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1 Introduction

Despite the overwhelming evidence for its existence, a conclusive particle description of
dark matter (DM) has yet to be found. In fact, the standard, minimal WIMP paradigm is
increasingly constrained by direct-detection experiments [1–3] and as a result more exotic dark
sectors (DS) are currently being explored. In particular, setups in which DM annihilations are
resonantly enhanced by additional DS states have recently gained a lot of attention [4–15]. If
a DS contains a mass state R that has approximately twice the mass of the DM particle χ, i.e.

mR = mχ(2 + δR) with δR ≪ 1 , (1.1)

DM annihilations into Standard Model (SM) states of the form χχ̄ → R → SM SM are
resonantly enhanced. If this enhancement happens during the time of DM freeze-out, it is
possible to obtain the correct relic abundance for comparatively small couplings [4, 12, 14],
thus avoiding some of the experimental constraints that plague the usual WIMP scenario.
In addition, small-scale structure problems, such as the cusp vs. core problem [16] and
the diversity problem [17, 18] suggest that DM self-interactions be velocity dependent,
in order to solve the discrepancy between the observed strengths of self-interactions at
the scales of galaxies and galaxy clusters [19, 20]. Initially, this velocity-dependence was
accommodated for via the inclusion of light dark mediators [21, 22]. However, it has recently
been shown that a similar effect can also be achieved if the DM self-interaction cross-section
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is velocity independent but instead resonantly enhanced for typical velocities in galaxy-sized
DM halos [14, 15, 23]. To accommodate this effect, rather small mass splitting are required,
i.e. δR ∼ 10−8 for s- and/or p-wave resonances.

One implication of such scenarios is that residual DM annihilations — i.e. those annihi-
lations that proceed out-of-equilibrium even after DM freeze-out has already concluded —
can still have a significant impact at late times due to the increasingly efficient annihilation
process [14]. In the early Universe, these annihilations might for example still inject a
significant amount of electromagnetic energy into the SM heat bath, which can be constrained
by cosmological observations including those from Big Bang Nucleosynthesis (BBN) [24–31]
and the Cosmic Microwave Background (CMB) [32, 33]. For non-resonant annihilations,
the resulting CMB bounds are typically found to be dominant for s-wave annihilations [34],
whereas the corresponding BBN observations outperform the CMB ones in the case of p-
wave annihilations [27]. The latter constraints have previously already been studied for
GeV-scale [35–37] and MeV-scale particles [27]. However, in these works the annihilation
cross-section was assumed to be non-resonant, i.e. of the form ⟨σannv⟩ = a + b⟨v2⟩ with
some constants a and b, describing s- and p-wave annihilations, respectively. Additionally,
velocity dependent cross sections of the form ⟨σannv⟩ ∝ v−n have been studied for fixed n = 1
and n = 2, which describe Sommerfeld and — to some extent — Breit-Wigner enhanced
annihilations [38]. The explicit connection to dark sectors with a resonant state has not
been made, since the corresponding annihilation cross section cannot be described by a fixed
n-scaling. Thus, either form of the cross-section is not applicable to the case of resonant
annihilations, meaning that the resulting constraints are not yet known. Calculating these
limits will be the main focus of this work.

In a nutshell, the term BBN describes a process in the early Universe during which the
first light nuclei were synthesized. Remarkably, when modeling this process within the ΛCDM
framework, the predicted abundances of the various light elements agree exceptionally well
with cosmological observations [39]. On the flip-side, any model featuring processes that go
beyond the ΛCDM paradigm therefore have the potential to spoil this agreement, which can
be used to put constraints on non-ΛCDM model parameters. For the scenarios considered in
this work, there are two main effects that can influence the formation of light elements: on
the one hand, any particle in the DS that is still relativistic at the time of BBN significantly
changes the expansion history of the Universe and thus the final composition of light elements.
This leads to a model-independent bound on the presence of light relics, which excludes DM
masses below ∼ 10 MeV and has already been studied in the literature [27]. We will therefore
not reproduce this bound in the present work. On the other hand, (resonantly-enhanced)
residual DM annihilations might inject large amounts of electromagnetic material into the SM
plasma after BBN has already concluded. If these non-thermal annihilation products carry
enough energy, they can efficiently break apart the previously created elements via the process
of photodisintegration (cf. [26, 40, 41] and references therein), thus leading to abundances
that are potentially in conflict with observation. Calculating the resulting constraints from
photodisintegration is a main focus of this work.

There already exists the public code ACROPOLIS [25, 28, 29], which can be used to
derive photodisintegration constraints for a variety of different scenarios. However, when it
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comes to residual DM annihilations, as of v1.2.2, ACROPOLIS can only handle non-resonant
annihilations. With this work, we therefore update ACROPOLIS to v1.3.0, which is made
publicly available and — besides other improvements — includes a model that allows to
calculate photodisintegration constraints for resonantly-enhanced DM annihilations in a
programmatic manner. The implementation is thereby done in a rather model-independent
way, by only making minor assumptions about the DS. Using this model, we then calculate
the corresponding constraints for s- and p-wave annihilations, and show that especially in
the latter case, resonantly-enhanced annihilations can lead to stronger constraints than in
the vanilla, i.e. non-resonant, scenario.

This paper is structured as follows: in section 2, we review the most important steps that
are necessary to calculate constraints from photodisintegration as implemented in ACROPOLIS.
In section 3, we present the model-independent setup that we use to model resonant DM
annihilations, and in section 4, we discuss our implementation of this setup within ACROPOLIS.
In section 5, we present example results obtained via this implementation for s- and p-wave
annihilations. Finally, we conclude in section 6. The updated version of ACROPOLIS is made
available at https://github.com/hep-mh/acropolis.

2 The basic principles of photodisintegration

In this section, we first review the basic principles of photodisintegration as well as the
steps that are needed to calculate the corresponding constraints. Thereby, we put special
emphasis on residual DM annihilations as well as the relevant formulae that are used within
ACROPOLIS (for more details, see [28]).

In the early Universe, any electromagnetic material that is injected into the SM heat
bath via processes of the form X → γγ or X → e+e− will induce an electromagnetic
cascade via interactions with the background plasma. More precisely, denoting thermal
background particles with a subscript ·th, injected photons will scatter with the background
via electron-positron pair creation γγth → e+e−, photon-photon scattering γγth → γγ, pair
creation on nuclei γN → Ne+e− and/or Compton scattering γe−

th → γe−, while injected
electrons/positrons mainly undergo inverse Compton scattering e±γth → e±γ. As a result
of this cascade, the injected particles X ∈ {e−, e+, γ},1 assume characteristic non-thermal
spectra fX ,2 which can be determined by solving the cascade equation (dropping the T
dependence for convenience) [25, 40, 44]

fX(E) = 1
ΓX(E)

(
SX(E) +

∫ ∞

E
dE′∑

X′

KX′→X(E,E′)fX′(E′)
)
. (2.1)

1Sufficiently heavy DM particles can also inject hadronic particles like pions and nucleons, which can
additionally influence the neutron-to-proton ratio and participate in hadrodisintegration reactions. These
effects have mostly been studied in the case of DM decays into hadrons [42–46], in which case the bounds are
stronger compared to exclusive EM final states [47]. In the case of annihilations, such effects become relevant
for mχ > mπ and we expect them to lead to even stronger constraints [35]. However, in this work, we assume
that the DM annihilations exclusively inject electromagnetic material, and we leave the study of the effects of
potential hadronic injections for future work.

