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Abstract. The physical scale corresponding to baryon acoustic oscillations (BAO), the size of
the sound horizon at recombination, is precisely determined by CMB experiments. Measuring
the apparent size of the BAO scale imprinted in the clustering of galaxies gives us a direct
estimate of the angular-diameter distance and the Hubble parameter as a function of redshift.
The BAO feature is damped by non-linear structure formation, which reduces the precision
with which we can infer the BAO scale from standard galaxy clustering analysis methods.
Many methods to undo this damping via the so-called BAO reconstruction have so far been
proposed; however, they all rely on backward modeling. In this paper, we present the first
results of isotropic BAO inference from rest-frame halo catalogs using forward modeling
combined with the EFT likelihood, in the case where the initial phases of the density field are
fixed. We show that the remaining systematic bias is less than 2% when we consider cutoff
values of Λ ≤ 0.25hMpc−1 for all halo samples considered, and below 1% and consistent with
zero for all but the most highly biased samples. We also demonstrate that, when compared to
the standard power spectrum likelihood approach under the same assumption of fixed phases,
the 1σ errors associated to the field level inference of the BAO scale are 1.1 to 3.3 times
smaller, depending on the value of the cutoff and the halo sample. Our analysis therefore
unveils another promising feature of using field-level inference for high-precision cosmology.
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1 Introduction

Baryon acoustic oscillations (BAO) are an oscillatory feature in the matter power spectrum.
The same feature is visible in the correlation function as a bump located at the characteristic
BAO scale rs. The origin of the BAO can be found in the early Universe era when photons
and baryons were tightly coupled by Compton scattering, forming the baryon-photon fluid.
During this era, the gravitational force acting on the baryon perturbations was balanced by
the radiation pressure resulting in acoustic oscillations of the baryon-photon fluid [1]. As the
Universe expands and cools down, photons decouple. Traces of these sound waves remain
visible as the acoustic oscillations in the CMB temperature anisotropies with the characteristic
scale of the sound horizon at recombination, rs. Essentially the same scale is imprinted in the
acoustic density perturbations in the baryon distribution. Since baryons are coupled to dark
matter gravitationally, and both jointly evolve under gravitational evolution after decoupling,
the imprint of these early-time oscillations is visible at fixed comoving scale in the late-time
clustering of matter. Given that the size of the sound horizon at recombination has been well
measured through CMB experiments, determining its apparent size in the late-time matter
distribution allows us to estimate the angular-diameter distance and the Hubble parameter
as a function of redshift. For a more detailed review of the BAO method see [2, 3].

Before we can apply this method however, we have to face the problem that 1) matter
evolved nonlinearly; 2) we do not directly observe the evolved matter density field, but
rather biased tracers of this field such as galaxies, galaxy clusters, quasars and others. The
distribution of such objects at low redshifts is affected by the highly non-linear structure
formation, both of the matter distribution itself and of the formation of the tracers themselves
(see [4] and [5] for reviews on these topics, respectively). For the BAO feature specificially,
nonlinear structure formation shifts and broadens the peak in the correlation function, and
equivalently dampens the oscillations in the power spectrum on small scales [6–8]. These
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effects reduce the precision with which the BAO can be measured from galaxy clustering [9]
by relying only on information available in the power spectrum. As it was shown in [6], the
dominant source of the broadening comes from bulk flows which are induced by large-scale
modes, meaning that these effects can potentially be reversed. Therefore, there has been
much interest in the BAO reconstruction methods [10–16]. These methods start by smoothing
the galaxy density field to filter out high-k non-linearity, then this density is used to estimate
the displacement field. Finally, the estimated displacement field is used to take tracers back
to their estimated initial positions. Thus, all these methods rely on a reverse or backward
modeling approach. In addition, they have to make assumptions about galaxy bias and the
cosmological model to infer the displacement field, rather than inferring all parameters jointly
with the BAO scale.

In this paper we instead use the forward model approach to test how well we can constrain
the BAO scale by starting from the initial conditions. Forward modeling has gained a lot of
momentum in the past few years [17–32]. One of the main advantages of this approach is in
the fact that it does not rely on the correlation functions, instead it exploits the amplitudes
and the phases of the tracer field directly. This is done by writing down a joint posterior for
the initial density field, cosmological parameters and nuisance parameters (bias parameters
and stochastic amplitudes). A crucial ingredient in this posterior is the likelihood function of
observing a tracer field δh given the evolved matter density field. A likelihood function in the
context of the effective field theory (EFT) of large scale structures (LSS) [33, 34] has been
derived in [35–37]. A natural part of every EFT theory is a cutoff scale Λ which corresponds
to the maximum wavenumber of modes included in the calculations. The precise value of Λ
is arbitrary and its role is similar to the one of kmax in standard power spectrum analyses.
Crucially, the results of all measurements should be independent of Λ. A natural upper limit
for Λ in the case of the EFT of LSS is the nonlinearity scale (ΛNL ≈ 0.25hMpc−1 at z = 0),
where perturbation theory of LSS breaks down. If this condition is satisfied, a controlled
inference of the cosmological parameters and initial conditions can be performed. The result
of applying this EFT likelihood to σ8 inference has been presented in [38, 39]. A significant
feature of the EFT likelihood is that it allows us to constrain the parameter of interest at
the field level. Furthermore, ref. [35] has shown that the forward model combined with the
EFT likelihood naturally includes the BAO reconstruction. In this paper, we follow up and
perform an unbiased inference of the isotropic BAO scale, which we will refer to simply as
BAO scale, from rest-frame halo catalogs using the EFT likelihood. Our tests are based on
simulations, which enables us to fix the initial phases of the linear density field to their correct
values (to avoid any possible misunderstanding, fixing the phases of the initial density field
means both fixing its amplitude and phase in each grid voxel). This removes cosmic variance
as much as possible and reduces the size of the error bars.

