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Abstract

Neutrino oscillation experiments are designed to measure neutrino masses and mixing pa-
rameters by scattering them off nuclei such as carbon, oxygen, and argon in detectors.
Predictions of neutrino-nuclei cross sections from the Standard Model are needed to extract
these parameters, but their theoretical uncertainties remain large due to the complexity of
nuclear and hadronic physics. This situation needs to be improved in order to satisfy the
precision needs of future experiments.

In this dissertation, we focus on working towards a first-principles calculation of the
nucleon axial form factor with lattice quantum chromodynamics (QCD). Nucleon axial form
factor, which parametrizes the weak responses of a proton or neutron, is difficult to measure
experimentally, and it is a dominant uncertainty in neutrino-nuclei cross-section calculations
for incoming neutrino energies at around 1 GeV. So a theoretical calculation with lattice
QCD provides a non-ambiguous determination of the form factor that could help reducing
the uncertainty.

The notorious signal-to-noise problem renders calculations of nucleon observables compu-
tationally intensive in lattice QCD. In this work, we investigate the use of staggered fermions
in nucleon calculations. Staggered fermions are the most computationally efficient fermion
discretization in lattice field theory, but certain theoretical issues have so far prevented their
applications to nucleon physics. As a stepping stone towards a full calculation of the nu-
cleon axial form factor, this dissertation provides a comprehensive theoretical framework on
how to calculate the nucleon mass, vector charge, and axial charge with staggered fermions,
together with numerical results demonstrating the methodology. This framework can be

generalized to the form factor calculation that will appear in the near future.



Chapter 1

Introduction

1.1 Probing new physics with neutrinos

Within the Standard Model of particle physics, masses of elementary particles are derived
from the vacuum expectation value of the Higgs field after spontaneous symmetry break-
ing. The Higgs mechanism generates equal masses for both left- and right-handed par-
ticles, and because we have yet to observe any right-handed neutrinos, this would then
imply that (left-handed) neutrinos must be massless to conform to the Standard Model.
In 1998, the Super-Kamiokande (Super-K) experiment announced the first discovery of
masses to neutrinos [5] through detecting atmospheric neutrino oscillations. To under-
stand why this result demonstrates neutrinos have non-zero masses, we have to under-
stand why neutrinos oscillate. Similar to six flavors of leptons, neutrinos also come into
six different flavors: ve, Ve, vy, Uy, vy, V7. Six flavors of neutrinos are interaction eigen-
states of the Standard-Model Lagrangian but not the mass eigenstates. A direct conse-
quence of this is that massive neutrinos have to transform into different interaction eigen-
states as they propagate through space. The mixing of neutrino flavors are character-
ized by the Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix, which is similar to the
Cabibbo—Kobayashi-Maskawa (CKM) matrix in the quark sector except the CKM matrix
is found in experiments to be mostly diagonal whereas the PMNS matrix is found to have
large off-diagonal entries; see [6] for estimates of neutrino parameters from global analyses of
oscillation experiment data as of 2020. The existence of small neutrino masses is therefore
one of the few telltales of physics beyond the Standard Model.

What makes neutrinos even more interesting is the fact they also play important roles
in cosmology and astrophysics. For one, massive relic neutrinos from the Big Bang is one

of the known components of hot and warm dark matters that leaves imprints on many
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cosmological observables such as the cosmic microwave background spectrum; see [7, 8] for
reviews on this topic. Neutrinos are also emitted in abundance in core-collapse supernovae.
Depending on the precise condition in which the star collapses, the event may be difficult to
detect electromagnetically so studying the neutrino spectrum is irreplaceable to understand
the nature of such phenomenon [9]; also, a possible solution to the puzzle of the observed
asymmetry between particle and antiparticles in our Universe is provided by the leptogenesis
[10], which introduces new species of neutrinos through the seesaw mechanism; see [11] for
a review.

Motivated by the tremendous phenomenological interest, many experiments are currently
underway or planned to investigate many facets of neutrinos with different sources. For
examples, the neutrinoless double-beta-decay experiments [12], such as CUORE [13], Gerda
[14], KamLAND-Zen [15], and KATRIN [16], are designed to search for double beta decays of
heavy nuclei. If experiments are able to discover such events without emitted neutrinos, we
can confirm that neutrinos are Majorana fermions through the black box theorem [17]. This
will be the first observed Majorana particle in the Nature. The absolute masses, as opposed
to mass squared differences, of neutrinos can also be constrained; see the latest results in
[18]. Another example is neutrino oscillation experiments, such as DUNE [19], JUNO [20],
NOvA [21], and MicroBooNE [22], which measure neutrino fluxes produced by either nuclear
reactors or particle accelerators to extract neutrino oscillation parameters. Many of these
aforementioned experiments are also looking for atmospheric, solar, and cosmic neutrinos
which can provide better estimates on neutrino parameters, help understand the working
mechanisms of those neutrino sources, or provide hints towards beyond-the-Standard-Model

physics.



1.2 Neutrino oscillation experiments and neutrino-nuclei cross

sections

This thesis is motivated primarily by the need of the future long-baseline neutrino experi-
ment DUNE. The Deep Underground Neutrino Experiment (DUNE) is designed to deliver
a neutrino beam of unprecedented intensity by upgrading the existing accelerator facility at
Fermilab to investigate the fundamental properties of neutrinos. Neutrino masses and mixing
parameters are extracted by comparing event rates at both the near and far detectors located
1300 km apart. Given that the incoming neutrinos are nearly invisible, oscillation experi-
ments measure the final states of neutrino interactions and, through the use of Monte-Carlo
event generators such as GENIE [23], GiBUU [24], and NuWro [25], reconstruct probabilis-
tic distributions of neutrino events based on the observed kinematics and topologies to infer
neutrino energies. A relatively heavy nucleus, 4YAr, is used in the DUNE time-projection
chamber to maximize the sensitivity to the weak interaction, so an accurate determination
of the neutrino-argon cross sections for energy reconstruction is necessary to unleash the
full discovery potential of DUNE. This poses significant challenges to our understanding of
nuclear physics. Further, the sooner such results mature, the better chance they have of
informing analyses at current and near-term oscillation experiments, such as ICARUS [26],
MicroBooNE, MINERvVA [27], NOvA, SBND [28], and T2K [29].

Calculating the neutrino-nucleus cross section is a multi-scale problem. In the energy
regime from about 0.5 to 5 GeV relevant to DUNE, three distinct neutrino-nucleus scatter-
ing mechanisms come into play: quasielastic scattering (QE), resonance production (RES),
and deep-inelastic scattering (DIS) [30]. Figure 1.1 shows the total neutrino and antineutrino
cross sections per nucleon for all three regions and how they overlap. In future long base-
line experiments, the theoretical uncertainties on cross sections will become the dominant
sources of systematic errors [31], so better cross-section estimates to within a few percent

of all interaction processes are needed to avoid limiting the precision of extracted neutrino
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parameters. This is a challenge that requires ingenious solutions from both experimentalists
and theorists; see [30] for a review of the current status.

In this dissertation, we focus on how lattice quantum chromodynamics (QCD) calcu-
lations can contribute to our understanding of neutrino-nucleus scattering. Lattice QCD,
first proposed by Kenneth Wilson in 1974 [32], is a non-perturbative regularization scheme
of QCD on Euclidean lattices. Any lattice results with complete error budgets should be
treated as the predictions of QCD. Even though 40 Ay nucleus is too complex to be simulated
on the lattice directly, lattice QCD can provide systematically improvable calculations based
solely on QCD, which will serve as inputs to nuclear models and are essential to reduce
the cross-section systematics to the required level. The USQCD collaboration has published
a white paper [33] that demonstrates how lattice-QCD predictions are integral parts of the
cross-section calculations in all three aforementioned neutrino-nuclei scattering processes. In
some cases, such as the overlap between the RES and DIS regions, lattice QCD is the only
tool that is able to produce consistent predictions. We will come back to a quick overview
of the lattice QCD methodology in Section 1.4.

This dissertation is part of a research program aiming at providing a first-principles cal-
culation of the nucleon axial form factor with quantifiable uncertainties to reduce systematic
errors in the QE scattering region. Neutrino-nucleus QE scattering is the dominant inter-
action process for neutrino energies between few MeV and about 1 GeV. It is mediated
by a weak current exchange contributed by both neutral- and charged-current (CC) inter-
actions. Technical difficulties in lattice QCD render the neutral-current calculations more
challenging compared to their CC counterparts. Neutral-current interactions are also less
important in oscillation experiments because the scattered neutrinos cannot be observed,
so only the charged-current QE (CCQE) cross section will be considered in this work. The
complete description of neutrino-nucleus CCQE cross section requires careful nuclear physics

modeling. A recent paper [34] demonstrated the successful calculation of the CCQE cross
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section of 12C with a nuclear ab inito method. In their work, they highlighted the need for a
more precise lattice-QCD calculation of the nucleon axial form factor for their models, stat-
ing “first-principles LQCD calculations of nucleon (and, possibly, nucleon-to-A) electroweak
form factors potentially have a significant impact on calculations of neutrino-nucleus cross
sections, since these form factors constitute essential inputs to the nuclear CC.”

The nucleon axial form factor parametrizes the weak response of a nucleon and is respon-
sible for a large theoretical uncertainty of the neutrino-nucleon CCQE scattering depicting in
figure 1.2. Three different deuterium bubble chamber experiments [35-37] performed in the
1970s and 80s have access to the nucleon cross section with small nuclear corrections. Modern
neutrino experiments use heavy nuclei as targets, so the form factor cannot be cleanly ex-
tracted without significant systematics from nuclear modeling. Recent studies [38, 39] found
that the uncertainties of the nucleon axial form factor were underestimated by previous anal-
yses, and with no planned experiments in sight, lattice-QCD calculations are then needed
to achieve the precision goals of DUNE. Note that the vector form factor also contributes
to the electroweak cross section in figure 1.2. However, it can be extracted precisely from
high statistics study of electron-nucleon scattering data from experiments such as the ones
conducted by the Al [40] and PRad [41] collaborations.! Once we have the techniques to
properly control systematic errors in the axial form factor calculation, the same techniques
can be easily generalized to a calculation of the vector form factor in the future.

There have been many activities in the lattice-QCD community to calculate the nucleon
axial form factor (for example, see [43-45]), but the statistical and systematic uncertainties
on those results are large due to high computing costs to calculate nucleon observables. This
work focuses on working towards building the theoretical foundation for a calculation of the

nucleon axial form factor with fully controlled systematics in lattice QCD in the near future.

1. It was pointed out recently in [42] that there are still unresolved systematic errors in vector form factor
global analyses due to tensions between different datasets. This leads to larger-than-expected uncertainties
on the vector form factor, comparable to those of the axial form factor, at large energy transfers. It is
therefore desirable to calculate it with lattice QCD to cross check results.
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Figure 1.2: Charged current (anti)neutrino-nucleon interaction. N, P, 7, and [ are neutron,
proton, antineutrino, and lepton, respectively. The blob denotes the non-perturbative contri-
butions from vector and axial form factors which are amenable to lattice QCD calculations.

Our work distinguishes itself from others by the use of the staggered fermion discretization
which is one of the most efficient lattice fermions to simulate. Despite the appeal of staggered
fermion simulations, their applications to nucleon observables are complicated by unresolved
theoretical issues and no nucleon matrix element calculations had been performed with this
formalism. In this work, we present the first-ever calculation of the nucleon mass, vector
charge, and axial charge with the staggered formalism based on our results in [2, 3]. The
nucleon axial charge g4 = 1.2756(13) [46] is the nucleon axial form factor at zero momentum
transfer at zero momentum that is related to the neutron lifetime of 15 minutes. We also
calculate the conserved nucleon vector charge gy = 1 which serves as a validation observable
for our new lattice methodology. These three observables are necessary stepping stones
towards a full calculation of the nucleon axial form factor, and our results are consistent
with expectations. This work enables calculations of the nucleon axial form factor with
staggered fermions that we are currently working on. We expect the first full result on the

nucleon axial form within the next couple of years from the publication date of this thesis.



1.3 Notations in this work

Throughout this work, we will use the natural units of particle physics by setting the speed
of light and reduced Planck constant ¢ = A = 1. In addition, we will also adopt the
lattice natural unit by setting the lattice spacing a = 1 unless explicitly shown. To restore
dimensional quantities, we can simply insert unique combinations of ¢, h, and a to the

expressions.

1.4 A (short) introduction to lattice QCD

There are many excellent textbooks and preprints offering pedagogical introductions to lat-
tice QCD (for example, see [47-52]). The goal of this section is therefore to only give a
high-level overview of lattice QCD methodologies by highlighting some aspects of calcula-
tions that are important to this particular work. The materials presented here should give
sufficient background to understand the rest of this thesis.

In the path integral formulation of the quantum field theory (QFT) [53] in the Euclidean

metric, the expectation value of an observable O can be calculated via

_SwBAN
(0) = /DlﬁD@/)DA(T)OW)»%AL 1)

7 = / DYDYD A S04l

where Z is the partition function, S is the action, 1, 1 are fermion fields, and A is the gauge
field. In calculations of hadron masses and matrix elements, we only need to consider two

types of observables: two-point and three-point correlation functions (or simply correlators)



which are defined by

Copi(t) = (O(1)O(t = 0)),

Capt(t, 7) = (O(t)J(1)O(t = 0))

(1.2)

where t > 7 > 0. O is a so-called source interpolating/creation operator which has the
same quantum numbers as the state we want to study located at t = 0, and O(t) is its sink
counterpart located at ¢t. J(7) is a current operator located at 7 and interacts with particles
created by O. Two-point correlators allow us to extract hadron energies, and three-point
correlators allow us to extract matrix elements when combined with data from two-point
correlators.

(1.1) in its present form is divergent and ill-defined. A regularization scheme is thus
required to make predictions in not only the path integral but also in the canonical formu-
lations of QFT. The most commonly used one is the MS scheme based on the perturbative
expansion with Feynman diagrams. Regardless of the regularization scheme used, physical
observables should all agree with one another after renormalizations and removing regu-
larizers. Many regularization schemes such as MS and Pauli-Villar rely on theories having
well-defined perturbative expansions at the energy range considered. For low-energy systems
in QCD, however, the strong coupling is large due to asymptomatic freedom and there are no
well-defined expansion parameters so perturbative regularization schemes cannot be applied.
Rather, a non-perturbative regularization scheme is needed, which in this case is provided
by discretizing the theory on a four-dimensional Euclidean lattice.

To obtain lattice regularized QCD, we start with (1.1), rotate the time coordinate to the

imaginary axis (Wick rotation), and discretize the QCD action and observable using your



preferred lattice action. This results in a discretized path integral

e_SL[wvavU]
A

1) = [ Taw [TarTLav (“~ )ouiv. 7.0l
Z = /HdedEHdUeiSWW’U]

where we are integrating over field values at all lattice sites. In the continuum QCD, the

(1.3)

path integral in (1.1) is integrating over the su(3) Lie-algebra valued fields A,. But on the
lattice we work with gauge link fields Uy, that take values in the SU(3) Lie group. They are

simply Wilson line operators or parallel transporters
U, = e (1=1,2,3,4) (1.4)

which are simple to work with to preserve the exact gauge invariance even when we break the
spacetime symmetry. Intuitively, we can think of fermion field ¢ and v as living on the lattice
sites and gauge links U, as links connecting different sites. Because of the Wick rotation,
the factor in the bracket of (1.3) can now be interpreted as a probability density function
(pdf) of a given fermion and gauge field configurations, which they are usually referred to
as simply “gauge configurations” or “gluon configurations”. After performing importance
sampling of the pdf, we obtain a set of gauge field configurations in which the observable
can be calculated. The same observable has to be calculated on multiple “ensembles” — or
sets of gauge configurations — with the same lattice action but different lattice parameters
such as lattice spacing, quark massesQ, volumes, etc. QCD predictions can be obtained by
first renormalizing results on all ensembles if necessary then extrapolating to a result at
the physical quark masses (chiral extrapolation), infinite volume, and zero lattice spacing

(continuum extrapolation). Here we summarize important steps in a lattice calculation:

2. Simulations at unphysically high quark masses are much cheaper to perform due to smaller correlation
lengths; see, for example, [54] for details. Many calculations, therefore, choose to simulate at multiple quark
masses and extrapolate results to the physical point.

10



1. Determine the lattice gauge and fermion actions to use in simulations as long as they

belong to the same universality class as QCD in the continuum limit a — 0.

2. Generate multiple ensembles at different lattice bare parameters tuned to the critical

surface.
3. Measure correlation functions on each lattice configuration in different ensembles.
4. Perform statistical analyses to extract physical observables in physical units.

5. Perform necessary extrapolations (chiral, continuum, and infinite volume) to obtain

predictions of QCD.

There are many subtleties involving in each step of the process, and we have greatly
simplified them here just to give an idea of the necessary ingredients that go into a lat-
tice calculation. The bottlenecks for all lattice simulations right now are prohibitive costs
involving steps 2 and 3 which limit the statistical precision of lattice results. Generating
ensembles in step 2 is the more expensive of those two and it boils down to repeatedly
solving for systems of linear equations Ax = b for a large, sparse matrix A on the order of
10-million-by-10-million and applying numerical integrations. At small lattice spacing near
the continuum limit, generating statistical independent samples becomes much harder due
to the well-known phenomenon of critical slowing down. Fortunately, once the gauge ensem-
bles are generated with large computing resources for a given lattice action, we can reuse
them over and over again to measure different observables. In this work, we use the gauge
ensembles generated by the MILC collaboration [4, 55].

Even when gauge ensembles are readily available, computing correlation functions in
step 3 still requires a non-trivial amount of computing resources that are typically done on
supercomputers for large lattices. The problem here is again solving for systems of linear
equations with the same dimensions as in step 2. For nucleon observables we are interested

in this work, the signal-to-noise ratios are exponentially damped for large ¢ and 7 in (1.2)
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due to well-known reasons [56, 57], so they require many more measurements on different
gauge configurations to achieve the desired precision. We will come back to this problem
when we discuss our work in Chapter 4.

The main novelty of this work comes from solving theoretical issues associated with
calculating nucleon observables with staggered quarks and presenting the first numerical
results using this formalism. This method has the potential to be one of the fastest nucleon
simulations in lattice QCD, which could translate into the most precise measurement of
nucleon properties in the near future. In the next section, we will briefly describe what the

problems are and how we plan to tackle them in the rest of the chapters.

1.5 Problem statement

Discretizing fermions on the lattice is a complicated issue. In the continuum QCD, we have

the free, Euclidean fermion action

5= [ ate(Fen ot + v (15)

To simulate it on the lattice, we have to choose an approximation to partial derivatives 0.

The choice is not unique and one of the simplest one is the finite difference

0uf () % o (a4 ) — (o = ) (1.6

(1.6) is the so-called naive quark discretization and it leads to a theory with 20 — 16, d =4
fermions even though we only put one in (1.5). This is the well-known fermion doubling
problem which is deeply intertwined with the difficulty in preserving chiral symmetry on the
lattice. The Nielsen-Ninomiya no-go theorem [58-60] states that under some mild assump-
tions on the form of the action, the theory cannot be both chirally symmetric and free of

fermion doublers. This is also the reason why we have yet to see any lattice regularizations
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of chiral gauge theories such as the Standard Model that work well; see [61-63] for reviews.

Fortunately, QCD is not a chiral gauge theory as the chiral symmetry here is a global one,
but we still have to reduce the number of quarks to match what the Nature has provided to
us. For Wilson fermions [32], this is done by explicitly breaking the chiral symmetry via an
irrelevant operator to decouple fermion doublers; and for some others such as domain wall
(64, 65] and overlap fermions [66, 67], their actions satisfy the Ginsparg-Wilson equation [68]
which ensures the existence of a remnant chiral symmetry on the lattice.

In this work, the action of choice is the staggered fermion [69, 70]. This lattice dis-
cretization is special in that it represents quarks with one-component spinor fields instead
of the usual four-component ones. In addition, it also has a remnant chiral symmetry on
the lattice which has many additional benefits compared to non-chirally symmetric fermions.
These two features have also made the staggered action one of the most efficient, if not the
most efficient, lattice actions to simulate. However, the price we have to pay for is that
fermion doublers are in fact not completely eliminated in this discretization. Instead of 16
fermion doublers in the naive quark action, we are now left with 4 fermion doublers which
are degenerate in the continuum limit. They are usually called the four tastes of a staggered
fermion. This is problematic as the Nature does not give us four degenerate quark species
in QCD, so they must be removed.

The problem of redundant tastes can be partially dealt with in the ensemble generation
process by employing the so-called fourth-root trick. We first integrate out fermions in (1.3)

and rewrite it as

e_Sg[U]
)= [ TLav TLaetoma)(“—— )ouw (L.7)

where D is the lattice Dirac operator, Sy is the gauge part of the action, and m; are the
explicit mass terms we put into the theory. Note that we have performed Wick contractions

to remove the fermionic dependence of Oj. Each determinant factor represents one sea
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quark contribution with mass m; in an undoubled theory but represents four degenerate sea
quarks contributions for the staggered action. So in the so-called rooted staggered fermion

simulation, each quark determinant is replaced by
det[D(m;)] — det[D(m;)]"/* (1.8)

The rooted determinant is then expected to represent one sea quark contribution in the
continuum limit. There was a debate in the mid 2000s about the validity of such a procedure
in a field theory context [71-73]. Backed by many theoretical and numerical evidence, it is
now believed that the rooting procedure gives the correct continuum limit of QCD and has
since produced many results that are consistent with experiments; see, for example, [74-77].

The rooting procedure eliminates redundant fermion tastes in the sea, but it does not
eliminate them in the valence sector. This is because when we try to calculate observables
in (1.7) with rooted determinants, we still have to invert the Dirac operator to construct
Oj, according to the Wick theorem. Even though the sea action used for constructing quark
determinants is undoubled, the valence action used for constructing Oy, is agnostic about
the rooting procedure, so there are still four valence tastes left. Now the question this thesis
tries to answer is how can we relate observables calculated in this rooted-staggered-fermion
theory to the ones in physical QCD without explicitly removing valence taste degrees of
freedom? For mesonic observables, the answer is known for a long time [78, 79] and some
of the most precise predictions there nowadays are calculated with staggered fermions [80];
for nucleon observables, there were some initial work on relating baryon masses calculated
with staggered fermions to their physical counterparts [81, 82] but the progress stalled ever
since. This has so far prevented any calculations of nucleon matrix elements with staggered
fermions.