2These spectra are normalized in such a way that
∫

fXdE = nX .
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Here, ΓX(E) is the total scattering rate of particle X at energy E, KX′→X(E,E′) is the
differential scattering rate of particle X ′ with energy E′ into particle X with energy E, and
SX(E) is the source term describing the amount of injected X particles with energy E.

Notably, the source term SX(E) depends on the exact type of the injection and is usually
split into a monochromatic part S(0) and a continuous part S(c), i.e.

SX(E) = S
(0)
X δ(E − E0) + S

(c)
X (E) , (2.2)

with the maximal injection energy E0. In the case of DM annihilations, i.e. for injections
of the form χχ̄ → γγ or χχ̄ → e+e−, we have E0 = mχ.3 In this case, the monochromatic
source terms are given by the product of the thermally averaged annihilation cross-section
⟨σannv⟩ and the square of the DM number density nχ [27, 40], i.e.

S
(0)
e− = S

(0)
e+ = 1

2n
2
χ⟨σannv⟩χχ→e+e− and S(0)

γ = n2
χ⟨σannv⟩χχ→γγ . (2.3)

Additionally, the continuous source terms are non-zero only for photons and encode the
additional energy injection due to final-state radiation of the form χχ̄ → e+e−γ [26],

S(c)
γ (E) =

n2
χ⟨σannv⟩χχ→e+e−

2mχ

α

π

1 + (1 − y)2

y
ln
(

4m2
χ(1 − y)
m2

e

)
Θ
(

1 − m2
e

4m2
χ

− y

)
, (2.4)

with y = E/mχ. By using the given source terms as an input, the non-thermal photon spec-
trum resulting from the electromagnetic cascade is then obtained as the solution of eq. (2.1).
After the cascade, the non-thermal photons will engage in photodisintegration reactions of
the form γN → [. . . ] with any of the light elements N ∈ {n, p,D, 3H, 3He, 4He, 7Li, 7Be}. The
resulting evolution of the different abundances YN ≡ nN/nb normalized to the baryon-density
nb, is then obtained by solving the Boltzmann equation [27, 41, 48]

dT
dt

dYX

dT =
∑
Ni

YNi

∫ ∞

0
dE fγ(E)σγ+Ni→X(E) − YX

∑
Nf

∫ ∞

0
dE fγ(E)σγ+X→Nf

(E) , (2.5)

with σγ+[... ]→[... ](E) being the cross-sections for the various disintegration reactions (for a
list of all relevant reactions, see e.g. [28]). Given a set of initial abundances Y (0)

X — in this
work, we use the abundances resulting from standard BBN —, as well as the spectrum
fγ(E) from eq. (2.1), the solution of this equation then predicts the final abundances of
the various elements after the process of photodisintegration, which can afterwards be
compared to observations. Here, we employ the most recent measurements as implemented
in ACROPOLIS, i.e.

Yp 0.245 ± 0.003 , [39] (2.6)
D/1H (25.47 ± 0.25) × 10−6 , [39] (2.7)
3He/D (8.3 ± 1.5) × 10−1 . [49] (2.8)

Given an implementation of the relevant source terms in eq. (2.3), which depend on
the underlying injection mechanism, all of the above steps can be handled by ACROPOLIS.

3Since residual annihilations happen after DM freeze-out, the DM particles can be assumed to be at rest.
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Specifically, ACROPOLIS can solve both eqs. (2.1) and (2.5), and afterwards compare the
resulting abundances with the most recent observations. In the process, the code can also
incorporate theoretical uncertainties on the nuclear reactions rates by running the same
calculation with three different sets of initial conditions, which have been calculated using
the mean, low and high values of the rates in question. The theoretical and experimental
uncertainties can then be combined to infer the resulting limits at 95% C.L. Regarding the
source terms, however, as of v1.2.2, ACROPOLIS only provides implementations for residual
DM annihilations with cross-sections of the form ⟨σannv⟩ = a+b⟨v2⟩ and constants a, b, which
is not a valid parametrization in case of resonantly-enhanced annihilations. Consequently, in
order to fully make use of the given machinery, we have to replace the annihilation cross-
section implemented in ACROPOLIS with one that is more suitable for resonantly-enhanced
annihilations.

3 Model description

3.1 The annihilation cross-section

In this paper, we employ a fairly model independent description of resonant DM annihilations;
however, for concreteness, we will later also consider three specific benchmark scenarios
(cf. table 1). Following [23], the total cross-section σann for resonant annihilations of non-
relativistic (NR) DM particles can be written in the Breit-Wigner form [50]

σann(v) = 4πS
mχE(v)

Γd(v)Γv(vf )/4
[E(v) − E(vR)]2 + Γ(v)2/4 . (3.1)

Here, v is the relative velocity between the initial-state DM particles, vf = vf (v) is the
relative velocity between the final-state SM particles, and vR = 2

√
δR. Moreover, Γv(v) and

Γd(v) are the partial (running) decay widths into visible- and dark-sector states, respectively,
Γ(v) = Γv(v) + Γd(v), and S is a symmetry factor. Using E(v) = mχv

2/4 as well as the
individual DM momentum p = mχv/2, eq. (3.1) takes the alternative form

σann(p) = 4πS
p2

m2
χΓd(p)Γv(pf )/4

(p2 − p2
R)2 +m2

χΓ(p)2/4 (3.2)

with pR = mχ

√
δR, pf (p) =

√
m2

χ + p2 −m2
f , and the final-state particle mass mf . Adapting

the parametrization from [23], the (partial) decay widths can be written as

Γv(p) = γvmR

(
p

mχ

)2nv+1

and Γd(p) = γdmR

(
p

mχ

)2nd+1

. (3.3)

Here, γv and γd are some coupling constants that depend on the underlying model parameters,
and the parameters nv and nd distinguish between s-wave (n· = 0) and p-wave annihilations
(n· = 1). In the following, we will for simplicity assume that the DM particles annihilate
predominately into electrons, in which case nv = 1.