This paper is organized in the following way. In section 2 we give a short summary
of the most important properties of the EFT likelihood. In section 3 we give an overview
of the method used for the inference of the BAO scale in the EFT based approach. In
section 4, we use the field-level EFT likelihood to find the BAO scale value. To gauge what
are the improvements from the field level likelihood over standard, power-spectrum-based
approaches, we also determine the BAO scale value using a likelihood constructed from
the power spectrum (section 5). For the predicted power spectrum we do not perform
any additional BAO reconstruction; instead, we use the deterministic halo field found from
the forward model. This means that the EFT likelihood is still used to constrain the bias
parameters in the construction of the predicted power spectrum, but is not used to constrain
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the BAO scale. On the other hand, our power spectrum covariance takes into account that
the phases are fixed to the ground truth, i.e. there is no cosmic variance. Thus, we perform a
fair comparison between both methods. We conclude in section 6.

2 The EFT likelihood

We begin with a brief review of the EFT likelihood. Throughout this paper we refer to the
tracers considered as halos, simply because we are working with halo catalogs from simulations.
However, since the EFT approach only assumes that the formation of the tracer is spatially
local, all the results are equally applicable to galaxies or any other cosmological tracer. With
δh we will denote the observed fractional number density perturbation of a given halo sample.
In the rest frame of a halo, this density field is given by

δh(x, τ) ≡ nh(x, τ)− n̄h(τ)
n̄h(τ) , (2.1)

where τ is the conformal time, nh(x, τ) denotes the comoving rest-frame halo density and
n̄h(τ) is its position-independent mean. In [35] a joint posterior for the initial density field δin,
cosmological parameters θ and nuisance parameters (bias parameters bO and stochastic ampli-
tudes σa), P (δin, θ, bO, σa|δh), was introduced. All the important physics of halo formation is
contained within the likelihood P (δh|δin, θ, bO, σa) giving the probability of observing the halo
density δh given the initial conditions, cosmological and nuisance parameters. Once the initial
density field δin has been specified, there are three important parts of P (δh|δin, θ, bO, σa) we
need to focus on. Those are the deterministic forward model for matter, the bias relation and
the conditional likelihood for finding a measured halo density field given the matter density
field and bias parameters. In the following we summarize the most important information
about each of them.

The deterministic forward model for matter δ = δfwd[δin] used in this paper is third-order
Lagrangian perturbation theory (3LPT), as explained below. All initial perturbations with
wavenumber k > Λ, where Λ is the initial cut-off, are set to zero. Further, we use the
Lagrangian bias expansion

δLh,det(q, τ) =
∑
O

bLOO
L(q, τ), (2.2)

where bLO and OL are the Lagrangian bias coefficients and operators, respectively, and q is the
Lagrangian coordinate marking the initial position of the particle as τ −→ 0. In the Lagrangian
bias expansion, we first construct the bias operators and then displace them to Eulerian frame.
This can be done conveniently in the same step as the LPT calculations. The relationship
between the Lagrangian position q and the final Eulerian position of the matter particles x is
given through the displacement vector s,

x(τ) = q + s(q, τ). (2.3)

In LPT, we treat the components of the displacement tensor as small parameters, which
allows us to write

s(q, τ) =
∞∑
n=1

s(n)(q, τ). (2.4)

This expansion of the displacement tensor is related to the expansion in powers of δ performed
in Eulerian Perturbation Theory (EPT). This can be seen from the following consideration.
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From eq. (2.3), we find the Jacobian Jij to be

Jij = ∂xi
∂qj

= δij +Mij(q, τ), (2.5)

where we have introduced the Lagrangian deformation tensor

Mij = ∂q,isj(q, t). (2.6)

Then using the continuity relation together with eq. (2.5), we find the relationship between
the deformation tensor and the density field

1 + δ(x(q, τ), τ) = |1 + M(q, τ)|−1. (2.7)

From eq. (2.7), it is clear that at first order in perturbations

M
(1)
ij (q) = ∂q,i∂q,j

∇2
q

δ(1)(q). (2.8)

The basis of the Lagrangian set of operators can be conveniently expressed in terms of
the symmetric part of the Lagrangian deformation tensor [40]

M
(n)
ij = ∂q,(is

(n)
j) (q, t). (2.9)

The antisymmetric part, ∂q,[isj], appears from third order in perturbations, but does not
need to be included in the bias expansion as it is redundant [40]. We work by treating the
components of the deformation tensor as small parameters and find the Lagrangian operators
at each perturbative order by taking all the scalar contractions of M (n)

ij . We do not need to
include tr[M (n)] for n > 1 since those can always be expressed in terms of scalars constructed
using the lower order operators. Eq. (2.8) is the starting point in a recursion relation that
can be used to construct the tensors M (n) at all orders [41]. In our calculations, we will be
using the operators up to third order in perturbations which are listed here according to their
perturbative order [5]

1st δ,∇2
xδ

2nd tr[(M (1))2], tr[M (1)]2

3rd tr[(M (1))3], tr[M (1)]3, tr[M (1)M (2)], tr[M (1)]2tr[M (1)].
(2.10)

The corresponding bias coefficients are

1st bδ, b∇2δ

2nd btr[(M(1))2], b tr[M(1)]2

3rd btr[(M(1))3], b tr[M(1)]3 , b tr[M(1)M(2)], btr[M(1)]2tr[M(1)].

(2.11)

With these ingredients, we are finally able to construct the Lagrangian bias expansion
presented in eq. (2.2). The set of Eulerian operators in turn is then obtained by displacing
each of the Lagrangian operators via eq. (2.3). We define a grid of 5123 cells in which OL(qi)
is set as the weight (or mass) of a “particle” at position qi. With the aim of preventing
noise generation on large scales, we then deposit the particle mass at its Eulerian position xi
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using a could-in-cell scheme, such that the total mass is guaranteed to be conserved. This
displacement technique is performed for all Lagrangian bias operators (up to the desired order)
with the exception of tr[M (1)]. For the latter field, we instead displace a unity-weight field to
obtain the Eulerian density, which is associated to the well-known Eulerian bias parameter bδ
commonly called b1. Thus, we will hereafter use b1 ≡ bδ following standard convention. More
details about the implementation of this procedure can be found in [39].

