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Abstract: We investigate the dynamics of quantum coherence in an anisotropically expand-

ing emergent universe, modeled by a Bianchi type I spacetime. In particular, our findings

suggest that the presence of small anisotropic perturbations introduces a directional de-

pendence in the behavior of quantum coherence. Notably, we identify the emergence of

frozen coherence regimes when the {a0, H0, m, k} parameters lie within particular ranges.

The physical origin of these frozen regimes can be attributed to the suppression of mode

mixing, which consequently leads to reduced particle creation.

Keywords: coherence; particle creation; emergent universe; anisotropy

1. Introduction

Quantum coherence is a fundamental physical resource that emerges from the quan-

tum superposition principle [1]. Beyond its conceptual significance, coherence has emerged

as a valuable resource in the operational framework of quantum technologies [2]. In par-

ticular, quantum coherence is also essential in the implementation of diverse quantum

information processing tasks, including quantum algorithms [3–6], precision enhancement

in quantum metrology [7–9], low-temperature thermodynamics [10–13], quantum biol-

ogy [14–17], quantum phase transitions and transport phenomena [18–23], etc. Recently,

a rigorous theoretical framework for the quantification of quantum coherence was proposed

by Baumgratz et al. [24], leading to the development of several well-defined coherence

measures. Among the most prominent are the l1 norm of coherence and the relative entropy

of coherence, which capture the degree of superposition in a given quantum state with

respect to a fixed reference basis. Additional measures, such as the trace norm of coher-

ence [25], coherence quantifiers based on Tsallis relative α-entropies [26], and the Relative

Rényi α-monotones [27], have further enriched the landscape of coherence quantification

by incorporating generalized entropic functionals.

In realistic quantum systems, the unavoidable presence of environmental noise poses

a significant challenge, often leading to the degradation or complete loss of coherence [2].

In analogy with quantum state protection strategies, such as those based on weak mea-

surement reversal techniques [28], it becomes crucial to identify the specific conditions

under which coherence remains preserved. In this context, the concept of frozen coher-

ence has been introduced to characterize scenarios in which quantum coherence is robust

against decoherence effects [29]. Notably, Refs. [30,31] provided detailed analyses of the

dynamical regimes in which coherence remains entirely unaffected by noise. In particular,

in Ref. [30], the authors investigated the dynamical conditions under which coherence

measures remain completely unaffected by quantum decoherence processes. It was shown

that, for single-qubit systems, there exists no nontrivial condition under which both the

relative entropy of coherence and the l1-norm coherence remain simultaneously frozen

under arbitrary quantum channels. Nonetheless, The coherence freezing phenomenon
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has been experimentally verified in distinct physical platforms. For instance, it has been

observed in two independent experimental configurations: one based on nuclear magnetic

resonance at room temperature [32] and another involving optical quantum systems [33].

In recent years, the study of quantum coherence in relativistic frameworks has at-

tracted considerable attention [34–40]. Motivated by these works, we investigate the

behavior of quantum coherence in the context of an anisotropically expanding cosmological

background, specifically modeled by a Bianchi type I spacetime. Our analysis shows that

the presence of anisotropy introduces a directional dependence in the dynamics of quantum

features and the emergence of frozen coherence regimes when the {a0, H0, m, k} parameters

lie within particular ranges. The origin of these frozen regimes can be attributed to reduced

particle creation (|βk| → 0). This paper is structured as follows. In Section 2, we review the

quantization of a free massive scalar field in a Bianchi type I spacetime, establishing the

theoretical framework used throughout the paper. In Section 3, we introduce the specific

emergent universe model employed in this study, detailing the scale factor, anisotropic

perturbations, and the associated Bogoliubov transformations. In Section 4, we compute

the particle creation entropy and analyze its dependence on parameters such as the scalar-

field mass and anisotropy. By using l1-norm coherence, we quantify quantum coherence

between two comoving observers in Section 5. There, we identify the conditions under

which the coherence of the final state becomes insensitive to variations in the expansion

parameter. In Section 6, we present numerical results and discuss the behaviors of quantum

coherence and the emergence of frozen coherence regimes. Finally, Section 7 is a summary

our findings.