Given the cross-section from eq. (3.2) and assuming Maxwell-Boltzmann statistics for all
interacting particles, the corresponding thermally averaged cross-section is given by [51]

⟨σannv⟩ = x

8m5
χK

2
2 (x)

∫ ∞

4m2
χ

ds σann(s)(s− 4m2
χ)

√
sK1(

√
sx/mχ) (3.4)
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with the DM temperature Tχ = mχ/x and the center-of-mass energy s/4 = m2
χ + p2. For

non-relativistic DM particles, we have x ≫ 1 and p ≪ mχ, in which case K1(x) ≃ K2(x) ≃√
π/(2x)e−x as well as

√
s ≃ 2mχ + p2/mχ. Consequently, eq. (3.4) simplifies to

⟨σannv⟩ ≃ 4x3/2

m4
χ

√
π

∫ ∞

0
dp2 p2σann(p)e−p2x/m2

χ . (3.5)

This expression directly maps onto the source terms in eq. (2.3), and given that we focus
on DM annihilations into electron-positron pairs, we can identify ⟨σannv⟩χχ→γγ = 0 and
⟨σannv⟩χχ→e+e− = ⟨σannv⟩.

While eq. (3.5) can be used to calculate the thermally averaged annihilation cross-section
in a general manner, it can also be further simplified within certain limits. In the narrow-width
approximation (NWA), which is valid for Γ(pR)/mR ≪ 1, eq. (3.2) becomes

σres
ann(p) NWA≃ 8π2S

p2
mχΓd(p)Γv(pf )/4

Γ(p) δ(p2 − p2
R) , (3.6)

which implies that the thermally averaged annihilation cross-section around the resonance
is given by

⟨σannv⟩res ≃ 8S(πx)3/2

m3
χ

Γd(p)Γv(pf )
Γ(p)

∣∣∣
p=pR

e−δRx

= 8S(πx)3/2m2
R

m3
χ

γvγdδ
nd+1/2
R

Γ(pR) e−δRx . (3.7)

In the last step, we have used pf (pR) =
√
m2

χ(1 + δR) +m2
f ≃ mχ for mχ/mf ≫ 1 and

consequently Γv(pf (pR)) ≃ γvmR as well as Γd(pR) = γdmRδ
nd+1/2
R . Far away from the

resonance, i.e. once the DM velocity has dropped significantly below the resonance velocity, we
instead have (p2 − p2

R)2 ≃ p4
R = m4

χδ
2
R ≫ Γ(p), meaning that the non-resonance contribution

to the cross-section is approximately given by

σnon-res
ann (p) ≃ πS

p2
Γd(p)Γv(pf )

m2
χδ

2
R

. (3.8)

Plugging this expression back into eq. (3.5) and using pf (p) ≃ mχ, we then find

⟨σannv⟩non−res ≃ 4S
√
πγvγdm

2
R

m4
χδ

2
R

x−ndΓ̄(nd + 3/2) , (3.9)

with Γ̄ being the gamma function. As expected, we obtain ⟨σannv⟩non−res ∝ x0 = const in
the case of s-wave annihilations with nd = 0, as well as ⟨σannv⟩non−res ∝ x−1 = Tχ/m ∝ ⟨v2⟩
in the case of p-wave annihilations with nd = 1. More precisely,

nd = 0 : ⟨σannv⟩non−res = 2Sπγvγd

m2
χ

(2 + δR)2

δ2
R

≡ a (3.10)

nd = 1 : ⟨σannv⟩non−res = 3Sπγvγd

m2
χ

(2 + δR)2

δ2
R

1
x

≡ 6b
x
. (3.11)
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ID model χ R Lagrangian nd γd γv S

(1) 2 Scalars (φ + Φ) φ Φ g1φφΦ + g2ēeΦ 0 g2
1

64πm2
φ

g2
2

8π
1
2

(2) Fermion (ψ) + Vector (A′
µ) ψ A′

µ g1ψ̄γ
µψA′

µ + g2ēγ
µeA′

µ 0 g2
1

8π
g2

2
12π

3
4

(3) Scalar (φ) + Vector (A′
µ) φ A′

µ g1φ
†
↔
∂µφA

′µ + g2ēγ
µeA′

µ 1 g2
1

48π
g2

2
12π

3
2

Table 1. Overview of the three benchmark models with UV parameters linked to the dimensionless
parameters γd and γv. Here, we explicitly assume that the particle R couples exclusively to electrons.

Using the latter two equations, it is possible to map the parameters γv, γd, δR, and S onto
the constants a and b, which are usually used to parameterize non-resonant DM annihilations
via ⟨σannv⟩ = a+ b⟨v2⟩. We will make use of this relation again at a later point (cf. section 5)
in order to establish a meaningful comparison between resonant and non-resonant DM
annihilations.

At this point, it is worth noting that our description so far has been rather model-
independent. To utilize the above formulae for a concrete scenario, it is thus necessary to
deduce the values of nd, S, γd, and γv from the actual model parameters. For this work,
we have performed this deduction for three different benchmark models, namely for (1) a
scalar DM particle φ with a scalar resonance Φ, (2) a fermionic DM particle ψ with a vector
resonance A′

µ, and (3) a (complex) scalar DM particle φ with a vector resonance A′
µ. The

corresponding parameter relations for these benchmark models are summarised in table 1.

3.2 The dark-sector temperature

To evaluate the thermally averaged annihilation cross-section in eq. (3.5), we still need to
know the evolution of the DS temperature Tχ, which critically depends on the temperature
Tkd at which the DM particles decouple kinetically from the SM heat bath, i.e. [27, 52]

Tχ(T ) =

T for T ≥ Tkd

TkdR(Tkd)2/R(T )2 for T < Tkd
, (3.12)

with the scale factor R and R(Tkd)2/R(T )2 = T 2/T 2
kd since photodisintegration is only

relevant for T < O(1) keV ≪ me [25].
In order to calculate Tkd, let us recall that we focus on scenarios with DM annihilations

that proceed exclusively into electron-positron pairs (cf. table 1), in which case kinetic
equilibrium between χ and the SM heat bath is maintained via reactions of the form
χe± ↔ χe±. Following [53], we approximate Tkd by comparing the Hubble rate H, with the
relaxation time τr ≃ Ncol/Γel, which is the time needed to restore kinetic equilibrium. Here,
Γel is the elastic scattering rate and Ncol ≃ max{1,mχ/T} is the number of collisions needed
to redistribute any temperature differences between the two sectors. For a given elastic
scattering cross-section σχe±↔χe± , we thus estimate the kinetic decoupling temperature via
the relation, 1/τel(Tkd) ∼ H(Tkd), or more explicitly (Γel = ne⟨σχe±↔χe±v⟩)

ne(Tkd)⟨σχe±↔χe±v⟩(Tkd)
Ncol(Tkd) ∼ H(Tkd) . (3.13)
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ID σχe±↔χe±(s) × s2m4
R/(4πγdγv)

(1) 4m2
χ

[
s2 − 2s(m2

χ − 3m2
e) + (m2

e −m2
χ)2]

(2) 4s3 − 10s2(m2
χ +m2

e) + s(9m4
χ + 22m2

χm
2
e + 9m4

e) − 4(m4
χ −m4

e)(m2
χ −m2

e) + (m2
χ −m2

e)4/s

(3) 18
[
m4
χ(m2

e + s) − 2m2
χ(m2

e − s)2 + (m4
e − s2)(m2

e − s)
]

Table 2. The cross-section σχe±↔χe± for the three benchmark models shown in table 1 in terms of
the parameters γv and γd as well as the masses mχ ∈ {mφ,mψ} and mR ∈ {mΦ,mA′}.

