λ(0)| ≥ |λ(1)| ≥ · · · . For applications involv-

ing ground states only, we choose another timeslice t0 < t to first suppress the excited

contribution, so eigenvalues and eigenvectors are functions of t and t0.

In the large t limit, the eigenvalues converge to [104]

λ(i)(t, t0) ∼ e−Eit (4.21)

where Ei is the energy of the i-th excited state in the spectrum and E0 ≤ E1 ≤ · · ·

conforming to the ordering of eigenvalues. Going beyond the large time limit, it has been

shown with the second order perturbation theory that the eigenvalues, similar to the spectral

decomposition of two-point correlation functions, can be written as sums of exponentials with

higher energies. Standard fit methods for correlation functions then can be applied to extract

the nucleon mass from eigenvalues.

On the other hand, we can think of eigenvectors as the optimal linear combination coef-

ficients for the operators to project onto that particular state. An improved correlator can

be constructed by taking the scalar product

C
16+,0
2pt (t) ≡

(
v

(0)
L

)T
C

16+,0;(R1,R2)
2pt (t)v

(0)
R

(4.22)

Because the improved two-point correlator is simply the linear combination of original corre-

lators, it retains the form of the spectral decomposition defined in (4.14), albeit with different

overlap factors that are enhanced for the ground state nucleon. In practice, the nucleon mass
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can be extracted via either eigenvalues or the improved two-point correlator. We have found

that in our data those two methods give almost identical estimates of the nucleon mass.

However, fits to eigenvalues are only useful for extracting energies whereas the same set of

eigenvectors can be applied to improve higher-point functions. We will come back to the

improved correlator method in the next section when we work with three-point correlator

functions and restrict our attention to eigenvalues here.

The presence of negative parity, oscillating states in the spectral decomposition (4.14)

makes the variational method slightly more complicated for staggered correlators. The eigen-

values will still be the sum of exponentials, however, states with negative parity will again

have extra −(−1)t factors in front [106]. Because now the eigenvalues contain oscillatory

terms, it may be impossible to label them consistently in such a way that |λ(0)| ≥ |λ(1)| ≥ · · ·

for all t. In the intermediate t region, eigenvalues for the first excited state might be smaller

than eigenvalues for the ground state so the labels on eigenvalues are ambiguous. The la-

beling issue goes away as t grows since only one exponential can contribute in the large t

limit. We have found that in our simulations that although the eigenvalues for the excited

state did cross below the eigenvalues for the ground states, it is easy to identity which sets

of eigenvalues belong to which states by observing the overall oscillatory patterns.

Even though the presence of negative parity states poses no significant hindrance to

the variational method, they still are nuisance parameters that we would like to completely

eliminate in our analyses. We use the fact that negative parity contributions to either the

eigenvalues or correlation functions always come with oscillatory terms proportional to (−1)t

and propose to solve for the eigenvalue equations

D
16+,0;(R1,R2)
2pt (t, t0)ṽ

(i)
R = λ̃(i)ṽ

(i)
R (i = 0, 1, 2, 3) (4.23)
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where

D
16+,0;(R1,R2)
2pt (t, t0) ≡ 1

4

{(
C

16+,0;(R1,R2)
2pt (t0 + 1)

)−1
C

16+,0;(R1,R2)
2pt (t+ 1)+

2
(
C

16+,0;(R1,R2)
2pt (t0)

)−1
C

16+,0;(R1,R2)
2pt (t)+(

C
16+,0;(R1,R2)
2pt (t0 − 1)

)−1
C

16+,0;(R1,R2)
2pt (t− 1)

} (4.24)

Expressions for left eigenvectors follow naturally from these two definitions. For large t and

t0, we expect

λ̃(i)(t, t0) ∼ λ(i)(t, t0) (4.25)

but for intermediate t and t0 where the fittings take place, the weighted average cancels out

the oscillatory terms and we are only left with positive parity excited states. The small price

we have to pay for this enhanced signal in the positive parity channel is a slight reduction in

the signal-to-noise ratio due to the averaging in time. In Section 4.2.4, we will introduce an

alternative method to reduce the negative parity channel via weighted averaging by operating

directly on the correlators instead of eigenvalues.

4.1.3 Simulation details

For the nucleon mass work, we are using three ensembles at three lattice spacings of the HISQ

gauge-link ensembles generated by the MILC collaborations [4, 55]. Each ensemble includes

two degenerate light sea quarks, one strange sea quark, and one charm sea quark (“2+1+1”)

via the fourth-root determinants of the HISQ action, and uses the improved Lüscher-Weisz

action [107] for discretizing the gauge action. The same staggered action is used for solving

the propagators. To avoid complications involving chiral extrapolations (extrapolating the

nucleon mass from higher pion masses to the physical value) where the effective theories are

poorly convergent at even moderately large pion masses (see [108–110] for reviews), we only
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Table 4.1: Ensembles used in the nucleon mass calculations. The lattice spacings are de-
termined with the mass-independent fp4s scheme [4]; ml, ms, and mc are the masses of
up/down, strange, and charm quarks, respectively, in lattice units; Ncfg is the number of
configurations for each ensemble, and on each configuration, we measure on Nsrc different
time sources to increase statistics. All ensembles are tuned to the physical pion mass barring
for small mistuning errors which will be corrected in the analysis.

a (fm) β L3 × LT mπ (MeV) ml ms mc Ncfg Nsrc

0.1529(4) 5.8 323 × 48 135 0.002425 0.06730 0.8447 3500 2

0.1222(3) 6.0 483 × 64 135 0.001907 0.05252 0.6382 1000 2

0.0879(3) 6.3 643 × 96 128 0.001200 0.03630 0.4320 1047 1

perform simulations on physical ensembles, namely the quark masses and respective hadron

masses appearing in the action are tuned to match experimental values. Table 4.1 gives a

summary of the ensembles used in this work.

As mentioned in the previous sections, we are using the isospin-3/2, 16 irrep operators

to construct two-point correlators. There are four operator classes available, however, we

observed in our correlator data that the class-3 operator overlaps weakly with the nucleon-

like state of interest. Because all three quarks in the class-3 operators reside on the even

corners of a spatial cube, the operator has vanishing couplings to the nucleon-like state in

the continuum. In addition, we have not found an appreciable difference in analyses by not

including them, so we only use class-2, 4, and 6 operators in this work.

We construct the two-point correlators according to (4.2). To accommodate for the

presence of non-local lattice operators and the use of corner-wall sources, the ensembles

are fixed to the Coulomb gauge to obtain non-vanishing results. In doing so, the overlap

factors become gauge variant but the masses are still physical gauge-invariant quantities.

We average over all 16 irrep components to obtain a three-by-three correlator matrix with

three different classes. Each correlator is folded according to (4.13) so the finite time extent

in the spectral decomposition can be ignored.
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4.1.4 Analysis details

We use the corrfitter package [111] for analyses in this work, and all posterior errors

are estimated with 1000 bootstrap samples. Since this work was the first in calculating the

nucleon mass with a full set of staggered baryon operators, we employ three different analysis

strategies to investigate the best approach.

The first strategy is the simultaneous fit to all 3× 3 = 9 correlators within the Bayesian

framework using the spectral decomposition in (4.14). One problem with this approach is

the presence of near degenerate three ∆-like states in the excited state. For non-staggered

simulations, the ∆ baryons cannot be created by a nucleon operator because of the difference

in isospins. Because the data are noisy, we have found that we are unable to resolve all three

states, and instead, only two “∆-like” states are confidently observed. Even though we call

those two excited states ∆-like states, they can well be some linear combinations of three

∆-like states and/or nucleon-pion states that are incidentally well resolved by our operator

basis as all those states have similar masses. But since they are all nuisance parameters in

this analysis that we can marginalize over, we will refer to them as ∆-like states for simplicity.