In this work, we extend the arguments in [81, 82] to nucleon matrix elements and show,

for the first time, i) a complete calculation of the nucleon mass based on those two references
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and ii) how to calculate nucleon vector and axial charges with a method which relies on the
generalized Wigner-Eckart theorem of SU(4) taste symmetry that we developed. Materials
here are based on our published work of [2, 3] but we have provided a more detailed account
of the group theory aspect of our calculations.

The rest of the chapters are organized as follows: in Chapter 2, we provide an introduction
to the group theory of SU(4) taste group and show how to relate staggered observables to
physical QCD observables with the generalized Wigner-Eckart theorem in the continuum
limit; in Chapter 3, we study the staggered action in details on the lattice to derive nucleon
creation/annihilation operators and their continuum quantum numbers. In combination
with results in the previous chapter, a complete description of how to calculate nucleon
matrix elements with staggered fermions can be obtained; in Chapter 4, we highlight some
numerical computations on the nucleon mass and charges appearing in [2, 3] using results
derived in previous two chapters; and finally in the last chapter, we give a summary and

future directions of this work.
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Chapter 2

On SU(4) D SU(2) x SU(2) symmetries and staggered observables

We learned in Section 1.5 that QCD simulations with staggered valence quarks and rooted
staggered sea quarks result in a theory, which will be oftentimes referred to as staggered
QCD to distinguish it from the actual QCD, with one sea quark and four degenerate valence
quarks for each quark species in the continuum limit. That is four too many quark tastes
for QCD. Staggered simulations can only be useful to extract QCD observables if we are
able to somehow deal with this extra multiplicity, which shows up as the extra SU(4) taste
symmetry for valence quarks in the continuum action. For observables constructed from
simple quark bilinears such as meson spectra, decay constants, and matrix elements, the
relationship between QCD and staggered QCD can be inferred by rewriting staggered quark
bilinears as four-component naive quark spinors — see [49, 78, 79, 83| for discussions. This
approach, however, has proven to be difficult for staggered quark trilinears that are needed
for baryon calculations because of large degrees of freedom in tastes.

We offer here a complementary approach that works well for both meson and baryon
observables based on group-theoretical arguments. We can even extend its result to show
that for any observables we want to calculate in QCD, there are corresponding observables
in staggered QCD that we can simulate that would be identical up to normalization factors
in the continuum limit. It turns out, these factors are easy to derive for mesonic observables
but become non-trivial for baryonic observables. The idea of this approach is that for a given
observable we want to calculate in QCD, there are single-taste observables made of valence
quarks with the same taste, which otherwise are identical in constructions to the QCD one,
that are equivalent. We can then apply a series of flavor and taste symmetry transformations
to show that other non-single-taste observables can also be used to infer the QCD observable
given we know how to relate the single-taste to non-single-taste observables, which are direct

applications of the generalized Wigner-Eckart theorem.
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We need two components for this approach to work: i) knowing the generalized Wigner-
Eckart theorem in a basis that is the most convenient to work with, and ii) knowing the
continuum flavor and taste quantum numbers for the nucleon states we create on the lattice.
This chapter addresses the former question and Chapter 3 addresses the latter. Most current
lattice simulations are done in the isospin limit where up and down quarks are identical. So
in principle we need the generalized Wigner-Eckart theorem for SU(8). It turns out for our
applications here, we can simplify the problems by solely performing SU(4) transformations
in different SU(4) subgroups of SU(8), so the Wigner-Eckart theorem for SU(4) is all we
need.

The theorem requires the knowledge Clebsch—-Gordan (CG) coefficients which are basis-
dependent quantities. Working with a suitable basis is crucial as using the “wrong” basis will
greatly obscure the transformation properties of observables and render the analyses almost
impossible; if we do not care about the basis, there are algorithms readily available [84] that
computes SU(N) CG coefficients. In this work, we adopt a basis in which the states have
definite quantum numbers in the subgroup of SU(2) x SU(2) C SU(4). States created by
lattice operators take simple forms in this basis as this is the first in many steps in breaking
the taste symmetry under lattice discretization that will be discussed in Chapter 3.

Most group theory materials presented here are based on the discussions in [85], which
have worked out all the relevant SU(4) CG coefficients in the context of nuclear physics. We
will start with a short introduction to the SU(4) group theory then go into details on how
they can be applied to relate observables in staggered QCD, especially the ones with SU(2)

isospin symmetry, to experimental values.
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2.1 Fundamentals of SU(4) D SU(2) x SU(2)

The fundamental representation of the SU(4) taste group is represented by 4-by-4 unitary

matrices with unit determinants. We can write any SU(4) element U locally as

: 15
U = = ¢ 2az1Cara (2.1)

where H is a Hermitian matrix in the Lie algebra su(4). H can then be expanded in the
basis of 42 — 1 = 15 Hermitian traceless generators p; with real coefficients ¢;, which satisfy

the commutation relations

[Pa, pb] = Z'fabcpc (2'2>

with the totally antisymmetric structure constant f,p. = f[ J- Here we adopt the Einstein

abc
notation so the repeated indices are summed over.

We can find an explicit representation of p,’s by noticing that the four-dimensional
fundamental representation of SU(4) is still irreducible’ under the decomposition SU(4) —
SU(2)g x SU(2)p. In [85], SU(4) corresponds to the Wigner supermultiplet of spin (S) and
isospin (T) symmetries in nuclear systems; whereas SU(4) corresponds to the taste symmetry
of staggered quarks in this work. Nevertheless, we will keep the S and T subscripts in this
chapter to distinguish those two SU(2) subgroups and their quantum numbers, but one
should not take them literally as spins and isospins; in other chapters, we will use SU(2) .
and SU(2)q, to denote the same SU(2) g and SU(2)y subgroups, respectively.

This group decomposition means that the fundamental representation of SU(4) can be

written as the tensor product of the two-dimensional fundamental representations of SU(2)

(2.3)

1. We are not considering the decomposition in which the irrep is reducible and becomes 4 = % D %
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An irrep is always denoted by its dimension with a potential subscript of S (symmetric),
A (antisymmetric), or M (mixed) to distinguish various irreps with the same dimensions,
or a bar on top to denote a conjugate representation. However, an irrep of SU(2) is always
denoted by the conventional spin notation. Because the Pauli matrices o4,a = 1,2, 3 form a
basis of the fundamental representation of su(2), together with the identity matrix o4 = I,

their Kronecker products then form a fundamental representation of p, in su(4) given by

My =0,®0y, (nv=12734) (2.4)

The identity matrix My4 is not one of the generators because it is not traceless. In practice,

the most convenient basis of M), that we will be using is defined via the ladder operators

1 1 1
Sp = §(U3®I), Tp = §(I®03)7 Epp = §(U3®03),
1 1
Sy =—— 1), Ty = ——(I
+ 2\/5(%69 ), T 2\/5( ® 0+), (2.5)
Eiifi(Ui@)Ui), Eﬁz%(dg@&% EiO——\/—(Ui®U3)

where

o_ =01 — 109,

(2.6)
o4 =01+ 109

Note that the operators defined here are identical to those in Table. I of [85]. This matrix
representation of p, provides an easy way to compute the commutation relations between

all 15 operators, and the structure constants are normalized to be either +1 or 0.
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2.2 Classifying states of SU(4) irreps

From (2.5) we can work out that four operators S = Sg + 5'3 +5.Sy, T? =Ty + Tg +
T_T4, Ty, and Sy are mutually commuting. So the states in an irrep of SU(4) can be

specified by orthonormal kets

1% m%] [T m ™) (27)

where f is the irrep label, and j and m are the usual SU(2) spin quantum numbers for S or
T operators. The states are constructed to eigenvectors of Sy with eigenvalue of mS . S? with
cigenvalue of 77 (55 +1), Ty with eigenvalue of m?, and T? with eigenvalue of 57 (51 4 1). Tt
is clear that S and T can be derived from the operators in the SU(2) ¢ and SU(2), subgroups,
respectively. The E operators are the unique ones that only exist in the full SU(4) group.
As we shall see later, they can be used to construct step operators that raise or lower the
values of jS and jL.

Irreps in this basis have definite quantum numbers in both SU(2) ¢ and SU(2) subgroups.
This is particularly important for our purpose because SU(4) — SU(2) g x SU(2) is the first
step in decomposing the continuum symmetry group of the staggered action to the lattice
one. Hence, all the states we excite on the lattice can be expressed simply in this basis. In
Table 2.1, we have listed all the irreps of SU(4) that will be considered in this work, along
with their irrep components (jS, jT) in the SU(2) g x SU(2) subgroup and Young diagrams.
Similar to the eightfold way of SU(3) flavors, these irreps completely classify the tastes of
single-particle staggered mesons and baryons.

As an example, the fundamental representation of SU(4) can be labeled by the four basis

-2,

because 4 — (%, %) Another example is the 15-dimensional adjoint representation of SU(4)
20
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Table 2.1: SU(4) irreps and their irrep components (jS,jT) in the SU(2)g x SU(2)7 sub-
group. These irreps completely classify the tastes of staggered mesons and baryons.

SU(2)g x SU2)p

irrep components

SU(4) irrep

Young diagram

1 (trivial, meson) (0,0)

4 (anti-fundamental, baryon) (3, 3)

4 (fundamental) (%, %) []

|
15 (adjoint, meson) (1,1)® (1,0) ® (0,1) H
205 (baryon) (3.9e(3) EEE
203 (baryon) CRECEECE) |

because 15 — (1,0) & (0,1) & (1,1).
A general irrep of SU(4) needs 6 quantum numbers from the 6 commuting operators to
uniquely label its components. However, for all the irreps we will be working with in this

work, those four quantum numbers are sufficient to label all their components.
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2.2.1 Step operators and state normalizations

Consider the example of the basis of the adjoint representation defined in (2.9), we can apply

S

S+ and T4 to raise or lower the z-component angular momenta m® and m?, respectively.

However, for those kets to belong to the same irrep, this means that there exists a suite of
new step operators O’s that can raise or lower the total angular momenta jS and j1. A
particular set is defined in Table II of [85]. As an example, let’s consider the action of the

step-up operator

Ooy = Eoy +S_E4(Sg+1)71 (2.10)

Using the representation in (2.5), we find the commutation relations
[50, Eo+] = 0, [S0,S-] = =5, [S0, E4+] = Eqt (2.11)
which implies
[S0, Oo+] =0 (2.12)
as expected. Similarly, the commutation relations
[To, So] = [T0, S-1 = 0, [Ty, Eo+] = Eo+, [T0, E44] = E4+ (2.13)
imply

[To, Oo+] = Eoy + S—E41(So+ 1)~ = Opy (2.14)
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So if we act Op4 on ‘ [15} [1, 1}5 [0, 0}T>, we will find that

Ty00+|[15][1,1] 5[0, 0] ) = [Ty, Oy 1| [15] [1,1] g [0.0] 1 )

(2.15)
= Oo+‘ [15][1,1] g [0, 0}T>

In other words,
Oo+|[15] [1,1] [0,0] 7 ) o< |[15] [1,1] ¢ [1,1] 1) (2.16)

We can repeat the same exercise with T2 and S? to further confirm (2.16). In general, if

S and jT = mT | it will raise and/or lower

we apply a step operator to a state with jS =m
jS , mS and Jor 7L mT by one unit. The resulting state will be zero, however, if it is not one
of the states in the irrep, just like how applying the raising operator to the highest weight
states in SU(2) will be zeros.

The step operators are key ingredients for constructing CG coefficients. But to uniquely
determine the action of O’s onto the basis kets, we need to adopt a set of phase conventions
to normalize the states. In the SU(2) case, the Condon-Shortley convention [86] is used
throughout the literature that defines the commonly seen CG coefficients. However, no such
consensus exists for other SU(N) groups partly because there is not a single natural basis to
use. The most popular one is the Gelfand-Tsetlin basis and there is a program [84] that can
readily compute their CG coefficients. But it is cumbersome to work in the Gelfand-Tsetlin

basis and mapping it to our preferred basis is also difficult. In this work, we will follow the

same normalization conventions as defined in [85].

2.2.2  Continuum staggered meson irreps of SU(4)

In the seminal work [87, 88] of Murray Gell-Mann and Yuval Ne’eman in 1961, they proposed
to understand the observed hadron spectrum of QCD using irreps of SU(3). Gell-Mann,

inspired by the Noble Eightfold Path in Buddhism, coined the term “Eightfold Way” to
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describe this classification scheme that we are familiar with today.

The classification scheme is rather easy to understand from the modern perspective. We
start with the approximate isospin symmetry of SU(3) where up, down, and strange quark
have equal masses and transform in the fundamental 3 irreps of SU(3). The meson and
baryon wavefunctions can be constructed from the tensor product of 3 irreps

303=8;®1
(2.17)

30303=10g®2-8)7 &1

So to understand the spectrum of staggered QCD, we also need to classify the states of
staggered mesons and baryons starting with the fundamental staggered quark fields of SU(4).

Staggered mesons can be constructed from the tensor product

14=1¢15 (2.18)

If we denote the four tastes of a continuum staggered quark as

¥ 4[5 3505 317)

oo |2 | | [0 3]sl ) 219)
v || [[415-4)sl5 4)
1 4115 -31s[5.-317)

where only the SU(4) labels are included. Other quantum numbers, such as flavors and
colors, are ignored. We define a Hermitian matrix of tensor products IT# = ﬂ),uq/;l/' The

state in the trivial representation is then proportional to its trace

[[1][0,0]g[0,0] 1) o< Tr(IT) = > 4uthy (2.20)
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where 1# transforms in the conjugate 4 representation. This state corresponds to the so-
called tastes-singlet meson that plays important roles in determining the properties of flavor-
singlet mesons [74]. As we will show in Section 2.3, the taste-singlet quark bilinears are also
necessary for computing three-point correlators with flavor-singlet currents.

We can take out the singlet component by defining a Hermitian, traceless matrix Il =

IT— iTr (H) Under a finite SU(4) transformation U, II transforms by conjugation
I — UTut (2.21)

which is the definition of the adjoint representation. (2.9) devises a standard basis for this
irrep with definite SU(2)g¢ and SU(2) taste quantum numbers, so we have to find a set of
15 matrices ﬁ?:), a=1,---,15 from II that maps onto that basis. Fortunately, we already
have those matrices in hand — they are just the generators S’s, T”s, and E’s defined in
(2.5). Furthermore, these generators are constructed from the tensor products of SU(2)
ladder operators, which transform as spin-1 spherical vectors with definite j and m quantum
numbers. This means we can easily map those SU(4) generators or ﬁ/g) onto the basis
vectors | [15} [1,m5]5[1, mT}T>, } [15} [1,m5]5[0, O]T>, or ‘ [15} [O, O}S[l,mT]T> according
to their transformation properties.

In the staggered fermion literature (see, for example, [79, 83]), 16 tastes of staggered

mesons (15 adjoint tastes + one singlet taste) are conventionally labeled by the products of

Euclidean gamma matrices §;,. If we write §;, in the Dirac representation

§i = 00 ® 0y,
(2.22)
=031
that satisfies
{6, v} = 26,1 (2.23)
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we observe that the generator matrices in (2.5), hence the tastes of staggered mesons, can
be written as linear combinations of §;, and vice versa. For example, a staggered meson with
&4 taste corresponds to the Sy operator which has quantum numbers ‘[15] [1, 0} g [O, 0}T>.
So the gamma matrices prescription is just another convenient method to label the states
in the trivial and adjoint representations. In Table 2.2, we have enumerated all 16 tastes of
the staggered mesons in both notations.

The third column of Table 2.2 represents either the eigenkets for staggered mesons or the
quark-bilinear tensor operators for currents — they both transform identically under SU(4)
rotations — even though we abuse the notations and write them as kets. The absolute nor-
malizations of the kets/tensor operators are arbitrary, however, the relative normalizations
(if there is one) are fixed again by the normalization conditions defined in [85]. For example,

the &5 taste transforms as

Sy + S_ = IO _ gr15][L—1s (107 (2.24)

where a relative negative sign is placed between two tensor operators 7, which are denoted
by their SU(4) quantum numbers in the superscripts. This can be understood in the context
of SU(2) rotations, in which the spherical tensors can be defined as

1 1

Vi=—+J4, Vo
+ -+ NG

J_, Vo=1J 2.25
\/5 0 z ( )

where J’s are the angular momentum operators. Vi transform as the plus and minus compo-
nents of a spin-1 operator, and a relative negative sign and 1/ V2 are needed when we define
them via the ladder operators J4. Table I of [85] has listed all the proper normalizations for
the tensor operators that we adopt here. The second column of Table I shows the non-zero
entries of the gamma matrices, and the normalization factors in front, along with the sign

in the fourth column, are needed to properly normalize the tensor operators 7 that will be
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needed by the Wigner-Eckart theorem. We will come back to this issue in the later section.
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Table 2.2: Tastes of staggered mesons and their generators and quantum numbers. Basic
kets/tensor operators are arbitrarily normalized.

Taste Cenerators Basis ket /Tensor Operator
1 I [[1]10,0] 4[0,0] 7)
€4 So |[15] [1,0] 5[0, 0] 1)

162 Ty |[15] [0,0] [1,0] 1)

€35 Eqg |[15] [1,0] [1, 0] 1)

[[15][1, 1] [0,0] 1) -

€5 Sy +S-
(18] [1. ~1] [0,0] 1)
485 S5 |[15] [1,1] g[0,0] ) +
‘[15} [1’ _1}S[O7O}T>
£06s T+ T |[15][0,0] g[1,1] 1) —
|[15]]0,0] ¢ [1, 1] 1)
€169 T T |[15][0,0] ¢ [1,1] 1) +
[15] [0.0] g [1. 1] 1)
€384 E o+ E_ |[15][1,1] g [1.0) ) —

[[15] 1, ~1] g [1, 0] )

(continue on the next page)
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(Table 2.2, continued)

(28] [1, 1] [L,0] 1) +

£3 Eio—E_g
[[15] [1, =1] g [1,0] 1)

€185 Eos + Eo_ |[15][1,0] g [1, 1] 1) =
115 1,0][1.-1],)

§285 Eos — Eo_ [[25] 1, 0] L, 1] 1) +

[[25] [1, 0] L, ~1] 1)

& By -E 4+Ey —FE

& Eyw-E -E, +E

§1€s iy +E 4+ B +E -

29

D U [ —
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(Table 2.2, continued)

(18] 1 1] gL, 1] 1) -

&y Eiv+E —E, —E _ |[15] [1, =1] g[1, 1] ) +
[[15] [1, 1] g [1, =1] ) =

[[15) [t 1] g [, ~1] 1)

In practice, the gamma matrix scheme is particularly useful for constructing correlators
that conserve taste quantum numbers. Consider an n-point correlator consisting of operators
that transform in the adjoint representation

Cr(lilt’ 9n) _ <O§gl) . 07(1971)> (2.26)

O(gz)

;7" is an operator with g; taste. For example, using the definition of + in (2.19) we can

construct the simplest &5 taste quark bilinear
0(&5) = Pesy) (2.27)

where the spinor structure is irrelevant in this discussion, and therefore, omitted. Note that
(2.26) can also accommodate for anti-quark operators because the adjoint representation is
real. We claim that the correlator is non-vanishing if the product of gamma matrices is the

identity matrix up to a sign, namely,
gl X -+ X gp = £1 (2.28)

In other words, the taste gamma matrices must “cancel out” in order to obtain non-zero

answers. We can prove this by considering the n-point correlator as a tensor product of 15
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irreps and decomposing it to irrep components

non-trivial irreps
~
15® - ®15=1d--- (2.29)
—_———
n times

The trivial irrep 1 can only appear once due to Schur’s lemma. (2.29) implies that (2.26) can

be written as a linear combination of a new set of operators O(") that transform as irreps of

SU(4)

O%y--- 9n) _ 1 (O ... 4 ¢ (Ol9R)) (2.30)

c; are some coefficients and the sum terminates at the k-th term. By the Great Orthogonality
theorem,

<5(r)) =0 if r # trivial irrep (2.31)

The only way to form the trivial irrep is to satisfy the condition in (2.28), so this proves our
claim.

For example, suppose we want to study the mass of a &5 taste meson from a two-point
correlator. The only way to construct it is by enforcing the same taste for both operators

C§1€D5t7§5) _ <O§£5)O§£5)) (2.32)

Similarly, if we want to study the matrix element of a &5 taste meson with a &4 taste current

operator, the only non-vanishing three-point correlators will be

O§§i€5,§4,€5) _ <O§£4§5)O§§4)O§£5)> (2.33)
and
C§§i7§475455) _ <Og§5)Oé§4)O§£4§5)> (2.34)
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As we can see, the gamma matrix scheme simplifies all group-theoretical considerations
into gamma matrix multiplications, and it is used ubiquitously in all staggered meson cal-
culations. Unfortunately, this method only works if all operators in an n-point correlator
transform in the trivial or adjoint representations. In calculating baryon matrix elements,
only the current operator transforms in those representations, whereas the baryon creation
and annihilation operators transform in other baryonic irreps such as 20g or 20;,. We have
to then carefully construct correlators that conserve the taste quantum numbers. This is

why Table 2.2 will be particularly useful in those situations.

2.2.8  Continuum staggered baryon irreps of SU(4)

In the previous section, we have gone to great lengths to figure out the exact valence taste
wavefunction of quark bilinears using the fundamental quark fields. As we will show later, it
is particularly important to know the taste compositions of quark bilinears which are used
for current insertions in matrix elements as it will affect the overall normalizations of physical
observables.