This expression involves the number density ne of electrons and positrons, as well as the
thermally averaged cross-section (assuming Maxwell-Boltzmann statistics)

⟨σχe±↔χe±v⟩ ≃ 1
2Tm2

χm
2
eK2(me/T )K2(mχ/T )

∫ ∞

(mχ+me)2
ds σχe±↔χe±(s)pχe(s)2√

sK1(
√
s/T )

(3.14)

with

pχe(s) = [s− (mχ +me)2]1/2[s− (mχ −me)2]1/2

2
√
s

. (3.15)

At T = Tkd, the electrons/positrons may already be non-relativistic, in which case the
baryon-asymmetry of the Universe becomes important for evaluating ne. For this reason,
we parameterize the corresponding number density as

ne(T ) ≃ max
{
neq

e (T ), nasym
e (T )

}
(3.16)

with

neq
e (T ) = ge

∫ d3p

(2π)3
1

exp(E/T ) + 1 and nasym
e (T ) ≃

(
Yp + 2Y4He

)
nb(T ) . (3.17)

Here, ge = 4, nb = 2ζ(3)ηT 3/π2 is the baryon number density with the baryon-to-photon
ratio η, and Yp = np/nb (Y4He = n4He/nb) is the abundance of protons (helium-4) with the
corresponding number density np (n4He). For large temperatures, we therefore determine the
density of electrons and positrons via their thermal distributions, while for low temperatures
only electrons remain (ne+ ≃ 0) with a density determined by the baryon asymmetry of the
Universe. Using this expression, it is thus possible to evaluate Tkd and consequently Tχ and
⟨σannv⟩, which ultimately enables the evaluation of the source terms in eq. (2.3).

At this point, let us note that the general form of σχe±↔χe± and thus the corresponding
value of Tkd is naturally model dependent. In order to account for this fact, while also being
able to present more general (model-independent) results, in the following (cf. section 5) we
discuss both fixed values of Tkd (analogues to [27]) as well as dynamic values of Tkd based on
eq. (3.13) and the three benchmark models shown in table 1. The corresponding expressions
for σχe±↔χe± are summarized in table 2.

Finally, to demonstrate the impact of Tkd on the overall results, in figure 1 we show
the thermally averaged cross-section as a function of mχ/T for s-wave (blue) and p-wave
annihilations (red), δR = 10−3 (left) and δR = 10−4 (right), as well as Tkd = 0.1 MeV (solid)
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Figure 1. The thermally averaged cross-section as a function of temperature for s-wave (blue)
and p-wave (red) annihilations for δR = 10−3 (left) as well as δR = 10−4 (right). Here, we choose
mχ = 10 MeV, γd = 10−3 and γv = 10 × δ2

R, with the latter choice ensuring that a (b) is constant
for s-wave (p-wave) annihilations. We compare the evolution of the cross-section in case of kinetic
decoupling at Tkd = 0.1 MeV (solid), as well as without kinetic decoupling, i.e. Tkd = 0 (dashed).

and Tkd = 0 (dashed). For this plot, we fix mχ = 10 MeV, γd = 10−3 and γv = 10 × δ2
R,

with the latter choice ensuring that a (b) is constant for s-wave (p-wave) annihilations.
Moreover, the white region indicates the range of temperatures for which photodisintegration
is relevant, i.e. the region for which T < Tmax ∼ O(1) keV [25]. Here, we choose Tmax ≈ 3 keV
in accordance with the implementation in ACROPOLIS.4 In general, we find that larger values
of Tkd shift the resonance peak to higher temperatures — outside the region relevant for
photodisintegration —, while simultaneously decreasing the overall width of the peak. Lower
values of Tkd therefore enhance the effect of the resonance and we can already anticipate
that the bounds from resonantly-enhanced annihilations will differ more strongly from the
vanilla scenario with ⟨σannv⟩ = a + 6b/x for smaller values of Tkd. We will come back to
this discussion once we discuss the actual limits in section 5.

4 Implementation in ACROPOLIS

4.1 The class acropolis.ext.models.ResonanceModel

Up until v1.2.2, ACROPOLIS included two different types of models: acropolis.models.
DecayModel, which can be used to calculate photodisintegration constraints for unsta-
ble DS particles decaying into electromagnetic final states, as well as acropolis.models.
AnnihilationModel, which allows for calculating bounds on vanilla s- and/or p-wave annihi-
lations. However, none of these two models can handle the resonantly-enhanced annihilations
described in this work. Therefore, based on the results of the previous section, in v1.3.0, we
implement and make available a new model acropolis.ext.models.ResonanceModel, which
inherits directly from AnnihilationModel,5 yet features a different set of input parameters

4For higher temperatures, the photons resulting from the electromagnetic cascade have too little energy to
dissociate any light elements (for more information, see [25]).

5AnnihilationModel already implements source terms of the form (2.3) albeit for the special case ⟨σv⟩ =
a + b⟨v2⟩ with some constants a and b. Thus, by using this model as a base class, we only have to modify the
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and overrides the function sigma_v in order to incorporate the modified calculation of the
annihilation cross-section based on eq. (3.5). Specifically, the class constructor of this new
model takes the following arguments

• mchi: the mass mχ of the DM particle in MeV

• delta: the parameter δR describing the mass splitting between the DM particle and
the mediator as defined in eq. (1.1)

• gammad: the coupling constant γd encoding the interaction between the mediator and
the DM particle as defined in eq. (3.3)

• gammav: the coupling constant γv encoding the interaction between the mediator and
the SM particle as defined in eq. (3.3)

• nd: the parameter nd discriminating between s-wave (nd = 0) and p-wave annihilations
(nd = 1) as defined in eq. (3.3)

• tempkd: the SM temperature Tkd in MeV at which the DM particles decouple kinetically
from the SM heat bath as defined in eq. (3.13)

• S: the symmetry factor S entering the cross-section in eq. (3.6) [default = 1]