2. Quantum Fields in an Anisotropic Universe

Let us consider a particular model of a universe described by the Bianchitype I space-

time, in which the line element is given by

ds2 = a2(η)

[

dη2 − eϵ1(η)dx2
1 − eϵ2(η)dx2

2 − eϵ3(η)dx2
3

]

≈ a2(η)

[

dη2 −
3

∑
j=1

(1 + ϵj(η))dx2
j

]

. (1)

where a(η) is the scale factor, η is the conformal time parameter, and the perturbations

(ϵj(η)) are arbitrary functions of the conformal time and are assumed to be small, i.e.,

max|ϵj(η)| ≪ 1. The dynamics of the scalar field in the conformal observer frame are

described by the Klein–Gordon equation in a curved spacetime:

1√−g
∂µ[g

µν
√

−g∂νϕ(x, η)] + [m2 + ξR(η)]ϕ(x, η) = 0, (2)

where R = gµνRµν is the Ricci scalar curvature and ξ is a dimensionless parameter that

describes the coupling between the scalar curvature and the field. When ξ = 0, the field is

said to be minimally coupled with the metric; on the other hand, if ξ ̸= 1
6 , Equation (2) is

not conformally invariant in the massless limit, and particle creation may occur [41–44].

In addition, note that metric (1) is conformally flat and possesses a time-like conformal

killing vector. If the conformal factor (a(η)) becomes constant in the asymptotic limit

(η → ±∞), then a killing vector (K = ∂η) orthogonal to all space-like hypersurfaces emerges

asymptotically at past and future infinity. This allows the motion equation (Equation (2))

to have distinguishable positive and negative solutions. It is important to note that the

existence of such a vector field is necessary to define particle states, as well as a vacuum
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state. The ϕ(x, η) field is quantized by decomposing it into positive and negative mode

solutions of the Klein–Gordon equation as follows:

ϕ(x, η) =
∫

d3k[akuk(η, x) + a†
k u∗

k (η, x)],

where ak and a†
k are annihilation and creation operators, respectively. In addition,

the uk(η, x) function satisfies the following orthonormality conditions: (uk, uk′) = δ3(k −
k′), (u∗

k , u∗
k′) = −δ3(k− k′), and (uk, u∗

k′) = 0, according to the Klein–Gordon scalar product,

defined by

(ui, uj) = −i
∫

dΣnµ(ui∂µu∗
j − u∗

j ∂µui),

Here, dΣ denotes the volume element of the hypersurface (Σ), and nµ is a future-directed,

time-like unit vector orthogonal to Σ. Due to the invariance of spacetime with respect

to spatial translation, the solutions of Equation (2) can be separated into spatial and

temporal components, i.e., uk(η, x) = (2π)−
3
2 a−1(η)eik·x fk(η), where, under leading order

in anisotropic perturbation (hj), the mode function ( fk(η)) satisfies

[

ηµν∂µ∂ν + m2
]

fk(η) + V(η) fk(η) = 0, (3)

where V(η) = [a2(η) − a2(−∞)]m2 + (ξ − 1
6 )a2(η)R(η) − ∑

3
j=1 hj(η)k

2
j . The solution of

Equation (3) is usually difficult because the limited number of scales only allows for an exact

calculation of the Bogoliubov coefficients. However, simple expressions for the Bogoliubov

coefficients can be obtained by performing a perturbation calculation and treating V(η)

as a small parameter. A perturbative method for addressing particle creation in curved

spacetimes was notably developed by Zel’dovich and Starobinsky [45] and later refined in

the formalism introduced by Birrell and Davies [46], providing simplified expressions for

Bogoliubov coefficients. According to Birrell and Davies, we may treat V(η) as small to

solve Equation (3) using an iterative method to the lowest order in V(η). Thus, the integral

form of Equation (3) becomes

fk(η) = f in
k (η) +

1

ω

∫ η

−∞
V(η′) sin(ω(η − η′)) fk(η

′)dη′, (4)

where f in
k (η) is the free-wave solution propagating from the in-region, defined by f in

k (η) =

(2ω)−
1
2 e−iωη , with ω =

√
k2 + m2. For the calculation of the Bogoliubov coefficients, it

suffices to notice that in the limit (η −→ ∞), fk(η) can be written in terms of the mode

functions ( f in
k (η)) as

f out
k (η) = (2ω)−

1
2

[

αke−iωη + βkeiωη
]