However, it is not so important to know the precise valence taste wavefunction of stag-
gered baryons for the observable of interest except for the so-called single-taste baryons [82],
which are the baryons that consist of a single valence taste.? Knowing the quantum num-
bers of these single-taste baryons will allow us to normalize the matrix elements with the
Wigner-Eckart theorem.

The 64 tastes of continuum staggered baryons transform as the tensor product

4R4R4=20g® 205 ® 20y &4 (2.35)

We can use Table 2.1 to enumerate all the basis kets for each irrep. If one inclines, he or she

2. Analogously in QCD, we have single-flavor baryons of AT+ and A~ which consist of only up or down
quarks in their valence wavefucntions.
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can compute the valence wavefunction of each ket by successively applying step and ladder
operators to the highest weight states just like in SU(2). In this work, however, we will only

need the single-taste valence wavefunctions listed in Table 2.3.

Table 2.3: Taste of single-taste baryons and their quantum numbers.

Taste Basis ket
prongr |[208) (331503,
Yathahy [205][3, 3] 5 _%]T>
V33i3 [205] 3. -3 5[5 %]T>
gty [205] 3. —3] 5[5 _%]T>

We notice two things from Table 2.3: all single-taste baryons reside within the totally
symmetric representation 20g because three valence quarks are identical, and their quantum
numbers are such that ‘j5| = ‘jT| = |m5‘ = ‘mT| = % which can be easily derived from the
definitions in (2.19). Single-taste baryons play prominent roles in relating the observables of
four-taste, staggered (QCD to physical ones without taste degrees of freedom. We will come
back and discuss how to achieve this in Section 2.3.

We will not list the valence taste wavefunctions for all states in this section, as they
are not needed for our purposes here. But for completeness, we list the states with highest
weights in Table 2.4. The relative normalizations of states are fixed, but their absolute
normalizations are again arbitrary. Other states can be obtained by applying step operators

defined in Table II of [85].
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Table 2.4: Tastes of states with highest weights and their quantum numbers.

Taste Basis ket
V11 [205][3. 3] 513 %]T>

Pribar + Paihrihr — 2919192 [200] (3. 3] 5[5 %]T>

Yoty — Yabrdh 200 (3 313 317
Z?,j,kzl €iik Vit Pk [4] [%7 %]S [%, ’HT>

2.3 Clebsch—Gordan coefficients, Wigner-Eckart theorem, and

physical observables

The goal of this work is to compute physical observables, such as masses, decay constants,
and matrix elements, with the staggered action. For example, after performing analyses to
eliminate lattice systematic errors (finite lattice spacing, finite volume, excited contamina-

tion, etc.), we arrive at a matrix element
M = (rg|lJ3)|ry) (2.36)

The bra and ket are mesons or baryons transforming in the ro and rq irreps of SU(4),

respectively, and J (73) is a quark bilinear that transforms in the rg irrep. In this example,

T>’ (2.37)

Now the question is how can we, if at all, relate the result of (2.37) to the physical QCD

let

r1) = |ro) =

soc] [L 41T L1
127 2] g2 2

Jr8) — Pegesy

one? Fortunately, this can be done since there are no gluon exchanges in the continuum
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staggered QCD that can alter the tastes of quarks (see, for example, [83]). So if all the
operators are constructed from staggered quarks of the same tastes, we know the correlator
must coincide with the physical ones; on the other hand, if the hadrons in a correlator are
not of single tastes as in (2.37), we can still apply the Wigner-Eckart theorem to rotate it to
the single-taste ones with appropriate Clebsch—Gordan coefficients.

In the next section, we will provide a quick overview of the Clebsch—Gordan coefficients
and Wigner-Eckart theorem of SU(4). In Section 2.3.3 and 2.3.4, we will examine observables
with meson and baryons and show how to apply the theorem we just learned to extract

physical observables.

2.3.1 Clebsch—Gordan coefficients and the Wigner-Eckart theorem of

SU(4)

Clebsch—-Gordan (CG) coefficients (or Wigner coefficients as called in [85]) are the factors
appearing in front of the state when we decompose the tensor product of two irreps to its

irrep components. In SU(2), they are given by the inner product

(41, m1; g2, ma|J, M) (2.38)

where my, mo, and M are the z-component angular momenta, and ji, jo, and J are the
total angular momenta. Following the same notation, SU(4) CG coefficients are given by

[85]

()7 m3) Gl s [ra) (8 ) [6F md ) | [rs) (7, M%) (7 00T (239)

where m’s and M’s are again z-component angular momenta, and j’s and J’s are total
angular momenta. r’s are the irrep labels. The S and T superscripts differentiate between

quantum numbers in the SU(2)g and SU(2)p subgroups. (2.39) is similar in structure to
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(2.38) except for an additional index p which can take on the value of 1 and 2, depending
on 11, r9, and r3. We need this additional index in SU(4) because an irrep can appear more

than once in the irrep components of a tensor product. For example,
BR1B=1515d--- (2.40)
and
207 @15 =205, D205, B - - - (2.41)

where the 15 irrep appears twice on the right-hand side of (2.40) and the 20, irrep (conjugate
of the 20, irrep) also appears twice on the right-hand side of (2.41). We then need p
to distinguish between two unique irrep components. A general irrep of SU(4) needs six
quantum numbers to completely classify their states. Even if we are to include the extra two
quantum numbers in our basis, we will still need the extra label of p in (2.39). In comparison,
the tensor product of any two irreps of SU(2) always decompose into irrep components that
have multiplicities of one, so p label is not needed there. In this work, the p labels are needed
only when {rq,ro,r3} = {15,15,15} or {r1,ro,r3} = {20, 15,20,/ }.

We can further factor out (2.39) as products of SU(2) CG coefficients

<[7~1} 7, m3 ] [T mi 1; [r2] [4, m7 ][5 m3 | ‘ [rs] [75, M5 [JT, M7 >p
= <[7”ﬂ 6Tt ); [r2) 5 33 | H [r3] [JS,JT]>p>< (2.42)
Geomis a5 mS |75, MO G mi g3 mg |07, MT)

The last two factors are the SU(2) CG coefficients for SU(2) g and SU(2) subgroups, and the
first factor is the coefficient unique to SU(4) that needs to be determined. The factorization is

easy to understand if we consider a state with height weights for both of its SU(2) subgroups,
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namely,

) T T .
jf:mf, Jji =m; (i=1,2),

(2.43)
IS =M =jf + 45, T =MT =T+ 5]
In this case, the SU(2) CG coefficients are trivial and (2.42) simplifies to
(ra] (. m3 ) (o s [r2] (55 ) 13 md ) | [rs] (75, 005 [ 7 007
P (2.44)

:<[7“1Mjiq,j1T] [ra] 7%, 73] H rs] [ JT]>/>

The first factor in (2.42) is no more than the CG coefficients for states with height weights
on both of its SU(2) subgroups. Given a set of conventions, we can find CG coefficients of
SU(4) by applying step operators to obtain their recursion relations. The procedures and
final results are described in details in [85] and will not be repeated here.

Once we have CG coefficients of SU(4), we can state the Wigner-Eckart theorem

([ra) (5. mf) [ ) | TS S8 m) | (] (55, 05 [ 7, 7))
= F ([ 410 T2l 38, (][5, 71) x (2.45)

(G mis g5 m3 |7, MY GE mt 553 mE | g1, Mt

where

F ([ ] 0 22 ] [ 9, 077 ) =

2 (Erad {7 {Jers)) ()07 300 ()05 331 || [rs) 15,71 (246

p

Similar to the reduced matrix element in SU(2), ([r] HT[TQ] H[T3]>p is the reduced matrix
element of SU(4) that also depends on the p index. Note that the reduced matrix element

is a function of r{, r9, and r3 only, we can only obtain its value via direction simulations.
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Tlralls 5m31li3 m3] is a tensor operator that has the same transformation properties as the ket
} [rg} [jg, mg} [j2 ;M }T> We write (2.45) as the product of the newly defined F' function
and the SU(2) CG coefficients. In this way, the F' function contains all the p dependencies
and is independent of the z-component angular momenta m’s and M’s.
The most common application of the Wigner-Eckart theorem is to relate two matrix
elements that belong to the same irreps. For example, suppose we have two matrix elements
ay = (o) 5 m3) [T mf ] | 7m0 2| () 05 005 [ 07 ),

(2.47)
My = ([ra] [55 m§] T ) | b8 mslls sl | (o] (5, g (9, T )

If we assume that
.S . iS T g . S T
F (U s T[] (97, 87) = o ([ ] U G0 700 s [ ] [, 751
(2.48)
for some constant factor a;, then we can relate M; and Ms by

%:a<31’m1’927m2|J37M3><31,ml,h, my I, MT)
My (i3 m$; 38 mS g, MY GT m$; 5T m | JT, MT)

(2.49)

Up to the extra a factor, (2.49) is the direct generalization of the SU(2) Wigner-Eckart
theorem to SU(4).

There is a couple of different scenarios where (2.48) is valid. The first case is where there
are no irreps appearing more than once in the tensor product decomposition so the p label

is redundant. « is then simply the ratio

<[ U7 a1 ) [re] U553 H
<[ ARV H R >

(2.50)

o =

that we could look up in [85]. Even in the case where p indices are necessary due to the
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multiplicities, the symmetries of SU(4) CG coeflicients could enforce (2.48). For example,
from Table A4.6 of [85] we know that for all p

(816,373 815531 || [15] [0.1] >p (2.51)

— ([s]if 5% 180153 51 || [15] [1’0]>p

Then again,

F ([15] [jf’jf]; 7'[15][J'2SJ2T}; [15] [0, 1])
F <[15} [le’jf]; 7‘[15][j2T,j§q]; [15} [17 0})

a= =1 (2.52)
The two SU(2) factors in the SU(4) — SU(2) ¢ x SU(2)7 decomposition are indistinguishable
from one another. Hence, the CG coefficients have to be invariant under switching the S
and T labels as in (2.51). We will use this relabeling symmetry extensively in the following
sections.

Lastly, (2.48) holds trivially if we only perform rotations in its SU(2) subgroups. In other
words, o = 1 if 59 = j7, j5 = j, and J§ = J§ in (2.50).

In general, (2.48) does not hold because there are two unknown reduced matrix elements

(] ||

[7’3]>p , p = 1,2. We then need to compute two independent matrix elements

with the same irreps and solve a system of two-by-two linear equations and get their values.
Nevertheless, (2.48) holds for all our applications in this work.

We would also need to establish a normalization convention for the quark bilinears (tensor
operators). Throughout this work, we assume the quark bilinears with definite gamma tastes
are normalized in such a way that when you expand their valence wavefunctions using (2.19),

the factor in front of each term is 1. For example, the 1&4€51) quark bilinear is equal to

&5t = — 113 — Pothy + hgiby + Pyihy (2.53)
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One can simply multiply the taste gamma matrix using the representation defined in (2.22)
to obtain the valence wavefunction. This is how the lattice operators in Chapter 3 are
normalized. However, this creates some slight complications for applying the Wigner-Eckart
theorem — the theorem assumes that the tensor operators, or quark bilinears, are normalized
in the canonical fashion as defined in the second and fourth columns of Table I in [85]. Using

that table, we can write ©&;£51 in terms of canonically normalized tensor operators

which then can be passed to the Wigner-Eckart theorem. Normalizing quark trilinears for
baryon operators is irrelevant as their normalizations cancel when we take the ratio of three-
and two-points correlators to extract matrix elements.

This concludes our short introduction to the SU(4) CG coefficients and Wigner-Eckart
theorem. The interested readers could read more about them in [85]. In the following two

sections, we will apply these results to staggered mesonic and baryonic observables.

2.3.2  Adding SU(2)y flavor quantum numbers

All simulations in this work are done the in SU(2)p isospin limit in which the up and
down quarks have equal masses. This extra quantum number is crucial in relating staggered
QCD matrix elements to the physical quantities. In the next few sections, we will consider
operators with definite SU(2) p quantum numbers. The extra set of quantum numbers will
be denoted with the extra [j, m] g label where j in the total isospin and m is the z-component
isospin in the standard spin notation. We will also introduce vectors of up- and down-quark
fields, U/D, in the taste space, with components of u;/d;, i = 1,2, 3, 4.

It may seem that if we add the extra SU(2) ;- to the existing SU(4), we have to consider the

full SU(8) Wigner-Eckart theorem with eight species of degenerate quarks in the continuum.
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Fortunately, in all the problems we have encountered in this work, we can simply perform a

series of SU(4) Wigner-Eckart rotations to achieve the same effects.

2.3.3  Staggered meson masses and matriz elements with SU(2)p quantum

numbers

Mesonic operators and quark bilinears transform in either the trivial or 15 irreps. The mass
of a meson mg can be measured from the two-point correlator

Cé‘f)’tg) (t) = <O(g>(t)6(g)<0)> ~ ((Q|5(g)|7rg>)2e_m9t (as t — o0) (2.55)

where g denotes the taste of quark bilinears and (Q|5(g ) |Tg) is the real overlap factor between
the ground state meson 7y and the vacuum [Q2). g can be one of the fifteen gamma matrices
plus the identity matrix. For a moment, we will assume the 74 is composed of valence quark
and antiquark of different species, so no disconnected diagrams (quark and antiquark from
the same meson annihilate to gluons) are contributing to the amplitude. By the trivial
applications of the Wigner-Eckart theorem, we can conclude that meson in the adjoint irrep
have degenerate masses in the continuum limit. We can also show that any mesons in the
adjoint irrep are degenerate with the same physical mesons without taste quantum numbers
in the continuum limit. Let’s consider a correlator with g = £3&5 taste in the adjoint irrep.

Using the quark fields defined in (2.19), we can write the correlator as

C\&355:835) — ((q1q) — Godh — G3dh + Tud)) (@ a1 — Tago — Thaz + Tyaa))

4
— 1/
= Z<QiQiQiQi>
i=1

(2.56)

where ¢; and qé correspond to two different quarks with tastes ¢ = 1,2, 3,4. In going from the

first to second line, we use the fact that there are no taste-changing currents allowed in the
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continuum limit, so cross talks between different quark tastes are prohibited. Because each
term in the second line of (2.56) involves only quarks with the same taste, it is equivalent to
four times the result that one would get in the physical QCD when we remove the ¢ indices.
This multiplicative factor does not affect the meson mass, so the conclusion above follows.

In the absence of disconnected contributions, the same argument can be also applied to
trivial taste mesons to show that mesons in both the trivial and adjoint irreps are degenerate,
hence, physical. In general, if an observable is completely made of quarks of the same tastes,
it is equal to that of the physical QCD. We will use these principles over and over again in
the next few sections to derive staggered observables that are useful.

We can infer the physical overlap factor from (2.55) by

((QUOWmg) pny)* = ~ (2109 mg))? (2.57)

1
4
or

(Q09|rg) (Q]09|rg) (2.58)

phy

N | —

where 1/4 comes from our observation in (2.56). In the continuum limit, (Q]O() |7g) phy Will
become the overlap factor we want to compute in the physical QCD. The 1//Ny, Ny = 4
normalizing factor is known for a long time [78] and has been applied in many staggered
calculations to correctly extract decay constants (see, for example, [77].) In addition to this
group theoretical factor, our statement assumes that the quark bilinears are normalized in
the way we defined at the end of Section 2.3.1. The overall normalizations of the two-point
functions or the quark bilinears are not needed if we are only interested in masses.

If we now include isospin quantum numbers, there are two cases that we need to separately
consider: isospin-1 and isoscalar targets. If we go back to our example in (2.56) and replace all

the quark bilinears with isospin-1 operators @;d or u;d;, the conclusion remains unchanged
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— all the states in the adjoint and trivial irreps have identical masses and are physical.
Their overlap factors can be normalized with (2.58) to obtain the physical decay constants.
Isospin-1, trivial taste mesons and isospin-1, adjoint taste mesons all live in the same irrep
of SU(8) D SU(2)r x SU(4), so we can rotate an adjoint taste correlator to the trivial taste
one.

However, the masses and decay constants of isoscalar mesons such as 1 or 1’ can be only
obtained from operators with trivial tastes. To demonstrate this, let’s consider replacing

quark bilinears in (2.56) with isoscalar operators

1, — — _ —
o) = ((TestsU + Deats D) TestsU + Dt D) (2.59)
where

Uy dy
U d

U= : , D= 2
u3 d3
Uy dy

are vectors of u; and d; respectively, and the 1/2 factor normalizes the isoscalar operators.
Isoscalar mesons receive contributions from disconnected diagrams, but we realize that (2.59)
does not have disconnected contributions as the traces of gamma matrices are zeros. However,
if we only consider connected contributions, (2.59) similarly gives four times the physical
QCD result. In general, operators with tastes will work equally well in estimating the
connected contributions and we can write

C(g’g) = 40@01111_ (260)

isoscalar,conn.

The extra “conn.” subscript for C.(g :9) denotes the connected contribution to that corre-

isoscalar
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lator, and Ceonpn. denotes the connected contributions to the physical QCD correlator. To
incorporate disconnected contributions back to its amplitude, we can only calculate them

with trivial taste operators

(1,1)
isoscalar,disconn.

1, — _ _ _
= {((UU+DD)(UU + DD)) ..
2<( T )( + )>dlsconn. (2.61)

b

The subscripts “disconn.” denote the disconnected contributions to the correlator. In the

isospin symmetric limit,

(Wiuidjd;)disconn. = (Witiljug) disconn. = (dididjd;) disconn.» (6,5 =1,2,3,4) (2.62)
so (2.61) simplifies to

(Z,1)

isoscalar,disconn.

1 _ _
= 16 x Z((@u1 + did1) (@1 + d1d1))disconn. = 16Cdisconn,  (2:63)

where Clyisconn. 15 the disconnected contributions to the physical QCD correlator. This
relationship only holds if we use taste-singlet operators. Combining the results of (2.60)
and (2.63), the isoscalar two-point correlators in the physical QCD can be calculated with
staggered correlators by summing together the connected and disconnected contributions
with different weights

1 L (11
C= OCOHII- + Cdisconn. = _C(g,g) + _C( 7 ) (2-64)

4 ~isoscalar,conn. 16 isoscalar,disconn.

This linear combination between the taste-singlet and non-taste-singlet correlators have been
studied and tested (see, for example, [74]), and it behaves as expected.
Why is it that only the isoscalar mesons require such special treatments? The answer

is quite simple when we think in terms of SU(8) D SU(2) x SU(4) representation theory.
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Isoscalar mesons with trivial tastes transform as the trivial irrep of SU(8). Correlators made
of trivial irrep operators are special because they cannot be rotated to correlators made of
other states, so their correct values can only be obtained from direct simulations with trivial-
taste operators. The same principles apply whenever we encounter n-point correlators with
isoscalar operators, and we must always use trivial-taste operators to correctly estimate their
values.

We now shift our attention to matrix elements derived from three-point functions with
isospin symmetries

(92)

M(91>92793) jl,ml]F[gan[]Q,mg]F

[1,ma] plzsmal plismalp <[ |[j37m3]F[g3]>7 g1 X g2 X g3 =+I

(2.65)

where g1, g2, g3 again denote the meson tastes, and [j, m]p denotes the isospin quantum
numbers. To conserve tastes, the product of ¢g’s have to be the identity matrix up to a sign
per our previous discussion. We will not consider isospin-singlet operator and states here -
their physical matrix elements can only be estimated with taste-singlet operators. Suppose

we are instead interested in calculating the matrix element

MEES) = (L0 pleas] DD, 1] ples]) (2.66)

where U/D is again a vector of up/down-quark field u;/d;, i = 1,2,3,4 in the taste space.
We expand their valence wavefunctions using Table. 2.2 to obtain

g f ag af 1 7 P m d
M[(l,%)];[ﬁ—i)]F[l,l]F = 5Tz dydstsds|dgu) + - (2.67)

[43

where “-.” denotes three other similar terms and 1/ V/2 is a normalization factor for the
bra wavefunction. We realize that the taste subscript on each quark is redundant — up-ness

and down-ness of the quark fields have already set them apart. For instance, writing djug is
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equivalent to writing du since up and down quarks are already different. Removing the taste
indices will then have no effects in the values of the matrix element, so we can establish the

relationship between physical and staggered matrix elements

phy _ 1 (s gats)
Mot —1pine = M0 (2:68)
where MPYY is the physical matrix elements with the same isospin quantum

[lvO]F[L_l]F[lvl]F

numbers but without tastes. This argument holds as long as the product of three taste
gamma matrices is the identity. Note that the same 1/4 factor is also necessary to normalize
the two-point correlators in (2.57), so in practice, this normalization cancels out when we
derive matrix elements from ratios of three-points to two-points functions.

We can also show with Wigner-Eckart theorem that as long as the taste is conserved,
matrix elements with different tastes will all give the same continuum results in (2.68). First,

we define the canonical matrix element M ()
= ([1,0]p[1]|UD|[1, 1] p[1]) (2.69)

By the same argument above, we assume the canonical matrix element takes on the physical
value if we normalize it by the 1/4 factor. We will then show that through two applications of
the Wigner-Eckart theorem in both isospin and taste spaces, we can rotate matrix elements
with any tastes to the canonical matrix element with normalization factors of ones. So they
would all be equal to the physical matrix element once we normalize them by the 1/4 factors.

