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Abstract

In recent years many discoveries have been made that reveal a close relation be-
tween quantum information and geometry in the context of the AdS/CFT corre-
spondence. In this duality between a conformal quantum field theory (CFT) and
a theory of gravity on Anti-de Sitter spaces (AdS) quantum information quantities
in CFT are associated with geometric objects in AdS. Subject of this thesis is the
examination of this intriguing property of AdS/CFT. We study two central ele-
ments of quantum information: subregion complexity — which is a measure for the
effort required to construct a given reduced state — and the modular Hamiltonian
— which is given by the logarithm of a considered reduced state.

While a clear definition for subregion complexity in terms of unitary gates
exists for discrete systems, a rigorous formulation for quantum field theories is not
known. In AdS/CFT, subregion complexity is proposed to be related to certain
codimension one regions on the AdS side. The main focus of this thesis lies on the
examination of such candidates for gravitational duals of subregion complexity.

We introduce the concept of topological complexity, which considers subregion
complexity to be given by the integral over the Ricci scalar of codimension one
regions in AdS. The Gauss-Bonnet theorem provides very general expressions for
the topological complexity of CFTy states dual to global AdSs, BTZ black holes
and conical defects. In particular, our calculations show that the topology of
the considered codimension one bulk region plays an essential role for topological
complexity.

Moreover, we study holographic subregion complexity (HSRC), which asso-
ciates the volume of a particular codimension one bulk region with subregion
complexity. We derive an explicit field theory expression for the HSRC of vacuum
states. The formulation of HSRC in terms of field theory quantities may allow
to investigate whether this bulk object indeed provides a concept of subregion
complexity on the CF'T side. In particular, if this turns out to be the case, our ex-
pression for HSRC may be seen as a field theory definition of subregion complexity.
We extend our expression to states dual to BTZ black holes and conical defects.

A further focus of this thesis is the modular Hamiltonian of a family of states
p depending on a continuous parameter . Here A may be associated with the
energy density or the temperature, for instance. The importance of the modular
Hamiltonian for quantum information is due to its contribution to relative entropy
— one of the very few objects in quantum information with a rigorous definition
for quantum field theories. The first order contribution in A = A — Ay of the mo-
dular Hamiltonian to the relative entropy between p, and a reference state p,, is
provided by the first law of entanglement. We study under which circumstances
higher order contributions in A are to be expected. We show that for states re-
duced to two entangling regions A, B the modular Hamiltonian of at least one of
these regions is expected to provide higher order contributions in A to the relative
entropy if A and B saturate the Araki-Lieb inequality. The statement of the Araki-
Lieb inequality is that the difference between the entanglement entropies of A and
B is always smaller or equal to the entanglement entropy of the union of A and
B. Regions for which this inequality is saturated are referred to as entanglement
plateaux. In AdS/CFT the relation between geometry and quantum information
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provides many examples for entanglement plateaux. We apply our result to several
of them, including large intervals for states dual to BTZ black holes and annuli for
states dual to black brane geometries.

The content of this thesis is based on research projects I was involved in during
my time as a doctoral student under the supervision of Prof. Dr. J. Erdmenger
at the Fakultat fiir Physik und Astronomie of the Julius-Maximilians-Universitéit
Wiirzburg, starting in October 2016. The corresponding publications are:
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Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019)
012, [arXiv:1805.10298|.

[3] R. Abt and J. Erdmenger, Properties of Modular Hamiltonians on Entangle-
ment Plateauz, JHEP 11 (2018) 002, [arXiv:1809.03516].
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Zusammenfassung

In den letzten Jahren wurden viele Entdeckungen gemacht, welche eine enge
Beziehung zwischen Quanteninformation und Geometrie im Kontext der AdS/CFT-
Korrespondenz aufzeigen. In dieser Dualitidt zwischen einer konformen Quan-
tenfeldtheorie (CFT) und einer Gravitationstheorie auf Anti-de-Sitter-Raumen
(AdS) werden Quanteninformationsgrofen der CFT mit geometrischen Objekten
in AdS assoziiert. In der vorliegenden Arbeit wird dieser faszinierende Aspekt von
AdS/CFT untersucht. Wir studieren zwei Objekte welche eine zentrale Rolle in der
Quanteninformation spielen: Die Teilregionkomplexitat (subregion complexity) —
welche ein Maf fiir den notigen Aufwand zur Konstruktion eines vorgegebenen
reduzierten Zustandes ist — und den modularen Hamiltonoperator — welcher durch
den Logarithmus eines reduzierten Zustandes gegeben ist.

Wahrend eine klare Definition der Teilregionkomplexitat mittels unitarer Gat-
ter fiir diskrete Systeme angegeben werden kann, ist eine préazise Formulierung
fiir Quantenfeldtheorien nicht bekannt. In der AdS/CFT-Korrespondenz wird
angenommen, dass die Teilregionkomplexitat mit bestimmten Regionen der Kodi-
mension eins in AdS-Raumen in Beziehung stehen. Der Hauptfokus der vorliegen-
den Arbeit ist die Untersuchung derartiger Kandidaten fiir Gravitationsduale der
Teilregionkomplexitét.

Wir fithren das Konzept der topologischen Komplexitit (topological complexity)
ein, welches das Integral iiber den Ricci-Skalar bestimmter Teilregionen von AdS-
Réaumen als das Gravitationsdual der Teilregionkomplexitéit ansieht. Der Satz von
Gauss-Bonnet erlaubt es uns sehr allgemeine Ausdriicke fiir die Teilregionkomple-
xitat von CFTy-Zustdnden mit globalem AdSs, BTZ-Schwarzen-Lochern oder koni-
schen Defekten als Gravitationsdual zu konstruieren. Unsere Berechnungen zeigen
insbesondere, dass die Topologie der betrachteten Kodimension-Eins-Regionen eine
grofle Rolle fiir die topologische Komplexitét spielt.

Weiterhin befassen wir uns mit der holographischen Teilregionkomplexitét (holo-
graphic subregion complexity, HSRC), welche annimmt, dass die Teilregionkomple-
xitat durch das Volumen bestimmter Kodimension-Eins-Regionen in AdS-Raumen
gegeben ist. Wir leiten einen expliziten Ausdruck fiir die HSRC von Vakuumzustéan-
den in Groflen der Feldtheorie her. Die Formulierung der HSRC in Feldtheo-
riegrofen konnte es ermoglichen zu untersuchen ob diese Grofle tatséachlich als die
Teilregionkomplexitit der CFT interpretiert werden kann. Sollte sich dies bestati-
gen, kann unser Feldtheorieausdruck fiir HSRC als Definition fiir die Teilregionkom-
plexitdt der CFT angesehen werden. Wir verallgemeinern unseren Ausdruck fiir
HSRC dahingehend, dass er auch fir Zustiande dual zu BTZ-Schwarzen-Lochern
und konischen Defekten giiltig ist.

Ein weiterer Fokus der vorliegenden Arbeit ist der modulare Hamiltonoperator
einer Familie von Zustdnden p), welche von einem kontinuierlichen Parameter A
abhangen. Hierbei kann A\ beispielsweise der Energiedichte oder der Temperatur
entsprechen. Die Bedeutung des modularen Hamiltonoperator fiir die Quanten-
information ist auf seinen Beitrag zur relativen Entropie zuriickzufithren — eine
der wenigen Groflen der Quanteninformation fiir welche eine formale Definition
fiir Quantenfeldtheorien bekannt ist. Der Beitrag erster Ordnung in A = A — A
des modularen Hamiltonoperators zur relativen Entropie zwischen p) und einem
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Referenzzustand p,, ist gegeben durch den ersten Hauptsatz der Verschrankung
(first law of entanglement). Wir untersuchen unter welchen Umsténden Beitrage
hoherer Ordnung in A zu erwarten sind. Wir zeigen, dass fiir Zustinde die auf
zwei Teilregionen A, B reduziert wurden in der Regel mindestens einer dieser
Beitrige hoherer Ordnung in A zur relativen Entropie liefert, wenn A und B die
Araki-Lieb-Ungleichung saturieren. Die Araki-Lieb-Ungleichung besagt, dass die
Differenz der Verschrénkungsentropien von A und B stets kleiner oder gleich der
Verschrankungsentropie der Vereinigung von A und B ist. Regionen fiir welche die
Araki-Lieb-Ungleichung saturiert ist werden als Verschrankungsplateaus (entangle-
ment plateaux) bezeichnet. In der AdS/CFT-Korrespondenz gibt es aufgrund der
Beziehung zwischen Quanteninformation und Geometrie viele Beispiele fiir derar-
tige Plateaus. Wir wenden unser Resultat auf einige dieser an. Unter anderem
diskutieren wir grofle Intervalle fiir Zustande dual zu BTZ-Schwarzen-Lochern und
Annuli fir Zustande dual zu schwarzen Branen.