Note that the operator ∇2
xδ is not derived from the recursion relations arising from

eq. (2.8), but contains two more spatial derivatives. This operator is the leading higher-
derivative operator which accounts for the non-locality of halo formation. The coefficients of
higher-derivative operators are thus related to the spatial scale R∗ which quantifies the size
of the spatial region involved in the process of halo formation, and their contribution to δh,det
is suppressed by powers of k2R2

∗ on large scales.
Finally, we turn to the conditional likelihood which provides the probability for finding

a measured halo density field given the matter density field and the bias parameters. The
EFT likelihood which we use in this paper has the following form:

lnP (δh|δin, {bO}) = −1
2
∑
|k|<Λ

[
ln[2πσ2

ε(k)] + 1
σ2
ε(k) |δh(k)− δh,det[δin, {bO}](k)|2

]
. (2.12)

The parametrization of σ2 is chosen in such a way to ensure that σ2 is positive definite,

σ2(k) = (σε + k2σε,2)2. (2.13)

We can interpret σε as the amplitude of halo stochasticity in the large-scale limit (k −→ 0). σε,2
is the leading scale-dependent correction to halo stochasticity and it captures the backreaction
of small physical scales in real space. Since we found that σε,2 has a negligible contribution
to our results, we set it to zero throughout the paper. A distinct feature of this likelihood
is the existence of a hard cutoff Λ which marks a boundary above which all the modes k
are integrated out. In other words, this cutoff ensures that we are focusing only on large
scales. On such large scales, the central limit theorem guarantees that the noise fields for
k < Λ can be approximated to leading order as independent Gaussian degrees of freedom,
making the resulting likelihood normal with diagonal covariance (see figure 8 of [38] for an
explicit demonstration). In our analysis we will be calculating the EFT likelihood for different
cutoffs Λ to see how the results of the BAO scale inference are influenced by different modes
included in the calculation. Since the number of modes scales as k3, and constraints are
thus dominated by modes close to the cutoff Λ, the results for different Λ values will be
essentially independent.

For the results in section 4, we use the EFT likelihood to infer the value of the BAO
scale. In this application, the likelihood is marginalized over all bias parameters as described
in [36]. The EFT likelihood is also used in section 5 to find the values of the bias parameters
bO to be used in the deterministic halo power spectrum. To find the value of a parameter
bO, we marginalize the EFT likelihood over all remaining bias parameters and then run the
MINUIT minimizer [42] to find the best fit for the bO parameter. We repeat this procedure
for all the fields appearing in eq. (2.10) (see also [43, 44] for a recent study of halo and galaxy
bias using this method).
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3 Method

The BAO is normally used to infer the angular diameter distance to a given observed redshift
by comparing the predicted scale of the BAO feature to the data for a given assumed distance.
This kind of approach is not suitable in our case since we are working with simulations on
a cubic box with periodic boundary conditions. To change the distances inside such a box,
we would have to introduce a window function, and would not be able to keep the initial
conditions fixed to the ground truth (since changing the fiducial distance amounts to changing
the comoving volume of the data as well). In order to avoid these significant complications,
we adopt a different approach, essentially rescaling the predicted comoving sound horizon.

3.1 Approximating the power spectrum

We want to constrain the BAO scale rs just from the information available in the oscillatory
part of the power spectrum, without referring to its broad-band part. This is because the
broad-band power spectrum depends on other cosmological parameters as well. One possible
way to constrain rs from the power spectrum is by varying the baryon density ωb and checking
which value agrees the best with the data. However, varying the value of ωb changes not only
the oscillatory part of the power spectrum, but also its broad band. Therefore, this approach
is not suitable.

Instead, we approximate the linear matter power spectrum as

PL(k, β) = PL,sm(k)[1 +A sin(kβrfid) exp(−k/kD)], (3.1)

where A and kD are constants and rfid is the fiducial BAO scale. Through this equation we
separate the broad band part of the power spectrum, described with the function PL,sm(k),
from its oscillatory feature. In the oscillatory feature we recognize the contribution sin(kβrfid)
describing the baryon acoustic oscillations and the exponential envelope corresponding to
the primordial photon diffusion, or Silk damping. The Silk damping term absorbs all the
physics that is not captured within the fluid approximation to the baryon-photon system
before recombination.

Finally, we introduced the factor β as

β = rs
rfid

. (3.2)

By changing β, we are changing the size of the BAO scale rs to match the data while keeping
the distances fixed. Most importantly, changing β will result in changes in the oscillatory
part of the power spectrum while keeping its overall shape intact. Notice that, since the BAO
scale was imprinted in the power spectrum during the early Universe, varying it in the initial
(linear) density field is the physically correct approach.

The function PL,sm(k) can be written in the form

PL,sm(k) = N

(
k

kp

)ns

T 2(k), (3.3)

where N is a normalisation constant that is proportional to the primordial normalization As
times the growth factor squared, kp is the pivot scale and T (k) is the “no-wiggle” transfer
function which we take from ref. [1]. We found the value of N , kD and A by fitting eq. (3.3)
to the linear power spectrum produced by the CLASS code [45]. Figure 1(a) shows the ratio

– 6 –



J
C
A
P
0
8
(
2
0
2
2
)
0
0
7

0.1 0.2 0.3
k [hMpc−1]

0.95

1.00

1.05
P

L,
cl

as
s/

P
L,

sm

(a) Ratio of the linear power spectrum obtained
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(b) Ratio of the linear power spectrum from CLASS
and the best fit for PL from eq. (3.1).

Figure 1. Comparing the linear power spectrum to the power spectrum approximation.

of the CLASS power spectrum to PL,sm(k). We can clearly see the damped oscillation in
the BAO range which indicates that PL,sm really does describe the smooth power spectrum
with no BAO wiggles. Figure 1(b) shows the ratio of the CLASS power spectrum to the
power spectrum approximated by eq. (3.1). While we do see some residual wiggles in the
plot, we also notice that they are suppressed at high k where most of the constraints come
from. Therefore, we can conclude that eq. (3.1) is a good approximation of the linear power
spectrum and we can use it for the BAO scale inference.