We will use M{Eﬁ?ﬁ{@bu,up as an example here, but it works equally well for all
other tastes. It is impossible to apply the Wigner-Eckart in the taste space to rotate it
to the canonical matrix element - the adjoint and trivial tastes do not mix under taste

transformations. We can, however, perform rotations in both the isospin and taste quantum

numbers to reach the trivial-taste states. We first matrix elements using Table 2.2 to write
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it as

MG S e = (L0 }U@D\l rlés))
1
= =5 (418,001, 1]510,00 + (1. 0[1, =100, Ol | )
L0500l (2.70)
(27[1 )

%(HLHF[LH [0,0]7) — |[1,1]p[1 —1]5[0,0]T>)

where 7T is the tensor operator that follows the normalization condition in Table I of [85].
States and operators are now labeled by their [j, m] quantum number of the three SU(2)
subgroups SU(2) pxSU(2) g xSU(2)y C SU(2) pxSU(4) D SU(8) identified by the subscripts.
The irrep labels that distinguish between the adjoint and trivial tastes are unnecessary and
omitted here — only [0,0]g[0,0]7 tastes can belong to the trivial irrep while other tastes
must belong to the adjoint irrep. The factor of 2 normalizes the current operator to the
tensor operator 7 so the Wigner-Eckart theorem can be applied, and the factors of 1/ V2
normalize the states to unit norms. We can simplify the expression by applying the SU(2)
Wigner-Eckart theorem to get

et = (0l s, 0 TR S0 1 s s o) 7)

This matrix element can be rotated to M) by applying the SU(4) Wigner-Eckart theorem
in the flavor-taste space. What this means is that we can imagine embedding the product
SU(2)p x SU(2)g from our group decomposition into a SU(4) pg group that will simulta-
neously rotate flavor and taste quantum numbers. In other words, we can decompose the

SU(8) symmetry group as

SU(8) D SU4) pg x SU(2)7 D SU(2) g x SU(2)g x SU2)7 (2.72)
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By doing so, we can transform a state with the adjoint taste to the taste-singlet one and
reduce the problem to a rotation in SU(4) instead of SU(8). We can see from (2.71) that
the states and operator transform in the adjoint irrep of SU(4) pg. To transform the matrix
element to the taste-singlet one, we apply the Wigner-Eckart theorem using Table A4.6. of
85)3 to get

(5455754355) . (I)
My ol “1ppae =M (2.73)

In general, we can rotate the matrix elements of arbitrary tastes to the singlet-taste one,
thereby showing that they all give rise to physical matrix elements in the continuum limit.
In practice, all we have to do is to write down a matrix element that “cancel out” all the

taste gamma matrices to obtain the desired physical observable.

2.3.4  Staggered baryon masses and matriz elements with SU(2)p quantum

numbers

Baryons are more complicated than mesons as there are simply more tastes or irreps available.
There is not a simple set of rules, like the gamma matrix arithmetic for mesonic observables,
to write down correlators that conserves the quantum numbers. In this section, we will focus
only on the 20g and 20, irrep of staggered baryons because those are the ones that we use
in Chapter 4 to deduce nucleon masses and charges. The same principle can be applied to
the 4 irrep.

A baryon state will be denoted by its SU(2)  flavor and SU(4) taste quantum numbers

’ ", mF}F 5, ms}s[ B mT]T> (2.74)

3. There are typos in the table that needs to be considered.
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where for baryons, all j's and m’s are denoted with the spin notations. Note that it is in
general ambiguous to denote the taste of a baryon only by their SU(2) ¢ and SU(2) quantum
numbers — both 20g and 20,; have states with jS =1 = 1/2 according to Table 2.1. For
any other jS and jT, however, it is clear which irrep it belongs to. We will always be explicit
which irrep the state belongs to when we have jS = jT = 1/2, then the notation should be
unique.

For rooted, staggered fermions, the physical baryon masses can be obtained from the
masses of single-taste baryons defined in Table 2.3 [82]. This does not preclude other states
from having physical masses. Using flavor-taste rotations, there are in fact many states that
all have the correct masses. Suppose we are interested in finding the mass of an isospin-1/2

baryon. We denote the highest-weight, single-taste baryon as

3], =53], 13, B3], o

We can show that states in

3 1 1 1
168y — (5,20M> ® (5,205> @ (5,4> ® (5,20]\4) (2.76)

where flavor and taste irreps are labeled in the parentheses, and 168, is a baryon irrep of

the SU(8) flavor-taste symmetry group that will be used in our nucleon simulations. Baryons
within the 168, are degenerated and have physical masses [82] because single-taste baryons
are members of the irrep. It is interesting to note that that baryons with “wrong” isospin
quantum numbers could still have the physical masses, considering that the isospin symmetry
is only a subgroup of the full symmetry group SU(8). In our calculations later, we will find
out that nucleons with isospins 3/2 are the most convenient to simulate. To distinguish them
from the physical nucleons, we will oftentimes refer to them as nucleon-like states.

It is natural to extend the statements to say that those matrix elements consisting of
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single-taste baryons and single-taste quark bilinears are physical. However, single-taste quark
bilinears are linear combinations of different operator tastes defined in Table 2.2, and it is
much easier to work with current operators with are irreps of the lattice symmetry group. So
for non-isospin-singlet operators, the physical matrix elements can be obtained with single-
taste baryons and current operators with tastes I, &4, £1&9 or 35, which we will sometimes
be referred to as taste-diagonal operators. Again, we have to use the taste-singlet operator
for isospin-singlet operators to obtain the correct disconnected diagram contributions. But
for non-isospin-singlet cases, we are free to use any one of the four tastes given that we have
normalized the current operators according to the discussion at the end of Section 2.3.1.

This means that, for example,
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where Mp,y is the physical matrix element without taste quantum numbers. We have taken
absolute values of the matrix elements because of the potential £1 and 4 factors from the
gamma matrices. These relations can also be proven by applying the Wigner-Eckart theorem
using Table A4.2 of [85].

The extend SU(8) flavor-taste symmetry allows us to relate the matrix elements of

baryons with 20;; to those with 20g tastes just like how it works for meson matrix ele-
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ments. Let’s consider the matrix element

3 3 3 3 11
]\420]\4E a9’ o a) o a8 o

22| ,122]4]2°2];
3 3 33 11
22| ,122]4]22

This shows up in the calculation of the nucleon axial charge in Chapter 4. Notice that the

iQ (TesesU — Dyt D) x

F (2.78)

baryons transform in the isospin-3/2, 20,; representation. The goal is to relate My  the
one of the physical matrix elements defined in (2.77) with isospins 1/2. Note that the current
is already taste diagonal in this example, so we know the physical matrix elements is equal

to

L(U§3£5U — D&s&sD)

11
My =( |=,=| ;111
phy <[272}F7 Va2

The current operator transforms as the tensor operator

11
22

3 111T (279)
F

1

\/§(U§3€5U — Dg3ésD) = 27’[1170]3[1’0% (2:80)

(1,0]F

where the factor of 2 comes from the normalization condition, and various parentheses denote
the quantum numbers of SU(2) subgroups. We apply the Wigner-Eckart theorem on the
SU(4) pr D SU(2) p x SU(2)p subgroup with CG coefficients defined in Table A4.5. of [85]

to obtain

My = Moy, (2.81)
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which relies on the symmetry property of these particular CG coeflicients

((20ar] "7 (15068 1 || [200/] [0 = 1.7]) = 252
2.82

(200007373 1811581 || (20wl 47 - 1)

In other words, we can use isospin-3/2 baryons in (2.78) to simulate a matrix element in
(2.79) with isospin-1/2 baryons, which is what we will be doing in the following chapters.

Alternatively, we observe that when we decompose SU(8) to the products of three SU(2)
subgroups, the decomposition is completely symmetrical, meaning that there is a symmetry
of exchanging subscript labels of the irreps. We can simply exchange the F' and 7" labels on
(2.78) to obtain (2.79).

It should be emphasized that when we perform simulations with the rooted, staggered
quark action, we are not simulating QCD because of the four extra tastes for each quark
species. In order to extract physical observables, we have to think carefully about which
observables are identical in those two theories. This is achieved in this work by realizing
that observables consist of a single taste in staggered QCD must coincide with the one in
the physical QCD. One can then apply symmetry transformations presented in this chapter
to relate other staggered observables to the single-taste ones. In a way, this theoretical
complexity becomes the strength of staggered simulations, as for a given QCD observable
we want to calculate, there are many equivalent staggered observables that we can simulate
which all give rise to the same continuum results. We have so far focused only on the
calculations of masses and matrix elements of single-particle mesons and baryons, but the
same underlying principles can be derived for other observables such as the spectrum of

multi-particle states, four-point functions, etc.
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Chapter 3

Spectrum of staggered baryons

3.1 Symmetries of the staggered action

This section will give an overview on how to construct staggered baryon interpolators and
states based on the symmetry group of the staggered lattice action. The free staggered action

for one quark flavor is given by

4
1
Sp =X+ m)x =5 33 nuxX() (x(n 4+ ) = x(n = ) +m 3 X(m)x(n) (3.1)
where n = (n1,no, n3, ny); unless specified otherwise, we omit the color indices in this chapter
as they play no roles in the following discussions.
There are four convention-dependent phase factors, 1, {.(n), Sg,,(n), and €(n), that
act as “gamma matrices” for one-component spinor fields. In the convention we are working

with, they are defined as

(_1)Zu<unl’

Uu(”)
(_1)Zu>u %

A
=
—~
3
~~—
11l

(_1>n1+n2+n3+n4

(1= 9 () (n)FEu ()60 (1) + 0 (n)ny (1) (n)&u (n), ns v

N | —

Sg, (n) =

which are the same as those in [78, 79, 81]. The symmetries of the action that are relevant

to classifying baryon operators are [81]:

o shift Sy,: x(n) = £u(n)x(n + t)
e rotation Ryy: x(n) — SRW(R,L}TL)X(RZU}”)

e spatial inversion Is: x(n) — n4(n)x(Isn), Isn = (—ny1, —no, —n3, ny)
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The antiquark fields Y(n)’s transform identically as the quark fields x(n)’s for these oper-
ations, so we restrict our discussions to x(n) only. We note that each symmetry operation
defined above contains a phase factor that depends on n. Intuitively, this is because the
staggering procedures mix the spacetime symmetries with internal taste symmetries, so any
spacetime symmetry operations on the staggered fields y(n) will inadvertently transform
both the locations of and tastes, which show up as n-dependent phase factors.

On the lattice, the taste and spacetime symmetries are deeply intertwined and cannot be
separated exactly, as the spinor components of naive quarks are distributed across different
lattice sites under the staggering procedure. One common strategy to approzximately isolate
each fermion taste is by blocking x(x) within the hypercube to select out the appropriate
spin and taste (see the section on staggered fermions in [49] for a detailed exposition. See
also the appendices of [83] for examples), thereby effectively moding the lattice dimensions
by two in each direction. To achieve this, we separate the shift symmetries into two sets

78, 81]

e translation T}, = S/%: x(n) = x(n+24)

e taste transformation =, = SMT;1/2

Without loss of generality, assume we always have even lattice sites in each direction. Then
the translation defined this way is free of taste transformation, and states transforming in
the irrep will have definite energy and momentum in the continuum limit; on the other
hands, [EM,TM} = 0 and [EH,EV} = 20,1, and =, can be interpreted as the subgroup of
the continuum taste transformation on the lattice. We only consider the action of =, on
eigenstates of T),, so the action of T}, 1/2 is well defined.

The eigenstates of Is do not have well defined parities since I5 contains taste transfor-
mations, as evidenced by the presence of 7,,(n) phases. The parity operators can be defined

via [78, 81]
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e parity P = [3=y

which commute with both =, and R;,. States with definite P quantum numbers will also
have the same continuum parities. Now we can understand why staggered fermions stagger.
We see from the definition of P that it contains the temporal taste transformation =4 which
cancels out the taste transformation in I5 so that P is taste invariant. This means that if we
are to construct states with definite parity, we have to use interpolators that span multiple
time slices on the lattice which could be problematic on the lattice; see [52] for a discussion.
Instead, states with both positive and negative parities will show up when interpolators are
restricted to a single time slice, which gives rise to the characteristic oscillation of staggered

correlators (see figures in [2, 3] for some correlator examples).

3.2 Staggered baryons at zero momenta on the lattice

Staggered baryons at zero momenta transform as irreps of the geometric rest-frame group

(GRF) [81]
GRF = {Z,, Ry, P} (3.3)

Note that it is equivalent to replace the parity operator in the group definition as both I
and P are in GRF.

As usual, we first find the maximal set of commuting operators within GRF to classify
baryons, which can be chosen as Ri9, =4, =1=9, and P. Following the same notations as in

[81], the lattice baryons are labeled by kets
‘mra; ot) (3.4)

where m is the mass, r denotes both =4 and Rj9 eigenvalues, o = =+ is the parity, and oy is
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the eigenvalue of Z4.
Baryon interpolators are constructed from quark trilinears that are irreps of the symmetry

group on a single time slice, or geometric time slice group (GTS)
GRF O GTS = {Eiv RU’ IS} (35)

Note that GRF = GTS x Zy(P), where Zy(P) is the Zy group generated by the parity
operators, so o, the parity quantum number, is the only missing one.
Let O(t) be a baryon interpolator transform in an irrep of GTS at time slice t. The

two-point correlator has spectral decomposition

(O()0(0)) = (2|0(t)0(0)|)
- Z Q|O(t)|myron; ot ) (Mpron; o1.n]0(0)[82)
(3.6)
_Z QS1O() Sy S mnron; ot n) (Maron; 01.,|0(0)|Q)

= Z orn) e mHQIO(0) [mnron; ot n) (muran; 0., [O(0)]|Q)

In the first line we assume the lattice has an infinite time extent L7 so thermal terms
proportional to exponentials in Ly are ignored; in line 2, note that we are summing over
eigenvalues m, o, and oy, but not r since irreps of GTS always have definite » quantum
numbers; in going from the third to the fourth line, we use the definition Sy = :4T41 /2 (T}
is the transfer matrix) to write it as the product of =4 and Ty eigenvalues. Let o5 = 1 be

the eigenvalues of O(t) under I, we can then rewrite (3.6) as

(O1)0(0)) = (050m) e ™ HQIO(0)|mnron; o1 n) (Maron; o1,,|0(0)[Q) (3.7)

n

In other words, if 05 = 1, the positive parity states will have prefactors (asan)t = 1 while the
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negative parity states will have (os0y,)! = (—1)!, which shows up as the staggering pattern
in correlation functions.

We are now ready to construct operators from y(n) fields that we can actually put into
a numerical simulation. The irreps of GTS can be classified into baryonic (unfaithful) and
fermionic (faithful) irreps. Operators constructed from products of even/odd numbers of
x(n) is always baryonic/fermionic. In this work, we will focus only on quark trilinears so we
will only work with fermionic irreps — see [79] for explicit constructions of quark bilinears.

Fortunately, there are only three fermionic irreps — 8, 8, and 16 where the number denotes

the dimensions of an irrep. The fundamental quark fields at zero momentum transform in

the 8 irrep
xo(7)
3 x1(77) (3.8)
neeven
x7(7)

We assume all fields reside on the time slice n4 = 0 and omit n4 in 7 = (n1,n9,n3); 1 € even
is summing all lattice sites that are even in all three coordinates. x 4(7) = x (7 + D A) where
D 4 is one of the eight corners of a spatial cube, with its coordinate given by the binary

representation of ¢, namely,

ﬁO = (0,0,0) = (nm;ny7nz)

D; = (1,0,0)
Dy = (0,1,0) (3.9)
D¢ = (1,1,0)
Dy =(1,1,1)
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When we define staggered baryon operators later, we will oftentimes denote a corner by its
scalar subscript A =0,---,7.

One can check easily that (3.8) transforms in the zero momentum irrep of GTS by
explicitly applying group elements to the operators. The sum here is only on the even sites
as the translational symmetry shift the field by two lattice units.

We take the tensor products of three fundamental 8 irreps to construct baryonic irreps

8®8®8=5-8¢2-8 ®4-16 (3.10)

The multiplicities of all baryonic irreps are larger than one, meaning there is more than one
way to arrange three quark fields on the cube to construct the same irrep. In staggered
baryons literature, different constructions of the same irrep are referred to as “classes” [81,
82], and we will follow the nomenclature here. All operators in specific irrep will excite the
same spectrum of states regardless of the operator classes.

Class 1 of the 8 irrep is the simplest to understand, which has the same construction as
(3.8) besides replacing one quark field with three quark fields on the same site. However,
while being the simplest to illustrate, its spectrum is one of the most complicated out of
all three irreps. In Section 3.3, we will show that the isospin-3/2, 8 irrep operator creates
three nucleon-like and two A-like ground states in the positive parity channels, while its
isospin-1/2 counterpart creates five nucleon-like and one A-like ground states. Again, we
refer to them as nucleon-like and A-like states instead of nucleons and A’s to emphasize that
they have the same continuum masses as physical nucleons and A’s, but they could have the
wrong isospin and taste quantum numbers.

Simulations with 8 irreps have proven to be difficult from our experiences. On the lattice,
these nucleon-like states are nearly degenerate, with their mass gaps dictated by the size of
taste-breaking effects in the lattice action. Disentangling different states thus requires precise

determinations of the correlation functions that are difficult to attain. Instead, we focus on
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the isospin-3/2, 16 irrep operators in this thesis that has the simplest spectrum of all irreps
with one nucleon-like and three A-like ground states.

To construct such operators, we introduce the symmetric shift operator [81, 82]

(xa (7 +1) + xA(7T — 1)) (3.11)

DO | —

Dixa(n) =
where ¢ = 1,2,3. Then, as an example, a class-2, 16 irrep operator can be constructed as

016+70;CIS2_ Z Zeabc{ Dl( ( )Xc(ﬁ)>+

nEevena b,c (3.12a)

N(7) Do (X (@)XC()) = 21" () D3 (x" (A)X“(7)) |

O16- 0(:182:\/_ 3 ZEabc{ YDy (X (7 )Xc(ﬁ))—Xa(ﬁ)D2(Xb(ﬁ)Xc(ﬁ))} (3.12D)

nE€even a,b,c

where the color indices a, b, and ¢ are antisymmetrized. The 16 irrep is separated into two
sets, 16+ and 16—, where the plus and minus signs denote the eigenvalues of O16+,0;cls2
under Ri9 rotations. FEach set contains eight irrep components and each component resides
on one of the eight corners of a spatial cube given by the sum of quark positions modulo
two. In this example, we show the zeroth-corner operators denoted by the subscripts 0. We

can obtain other components, O165:4icls2 - 4 —

, 7, by applying the appropriate spatial
shift operators. See [81] for definitions of other operators.

It is a straightforward exercise to add isospin quantum numbers to baryon operators.
The simplest ones, also the ones that we will use in practice, are the isospin-3/2 operators
with the highest weights. In this case, no extra work is needed — all we have to do is to
replace x’s in (3.12) by the up-quark fields. See [82], which builds upon the results of [81],

for the complete set of operators with isospin quantum numbers.

It is convenient to separate the 16 irrep components into 16+ so they each occupy eight
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corners of the cube. This also has important group-theoretical consequences in the continuum
limit which will be discussed in Section 4.2.4. The bottom line is that ratios of matrix
elements constructed from 16+ interpolators are given by the ratios of the appropriate CG
coefficients that we will derive. We use this fact in Section 4.2.4 to perform consistent checks
on our simulation data.

Non-local operators defined in (3.12) are not gauge invariant as the gauge links are not
included. We can either i) include gauge links to make the operators gauge invariant, or ii)
perform simulations on gauge-fixed configurations. Note that gauge fixings are completely
optional in lattice simulations to obtain finite results unlike in continuum calculations. It
is costly in our simulations to include gauge links for both source and sink interpolators,
as doing so would require 82 = 64 propagator solves to construct one set of correlators
if we are to include all correlators that are equal on the ensemble average, compared to
eight propagator solves for sources emanating from eight corners of a cube if gauge links are
ignored. Instead, we gauge fix all configurations to the Coulomb gauge [49]. We observe that
simulations on gauge-fixed configurations have added benefits of being less noisy because we
restrict path integrals to a specific gauge choice thereby reducing the observable variance.
So in practice, we always calculate correlators with Coulomb-gauge-fixed configurations, and
since the nucleon masses and matrix elements we try to compute are gauge invariant, this

choice does not affect our final results.

3.3 Spectrum of staggered baryon operators with SU(2)

quantum numbers

Now that we have constructed baryon irreps on the lattice, we want to now know their
ground state spectra. Specifically, we will focus on operators with either isospin-1/2 or 3/2
quantum numbers. To answer this question, we have to start with the continuum symmetry

group and work our ways down following the symmetry breaking pattern until we reach the
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GTS group.
Nucleon-like (N-like) and A-like states are the lowest-lying baryons which the operators

can excite. They reside in the continuum irreps [82]

SU(2)g x SU(8) pp D SU(2)g x SU2)p x SU(A) -
. 1 13 11 11- 11
3 33 31
A-like = | -, 12 =, =,2 =, =,2 1
ike (2, 05) — <2,2, 05) & (2>2, OM> (3.13b)

We use a different group labeling scheme here than the one that appears in chapter 2: SU(2) ¢
is the spin group, SU(2)p is the isospin symmetry group, and SU(4)p is the taste group.
In section 2.3.4, we have discussed the spectrum of staggered nucleons in the continuum,
and proven in (2.76) that, because (3.13a) contains the physical single-taste nucleons which
transform in the spin-1/2, isospin-3/2, 20g irrep, all N-like states in that equation will be
degenerate with the physical nucleon, despite potentially having the wrong isospin or taste
quantum numbers. Similarly, we extend the same arguments to A-like states to state that
all A-like states in (3.13b) are degenerate with the physical A baryons.

We further decompose the taste group into the product of SU(2) subgroups [2]
SU(4)r D SU(2)q, X [(SU2)p, x Z4)/Zs] (3.14)

Eventually, we will subdue [(SU(2) 4 X Z.4)/Z9] to the finite Dy C GTS group, the dihedral
group of order 8, on the lattice, hence the D4 label on SU(2). Since Dy is not a subgroup
of SU(2), we need a Z, phase factor to correct for this. For the fermionic (faithful) irrep
we need here, Zy = {£1, £i}; the Zs quotient factor ensures we are not overcounting group

elements by identifying (=1, —1) = (1,1) and (—1,1) = (1, —1). This combination is referred
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to as the central product of SU(2) p , and Zy. The Zy factors! are there to ensure the group
subduction is correct, however, they have few physical consequences and we will ignore their
labels. On the other hand, we have another SU(2) group factor labeled with Qg, which can
be decomposed to the quaternion group Qg C GTS [2]. Note that the SU(2) labeling scheme
here is different from the one used in chapter 2.