We impose a Gaussian prior for the nucleon mass mN ≡ m+0 centered around the

physical value of 940 MeV with a large variance of 50 MeV to account for the mass shift

introduced by the lattice discretization. We similarly introduce a Gaussian prior for the mass

of the first excited state in the negative parity channel m−0, with a mean of 1400 MeV and a

variance of 200 MeV. The identity of this state is unknown. The first negative parity nucleon

resonance is N(1520), however, the presence of multi-particle states cannot be excluded. The

priors are large enough to accommodate a multitude of possibilities.

We impose log-normal priors on m±i −m±(i−1) to other excited state masses to ensure

mi ≤ m+(i+1). Because there is no evidence in the presence of three ∆-like states in the

positive parity spectrum from our data, we only include two ∆-like states in this fit. We

choose the prior such that the Gaussian distribution ln(m+1−m+0) is centered at 290 MeV
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with a variance of 100 MeV to overlap with the 1230 MeV ∆ mass observed in experiments.

For the second ∆-like state, we choose a central value of 150 MeV and variance of 50 MeV for

ln(m+2−m+1) on the a ≈ 0.15 fm ensemble. As the lattice spacing decreases, taste-breaking

effects are expected to be smaller so we choose priors of 100± 50 and 50± 50 MeV priors for

a ≈ 0.12 and 0.09 fm ensembles, respectively. The identities of other excited states are even

more difficult to pin down and priors of 400±200 MeV are chosen for logarithmic differences

in masses. For our nominal fits, we include a total of four positive parity (one nucleon-like

state, two ∆-like states, and one leftover excitation) and four negative parity states. We

have no knowledge of signs and magnitudes of overlap factors so we are not constraining

those parameters with priors. See Tables V and XI in [2] for the exact parameters we use in

Bayesian fits.

To further cross check our results from the Bayesian fits, we also apply variation methods

to the correlator matrix and obtain the nucleon mass from eigenvalue fits. In this work, we

are experimenting with both types of GEVPs in (4.20) and (4.23):

C
16+,0;(R1,R2)
2pt (t)v

(i)
R = λ(i)C

16+,0;(R1,R2)
2pt (t0)v

(i)
R ,

D
16+,0;(R1,R2)
2pt (t, t0)ṽ

(i)
R = λ̃(i)ṽ

(i)
R (i = 0, 1, 2, 3)

(4.26)

where D
16+,0;(R1,R2)
2pt (t, t0) is defined in (4.24), and fit λ(0) and λ̃(0) to functions

λ(0)(t, t0 = fixed) = Ae−mN t − (−1)tBe−m−t (4.27a)

− 1

2
ln λ̃(0)(t = t0 + 2, t0) = mN + Ce−δ̃Mt0 (4.27b)

Note that these two are separate fits. For the λ(0) fit, we are fixing the value of t0 to be 3,

5, and 5 for a ≈ 0.15, 0.12, and 0.09 fm, respectively, to keep t0 approximately constants in

physical units. A and B are unknown coefficients, and we expect A+B ≈ 1 if the eigenvalues

can be well described by this two-state model [105, 106]. mN is the nucleon mass and m−
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is the negative parity excited state mass; for the λ̃(0) fit, we instead fix t − t0 = 2 and

vary t0 in the fit function. Because we expect λ̃(0)(t, t0) to scale as e−mN (t−t0) in the

large time limit, by fixing t− t0 = 2 eigenvalues should be approximately constants modulo

excited state contaminations, which can be fitted away by the second term in (4.27b) with

unknown parameters C and δ̃M . We observe no evidence of oscillatory contributions to

λ̃(0)(t, t0) so only the positive parity excitation is considered here. Because of the reduced

number of unknown parameters in (4.27a) and (4.27b), we are able to perform unconstrained,

frequentist fits (or, equivalently, “constrained” fits with large priors) to obtain stable results

without explicitly imposing priors. See Tables VI in [2] for other parameters we use in

variational method analyses.

Compared to the full Bayesian fit, the variation method analyses are much easier to

handle as we are not working with a three-by-three matrix of correlators. Instead, we

preprocess the correlator matrix to first marginalize some excited contaminations before

fitting to enhance the ground state signal. For the nucleon mass work, we are able to apply

both the full Bayesian fits and variational methods and obtain consistent results. However,

as fit functions become even more complicated for three-point correlators, we expect the

direct fit to the correlator matrix to be even more difficult to implement as we do not have

sensible priors for most parameters in the fit functions there. In that case, reducing the

complexity of correlators via solving GEVPs is crucial in extracting sensible results.

4.1.5 Fit results

We present here some fit results for both the Bayesian and variational method analyses. As

an example, we only show results of a ≈ 0.12 fm ensemble – results from other ensembles are

similar and can be found in [2]. Figure 4.1 shows the effective mass plots, as defined in (4.16),

of the Bayesian analysis. The blue data points are raw correlator values, and we obtain the

orange data points by central values of excited state exponentials from the blue data points.
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In the ideal fit where excited states contaminations are completely eliminated, we expect

the orange points to be constants. As we can see from figure 4.1 that the orange points

are consistent with this expectation within the fit regions (data points in white regions).

Deviations of orange points from constant values are obvious for small t outside the fit regions,

which signal the presence of unaccounted excited states. But because of the exponential

dampening, those states do not affect our nucleon estimate at larger t. The posterior estimate

of the nucleon mass is 0.5952(31) on this ensemble; see Table XI in [2] for results of other

nuisance parameters.

In figure 4.2, we show effective masses of λ(0)(t, t0 = 5) as functions of t− t0. Note that

t0 is fixed to five. Three sets of points are shown: the blue data points are the effective

masses of the raw eigenvalues λ(0)(t, t0 = 5) as defined in (4.16) (if we treat λ(0)(t, t0 = 5)

as correlators C); the orange data points are the effective masses of λ(0)(t, t0 = 5) after

subtracting the central value of the excited state term posterior in (4.27a); and the black

data points are the smoothed effective masses of λ(0)(t, t0 = 5), which are weighted averages

of Meff at adjacent timeslices

Msmooth(t) ≡ 1

4

(
Meff(t− 1) + 2Meff(t) +Meff(t+ 1)

)
(4.28)

Smoothing the effective mass is useful in mitigating the excited state contaminations from

oscillatory contributions of negative parity states. As we can see from figure 4.2 that once

effective masses are smoothed, black data points agree well with the orange data points

which show the expected ground state contribution to eigenvalues. We can conclude from

this that most excited state contaminations for λ(0)(t, t0 = 5) come from the negative parity

state. The posterior estimate of the nucleon mass is 0.5945(29).