Der Inhalt der vorliegenden Arbeit basiert auf Projekten an denen ich wahrend
meiner Zeit als Doktorand unter der Aufsicht von Prof. Dr. J. K. Erdmenger an der
Fakultat fiir Physik und Astronomie der Julius-Maximilians-Universitat Wiirzburg
seit Oktober 2016 beteiligt war. Die entsprechenden Veroffentlichungen sind:
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Chapter 1

Introduction

The realization that the laws of nature may be formulated in the language of
mathematics is one of the greatest achievements of mankind. Providing clear pre-
dictions for the behavior of physical systems that may be tested by experiments,
this approach substantially shaped our understanding of the cosmos as well as our
technological progress. Over the last centuries the mathematical models for phy-
sical systems became sufficiently advanced that they allowed the study of aspects
of physics inaccessible to the experimental capabilities of their time. A seminal
example for this impressive accomplishment of theoretical physics is the Higgs
mechanism, whose theoretical postulation [4-6] (1964) outran the experimental
discovery of the Higgs particle |7,[8] (2012) by several decades.

Also many conclusions of Einstein’s theory of general relativity [9] were veryfied
by experiments only a long time after their theoretical formulation. For instance,
the gravitational waves postulated by Einstein [10,|11] (1916) were detected di-
rectly for the first time a century after their prediction [12,/13] (2015). This shows
the great impact general relativity has to experimental physics even today, so
many years after its formulation in theoretical physics. In fact, we presently find
ourselves at the beginning of a new era of experimental research regarding general
relativity, as many new experimental setups — such as LISA [14] or LIGO-India [15]
— are currently in preparation. Thus, we may look forward to new exciting experi-
mental results for general relativity in the future. As the most recent experimental
accomplishment regarding general relativity, we mention the first image of a black
hole [16-21], which was taken by the Event Horizon Telescope and presented to
the public in April 2019.

In theoretical physics there are many cases in which several mathematical for-
mulations for the behavior of a given physical system exist. This is a well estab-
lished fact which can even be witnessed in very common fields such as classical
mechanics. Here we have two very different but equivalent methods for describ-
ing the dynamics of a physical system: the Lagrange and the Hamilton formalism.
Further well known examples include the formulation of quantum mechanics in po-
sition and momentum space, the Schrodinger, Heisenberg and interaction picture
and the path integral and Hamilton formalism in quantum field theory. Usually
the different mathematical formulations highlight different properties of the physi-
cal system under consideration. A certain aspect of the system may be naturally
studied in one formulation, while it is particularly hard to access in another. The
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Lagrange and Hamilton formalism provide a good example for such a situation:
while the time evolution of observables is naturally provided by the canonical equa-
tions of motion in the Hamilton formalism, it cannot be studied that easily in the
Lagrange formalism. On the other hand, the Lagrange formalism is ideal for the
construction of conserved quantities, due to Noether’s theorem.

The subject of this thesis is a further, however more advanced, example for a
physical system that can be described mathematically in two different ways: the
AdS/CFT correspondence. Proposed by Maldacena in 1997 [22], the AdS/CFT
correspondence states a duality between a theory of gravity on asymptotic (d+ 1)-
dimensional Anti-de Sitter space (AdS) and a conformal quantum field theory
(CFT) in d dimensions (AdSg;1/CFTy). To be more precise, AdS/CFT suggests
that these two theories actually describe the same physics, i.e. they are dynamically
equivalent. This is a remarkable result, as it relates general relativity and quantum
field theory in a very surprising way. These two pillars of modern physics describe
two very different aspects of our reality and their unification is one of the most
prominent unsolved problems of our time. The AdS/CFT correspondence states
that some quantum field theories are actually equivalent to theories of gravity. We
need to note however that even though AdS/CFT has passed many non-trivial
tests (see e.g. [23[24]), it is still a proposal for which no formal proof has been
constructed so far. The interpretation of a CF'T as a theory of gravity on AdS offers
new ways for studying the CFT. Many aspects of the CFT which are particularly
hard to grasp turn out to have a relatively easy access on the AdS side. Especially
for the study of quantum information aspects of the CFT this strategy has proven
to be very successful. In this thesis, we provide further results about quantum
information in the context of AdS/CFT.

1.1 Quantum Information in Modern Physics

One of the most fundamental differences between classical and quantum physics
is the concept of entanglement. Describing a new type of correlations with no clas-
sical analogue, entanglement was not easily accepted in the physics community in
the early years of quantum mechanics. Most famously, Albert Einstein referred to
it as spooky action at a distancd!] and considered it a powerful argument against
quantum theoryE] Later experiments however confirmed the existence of entangle-
mentﬂ which is today an integral part of modern physics.

Describing a certain type of correlations between different subsystems of a
given quantum system, entanglement is most successfully studied in the context of
quantum information ] This field is a generalization of classical information theory
to quantum systems. In analogy to the classical case, the purpose of the notion of
quantum information is to quantify diverse properties of the inner structure of a
given quantum state, such as correlations or the information content. In particular,

!Einstein used this phrase in a letter to M. Born on March 3rd, 1947.

2For the context of the discussion about the counterintuitive properties of quantum systems
we refer to the famous paper by Einstein, Podolski and Rosen (EPR) [25] from 1935.

3For a recent experiment we refer to |26].

4For an introduction to the subject see [27-31].
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quantum information offers methods for comparing different states in context of
these aspects. For this purpose several quantities were introduced which are meant
to grasp different quantum information aspects of a system. For instance, the
entanglement entropy (see e.g. [27-30,32,33]) is used to study the entanglement
between a subsystem and its complement for pure states. It can be generalized
to quantities like the (conditional) mutual information (see e.g. [27-30]) which
capture general correlations between different subsystems. Moreover, concepts
like the relative entropy (see e.g. [31,134,35]) or Fisher information (see e.g. [36])
allow to compare different states with each other. This method of comparing two
states is closely related to the concept of hypothesis testing in statistics: for a
system in a given state p; which is mistakenly assumed to be in a state py, it is
examined how strongly our expectations deviate from the actual behavior of the
system (see Section for more details). An alternative approach for comparing
two states provides complexity (see e.g. [37,38]). Here the goal is to determine
how hard it is to construct a state from a given reference state by applying only
certain allowed quantum operations. Usually the reference state is taken to be very
simple in the sense that it does not have any inner correlations. So in particular,
complexity captures the inner structure of a state. We discuss complexity in more
detail in Section [3.2

Many of the quantities introduced for quantum information have their origin in
classical information theory. The generalization of their classical counterparts to
quantum systems is mostly done in a straightforward way, as long as the quantum
system 1is discrete. An example for such a discrete system is given by a chain of
atoms. By only considering their spin, for each atom two discrete settings (spin
up, spin down) may be distinguished. Due to the similarity of this situation to
bits in classical information theory, such systems are referred to as quantum-bits
(g-bits). Even at this very simple example we see a clear difference between the
classical and the quantum situation. Unlike classical bits, g-bits may not only be
in one of the two possible states but generic superpositions of them are possible.

In recent years — in particular motivated by AdS/CFT — quantum informa-
tion for quantum field theories (QFT) became a subject of intense study (see
e.g. [35,39H42]). The mathematical rigorous introduction of quantum information
measures to QFTs however, is in general a very challenging task. In particular,
measures of quantum information — such as entanglement entropy — tend to be UV
divergent in QFTs (see e.g. |33,35]). Nevertheless, the study of quantum informa-
tion is essential for gaining a deeper understanding about the inner structure of
Hilbert spaces in QFT. For instance, the algebraic structure in QFTs leads to the
intriguing conclusion that QFT states are usually strongly entangled. To make
this statement more accessible, we present an argument showing that the vacuum
state |0) in QFTs is allways entangled. This is a direct conclusion of the Reeh-
Schlieder theorem [43], as we now discussﬂ The Reeh-Schlieder theorem states
that given any open subset A of a Cauchy slice, the vacuum sector of a QFT can
be generated by operators localized in a small neighborhood 94 of A. This state-
ment implies that the region 914 is correlated — and therefore entangled — with

®The following discussion is motivated by [35.
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any other space-time region. To see this we may consider an operator O # 0 in
the vacuum sector, localized in a region DV far away from 94 and with vanishing
vacuum expectation value. Due to the Reeh-Schlieder theorem we can find an
operator a localized in M4 such that (0] a’Oa |0) # 0 holds. Since a is localized
in 914 and O in some other region OV far away from 914, we conclude that O and
a commute. This allows us to deduce that the expectation value of the operator
a'a® does not factorize, i.e.