Further decomposing the taste irreps in (3.13) according to (3.14) can be done by using

results in the second column of Table 2.1. The relevant entries read

(3.15)

where the first number in each parenthesis denotes the quantum number of SU(2)Q8 and the
second one denotes the quantum number of SU(2) R On the lattice, Dy is generated by
operators =193 and I5. The irreps of SU(Q)Q8 appearing in (3.15) can be subduced to Dy

irreps as

[(SU(2)p, x Z4)/Zs] > Dy

1
5B (3.16)

;—>B@B

where B is the only two-dimensional, fermionic (faithful) irrep of D4. We adopt the same
irrep label as [2]. In the basis where the irreps have definite [ eigenvalues, the two states

transforming in the B irrep will have £1 eigenvalues. We will show this explicitly later when

1. We have neglected some other Zy factors in the decomposition as they are not important to our
discussions.
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we deduce the continuum quantum numbers of nucleon-like states excited by GTS operators.

After this decomposition step, the remaining subgroup becomes
SU(2)Q8 x SU(2)g x [(SU(2)D4 X 7.4) /7o) (3.17)

We have ignored the flavor SU(2)p group as it is not broken by the lattice. The last

decomposition step before matching the irreps of GTS is
SU(Z)Q8 x SU(2)g D SU(Q)SW3 (3.18)

where SU(2)gyy, is the diagonal subgroup. Subducing tensor products of SU(2) irreps is a

simple angular momentum addition problem, so we obtain

11
<§, 5) —1®0

§ 1

272
13

<§, 5) —261

3
2°2

3
(—,— — 3020160

— 201 (3.19)

Furthermore, for SU(2) groups, not only do we know about how the tensor products de-
compose to irreps of the diagonal subgroup, but we also know how to write down the exact
linear combinations of those tensor-product states with CG coefficients that transform in the
irreps on the right-hand side. This is what enables us to figure out the continuum quantum
numbers of baryons excited by our lattice operators that we will discuss in the next section.
But for now, we don’t need that information to deduce the spectrum.

To see why (3.19) is useful for decomposing the continuum group irreps, let’s revisit the
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GTS irreps and decompose them further to its discrete rotation subgroup

GTS D W3 = {R’L]7IS} = SW3 X Zo

8 — | Af

/ +
8—>A2

— + —
SA] T & T

— + —
DAy oTy &T;

16— EteE ol eT T o1y

(3.20)

Wiy is the discrete symmetry group of a cubic lattice as defined in [78], and irreps on the

right are defined in [81].2 Noticeably, A;r is the trivial irrep. The superscripts denote the

eigenvalues of I;.

In each line, we have boxed an irrep of W3 that uniquely appears in that specific irrep

decomposition, which allows us to decompose the irreps of SU(3)8W3 to SW3, and hence,

GTS. Mapping continuum rotations to the discrete ones is a common task for all lattice

formulation, and has been worked out before (for example, see [89, 90]). Furthermore, we

will add back the Dy decomposition results in (3.15) and (3.16). The relevant decompositions

2. We switch the irrep labels of F’s to T’s, which are more commonly used in lattice literatures.
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read
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The pattern here is clear: 1/2 irrep of SU(2)p, will always subdue into lattice irreps with
+ I, eigenvalues, while 3/2 irrep will subdue into two identical copies of that same lattice
irreps. By matching now the results of (3.21) and (3.19) to (3.20), we can easily work out

the decomposition of the continuum irreps to 8, 8’, and 16 irreps of GTS. The complete irrep
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decompositions starting from (3.13) now read

SU(2)p x SU(2) g x SU(2)q, x [(SU(2)p, x Z4)/Z3] D SU(2)p x GTS

N-like state:

31
<§,§720M) -

A-like state:

3 3
(5) 57 205) —
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Table 3.1: Spectra of staggered baryon operators transforming as irreps of SU(2) p xGTS.

SU(2) p irrep GTS irrep # N-like states # A-like states

: 8 5 1
3 8 3 2
5 8 0 1
§ g 0 2
: 16 3 4
3 16 1 3

We can work out the spectra of lattice operators based on the results of (3.22). For
example, we can figure out the ground state spectrum of the isospin-3/2, 16 irrep by realizing
that there is only one continuum irrep of the nucleon-like states which subduces to this lattice
irrep, while there are three continuum irreps of the A-like states which subdues into it. This
means that the operators transforming in this irrep can excite one nucleon-like and three A-
like states. Lattice discretization destroys the full continuum symmetry group, so operators
transforming as irreps of the lattice symmetry group will mix all continuum states that
subduce to the same lattice irreps. The mass degeneracy of the continuum spectrum in
(3.13) will be lifted on the lattice, with small mass gaps that depend on the lattice spacing,
and can only be restored by taking the continuum limit.

In Table 3.1, we list all the staggered baryon operators that we consider in this work
and their corresponding spectra. As promised, the isospin-3/2, 16 irrep only excites a single
nucleon-like state. Note that the isospin-1/2, 8 irrep only excites one A-like state. If we
replace light quarks in the baryons with strange quarks and impose a new “isospin” symmetry
for two species of valence strange quarks, we can use this operator to excite a single omega
baryon and study its properties [82, 91, 92]. The mass of the omega baryon is particularly

useful in determining the lattice spacings with small systematic errors (well measured in
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experiments, small QED corrections compared to fr, insensitive to light quark masses, and
so on), and we are starting to see more lattice simulations based on the omega baryon mass

scale-setting (for example, see [92, 93]) in the pursuit of higher precision.

3.4 Continuum quantum numbers of lattice baryons

It is sufficient to construct two-point correlators with staggered baryon operators defined
in [81, 82] and use Table 3.1 to derive the masses of nucleons and A baryons. Going be-
yond spectrum calculations to matrix elements, we need to additionally know the continuum
quantum number of nucleon-like and A-like states so that we can apply the generalized
Wigner-Eckart theorem to relate the staggered QCD observables to QCD observables as dis-
cussed in section 2.3.4. A continuum state breaks into a linear combination of lattice states,
or equivalently, a lattice state can be written as linear combinations of continuum states.
The goal is then to find the exact coefficients of these linear combinations, or subduction
coefficients as they are usually referred to. In this section, we will focus on deriving the
subduction coefficients of the nucleon-like state excited by the isospin-3/2, 16 irrep that we
will use in subsequent analyses. Subduction coefficients of other lattice irreps can also be
derived similarly.

Let 0[136/i2,’?;4/2]p’ A=0,---,7 be the sixteen zero-momentum lattice operators transform-
ing in the isospin-3/2, 16 irrep. £ denotes the eigenvalue of Ig, A denotes one of the eight
corners, and the subscripts denote the quantum numbers of SU(2)p. (3.12) is a concrete
realization of this operator if all x(77) transform as up-quark fields. The operator class is not
important in the following discussion so its label is omitted.

These operators create sixteen different nucleon-like states

4 )
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which are degenerate even on the lattice. The subduction coefficients of SU(?)SW3 D W3 is
well-known in the literature, so the first thing we do is classifying sixteen components with

irreps of W3 based on the decomposition in (3.21). We get

o [ 1B 31p00000ars) | o [ 133506+ Trs)
3. 8]p[16-.0]grs) | 1381 p[16- 7 grs) |
113, 3] [16+,5] ors) 1[3.3] p[164, 1] grs)
L= |G et lors) |- T = [ B8R0+ Tars) |+ 5
113.8] p[16+.3] ) 113.8] p [16+.4] s
113, 8] p[16—.5] g rg) 113, 8] p[16—, 1] g rg)
T = | 138506 6grs) |- T = | 13.8)p06- 2 grg)
11381 p[16-.3] s 113 8] p[16-.4] s

Two things to note here: components with 41 eigenvalues in I always reside on even corners
(A=0,3,5,6) while components with —1 eigenvalues reside on odd corners (A =1,2,4,7);
the operators are constructed in such a way that under Rio rotations, two components
of E irreps have £ eigenvalues, z-components (third components) of 77 have +1 eigen-
value, z-components of To has —1 eigenvalues. These properties can be checked explicitly
by going back to the definitions of baryon operators in [81, 82] and applying the corre-
sponding symmetry transformations. Using this classification and subduction coefficients of
SU(2)gw, D SW3 in [90], we can work out the continuum quantum numbers of SW3 irreps
on the lattice.

The last thing we need are the subduction coefficients of [(SU(2)p, x Z4)/Za] D Dy =
{Is,Z1923} in (3.16), where £1 eigenvalues of I are used to label the basis vectors of the two-
dimensional B irrep. The answer is actually a bit subtle because as we restrict our attention

to the nucleon-like state, we implicitly mix the parity operator back into the discussion. So
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the actual decomposition we should consider really is

U(Z)D4 X ZQ(P) D SU(?)D4 X U(l) X ZQ(P) D) SU(Z)D4 X Ly X ZQ(P) D Dy x ZQ(P)
(3.25)

where Zs quotient factors are omitted for simplicity, Za(P) is the Zy group generated by
the parity operator P, and the extra U(1) phase factor of the taste symmetry explains the
origin of Z4. It might seem redundant to explicitly include Zs(P) in the decomposition as
it always commutes with any other group elements. However, I3 must contain the parity
transformation because Iy = Z4P by definition, so it is important to keep Zs(P) in the
decomposition.

We can identify the two-dimensional matrix representation of Is in the B irrep by the

tensor product
Iy = e 037/2 @ e =iT/2 g 1 = gq (3.26)

where o3 is the Pauli matrix. The first factor in the tensor product comes from the spin-1/2
representation of Rig(m) € SU(2)p,, the second factor comes from the U(1) (or Z4) phase,
and the third factor is the parity of a nucleon. This means the states with +1/2 z-component
spin in SU(2) , have +1 eigenvalues of I5, while states with —1 /2 z-component spin have
—1 eigenvalues. In other words, the subduction coefficients is trivial for 1/2 — B. Although
it will not be used here, we can apply the similar technique to 3/2 — B & B by identifying

I as
I, = ™*diag(3.1,-1.3)/2 @ o=im/2 ¢ | = diag(—1,1,—1,1) (3.27)

The only difference is that we change the spin-1/2 representation of Rjo(7) to the spin-3/2

one. As we can see, the components naturally split into two B irreps with +1 eigenvalues in
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Is. The subduction coefficients here are again trivial.
We are now ready to write down the continuum quantum number of the nucleon-like
state in the isospin-3/2, 16 irrep in a two-step process. The continuum quantum numbers

that we will need are kets of

SU(2)g x SU(2)p x SU(4)r D SU(2)g x SU(2)p x SU(2)q, x (SU(2)p, X Z4)/Z2 (3.28)

and the kets are

{lyms} [§7§] {jQS’mQB} [jD4,mD4} (3.29)
2 gl2 2|p Qs Dy

where each bracket again denotes the quantum numbers of the corresponding group in the
direct product. We will for now ignore the isospin SU(2) label as it is not broken on the
lattice. The first step is subducing irreps of SU(2)g x SU(Q)@8 to its diagonal subgroup
SU(2)gw, as in (3.19), with the subduction coefficients being the standard CG coefficients
of SU(2). As an example, we will focus on the spin-2 irrep of SU(2)3W3 appearing in the

(3/2,1/2) — 2@ 1 decomposition and let SU(Q)D4 be in the spin-1/2 irrep. They correspond
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to nucleon-like states in the 20j; irrep of SU(4)p. The ket can be written as

SU(2)g x SU(2)g, x (SU(2)p, X Z4)/Zy > SU(2)gw, x (SU2)p, % Z4)/Zs

el a2 [341],,) 2 2
2722 7 2]g (2 2] p, sws 127 2] p,

1 1 1 1 3111 1 3 1
_Jj:_ §7:F§ _Jj:_ + n _Jj:_ _7:t_
27 2] g2 2 g, 1277 2] p, 1127 2] g2 2

1
2

1 1
1)
g 2 2 D,

Q
> (3.30)

3

111 [3 1] [t 1 1 1] [31] [1 1
2'2]g|2 2]g 2" 2] p, 212" 2)g12' 2/, 2" 2] p,

o], [5+], )

The second and the final step is to subduce these states into irreps of W3 = SW3 x Zo. We

have shown in (3.26) that subducing (SU(2) p, X Z4)/Zg to Dy gives trivial subduction coef-
ficients. The only non-trivial coefficients come from SU(2)gyw, D SW3, which are standard

results that can be looked up in many other work. We will use the coefficients in [90] to get

113 3] 7 [2, 0] g, 3.+ ]D4> Lot

1
2
VI8 p 2 2 gw, [5 £ 3] p ) + V38 8 p 2 —2gw, [3 3] p,)

(3.31)

72



where T Qi components are in the spherical basis. Combining these results with (3.30) and
(3.24), we obtain the continuum quantum numbers of nucleon-like states in the isospin-3/2,
16 irrep. 17 components can be obtained by subducing the spin-1 irrep of SU(2)8W3- We

have listed the continuum quantum numbers of all 16 components in Table 3.2.
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Table 3.2: Continuum quantum numbers of the sixteen nucleon-like states in the isospin-3/2,
16 irrep.

SU(2)g x SU(2) g x SU(4)7 O

B el
32 —3lgl2 2l pl2 2l L2 2) D,

VH B33 8,3 0.3 4p
381 p[16+,3] g7 :
2 2lr 6+ 3ars) Vil 35033153 -3, 341,
s 5331638173 80,3810, )-
5,5 16—, 3
216 Blars) b 463 282, lb )
VH 33503311 g, 5 -4, )-
5.3] p[16+,4] op 8 !
5 2lr b6+ Aars) I 202 21018 oy lb )

(continue on the next page)
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(Table 3.2, continued)

3331 p 06+ 5)gre) - +v/3| 378153 31 B 310, [, 3] o, )%
W33 p06+.6lgrs)  —3I[5 31503 81 p (3 £ 0, (3.4, )
/31381116~ 5lgre)— 3|13 73)5(3 313 31, (5 31 p, )+
i3 p06-6grs) VA =35 13 3003 446,15 3,

In this section, we have successfully subduced continuum states of SU(2)g x SU(2)p X
SU(4) onto lattice baryons and derived the corresponding subduction coefficients. Table 3.2
presents the results for nucleon-like states, which are needed to extract physical matrix

elements in Chapter 4.
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Chapter 4
Nucleon mass and matrix elements with highly-improved

staggered quarks

In Chapters 2 and 3, we have demonstrated the theoretical details of how to extract physical
baryon observables with staggered valence quarks. In this Chapter, we will show explicitly
how the formalism can be applied in practice to actual lattice simulations, and what analysis
techniques have been proven to be the most useful in analyzing staggered baryon correlators.

Our focus is on the three simplest baryonic observables — the nucleon mass and axial-
vector and vector charges — which are well known experimentally and serve as benchmarks
to our calculations. As we mentioned in the introduction, despite being “easy” observables
to simulate, extracting unambiguous lattice results free of systematic errors is still compu-
tationally difficult. The main culprit is the exponential dampening of signal-to-noise ratios
in baryon correlators as we pull operators apart in time, which is crucial in eliminating
excited state contaminations. The only method to circumvent the problem at the moment
is to increase the number of Monte-Carlo samples which are costly to compute. Neverthe-
less, thanks to both algorithmic developments and Moore’s law growth in computational
power, we have seen some impressive lattice results in the last few years with fully controlled
systematic errors — see [80] for a review of the current status of lattice calculations.

We contribute to the effort by providing the first calculations of nucleon observables
using both staggered valence and sea quarks. Especially, we are using the set of gauge
ensembles with Highly improved Staggered Quarks (HISQ) action [83] generated by the
MILC collaboration [4, 55]. The HISQ action is a variant of the improved staggered action
with all the symmetries mentioned in Section 3.1 and designed to reduce various taste-
symmetry breaking effects introduced by the lattice discretization. The MILC collaboration
was able to generate the largest set of gauge ensembles in existence and made them publicly

available due to the speed of staggered simulations. Because of the prohibitive costs of
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generating gauge ensembles for each project, the two most precise lattice results of nucleon
matrix elements to date shown in [80] are based on simulations with MILC HISQ ensembles
(94, 95]. However, both results are simulated with different valence quark actions — the Callat
collaboration used Mobiiis domain wall fermions [94] whereas the PNDME collaboration used
the Wilson-clover fermions [95] — and those simulations have the additional complication of
tuning the quark masses to ensure a unitary theory in the continuum limit. It is therefore
desirable to also use the HISQ action for valence quarks so that this complication can be
avoided!. One can also be benefited from the speed of staggered simulations to produce

more precise predictions.

4.1 Nucleon mass with highly improved staggered quarks

We need to construct two-point correlators with staggered baryon interpolators to extract the
nucleon mass. As mentioned in Chapter 4, we use isospin-3/2, 16 irrep operators in this work
which creates one nucleon-like and three A-like states in its positive parity ground states;
the spectrum of the negative parity channel is unknown and will be deduced tentatively from
fit results. The zero momentum operators will be denoted by

O DR (1), (D e {0, .7}, Re {2,3,4,6)) (4.1)

16+ denotes two sets of eight components within the 16 irrep with £1 eigenvalues of Rq2,
D denotes one of the eight corners of a spatial cube as defined in (3.9), R denotes the class
of the operator, and the subscript denotes the isospin quantum numbers. To simplify the
problem, we let all operators transform as the highest weight states in the isospin-3/2 irrep,

namely, all quarks fields transform as up-quark fields. See operators definitions in [2, 82].

1. Because of the fourth root in quark determinants, all simulations with rooted staggered quarks are
partially quenched and unitarity is always violated at non-zero lattice spacing [2].
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The only non-vanishing two-point correlators that we can construct are

16+D; ~ —16,Dxcl
16 ;(R1,R2) 16+,D;clsRy 6+,D;c SRQ<O)>

2pt () = (Olros o (1) Oyl oy (4.2)

Note that because different operator classes excite the same states, we can get a matrix
of correlators by using different operator classes at the source and sink. Other correlators,
such as using different D components at the source and sink, must vanish according to the
lattice symmetries. Using the Hermiticity property of the staggered Dirac operator [49] and
the charge conjugation symmetry of the staggered action [78, 81], we can show that these
two-point correlators are always real.

There is a total of 256 = 16 x 42 non-vanishing correlators. We can reduce this number

to 16 = 42 by noticing that

164,D:(R1,Ra) /v ~164,B;(R1,Ra)

Cth b (t) - Cth b (t>7 (4 3)
16F,D;(R1,R 16+,B;(R1,R

CQp‘EF (B 2)(15) = Oy, (B 2)(25)

for arbitrary D, B € {0,---,7}, which can be derived by applying shift and rotation sym-
metries. In other words, correlators constructed from any one of the 16 components within
the 16 irrep are identical in the ensemble average, so we will only consider the +0 compo-
nent C’%g: 03(Fr.Fz) (t). In practice, all 16 components are averaged together to reduce the
uncertainties of correlators.

To illustrate how correlators defined in (4.2) can be implemented on computers, we will
use the zeroth component class-1, isospin-3/2, 8 irrep operator, where all three quark fields

reside at the origin of the spatial cube. Following the notations in (4.1), this particular

operator is written as

O??;(/);{")S/B]F(t): > D cabeX TN (X ) (4.4)

nEeven a,b,c
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where we sum over all spatial sites modulo two to excite only zero momentum states and
antisymmetrize over color indices. The correlator becomes

8,05(1,1) /1,y < 8,0:clsl —8,0;cls1 >
Copr (0 = (Ops2,3/20, (1) Ops2,3/2) ()

= D 2D cantuw

n,meeven a,b,c U,V,W

,meeven a,b,c 4,V,W

=6 > YD eapccurwGE (R, 1, 0)GY (7, £ 1m, 0) G4 (7, 1, 0)

i1,meeven a,b,c U,V,W

(4.5)

The factor of 6 in the third line accounts for all other identical Wick contractions, and the
negative sign in the fourth line comes from anticommuting fermionic fields. G%%(7, t1;m, t9)

are propagators that satisfy

,b — — : — —
> Dg (71, 15 fin, t2) GV (g, to; T3, t3) = Oa,cO7, 7130t s (4.6)
b, 7, to

where Dgg;b(ﬁl, t1;Ma,t9) is the HISQ Dirac operator [83]. So to construct the correlator in
(4.5), we have to solve for the Dirac equation in (4.6) which boils down to finding the inverse
matrix of Dgéb(ﬁl, t1;79,t2) on each gauge configuration. Inverting such a large matrix is
impossible with our current technology: a typical lattice simulation involves say 504 ~ 10
million lattice sites which leads to the dimension of the Dirac matrix to be 30-million-by-
30-million when the color degrees of freedom are included. Fortunately, the Dirac matrix is
sparse with only non-zero entries on diagonal blocks, so we can imagine one day this will
become feasible. Gb;c(ﬁg, to; M3, t3) is usually called an all-to-all propagator in the lattice
jargon as it connects any lattice sites to any other sites.