• omegah2: the relic density of the DM particles [default = 0.12]

Given these parameters, the class ResonanceModel can be used like any other model that
is already part of ACROPOLIS (for more details on how to use ACROPOLIS, see [28]), e.g. via
the code
# ext . models
from a c r o p o l i s . ext . models import ResonanceModel

# I n i t i a l i z e the model
model = ResonanceModel (

mchi = 10 . ,
d e l t a = 1e −2,
gammad = 1e −5,
gammav = 1e −3,
nd = 0 ,
tempkd = 1e−2

)

# Run p h o t o d i s i n t e g r a t i o n
Yf = model . run_d i s in t eg ra t i on ( )

for a model with mχ = 10 MeV, δR = 10−2, γd = 10−5, γv = 10−3, nd = 0, and Tkd = 10 keV.
However, note that according to eq. (3.13), Tkd is strictly speaking not an independent

quantity, but rather a function of other model parameters. To account for this fact, while
also allowing for a more model-independent analysis, we implemented the model in such a
way that tempkd can either be fixed, i.e. constant (as above), or any function with signature6

calculation of the thermally averaged annihilation cross-section, while all the other logic can remain unchanged.
6More precisely, we allow any object with the given signature and callable(tempkd) == True.
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de f my_tempkd_func( mchi , de l ta , gammad , gammav , nd , S , i i ) :
[ . . . ]

by setting tempkd = my_tempkd_func. Here, the first six parameters are identical to the
first six ones discussed above, while the parameter ii is an instance of acropolis.input.
InputInterface, which allows access to parameters like e.g. the baryon-to-photon ratio η or
the Hubble rate H from within the function (as required e.g. to implement eq. (3.13)). While
it is possible to implement any such function from scratch, we also provide a reference function

estimate_tempkd_ee ( mchi , de l ta , gammad , gammav , nd , S , i i , sigma_ee )

in acropolis.ext.models, which implements the calculation of Tkd according to eqs. (3.13)
and (3.14) for a given (model-dependent) cross-section σχe±↔χe±(s). The latter is provided
via the additional parameter sigma_ee, which can be any function with signature

de f my_sigma_ee_func ( s , mchi , de l ta , gammad , gammav ) :
[ . . . ]

Here, the parameter s encodes the center-of-mass energy s. Consequently, for a given
cross-section σχe±↔χe±(s), one way of creating a function my_tempkd_func that implements
eqs. (3.13) and (3.14), while also being compatible with the parameter tempkd in the con-
structor of ResonanceModel is via

# f u n c t o o l s
from f u n c t o o l s import p a r t i a l

# ext . models
from a c r o p o l i s . ext . models import estimate_tempkd_ee

my_tempkd_func = p a r t i a l ( estimate_tempkd_ee , sigma_ee=my_sigma_ee_func )

Finally, let us note that for the calculation of ⟨σannv⟩ entering the source terms in
eq. (2.3),7 by default, we perform the full integral from eq. (3.5) numerically. The correspond-
ing implementation can be found in the function ResonanceModel._sigma_v_full. However,
for convenience, we have also implemented the two approximate expressions for ⟨σannv⟩res from
eq. (3.7) and ⟨σannv⟩non-res from eq. (3.9) in the functions ResonanceModel._sigma_v_res
and ResonanceModel._sigma_v_non_res, respectively.

4.2 Implementing benchmark scenarios

Any benchmark model, including the ones from table 1, can thus be studied via
ResonanceModel by fixing nd, S, and setting tempkd to an appropriate function, which
can either be implemented from scratch or derived from estimate_tempkd_ee by providing
the corresponding scattering cross-section. For the benchmark models in tab 1, we have
already implemented the relevant cross-sections from table 2 in acropolis.ext.benchmarks;
specifically in the functions sigma_ee_bx with x = 1, 2, 3. In this module, we have — for
convenience — further implemented ‘subclasses’ of ResonanceModel for the three benchmark
models defined in table 1, namely,

7See acropolis.ext.models.ResonanceModel.sigma_v, which is inherited from AnnihilationModel.
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a c r o p o l i s . ext . benchmarks . BenchmarkModel1
a c r o p o l i s . ext . benchmarks . BenchmarkModel2
a c r o p o l i s . ext . benchmarks . BenchmarkModel3

corresponding to the models (1), (2), and (3), respectively. These models can be initiated like
ResonanceModel, but without the need to specify nd, S, and tempkd, as these parameters
are already set accordingly.

Moreover, by using the provided tools, it is further possible to create additional benchmark
models. This can be done by again utilizing functools.partial, i.e. via
# f u n c t o o l s
from f u n c t o o l s import p a r t i a l

# ext . models
from a c r o p o l i s . ext . models import ResonanceModel

MyBenchmarkModel = p a r t i a l (
ResonanceModel , nd = [ . . . ] , S = [ . . . ] , tempkd = [ . . . ]

)

4.3 Running parameter scans

Bounds in any two-parameter plane can be derived using ACROPOLIS’s build-in scanning
framework, i.e. the class acropolis.scans.BufferedScanner, with either the general
ResonanceModel, or any of the specialized benchmark models (cf. [28] for more information).
For example, the following code can be used to run a NxN scan for benchmark model (3) with
δR = 10−2, γd = 10−3, as well as mχ ∈ {1, 103} MeV and γv ∈ {10−14, 10−2}

# scans
from a c r o p o l i s . scans import BufferedScanner , ScanParameter
# ext . benchmarks
from a c r o p o l i s . ext . benchmarks import BenchmarkModel3

scan_resu l t = Buf feredScanner ( BenchmarkModel3 ,
mchi = ScanParameter ( 0 , 3 , N) ,
d e l t a = 1e −2,
gammad = 1e −3,
gammav = ScanParameter (−14 , −2, N) ,

) . perform_scan ( co r e s=−1)

Scans of this type are computationally expensive and should be run on a machine with
many CPU cores. In principle, ACROPOLIS allows speeding up the calculation under certain
conditions by setting fast=True for one of the two ScanParameter objects, which can
reduce computation time by several orders of magnitude. For AnnihilationModel and
thus ResonanceModel this is possible for any parameter (usually some coupling) g that
(i) only enters the annihilation cross-section, and (ii) fulfills ⟨σannv⟩ ∝ g. However, while
Γv(p)Γd(pf ) ∝ γvγd, we still have ⟨σannv⟩��∝ γvγd, since γv and γd also enter the total width
Γ(p) in the denominator (cf. eq. (3.2)). Moreover, for more model-dependent scenarios, γv

and γd also enter the calculation of Tkd. Consequently, it is — in general — not possible
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to speed up scans involving ResonanceModel by setting fast=True. For this reason, we
recommend to run the calculation on a cluster or a machine with many cores.