(0 a'a00) # (0] a'a]0) (0] O |0) , (1.1)

as O has a vanishing vacuum expectation value. Since afa and O are localized
in 94 and YV respectively, we see that the vacuum state contains correlations
between 914 and 9V and is thus an entangled state [

The above discussion demonstrates that correlations such as entanglement are
a fundamental part of QFT states and therefore deserve a deeper analysis. In par-
ticular, the entanglement in QFT states tends to be so strong that it leads to UV
divergences in the entanglement entropy (see e.g. [33,35]). In practice, these issues
are approached by putting the QFT on a lattice for the computation of quantum
information quantities — such as entanglement entropy (see Section .

A further reason for the study of quantum information for QFTs is its role in
general relativity. The formulation of a quantum theory for gravity is one of the
most prominent unsolved problems of modern physics whose importance for un-
derstanding the nature of our reality cannot be overstated. Quantum information
is a very powerful tool for establishing connections between a QFT and the theory
of general relativity describing the space-time it is defined on. In particular in the
presence of a horizon this is an evident observation. A horizon naturally separates
space-time into two regions, which immediately leads to the question about the
quantum correlations between the two regions (see e.g. [44,45]). We stress that a
horizon not only plays a role for exotic objects like black holes but also appears for
very simple configurations. One of the most prominent examples for such a situa-
tion is the space-time seen by a constantly accelerating observer [46]. As we depict
in Figure , an observer accelerating in x! direction in flat Minkowski space is
restricted to the so-called Rindler wedge [47], i.e. the region with ! > |2°|, where
2° is the time coordinate. Consequently, the observer is separated from the rest of
space-time by a horizon at x' = [2°| known as the Rindler horizon. This example
shows that even in very simple geometries — like flat space-time — situations may be
considered where an observer cannot see all of space-time but is restricted to a sub-
region. We emphasize that this restriction is not introduced artificially by adding
some kind of barrier by hand to the system but emerges very naturally from basic
concepts of general relativity. Due to the isolation from the rest of space-time, the
accelerating observer experiences the state of the system as thermal [46][] This
observation establishes the physical importance of quantum information. We see

6We note that in this motivation for entanglement in the vacuum state we ignored some
mathematical caveats. For instance, it is not possible to generate the full vacuum sector out of
M4 but only a dense subset. For a more detailed discussion of the subject, we refer to |35].
"For recent reviews of this setup we refer to [30,35]. See also [45].
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Observer

Figure 1.1: A constantly accelerating observer in Minkowski space. Due to their
acceleration in x! direction, the observer is restricted to the Rindler wedge (grey)
' > |2%. All events outside that region are inaccessible for them. Thus the
observer sees a horizon — the Rindler horizon — at the boundary of the Rindler
wedge, x! = [20].

that it is not just an information theoretic construct for quantifying correlations
but provides a deeper understanding for the origins of observable aspects of the
system, such as temperature.

So far we have only discussed entanglement in order to clarify the role of
quantum information in QFTs. However, the study of entanglement is not sufficient
for understanding the full quantum information content of a given state. The
aspect of quantum information we focus on in this thesis is complexity (see e.g.
[37,138]). For discrete systems, the basic idea behind complexity is very easily
understood. We consider a reference state |¢,) and a set of unitary operations
which are referred to as gates. The complexity of a given target state |¢;) is the
minimal number of gates that needs to be applied to |¢,) in order to approximate
[4;) up to a given tolerance. The generalization of complexity to QFTs however
is not very well understood and a subject of current research (see e.g. [48-51]).
The reason for the growing interest in complexity, especially in the AdS/CFET
community (see e.g. [52-55]), can be traced back to the work of Susskind and his
collaborators [56-59]. Susskind considered the eternal two-sided AdS black hole
and argued that the effort it takes to send a signal along an Einstein-Rosen bridge
from one side of the black hole to the other may be associated with complexity.
In the context of AdS/CFT this led him to the conclusion that the growth of
the Einstein-Rosen bridge in time is related to the complexity of the dual CFT
state. This example was also used to justify the importance of complexity for
field theories (see e.g. [57]): the two sided eternal AdS black hole is dual to the
thermofield double state of two identical CETs [60,61]. This state reaches thermal
equilibrium very fast, so that many aspects of the state stop evolving in time. In
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particular, the evolution of entanglement entropy stagnates [62]. Therefore, a new
quantity is required to study the evolution of quantum information aspects of the
state beyond thermal equilibrium. Complexity turns out to be a good candidate
for such a quantity, as it keeps evolving in time, even after thermal equilibrium
has been reached [57,/58]. So we see that complexity is a measure for quantum
information which grasps aspects of a given state that cannot be studied solely by
considering entanglement entropy.

The AdS/CFT correspondence provides a distinct approach towards a formal
definition of complexity for QFTs: instead of working directly with the CFT,
possible candidates for complexity can be constructed on the AdS side. We briefly
review the most popular of these candidates in Section [3.2.3] In this thesis a
proposal by Alishahiha [63] for the dual description of the complexity of reduced
CFT states on the AdS side is studied in great detail. Alishahiha’s proposal
relates the complexity of reduced states — the so-called subregion complexity — to
the volumes of certain codimension one regions on the AdS side.

We contribute the following two new insights to the study of complexity in the
context of AdS/CFT:

1. In Chapter (4] we present a novel proposal for a dual of complexity on the
AdS side in AdS3/CFTy which my collaborators and I published in [1]. This
proposal reveals a clear relation between complexity on the CFT side and
certain topological aspects of the gravity dual. Moreover, for the examples
considered in this thesis it differs from Alishahiha’s proposal only by a pro-
portionality factor and thus establishes a relation between topology and this
proposal as well.

2. We investigate Alishahiha’s proposal for subregion complexity in Chapter
Bl This chapter is based on results my collaborators and I published in [1]
and [2]. We construct an explicit CFT expression for Alishahiha’s proposal
for vacuum states. This provides new insights to the meaning of Alishahiha’s
proposal on the CF'T side and thus is an important first step towards testing
whether the proposed AdS quantity is actually a good measure for com-
plexity.

Besides complexity, we study a further quantum information object in this
thesis that currently gains a lot of attention (see e.g. [41,/64-72]), the modular
Hamiltonian [73]. For a given state p, [ the modular Hamiltonian K is defined via

€_K

P= tr(e k)’

(1.2)

In particular, we examine its contribution to the relative entropy for a family of
states depending on a continuous parameter A. The relative entropy (see Section
is of particular interest for QFTs, as it is one of the very few quantum
information quantities for which a rigorous definition for QFTs is knownﬂ The
modular Hamiltonian plays a crucial role in computing the relative entropy for

8Note that we treat the terms “state” and “density matrix” as synonymous in this thesis.
9See e.g. [34] and [35] for a review.
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Figure 1.2: The AdS/CFT correspondence. The AdS/CFT correspondence states
a duality between a theory of gravity on asymptotic AdS space and a conformal
field theory (CFT) residing on the conformal boundary of this space. The Ryu-
Takayanagi proposal relates the entanglement entropy of a CFT region A on a
constant time slice with a surface v4 in AdS, homologous to A. In the geometries
we consider in this thesis, v4 lies in the same constant time slice as A. The volume
of the region B4 enclosed by A and v4 (green) is conjectured to be a measure for
the complexity of the reduced CFT state on A.

explicit examples. However, despite intense investigation it was only possible to
construct an explicit expression for the modular Hamiltonian in a few cases (see
e.g. [74478]), some of which we present in Section [3.3.2] This makes the modular
Hamiltonian a challenging object to work with.

In Chapter @ we present an observation I published in [3] regarding the -
dependence of the contribution of K to relative entropy. In particular, this ob-
servation establishes an intriguing relation between the modular Hamiltonian and
entanglement entropy. We note that even though my result regarding modular
Hamiltonians may be applied to many examples in AdS/CFT, it is not restricted
to such situations but holds for any quantum theory.

1.2 Application of AdS/CFT to Quantum Infor-
mation

The AdS/CFT correspondence states a duality between a theory of gravity on
asymptotic AdS space and a conformal field theory. Here the conformal field theory
is considered to be defined on the conformal boundary of the AdS space (see Figure
[1.2). In this picture we find AdS/CFT to describe a system on asymptotic AdS
whose physical content is also contained on its boundary. This makes AdS/CFT
an explicit example for the holographic principle [79-81]. Already at this point we
can see that information theory appears in an natural way in AdS/CFT. Thus it
should not be surprising that AdS/CFT provides a very elegant approach towards
quantum information.
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The attention of the AdS/CFT community was drawn towards quantum in-
formation by a celebrated paper by Ryu and Takayanagi [82]. In this paper the
authors argue that the entanglement entropy of a given subregion A on a constant
time slice of the CFT corresponds to the area of the minimal surface on the AdS
side, homologous to A. In this picture, A is seen as a subset of the conformal
boundary of AdS. This proposal established a clear relation between the quantum
information content of the CFT and geometric aspects of the gravity dual. This
intruiging realization was further explored in the following years (see e.g. [83-86]).
In particular, in [87,[88] it was argued that the connectedness of space-time on
the AdS side is intimately related to entanglement on the CF'T side. Moreover,
in [89] it was even shown that Einstein’s equations may be derived from entan-
glement to linear order. The proposal by Ryu and Takayanagi is also related to
work associating the reconstruction of field excitations in AdS on the CFT side
with quantum error correcting codes [39,(90,91]. These concepts are of particular
interest for discrete versions of AdS/CFT involving tensor networks [92}93].