Given the known fiducial power spectrum, i.e. the power spectrum from which the initial
conditions of the N-body simulations were drawn, it is easy to find the power spectrum with
a different BAO scale, using eq. (3.1). We introduce the factor f(k, β) as

f2(k, β) = PL(k, β)
Pfid(k) = 1 +A sin(kβrfid) exp(−k/kD)

1 +A sin(krfid) exp(−k/kD) . (3.4)

Notice that f(k, 1) = 1. From f(k, β) it is straightforward to find the relationship between
the fiducial and rescaled linear density fields

δβ(k, β) = f(k, β)δfid(k). (3.5)

To recap, δβ is the linear matter density field with all fiducial phases but for which the BAO
scale is of the size rs = βrfid. Throughout the paper we will be using different δβ as the initial
fields for our forward model.

3.2 Profile likelihood

All numerical results presented here were obtained for a spatially flat ΛCDM cosmology with
parameters Ωm = 0.3, ΩΛ = 0.7, h = 0.7, ns = 0.967 and a box with size L = 2000h−1Mpc.
We use four halo mass bins in the mass range 1012.5h−1M�–1014.5h−1M�. We present results
on two simulation realizations, “run 1” and “run 2”, which differ in their initial phases. In
table 1, we present the number density of halos in run 1 at different redshifts.
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z Mass range n̄h
[log10(M/h−1M�)] [(Mpc/h)−3]

0.0 [12.5− 13.0] 7.056 88e−4
0.5 [12.5− 13.0] 6.001 05e−4
1.0 [12.5− 13.0] 4.744 83e−4
0.0 [13.0− 13.5] 3.509 70e−4
0.5 [13.0− 13.5] 2.766 35e−4
1.0 [13.0− 13.5] 1.884 50e−4
0.0 [13.5− 14.0] 1.149 82e−4
0.5 [13.5− 14.0] 7.426 65e−5
1.0 [13.5− 14.0] 3.767 61e−5
0.0 [14.0− 14.5] 2.965 94e−5
0.5 [14.0− 14.5] 1.331 26e−5
1.0 [14.0− 14.5] 3.941 75e−6

Table 1. Number density of halos in run 1 at different redshifts.

As mentioned earlier, we do not sample the initial density field; it is instead fixed
to the exact initial conditions used in the N-body simulations within which the halos are
identified. To get the initial density with different BAO scales, we apply eq. (3.5) for a set of
values {βi}. The default set spans the range [0.8, 1.02]; in all cases, we make sure that the
maximum-a-posteriori (MAP) value of β is safely within the range. Fixing the initial phases
not only saves the computational time, but it also minimizes the cosmic variance as much as
possible resulting in smaller error bars for the inferred value of β.

To find the MAP estimate for β, which we denote as β̂, we use the profile likelihood [46].
For a probability distribution P (β, σε|δh) (recall that the bias coefficients are analytically
marginalized over) and parameter β, the profile likelihood is defined as

P prof(β) = max
σε

[P (β, σε|δh)], (3.6)

where the parameter σε has been profiled out.
For a fixed Λ, halo sample, redshift and βi we maximize the profile likelihood using the

MINUIT minimizer [42]. In this way we obtain a set {βi,−2 lnP prof(βi)} which is nicely fit by
a parabola for all halo samples and all cutoffs. An example of this parabola for two different
cutoffs is shown in figure 2, where the elements of the set {βi,−2 lnP prof(βi)} are represented
with orange dots and the blue line corresponds to the parabolic fit. The MAP value β̂ is
located at the minimum of the best fit parabola. The estimated 68% confidence-level error on
β̂ is given by the inverse square root curvature of the parabolic fit.

4 Field-level results

In this section, we show the results of applying the EFT likelihood to the halo catalogs.
We start by comparing the results for two different bias orders — second and third order
— at fixed redshift z = 0. Figure 3 shows the deviation of the MAP values β̂ from 1 as a
function of Λ for different halo mass ranges. For all of halo mass bins except the highest one,
β̂ is consistent with being unbiased within the error bar obtained from the profile likelihood.
Moreover, β̂ is moving closer to 1 as Λ is increased, consistent with the shrinking error bar as

– 8 –



J
C
A
P
0
8
(
2
0
2
2
)
0
0
7

0.990 1.005 1.020 1.035
β

0

2

4

6
−

2l
n(
P

pr
of
/P

pr
of

,m
ax

)
Field-level
Fit
Halo M = 13.0-13.5

(a) Λ = 0.12hMpc−1

1.000 1.002 1.004 1.006 1.008 1.010
β

0.00

0.25

0.50

0.75

1.00

−
2l

n(
P

pr
of
/P

pr
of

,m
ax

)

Field-level
Fit
Halo M = 13.0-13.5

(b) Λ = 0.20hMpc−1

Figure 2. Profile likelihood −2 lnP prof plotted as a function of β for two different cut-offs Λ at z = 0.
The blue line shows the parabolic fit which was used to find the maximum-a-posteriori value β̂ and its
error σ(β̂).

more k modes are being included in the likelihood and forward model. We notice that the
MAP values β̂ are closer to 1 for the third order bias expansion than in the case of second
order, for every halo sample. This indicates that the systematic error in β̂ in the 3rd order
bias case is reduced, as expected if one is in the converging regime of the EFT. Therefore, in
the rest of the paper, we focus only on the 3rd order bias expansion.

Figure 4 depicts the value of the 1σ error bar, σF (β̂), for the field-level inference (as
emphasized by the subscript F ) as a function of Λ for the 3rd bias order for both runs 1 and
2. We see that σF (β̂) is smoothly decreasing with increasing Λ. Since our initial conditions
are exactly the ones used in the halo simulations, the statistical uncertainty σF (β̂) is only
sourced by the halo stochasticity which appears in the EFT likelihood. Note that we do
expect the σF (β̂) results to change once we start sampling the initial phases instead of keeping
them fixed.