However, for fixed Tkd, in the limit where one coupling is much larger than the other,
the total decay width is roughly proportional to the larger coupling. As a result, ⟨σannv⟩ is
proportional to the smaller coupling (γv in our case, see below). Scanning over this coupling
thus warrants the use of fast=True, speeding up the calculation significantly. The bounds
for fixed Tkd and γd presented below were therefore derived using fast=True. However, we
additionally verify this choice by checking that γd ≫ γv holds true all along the exclusion lines.

5 Results and discussion

5.1 Constraints on s-wave annihilations

In this section, we first present the constraints from photodisintegration for s-wave annihila-
tions, i.e. for nd = 0.8 In the absence of any resonance effects, limits on s-wave annihilations
of NR DM particles are usually given in terms of the parameter a with ⟨σannv⟩ ≃ a. While
such a parametrization is not applicable in our scenario, in the non-resonant regime we
can utilize eq. (3.10) to identify

a = 2Sπγvγd

m2
χ

(2 + δR)2

δ2
R

δR≪1
≃ 8Sπγvγd

m2
χδ

2
R

. (5.1)

Consequently, by presenting our results in terms of this parameter a — which can be
exchanged for one of the couplings, i.e. γv (see below) —, we enable a meaningful comparison
with previously published, non-resonant constraints [27]. By fixing γd = 10−3, nd = 0,9 and
scanning over γv and mχ, in figure 2, we show the resulting constraints in the a−mχ parameter
plane for different values of the mass splitting δR ∈ {10−2, 10−3, 10−4, 10−6, 10−8} (dashed,
different colors), as well as for fixed values of Tkd ∈ {1, 10−2, 10−4} MeV (different panels),
which have been obtained by running ACROPOLIS with ResonanceModel. For comparison, we
also indicate the constraints that are obtained in the absence of any resonance (solid, black),
i.e. for ⟨σannv⟩ = a everywhere, which we obtain by using AnnihilationModel instead.10

For different choices of γd we refer the reader to appendix A.
Just like in the case of vanilla s-wave annihilations, we find that it is not possible for pho-

todisintegration to constrain DM particles with masses below mχ ∼ 2.22 MeV, corresponding
to the binding energy of deuterium. This is because, for smaller masses, the annihilation
products with energy E = mχ are not energetic enough to dissociate deuterium or any other
relevant nuclei, meaning that the light-element abundances remain unaltered.

For larger masses, however, i.e. once photodisintegration reactions become relevant, we
find that the constraints from resonantly-enhanced annihilations become relevant and also
potentially different from the ones obtained with ⟨σannv⟩ = a (the “vanilla” scenario). To
quantify this difference, let us note that we generally expect the constraints to differ from
the vanilla scenario if the resonance peak is pushed below Tmax = O(1) keV, i.e. into the

8For the complementary bound on the mass of thermal relics, see e.g. [27].
9The parameter S is irrelevant, as it can be absorbed into a.

10These results correspond to the ones obtained in [27], albeit with updated values for the observed nuclear
abundances.
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Figure 2. BBN constraints from photodisintegration at 95% C.L. on resonant DM annihilations for
γd = 10−3, nd = 0, different values of δR ∈ {10−2, 10−3, 10−4, 10−6, 10−8} (dashed, different colors),
as well as different values of Tkd ∈ {1, 10−2, 10−4} MeV (different panels) in the a − mχ parameter
plane. For comparison, we also show the constraints that are obtained for non-resonant annihilations
of NR DM particles (solid, black), i.e. for ⟨σannv⟩ = a.

temperature range relevant for photodisintegration (cf. figure 1). Assuming γd ≫ γv, which is
true for the parameter combinations presented in figure 2, we find the position of the resonance
peak to be at mχ/Tχ ∼ 3/(2δR) (cf. eq. (3.7)) with the corresponding annihilation cross-section
⟨σannv⟩ = O(1)a

√
δR/γd. Hence, ⟨σannv⟩ ≳ a (⟨σannv⟩ ≲ a) for δR ≳ O(1)γ2

d (δR ≲ O(1)γ2
d).

This directly translates to an expected strengthening (weakening) of the constraints compared
to the ones with ⟨σannv⟩ = a everywhere. However, as mentioned above, this argument only
holds true if the resonance contribution peaks within the relevant temperature range, i.e. for
Tpeak ≲ Tmax with mχ/Tχ(Tpeak) = 3/(2δR). Enforcing this condition, we quantitatively
find mχ ≲ O(1)Tmax/δR for Tpeak > Tkd as well as mχ ≲ O(1)T 2

max/(TkdδR) for Tpeak ≥ Tkd.
Consequently, we expect the bounds to differ only over a certain range of masses, with
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Figure 3. BBN constraints from photodisintegration at 95% C.L. for resonantly enhanced s-wave
(left) or p-wave (right) annihilations as a function of δR for mχ = 10 MeV (dashed), and different
decoupling temperatures (different colors). Also shown are the bounds on vanilla s- and p-wave
annihilations (solid). Note the inverted x-axis.

this range becoming larger for smaller values of δR. The same applies for smaller values
of Tkd when Tpeak ≥ Tkd.

For given values of γd and Tkd, when reducing δR, the bounds therefore differ from the
vanilla ones for a larger range of masses, while being stronger for values of δR above some
critical value δcrit

R . However, the value of δcrit
R is usually even larger than O(1)γ2

d (as expected
from the argument above). To understand this, let us note that photodisintegration is most
sensitive to temperatures slightly below Tmax, since S(0)(T ) ∝ nχ(T )2 ∝ T 6, meaning that
the amount of injected energy drops sharply with temperature. However, for T ≫ Tpeak,
⟨σannv⟩ ∝ 1/T 3/2, meaning that if the peak is pushed to small enough temperatures, we
might have ⟨σannv⟩ < a at T = Tmax, while still ⟨σannv⟩ > a at T = Tpeak (cf. the dashed
blue line in the right panel of figure 1). Therefore, in general δcrit

R > O(1)γ2
d with γ2

d = 10−6

for the given choice of parameters.
Overall, the behaviour described above is reflected in figure 2: taking Tkd = 100 eV as

an example, we find that the point at which a given colored line merges with the black line
gets pushed to larger values of mχ for smaller values of δR. Also, while we see an initial
improvement of the bounds for δR ≪ 10−6 = γ2

d , the bounds do indeed become weaker
than the ones with ⟨σannv⟩ = a for smaller values of δR. The actual value of δcrit

R thus lies
somewhere between δR = 10−4 and δR = 10−6. Similar results are also obtained for different
values of Tkd. To further illustrate this point, in figure 3 we additionally show the resulting
bounds in the a−δR (left) and b−δR (right, cf. section 5.2) parameter space for fixed DM mass
mχ = 10 MeV, different values of Tkd (different colors), as well as with (dashed) and without
(solid) resonance effects. Based on this figure, we can identify approximate values for δcrit

R ,
which turn out to be δcrit

R ∼ 10−6, 10−5, 7×10−4 for Tkd = 1 MeV, 10 keV, 100 eV, respectively.
In order to strengthen the constraints compared to the scenario with ⟨σannv⟩ = a, it is

therefore necessary to tune Tkd and δR, accordingly. However, such a tuning might not always
be possible for concrete models with dynamically calculated values of Tkd, as we will see below.
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Figure 4. BBN constraints from photodisintegration at 95% C.L. on resonant DM annihilations for
γd = 10−3, nd = 0, different values of δR ∈ {10−2, 10−3, 10−4, 10−6, 10−8} (dashed, different colors),
and dynamically calculated values of Tkd according to eq. (3.13) for the benchmark models (1) (left)
and (2) (right) of table 1.