, (5)

where the Bogoliubov coefficients result as

αk = 1 +
i√
2ω

∫ ∞

−∞
eiωη′V(η′) fk(η

′)dη′,

βk = − i√
2ω

∫ ∞

−∞
e−iωη′V(η′) fk(η

′)dη′. (6)

We require that V(η) vanishes sufficiently rapidly in the past and the future regions

so that the above integrals converge to asymptotic limits( η → ±∞). By assuming V(η) to
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be small, we can use fk(η) ∼= f in
k (η), and the Bogoliubov coefficients in the first order of

V(η) are given by

αk = 1 +
i

2ω

∫ ∞

−∞
V(η′)dη′,

βk = − i

2ω

∫ ∞

−∞
e−2iωη′V(η′)dη′. (7)

3. The Scale Factor

In this study, the adopted emerging model is based on the proposal of Ellis et al. [47,48],

in which the Universe begins from an Einstein static state, then evolves into an inflationary

epoch. An important feature in this model is that there is no time-like singularity. This

scenario provides a well-defined spacetime for the semi-classical treatment of quantum

field theory. In particular, this approach allows us to define asymptotic vacua and perform

perturbative particle creation analysis using well-established Bogoliubov transformations.

In order to study the gravitational production of entanglement in an emergent universe

with low anisotropy, we consider the following the scale factor (a2(η)):

a(η) =
a0

1 − ea0 H0η
, (8)

where a0 and H0 are positive parameters. This scale factor represents a universe that

asymptotically tends toward an Einstein static model (a(η) → a0) in the distant past

(η → −∞), and it approaches a de Sitter expansion phase (a(η) → − 1
H0η0

) in the far future

(η → +∞), as illustrated in Figure 1.

Figure 1. Illustration of an emergent universe. The Universe originates from an Einstein static state,

then evolves into an inflationary epoch. ηt represents the transition time.

In this model, the scalar curvature can be expressed as

R(η) =
6a′′(η)
a3(η)

= 6H0ea0 H0η(1 + ea0 H0η). (9)

Here, the prime indicates the derivative with respect to η. In addition, let us assume ϵj(η)

to be

ϵ1(η) = e−H0η2
, ϵ2(η) = −1

2
e−H0η2

, ϵ3(η) = −1

2
e−H0η2

. (10)
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This choice is in accordance with the condition of ∑
3
j=1 ϵj(η) = 0. By inserting the explicit

forms of V(η) and a(η) in αk and βk, we can write αk and βk as

αk = 1 + α
(m)
k + α

(ξ)
k + α

(ϵ)
k ,

βk = β
(m)
k + β

(ξ)
k + β

(ϵ)
k ,

(11)

where, for the leading order in ϵ, we find

α
(m)
k =

−ia2
0m2

ω
, (12)

β
(m)
k =

m2(a0H0 − 6iω)

2ωa2
0H2

0

π

sinh( 2πω
a0 H0

)
, (13)

α
(ξ)
k = (6ξ − 1)

ia2
0H2

0

ω
, (14)

β
(ξ)
k = −(6ξ − 1)

a0H0

2ω

π

sinh( 2πω
a0 H0

)
, (15)

α
(ϵ)
k =

−i

2ω

√

π

H0

(

k2
1 −

1

2
k2

2 −
1

2
k2

3

)

, (16)

β
(ϵ)
k =

−ie
− ω2

H0

2ω

√

π

H0

(

k2
1 −

1

2
k2

2 −
1

2
k2

3

)

(17)

In the next section, we use the Bogoliubov coefficients found here to investigate

the influence of each of these independent contributions on entanglement entropy and

quantum coherence.