In figure 4.3, we show λ̃(0)(t, t0) (labeled as λ̃1 in the figure) as a function of t0. t−t0 = 2

is fixed. The orange band is the one-sigma posterior fit to blue points. We can similarly

interpret the y-axis as another type of effective masses since it approaches the nucleon mass
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Figure 4.1: Effective mass plots of the correlator matrix constructed with isospin-3/2, 16

irrep operators for the a ≈ 0.12 fm ensemble. R1, R2 ∈ {2, 4, 6} appearing in C(R1,R2)

denote the source/sink operator classes; the blue data points are the raw correlator data and
the orange data points are results of subtracting central values of excited state exponentials
from the raw correlator data; the green bands are the one-sigma estimate of the nucleon mass
from the simultaneously Bayesian fit to all nine correlators using the fit model in (4.14) with
four positive and four negative parity states. Data points in grey regions are excluded from
the fit. This figure is reproduced from our work in [2].
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Figure 4.2: Effective masses of λ(0)(t, t0 = 5) as functions of t − t0 where t0 = 5 for
the a ≈ 0.12 fm ensemble. The orange data points are the traditional effect masses of
λ(0)(t, t0 = 5), the orange data points are effective masses of λ(0)(t, t0 = 5) after subtracting
the excited state posterior contribution, and the black data points are the smoothed effective
masses as defined in 4.28. Only data points in the white region are included in the fit, and
the green band is the one-sigma posterior estimate of the nucleon mass using the fit model
in (4.27a). This figure is reproduced from our work in [2].
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Figure 4.3: λ̃(0)(t, t0) (labeled as λ̃1 in the figure) as a function of t0. t− t0 is fixed to 2. The
orange band shows the one-sigma posterior estimate to the blue points using the fit model
in (4.27b). In the large t0 limit, data points should converge to a constant value equal to
the nucleon mass mN . This figure is reproduced from our work in [2].

in the large t0 limit. As we can see from the plot that there are no oscillating contribution to

eigenvalues, so a two-state model of (4.27b) is sufficient in parameterizing data points within

the white region in which data points are included in the fit. The final nucleon posterior

estimate is 0.5945(48).

Regardless of the types of fits, there are three major sources of systematic errors that

we consider here: fit errors, light-quark mistuning errors, and finite volume corrections. Fit

errors come from the variations of the nucleon mass posteriors as we vary parameters in fits.

The most important parameter of all is tmin, the minimum t (or t0 for λ̃(0), we will make no

distinctions here) in which we include data points in fits, as the data become more precise at

lower t but excited state contaminations become more severe; on the other hand, the data

become noisier at higher t but excited states are exponentially suppressed. Any leftover
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Table 4.2: Nucleon mass estimates from three types of fits for all ensembles. The first errors
are statistical and the second systematic from residual excited state contaminations (see text
for details). For estimates on the a ≈ 0.15 fm ensemble, there is an additional 0(5) MeV
systematic error that needs to be added on top of those two errors to account for the finite
volume correction; and for estimates on the a ≈ 0.09 fm, there is an addition 7(7) MeV error
that needs to be added on top of those two to account for the light-quark mistuning; see [2]
for more details on origins of those numbers.

a ≈ (fm) λ̃(0) fit λ(0) fit Bayesian fit

0.15 0.7555(22)(59) 0.7562(25)(9) 0.7579(36)(48)

0.12 0.5946(48)(22) 0.5945(29)(13) 0.5952(31)(1)

0.09 0.4295(26)(8) 0.4307(34)(2) 0.4308(31)(14)

excited state contaminations manifest as variations in nucleon mass estimates as we vary

tmin while holding other parameters constant. To access the size of this systematic error,

let tnom be the tmin of the nominal fit. We perform another fit at tmin = texct. < tnom and

evaluate the difference in central values of nucleon mass estimates from those two fits. The

result is an estimate of residual excited state contaminations in the nucleon mass posterior

and it is added in quadrature to the statistical error. Typically, we choose texct. to be one or

two lattice units smaller than tmin depending on ensembles and types of fits. Alternatively,

one can combine results from various tmin in either the frequentist or Bayesian framework;

see, for examples, [94, 112]. We summarize the nucleon posterior results, including both

statistical and systematic errors, in Table 4.2. Despite differences in marginalizing excited

state contributions, we have found that results from three types of fits are consistent with

one another in all ensembles. This means they are all successful in eliminating excited state

contaminations from our nucleon mass estimates.
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4.1.6 Continuum extrapolation

Lattice discretization systematics can be eliminated by extrapolating our results to the con-

tinuum using the functional form

mN (a) = mN,phy

(
1 + o2(Λa)2 + o4(Λa)4

)
(4.29)

where mN,phy is the continuum nucleon mass. We choose the characteristic energy scale to

be Λ = 500 MeV, which is roughly consistent with ΛQCD. o2 and o4 are two dimensionless

parameters of order one. Because there is a remnant chiral symmetry for the staggered

action, discretization errors in odd powers of a2 cannot appear in the action [113], so the

leading errors in the nucleon mass is O(a2) and O(a4). We are using three data points

of nucleon masses to infer three unknown parameter o2, o4, and mN,phy, so the system of

equations can be solved exactly, but the solution will be unphysical (o4 can be unphysically

large when we expect it to be of order one for example) due to overfitting of data. To avoid

this issue, we impose Gaussian priors of 940(50) MeV on mN,phy based on its PDG value

and 0(1) on o4; we do not constrain o2. Figure 4.4 shows the continuum extrapolation of

nucleon masses using results from λ̃(0) fits that include all sources of systematic errors in

Table 4.2. The final estimate is

mN,phy = 964(16) MeV = 964(8)stat(5)fit(4)a(3)FV(8)mis MeV (4.30)

where stats., fit, a, FV, and mis are statistical errors, fit errors from residual excited state

contaminations, lattice spacing errors, finite volume corrections, and light-quark mistuning

errors, respectively. Our nucleon estimate is 1.6 sigma higher than the experimental value

of 940 MeV, which seems to be driven mostly by the upward fluctuations of our a ≈ 0.09 fm

results. Note that this is also the ensemble in which the light-quark masses are poorly tuned.

We are currently adding one more measurement with a ≈ 0.06 fm at physical quark masses
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Figure 4.4: Continuum extrapolation of nucleon masses using results from λ̃(0) fits that
include all sources of systematic errors in Table 4.2. The orange band shows the one-sigma
estimate with (4.29). This figure is reproduced from our work in [2].

to hopefully better control the continuum extrapolation.

Now that we have demonstrated how to use staggered fermions for both valence and sea

quarks to compute two-point functions. In the next section, we will turn our attention to

three-point functions and show how to extract nucleon vector and axial-vector charge with

the same simulation setup.
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4.2 Nucleon matrix elements with highly improved staggered

quarks

In the continuum QCD language with Dirac spinors, the nucleon matrix element we are

going to compute is:

〈
N
∣∣(uΓJu− dΓd

)∣∣N〉 = gJuNΓJu (4.31)

where |N〉 is the nucleon state, u/d (u/d) is the up/down-quark spinor, and uN (uN ) is

the nucleon spinor. Only isovector current operators are used which correspond to charged

current interactions; simulating isoscalar current operators, which correspond to neutral

current interactions, are costly due to the presence of disconnected diagrams so we will not

consider them in this work.

In this work, we compute both the temporal component of the vector charge, ΓV ≡ γ4,

and the z-component of the axial-vector current, ΓA ≡ γ3γ5. Because the vector current is

conserved, gV = 1. On the other hand, the nucleon axial charge gA can be measured precisely

from neutron beta decays and the latest experimental value is gA = 1.2756(13) [46]. Since

this is the first attempt to compute nucleon matrix elements with staggered valence quarks,

recovering the conserved vector charge is an important check to the lattice methodology

we have developed in previous chapters, ensuring there are no surprising features that we

missed. We also compute the nucleon axial charge, or the nucleon axial form factor at zero

momentum transfer, to serve as a stepping stone towards a full form factor simulation.

4.2.1 Staggered baryon three-point correlator constructions

Two- and three-point correlators are both needed to extract matrix elements. We use the

same set of creation and annihilation operators – isospin-3/2, 16 irrep operators with classes

2, 3, 4, and 6 – as the nucleon mass study in the previous section (we include class-3 operator
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in this study). We follow the same two-point correlators constructs present in Section 4.1.1 to

obtain C
16+,0;(R1,R2)
2pt (t), R1, R2 ∈ {2, 3, 4, 6} which have a spectral decomposition of (4.14)

after the folding procedure in (4.13). One only component of the 16 irrep is considered here

because they are all identical in the ensemble average according to (4.3).