In addition to fixed values of Tkd, in figure 4, we further show the resulting constraints
for dynamically calculated values of Tkd according to eq. (3.13) corresponding to the two
benchmark models (1) (left) and (2) (right) from table 1, which have been obtained by running
ACROPOLIS with BenchmarkModel1 and BenchmarkModel2, respectively. Most notably, in this
case, the resulting constraints are much more similar to the ones obtained with ⟨σannv⟩ = a,
at least for large values of δR. In fact, when calculating the kinetic decoupling temperature
in the given benchmark models, we consistently find comparatively large kinetic decoupling
temperatures, Tkd ≳ 1 MeV, for all parts of parameter space. Due to this, the resulting
constraints strongly resemble those in the top left panel of figure 2. As it turns out, pushing
Tkd to values larger than 1 MeV does not lead to an appreciable change in the limits, since
Tkd > 1 MeV is already much larger than Tmax, meaning that kinetic decoupling happens
anyhow outside the photodisintegration window. Significant differences between the two
scenarios are only obtained for small values of δR ∼ 10−8, in which case the constraints
weaken. Overall, we therefore conclude that — at least for the benchmark models discussed
in this work — it is difficult to strengthen the photodisintegration constraints within a
minimal realistic scenario by resonantly-enhancing the annihilation cross-section. However,
if additional interactions are present between the DS and SM states, it would in principle
be possible to lower Tkd, which would lead to stronger constraints.

5.2 Constraints on p-wave annihilations

In this section, we present our results for p-wave annihilations, i.e. for nd = 1. Following the
strategy from the previous section, we present our results in terms of the parameter

b = Sπγvγd

m2
χ

(2 + δR)2

2δ2
R

δR≪1
≃ 2Sπγvγd

m2
χδ

2
R

(5.2)
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Figure 5. BBN constraints from photodisintegration at 95% C.L. on resonant DM annihilations for
γd = 10−3, nd = 1, different values of δR ∈ {10−2, 10−3, 10−4, 10−6, 10−8} (dashed, different colors), as
well as different values of Tkd ∈ {1, 10−2, 10−4} MeV (different panels) in the b−mχ parameter plane.
For comparison, we also show the constraints that are obtained for non-resonant p-wave annihilations
of NR DM particles (solid, black), i.e. for ⟨σannv⟩ = 6b/x.

according to eq. (3.11), such that ⟨σannv⟩ = 6b/x in the non-resonant regime. By fixing
γd = 10−3, nd = 1, and scanning over γv and mχ, in figure 5, we show the resulting
constraints in the b − mχ parameter plane for different values of the mass splitting δR ∈
{10−2, 10−3, 10−4, 10−6, 10−8} (dashed, different colors), as well as for fixed values of Tkd ∈
{1, 10−2, 10−4} MeV (different panels), which have been obtained by running ACROPOLIS
with ResonanceModel. For comparison, we also indicate the bounds that are obtained by
setting ⟨σannv⟩ = 6b/x everywhere (the “vanilla” scenario), which we obtain by running
AnnihilationModel instead (solid, black).

Compared to the results obtained for s-wave annihilations, we again find that the
constraints are different only for a finite range of masses, which becomes bigger for smaller
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values of δR. However, in the case of p-wave annihilations, there does not exist a value
δcrit

R , beyond which the constraints universally start to weaken compared to the ones with
⟨σannv⟩ = 6b/x. This is because, while the position of the peak remains the same, the
corresponding annihilation cross-section is given by ⟨σannv⟩ = O(1)b

√
δR/γd, which is larger

than 6b/x ∼ bδR for
√
δRγd < O(1), i.e. for all relevant parts of parameter space. However,

for some values of δR, there still exist certain values of mχ, for which the bounds get weaker
compared to the vanilla scenario. This happens when Tpeak is pushed deep into the region
relevant for photodisintegration. In this case, we again have ⟨σannv⟩ ∝ 1/T 3/2 at T ∼ Tmax
(see above), meaning that ⟨σannv⟩ = 6b/x can be larger than the resonantly-enhanced cross-
section around Tmax. Nevertheless, this effect only occurs for rather small values of δR ≲ 10−7

and Tkd ≲ 100 eV (also cf. figure 3).
Additionally, for p-wave annihilations the resonance effect is much more pronounced,

i.e. for identical values of γd, Tkd, and δR, the enhancement relative to the vanilla scenario is
orders of magnitude stronger than in the case of s-wave annihilations. This is because, when
comparing the ratio between the resonantly-enhanced cross-section and the one in the vanilla
scenario at the peak, we find for s-wave annihilations ⟨σannv⟩/a = O(1)

√
δR/γd, while for

p-wave annihilations we obtain ⟨σannv⟩/(6b/x) = O(1)/(
√
δRγd). Consequently, in the latter

case the ratio is larger by a factor 1/δR ≫ 1, meaning that the cross-section at the peak is
significantly more enhanced, which directly translates to more stringent limits.

Moreover, p-wave constraints are also subject to a larger dependence on Tkd, since
⟨σannv⟩ ∝ Tχ, which depends on Tkd via eq. (3.13). Specifically, the bounds strengthen
significantly if the decoupling temperature is lowered from Tkd = 1 MeV to Tkd = 10 keV,
while not changing much afterwards. This sharp transition can be understood by means
of figure 6, which shows the resulting constraints on a and b as a function of Tkd for the
two masses mχ = 10 MeV (top) and mχ = 100 MeV (bottom), as well as for s-wave (left)
and p-wave annihilations (right).11 In general, ⟨σannv⟩ ∝ 1/x ∝ Tχ(T ), and consequently
⟨σannv⟩ ∝ T (⟨σannv⟩ ∝ T 2) before (after) kinetic decoupling. For T < Tkd, the annihilation
cross-section thus falls off faster, which weakens the constraints, meaning that it is generally
favourable to delay kinetic decoupling as much as possible. As the temperature of kinetic
decoupling is pushed below Tmax at Tkd ∼ 10−2 MeV, the cross-section stays ∝ T for a larger
range of relevant temperatures, thus improving the limits. However, this improvement only
lasts until Tkd ≲ 10−3, beyond which point the bounds become independent of Tkd. This
is because (as discussed above), photodisintegration is most sensitive to temperatures close
to Tmax. Consequently, for Tkd ≪ Tmax the source term ∝ n2

χ⟨σannv⟩ is already negligible
once T < Tkd. This behaviour is independent of the resonance peak and can also be observed
for scenarios with ⟨σannv⟩ = 6b/x.