79



This issue can be circumvented by partially solving for the matrix inverse. The most
common example is the use of so-called the point-to-all propagator for which only a single
column of the matrix inverse is solved. If we think of the right-hand side of (4.6) as column
vectors that we call sources, by fixing them to non-zero values at a single point on the lattice
(point source) say (7is,t3) = (7, %), the problem is reduced to finding the solution to a
system of linear equations. Many efficient algorithms can achieve this task; see [96-98] for

some recent advances in algorithmic developments. In other words, we are solving for

b= = ~bic/ -
> Dy (71, t; 2, t2) G (72, t2) = Sa.c0, 71y Oty o (4.7)
b,m,to
where
~b . . . .
Gl (i, tg) = GP(ity, ta; i, to) (4.8)

We can employ more complicated sources other than a point source to fit our needs. The
one that we will be using in this work is the so-called corner-wall propagators, which are

solutions to the equations [2]

> DG (i, t g, t9)Gew(fa, ta) = > bacdiy g0ty to (4.9)
b,1i,to 3€even
where
~bc/ - /= -
Gewliig ta) = Y GY(ity, ta; i3, to) (4.10)
n3€even

In other words, instead of fixing the sources to be non-zeros at a single spatial coordinate
1, the corner-wall sources are non-vanishing on all even spatial lattice sites. The time

coordinate is still fixed at tj. We can accommodate the use of corner-wall propagators by
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modifying the creation operator in (4.5) to

8,0;(1,1 _ 8,0;cls1 —=8,0:cls1
Chaten (1) = (O o1, 1) Ol 512,.0))

2.0 2 2 2 D) cawcwx

fi€even m1 €even mig€even mizceven a,b,c U,V,W
(X N, (7, %" (01, 0)X (7, )X (i3, 0))

~ . R ~b: R ~ .. 5
=—6 > > Y eupccuvwGan (i, )G (71, )Gy (7, 1)

neeven a,b,c U,V,W

(4.11)

where we have chosen ¢ty = 0. Compared to (4.5), (4.11) sums over spatial coordinates
separately for each source quark field so that we can write the correlator as a sum of corner-
wall propagators. For non-local operators such as those transform in the isospin-3/2, 16
irrep, the simulations are done on Coulomb-gauge-fixed configurations so the correlators will
be non-vanishing. We could instead perform non-gauge-fixed simulations by adding gauge
links for both source and sink operators, but adding gauge links at the source requires extra
propagator solves that are extremely costly; on the other hand, adding gauge links at the sink
can be done with little to no extra costs, so we are free to include them or not in gauge-fixed
simulations as we have observed in our tests that they make little difference to correlators.
We have found empirically that operators constructed with corner-wall sources give better
overlaps to the nucleon-like state. For simplicity, we will ignore the “cw” subscripts on

correlators and assume we always use corner-wall propagators.
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4.1.1  Spectral decomposition of staggered baryon two-point correlators

C;S:’O;(Rl’&)(t), R1, Ry € {2,3,4,6} has a spectral decomposition of [2]

C,16+,0;(1131,R2)(t) _ Z ai}?)bg@) (e—erit _ (_1>te_m+i(LT_t)>+

2pt '
= (4.12)
Za(_R;l)b(_}'?Q) (_(_1)t6—m_jt + e—m_j(LT—t))
=0

States of + parities that can be excited by staggered baryon operators are denotes by +k,

k=0,1,--- subscripts with masses myg < m4y < ---, a(jcl) and bgf) are source and sink

overlap factors, and Ly is the time extent of the lattice so ¢ € [0, Ly — 1]. For two-point

functions, we can neglect terms involving e~ Maklr by redefining the correlators to be

16+4,0;( Ry, R
Cth (R1 2)(t)—>

16+,0;( R, R2) Lor—t ~164+,0;(R1,R2)
~164+.0:RLRs) v Copt () = (=) Oy T (L — )
Cth (t) =

2
(4.13)

where ¢ is now restricted to t € [0, Ly/2—1] (Ly is always even). As long as e ™™+, LT /e~ Mkl &
correlator errors within this time domain, the newly defined correlator has a simplified spec-
tral decomposition that reads

~16+,0;(R1,R2) /,\ _ (R1),(R2) —m_;t (1), (R2) t —m_;t

Copt (t) _Za+i b et _Za b (=) e (4.14)

—j U=J
i=0 j=0

Since L is large and the data are noisy, the condition is always satisfied so we will use

(4.14) in two-point correlators analyses make no distinctions between 5;3: ’0;(R1’R2)(t) and

16+,0;(R1, %)
Cth (1).
We know the first four states in the positive parity channel: my = m_ is the nucleon-

like state, and ma, = m;, i = 1,2,3 are the three A-like states. Note that in principle,
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the sums in (4.14) can be extended to an arbitrarily large number of states as long as those
excited states have the same quantum numbers as the operators. For the staggered nucleon
operator we use here, the lowest positive parity excited states, other than the three A-like
states, could include nucleon-pion states with various tastes, the Roper resonance N(1440),
and other radial excitations. For the negative parity channel, the excited states could include
nucleon-pion states with negative parities, the nucleon resonance N(1520), and other higher
excitations.

On finite lattices, extracting masses and overlap factors by fitting correlators to sums
of exponentials in (4.14) is an ill-posed problem that admits many solutions. The issue
is exacerbated in practice as the Monte-Carlo data for baryon correlators are noisy, so in
practice, it is extremely difficult to extract precise parameters of states beyond the first few.
A regularization scheme has to be applied in order to properly define a solution. Fortunately,
we are only interested in the mass of the nucleon-like state in the ground state. We observe
that in the large ¢ limit

0164—70;(31 R2) (t)

R Ry) —
opt Nag_ol)b(() 2) g =mnt (4.15)

so the correlators are dominated by the ground state exponential only. We can define the

effective mass of a correlator C(t)

Mog(t) = %m(%) (4.16)

where 7 = 2 in this work. Again, in the large ¢ limit Mg for all our correlators becomes
Mg (t) ~ mpy (4.17)
which is simply the mass of the nucleon-like state we would like to extract. If we plot
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M.g(t), we will see that as ¢ increases, the curve plateaus to a value that gives the mass
of the hadron. The effective mass plot, and hence, the plateau method, is a useful tool in
visualizing two-point correlators to see how much excited state contaminations there are,
however, it is not a reliable method to extract masses because it relies on the fact that ¢ has
to be large enough so other excited state contribution to the correlator can be completely
ignored. For baryon correlators, it is almost always the case that as we reach a large enough
t that excited state contributions can be neglected, the correlators are already overwhelmed
with noises. The nucleon mass extracted from the plateau method could then be biased
depending on the data fluctuation.

A better method that is used in almost all lattice analyses is to truncate the number of
states appearing in (4.14) and fit the correlator data within a portion of the time domain
tat € [tmin, tmax] where the truncated spectral decomposition is a valid model because the
omitted states are either too heavy and/or have small overlap factors to the operator. The fit
could be just a simple maximum likelihood estimation in which we find the best parameters
by minimizing the x? difference between our model and the data, or we can further regularize
it by including Bayesian priors for known parameters and minimize the augmented y2 instead
(99, 100]. Regardless of the fit method one adopts in his or her analyses, there are assumptions
built into those models such as the choices of t,,;, and tpax, the number of states to keep
in the correlators, and priors in the Bayesian framework. Physical parameters should be
consistent with each other under reasonable perturbations of these model assumptions around
their nominal values. For example, parameters extracted from overfitted results will vary
wildly as we perturb the values of ¢,,;,. It is therefore important to make sure the extracted
nucleon mass is stable under variations which we will check explicitly.

The covariance matrix of the best-fit parameters from minimizing either X2 or augmented
y2 can be calculated from the inverse of the Hessian matrix, which is the second derivative

of the negative log-likelihood function with respect to those parameters. The Hessian matrix
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for our correlator models can be calculated easily with pen and paper so it requires no extra
computations. However, the covariance matrix obtained in this way is only valid if the data
have small errors, which is not always the case. Resampling methods such as bootstrap and
jackknife [101] provide more reliable estimates of the covariance matrix by relying on fewer
assumptions on our data. The price we have to pay is that they require more computation
time in addition to the x? minimization, but it is a price that most lattice calculations
are willing to pay nowadays as the additional computational requirement is still minimal
compared to the actual Monte-Carlo simulations.

In the bootstrap resampling method, suppose we try to estimate the variance of an
estimator from a dataset of size N. We first resample the original dataset, meaning to
randomly sample a new dataset of the same size N from the original dataset, and allow for
the possibility that the same data entry can appear more than once in the new dataset. The
estimator can then be computed on this new dataset. This procedure is performed Nj, times
in total to obtain a distribution of the estimator from which the variance can be inferred.
An important assumption of the bootstrap method is that the original dataset must be
statistically independent, and the dataset is large enough such that it mimics the underlying
population distribution. We have found that for lattice data in practice, the bootstrap
method works well as long as we perform large enough bootstrap iterations, say, N, ~
1000, and have ~ 1000 statistically independent samples of correlator data; in the jackknife
resampling method, we resample the original dataset N times where the i-th resampled
dataset (i € [0, N—1]) of size N —1 is obtained by removing the i-th data entry. The variance
can be inferred again from the distribution of the estimator from resampled datasets. Both
bootstrap and jackknife methods are popular among lattice practitioners and work equally
well in most cases. In this work, all errors on posterior parameters are estimated from

Ny = 1000 bootstrap samples.
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4.1.2  Variational Method for staggered baryon two-point correlators

We are only interested in the value of the nucleon-like state mass myg = mp in (4.14) and
treat excited state contributions as nuisance parameters. A direct fit to a correlator can
yield an estimate of the nucleon-like mass, but if the operators have large overlaps to the
excited states, then it could be hard to cleanly disentangle the excited state contaminations
from the posterior estimate unless the data have small errors, which are hard to come by
for nucleon correlators. This will show up as instabilities in the nucleon-like mass estimates
when we slightly perturb the fit parameters such as t,,;;, and priors.

It is much preferable if we can preprocess the correlators before fitting in such a way
that the procedure dampens the contributions from nuisance parameters. The variational
method [102-105] is a way to construct an improved correlator with better overlap to the
state. We start off with a matrix of correlators constructed from sets of source and sink
operators. In our applications, we have a four-by-four correlator matrix constructed from

different operator classes

CL6+.0:(2.2) 4y 16403 O16+.0:(2:4) 16-+,0;(2,6)

2pt <t) 2pt (t) 2pt (t) Cth (t)
el | L0 e ii B R
2pt (t> 2pt (t) 2pt (t) CQPt’ Y (t)
211()3:—0 (6,2) (t) 213:—0 (6,3) (t) 2133—0 (6,4) (t) 0211?:—,0;(6,6)@)
(4.18)

Note that because we are using corner-wall sources for solving propagators, the matrix is

not symmetric, namely,

16+,0;(R1,R2) 16+,0;(R2,R1) (t)

C2pt o ( ) 7£ Cgpt (4.19)

We can solve for the generalized eigenvalue problems (GEVPs) to obtain left /right eigenvec-
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tors and eigenvalues

16+4+,0;(R1,R ) ) ~16+,0;(R1,R }
Cth (Fa 2)(t)vg):/\(2)c2pt (R1 2)(250)2)1(1%),

@)\ T ~16+,0;(R1,R2) (@) (DN T 16+0;(R1,Ro) ' (4.20)
(1) o M =20 (u) € ) (= 0.1.2.9
where v}? and U(Li) are column vectors and |)\(0)| > |>\(1)| > ---. For applications involv-

ing ground states only, we choose another timeslice ty3 < ¢ to first suppress the excited
contribution, so eigenvalues and eigenvectors are functions of ¢ and tg.

In the large t limit, the eigenvalues converge to [104]
AD (¢t tg) ~ e Eit (4.21)

where F; is the energy of the i-th excited state in the spectrum and Ey < Ej < ---
conforming to the ordering of eigenvalues. Going beyond the large time limit, it has been
shown with the second order perturbation theory that the eigenvalues, similar to the spectral
decomposition of two-point correlation functions, can be written as sums of exponentials with
higher energies. Standard fit methods for correlation functions then can be applied to extract
the nucleon mass from eigenvalues.

On the other hand, we can think of eigenvectors as the optimal linear combination coef-
ficients for the operators to project onto that particular state. An improved correlator can

be constructed by taking the scalar product

CI6+H0 () — (ugo))TCﬁf’O;(Rl’R?)(t)vfé)) (4.22)

Because the improved two-point correlator is simply the linear combination of original corre-
lators, it retains the form of the spectral decomposition defined in (4.14), albeit with different

overlap factors that are enhanced for the ground state nucleon. In practice, the nucleon mass

87



can be extracted via either eigenvalues or the improved two-point correlator. We have found
that in our data those two methods give almost identical estimates of the nucleon mass.
However, fits to eigenvalues are only useful for extracting energies whereas the same set of
eigenvectors can be applied to improve higher-point functions. We will come back to the
improved correlator method in the next section when we work with three-point correlator
functions and restrict our attention to eigenvalues here.

The presence of negative parity, oscillating states in the spectral decomposition (4.14)
makes the variational method slightly more complicated for staggered correlators. The eigen-
values will still be the sum of exponentials, however, states with negative parity will again
have extra —(—1)! factors in front [106]. Because now the eigenvalues contain oscillatory
terms, it may be impossible to label them consistently in such a way that [A(0)] > [A1D)] > ...
for all ¢. In the intermediate ¢ region, eigenvalues for the first excited state might be smaller
than eigenvalues for the ground state so the labels on eigenvalues are ambiguous. The la-
beling issue goes away as t grows since only one exponential can contribute in the large ¢
limit. We have found that in our simulations that although the eigenvalues for the excited
state did cross below the eigenvalues for the ground states, it is easy to identity which sets
of eigenvalues belong to which states by observing the overall oscillatory patterns.

Even though the presence of negative parity states poses no significant hindrance to
the variational method, they still are nuisance parameters that we would like to completely
eliminate in our analyses. We use the fact that negative parity contributions to either the
eigenvalues or correlation functions always come with oscillatory terms proportional to (—1)t
and propose to solve for the eigenvalue equations

D%g:—’O;(Rl’Rz)(t, to)ﬁg) _ X(i)'ﬁg) (i=0,1,2,3) (4.23)
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where

16+,0;(R1,Ro) 1 CL6+.0:(R1,Ro) =1 _16+,0;(R1,R2)
Dy = { ot (t0+1)> Cope Tt 1)+
16+,0;(R1,R =1 _164,0;(R1,R
2<Cth (R1 2)(150)) C2pt (R1 2)(t)+ (4.24)
16+,0;(R1,R 16+,0;(R1,R
(Cth (R1 2)(150—1)) Cth (R1 2)(15 1)}

Expressions for left eigenvectors follow naturally from these two definitions. For large ¢ and

tp, we expect

X(i)(t, tg) ~ )\(i)@? to) (4.25)

but for intermediate ¢t and ty where the fittings take place, the weighted average cancels out
the oscillatory terms and we are only left with positive parity excited states. The small price
we have to pay for this enhanced signal in the positive parity channel is a slight reduction in
the signal-to-noise ratio due to the averaging in time. In Section 4.2.4, we will introduce an
alternative method to reduce the negative parity channel via weighted averaging by operating

directly on the correlators instead of eigenvalues.

4.1.3  Simulation details

For the nucleon mass work, we are using three ensembles at three lattice spacings of the HISQ
gauge-link ensembles generated by the MILC collaborations [4, 55]. Each ensemble includes
two degenerate light sea quarks, one strange sea quark, and one charm sea quark (“2+1+17)
via the fourth-root determinants of the HISQ action, and uses the improved Liischer-Weisz
action [107] for discretizing the gauge action. The same staggered action is used for solving
the propagators. To avoid complications involving chiral extrapolations (extrapolating the
nucleon mass from higher pion masses to the physical value) where the effective theories are

poorly convergent at even moderately large pion masses (see [108-110] for reviews), we only
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Table 4.1: Ensembles used in the nucleon mass calculations. The lattice spacings are de-
termined with the mass-independent fp4s scheme [4]; m;, ms, and m. are the masses of
up/down, strange, and charm quarks, respectively, in lattice units; Nefg 1s the number of
configurations for each ensemble, and on each configuration, we measure on Ng different
time sources to increase statistics. All ensembles are tuned to the physical pion mass barring
for small mistuning errors which will be corrected in the analysis.

a (fm) B L3x Ly myg (MeV) my Mg me Nege Nsre

fg
0.1529(4) 5.8 323 x 48 135 0.002425 0.06730 0.8447 3500 2
0.1222(3) 6.0 483 x 64 135 0.001907 0.05252 0.6382 1000 2

0.0879(3) 6.3 643 x 96 128 0.001200 0.03630 0.4320 1047 1

perform simulations on physical ensembles, namely the quark masses and respective hadron
masses appearing in the action are tuned to match experimental values. Table 4.1 gives a
summary of the ensembles used in this work.

As mentioned in the previous sections, we are using the isospin-3/2, 16 irrep operators
to construct two-point correlators. There are four operator classes available, however, we
observed in our correlator data that the class-3 operator overlaps weakly with the nucleon-
like state of interest. Because all three quarks in the class-3 operators reside on the even
corners of a spatial cube, the operator has vanishing couplings to the nucleon-like state in
the continuum. In addition, we have not found an appreciable difference in analyses by not
including them, so we only use class-2, 4, and 6 operators in this work.

We construct the two-point correlators according to (4.2). To accommodate for the
presence of non-local lattice operators and the use of corner-wall sources, the ensembles
are fixed to the Coulomb gauge to obtain non-vanishing results. In doing so, the overlap
factors become gauge variant but the masses are still physical gauge-invariant quantities.
We average over all 16 irrep components to obtain a three-by-three correlator matrix with
three different classes. Each correlator is folded according to (4.13) so the finite time extent

in the spectral decomposition can be ignored.
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4.1.4  Analysis details

We use the corrfitter package [111] for analyses in this work, and all posterior errors
are estimated with 1000 bootstrap samples. Since this work was the first in calculating the
nucleon mass with a full set of staggered baryon operators, we employ three different analysis
strategies to investigate the best approach.

The first strategy is the simultaneous fit to all 3 x 3 = 9 correlators within the Bayesian
framework using the spectral decomposition in (4.14). One problem with this approach is
the presence of near degenerate three A-like states in the excited state. For non-staggered
simulations, the A baryons cannot be created by a nucleon operator because of the difference
in isospins. Because the data are noisy, we have found that we are unable to resolve all three
states, and instead, only two “A-like” states are confidently observed. Even though we call
those two excited states A-like states, they can well be some linear combinations of three
A-like states and/or nucleon-pion states that are incidentally well resolved by our operator
basis as all those states have similar masses. But since they are all nuisance parameters in
this analysis that we can marginalize over, we will refer to them as A-like states for simplicity.

We impose a Gaussian prior for the nucleon mass my = m,o centered around the
physical value of 940 MeV with a large variance of 50 MeV to account for the mass shift
introduced by the lattice discretization. We similarly introduce a Gaussian prior for the mass
of the first excited state in the negative parity channel m_g, with a mean of 1400 MeV and a
variance of 200 MeV. The identity of this state is unknown. The first negative parity nucleon
resonance is N (1520), however, the presence of multi-particle states cannot be excluded. The
priors are large enough to accommodate a multitude of possibilities.

We impose log-normal priors on m4; — My(j—1) to other excited state masses to ensure
mj < my ;4 1)- Because there is no evidence in the presence of three A-like states in the
positive parity spectrum from our data, we only include two A-like states in this fit. We

choose the prior such that the Gaussian distribution In(mq —m4) is centered at 290 MeV
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with a variance of 100 MeV to overlap with the 1230 MeV A mass observed in experiments.
For the second A-like state, we choose a central value of 150 MeV and variance of 50 MeV for
In(m49—m_1) on the a ~ 0.15 fm ensemble. As the lattice spacing decreases, taste-breaking
effects are expected to be smaller so we choose priors of 100 £ 50 and 50 + 50 MeV priors for
a ~ 0.12 and 0.09 fm ensembles, respectively. The identities of other excited states are even
more difficult to pin down and priors of 4004200 MeV are chosen for logarithmic differences
in masses. For our nominal fits, we include a total of four positive parity (one nucleon-like
state, two A-like states, and one leftover excitation) and four negative parity states. We
have no knowledge of signs and magnitudes of overlap factors so we are not constraining
those parameters with priors. See Tables V and XI in [2] for the exact parameters we use in
Bayesian fits.

To further cross check our results from the Bayesian fits, we also apply variation methods
to the correlator matrix and obtain the nucleon mass from eigenvalue fits. In this work, we

are experimenting with both types of GEVPs in (4.20) and (4.23):

16+,0:(Ry,R ; 3 ~16+,0:(R1,R ;
Cio; (Ry 2)(15)@%) _ )‘(Z)CZpt (Ry 2)(150)”%); a0
D0 ) ) = X0 (1= 0,1,2,3)
where D%gj’O;(Rl’RQ)(t, to) is defined in (4.24), and fit A(0) and A(©) to functions
AO) (¢, ¢y = fixed) = Ae "Nt _ (1)t Be~ - (4.27a)
. - _
—5n A0 =ty +2,40) = mpy + Ce Mo (4.27D)

Note that these two are separate fits. For the A(0) fit, we are fixing the value of ¢y to be 3,
5, and 5 for a = 0.15, 0.12, and 0.09 fm, respectively, to keep t( approximately constants in
physical units. A and B are unknown coefficients, and we expect A+ B ~ 1 if the eigenvalues

can be well described by this two-state model [105, 106]. mp is the nucleon mass and m_
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is the negative parity excited state mass; for the A0 fit, we instead fix t — tg = 2 and
vary tp in the fit function. Because we expect A(0) (t,tg) to scale as e”™N (t=t0) in the
large time limit, by fixing t — tj = 2 eigenvalues should be approximately constants modulo
excited state contaminations, which can be fitted away by the second term in (4.27b) with
unknown parameters C' and SM. We observe no evidence of oscillatory contributions to
20 (t,tp) so only the positive parity excitation is considered here. Because of the reduced
number of unknown parameters in (4.27a) and (4.27b), we are able to perform unconstrained,
frequentist fits (or, equivalently, “constrained” fits with large priors) to obtain stable results
without explicitly imposing priors. See Tables VI in [2] for other parameters we use in
variational method analyses.

Compared to the full Bayesian fit, the variation method analyses are much easier to
handle as we are not working with a three-by-three matrix of correlators. Instead, we
preprocess the correlator matrix to first marginalize some excited contaminations before
fitting to enhance the ground state signal. For the nucleon mass work, we are able to apply
both the full Bayesian fits and variational methods and obtain consistent results. However,
as fit functions become even more complicated for three-point correlators, we expect the
direct fit to the correlator matrix to be even more difficult to implement as we do not have
sensible priors for most parameters in the fit functions there. In that case, reducing the

complexity of correlators via solving GEVPs is crucial in extracting sensible results.