For three-point correlators, we have to decide on the tastes of quark bilinears to use as

current operators; the complete set is listed in Table 2.2. To maximize signal-to-noise ratios

of correlators, we use zero-momentum local current operators [79]

JV (τ) ≡ U(γ4 ⊗ ξ4)U −D(γ4 ⊗ ξ4)D

≡
∑
~x

SV (~x)
(
χu(~x, τ)χu(~x, τ)− χd(~x, τ)χd(~x, τ)

) (4.32a)

JA(τ) ≡ U(γ3γ5 ⊗ ξ3ξ5)U −D(γ3γ5 ⊗ ξ3ξ5)D

≡
∑
~x

SA(~x)
(
χu(~x, τ)χu(~x, τ)− χd(~x, τ)χd(~x, τ)

) (4.32b)

where

SV (~x) = (−1)x1+x2+x3

SA(~x) = (−1)x3 (4.33)

Here we use a similar notations as Sections 2.3.3 and 2.3.4 to denote our lattice operators V

and A: U/U and D/D are vectors of continuum Dirac spinors in the taste space for up and

down quarks; γi is a gamma matrix acting in the spinor space and ξi is a gamma matrix

acting in the taste space; χu/χu and χd/χd are one-component staggered fermion field of up

and down quarks. We are using the continuum notation to denote our lattice operators as

the mapping is unique for quark bilinears. All operators are in the isovector combinations.

Note that if the spin and taste gamma matrices are identical (γ4⊗ ξ4 and γ3γ5⊗ ξ3ξ5 in this

case), the quark and antiquark fields reside on the same lattice sites which make them local
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operators. Operators of other tastes are always non-local operators in which gauge links

are needed to connect quark and antiquark fields, which make them more susceptible to

gauge link fluctuations from Monte-Carlo samplings. This translates into noisier estimators

of nucleon matrix elements that we avoid here.

For each current operator, we can construct 16 three-point correlators to get

C
16±,D;(R1,R2)
3pt,V (t, τ) ≡

〈
O

16±,D;clsR1
[3/2,3/2]F

(t) JV (τ) O
16±,D;clsR2
[3/2,3/2]F

(0)
〉
,

C
16±,D;(R1,R2)
3pt,A (t, τ) ≡

〈
O

16±,D;clsR1
[3/2,3/2]F

(t) JA(τ) O
16±,D;clsR2
[3/2,3/2]F

(0)
〉 (4.34)

where we use the same notations as (4.1) and (4.2). Note the only way to construct non-

vanishing zero momentum, three-point correlator given local current operators is by imposing

both the source and sink operators reside on the same spatial cube sites, which in this case

is D. This can be proven easily by considering transformation properties of correlators. A

general correlator is a reducible representation of the lattice symmetry group GTS which

can be written as a direct sum of many irreps. By the Great orthogonality theorem, we

can show that the only non-vanishing component within the direct sum is the trivial irrep,

therefore, a correlator is zero if it does not contain the trivial irrep as one of its irreducible

components.

It is a two-step process to find irreducible components of a three-point correlator:

1. Tensor product source and sink operators and find its irreducible components.2

2. Tensor product irrep components from the previous step with the current operators

and find its irreducible components.

If the results of the second step contain the trivial irrep, we are certain the correlator we

construct does not violate the lattice symmetry and can be non-zero. When we tensor

product two irrep components in the second step, the trivial irrep appears if i) two irreps

2. We can perform this step first because current operators commute with source/sink operators.
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are identical and ii) we are taking the trace of two irreps, namely, multiplying the same

irrep components from two irreps. The condition i) is certainly satisfied in our case as the

tensor product of 16 irreps in which source/sink operators transform contain all irreps of

current operators that we work with, so we can always tensor product the current operator

with the same irrep in which it transforms; on the other hand, the condition ii) implies that

the three-point correlator is non-vanishing if the relative displacement in spatial cube sites

between source and sink operator is the same as the relative displacement between the quark

and antiquark field for the current operator. For example, consider the correlator

〈
O

16±,D+x̂;clsR1
[3/2,3/2]F

(t) JV (τ) O
16±,D;clsR2
[3/2,3/2]F

(0)
〉

(4.35)

In this case, the current operator is local so the relative displacement between the quark and

antiquark is zero. However, the source operator resides on the D spatial cube site, whereas

the sink operator resides on the D + x̂ (modulo two) site. This means that by condition ii)

that the correlator is zero in the ensemble average. This can be proven easily by applying

the spatial inversion operator Is and show that the correlator is equal to the negative of

itself. Correlators in (4.34), barring non-group-theoretical reasons, is non-vanishing since

the source and sink operators reside on the same spatial cube sites and the current operators

are local. Intuitively, we can think of the product of the source and sink operators forms a

quark bilinear with a certain taste, and the three-point correlator is reduced to a mesonic

two-point correlator. In this case, it is obvious that to ensure the two-point correlator is

non-vanishing we need to have the same mesonic operator at both source and sink, which

translates into conditions i) and ii) that we mentioned. This procedure can be generalized

to n-point correlators constructed from operators at zero momenta.

To simulate (4.34) on a computer, we can again expand expressions using the Wick

theorem and write them as products of propagators, which can be computed from solving

lattice Dirac equations. In this work, we used the sequential source method to compute
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propagators for three-point functions; see [51] for a pedagogical introduction to the method.

The basic idea is that we use propagators from two-point correlators as sources for the

Dirac equation to obtain the so-called sequential propagators. Products of sequential and

non-sequential propagators then form three-point correlators in (4.35).

4.2.2 A numerical check to the continuum relation

For two-point functions, we can reduce the number of independent correlators from 16 to

one according to (4.3) which can be derived by applying lattice symmetries. Such relations

for three-point correlators are

C
16±,0;(R1,R2)
3pt,V (t, τ) = SV (D)C

16±,D;(R1,R2)
3pt,V (t, τ),

C
16±,D;(R1,R2)
3pt,A (t, τ) = SA(D)C

16±,D;(R1,R2)
3pt,A (t, τ),

C
16∓,D;(R1,R2)
3pt,V (t, τ) = SV (D)C

16±,D;(R1,R2)
3pt,V (t, τ)

(4.36)

where SV (D) and SA(D) phases are defined in (4.33) (if we convert use the vector represen-

tation of B as defined in (3.9)). Relations for vector correlators are almost identical to that

of two-point correlators – all 16 correlators are identical in the ensemble average up to some

phases. For axial-vector correlators, two sets of eight components are identical, up to phases,

in the ensemble average but there are no constant factors that relate eight components of

16− to eight components of 16+. This is verified in our simulations.

In general, we cannot find an exact relation that relates 16− to 16+ components and

the vector correlator is one of the few exceptions. However, we can find such relations in

the continuum and large time limits and derive factors of proportionality using the Wigner-

Eckart theorem in Chapter 2. In the large t and τ limit where excited states can be ignored,

the axial-vector correlators have spectral decompositions of

C
16±,D;(R1,R2)
3pt,A (t, τ) ∼ K ×MA,latt × e−mN t (4.37)

105



where

M
16±,D
A,latt ≡

〈[
3

2
,
3

2

]
F

[
16±, D

]
GTS

∣∣∣∣∣ JA
∣∣∣∣∣
[

3

2
,
3

2

]
F

[
16±, D

]
GTS

〉
(4.38)

is the lattice matrix element with notations defined in (3.23). K is the product of overlap

factors that depend on R1, R2, and the irrep but not on specific components. Since all

eight components are identical given a choice of 16±, we focus only on the D = 0 case. The

ratio of 16± three-point correlators in large time limits is simply equal to the ratio of matrix

elements

C
16−,0;(R1,R2)
3pt,A

C
16+,0;(R1,R2)
3pt,A

∼
M

16−,0
A,latt

M
16+,0
A,latt

(4.39)

that is independent of t and τ .