4. Particle Creation Entropy

For any arbitrary inertial observer, we can expand the solution of the motion equation

as a sum of positive-frequency and negative-frequency solutions in asymptotic regions

in the past (in-region) and in the future (out-region). Thus, we have two equivalent

representations for the scalar field:

ϕ(x, η) =
∫

d3k[ain
k uin

k + ain†
k uin∗

k ] =
∫

d3k[aout
k uout

k + aout†
k uout∗

k ],

where the annihilation operators (a
in(out)
k ) and creation operators (a

in(out)†
k ) satisfy the

usual commutation relation, i.e., [a
in(out)
k , a

in(out)†
k′ ] = δ3(k − k′) and [a

in(out)
k , a

in(out)
k′ ] =

[a
in(out)†
k , a

in(out)†
k′ ] = 0. By using the properties of the Klein–Gordon product, one can

expand the ladder operators associated with one basis in terms of ladder operators of the

other. For example, we have

aout
k = α∗k ain

k − β∗
k ain†

−k . (18)

where the αk and βk coefficients are the Bogoliubov coefficients defined as αk = (uout
k , uin

k )

and βk = −(uout
k , uin∗

k ). As a consequence of the conformal symmetry of the theory,

the computation of the Bogoliubov coefficients takes a diagonal form, and the Bogoliubov

transformation only mix modes of the same k. Note also that the condition of V(η) → 0 as

η → ±∞ will certainly be satisfied if spacetime is to be asymptotically flat in the distant

past and the far future. More generally, it will be satisfied if one can define an adiabatic

vacuum state in one of he two regions. This is the case in our present problem, where

the in-region is an Einstein static state and the out-region is a de Sitter expansion phase.
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Thus, let us assume the initial vacuum state (in-vacuum) to be a Minkowski vacuum (|0⟩in)

and the out-vacuum (|0⟩out) to be an adiabatic vacuum state (de Sitter-invariant vacuum).

These vacuum states are defined as ain
k |0⟩in = 0, and aout

k |0⟩out = 0. If we now compute the

expectation value of the number operator in the asymptotic future (Nout
k = aout†

k aout
k ) when

the state of the field is the vacuum in the asymptotic past, we obtain

in⟨0|Nout
k |0⟩in = |βk|2. (19)

By plugging the Equation (11) into Equation (19), we find that

in⟨0|Nout
k |0⟩in = |β(m)

k + β
(ξ)
k + β

(ϵ)
k |2,

= |β(m)
k |2 + |β(ξ)

k |2 + |β(ϵ)
k |2 + 2R

[

β
(m)
k β

(ξ)
k + β

(m)
k β

(ϵ)
k + β

(ξ)
k β

(ϵ)
k

]

. (20)

This result implies that when β
(m)
k , β

(ξ)
k and β

(ϵ)
k are different from zero, one would

observe particle production due to the dynamics of spacetime expansion. In addition,

the relation between the different vacua is expressed by Schmidt decomposition as follows:

|0k⟩in =
∞

∑
n=0

ck
n|nk⟩out|n−k⟩out, (21)

which means that the in-vacuum state can be seen as a two-mode squeezed state of modes

k and −k by an observer in the out-region. The Schmidt coefficients (ck
n) encode Bogoliubov

coefficients and can be evaluated as

ck
n =

√

1 − γk

(

βk

αk

)n

,

where γk =
∣

∣

∣

βk
αk

∣

∣

∣

2
. The amount of entanglement between particle and anti-particle modes

in state (21) can be evaluated viathe von Neumann entropy of the reduced density ma-

trix (ρ̂out
k ), i.e.,

Sk = −Tr[ρ̂out
k log2 ρ̂out

k ], (22)

where

ρ̂out
k = Tr−k[|0k0−k⟩out⟨0k0−k|] = (1 − γk)

∞

∑
n=0

γn
k |nk⟩in⟨nk|.

After some algebraic manipulations, one obtains

Sk = − log2(1 − γk)−
γk

1 − γk
log2 γk. (23)

5. Alice and Bob in an Expanding Spacetime

In this section, we consider a setup in which two comoving observers, Alice and Bob,

possesses detectors sensitive to the same frequency mode of a massive scalar field. Initially,

let us assume that in-region (η → −∞) Alice and Bob share the maximally entangled state,

i.e.,

|ψAB⟩ =
1√
2
[|0A⟩|0B⟩+ |1A⟩|1B⟩]. (24)