4.1.5  Fit results

We present here some fit results for both the Bayesian and variational method analyses. As
an example, we only show results of a ~ 0.12 fm ensemble — results from other ensembles are
similar and can be found in [2]. Figure 4.1 shows the effective mass plots, as defined in (4.16),
of the Bayesian analysis. The blue data points are raw correlator values, and we obtain the

orange data points by central values of excited state exponentials from the blue data points.
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In the ideal fit where excited states contaminations are completely eliminated, we expect
the orange points to be constants. As we can see from figure 4.1 that the orange points
are consistent with this expectation within the fit regions (data points in white regions).
Deviations of orange points from constant values are obvious for small ¢ outside the fit regions,
which signal the presence of unaccounted excited states. But because of the exponential
dampening, those states do not affect our nucleon estimate at larger t. The posterior estimate
of the nucleon mass is 0.5952(31) on this ensemble; see Table XI in [2] for results of other
nuisance parameters.

In figure 4.2, we show effective masses of A(0) (t,to = 5) as functions of ¢t — ty. Note that
to is fixed to five. Three sets of points are shown: the blue data points are the effective
masses of the raw eigenvalues A0 (¢, ¢y = 5) as defined in (4.16) (if we treat A0 (¢, g = 5)
as correlators C); the orange data points are the effective masses of A0 (¢,t) = 5) after
subtracting the central value of the excited state term posterior in (4.27a); and the black
data points are the smoothed effective masses of A(0) (t,ty = 5), which are weighted averages

of Mg at adjacent timeslices

Mamootn(t) = 7 (Mes(t = 1) + 2Megs(t) + Meg(t + 1)) (4.28)

] =

Smoothing the effective mass is useful in mitigating the excited state contaminations from
oscillatory contributions of negative parity states. As we can see from figure 4.2 that once
effective masses are smoothed, black data points agree well with the orange data points
which show the expected ground state contribution to eigenvalues. We can conclude from
this that most excited state contaminations for A(0) (t,t9 = 5) come from the negative parity
state. The posterior estimate of the nucleon mass is 0.5945(29).

In figure 4.3, we show A0 (¢, #o) (labeled as A; in the figure) as a function of to. t—t = 2
is fixed. The orange band is the one-sigma posterior fit to blue points. We can similarly

interpret the y-axis as another type of effective masses since it approaches the nucleon mass
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Figure 4.1: Effective mass plots of the correlator matrix constructed with isospin-3/2, 16

irrep operators for the a

~
~

0.12 fm ensemble. Ry, Rs € {2,4,6} appearing in C(R1,R2)

denote the source/sink operator classes; the blue data points are the raw correlator data and
the orange data points are results of subtracting central values of excited state exponentials
from the raw correlator data; the green bands are the one-sigma estimate of the nucleon mass
from the simultaneously Bayesian fit to all nine correlators using the fit model in (4.14) with
four positive and four negative parity states. Data points in grey regions are excluded from
the fit. This figure is reproduced from our work in [2].
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Figure 4.2: Effective masses of A(0) (t,to = 5) as functions of ¢ — ty where ty5 = 5 for
the a =~ 0.12 fm ensemble. The orange data points are the traditional effect masses of
AO) (£, ty = 5), the orange data points are effective masses of A0 (¢, ¢y = 5) after subtracting
the excited state posterior contribution, and the black data points are the smoothed effective
masses as defined in 4.28. Only data points in the white region are included in the fit, and
the green band is the one-sigma posterior estimate of the nucleon mass using the fit model
in (4.27a). This figure is reproduced from our work in [2].
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Figure 4.3: X0 (¢, 1) (labeled as A; in the figure) as a function of #g. ¢ —tg is fixed to 2. The
orange band shows the one-sigma posterior estimate to the blue points using the fit model
in (4.27b). In the large ¢( limit, data points should converge to a constant value equal to
the nucleon mass m . This figure is reproduced from our work in [2].

in the large tg limit. As we can see from the plot that there are no oscillating contribution to
eigenvalues, so a two-state model of (4.27b) is sufficient in parameterizing data points within
the white region in which data points are included in the fit. The final nucleon posterior
estimate is 0.5945(48).

Regardless of the types of fits, there are three major sources of systematic errors that
we consider here: fit errors, light-quark mistuning errors, and finite volume corrections. Fit
errors come from the variations of the nucleon mass posteriors as we vary parameters in fits.
The most important parameter of all is i, the minimum ¢ (or ¢ for X(O), we will make no
distinctions here) in which we include data points in fits, as the data become more precise at
lower ¢t but excited state contaminations become more severe; on the other hand, the data

become noisier at higher ¢t but excited states are exponentially suppressed. Any leftover
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Table 4.2: Nucleon mass estimates from three types of fits for all ensembles. The first errors
are statistical and the second systematic from residual excited state contaminations (see text
for details). For estimates on the a ~ 0.15 fm ensemble, there is an additional 0(5) MeV
systematic error that needs to be added on top of those two errors to account for the finite
volume correction; and for estimates on the a ~ 0.09 fm, there is an addition 7(7) MeV error
that needs to be added on top of those two to account for the light-quark mistuning; see [2]
for more details on origins of those numbers.

a ~ (fm) AO) fig A0 £ Bayesian fit
0.15 0.7555(22)(59)  0.7562(25)(9)  0.7579(36)(48)
0.12 0.5946(48)(22)  0.5945(20)(13)  0.5952(31)(1)
0.09 0.4205(26)(8)  0.4307(34)(2)  0.4308(31)(14)

excited state contaminations manifest as variations in nucleon mass estimates as we vary
tmin While holding other parameters constant. To access the size of this systematic error,
let thom be the t;, of the nominal fit. We perform another fit at ¢, = texct. < tnom and
evaluate the difference in central values of nucleon mass estimates from those two fits. The
result is an estimate of residual excited state contaminations in the nucleon mass posterior
and it is added in quadrature to the statistical error. Typically, we choose texct. to be one or
two lattice units smaller than ¢,,;,, depending on ensembles and types of fits. Alternatively,
one can combine results from various t,,;, in either the frequentist or Bayesian framework;
see, for examples, [94, 112]. We summarize the nucleon posterior results, including both
statistical and systematic errors, in Table 4.2. Despite differences in marginalizing excited
state contributions, we have found that results from three types of fits are consistent with
one another in all ensembles. This means they are all successful in eliminating excited state

contaminations from our nucleon mass estimates.
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4.1.6  Continuum extrapolation

Lattice discretization systematics can be eliminated by extrapolating our results to the con-

tinuum using the functional form

mp(a) =my phy (1 + 09(Aa)? + 04(Aa)4) (4.29)

where m is the continuum nucleon mass. We choose the characteristic energy scale to

;phy
be A =500 MeV, which is roughly consistent with Aqcp. 02 and o4 are two dimensionless
parameters of order one. Because there is a remnant chiral symmetry for the staggered
action, discretization errors in odd powers of a? cannot appear in the action [113], so the
leading errors in the nucleon mass is O(a?) and O(a). We are using three data points
of nucleon masses to infer three unknown parameter o9, 04, and m N,phy, S0 the system of
equations can be solved exactly, but the solution will be unphysical (04 can be unphysically
large when we expect it to be of order one for example) due to overfitting of data. To avoid
this issue, we impose Gaussian priors of 940(50) MeV on my p, based on its PDG value
and 0(1) on og4; we do not constrain 0. Figure 4.4 shows the continuum extrapolation of

nucleon masses using results from A0 fits that include all sources of systematic errors in

Table 4.2. The final estimate is
mN’phy = 964(16) MeV = 964<8)Stat(5)ﬁt<4)a(3)FV(8)mis MeV (4.30)

where stats., fit, a, FV, and mis are statistical errors, fit errors from residual excited state
contaminations, lattice spacing errors, finite volume corrections, and light-quark mistuning
errors, respectively. Our nucleon estimate is 1.6 sigma higher than the experimental value
of 940 MeV, which seems to be driven mostly by the upward fluctuations of our a ~ 0.09 fm
results. Note that this is also the ensemble in which the light-quark masses are poorly tuned.

We are currently adding one more measurement with a ~ 0.06 fm at physical quark masses
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Figure 4.4: Continuum extrapolation of nucleon masses using results from AO) fits that

include all sources of systematic errors in Table 4.2. The orange band shows the one-sigma
estimate with (4.29). This figure is reproduced from our work in [2].

to hopefully better control the continuum extrapolation.

Now that we have demonstrated how to use staggered fermions for both valence and sea
quarks to compute two-point functions. In the next section, we will turn our attention to
three-point functions and show how to extract nucleon vector and axial-vector charge with

the same simulation setup.
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4.2 Nucleon matrix elements with highly improved staggered

quarks

In the continuum QCD language with Dirac spinors, the nucleon matrix element we are

going to compute is:
(N|(ul' ju—dl'd)|N) = gjunT ju (4.31)

where |N) is the nucleon state, u/d (u/d) is the up/down-quark spinor, and uy (Ty) is
the nucleon spinor. Only isovector current operators are used which correspond to charged
current interactions; simulating isoscalar current operators, which correspond to neutral
current interactions, are costly due to the presence of disconnected diagrams so we will not
consider them in this work.

In this work, we compute both the temporal component of the vector charge, I'y, = 4,
and the z-component of the axial-vector current, I' 4 = v37v5. Because the vector current is
conserved, gy = 1. On the other hand, the nucleon axial charge g4 can be measured precisely
from neutron beta decays and the latest experimental value is g4 = 1.2756(13) [46]. Since
this is the first attempt to compute nucleon matrix elements with staggered valence quarks,
recovering the conserved vector charge is an important check to the lattice methodology
we have developed in previous chapters, ensuring there are no surprising features that we
missed. We also compute the nucleon axial charge, or the nucleon axial form factor at zero

momentum transfer, to serve as a stepping stone towards a full form factor simulation.

4.2.1 Staggered baryon three-point correlator constructions

Two- and three-point correlators are both needed to extract matrix elements. We use the
same set of creation and annihilation operators — isospin-3/2, 16 irrep operators with classes

2, 3, 4, and 6 — as the nucleon mass study in the previous section (we include class-3 operator
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in this study). We follow the same two-point correlators constructs present in Section 4.1.1 to
obtain C;SJ’O;(RLRQ)@), Ry, Ry € {2,3,4,6} which have a spectral decomposition of (4.14)
after the folding procedure in (4.13). One only component of the 16 irrep is considered here
because they are all identical in the ensemble average according to (4.3).

For three-point correlators, we have to decide on the tastes of quark bilinears to use as

current operators; the complete set is listed in Table 2.2. To maximize signal-to-noise ratios

of correlators, we use zero-momentum local current operators [79]

Jy (1) = U(74 ® &)U — D(y4 @ &4)D
4.32a
= Sy (&) (Xu (@, T)xu(T, 7) = Xa(E 7)xa(Z, 7)) ( )
JA(T) = U375 ® £385)U — D(7375 ® €385) D
(4.32b)
= S4(@) (Xu (@ 7)xul7) = Xa(@, 7)xa(T, 7))
where
Sy (E) = (—1)"1Hretes
Sa(@) = (—=1)** (4.33)

Here we use a similar notations as Sections 2.3.3 and 2.3.4 to denote our lattice operators V'
and A: U/U and D/D are vectors of continuum Dirac spinors in the taste space for up and
down quarks; 7; is a gamma matrix acting in the spinor space and &; is a gamma matrix
acting in the taste space; xu,/X,, and x4/X4 are one-component staggered fermion field of up
and down quarks. We are using the continuum notation to denote our lattice operators as
the mapping is unique for quark bilinears. All operators are in the isovector combinations.
Note that if the spin and taste gamma matrices are identical (74 ® &4 and ~y37v5 ® £3&5 in this

case), the quark and antiquark fields reside on the same lattice sites which make them local
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operators. Operators of other tastes are always non-local operators in which gauge links
are needed to connect quark and antiquark fields, which make them more susceptible to
gauge link fluctuations from Monte-Carlo samplings. This translates into noisier estimators
of nucleon matrix elements that we avoid here.

For each current operator, we can construct 16 three-point correlators to get

16=+,D;(R1,R2) _ / A16+,DiclsR —16+,D;clsRs
Capt.y (t:7) = (O aaly - ®) Jv(7) Oy () (434)
16+,D;(R1,R2) _ / A16+,D:clsR —164,D;clsR '
Cape 20 = (O35 (0) Ta(7) Olgoigfayy (0)

where we use the same notations as (4.1) and (4.2). Note the only way to construct non-
vanishing zero momentum, three-point correlator given local current operators is by imposing
both the source and sink operators reside on the same spatial cube sites, which in this case
is D. This can be proven easily by considering transformation properties of correlators. A
general correlator is a reducible representation of the lattice symmetry group GTS which
can be written as a direct sum of many irreps. By the Great orthogonality theorem, we
can show that the only non-vanishing component within the direct sum is the trivial irrep,
therefore, a correlator is zero if it does not contain the trivial irrep as one of its irreducible
components.

It is a two-step process to find irreducible components of a three-point correlator:
1. Tensor product source and sink operators and find its irreducible components.2

2. Tensor product irrep components from the previous step with the current operators

and find its irreducible components.

If the results of the second step contain the trivial irrep, we are certain the correlator we
construct does not violate the lattice symmetry and can be non-zero. When we tensor

product two irrep components in the second step, the trivial irrep appears if i) two irreps

2. We can perform this step first because current operators commute with source/sink operators.
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are identical and ii) we are taking the trace of two irreps, namely, multiplying the same
irrep components from two irreps. The condition i) is certainly satisfied in our case as the
tensor product of 16 irreps in which source/sink operators transform contain all irreps of
current operators that we work with, so we can always tensor product the current operator
with the same irrep in which it transforms; on the other hand, the condition ii) implies that
the three-point correlator is non-vanishing if the relative displacement in spatial cube sites
between source and sink operator is the same as the relative displacement between the quark
and antiquark field for the current operator. For example, consider the correlator

(X585 0 o) DT ) 439

In this case, the current operator is local so the relative displacement between the quark and
antiquark is zero. However, the source operator resides on the D spatial cube site, whereas
the sink operator resides on the D + & (modulo two) site. This means that by condition ii)
that the correlator is zero in the ensemble average. This can be proven easily by applying
the spatial inversion operator Is and show that the correlator is equal to the negative of
itself. Correlators in (4.34), barring non-group-theoretical reasons, is non-vanishing since
the source and sink operators reside on the same spatial cube sites and the current operators
are local. Intuitively, we can think of the product of the source and sink operators forms a
quark bilinear with a certain taste, and the three-point correlator is reduced to a mesonic
two-point correlator. In this case, it is obvious that to ensure the two-point correlator is
non-vanishing we need to have the same mesonic operator at both source and sink, which
translates into conditions i) and ii) that we mentioned. This procedure can be generalized
to n-point correlators constructed from operators at zero momenta.

To simulate (4.34) on a computer, we can again expand expressions using the Wick
theorem and write them as products of propagators, which can be computed from solving

lattice Dirac equations. In this work, we used the sequential source method to compute
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propagators for three-point functions; see [51] for a pedagogical introduction to the method.
The basic idea is that we use propagators from two-point correlators as sources for the
Dirac equation to obtain the so-called sequential propagators. Products of sequential and

non-sequential propagators then form three-point correlators in (4.35).

4.2.2 A numerical check to the continuum relation

For two-point functions, we can reduce the number of independent correlators from 16 to
one according to (4.3) which can be derived by applying lattice symmetries. Such relations

for three-point correlators are

16+,0;(R1,12) 16+,D;(R1,R2)

Capt.v (t,7) = Sv(D)Cqp v (t,7),
16+,D;(R1, R 16+,D;(R1,R
Cspt A (B 2)@77) = Sa(D)Cy y (B 2)(t, 7), (4.36)

16%,D;(Rn, R 16, D:(Ry R
Capt,v o 2)(t’7):SV(D)C3pt,V (B R2) (1, 7)

where Sy (D) and Sy (D) phases are defined in (4.33) (if we convert use the vector represen-
tation of B as defined in (3.9)). Relations for vector correlators are almost identical to that
of two-point correlators — all 16 correlators are identical in the ensemble average up to some
phases. For axial-vector correlators, two sets of eight components are identical, up to phases,
in the ensemble average but there are no constant factors that relate eight components of
16— to eight components of 16+. This is verified in our simulations.

In general, we cannot find an exact relation that relates 16— to 16+ components and
the vector correlator is one of the few exceptions. However, we can find such relations in
the continuum and large time limits and derive factors of proportionality using the Wigner-
Eckart theorem in Chapter 2. In the large ¢t and 7 limit where excited states can be ignored,
the axial-vector correlators have spectral decompositions of

016i7D;(RLRQ)

3pt,A (t,7) ~ K x M Jatt ¥ e MmNt (4.37)
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where

16+D _ /|33

3o foen] )

is the lattice matrix element with notations defined in (3.23). K is the product of overlap

GTS

factors that depend on Ry, Rs, and the irrep but not on specific components. Since all
eight components are identical given a choice of 16+, we focus only on the D = 0 case. The

ratio of 16+ three-point correlators in large time limits is simply equal to the ratio of matrix

elements
16—,0;(R1,R2) 16—,0
C3pt.A My ate (430)
016+,0;(R1,R2) M16+70 '
3pt,A Alatt

that is independent of ¢t and 7.
In the continuum limit, we can use Table 3.2 to look up the quantum numbers of nucleon-
like states, and the current operator simply transforms as a quark bilinear with spin-taste of

Y375 ® £3€5. Matrix elements then become

16,0 16,0 = -
Mt = M558 = (16, 0[T (1375 © £55)U — Dl3gns @ €365)D|164,0)  (4.40)
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where ME;Z’I?,C are corresponding continuum matrix elements and

3 3 1111 1 3 3 3 1 11
IR > = [16-0) =3 k’éhb’éh[i"é}@g >3 D4>+
o1y [ss] 31 1
2127 2]g12 2| p|2"2]g4l2 2D,/

3 3 1111 1 3 3 3 3 11
53], [1+) > > [io0)= 3 B éui’ 3] 13] o 23 D4>+
1y [s38] s 3] 11
2127 2]g122|p|2" 2]g4l2 2]p,

are continuum nucleon-like states. Arrow indicate going from lattice to the continuum limit.

The continuum quark bilinear transforms as a tensor operator

— — 1,0l0 [1,0
TestsU — DestaD = 23T, g (1.42)

This is almost the same expression as (2.80), except we replace the notation of taste quantum
numbers from [-,-]g and [-,-]7 to [-,-]gg and [-,-]p,, and use the [-,-]g subscript to specify
the additional spin quantum number. We see that (4.41) and (4.41b) have different quantum

numbers in the spin and Qg groups, so we can apply the Wigner-Eckart theorem of SU(2)

separately to both groups and get
M16—,0 . _3M16+70 (4.43)

Acont T A cont

We have concluded in (2.81) the relationship between physical and staggered matrix elements.
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Putting these together and we have
- 16+,0
ga = MA,cont = —-3M (4.44)

where g 4 is the nucleon axial charge. We can carry out similar analyses for vector correlators
and conclude that

— MoH0 (4.45)

16— .0
gy =M V,cont

V,cont

(4.43) are continuum relations that are broken by the lattice discretization. Nevertheless,

the symmetry breaking effect is small with an improved action, and we expect to see at large

t and 7 that
16—,0;(R1,R2) 16—.,0 16—.,0
C(3pt,A - MA,latt - MA,cont _ _3 (4 46)
016+7O;(R1,R2) M16+,O -~ M16+,O - :
3pt,A A latt A, cont

We show this ratio as a function of ¢t and 7 in figure. 4.5. Three-point correlators are optimized
via the variational method, weighted averaging, and quark smearing to reduce both positive
and negative parity excited state contaminations, so the large time behavior can be reached
earlier — they will be described in details in the next section. As the result, correlators from
different classes are linearly combined to give a single correlator we see here. Optimizing
operations do not affect the group theory discussion we had, and we can see from the figure
that at large ¢ and 7, the ratio converges to —3 despite being an approximate relation on
the lattice. A similar figure can be made for vector correlators and we observe that the ratio
converges to one at all t and 7 to much higher precision. This is because the relation for

vector correlators is an exact one as we pointed out in (4.36).
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Figure 4.5: The Ratio of optimized axial-vector correlators, defined in (4.46), as a function
of the source-sink separation ¢ and current insertion time 7. In large ¢, 7, and continuum
limits, the ratio converges to the group-theoretical factor of —3, which is shown as the grey,
dashed line. Data correspond to Gr6.0N70 correlators as defined in Section 4.2.4. This figure
is reproduced from our work in [3].

109



Based on relations in (4.44) and (4.45), we construct correlators

1670;(R17R2) — 16+7O7(R17R2) 16_a07(R17R2)

16,0;(R1,R2) _ 16+,05(R1,R2) 16—,0;(R1,R2)

(4.47)

that will be used in subsequent analyses. In the large ¢ and 7 limits,

16,0;(R1,R2)

O?)pt,V (t,7) G
164,0;(R1,R2)

Cth (1)
16,0;(R1,R2)

C’3pt,A (t’ T)

~gA
16+70;(R13R2)
C2pt (t)

(4.48)

gy and g4 are lattice bare vector and axial charges. Once renormalized — local current
operators are not conserved — they will converge to the continuum gy and g4. We will
discuss renormalizations in the next section. We also compute other correlator components

and average them together using (4.36) to increase statistics.

4.2.83  Renormalizing nucleon matrix elements

In QCD, vector and axial-vector matrix elements do not need renormalizations because the
currents are (partially) conserved. In the staggered action, the remnant chiral symmetry
allows for the existence of (partially) conserved lattice currents, which again, do not need to
be renormalized. However, those currents are multi-link operators that are noisy to simulate.
In practice, therefore, we usually use non-conserved local currents that are less prone to gauge
noises but require calculating renormalization constants Zy and Z 4.

Fortunately, the local vector and axial-vector currents we use in this work are easy to
renormalize non-perturbatively for the staggered action. For the vector current, we can simply
impose that Zy gy = 1. Zy can be interpreted as the ratio between the conserved vector

matrix element, which is equal to identity if bra and ket states consist of identical hadrons
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at zero momenta, and the local vector matrix element [114]. This simply gives Zy = 1/gy .
We can of course obtain gy from nucleon matrix elements in (4.48), but doing so would
defeat our original purpose of cross checking the validity of vector matrix elements since we
are imposing them to be equal to one. Instead, we can calculate gy from a matrix element
of two identical mesons to calculate Zy,, and verify that Zy gy = 1 when we calculate gy
from nucleon matrix elements. This has the additional benefit of being a simpler calculation
to perform because meson matrix elements are less noisy. Using this method we obtain
Zy =0.991(1) [3]. Also, see [114] for alternative methods to renormalize vector currents in
the staggered action.