In the continuum limit, we can use Table 3.2 to look up the quantum numbers of nucleon-

like states, and the current operator simply transforms as a quark bilinear with spin-taste of

γ3γ5 ⊗ ξ3ξ5. Matrix elements then become

M
16±,0
A,latt →M

16±,0
A,cont =

〈
16±, 0

∣∣∣U(γ3γ5 ⊗ ξ3ξ5)U −D(γ3γ5 ⊗ ξ3ξ5)D
∣∣∣16±, 0

〉
(4.40)
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where M
16±,0
A,cont are corresponding continuum matrix elements and

∣∣∣∣∣
[

3

2
,
3

2

]
F

[
16−, 0

]
GTS

〉
→
∣∣∣16−, 0

〉
≡
√

1

2

∣∣∣∣∣
[

1

2
,
1

2

]
S

[
3

2
,
3

2

]
F

[
3

2
,−1

2

]
Q8

[
1

2
,
1

2

]
D4

〉
+√

1

2

∣∣∣∣∣
[

1

2
,−1

2

]
S

[
3

2
,
3

2

]
F

[
3

2
,
1

2

]
Q8

[
1

2
,
1

2

]
D4

〉
,

(4.41a)∣∣∣∣∣
[

3

2
,
3

2

]
F

[
16+, 0

]
GTS

〉
→
∣∣∣16+, 0

〉
≡
√

1

2

∣∣∣∣∣
[

1

2
,
1

2

]
S

[
3

2
,
3

2

]
F

[
3

2
,
3

2

]
Q8

[
1

2
,
1

2

]
D4

〉
+√

1

2

∣∣∣∣∣
[

1

2
,−1

2

]
S

[
3

2
,
3

2

]
F

[
3

2
,−3

2

]
Q8

[
1

2
,
1

2

]
D4

〉
(4.41b)

are continuum nucleon-like states. Arrow indicate going from lattice to the continuum limit.

The continuum quark bilinear transforms as a tensor operator

Uξ3ξ5U −Dξ3ξ5D = 2
√

2T
[1,0]Q8

[1,0]D4
[1,0]S [1,0]F

(4.42)

This is almost the same expression as (2.80), except we replace the notation of taste quantum

numbers from [·, ·]S and [·, ·]T to [·, ·]Q8
and [·, ·]D4

, and use the [·, ·]S subscript to specify

the additional spin quantum number. We see that (4.41) and (4.41b) have different quantum

numbers in the spin and Q8 groups, so we can apply the Wigner-Eckart theorem of SU(2)

separately to both groups and get

M
16−,0
A,cont = −3M

16+,0
A,cont

(4.43)

We have concluded in (2.81) the relationship between physical and staggered matrix elements.
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Putting these together and we have

gA = M
16−,0
A,cont = −3M

16+,0
A,cont (4.44)

where gA is the nucleon axial charge. We can carry out similar analyses for vector correlators

and conclude that

gV = −M16−,0
V,cont = −M16+,0

V,cont (4.45)

(4.43) are continuum relations that are broken by the lattice discretization. Nevertheless,

the symmetry breaking effect is small with an improved action, and we expect to see at large

t and τ that

C
16−,0;(R1,R2)
3pt,A

C
16+,0;(R1,R2)
3pt,A

∼
M

16−,0
A,latt

M
16+,0
A,latt

≈
M

16−,0
A,cont

M
16+,0
A,cont

= −3 (4.46)

We show this ratio as a function of t and τ in figure. 4.5. Three-point correlators are optimized

via the variational method, weighted averaging, and quark smearing to reduce both positive

and negative parity excited state contaminations, so the large time behavior can be reached

earlier – they will be described in details in the next section. As the result, correlators from

different classes are linearly combined to give a single correlator we see here. Optimizing

operations do not affect the group theory discussion we had, and we can see from the figure

that at large t and τ , the ratio converges to −3 despite being an approximate relation on

the lattice. A similar figure can be made for vector correlators and we observe that the ratio

converges to one at all t and τ to much higher precision. This is because the relation for

vector correlators is an exact one as we pointed out in (4.36).
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Figure 4.5: The Ratio of optimized axial-vector correlators, defined in (4.46), as a function
of the source-sink separation t and current insertion time τ . In large t, τ , and continuum
limits, the ratio converges to the group-theoretical factor of −3, which is shown as the grey,
dashed line. Data correspond to Gr6.0N70 correlators as defined in Section 4.2.4. This figure
is reproduced from our work in [3].
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Based on relations in (4.44) and (4.45), we construct correlators

C
16,0;(R1,R2)
3pt,V (t, τ) ≡ −C16+,0;(R1,R2)

3pt,V (t, τ)− C16−,0;(R1,R2)
3pt,V (t, τ)

C
16,0;(R1,R2)
3pt,A (t, τ) ≡ −3C

16+,0;(R1,R2)
3pt,A (t, τ) + C

16−,0;(R1,R2)
3pt,A (t, τ)

(4.47)

that will be used in subsequent analyses. In the large t and τ limits,

C
16,0;(R1,R2)
3pt,V (t, τ)

C
16+,0;(R1,R2)
2pt (t)

∼ g̃V

C
16,0;(R1,R2)
3pt,A (t, τ)

C
16+,0;(R1,R2)
2pt (t)

∼ g̃A

(4.48)

g̃V and g̃A are lattice bare vector and axial charges. Once renormalized – local current

operators are not conserved – they will converge to the continuum gV and gA. We will

discuss renormalizations in the next section. We also compute other correlator components

and average them together using (4.36) to increase statistics.

4.2.3 Renormalizing nucleon matrix elements

In QCD, vector and axial-vector matrix elements do not need renormalizations because the

currents are (partially) conserved. In the staggered action, the remnant chiral symmetry

allows for the existence of (partially) conserved lattice currents, which again, do not need to

be renormalized. However, those currents are multi-link operators that are noisy to simulate.

In practice, therefore, we usually use non-conserved local currents that are less prone to gauge

noises but require calculating renormalization constants ZV and ZA.

Fortunately, the local vector and axial-vector currents we use in this work are easy to

renormalize non-perturbatively for the staggered action. For the vector current, we can simply

impose that ZV g̃V = 1. ZV can be interpreted as the ratio between the conserved vector

matrix element, which is equal to identity if bra and ket states consist of identical hadrons
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at zero momenta, and the local vector matrix element [114]. This simply gives ZV = 1/g̃V .

We can of course obtain g̃V from nucleon matrix elements in (4.48), but doing so would

defeat our original purpose of cross checking the validity of vector matrix elements since we

are imposing them to be equal to one. Instead, we can calculate g̃V from a matrix element

of two identical mesons to calculate ZV , and verify that ZV g̃V = 1 when we calculate g̃V

from nucleon matrix elements. This has the additional benefit of being a simpler calculation

to perform because meson matrix elements are less noisy. Using this method we obtain

ZV = 0.991(1) [3]. Also, see [114] for alternative methods to renormalize vector currents in

the staggered action.

Usually one has to calculate renormalization factors of ZV and ZA separately on the

lattice because chiral symmetry is broken (see, for example, [45]). But if one uses an action

that preserves parts of the chiral symmetry, such as domain-wall (see, for example, [94])

and staggered actions, ZV ≈ ZA up to small discretization and non-zero light-quark masses

errors [114], which can be ignored given our current statistics. So we simply impose ZV =

ZA = 0.991(1) in this work to renormalize both vector and axial-vector matrix elements.