In AdS3/CFTs the Ryu-Takayanagi formula provides an exceptionally rigorous
approach for the study of the relation between entanglement and geometry. Here
it identifies the entanglement entropy of a given interval A on a constant time
slice of the CFT with the length of the geodesic v4 in AdS3 lying on the same
constant time slice and ending on the conformal boundary at the endpoints of
A (see Figure[L.2). This leads to a one-to-one correspondence between intervals
A on the CFT side and the corresponding geodesics v4 in AdS;. Therefore, the
space K of all these geodesics (intervals) is a valuable auxiliary construction which
can be interpreted both from the AdS side and the CFT side. The space K is
known as kinematic space and has been established in AdS/CFT by Czech and his
collaborators in [94-97]. The value of kinematic space lies in the fact that it offers
a systematic way for expressing geometric quantities on the AdS side in terms
of entanglement entropy of the CFT and therefore reveals the immense depth of
the relation between entanglement and geometry. For instance, an early version
of the kinematic space formalism was used to derive an integral expression over
entanglement entropies for the length of curves on the constant time slice of the
AdS side [94]. The results we present in Chapter |5 may be seen as an extension
of this method. We show how the kinematic space formalism can be applied to
express the volume of an arbitrary codimension-one surface lying in the constant
time slice of AdS3 as an integral over entanglement entropies. The fact that it is
possible to express such volumes in terms of entanglement entropies is of particular
importance for the concept of holographic subregion complexity (HSRC') introduced
by Alishahiha [63]. As we depict in Figure , HSRC is given by the volume of the
codimension one region B, enclosed by 74 and A. This volume is proposed to be a
measure for the subregion complexity of the reduced state on A. Our formulation
of volumes in terms of entanglement entropies provides a field theory expression
for vol(B4) and therefore for HSRC. The knowledge about the field theory dual
of HSRC is of particular importance for investigating whether vol(54) actually
encodes subregion complexity.
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1.3 Outline of this Thesis

The main results of this thesis are based on [1H3] and presented in Chapters[d] [5|and
6l In Chapter [ we discuss topological complexity, which associates the integral
over the Ricci scalar of B4 (see Figure with the subregion complexity of
the corresponding entangling interval A. We compute the topological complexity
for examples involving global AdSs;, BTZ black holes and conical defects. For
these geometries we find that the topology of B4 and A is of integral importance
for topological complexity. The focus of Chapter [5|is the construction of a field
theory expression for HSRC in AdS3/CFTy. We derive a formulation of HSRC
in terms of entanglement entropies for CFT vacuum states using the kinematic
space formalism. Moreover, we generalize this expression to states dual to BTZ
black holes and conical defects. Our results regarding modular Hamiltonians are
presented in Chapter [, We consider a one-parameter family of states reduced to
two entangling regions A, B for which the Araki-Lieb inequality is saturated (see
below). For this setup we argue that the relative entropy of at least one of
the regions A, B is expected to contain contributions of the modular Hamiltonian
that are of quadratic or higher order in the parameter of the family of states.
The purpose of the preceding Chapters [2| and |3]is to establish the theoretical
background required for understanding these results. In Chapter [2| we provide a
brief introduction to AdS/CFT, including a review of conformal field theories, Anti-
de Sitter spaces and Maldacena’s original argument for AdSs/CFT, in Sections

2.1.1} and respectively. Moreover, we discuss AdSs;/CFTy, which is of

particular importance for this thesis, in Section [2.3] and present further aspects
of AdS/CFT in Sections and which establish how AdS/CFT is applied in
practice.

The focus of Chapter [3|is quantum information and the way it is handled in
the context of AdS/CFT. The quantum information concepts we require for this
thesis are entanglement entropy, complexity and modular Hamiltonians, which we
introduce in Sections [3.1] [3.2] and [3.3] respectively.

Even though we discuss many of the physical concepts this thesis is based on in
Chapters [2|and [3| some preliminary knowledge about quantum information, quan-
tum field theories, general relativity and differential geometry is required. For an
introduction to quantum information we refer to [27-29.,/98|. Standard textbooks
regarding quantum field theory are [99-101]. Reviews of general relativity and dif-
ferential geometry can be found in [102H105]. Moreover, Maldacena’s motivation
for AdS5/CFTy, as presented in Section presumes some basic knowledge about
string theory, which is provided by e.g. [106-H112].

Chapter [4: Topological Complexity

In [1] Johanna Erdmenger, Haye Hinrichsen, Charles M. Melby-Thompson, René
Meyer, Christian Northe, Ignacio A. Reyes and I introduced the concept of topo-
logical complezity for AdS3/CFTy. This is a new proposal for a gravity dual of
the subregion complexity of a reduced state on a subregion A on the CFT side.
Just as Alishahiha’s HSRC [63], we consider the region B4 enclosed by A and ~4
(see Figure . However, instead of the volume vol(B4), we propose the integral
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over B, of the Ricci scalar of the considered constant time slice to correspond
to complexity. The advantage of this approach is the fact that this integral is
dimensionless by construction; a property which it shares with complexity. In the
case of HSRC an additional scaling factor needs to be introduced by hand in order
to obtain dimensionlessness. Moreover, we can use the Gauss-Bonnet theorem to
show that the topology of A and B4 play a crucial role for our proposal (see Sec-
tion . This justifies the name “topological complexity”. This dependence on
topology allows us to formulate a closed expression for the topological complexity
of a generic region A in the case where the gravity dual has the geometry of global
AdS;3 or the BTZ black hole. If A is not just a single interval but the union of
several intervals, 74 assumes different phases depending on the position of the in-
tervals relative to each other. When 74 undergoes a phase transition, the topology
of B4 changes, leading to discrete jumps in topological complexity. In Section
we compute topological complexity for the geometries of global AdS;, BTZ black
holes and conical defects. In all these cases, topological complexity and HSRC
differ only by a scaling factor. Therefore, we conclude that the topology of B4 and
A are also essential for HSRC in these geometries.

Chapter [5; Holographic Subregion Complexity from Kinematic Space

In addition to topological complexity, my collaborators and I also introduced a
method for expressing volumes of codimension one regions Q in AdSs lying on
a constant time slice in terms of entanglement entropy in [1]. This method was
discussed in detail and further developed in [2] by Johanna Erdmenger, Marius
Gerbershagen, Charles M. Melby-Thompson, Christian Northe and me. We use
the kinematic space formalism — which we introduce in Section [5.1] - to express the
volume of Q as an integral over the length of geodesics. We prove the validity of
this expression in Section [5.2] The Ryu-Takayanagi formula allows us interpret the
appearing lengths as entanglement entropies and thus provides a CFT formulation
for vol(Q). By setting Q = By, this result offers a CFT construction of HSRC,
which we discuss in great detail in Section [5.3. We generalize our findings to
the geometries of BTZ black holes and conical defects in Section [5.4. The CF'T
formulation of HSRC is a very important step towards a CFT interpretation of
HSRC. In Section [5.5 we discuss the conclusions to which we come for the role of
HSRC on the CFT side. In particular, we examine what lessons can be learned if
HSRC is actually a measure for complexity — as conjectured.

Chapter [6; Modular Hamiltonians on Entanglement Plateaux

In [3] Johanna Erdmenger and I published a result regarding the modular Hamil-
tonians of two reduced states on regions A, B for which the Araki-Lieb inequal-
ity [113] is saturated, i.e.

S(AB) = |5(4) - S(B)|. (13)

where S is the entanglement entropy of the respective regions. Regions which
satisfy (1.3) are referred to as entanglement plateauz [114] (see Section [6.1)). We
consider a one-parameter family of states p) on an entanglement plateau, i.e. we
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assume the reduced states py, p¥, pii? to satisfy for all values of the parameter
A. Here A may be chosen to be the energy density or the temperature of p,,
for instance. Moreover, we assume the entanglement plateau to be stable under
variations of the size of A and B that keep AB invariant. For this setup, we study
the A-dependence of the object A (Kjy) (A, A) (6.1)), which is the contribution of the
modular Hamiltonian Ky(A) of a reference state p’;‘o to the relative entropy of p
and p{ . In particular, we are interested in the case where A (Ky) (A, A) is linear in
A = X — X\o. In this situation, the first law of entanglement [115] allows to express
A (Kp) (A, N) in terms of entanglement entropy without explicit knowledge of the
modular Hamiltonian Ko(A) (see Section [6.2). We show that on entanglement
plateaux, A (Kj) takes this simple form only in special cases. The statement of
our result, which we present and prove in Section [6.3] goes as follows. If A and
B form an entanglement plateau which is stable under variations of the size of A
and B that keep AB invariant and A (K;) is linear in A for A, B and variations
of their size, then 935 is invariant under variations of the size of A and B.