We also notice that the σF (β̂) values do not change much between the different halo
samples. This trend can be understood by inspecting how the numerator and denominator
of eq. (2.12) change with halo mass. On the one hand, more massive halos are rarer, and
hence have larger noise (stochasticity), i.e. larger σ2

ε in the denominator. On the other hand,
higher-mass halos are more biased, and hence show a stronger clustering signal. Hence the
numerator also increases with halo mass. As a consequence, the ratio of both quantities is
actually roughly constant, so that we get a similar σF (β̂) for all halo bins considered. Notice
that this result only applies to the fixed-phase study done here.

Next, we look at the results found at different redshifts. Figure 5 and figure 6 show the
value of β̂ as a function of Λ at redshifts z = 0.0, 0.5, 1.0 for run 1 and run 2, respectively. For
run 1, these results are also summarized in table 2 for a fixed cutoff, Λ = 0.16hMpc−1. We
find that the remaining systematic bias is very low across all the redshifts and mass ranges.
Even for this cutoff, the bias is less than 1% at z = 0 for all mass ranges and the results
generally keep improving with growing Λ. If we look across all redshifts, it is clear that the
remaining bias is still below 2%, and in fact consistent with zero, for most of the cases. It
goes over 2% only for the most massive halos which are very rare at higher redshifts. Those
halo samples would most likely benefit from going to higher bias orders in the bias expansion.
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Figure 3. MAP value β̂ found using the EFT likelihood for two bias orders at z = 0. The different
sub-figures show four different mass ranges.

From figure 5 and figure 6 we notice that the remaining systematic bias in β̂ is increasing
with growing redshift. This occurrence is counter-intuitive, since from perturbation theory
we would expect a better performance at higher redshifts where perturbation theory extends
to higher wavenumbers. A similar trend was noticed with inference of σ8 from the halo
catalogues described in [38]. It was found there that this trend is caused by the higher-order
bias terms. Although the higher-order bias terms are suppressed by powers of the normalized
growth factor Dnorm(z) = D(z)/D(0) at higher redshifts, it is possible that the increase
in their coefficients with redshift more than compensates for this suppression. To check if
this was the case for us as well, we use the test suggested in [38] which was based on the
assumption from [5] that the higher order bias terms can be approximated as being a function
of (b1 − 1)Dnorm(z). Results are shown in figure 7, where we plotted the |β̂ − 1| values for
all halo mass bins and redshifts against (b1 − 1)Dnorm(z). There is a hint of a correlation
between |β̂ − 1| and (b1 − 1)Dnorm(z), although all but one points are consistent with β̂ = 1
within one sigma.
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Figure 4. σF (β̂) values as a function of Λ at z = 0. Different sub-figures show four different
mass ranges.

Let us also comment on the limits of the cutoff we are using. For matter, the EFT is
under perturbative control for Λ . 0.25hMpc−1 at z = 0. For highly biased tracers, the
cutoff is reduced due to the growing size of bias parameters at higher orders. Thus, we
are going beyond that limit, and not all of our values of Λ are strictly under perturbative
control. However, because the BAO is an oscillatory feature, while higher-order corrections
are expected to be smooth functions of k, the BAO inference seems to be still robust at these
high k. We leave a more systematic investigation of this important issue to future work.
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Figure 5. MAP values for β using the EFT likelihood found at different redshifts for run 1. Different
panels show four different mass ranges at three different redshifts each.

z Mass range log10(M/h−1M�) 100(β̂ − 1) σε
0.0 [12.5− 13.0] 1.08 ± 0.74 0.463
0.5 [12.5− 13.0] −0.47 ± 0.71 0.471
1.0 [12.5− 13.0] −0.09 ± 0.68 0.494
0.0 [13.0− 13.5] 0.56 ± 0.78 0.625
0.5 [13.0− 13.5] 0.40 ± 0.70 0.647
1.0 [13.0− 13.5] 0.43 ± 0.67 0.735
0.0 [13.5− 14.0] −0.89 ± 0.86 0.992
0.5 [13.5− 14.0] −0.28 ± 0.72 1.163
1.0 [13.5− 14.0] 0.86 ± 0.75 1.582
0.0 [14.0− 14.5] 0.80 ± 0.80 1.785
0.5 [14.0− 14.5] −2.73 ± 0.80 2.572
1.0 [14.0− 14.5] −2.29 ± 0.97 4.926

Table 2. Summary of the results found using the field-level EFT likelihood at the cutoff Λ =
0.16hMpc−1 for different redshifts and halo mass bins.
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Figure 6. MAP values for β using the EFT likelihood found at different redshifts for run 2. Different
panels show four different mass ranges at three different redshifts each.
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Figure 7. MAP values for |β̂ − 1| found at the cutoff Λ = 0.16hMpc−1 for all halo mass bins and
redshifts against (b1 − 1)Dnorm(z), where Dnorm(z) = D(z)/D(0).
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5 Comparing the field-level results to the power spectrum approach

Having presented the results of constraining the BAO scale using the EFT likelihood, we now
turn to comparing these results to a more traditional BAO inference approach based on the
power spectrum.

5.1 Power spectrum likelihood

Care is needed in order to ensure that the comparison we are making is valid, since in the EFT
approach we use fixed phases in the matter density field. Therefore, we adopt the following
Gaussian likelihood for the halo power spectrum:

− 2 lnL[Ph(k)|δin, {bO}, Pε] =
kmax∑
k

[Ph(k)− Pε − Pdet(k|δin, β, {bO}]2
Varfix[Ph(k)] . (5.1)

Here, Pdet(k|δin, β, {bO}) is the power spectrum of the deterministic halo field found
using the same forward model as in EFT case for a fixed β value; Ph(k) is the measured halo
power spectrum and Pε is the noise spectrum. Notice that the covariance appearing in the
numerator of the likelihood, Varfix[Ph(k)], is modified to reflect the fact that we are using
fixed phases. The derivation of the power spectrum covariance for fixed phases can be found
in appendix A and its final form is given in eq. (A.18). It is also important to note that we are
not performing any additional BAO reconstruction on the halo data, but comparing the halo
power spectrum directly with the theory predictions from the full forward model. Therefore
the comparison we are making is at the level of likelihoods: the EFT likelihood is performing
at the level of the field, while the likelihood in eq. (5.1) compresses the data to the power
spectrum in bins of k. Both likelihoods however consistently assume fixed initial conditions.