4.2.4 Spectral decomposition of staggered baryon three-point correlators

(4.47) have spectral decompositions of

C
16,0;(R1,R2)
3pt,V (t, τ) =

n+∑
i,j=0

a
(R1)
+j V+j,+ib

(R2)
+i e−m+iτe−m+j(t−τ)+

(−1)t
n−∑
i,j=0

a
(R1)
−j V−j,−ib

(R2)
−i e−m−iτe−m−j(t−τ)+

(−1)τ
n+∑
i=0

n−∑
j=0

a
(R1)
+i V+i,−jb

(R2)
−j e−m−jτe−m+i(t−τ)+

(−1)t−τ
n+∑
i=0

n−∑
j=0

a
(R1)
−j V−j,+ib

(R2)
+i e−m+iτe−m−j(t−τ)

(4.49)
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The expression for axial-vector three-point correlators can be obtained by simply replacing

V ’s with A’s. The notation here is identical to that of (4.12): m+i ≤ m+(i+1) and m+j ≤

m−(j+1) are masses of positive and negative parity states; b
(R2)
±k and a

(R1)
±k are source and

sink overlap factors for the k-th state in the ± parity channel; n+ and n− are the total

number of positive and negative parity states in the spectrum; V±k,±l (or A±k,±l for axial-

vector matrix elements) are transitional matrix elements from the ±l-th state to the ±k-th

state.

V+0,+0 = g̃V and A+0,+0 = g̃A are the bare charges we wish to extract, which can be

achieved by simultaneously fitting two- and three-point correlators using (4.14) and (4.49).

A direct fit to matrices of two- and three-point correlators however is difficult in practice

because (4.49) allows cross talking between different excited states in both channels, which

results in many more fit terms and nuisance parameters compared to two-point correla-

tors. Unless we have good prior knowledge on those parameters, which we don’t for most

cases, posterior estimates on nucleon masses and charges will either have large error bars or

be heavily contaminated by residual excited state contributions. Suppressing excited state

terms from (4.49) before fitting is therefore of paramount importance here. In this work,

we sequentially apply three different techniques in the preprocessing pipeline to achieve this:

quark smearings, weighted time averaging, and the variational method. Quark smearings and

the variational methods are standard lattice QCD techniques that are designed to suppress

excited state contaminations from both parity states, whereas the weighted time averaging

is unique to staggered baryon correlators designed to suppress overlap factors from negative

parity states. The end results of those three procedures will be two three-point correlators,

C
16,0;σ
3pt,V (t, τ) and C

16,0;σ
3pt,A (t, τ), and one two-point correlator, C

16+,0;σ
2pt (t), which will be re-

ferred to as optimized correlators. σ ∈ {0.2, 0.6} subscripts denote specific quark smearing

parameters we use. Here we introduce those three techniques that are applied in succession

to our raw data:
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Quark smearings

This step differs from the rest in that quark smearings are applied to individual quarks in

the simulation time, whereas the other two methods act directly onto correlators. The idea

behind smearing is simple (see [51] for a pedagogical introduction). Instead of constructing

a hadron interpolating operator at either the source or sink from local quark fields, we

construct it from non-local quark fields averaged (smeared) over a large number of field sites

within a characteristic radius of say r. We then expect overlap factors of a state with mass

m & 1/r to be strongly reduced. As long as the smearing procedure commutes with the

lattice symmetry group, such operation does not affect the spectra of interpolator operators.

The particular type of the quark smearing we are using is called the Wüppertal smearing

[115, 116] which is defined via an iterative procedure operating on a staggered quark field

χ(~n, t) as

χ(i)(~n, t) =
(

1 +
3σ2

32a2N
∆
)
χ(i−1)(~n, t) (4.50)

where

χ(0)(~x, t) = χ(~n, t),

∆χ(~n, t) = −6χ(~n, t) +
3∑
i=1

{
χ(ni + 2, t) + χ(ni − 2, t)

} (4.51)

∆ is the discretized Laplacian, i counts the iteration number out of N total iterations. For

large N , the wavefunction of χ(N) converges to a Gaussian with the root-mean-squared

(rms) of σ. In this work, we only smear quarks at the sink3 with rms radii of 0.2 and 0.6 fm

and total iteration numbers of 30 and 70, respectively. Correlators with those smeared

quarks at the sink are labeled as Gr2.0N30 and Gr6.0N70. Smearing at the sink incurs

3. Quarks at the source are already smeared by the use of corner-wall sources.
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almost no costs compared to solving quark propagators so it is almost always beneficial

to include it, however, excessive smearing can cause degrading signal-to-noise ratios. By

applying two different smearings with small and large rms radii then fitting those correlators

simultaneously, we aim to take advantage of suppressed excited state contaminations while

retaining reasonable data statistics.

Weighted time averaging

The second step in the preprocessing pipeline is to suppress negative parity contributions by

taking weighted averages of correlators in the time direction. Let C2pt(t) and C3pt(t, τ) be

some generic two- and three-point staggered baryon correlators with spectral decompositions

of

C2pt(t) = a+0b+0 + (−1)ta−0b−0e
−m0t + · · · ,

C3pt(t, τ) = a+0M+0,+0b+0e
−m+0t+

(−1)ta−0M−0,−0b−0e
−m−0t+

(−1)τa+0M+0,−0b−0e
−m−0τe−m+0(t−τ)+

(−1)t−τa−0M−0,+0e
−m−0τe−m−0(t−τ) + · · ·

(4.52)

where m±0 are the ground state masses in positive and negative parity channels, a’s and b’s

are overlap factors, M ’s are transitional matrix elements, and “· · · ” denotes higher excited

state contributions. We observe that if we define a new set of correlators by taking weighted

averages between adjacent timeslices in t as

C ′2pt(t) ≡ e−msnkC2pt(t) + C2pt(t+ 1),

C ′3pt(t, τ) ≡ e−msnkC3pt(t, τ) + C2pt(t+ 1, τ)

(4.53)
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the spectral decomposition of C ′2pt and C ′3pt stays the same, except sink overlap factors for

all states (including excited state) become

a+i → a+i
(
e−msnk + e−m+i

)
a−i → a−i

(
e−msnk − e−m−i

)
, ∀i ∈ {0, 1, · · · }

(4.54)

So if we choose the tunable parameters msnk to be roughly equal one of the negative parity

mass m−i, the contribution of that particular state will be strongly suppressed. We call

this procedure (weighted) time averaging at the sink since it suppresses sink overlap factors.

Furthermore, we can apply this procedure iteratively to suppress any number of negative

parity states.

We can similarly define a new set of operators by taking weighted time averages between

adjacent τ ’s (for three-point correlators) to get

C ′2pt(t) ≡ e−msrcC2pt(t) + C2pt(t+ 1),

C ′3pt(t, τ) ≡ e−msrcC3pt(t, τ) + C2pt(t, τ + 1)

(4.55)

In this case, spectral decomposition again remain intact except source overlap factors become

b+i → b+i
(
e−msrc + e−m+i

)
b−i → b−i

(
e−msrc − e−m−i

)
, ∀i ∈ {0, 1, · · · }

(4.56)

We can again suppress source overlap factors from negative parity states by choosing appro-

priate msrc, and we call this time averaging at the source.

Time averages at the source and sink commute with each other so we can apply them

in arbitrary ordering. They are analogous to quark smearing but in the time direction, so

excessive time averaging will again reduce the data quality. Based on effective mass plot we

time average twice both at the source and sink with msrc/msnk parameters of 0.9 and 1.1.
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This then significantly reduces excited state contribution from negative parity channels; see

Fig. 2 and 3 of [3]. We apply the same operation to all correlators with different classes.