This result is of particular interest in the context of the first law of entan-
glement: the first law states a relation between entanglement and the first order
contribution in A to A (Kj). We establish a relation between higher order contri-
butions in A and entanglement entropy.

Entanglement plateaux are very common in AdS/CFT. This allows us to apply
our result to several examples from AdS/CFT in Section[6.4 These include disjoint
intervals for thermal states dual to black string geometries and large intervals for
states dual to BTZ black holes. We note that our result is not restricted to
holographic situations but holds for any quantum system.
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Chapter 2

AdS/CFT Correspondence

We start our discussion by reviewing the aspects of the AdS/CFT correspondence
relevant for this thesis[] The AdS/CFT correspondence, which we also refer to
simply as AdS/CFT in this thesis, is a conjectured duality between a conformal
quantum field theory (CFT) and a theory of gravity involving asymptotic Anti-
de Sitter spaces (AdS). We note that the theory of gravity in general not only
considers Anti-de Sitter spaces but also an additional compact manifold M. So
the geometries we are working with on the gravity side take the form AdS x M.

The fields in a CFT transform covariantly under suitable representations of
conformal transformations, i.e. local rescalings of space-time. This provides the
theory with a very powerful algebraic structure for observables which allows to
derive many general expressions for expectation values simply from the conformal
symmetry without explicit path integral computations.

Anti-de Sitter spaces are solutions of the vacuum Einstein equations for a
negative cosmological constant. The hyperbolic structure of AdS allows light rays
to reach radial infinity at finite times and thus provides the concept of a conformal
boundary. The boundary has codimension one and is considered to be the domain
of the dual CFT (see Figure[1.2).

Throughout this thesis we use the terms AdS side, AdS, gravity side, gravity
dual, gravitational dual, bulk (dual) and holographic (dual) for references regard-
ing the theory of gravity on AdS. For the conformal field theory the terms field
theory side, field theory dual, CFT (side), CEFT dual or boundary are used.

We may distinguish three different versions of the theory of gravity involving
asymptotic AdS, depending on the considered form of AdS/CFT. In its strongest
form, the gravity dual is considered to be a theory of quantum strings. Moreover,
it may also be taken to be a classical string theory, which is referred to as the
strong form of AdS/CFT. The weak form of AdS/CFT — on which we focus here
— considers a classical theory of supergravity (SUGRA) for point-like particles as
dual of the CFT. Many non-trivial tests have been performed for the weak form
of AdS/CFT (see e.g. [23],24]), which provide strong evidence for the validity of
the AdS/CFT correspondence.

AdS;.1/CFTy was originally introduced by J. Maldacena [22] as a duality be-
tween a CFT in d space-time dimensions (CFTy) and a theory of gravity involving

'Reviews of AdS/CFT can also be found in [106}[109}{110,{116/119].
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(d + 1)-dimensional asymptotic AdS spaces (AdSg+1). The best understood ex-
ample is the case d = 4, i.e. AdS;/CFTy, which is the main focus of [22]. An
important property of AdS;,;/CFTy is the fact that the conformal field theory is
defined on a space-time which has one spatial dimension less than the correspond-
ing AdS space. This allows the previously mentioned association of the conformal
boundary of AdS;,; with the domain of the CFT\.

We provide an introduction to the foundations and basic concepts necessary
for AdS/CFT in Section [2.1] Moreover, we present Maldacena’s original motiva-
tion for AdS;/CFTy in Section 2.2] In Section we briefly review AdS3;/CFTy,
which is the example we work with the most in this thesis. The remaining two
sections (i.e. Sections[2.4land focus on the application of AdS/CFT to explicit

computations.

2.1 Foundations of AdS/CFT

In this section we review the most important aspects of conformal field theories
and Anti-de Sitter spaces. Since AdS/CFT is a conjecture for a duality between a
conformal field theory and a theory of gravity on asymptotic AdS spaces, these two
subjects may be seen as the foundation necessary to properly formulate AdS/CFT.

2.1.1 Conformal Field Theories (CFT)

We begin by giving an introduction to CFTs. Since the AdS/CFT correspon-
dence states a duality between a theory of gravity and a CFT, some basic knowl-
edge about CFTs is required in order to understand the actual statement of
AdS/CFT. However, the main focus of this thesis is the theory of gravity in
AdS/CFT. Therefore, we do not provide an extended discussion of CFTs in this
section but just present the basic aspects of the field. There is a vast amount
of literature where CFTs are discussed in great detail. In particular, we recom-
mend [109}|110}/120-122].

A CFT is by definition a field theory that is invariant under conformal trans-
formations. In simple terms, a conformal transformation is a local rescaling of the
space the field theory is defined on. In particular, this rescaling leaves angles in-
variant. A field theory with a conformal symmetry therefore has no natural length
scale associated with it. Moreover, the conformal symmetry provides the theory
with a very powerful algebraic structure. In particular for two-dimensional CFT's
this structure may be used to obtain many non-trivial results for CFTs without
even specifying a Lagrangian. The introduction to CFTs presented in this section
is based on [109,/120-122].

Conformal Transformations

In the following we introduce the concept of conformal transformations. Note that
we only discuss conformal transformations for flat space. However, the concept
can be generalized to curved spaces. Consider the d-dimensional Minkowski space
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R4 with metric

n = diag(—1,1,...,1). (2.1)
A conformal transformation z* — y* of R?~1! leaves the metric invariant, up to
a local scaling factor Q(z) > 0,

oy Oy’ B
M5 5 Q)N - (2.2)

Evidently, this definition in particular includes Poincaré transformations, for which

Q(x) =1 holds.

In order to make the concept of conformal transformations more accessible, we
now consider an infinitesimal conformal transformation

v ot + ok (x). (2.3)

As we show below, this allows us to identify certain types of conformal transfor-
mations and in particular determine their generators. By doing so we are able
to determine the conformal group, i.e. the group of all invertible globally defined
finite conformal transformations.

We now derive several equations v* has to satisfy in order to correspond to an
infinitesimal conformal transformation. Applying (2.3 to and expanding to
first order in v*, we find

a,uvu + ayv,u - S<x)77,uu 5 (24>
where s(z) = Q(z) — 1. Contracting (2.4 with n* leads to
2
s(z) = E@,\v’\. (2.5)

Therefore, in order for (2.3)) to be an infinitesimal conformal transformation, v* is
required to satisfy the equation

2

Oy + 0yv,, = damn,w ) (2.6)

From the relations
(Mw0 05 + (d — 2)0,0,)O\v™ =0 (2.7)
20,0,v, = C%(np,ﬁ,, + N O — Ny 0,) On0™ (2.8)

may be derived (see e.g. [121]). Here we see that the case of d = 2 is special, since
[2.7) simplifies to 9,0°0\v* = 0. Therefore, we need to treat the cases d > 2 and
d = 2 separately in our analysis of CFTs.

Conformal Transformations for d > 2

We may now deduce the general expression for v* for d > 0 by studying (2.7)) and
(2.8). By contracting (2.7)) with n*”, we find

0,0° 0™ = 0. (2.9)
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Applying this result to leads to
9,0,0,0™ =0, (2.10)
i.e. O\v* is at most linear in z*,
o = A+ B,a", (2.11)

where A and B, are constant. By inserting this result into ([2.8]) we find that v* is
at most quadratic in x*,

v, = a, + bx” + cppprtal . (2.12)

Here a,, b,, and c,,, = c,, are constant. We can determine the form of the
coefficients b,,, and c,,, by inserting (2.12) into (2.6) and (2.8) and perform a
coefficient comparison. This allows us to conclude that b,, and c¢,,, are of the
form

b = ANy + My Curp = Nppby + Mpbp — Mupbye (2.13)

where the constant coefficients «, b, and m,, = —m,,, may be chosen arbitrarily.
By applying (2.13) to (2.3)) we are now able to write down the general form of an
infinitesimal conformal transformation,

o (1 +a)z" + a* +mF, 2" + 2bya ot — oy b . (2.14)

This result now allows us to classify the conformal transformations and the com-
mutation relations of their respective generators.

Scale Transformations (D). From the first term in (2.14) it is easy to see
that the parameter « corresponds to an infinitesimal rescaling of x*. The corre-
sponding generator is denoted by D.

Poincaré Transformations (P,, J,,). The terms a* and m*,z" in (2.14)
correspond to infinitesimal translations and Lorentz transformations, respectively.
We denote their generators by P, and J,,, respectively.