Usually one has to calculate renormalization factors of Zy, and Z, separately on the
lattice because chiral symmetry is broken (see, for example, [45]). But if one uses an action
that preserves parts of the chiral symmetry, such as domain-wall (see, for example, [94])
and staggered actions, Zy =~ Z 4 up to small discretization and non-zero light-quark masses
errors [114], which can be ignored given our current statistics. So we simply impose Zy =

Z 4 =0.991(1) in this work to renormalize both vector and axial-vector matrix elements.

4.2.4  Spectral decomposition of staggered baryon three-point correlators

(4.47) have spectral decompositions of
3pt,V +'L “+1

016,0;(R1,R2 Z Cl V—‘r] (R-Z)e_m”Te_mﬂ'(t_T)—{—
J =0

Z a"’ Rl _] b (R2) —m_iTe—m_j(t—T)+
i,j=0

a0 (4.49)
73S OV et
1=0 j5=0
ny+ n—
T3S )
1=0 j5=0
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The expression for axial-vector three-point correlators can be obtained by simply replacing
V’s with A’s. The notation here is identical to that of (4.12): my; < m_ ;4 1) and my; <
M_(j41) are masses of positive and negative parity states; bgf) and agil) are source and
sink overlap factors for the k-th state in the + parity channel; ny and n_ are the total
number of positive and negative parity states in the spectrum; Vij 4 (or Ay, 4 for axial-
vector matrix elements) are transitional matrix elements from the +[-th state to the +k-th
state.

Vio+0 = gy and Ayg 40 = g4 are the bare charges we wish to extract, which can be
achieved by simultaneously fitting two- and three-point correlators using (4.14) and (4.49).
A direct fit to matrices of two- and three-point correlators however is difficult in practice
because (4.49) allows cross talking between different excited states in both channels, which
results in many more fit terms and nuisance parameters compared to two-point correla-
tors. Unless we have good prior knowledge on those parameters, which we don’t for most
cases, posterior estimates on nucleon masses and charges will either have large error bars or
be heavily contaminated by residual excited state contributions. Suppressing excited state
terms from (4.49) before fitting is therefore of paramount importance here. In this work,
we sequentially apply three different techniques in the preprocessing pipeline to achieve this:
quark smearings, weighted time averaging, and the variational method. Quark smearings and
the variational methods are standard lattice QCD techniques that are designed to suppress
excited state contaminations from both parity states, whereas the weighted time averaging
is unique to staggered baryon correlators designed to suppress overlap factors from negative
parity states. The end results of those three procedures will be two three-point correlators,
C’;S%?{? (t,7) and C;S&f(tﬁ), and one two-point correlator, C21§t+ ’O;U(t), which will be re-
ferred to as optimized correlators. o € {0.2,0.6} subscripts denote specific quark smearing

parameters we use. Here we introduce those three techniques that are applied in succession

to our raw data:
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Quark smearings

This step differs from the rest in that quark smearings are applied to individual quarks in
the simulation time, whereas the other two methods act directly onto correlators. The idea
behind smearing is simple (see [51] for a pedagogical introduction). Instead of constructing
a hadron interpolating operator at either the source or sink from local quark fields, we
construct it from non-local quark fields averaged (smeared) over a large number of field sites
within a characteristic radius of say r. We then expect overlap factors of a state with mass
m 2 1/r to be strongly reduced. As long as the smearing procedure commutes with the
lattice symmetry group, such operation does not affect the spectra of interpolator operators.

The particular type of the quark smearing we are using is called the Wiippertal smearing

[115, 116] which is defined via an iterative procedure operating on a staggered quark field

X(7i,t) as
()5 1y — 307\ (1)
Wit = (1+ ; QGQNA>X (7, 1) (4.50)
where
X0 (@,t) = x(#@, 1),
3 (4.51)
i=1

A is the discretized Laplacian, ¢ counts the iteration number out of N total iterations. For

(N) converges to a Gaussian with the root-mean-squared

large N, the wavefunction of y
(rms) of 0. In this work, we only smear quarks at the sink® with rms radii of 0.2 and 0.6 fm
and total iteration numbers of 30 and 70, respectively. Correlators with those smeared

quarks at the sink are labeled as Gr2.0N30 and Gr6.0N70. Smearing at the sink incurs

3. Quarks at the source are already smeared by the use of corner-wall sources.
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almost no costs compared to solving quark propagators so it is almost always beneficial
to include it, however, excessive smearing can cause degrading signal-to-noise ratios. By
applying two different smearings with small and large rms radii then fitting those correlators
simultaneously, we aim to take advantage of suppressed excited state contaminations while

retaining reasonable data statistics.

Weighted time averaging

The second step in the preprocessing pipeline is to suppress negative parity contributions by
taking weighted averages of correlators in the time direction. Let Cop(t) and C3p¢(t, 7) be
some generic two- and three-point staggered baryon correlators with spectral decompositions

of

Copt(t) = atobro + (—1)ta_0b_oe_m0t 4o

— t
Cgpt(t, T) = CL+0M_~_O7+0b+O€ M+0 +

(—l)ta_oM_()’_Qb_()e_m_Ot-i- (4.52)
(1) as0Myo_gb_ge~™-0Te- (7).

(—]_)t_Ta_OM_0’+O€_m_OT€_m_O(t_T) ..

where m4 are the ground state masses in positive and negative parity channels, a’s and b’s
are overlap factors, M’s are transitional matrix elements, and “---” denotes higher excited
state contributions. We observe that if we define a new set of correlators by taking weighted
averages between adjacent timeslices in t as

Cépt(t) = ¢~ sk O (t) 4 Copt (t + 1), (@.53)

Cépt (ta 7—) = e_msnkc?)pt (ta 7—) + C?pt (t + 17 T)
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the spectral decomposition of Oépt and Cil’)pt stays the same, except sink overlap factors for
all states (including excited state) become
agi — api(e” Mk 4 7 MH)

(4.54)
a_; = a_;j(e” Mk —e7M=i) Vi€ {0,1,---}

So if we choose the tunable parameters mgy) to be roughly equal one of the negative parity
mass m_;, the contribution of that particular state will be strongly suppressed. We call
this procedure (weighted) time averaging at the sink since it suppresses sink overlap factors.
Furthermore, we can apply this procedure iteratively to suppress any number of negative
parity states.

We can similarly define a new set of operators by taking weighted time averages between

adjacent 7’s (for three-point correlators) to get

Chp (1) = e Cope (t) + Cope(t + 1),
2t P P (4.55)

C:/')pt(t7 T) = e_msrcc?)pt (tv T) + Cth (ta T+ 1)

In this case, spectral decomposition again remain intact except source overlap factors become

bl — b, e_msrc +€_m+i
+1 +Z( ) (4.56)
b_;, —b_; (e_msrc — e_m—i), Vie {0,1,---}

We can again suppress source overlap factors from negative parity states by choosing appro-
priate mgrc, and we call this time averaging at the source.

Time averages at the source and sink commute with each other so we can apply them
in arbitrary ordering. They are analogous to quark smearing but in the time direction, so
excessive time averaging will again reduce the data quality. Based on effective mass plot we

time average twice both at the source and sink with mg./mgy) parameters of 0.9 and 1.1.
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This then significantly reduces excited state contribution from negative parity channels; see

Fig. 2 and 3 of [3]. We apply the same operation to all correlators with different classes.

Variational method

The last step in the preprocessing pipeline is to reduce the number of correlators by marginal-
izing over class indices. This is achieved by applying the variational method [117]. As alluded
to earlier in Section. 4.1.2, we start by solving for the left and right eigenvectors of two-point

correlators in GEVPs

Cl6+’0;(Rl,RQ)(t)U(0) B )\(0)016+,0;(R1,R2)(t0) (0)

2pt R = 2pt YR
(T 16+,0;(R1,Rs) 0) [ (ONT 16+,0;(R1,R2) (4.57)
(1) Cope M 1) = 2O (o) O )

where we have reproduced equations from (4.20) for the ground state nucleon. We only make
use of the eigenvalue A0) in our nucleon mass work. In this work, we aim to reduce the
complexity of fitting by decreasing the number of correlators. We achieve this by sandwiching
correlators matrices between left and right eigenvectors to obtain a single correlator for each

matrix

CL6+00y = <U(LO)>T QL6+ 0:(R1.Ra) (. (0)

2pt 2pt R
1640 — ( (ON\T 164,0;(R1,R2) (0)
C3pt,V (t,7) = <UL ) C3pt,V (t,T)vR (4.58)
16+.,0 — { (ON\T 164,0;(R1,R2) (0)
C’3pt,A (t,7)= <UL ) C3pt,A v (t, T)UR

Correlators on the left-hand sides of (4.58) are simpler to fit not only because there are
fewer of them, but also because they have less severe excited state contaminations because
we are essentially designing improved source and sink interpolators with better overlaps to
nucleon-like states by taking linear combinations of existing operators. Coefficients needed

for those linear combinations are given by the eigenvectors. We need to determine which ¢
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and tg to be used for finding eigenvectors. We have found empirically that correlators are
almost identical for any large t and tq (see Fig. 1 of [3] for differences in correlators from
using different ¢ and (), so we choose t) = 6 and ¢ — ty = 2 in this analysis.

After passing correlator matrices through the three-step preprocessing pipeline, we ob-
tain three correlators C;gé?\;?(t, T), C’;StOAU(t 7), and 6’16+ 0 7 (t) where the additional o =

0.2,0.6 fm denote different levels of quark smearings at the sink. We fit them to functional

forms of

1
O%gj,o;a(t) =2 asfi)bﬂe_m“t + a(_ao)b_o(—l)te—mfot
1=0

1
16,0;0 (o) —mg it
Capiv (6:7) =D 0 Vi ibyie ™0
i=0

(— 1)ta(_00) V_()?_Ob_oe_mfot—i-

1
(-1)7 Z a(cf_) V+i7f0b_06_m_07—6_m+i(t_T)+

+12

1=0

1

()T Vg by () (4.59)
1=0
16,0; . (o)
o t—
C?)ptAO— t T Z G,+j A+] +Zb—|—’L T@ mj( T)+
i,7=0

(— 1)ta(_JO)A_O7_Ob_0€7m*0t+

1
(_ 1)T Z ag(_ji) A_|_Z'7_0b_06_m_07-e_m+i(t_7')+
1=0

1
(=07 a(_go)A70,+z‘b+z‘6_m+ﬂ€_m_0(t_T)
i=0

The notation here is almost identical to that of (4.49) and (4.14) except that the class
superscripts (R1) and (Rg) are removed as we are no longer dealing with matrices of corre-

lators. Instead, we place 0 = 0.2,0.6 fm superscripts on sink overlap factors a to label the
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two sets of correlators Gr2.0N30 and Gr6.0N70. We only include two positive parity states
(one nucleon-like state and one excited state) and a single negative parity state. Note that
C;S,’E?\’/U (t,7) has a slightly different spectral decomposition than C;S&?\’/U (t,7)as Vi 4 =0
for i # j. This is because the vector current is conserved in the continuum limit so we expect

Vi +j to be small due to discretization effects. In practice, the data are too noisy to resolve

such small values so we just set them to zeros and omit those terms.

4.2.5  Simulation and analysis details

As the first proof-of-principle work on calculating nucleon matrix elements with valence
staggered quarks, we use a single 2+1+1 HISQ ensemble produced by the MILC collaboration
[4, 55] with the lattice spacing of a = 0.1222(3) fm determined from the fj4s scheme [4],
pion mass of my ~ 305 MeV, mg/m; = 5 where mg and m; are strange- and light- quark
masses, and physical charm-quark mass. Using an unphysical pion-mass ensemble allows
us to explore subtleties involving staggered baryon three-point correlator analyses without
spending a significant amount of computing resources. Once the analysis methodology is
demonstrated and established, we can then perform calculations on physical ensembles in
the future.

We simultaneously fit optimized two- and three- correlators with both quark smearings
to (4.59) within the Bayesian framework [99] to extract the nucleon mass myg = my,
bare vector charge gy, and bare axial charge g4. We then renormalize bare charges with
Zy = Z, and compare the results. We could in principle fit both vector and axial-vector
three-point correlators in one fit. However, we have found the dominant sources of excited
state contaminations in those two correlators are different based on the observed three- to
two-point correlator ratios [3]. For this reason, we perform two separate fits: one fit that
includes both two-point correlators and vector three-point correlators and another fit that

includes the same two-point correlators and axial-vector three-point correlators.
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Similar priors are used in both fits. We impose a wide Gaussian prior of 1100(200) MeV
on the nucleon mass mjp based on the observed nucleon masses on ensembles at similar
unphysical pion masses [108-110]; we impose a wide Gaussian prior of 1600(300) MeV on
the mass of the negative parity state m_q based on the expected mass of the S-wave nucleon-
pion state that we observed in [2]; to ensure we obtain a higher excited state mass, we impose
a log-normal prior on the difference in masses between the first excited state and the nucleon
ground state m_ g — m_q of 300(200) MeV. The identity of this excited state is unknown,
so we let the central value to be roughly equal to the pion mass and allow a large margin of
200 MeV to take into account of various possibilities; we impose Gaussian priors of 1.0(0.3)
on gy = V4o 40 based on the charge conservation and 1.2(0.3) on g4 = A1 40 based on
the PDG value [46]. Other transitional matrix elements have priors of 0(5) based on the
typical values of matrix elements; finally, we do not impose any priors on the overlap factors.
Once priors and appropriate time ranges, which will be shown in the figure, are chosen,
we minimized the augmented y2 to obtain estimates on parameters. The errors on those

parameters are estimated from 1000 bootstrap samples.

4.2.6  Fit results

We present the results of two- and three-point correlators in figures 4.6, 4.7, and 4.8. Fig-
ure 4.6 shows the results of two-point correlator fits with either vector (g fit) or axial-vector
correlators (g4 fit) at two different sink quark smearings, Gr2.0N30 and Gr6.0N70. The pos-
terior estimates on the nucleon mass are my = 0.704(9) from the gy fit and my = 0.707(6)
from the g4 fit. The gy fit gives a larger uncertainty than the g4 fit, which also shows up
as wider one-sigma uncertainty bands in the figure. This is mainly because vector three-
point correlators are insensitive to the sink smearings that we applied. As can be seen in
figure 4.7, both Gr2.0N30 and Gr6.0N70 correlators are almost identical, so different radii

of quark smearings are not adding new information on excited state contaminations over

119



which we try to marginalize. Axial three-point correlators in figure 4.8 on the other hand see
appreciable differences between two quark smearings with reduced excited state contamina-
tions®. Then it comes at no surprise that the g4 fit will give a better nucleon mass estimate
than the gy fit. So in this work we will use the g4 fit nucleon mass as the nominal value
which is equal to mpy = 1141(10) MeV.

How does our nucleon mass estimate fare against existing lattice results? The answer
is tricky because different calculations that use different lattice actions with different pion
masses can give rise to drastically different nucleon masses on the lattice. However, as men-
tioned earlier in the nucleon mass chapter that there is an empirically observed relationship

that states

my(a) = 800 MeV + my(a) (4.60)

Nucleon masses computed in different simulations all seem to obey this relationship well [108—
110]. If we apply this equation to extrapolation our nucleon mass result from m; = 305 MeV
to the physical point of myz = 135 MeV, we found mp = 970(10) MeV. This is consistent
within one-sigma uncertainty with our nucleon mass result my = 960(9) on the same lattice
spacing from AO) fit from Table 4.2.

Figures 4.7 and 4.8 show the results on three-point correlators. The posterior estimates
on bare charges are gy = 1.03(2) and g4 = 1.24(5). Despite being insensitive to quark
smearings, we can see from figures that vector correlators inherently have less excited state
contaminations than axial correlators, so the bare vector charge has a smaller fractional

uncertainty than the axial charge. Using the renormalization constant Zy = Z4 = 0.991(1)

4. The curvature of a correlator, barring from large cancellations between different exponentials in the
spectral decomposition, indicates the amount of excited state contaminations to the ground state.
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Figure 4.6: Effective masses, defined in (4.16), of the optimized two-point correlators as
functions of the source-sink separation ¢. The top panel shows the Gr2.0N30 correlator
(Gaussian smeared at sink with ¢ = 0.2 fm and 50 iterations) and the bottom one shows
the Gr6.070N correlator (¢ = 0.6 fm and 70 iterations). Solid points are those included
in the Bayesian fits. Green bands show one-sigma posterior estimate of the fit with axial-
vector correlators, and yellow bands show one-sigma posterior estimate of the fit with vector
correlators. This figure is reproduced from our work in [3].
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we get

gv = Zygy = 1.02(2)

gA = Zag4 = 1.23(5) (4.61)
IA _ 9A _121(5)
gy 9v

The fact that gy is consistent with one provides a non-trivial cross check to the lattice
methodology we presented here. We also present two determinations of g4: the first re-
sult in the second line of the equation shows the renormalized charge by using the same
renormalization constant as gy; on the other hand, the second result from the third line
is renormalized by taking the ratio of unrenormalized charges. In both cases, results are
consistent with each other within one-sigma uncertainty. Renormalized charges derived here
cannot be compared to the continuum value of g4 ~ 1.27 because various systematic errors
are not yet quantified. However, our results are consistent with other lattice calculations at
similar quark masses albeit with different actions; see [3] for a detailed comparison between

various lattice results.
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Figure 4.7: Optimized three- to two-point correlator ratio for vector correlators as functions
of the source-sink separation time ¢ and current insertion time 7. The top and bottom panels
show results of Gr2.0N30 (Gaussian smeared at sink with o = 0.2 fm and 50 iterations) and
Gr6.0N70 correlators (¢ = 0.6 fm and 70 iterations). Solid data points are those included
in the simultaneous Bayesian fit with two-point correlators. Blue, orange, and green color
bands show one-sigma posterior estimates for different 7’s. The grey band shows the one-
sigma posterior estimate on the bare vector charge gy = 1.03(2). This figure is reproduced
from our work in [3].
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Figure 4.8: Same plot as figure 4.7 but for axial-vector three-point correlators. The grey
band shows the one-sigma posterior estimate on the bare axial charge g4 = 1.24(5). This
figure is reproduced from our work in [3].
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Chapter 5

Conclusion and future work

In this dissertation, we introduced a group-theoretical method to calculate nucleon masses
and matrix elements with staggered fermions. In the valence sector, the staggered action has
four extra fermion tastes for each quark flavor that are degenerate in the continuum limit.
Staggered QCD, therefore, simulates an augmented QCD theory but with 4 X ny = 8 light,
valence quarks and ny light, sea quarks due to rooted quark determinants. ny = 2 is the
number of light quarks in the real world (up and down).

To relate observables with non-trivial taste quantum numbers calculated in staggered
QCD to the ones in physical QCD with the correct number of valence quarks, we note that
single-taste observables, or observables constructed with valence quarks of the same taste,
must take on the same values in both theories [3, 82]. Non-single-taste observables, which
are oftentimes much easier to work with in analyses, can then be “rotated” with successive
applications of the generalized Wigner-Eckart theorem in the taste-flavor space to the single-
taste ones. Ratios of single-taste to non-single-taste observables are then given by the ratios
of Clebsch-Gordan coefficients that we worked out in Chapter 2. In addition, we also worked
out, for the first time, the exact spin-flavor-taste quantum numbers of staggered nucleons in
Chapter 3 and applied results from those two chapters to give the first complete calculations
of the nucleon mass, vector charge, and axial charge with staggered fermions [2, 3].

This work demonstrates that staggered quarks are equally useful in simulating baryon
physics as any other lattice fermions. It is just the beginning of a research program that
ultimately aims to provide a precise calculation of the nucleon axial form factor, which can
be used as an input to predict neutrino-nuclei cross sections in the CCQE region for neutrino
oscillation experiments such as DUNE. What else we need to do to achieve such a calculation?
Our discussions of the continuum representation theory in Chapter 2 generalizes trivially to

form factor calculations since the translational symmetry that gives rise to finite momentum
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transfers commutes with the internal flavor-taste symmetry. Also, the same Wigner-Eckart
type analysis can be applied to extract physical form factors. However, the spectra of non-
zero-momentum lattice operators, obtained by adding momenta to zero-momentum operators
presented in Chapter 3, are complicated by the mixing between irreps. For example, if we
insert one unit of lattice momentum in the z-direction to the isospin-3/2, 16 irrep operators
we use in this work, operators will now interpolate to one nucleon-like and five A-like states
as opposed to one nucleon-like and three A-like states at zero momentum; see the appendix
of [118] for details. We are currently exploring the optimal strategy for the nucleon axial
form factor simulations. The first result on an unphysical pion ensemble will appear in the
near future.

Even though we focus solely on computing nucleon masses and matrix elements in this
work, the methodology we presented here is quite general and should be applicable to many
other calculations. For example, operators in other lattice irreps and/or with different valence
quark masses can be used to investigate the properties of A baryons, nucleon-pion scattering,
or ) baryons. Physical observables are still given by the single-taste observables in the
staggered formalism, and we have to repeat the exercises in Chapter 2 and 3 to know how
to properly normalize staggered observables. The usefulness of staggered simulations is
ultimately limited by i) our ability to performance group-theoretical analyses to extract
normalization factors and ii) the spectrum complexity of staggered observables. I do not
imagine i) will pose too much of an issue as there are existing computer programs that
can automate the processes; ii) could potentially pose a serious challenge to analyses as
the existence of many nearly degenerate states with different tastes leads to complicated
error estimates and continuum extrapolations. For many observables, however, staggered
simulations offer unparalleled efficiency and the analysis complications are minor setbacks
compared to the extra computing costs with other lattice fermions. It is then up to the

reader to perform a cost-benefit analysis to decide whether it is worth it to use staggered
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fermions in his or her simulations.
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