Here, we suppose that the two detectors are assumed to be identical in all respects,

except that they are spatially separated by a space-like interval. During the expansion
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phase of the Universe, Alice perceives Bob as receding from her in her local comoving

frame. By using (21) and

|1k⟩in = ain†
k |0k⟩in,

= (αkaout
k − βkaout†

−k )
∞

∑
n=0

ck
n|nk⟩out|n−k⟩out,

= (1 − γk)
∞

∑
n=0

ck
n

√
n + 1|(n + 1)k⟩out|n−k⟩out,

we can rewrite Equation (24) as

|ψAB⟩ =
1√
2

∞

∑
n=0

[

ck
n|0A⟩|nk⟩out|n−k⟩out + dk

n|1A⟩|(n + 1)k⟩out|n−k⟩out

]

, (25)

where dk
n = (1 − γk)

(

βk
αk

)n√
n + 1.

Quantum resources such as coherence and entanglement are known to encode infor-

mation about the dynamical history of spacetime. By analyzing the quantum properties of

the entangled state (25), specifically the l1-norm coherence, it is possible to infer features

of the underlying spacetime structure, including anisotropies in an emergent universe

scenario. For simplicity, we assume that Bob’s detector is sensitive only to the particle

mode (k). Under this assumption, the reduced density operator describing the bipartite

system composed of Alice and Bob (mode k) is obtained by tracing over the antiparticle

mode (−k):

ρABk
= Tr−k[ρAB] =

(1 − γk)

2

∞

∑
n=0

γn
k ρn

ABk
,

where

ρn
ABk

= |0A, nk⟩⟨0A, nk|+ (1 − γk)(n + 1)|1A, (n + 1)k⟩⟨1A, (n + 1)k|
+

√

1 − γk

√
n + 1|0A, nk⟩⟨1A, (n + 1)k|+

√

1 − γk

√
n + 1|1A, (n + 1)k⟩⟨0A, nk|.

For simplicity, we omit the subscript "out" in the above expression. In the {|0A, nk⟩, |0A,

(n + 1)k⟩, |1A, nk⟩, |1A, (n + 1)k⟩} bases, we can write ρn
ABk

in the matrix form as follows:

ρn
ABk

=











1 0 0
√

1 − γk

√
n + 1

0 0 0 0

0 0 0 0√
1 − γk

√
n + 1 0 0 (1 − γk)(n + 1)











,

In this paper, we are interested in quantifying the effects of cosmic expansion and

the anisotropy of spacetime on the coherence and the quantum correlation of the final

state shared between Alice and Bob. In general, the off-diagonal elements of a density

matrix, when expressed in a chosen reference basis, characterize the coherence properties

of a quantum state. In 2014, Baumgratz et al. [24] established a rigorous framework for

quantifying coherence and identified computationally tractable measures for its evaluation.

According to authors, for the quantum state described by density matrix ρ, the quantum

coherence can be quantified in terms of the l1-norm coherence (Cl1), which is defined as

Cl1(ρ) = ∑µ ̸=ν |ρµν|, where Cl1(ρ) quantifies coherence as the sum of the absolute values of
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the off-diagonal elements of ρ. Therefore, the l1-norm coherence of quantum state ρABk
is

given by

Cl1(ρABk
) = (1 − γk)

3
2

∞

∑
n=0

√
n + 1γn

k . (26)

Here, we are particularly interested in identifying the conditions under which the

coherence of the final state becomes insensitive to variations in the expansion parameter,

a phenomenon referred to as coherence freezing [30,49]. To investigate this regime, we analyze

the derivative of the ℓ1-norm coherence (Cl1(ρABk
)) with respect to a generic parameter

(Γ, where Γ ∈ {a0, H0, m, k}). Specifically, coherence freezing occurs when this derivative

vanishes, indicating that the measure of coherence remains unchanged under further

increases in the Γ parameter. Thus, the necessary condition for freezing can be obtained

by evaluating
∂Cl1

∂Γ
= 0, (Freezing Condition).

In what follows, we compute this derivative explicitly and examine how the coherence

dynamics depend on the acceleration scale, field mass, and anisotropy.