Special Conformal Transformations (/). The remaining terms in
— proportional to b* — are referred to as special conformal transformation. The
corresponding generator is called K. The finite version of a special conformal
transformation, .
" u ot — xya b
S 2052 + by w a0’ (2.15)
may be interpreted as a combination of inversions of x* and a shift by b*. This is
evident by considering the relation

yﬂA _ qu b (2.16)
Uy TAX

which is an immediate consequence of (2.15)).
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The commutation relations of the generators D, P,, J,., K, are given by

D,P,=iP,, [D,J,]=0, [D K,]=-iK,,
P/JJPI/] - 07 P,Lu Jaﬁ (n,ua n#ﬁp )

[
[
[P, Ko = =20 (0D + ) (2.17)
[
[

J,uln Jaﬁ] - 7;('r],uBJl/oz + nucw]uﬁ - npajuﬁ - nyﬁjpa) )
s Kol = =i(uaKy — mvaK,),  [Ku K] =0.

We note that the special conformal transformations are not globally defined
since the z# with
1 — 2byz + byb z,a® =0 (2.18)

are mapped to infinity via (2.15]). In order to establish (2.15)) globally, we have to
perform a conformal compactification of R4~11 (see [121] for more details).

Conformal Group for d > 2

Having established the commutation relations , we may now motivate the
form of the conformal group for d > 2. The conformal group turns out to be
S0O(d,2) as may be seen as follows. We arrange the generators D, P,, J,,, K, in
a matrix Jyy with U,V =0,1,...,d+ 1 via

_ 1 _ 1 _
J,uu = J;wa Jdu: E(PM+KM)a J(dJrl)u = §(PM_KM)7 J(dJrl)d:Da (219)

where p,v =0,1,...,d—1 and Juyv = —Jyy. This allows us to write the commu-
tation relations (2.17)) as
[Juv, Jap) = i(ﬁUBJVA + vadus — uadve — 77\/BjUA) ; (2.20)

were 7y is defined to be the metric of R%2,
7= diag(—1,1,...,1,-1). (2.21)

The commutation relations are associated with the Lie algebra so(d,2) of
SO(d,2). Thus, we conclude that the conformal group for d > 2 is SO(d, 2).

We note that the above discussion of conformal transformations may be per-
formed analogously in Euclidean signature, i.e. when the Minkowski metric 7, is
replaced by the Euclidean ¢,,. In particular, in this case the conformal group is

SO(d+1,1).

Conformal Transformations for d = 2

The equation (2.6) describing infinitesimal conformal transformations takes the
form
0y + 0yv,, = 8,\1)’\7)W (2.22)
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for d = 2. For our discussion of two-dimensional CFTs we consider Euclidean
signature, i.e. we replace 7, by 6,,. This allows us to uncover an intriguing rela-
tion between conformal transformations and holomorphic functions. From
in Euclidean signature we obtain

801)0 = 81’01 and (901)1 = —81’00 . (223)

These are the well-known Cauchy-Riemann equations. We may use these equa-
tions to identify conformal transformations with holomorphic functions. For this
purpose, we introduce complex variables and functions together with their complex
conjugates,

z=a"+izt, v=1v"+iv!, (2.24)
z=2"—iz', v=0"—d! '
The Cauchy-Riemann equations ([2.23) now imply that v and therefore
zr—w = f(z2), (2.25)

where f(z) = z+wv(z), are holomorphic in some open set. Since corresponds
to the conformal transformation z* — y* — where w = y° + iy' — in complex
variables, we conclude that every holomorphic function f induces an infinitesimal
conformal transformation. In particular, a given f transforms the metric as

afof

_ 12 _ i
ds®> =0 wdy'dy” = dwdw = 9,95

—dzdz . (2.26)

We now derive the general expression for an infinitesimal conformal transfor-
mation, similar to the expression for d > 2. Note that even though f is
holomorphic on some open set, we allow it to have isolated singularities on C, i.e.
f is considered to be meromorphic. Therefore, we may use the Laurent expansion
of v and v to obtain the general form of an infinitesimal conformal transformation,

s w=z24 Y v(—2""), o @ =2+ ) B (-7, (2.27)

nez ne”L

The parameters v, v, are complex constants. From (2.27) we see that the struc-
ture of infinitesimal conformal transformations in two dimensions fundamentally
differs from the higher-dimensional case, as it involves infinitely many terms — un-
like its higher dimensional counterpart . The resulting generator algebra of
infinitesimal conformal transformations is infinite dimensional. The generators [,,,
1, associated with the Up, Up term in obey the commutation relations

] ( - n)lm+n ) (2.28)

my |
[l l_] ( ) m+n (2'29)
[l 1] = 0. (2.30)

The relations (2.28) and (2.29)) each define one copy of the so-called Witt algebra,
while (2.30)) implies that these two copies commute. Consequently, the two copies
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of the Witt algebra are independent from each other, which allows us to treat z
and z as two independent variables.

We now restrict our analysis to z, i.e. the copy of the Witt algebra generated
by the [,,, n € Z. Of course, the same discussion may be performed for z as well.
As for d > 2, it is necessary to conformally compactify the complex plane in order
to globally define the conformal transformations. We do that by adding a point
at infinity to the complex plane,

C— S* ~CU {0}, (2.31)

turning C into the Riemann sphere. However, even on the Riemann sphere only
[_1, lg and [, are globally defined. All other [, have a singularity either at z = 0 or
z = o00. | So we conclude that conformal transformations on the Riemann sphere
that are globally defined are generated only by [_1, Iy and [;. In particular, these
conformal transformations may be seen as the two-dimensional analogue of the
transformations obtained for d > 2. For instance, [_; generates translations

2240, (2.32)
where b € C is constant. Moreover, [, generates scale transformations of the form
z—az, (2.33)

for constant @ € C and may be combined with [, to the generators of two-
dimensional scale transformations (Io + ly) and rotations (Iy — ly). The latter are
the Euclidean analogue of the Lorentz transformations we encountered for d > 0.
The remaining generator [; corresponds to special conformal transformations

z
ez+1°

(2.34)

where e € C is constant. We refer to [120H122] for more details regarding {_y, lo,
l.

Conformal Group for d =2

From our above discussion of global conformal transformations we may now derive
the conformal group for d = 2. The transformations ([2.32), (2.33)), (2.34]) generated
by l_1, lp and [ allow us to deduce that a general global conformal transformation
is of the form

az+b

ez +d’
where a,b,e,d € C are constant. The transformations are referred to as
Moébius transformations. The corresponding group is the Mébius group SL(2,C)/Zs,
where the quotient w.r.t. Zs is due to the fact that a,b,e,d and —a, —b, —e, —d
correspond to the same Mobius transformation.

(2.35)

2See e.g. |121,]122] for more details.
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Virasoro Algebra and Central Charge

In two-dimensional conformally invariant quantum field theories it can be shown
that the Witt algebra needs to be modified by a central extension. To be
more precise, a quantum CFT does not carry a representation of the Witt algebra
but the so-called Virasoro algebraf]

[Lyn, Ly] = (m — 1) Lo + é(mi’* — 1)t (2.36)
where n,m € Z. The parameter c is the so-called central charge.

The emergence of the Virasoro algebra in a conformal quantum field theory may
be motivated by considering a Laurent expansion of the energy momentum tensor
in operator modes. From the operator product of the energy momentum tensor
with itself it can be deduced that these operator modes obey the commutation
relations . In this procedure, the central charge ¢ appears as a coefficient in
the operator product of the energy momentum tensor with itself (see |122]). So
every conformal quantum field theory determines a representation of the Virasoro

algebra (2.36)).

We note that the operators L_;, Ly and L, obey the same commutation rela-

tions as [_q, lp and [; (see (2.28)) and (2.36])). Therefore, they are the generators
of globally defined conformal transformations.

(Quasi-)Primary Fields

In conformal field theories (of any dimension d) there exists a distinct class of
fields ¢, so-called quasi-primary fields. From these fields, all other fields of the
theory can be obtained by repeatedly acting with P, on ¢. The resulting fields are
referred to as conformal descendants. Quasi-primary fields are defined via their
behavior under infinitesimal conformal transformations,

(2)] = i(2,0, — 2,0,) $(2) + T () (2.37)

where 7, corresponds to a finite-dimensional representation of the Lorentz group
which determines the spin of ¢. Moreover, A is the scaling dimension of ¢. The
relations allow us to determine the behavior of ¢ under a conformal trans-
formation x* — y*. For instance, if ¢ is a scalar (spin=0) field, it follows

o) ) = [ 2ot (2.38)

where |0y/0x| denotes the Jacobian of the transformation z# — y*.