To find the best fit for β, we use the following procedure for different values βi. We start
by finding the initial matter fields with the BAO scales rs = βirfid using eq. (3.5) as in the
field-level likelihood calculations. Once we have the linear matter density field δin(k, βi), we
use the 3LPT forward model to generate the evolved matter field δ(k, β) = δfwd[δin(k, βi)],
where we set all modes with k > Λ to zero. For the bias operators, we use the same bias
model as described in section 2. The MAP for the bias parameters is found by maximizing
the EFT likelihood. We keep one bias parameter free at a time and marginalize over all
other bias coefficients. Once we found the MAP value for that parameter, we move on and
repeat the procedure for the remaining ones. This gives us the deterministic halo field whose
power spectrum Pdet(k|δin, β, {bO}) is straightforward to measure in the same k bins as the
halo sample.

We now turn to the determination of Pε. Ideally, one would fit for this together with
β and the bias parameters. In our simplified analysis, we only fit Pε, and use the same
noise spectrum value Pε across all Λ and β values. This value is found for Λ = 0.2 hMpc−1

and β = 1.00 by fitting the difference Ph(k) − Pdet(k|δin, β = 1, {bO}) to a constant, using
w = 1/σw as the weight where σw = |Ph − Pdet|/

√
2/mk. Fitting the noise separately from

bias terms and β leaves us with some uncertainties in its estimate. We roughly estimate this
uncertainty by repeating the same analysis for run 2 halo samples, resulting in values of Pε
that differ by around 20%, which results in a corresponding 20% shift in the 1σ error for β̂.
We conclude that our results for the latter carry an uncertainty of ∼ 20%. This is sufficient
for the approximate comparison we are aiming for in this paper. We aim to improve this in
future work.
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Figure 8. Profile likelihood −2 lnP prof for the power spectrum, plotted as a function of β for two
different cutoffs Λ at z = 0. The blue line shows the parabolic fit which was used to find MAP β̂ and
σPS(β̂) error.

Finally, by inserting Pdet(k|δin, βi, {bO}) and Pε in eq. (5.1), we find the likelihood value
for each βi. Repeating this procedure at fixed halo sample, redshift and Λ, leads to a set
{βi,−2 lnP prof(βi)}, which is nicely fit by a parabola. An example of this parabola fit is
shown in figure 8. β̂ and σPS(β̂), the value of the 1σ error bar for the power spectrum
inference, are found as the location of the minimum and the inverse square root of the
parabolic fit, respectively.

5.2 Results

We now turn to the results for MAP. β̂ is found using the likelihood given in eq. (5.1). The
residual values of β̂ as a function of Λ at the three different redshifts are shown in figure 9. For
the most massive halo range log10(M/h−1M�) = 14.0− 14.5, we show results only at redshift
zero. For this halo range at higher redshifts, the set {βi,−2 lnP prof(βi)} does not yield a
well-defined maximum. We also exclude all the samples for which the MINUIT algorithm
does not converge for the bias coefficients due to a poor signal to noise ratio.

The quantitative results are summarized in table 3. We see that, for most of the samples,
the residual bias in β̂ is between 1.20% and 2.3%. The MAP values of the linear bias parameter
b1 are also listed in the table. We notice that, for a fixed mass bin, b1 is increasing with halo
mass and redshift as is expected. In figure 10, we show σPS(β̂) as a function of Λ at redshift
z = 0. While for the field-level likelihood σF (β̂) reduces about 2.4 times from Λ = 0.1hMpc−1

to Λ = 0.2hMpc−1, here we do not see such a trend. Instead, σPS(β̂) stays fairly constant
across all Λ for the power spectrum likelihood. This is presumably because the field-level
likelihood can still make use of the phase information at wavenumbers for which the power
spectrum likelihood is already dominated by the noise Pε.

The most interesting result is figure 11, which compares the error on β̂ from the power
spectrum approach, σPS(β̂), to the one from the field level approach, σF (β̂). This ratio is
shown for three different halos mass ranges at three different redshifts. For smaller cutoffs,
both likelihoods give similar results, which is the expected result if the data (δh) are well
approximated as a Gaussian random field. However, as Λ grows, the EFT likelihood starts
outperforming the power spectrum based likelihood. At the highest Λ considered, the σF (β̂)
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Figure 9. MAP values for β using the power spectrum likelihood for different Λ. Different panels
show four different mass ranges at three different redshifts.

z Mass range log10(M/h−1M�) 100(β̂ − 1) b1

0.0 [12.5− 13.0] 1.20 ± 0.90 0.833
0.5 [12.5− 13.0] 1.87 ± 0.79 1.266
1.0 [12.5− 13.0] 1.32 ± 0.73 1.901
0.0 [13.0− 13.5] 4.80 ± 0.96 1.236
0.5 [13.0− 13.5] 0.79 ± 0.94 1.973
1.0 [13.0− 13.5] −2.01 ± 0.81 2.892
0.0 [13.5− 14.0] 2.27 ± 1.27 1.996
0.5 [13.5− 14.0] 1.77 ± 1.01 3.129
1.0 [13.5− 14.0] 1.41 ± 0.88 3.994
0.0 [14.0− 14.5] 1.18 ± 1.46 3.416

Table 3. MAP values of β for cutoff Λ = 0.16hMpc−1 inferred from the power spectrum likelihood,
at different redshifts for different halo mass ranges.
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Figure 10. σPS(β̂) values found using the power spectrum likelihood for different Λ. Different panels
show four different mass ranges at the redshift z = 0.

value is around 2.5 times smaller than σPS(β̂). The field-level EFT likelihood performs
better because it operates at the level of the field. This means that it includes not only
all the information coming from the power spectrum, but also information from the from
N-point functions of arbitrarily high orders. Concretely in the case of the BAO, the field-level
likelihood knows about the bulk flow field, and can thus compare the expected BAO scale at
a given location with the data. The power spectrum on the other hand is averaged over all
locations, and thus suffers from the damping of the BAO peak [7, 8]. Thus, the fact that the
field-level likelihood outperforms the power spectrum based one comes as no surprise.