∂Cl1

∂Γ
=

{

−3

2
(1 − γk)

1
2

∞

∑
n=0

√
n + 1γn

k + (1 − γk)
3
2

∞

∑
n=0

n
√

n + 1γn−1
k

}

∂γk

∂Γ
. (27)

This equation vanishes only under two conditions: either γk = 1, which corresponds

to a trivial solution, or ∂γk
∂Γ

= 0. The latter defines a nontrivial condition for the emergence

of a frozen coherence regime. Consequently, such regimes can be identified through the

numerical analysis of the ∂γk
∂Γ

derivative. In the following section, we demonstrate that

distinct freezing regimes arise depending on the specific values of the model parameters.

6. Numerical Results

In order to realize the numerical analysis, let us assume that wave vector
−→
k = (k1, k2, k3)

has a general direction specified by spherical coordinates (k, θ, ϕ) as
−→
k = kx sin θ cos ϕêx +

ky sin θ sin ϕêy + kz cos θêz, where k2 = k2
x + k2

y + k2
z. Notice that the effects of the anisotropy

are expected to depend upon the direction of the particle momentum. Thus, the influence

of anisotropy on the entanglement entropy, coherence, and quantum correlation can be

quantified by the azimuthal angle (ϕ) and the polar angle (θ).

Figure 2 shows particle creation entropy as a function of the a0 parameter for different

values of the azimuthal angle (ϕ). Notice that entanglement entropy exhibits non-monotonic

spectral behavior, i.e., entanglement entropy initially increases to a maximum value, then

decreases to a fixed value. This suggest that spacetime’s dynamics of an emergent universe

can produce non-local quantum correlation. In addition, there is an optimal value of a0

that favors the encoding of information about the effects of spacetime’s dynamics of an

emergent universe. Another thing to note is that the behavior of entanglement entropy is

very similar for minimal (ξ = 0) and conformal (ξ = 1/6) coupling.

In Figure 3, we plot the coherence equation (Equation (26)) as a function of the

expansion parameter (a0). The results show that the coherence initially decreases to a

minimum value and subsequently increases, approaching unity as a0 increases.
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Figure 2. Entanglement entropy as a function of the a0 parameter for different values of the azimuthal

angle (ϕ). (a) ξ = 0; (b) ξ = 1/6. Here, we fixed k = 1, m = 1.1, H0 = 0.5, and θ = π/2.
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Figure 3. Coherence as a function of the a0 parameter for different values of the azimuthal angle (ϕ).

(a) ξ = 0; (b) ξ = 1/6. Here, we fixed k = 1, m = 1.1, H0 = 0.5, and θ = π/2. (c) Coherence as a

function of the a0 parameter for different values of the H0 parameter. Here, we fixed k = 1, m = 1.1,

ξ = 0, and θ = ϕ = π/2. (d) Coherence as a function of the a0 parameter for different values of m.

Here, we fixed k = 1, H0 = 0.5, ξ = 0, and θ = ϕ = π/2.

Figure 3a,b illustrate that the minimum value of coherence increases as the ϕ parameter

varies from 0 to π/3, indicating the influence of anisotropy on the coherence of the final

state shared between Alice and Bob. Regarding the effect of the coupling parameter (ξ) on

coherence, the behavior remains qualitatively similar for minimal coupling (ξ = 0) and

conformal coupling (ξ = 1/6), as shown in the same figures. In contrast, Figure 3c,d reveal

that the minimum coherence gradually diminishes as either H0 or m increases. Notably,

coherence remains unchanged for sufficiently large values of H0 or m, suggesting the

emergence of a frozen coherence regime when H0 ≳ 0.80 or m ≳ 2.5.

Figure 4 shows the behavior of ∂γk
∂Γ

with respect to the set parameters of {a0, H0, m, k}.

This numerical analysis of ∂γk
∂Γ

provides the dynamical conditions that lead to coherence

freezing. From Figure 4a, we can see that ∂γk
∂a0

exhibits oscillatory behavior for values of

a0 between 0.5 and 4.5. In addition, notice that there are two frozen coherence regimes

when a0 ≲ 0.5 and a0 ≳ 4.5. This suggests that coherence freezing can occur in both early

(quasi-static) and late (quasi-de Sitter) phases of an emergent universe. Figure 4b shows that

when H0 ≳ 0.80, ∂γk
∂H0

→ 0, implying that rapid expansion suppresses curvature-induced

mode mixing. Similarly, Figure 4c,d show that coherence freezing occurs for field masses of
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m ≳ 2.5 and momenta of k ≳ 2.2, highlighting the significance of high-energy modes in the

stabilization of quantum coherence.
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Figure 4. (a) ∂γk