Variational method

The last step in the preprocessing pipeline is to reduce the number of correlators by marginal-

izing over class indices. This is achieved by applying the variational method [117]. As alluded

to earlier in Section. 4.1.2, we start by solving for the left and right eigenvectors of two-point

correlators in GEVPs

C
16+,0;(R1,R2)
2pt (t)v

(0)
R = λ(0)C

16+,0;(R1,R2)
2pt (t0)v

(0)
R ,(

v
(0)
L

)T
C

16+,0;(R1,R2)
2pt (t) = λ(0)

(
v

(0)
L

)T
C

16+,0;(R1,R2)
2pt (t0)

(4.57)

where we have reproduced equations from (4.20) for the ground state nucleon. We only make

use of the eigenvalue λ(0) in our nucleon mass work. In this work, we aim to reduce the

complexity of fitting by decreasing the number of correlators. We achieve this by sandwiching

correlators matrices between left and right eigenvectors to obtain a single correlator for each

matrix

C
16+,0
2pt (t) ≡

(
v

(0)
L

)T
C

16+,0;(R1,R2)
2pt (t)v

(0)
R

C
16+,0
3pt,V (t, τ) ≡

(
v

(0)
L

)T
C

16+,0;(R1,R2)
3pt,V (t, τ)v

(0)
R

C
16+,0
3pt,A (t, τ) ≡

(
v

(0)
L

)T
C

16+,0;(R1,R2)
3pt,A (t, τ)v

(0)
R

(4.58)

Correlators on the left-hand sides of (4.58) are simpler to fit not only because there are

fewer of them, but also because they have less severe excited state contaminations because

we are essentially designing improved source and sink interpolators with better overlaps to

nucleon-like states by taking linear combinations of existing operators. Coefficients needed

for those linear combinations are given by the eigenvectors. We need to determine which t
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and t0 to be used for finding eigenvectors. We have found empirically that correlators are

almost identical for any large t and t0 (see Fig. 1 of [3] for differences in correlators from

using different t and t0), so we choose t0 = 6 and t− t0 = 2 in this analysis.

After passing correlator matrices through the three-step preprocessing pipeline, we ob-

tain three correlators C
16,0;σ
3pt,V (t, τ), C

16,0;σ
3pt,A (t, τ), and C

16+,0;σ
2pt (t) where the additional σ =

0.2, 0.6 fm denote different levels of quark smearings at the sink. We fit them to functional

forms of

C
16+,0;σ
2pt (t) =

1∑
i=0

a
(σ)
+i b+ie

−m+it + a
(σ)
−0 b−0(−1)te−m−0t

C
16,0;σ
3pt,V (t, τ) =

1∑
i=0

a
(σ)
+i V+i,+ib+ie

−m+it+

(−1)ta
(σ)
−0V−0,−0b−0e

−m−0t+

(−1)τ
1∑
i=0

a
(σ)
+i V+i,−0b−0e

−m−0τe−m+i(t−τ)+

(−1)t−τ
1∑
i=0

a
(σ)
−0V−0,+ib+ie

−m+iτe−m−0(t−τ)

C
16,0;σ
3pt,A (t, τ) =

1∑
i,j=0

a
(σ)
+jA+j,+ib+ie

−m+iτe−mj(t−τ)+

(−1)ta
(σ)
−0A−0,−0b−0e

−m−0t+

(−1)τ
1∑
i=0

a
(σ)
+i A+i,−0b−0e

−m−0τe−m+i(t−τ)+

(−1)t−τ
1∑
i=0

a
(σ)
−0A−0,+ib+ie

−m+iτe−m−0(t−τ)

(4.59)

The notation here is almost identical to that of (4.49) and (4.14) except that the class

superscripts (R1) and (R2) are removed as we are no longer dealing with matrices of corre-

lators. Instead, we place σ = 0.2, 0.6 fm superscripts on sink overlap factors a to label the
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two sets of correlators Gr2.0N30 and Gr6.0N70. We only include two positive parity states

(one nucleon-like state and one excited state) and a single negative parity state. Note that

C
16,0;σ
3pt,V (t, τ) has a slightly different spectral decomposition than C

16,0;σ
3pt,V (t, τ) as V+i,+j = 0

for i 6= j. This is because the vector current is conserved in the continuum limit so we expect

V+i,+j to be small due to discretization effects. In practice, the data are too noisy to resolve

such small values so we just set them to zeros and omit those terms.

4.2.5 Simulation and analysis details

As the first proof-of-principle work on calculating nucleon matrix elements with valence

staggered quarks, we use a single 2+1+1 HISQ ensemble produced by the MILC collaboration

[4, 55] with the lattice spacing of a = 0.1222(3) fm determined from the fp4s scheme [4],

pion mass of mπ ≈ 305 MeV, ms/ml = 5 where ms and ml are strange- and light- quark

masses, and physical charm-quark mass. Using an unphysical pion-mass ensemble allows

us to explore subtleties involving staggered baryon three-point correlator analyses without

spending a significant amount of computing resources. Once the analysis methodology is

demonstrated and established, we can then perform calculations on physical ensembles in

the future.

We simultaneously fit optimized two- and three- correlators with both quark smearings

to (4.59) within the Bayesian framework [99] to extract the nucleon mass m+0 = mN ,

bare vector charge g̃V , and bare axial charge g̃A. We then renormalize bare charges with

ZV = ZA and compare the results. We could in principle fit both vector and axial-vector

three-point correlators in one fit. However, we have found the dominant sources of excited

state contaminations in those two correlators are different based on the observed three- to

two-point correlator ratios [3]. For this reason, we perform two separate fits: one fit that

includes both two-point correlators and vector three-point correlators and another fit that

includes the same two-point correlators and axial-vector three-point correlators.
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Similar priors are used in both fits. We impose a wide Gaussian prior of 1100(200) MeV

on the nucleon mass mN based on the observed nucleon masses on ensembles at similar

unphysical pion masses [108–110]; we impose a wide Gaussian prior of 1600(300) MeV on

the mass of the negative parity state m−0 based on the expected mass of the S-wave nucleon-

pion state that we observed in [2]; to ensure we obtain a higher excited state mass, we impose

a log-normal prior on the difference in masses between the first excited state and the nucleon

ground state m+0 −m−0 of 300(200) MeV. The identity of this excited state is unknown,

so we let the central value to be roughly equal to the pion mass and allow a large margin of

200 MeV to take into account of various possibilities; we impose Gaussian priors of 1.0(0.3)

on g̃V = V+0,+0 based on the charge conservation and 1.2(0.3) on g̃A = A+0,+0 based on

the PDG value [46]. Other transitional matrix elements have priors of 0(5) based on the

typical values of matrix elements; finally, we do not impose any priors on the overlap factors.

Once priors and appropriate time ranges, which will be shown in the figure, are chosen,

we minimized the augmented χ2 to obtain estimates on parameters. The errors on those

parameters are estimated from 1000 bootstrap samples.

4.2.6 Fit results

We present the results of two- and three-point correlators in figures 4.6, 4.7, and 4.8. Fig-

ure 4.6 shows the results of two-point correlator fits with either vector (gV fit) or axial-vector

correlators (gA fit) at two different sink quark smearings, Gr2.0N30 and Gr6.0N70. The pos-

terior estimates on the nucleon mass are mN = 0.704(9) from the gV fit and mN = 0.707(6)

from the gA fit. The gV fit gives a larger uncertainty than the gA fit, which also shows up

as wider one-sigma uncertainty bands in the figure. This is mainly because vector three-

point correlators are insensitive to the sink smearings that we applied. As can be seen in

figure 4.7, both Gr2.0N30 and Gr6.0N70 correlators are almost identical, so different radii

of quark smearings are not adding new information on excited state contaminations over
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which we try to marginalize. Axial three-point correlators in figure 4.8 on the other hand see

appreciable differences between two quark smearings with reduced excited state contamina-

tions4. Then it comes at no surprise that the gA fit will give a better nucleon mass estimate

than the gV fit. So in this work we will use the gA fit nucleon mass as the nominal value

which is equal to mN = 1141(10) MeV.