Finally, note that we have fixed the bias coefficients in the theory prediction for the
power spectrum to the values obtained from the field-level likelihood. In practice, those would
have to be marginalized over in a power spectrum analysis.
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Figure 11. Ratio of the uncertainty on the BAO scale inferred from the power spectrum likelihood,
σPS(β̂), to that from the field-level likelihood, σF (β̂), as a function of cutoff for different redshifts.
Each panel corresponds to a different halo mass range.

6 Summary and conclusions

In this paper we compared the inference of the BAO scale from the halo catalogs using an
LPT-based forward model combined with the EFT likelihood with the standard approach
which compresses the data to the power spectrum. The forward model uses a combination
of 3LPT expansion for the matter field and a third-order bias expansion. Our results were
expressed in the terms of the parameter β, defined as the ratio of the measured value of the
BAO scale to its fiducial value.

The field-level inference results are summarised in figure 5 and table 2. From these it is
clear that the remaining systematic error in β̂ is at most ∼ 2% for all samples. If we ignore the
most biased sample (log10(M/h−1M�) > 14.0 at z = 0.5 and z = 1.0), at Λ = 0.16hMpc−1,
the remaining bias in β is less than 1% for all remaining samples, which is remarkably low.
Moreover, β̂ is statistically consistent with being unbiased for all halo samples except the
highest mass one. It is also interesting to notice that the bias in β̂ is under control for all
halo mass ranges, even for Λ = 0.25hMpc−1, which is close to the nonlinear scale. For the
lighter halos, log10(M/h−1M�) < 13.5, this even applies to Λ = 0.3hMpc−1.
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While we consider halos here, the EFT approach is equally applicable to galaxies. This
is confirmed by the results of [43], who demonstrated an unbiased inference of the linear
power spectrum normalization σ8 on fully hydrodynamical simulated galaxies.

In order to assess the performance of the field-level inference of the BAO scale, we
compare it to the more traditional approach of the BAO inference from the power spectrum.
For this we utilized the likelihood defined in eq. (5.1), where the theory model for the power
spectrum is based on the same forward model as in the EFT likelihood approach (in particular,
the field-level likelihood was still used to find the best-fit values for the bias parameters). We
modified the covariance in this likelihood to reflect the fact that we are using fixed phases,
so that we can compare the two approaches on the same footing. Results found using this
likelihood are shown in figure 9 and table 3. For a fixed Λ = 0.16hMpc−1, the remaining
systematic error β̂ is between 1.2% and 2.3% for those halo samples that yielded converged
profile likelihoods.

Figure 11 shows the relative performance of the field-level and power spectrum based
likelihoods. Across all halos samples, we notice a similar trend. For smaller cutoffs, both
likelihoods show similar performance. However, for Λ > 0.12hMpc−1, the field-level likelihood
gives better results across all the halo masses and redshifts. For the highest cutoff value
considered in both likelihoods, Λ = 0.2hMpc−1, the error on the BAO scale inferred from
the power spectrum is between 2.47− 3.3 times larger than that obtained from the field-level
likelihood, depending on the halo sample. Since the field-level likelihood contains all the
information that would come from the higher order correlation functions, including the precise
bulk-flow field, while the information available in the likelihood from eq. (5.1) are only those
from the power spectrum, a better performance of the EFT likelihood was to be expected.

In future work we will investigate how well we can constrain the BAO from the EFT
likelihood in the cases when the initial conditions are not fixed, but sampled. This will allow
for a realistic comparison of the constraining power on the BAO scale that can be obtained
from the field-level inference as compared to that based on the galaxy power spectrum.

Acknowledgments

We would like to thank Rodrigo Voivodic and Laura Herold for helpful discussions. IB would
like to thank to BAYHOST Scholarship programs sponsored by the Free State of Bavaria
for graduates of Central, Eastern and Southeastern European states. FS acknowledges
support from the Starting Grant (ERC-2015-STG 678652) “GrInflaGal” of the European
Research Council.

A Power spectrum covariance for fixed phases

In this section we derive the power spectrum covariance in the case where the initial phases are
fixed. Inside a thin shell bin of magnitude k, which we keep fixed throughout, the prediction
for the halo power spectrum can be written as

Ph(k) = 1
mk

∑
q
|δdet(q) + ε(q)|2, (A.1)

with the sum running over all the modes q inside the bin of magnitude k. δdet(q) ≡
δdet(q|δin, {bO}) is the deterministic halo density field (for fixed phases δin) which can be
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found using the forward model, ε(q) is the noise field and mk is the number of modes inside
that bin. We are interested in the variance of Ph(k), i.e.,

Varfix[Ph(k)] = 〈P 2
h (k)〉 − 〈Ph(k)〉2 (A.2)

= 1
m2
k

||q,q′|−k|<∆k/2∑
q,q′

(
〈|δh(q)|2|δh(q′)|2〉 − 〈|δh(q)|2〉〈|δh(q′)|〉2

)
, (A.3)

in the case where δdet(k) is fixed. We start by focusing on the right-hand side of eq. (A.3).
The expected value 〈|δh(q)|2〉 for a single mode q can be written as