3We present the Virasoro algebra for z here. In analogy to the two copies of the Witt algebra
(12.28), (2.29)), there is a further copy of the Virasoro algebra in quantum CFTSs, corresponding

to z.
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In the CFT formalism with complex variables z, z, introduced above for d = 2,
quasi-primary fields transform as

~h —h
6(2,2) — ¢ (w, ) = (%) (%) 6(2,2). (2.39)
Here f(z) is the holomorphic function associated with the conformal transforma-
tion z — w = f(z). The transformation z — w is assumed to be globally
defined, i.e. generated by L_;, Lo, L. The parameters (h, iz) are referred to as
the conformal dimension of ¢. We emphasize that h and h are real valued. In
particular, h is not the complex conjugate of h. A field with conformal dimension
(h, h) has scaling dimension A = h + h and spin h — h. If also holds for
local conformal transformations, i.e. transformations generated by the L, with
n # —1,0,1, ¢ is called primary. Evidently, all primary field are quasi-primary
fields as well.

Note that in AdS/CFT it is common practice to drop the term “quasi” for
quasi-primari fields and simply refer to them as “primary fields”. We adopt this
convention for the rest of this thesis. In particular for d = 2 it is important to keep
this convention in mind, since the term “primary” usually refers to a special class
of quasi-primary fields, as pointed out above. Moreover, the scaling dimension
A is often referred to as the conformal dimension ] This notation is used in this
thesis as well.

N =4 SU(N) Super Yang-Mills Theory

We conclude our review of conformal field theories by presenting an explicit exam-
ple for such a theory. The example we consider is the Super Yang-Mills (SYM)
gauge theory with gauge group SU(N) and N = 4 supersymmetry generators in
d = 4 dimensions. Note that there are much simpler examples for CFTs — such
as the free boson. However, N' = 4 SU(N) SYM plays a distinct role for the
AdS;/CFT, correspondence (see Section [2.2)), which is why we present this partic-
ular CFT. Since we do not work with this theory in this thesis but just need it to
properly formulate AdS5/CFT} in Section we restrict our review to presenting
the corresponding Lagrangian L£—4 and the field content.
The Lagrangian of N' =4 SU(N) SYM is given by (see e.g. [109,123])

6
Larey = tr ( — 57— Fu " =X DA = Y D¢ D'
9y m i=1
4 6 B B
+ gy Z anb o0 N+ gvar D> Caah[6, N (2.40)
a,b=1 i=1 a,b=1 i=1

92 : i
+ BT8P

1,j=1

“Note that the term “conformal dimension” usually refers to (h, h) for d = 2.
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where gy s is the coupling constant, D, is the covariant derivative, C%; are Clebsch-
Gordan coefficients. Moreover, o is given by 6° = —1 and 6" = —0", r = 1,2, 3,
where ¢” is the r-th Pauli matrix. The fields contained in L, are the gauge
field A, with field strength F),,, four Weyl fermions A}, a = 1,2,3,4, a = 1,2
and six real scalars ¢, i = 1,2,...,6. Regarding the SU(4)r R-symmetry of
the theory, the fields transform as follows. The gauge field A, transforms as 1
(singlet), the Weyl fermions A% as 4 (fundamental) and the six scalar fields ¢ as

6 (antisymmetric).

2.1.2 Anti-de Sitter Spaces (AdS)

The concept of Anti-de Sitter spaces is very well established in general relativ-
ity and discussed extensively in the literature (e.g. [109,/110,/116,/117,{119]). The
introduction we present here is based on [109].

Anti-de Sitter spaces play a distinct role in general relativity as they come with
a maximal number of symmetries. In fact, the symmetries of D-dimensional AdSp
allow to locally determine it by the space-time dimension D and the value of the
Ricci scalar R. In the following, we first introduce AdSp as a space-time with
a maximal amount of symmetries and second present an explicit construction of
AdSp as a submanifold of RP~%2. Moreover, we present several sets of coordinates
and discuss the concept of the conformal boundary for AdSp.

Maximally Symmetric Spaces

We now introduce AdSp as a space with a maximal number of symmetries. To
be more precise, we define AdSp to be a space for which the number of inde-
pendent coordinate transformations that keep its metric invariant is maximal, i.e.
we demand that there is no D-dimensional metric with more of such coordinate
transformations.

We begin our construction of AdSp by examining what coordinate transforma-
tions keep a given D-dimensional metric

ds* = gy (x)de™dz™ (2.41)
invariant. For this purpose we apply an infinitesimal coordinate transformation
oM M = M VM (1) (2.42)

where VM (x) is a given vector field, to (2.41). By demanding this coordinate
transformation to keep ds? invariant, we find

oyt oyr
gun (@) = 9pr(Y) 5 57 55 ~ 9w (2) + Var Vv + ViV, (2.43)

where we have expanded to leading order in V and V, is the covariant derivative
w.r.t. 9/0z™. From we deduce that the vector field VM is required to satisfy
the Killing equation

VuVn +VaVir =0. (2.44)
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The solutions of the Killing equation are called Killing vector fields or simply
Killing vectors.

For a D-dimensional manifold there are at most D(D + 1)/2 linearly indepen-
dent Killing vector fields. Consequently, the number of independent coordinate
transformations keeping ds? invariant is bounded by D(D + 1)/2. Spaces with
exactly D(D+1)/2 linearly independent Killing vectors are called mazimally sym-
metric.

We define AdSp to be such a maximally symmetric space. However, this
property is not sufficient to locally determine the AdSp geometry. For instance,
(D = d + 1)-dimensional Minkowski space R%! is maximally symmetric as well.
This may be seen by counting the number of symmetries of R%!: as it is well
known, R%! is invariant under Poincaré transformations, i.e. d + 1 translations
and (d + 1)d/2 Lorentz transformations, which add up to

(d+ 1)2(d+2) _ D(D2+ 1) 2.45)

transformations and consequently lead to D(D+ 1)/2 linearly independent Killing
vectors, as required for a maximally symmetric space.

The additional property which — together with maximal symmetry and dimen-
sion D — determines AdSp is the value of the Ricci scalar R. This is due to the
fact that maximally symmetric spaces can be classified by their dimension D and
their Ricci scalar R. E| In particular, the Ricci scalar of a maximally symmetric
space is constant.

This classification via R allows us to distinguish three different types of maxi-
mally symmetric spaces: spaces with R =0, R > 0 and R < 0. The first (R = 0)
is obviously given by R%!. Spaces in the second class (R > 0) are called de Sitter
spaces. The spaces we are interested in, i.e. Anti-de Sitter spaces, correspond to
the third class (R < 0).

We may introduce a length scale L > 0 for an AdSp with given Ricci scalar
RAdSD via
D(D—1)
Raasp = - (2.46)
The length scale L is known as AdS radius. The above discussion of maximally
symmetric spaces allows us to introduce Anti-de Sitter spaces in the following way.

The D-dimensional Anti-de Sitter space AdSp with AdS radius L is a
maximally symmetric space with Ricci scalar Raqgs, = —D(D —1)/L?.

®Note that in order to classify a maximally symmetric space it is also necessary to state
whether the considered manifold is Riemannian or Lorentzian. Since we are working exclusively
with Lorentzian space-times here, we drop this additional property.
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We conclude our discussion of maximally symmetric spaces by noting that their
symmetry leads to a Riemann tensor of the form

R
Runpr = DD-1) (9nr9MP — gNPIMR) - (2.47)

In particular, they are solutions to Einstein’s field equations in the vacuum

1
Run — iRgMN +Agun =0, (2.48)
for the value D_9
A=—"_"°"R 2.49
5D (2.49)

of the cosmological constant A. This particularly implies that Anti-de Sitter spaces
have a negative cosmological constant, as may be seen by considering ([2.46]).

Construction of Anti-de Sitter Spaces

The introduction of AdSp presented above, though very elegant, does not pro-
vide any explicit coordinate representation for the metric of AdSp. A coordinate
representation may be obtained by introducing AdSp as a submanifold of a sur-
rounding space whose metric may be pulled back to AdSp. We now present such a
construction for AdSp, where we consider the surrounding space to be ((D—1)+2)-
dimensional Minkowski space RP~12. We introduce the notation D = d + 1 for
the space-time dimensions, since this is the convention most commonly used in

AdS/CFT.

The (d + 2)-dimensional Minkowski space R%? comes with the metric

d
ds?y = fuydXUdXY = —(dX°)" + Y (dX)* — (ax)”. (2.50)
i=1
We may identify the (d + 1)-dimensional Anti-de Sitter space with AdS radius L
with the submanifold of R%? given by

v XUYXY = —L*. (2.51)

We depict this construction of AdSyy; in Figure 2.1] for d = 1.

In order to verify that the submanifold defined by is in agreement with
the introduction of AdSy,; presented below , we need to show that it is max-
imally symmetric and has the correct Ricci scalar . We postpone the latter
to the following section where we present explicit coordinates for AdS;y1. Given
these coordinates, the verification of may be performed straightforwardly.