In addition to fixed values of Tkd, in figure 7, we further show the resulting constraints for
dynamically calculated values of Tkd according to eq. (3.13) corresponding to benchmark model
(3) from table 1, which have been obtained by running ACROPOLIS with BenchmarkModel3.
For comparison, we also show the (most stringent) bounds for vanilla p-wave annihilations
(solid, black), which have been obtained by running AnnihilationModel with Tkd = 0.
Compared to the s-wave benchmark counterparts, the bounds from resonantly-enhanced
p-wave annihilations differ more drastically from the vanilla scenario, which is specifically true

11Note that for nd = 0, the variation of the limits with Tkd is much less pronounced by comparison.
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Figure 6. BBN constraints from photodisintegration at 95% C.L. for s-wave (left) and p-wave
annihilations (right) as a function of the kinetic decoupling temperature Tkd for mχ = 10 MeV (top)
and mχ = 100 MeV (bottom), as well as different values of δR ∈ {10−2, 10−3, 10−4, 10−6, 10−8}
(dashed, different colors). In addition, we also show the bounds on non-resonant annihilations of NR
DM (solid, black) for comparison.

in the low mass region, i.e. for mχ ≲ O(10) MeV if δR ≲ 10−3. The reason for this is twofold:
on the one hand, as already described above, the resonance contribution to the annihilation
cross-section is smaller in the case of s-wave annihilations. On the other hand, p-wave
annihilations are generally less constrained than s-wave annihilations, which implies that
larger values of γv are still allowed. In turn, the dynamically determined values of Tkd along
the bound are generally lower for nd = 1 compared to nd = 0 (typically Tkd ∼ 10−100 keV
along the bound for p-wave annihilations vs. Tkd ∼ 1−10 MeV for s-wave annihilations), which
additionally boosts the resonance effect in line with the discussion above. Overall, we therefore
conclude that, in the case of p-wave annihilations, it is indeed possible to strengthen the
BBN bounds from photodisintegration by resonantly enhancing the annihilation cross-section,
even for realistic benchmark scenarios.
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Figure 7. BBN constraints from photodisintegration at 95% C.L. on resonant DM annihilations
for γd = 10−3, nd = 1, different values of δR ∈ {10−2, 10−3, 10−4} (dashed, different colors), and
dynamically calculated values of Tkd according to eq. (3.13) for the benchmark model (3) of table 1.
For comparison, we also show the (most stringent) bounds for non-resonant p-wave annihilations of
NR DM (solid, black).

6 Conclusions

Resonant annihilations provide an interesting avenue for boosting the DM annihilation cross-
sections. However, within such scenarios, residual annihilations are usually still efficient at
late times, thus injecting large amounts of electromagnetic material into the SM heat bath.
The injected particles, in turn, can afterwards participate in photodisintegration reactions,
thus potentially destroying some of the elements that have previously been created during
BBN. Consequently, comparing the predicted abundances of light elements in such scenarios
with the ones inferred from observations therefore provides a handle on the strength of
the DM annihilations.

While constraints from photodisintegration have previously already been calculated for
s-wave and p-annihilations in the absence of resonance effects, in this work, we derive for the
first time the corresponding constraints for the case of resonantly-enhanced DM annihilations.
To this end, we have implemented and made available (https://github.com/hep-mh/acropolis)
a new model called ResonanceModel within ACROPOLIS. This model has been implemented in
a rather model-independent way, with only minimal assumptions about the DS (cf. section 3).
However, for concreteness, we have also implemented three different benchmark models in order
to calculate constraints for more concrete scenarios. Using this new version of ACROPOLIS, it
is possible to reproduce all the results presented in this work, as well as to determine the
corresponding constraints for any other combination of parameters (cf. section 4).
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By using ResonanceModel, we have further calculated the resulting constraints on s-wave
and p-wave annihilations for (1) fixed and (2) dynamically calculated values of the kinetic
decoupling temperature Tkd (cf. section 5). In the case of s-wave annihilations, we find that
while the constraints can be quite different from the vanilla ones for certain combinations
of Tkd and δR (cf. figure 2), this is not true for the two benchmark scenarios presented
in this work (cf. figure 4). In fact, when correctly accounting for the kinetic decoupling
temperature, we find that the constraints remain very similar to the vanilla ones. In this
case, resonantly-enhanced annihilations therefore do not commonly lead to more stringent
constraints. For p-wave annihilations, however, the constraint can be boosted for both fixed
values of Tkd (cf. figure 5), as well as for dynamically calculated values of Tkd (cf. figure 7). It
is therefore important to consider these constraints when discussing the viability of scenarios
with resonantly-enhanced DM annihilations. This can be achieved by means of the new
model implemented in ACROPOLIS.

Acknowledgments

The authors thank Marieke Postma and Torsten Bringmann for very helpful discussions.
This work was funded by an NWO-klein2 grant (OCENW.KLEIN.427). The work of M.H.
is further supported by the F.R.S./FNRS.

A Limits for different values of γd

In this paper, we have presented plots for the explicit choice γd = 10−3. In principle, the off-
resonance contribution to the annihilation cross-section is sensitive only to the combination
γdγv. If the constraints are dominated by this contribution, it is thus possible to infer
analogous limits for a different value of γd by rescaling γv while keeping the product of both
couplings constant. However, in the limit in which one of the two couplings is much smaller
than the other — which is typically expected for physically motivated DM models —, the
resonance contribution is instead sensitive to only the smallest of both couplings, and a simple
rescaling is not possible if this is the dominant contribution. In order to show the effect on
the limits in this case, in figure 8 we show the resulting bound for s-wave (left) and p-wave
(right) annihilations for different values of γd ∈ {10−3, 10−4, 10−5} (different linestyles) as well
as for different values of Tkd ∈ {1, 10−2, 10−4} MeV (different panels). If kinetic decoupling
happens significantly late, the resonance effects become dominant and a simple rescaling is
no longer possible. However, if the resonance-contribution is less relevant, i.e. for sufficiently
early decoupling, the constraints instead become independent of the choice of γd.
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