〈|δh(q)|2〉 =
∫
DεP(ε|Pε) |δdet(q) + ε(q)|2 , (A.4)

where P(ε|Pε) is a multivariate Gaussian given by

P(ε|Pε) = 1√
(2πPε)mk

exp
[
−1

2

mk∑
p

|ε(p)|2
Pε

]
(A.5)

and Pε ∝ σ2
ε is the noise power spectrum. Notice that in eq. (A.4) we integrate only over ε,

since the value of δdet is fixed. Inserting

|δdet(q) + ε(q)|2 = |δdet(q)|2 + 2Re[δdet(q)ε∗(q)] + |ε(q)|2 (A.6)

in the integral of eq. (A.4), only the first two terms will survive. The last term integrates to
zero since P(ε|Pε) is a symmetric function. Therefore, eq. (A.4) becomes

〈|δh(q)|2〉 = 1√
(2πPε)mk

∫
Dε(p) exp

−1
2

mk∑
p6=q

|ε(p)|2
Pε

 (A.7)

×
∫
Dε(q) exp

[
−1

2
|ε(q)|2
Pε

] (
|δdet(q)|2 + |ε(q)|2

)
. (A.8)

This allows us to perform the integration for a single mode q and obtain

〈|δh(q)|2〉 = |δdet(q)|2 + Pε . (A.9)

This holds equivalently for q′, while the result for the whole bin can be found by sum-
ming over all the modes. Now let us focus on the first term in eq. (A.3), 〈P 2

h (k)〉, where
〈|δh(q)|2|δh(q′)|2〉 = 〈|δdet(q) + ε(q)|2|δdet(q′) + ε(q′)|2〉 can be expanded as

〈|δh(q)|2|δh(q′)|2〉 = 〈(|δdet(q)|2 + 2Re[δdet(q)ε∗(q)] + |ε(q)|2)
× (|δdet(q′)|2 + 2Re[δdet(q′)ε∗(q′)] + |ε(q′)|2)〉

= 〈|δdet(q)|2|δdet(q′)|2 + |δdet(q)|2|ε(q′)|2 + |ε(q)|2|δdet(q′)|2 (A.10)
+ |ε(q)|2|ε(q′)|2 + 4Re[δdet(q)ε∗(q)]Re[δdet(q′)ε∗(q′)]〉 . (A.11)

From the previous calculation of 〈|δh(q)|2〉, we already know how to calculate the expected
values encountered in eq. (A.10). What is left for us to understand are the ones shown in the
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last line, eq. (A.11). Regarding the first term, since ε is a random Gaussian field, by Wick’s
theorem we obtain

〈ε(q)ε∗(q)ε(q′)ε∗(q′)〉 = 〈ε(q)ε∗(q)〉〈ε(q′)ε∗(q′)〉
+ 〈ε(q)ε(q′)〉〈ε∗(q)ε∗(q′)〉+ 〈ε(q)ε∗(q′)〉〈ε∗(q)ε(q′)〉

= P 2
ε (1 + δq,−q′ + δq,q′) . (A.12)

Regarding the last term from eq. (A.11), we can expand it as

〈4Re[δdet(q)ε∗(q)]Re[δdet(q′)ε∗(q′)]〉
= 〈[δdet(q)ε∗(q) + δ∗det(q)ε(q)][δdet(q′)ε∗(q′) + δ∗det(q′)ε(q′)]〉
=
〈
δdet(q)ε∗(q)δdet(q′)ε∗(q′) + δdet(q)ε∗(q)δ∗det(q′)ε(q′) (A.13)

+ δ∗det(q)ε(q)δdet(q′)ε∗(q′) + δ∗det(q)ε(q)δ∗det(q′)ε(q′)
〉
. (A.14)

Let us inspect how to calculate the expectation value of the first contribution of eq. (A.13),

〈δdet(q)ε∗(q)δdet(q′)ε∗(q′)〉 = 1√
(2πPε)mk

∫
Dε(p) exp

−1
2

mk∑
p6=q

|ε(p)|2
Pε


×
∫
Dε(q) exp

[
−1

2
|ε(q)|2
Pε

]
δdet(q)ε∗(q)δdet(q′)ε∗(q′)

= |δdet(q)|2Pε δq,−q′ . (A.15)

The calculation for the other three contributions of eqs. (A.13)–(A.14) follows similarly.
Collecting terms, we have that

〈|δh(q)|2|δh(q′)|2〉 = |δdet(q)|2|δdet(q′)|2 + |δdet(q)|2Pε + |δdet(q′)|2Pε
+ P 2

ε (1 + δq,−q′ + δq,q′) + 2|δdet(q)|2Pε(δq,−q′ + δq,q′) (A.16)

By inserting eq. (A.16) and the values of eq. (A.9) for q and q′ into the expression for the
variance of the power spectrum given by eq. (A.3), we find that

Varfix[Ph(k)] = 1
m2
k

||q,q′|−k|<∆k/2∑
q,q′

[
〈|δh(q)|2|δh(q′)|2〉 − 〈|δh(q)|2〉〈|δh(q′)|〉2

]
(A.17)

= 1
m2
k

||q,q′|−k|<∆k/2∑
q,q′

[|δdet(q)|2|δdet(q′)|2 + Pε(|δdet(q)|2 + |δdet(q′)|2) + P 2
ε

+ (P 2
ε + 2|δdet(q)|2Pε) (δq,−q′ + δq,q′)− (|δdet(q)|2 + Pε)(|δdet(q′)|2 + Pε)

]
.

Summing over q′, we finally obtain the power-spectrum variance when the phases of δ are fixed,

Varfix[Ph(k)] = 2Pε
m2
k

||q|−k|<∆k/2∑
q

(2|δdet(q)|2 + Pε) . (A.18)

Using a mock generator for δdet = b1δ in which the phases of δ are fixed, we verify in figure 12
that this prediction accurately matches the variance of 103 power spectra measured in a
512h−1Mpc box with 1283 cells.
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Figure 12. Ratio of the variance of 103 power spectra with fixed phases to the prediction obtained in
eq. (A.18) for a variety of bias and noise parameters.
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