∂a0
as a function of the a0 parameter. Here, we fixed ξ = 0, k = 1, m = 1.1, H0 = 0.5,

and θ = ϕ = π/2. (b) ∂γk

∂H0
as a function of the H0 parameter. Here, we fixed ξ = 0, k = 1, m = 1.1,

a0 = 1, and θ = ϕ = π/2. (c) ∂γk

∂m as a function of the mass (m). Here, we fixed ξ = 0, k = 1,

a0 = 1, H0 = 0.5, and θ = ϕ = π/2. (d) ∂γk

∂k as a function of the k parameter. Here, we fixed ξ = 0,

m = 1.1,a0 = 1, H0 = 0.5, and θ = ϕ = π/2.

The results depicted in Figure 4 demonstrate that coherence freezing occurs when the

values of the {a0, H0, m, k} parameters lie within the specific regimes outlined in Table 1.

Within these regimes, the l1-norm coherence becomes effectively insensitive to variations in

the expansion parameters, suggesting that the quantum features of the bipartite state shared

by comoving observers remain preserved throughout the cosmic evolution of the emergent

Universe. The origin of this robustness of coherence can be attributed to the suppression of

particle creation (|βk| → 0). This corroborates the fact that the weak curvature of spacetime

or high-frequency modes minimizes the impact of curvature-induced mode mixing, thereby

protecting quantum resources.

Table 1. Frozen coherence regimes.

Parameter

Spacetime 0.5 ≳ a0 ≳ 4.5
Spacetime H0 ≳ 0.80

Field m ≳ 2.5
Field k ≳ 2.2

In contrast to isotropic models, such as those investigated in Refs. [35,39,40], our

findings suggest that the presence of anisotropy introduces a directional dependence in

the evolution of quantum features. In particular, coherence exhibits sensitivity to the

azimuthal angle (ϕ), which serves as a direct probe of the spacetime anisotropy. In addition,

the freezing regimes identified in this work are obtained within the approximation of a

purely classical background spacetime. In such regimes, the quantum scalar field does

not significantly alter the geometry (i.e., backreaction is neglected). Our findings offer

a preliminary characterization of the behavior of quantum coherence in an anisotropic
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expanding spacetime. It is important to emphasize that the results presented here are

model-dependent. Nevertheless, the observed qualitative features, such as the directional

dependence of quantum coherence and the emergence of freezing regimes, are expected to

be generic properties of non-singular cosmological models exhibiting asymptotic behavior

with small anisotropic perturbations.

7. Concluding Remarks

In summary, we have investigated the dynamics of quantum coherence in an

anisotropic emergent universe. In particular, we studied how cosmic expansion, frequency

modes, and small anisotropic perturbations affect quantum coherence encoding in the

modes of a massive scalar field. First, our numerical analyses show that the presence

of anisotropy introduces a directional dependence in the dynamics of quantum features,

i.e., the quantum coherence exhibits sensitivity to the azimuthal angle (ϕ), which serves as

a direct probe of the spacetime anisotropy. Secondly, we found the emergence of frozen

coherence regimes when the {a0, H0, m, k} parameters lie within particular ranges, as sum-

marized in Table 1. The origin of these frozen regimes can be attributed to the suppression

of Bogoliubov mode mixing and, consequently, to reduced particle creation (|βk| → 0).

Additionally, the analysis of ∂γk
∂Γ

= 0, where Γ ∈ {a0, H0, m, k} (Figure 4) shows that

high-frequency modes and large expansion rates contribute significantly to the stability of

coherence. These findings support the physical interpretation according to which quantum

features can remain robust during the early expansion phases of the Universe, provided

that the spacetime curvature and anisotropy are not strong enough to induce significant

particle creation. According to our findings, the identification of coherence freezing regimes

in expanding spacetimes offers promising avenues for the exploration of the persistence

of quantum properties in the early Universe and their potential relevance to quantum

information theory in relativistic contexts. This approach can be extended to other types of

quantum fields, non-Gaussian initial states, and more general cosmological backgrounds

such as bouncing and cyclic models. These directions are left for future investigation.
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