How does our nucleon mass estimate fare against existing lattice results? The answer

is tricky because different calculations that use different lattice actions with different pion

masses can give rise to drastically different nucleon masses on the lattice. However, as men-

tioned earlier in the nucleon mass chapter that there is an empirically observed relationship

that states

mN (a) = 800 MeV +mπ(a) (4.60)

Nucleon masses computed in different simulations all seem to obey this relationship well [108–

110]. If we apply this equation to extrapolation our nucleon mass result from mπ = 305 MeV

to the physical point of mπ = 135 MeV, we found mN = 970(10) MeV. This is consistent

within one-sigma uncertainty with our nucleon mass result mN = 960(9) on the same lattice

spacing from λ̃(0) fit from Table 4.2.

Figures 4.7 and 4.8 show the results on three-point correlators. The posterior estimates

on bare charges are g̃V = 1.03(2) and g̃A = 1.24(5). Despite being insensitive to quark

smearings, we can see from figures that vector correlators inherently have less excited state

contaminations than axial correlators, so the bare vector charge has a smaller fractional

uncertainty than the axial charge. Using the renormalization constant ZV = ZA = 0.991(1)

4. The curvature of a correlator, barring from large cancellations between different exponentials in the
spectral decomposition, indicates the amount of excited state contaminations to the ground state.
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Figure 4.6: Effective masses, defined in (4.16), of the optimized two-point correlators as
functions of the source-sink separation t. The top panel shows the Gr2.0N30 correlator
(Gaussian smeared at sink with σ = 0.2 fm and 50 iterations) and the bottom one shows
the Gr6.070N correlator (σ = 0.6 fm and 70 iterations). Solid points are those included
in the Bayesian fits. Green bands show one-sigma posterior estimate of the fit with axial-
vector correlators, and yellow bands show one-sigma posterior estimate of the fit with vector
correlators. This figure is reproduced from our work in [3].
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we get

gV = ZV g̃V = 1.02(2)

gA = ZAg̃A = 1.23(5)

gA
gV

=
g̃A
g̃V

= 1.21(5)

(4.61)

The fact that gV is consistent with one provides a non-trivial cross check to the lattice

methodology we presented here. We also present two determinations of gA: the first re-

sult in the second line of the equation shows the renormalized charge by using the same

renormalization constant as g̃V ; on the other hand, the second result from the third line

is renormalized by taking the ratio of unrenormalized charges. In both cases, results are

consistent with each other within one-sigma uncertainty. Renormalized charges derived here

cannot be compared to the continuum value of gA ≈ 1.27 because various systematic errors

are not yet quantified. However, our results are consistent with other lattice calculations at

similar quark masses albeit with different actions; see [3] for a detailed comparison between

various lattice results.
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Figure 4.7: Optimized three- to two-point correlator ratio for vector correlators as functions
of the source-sink separation time t and current insertion time τ . The top and bottom panels
show results of Gr2.0N30 (Gaussian smeared at sink with σ = 0.2 fm and 50 iterations) and
Gr6.0N70 correlators (σ = 0.6 fm and 70 iterations). Solid data points are those included
in the simultaneous Bayesian fit with two-point correlators. Blue, orange, and green color
bands show one-sigma posterior estimates for different τ ’s. The grey band shows the one-
sigma posterior estimate on the bare vector charge g̃V = 1.03(2). This figure is reproduced
from our work in [3].
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Figure 4.8: Same plot as figure 4.7 but for axial-vector three-point correlators. The grey
band shows the one-sigma posterior estimate on the bare axial charge g̃A = 1.24(5). This
figure is reproduced from our work in [3].
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Chapter 5

Conclusion and future work

In this dissertation, we introduced a group-theoretical method to calculate nucleon masses

and matrix elements with staggered fermions. In the valence sector, the staggered action has

four extra fermion tastes for each quark flavor that are degenerate in the continuum limit.

Staggered QCD, therefore, simulates an augmented QCD theory but with 4× nf = 8 light,

valence quarks and nf light, sea quarks due to rooted quark determinants. nf = 2 is the

number of light quarks in the real world (up and down).

To relate observables with non-trivial taste quantum numbers calculated in staggered

QCD to the ones in physical QCD with the correct number of valence quarks, we note that

single-taste observables, or observables constructed with valence quarks of the same taste,

must take on the same values in both theories [3, 82]. Non-single-taste observables, which

are oftentimes much easier to work with in analyses, can then be “rotated” with successive

applications of the generalized Wigner-Eckart theorem in the taste-flavor space to the single-

taste ones. Ratios of single-taste to non-single-taste observables are then given by the ratios

of Clebsch-Gordan coefficients that we worked out in Chapter 2. In addition, we also worked

out, for the first time, the exact spin-flavor-taste quantum numbers of staggered nucleons in

Chapter 3 and applied results from those two chapters to give the first complete calculations

of the nucleon mass, vector charge, and axial charge with staggered fermions [2, 3].

This work demonstrates that staggered quarks are equally useful in simulating baryon

physics as any other lattice fermions. It is just the beginning of a research program that

ultimately aims to provide a precise calculation of the nucleon axial form factor, which can

be used as an input to predict neutrino-nuclei cross sections in the CCQE region for neutrino

oscillation experiments such as DUNE. What else we need to do to achieve such a calculation?

Our discussions of the continuum representation theory in Chapter 2 generalizes trivially to

form factor calculations since the translational symmetry that gives rise to finite momentum
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transfers commutes with the internal flavor-taste symmetry. Also, the same Wigner-Eckart

type analysis can be applied to extract physical form factors. However, the spectra of non-

zero-momentum lattice operators, obtained by adding momenta to zero-momentum operators

presented in Chapter 3, are complicated by the mixing between irreps. For example, if we

insert one unit of lattice momentum in the z-direction to the isospin-3/2, 16 irrep operators

we use in this work, operators will now interpolate to one nucleon-like and five ∆-like states

as opposed to one nucleon-like and three ∆-like states at zero momentum; see the appendix

of [118] for details. We are currently exploring the optimal strategy for the nucleon axial

form factor simulations. The first result on an unphysical pion ensemble will appear in the

near future.

Even though we focus solely on computing nucleon masses and matrix elements in this

work, the methodology we presented here is quite general and should be applicable to many

other calculations. For example, operators in other lattice irreps and/or with different valence

quark masses can be used to investigate the properties of ∆ baryons, nucleon-pion scattering,

or Ω baryons. Physical observables are still given by the single-taste observables in the

staggered formalism, and we have to repeat the exercises in Chapter 2 and 3 to know how

to properly normalize staggered observables. The usefulness of staggered simulations is

ultimately limited by i) our ability to performance group-theoretical analyses to extract

normalization factors and ii) the spectrum complexity of staggered observables. I do not

imagine i) will pose too much of an issue as there are existing computer programs that

can automate the processes; ii) could potentially pose a serious challenge to analyses as

the existence of many nearly degenerate states with different tastes leads to complicated

error estimates and continuum extrapolations. For many observables, however, staggered

simulations offer unparalleled efficiency and the analysis complications are minor setbacks

compared to the extra computing costs with other lattice fermions. It is then up to the

reader to perform a cost-benefit analysis to decide whether it is worth it to use staggered
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fermions in his or her simulations.
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