The fact that the hypersurface is maximally symmetric is a consequence
of the evident fact that is invariant under O(d, 2). This group has (d+1)(d+
2)/2 generators which leads to the same number of linearly independent Killing
vectors, i.e. the maximal number of Killing vectors a (d + 1)-dimensional space
can have. This shows that indeed defines a maximally symmetric space.
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2

0
X2

Figure 2.1: AdS; embedded into R'2. We depict the submanifold of R1?
corresponding to AdS;. The coordinates w (cyan) and 7 (green) are given by
(2.52)). Note that for AdS, we have S = {—1,1}. This subtlety is dealt with by
considering w € R instead of w > 0.

Coordinates for AdS
Using the definition ([2.51]) of AdSyy; as hypersurface of R%2, we may now introduce

various sets of coordinates for AdS,, ;. We start by constructing the so-called global
coordinates of AdSz41 by considering (X°, X4*1) and (X',--- , X?) (see (2.50)) in
spherical coordinates respectively,

XY = cos(T),

X — psin(r), (2.52)

X' = Lsinh(w)Q* for i=1,---,d.
Here, we have written the radial coordinate of (X, .-+, X?) w.l.o.g. as Lsinh(w)
for w > 0. The coordinates Q' parametrize the sphere S47!, i.e. they satisfy

d

> @)y =1. (2.53)

i=1
Moreover, we have 7 ~ 7427 and @ > 0. By inserting ([2.52)) into (2.51]) we obtain
w = L cosh(w) . (2.54)

We depict the coordinates (7,w, Q) in Figure for d = 1. Using (7, w, Q) to
pull the metric (2.50) back to the hypersurface defined via (2.51f), we obtain the
metric of AdSy. 1 in global coordinates,

dsiqs = L*(— cosh?(w)dr® + dw® + sinh®(w)dQ}_,) (2.55)
where dQ?_, is the standard metric for S¢~1. Note that we have used

>0l = %d[z (@) = %dl —0 (2.56)

)
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in the derivation of (2.55).

Given the metric , the corresponding Ricci scalar may be straightfor-
wardly computed. It agrees with . This confirms that the hypersurface
2.51|) — which is already known to be maximally symmetric (see discussion below
2.51))) — is indeed AdS4y; with AdS radius L.

As can be seen in Figure 2.1] the time coordinate 7 is periodic. This leads to
closed time-like curves. Thus, in order to maintain causality, the time coordinate
needs to be unwrapped by considering 7 € R instead of 7 € [0, 27]. The resulting
manifold is the universal covering of AdSy. .

We may introduce an alternative version of the global coordinates by
using the coordinate 7 = Lsinh(w) > 0 instead of w. This leads to

dshus = —(1+ %)dz?? b P, (2.57)
o

where t = L7. Moreover, by introducing the coordinate € [0, 7/2) via tan(f) =
sinh(w), we can bring the metric (2.55)) into the form

L2

d82AdS = m( — d7'2 + d92 + Sil’lQ(@)dQ?lil) . (258)

Another set of coordinates that we use in this thesis are the Poincaré patch

coordinates
teR, Z=(z'- 2" eR", r>0, (2.59)

which parametrize AdS,; via

L2 7,2

0 —2 2 2

X0= (14 (@ -+ L)

Xizrz for i=1,---,d—1,
k . (2.60)

Xd:2—<1+ﬁ((’]_3)2—t2—[12))
T
f

XdJrl:T_.

L

Since 0 < 7 = X% — X? these coordinates only cover the part of the hypersurface
([2.51]) where X°— X9 > 0 holds, i.e. half of AdS.,;. This part of AdS.; is referred
to as Poincaré patch.

The metric of the Poincaré patch is given by

2 TQ wj..v L2 2 L2 J % 2
dspp = ﬁnw,dx dz” + T—zdr = ;(TIWCM dz” +dz ) ) (2.61)

where 2° = t and 2 = L?/r. This metric has a coordinate singularity at r = 0
(z=0).
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XO

3L

Light Cone

: 5 s X1

Figure 2.2: The X? = 0 slice of R"?. Tt is evident that AdS, (blue) approaches
the light cone (orange) for large absolute values of X', or equivalently large abso-
lute values of w (see Figure 2.1). This motivates the definition of the conformal
boundary of AdS, as the set of all light rays in R*? (2.63).

The Conformal Boundary of AdS

Remarkably, the Anti-de Sitter space turns out to have a boundary. We motivate
this by the following physical argument. Consider the AdS;,; metric in the form
(2.58]). The coordinate 6 € [0,7/2) takes the role of a radial direction. By using
the time coordinate T to parametrize a light ray « pointing radially outwards (see
e.g. [117)),

1(7) = (1) 30(r) = (1,7, (2.62)

where we dropped the angular coordinates corresponding to S%!', we see that
the light ray approaches § = 7/2 at 7 = 7/2. So from a physical point of view,
AdS;;; has a boundary at 6 = /2 that can be reached in finite time. However, this
boundary may not be interpreted as the boundary of a manifold in the conventional
sense, as the metric diverges for 6 — 7/2. All points in AdS,,; are interior
points, which is evident by considering the original construction of AdS;,; as a
hypersurface of R%2 . Moreover, in Figure we see that AdSgy; is a
hypersurface that expands infinitely, which gives further support to the fact that
AdS4y1 has no boundary in the conventional sense. The boundary at § = 7/2 in
AdS4.q is a conformal boundary, i.e. it is an equivalence class of d-dimensional
Lorentzian manifolds that are related to each other via conformal transformations.

We may motivate a formal definition for the conformal boundary by considering
the AdS,;1 metric in the coordinates (2.55). As depicted in Figure 2.2 AdSg4
approaches the light cone 7y XYXYV = 0 of the surrounding R%? for large w.

Therefore, the conformal boundary 0AdS,y; of AdSyy, is defined to be the set of
all light rays,

OAdS; 1 = {[X]|X e R*? X £ 0,py XV XY =0}, (2.63)
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where X’ € [X] iff X’ = aX for some a € R. We can make this definition of
0AdS, 1 more accessible by considering a representative X with
d
(X) =1 (2.64)
i=1
for each equivalence class [X]| € 0AdSgy1. From (2.63) it follows that X satisfies
(X0)? 4+ (Xx+1)* =1 (2.65)

and therefore conclude, by associating each [X] € 0AdS4;, with its representative
X

OAdS1 = (S' x 847 /Zs. (2.66)
The division by Zs is due to the fact that X and —X are both representatives with
the property (2.64]) that belong to the same equivalence class, i.e. [X]| = [—X].

The conformal boundary of AdS;,; may be interpreted as a conformal com-
pactification of d-dimensional Minkowski Space.ﬁ To see this explicitly, we now
construct the metric of 0AdS,,; by using the coordinates . For this purpose,
we multiply the metric by a positive smooth function G(7,6,a’) — where
the o' parametrize S — that keeps Gds? 44 finite in the limit § — 7/2. Such a
function G is called defining function. This procedure leads to a boundary metric
of the form

L*G(7,0,a")
2 — 1 Y
Aspnas 0_1>r732 cos?(0)

= Q(r, o/)( —dr? + in_l) ,

(—dr® +sin*(0)dQ]_,) (2.67)

where Q(7,a*) is some smooth positive function. The metric (2.67) is a conformal
compactification of R4~11, E| We see that the metric of 0AdSy,, is defined only
up to conformal equivalence, since the prefactor (7, a’) in is not unique.
As 0AdSg., is a conformal boundary, this result was to be expected.

The above method of obtaining a metric for the boundary by multiplying ds? 44
with a defining function also works in other coordinates. In Poincaré patch coor-
dinates for instance, the boundary is located at r = oco. So we need to
multiply ds?p by a defining function Gpp(z#,r) that keeps the metric finite for
r — o0o. This leads to

2
dsiaqs = Tli_}lgo Gpp (2", r)%nw,dx“d:c” = Qpp(2")ndatda” (2.68)

where Qpp(z#) is a smooth positive function. So in Poincaré patch coordinates
we see that the metric of 9AdS,,, is conformally equivalent to R4~ and may
therefore be conformally transformed to a conformal compactification of R4~ to
get in touch with the boundary constructed from global coordinates .

SFor more details see e.g. [109).
"We note that (2.67) is strictly speaking a conformally compactified extension of Minkowski
space. We do not discuss this subtlety here but refer to [110] instead.
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2.2 AdS;/CFT, Correspondence

We now present the original version of AdS/CFT introduced by Maldacena in [22].
In this paper, Maldacena conjectured a duality between N/ = 4 Super Yang-Mills
theory with gauge group SU(N) in four space-time dimensions and a theory
of gravity on AdSs x S°, i.e. AdS;/CFT,. For the motivation of AdS;/CFT,
presented in this section, some basic knowledge of string theory is required. We
refer to |[106-{112] for an introduction to the subject. The review of the basic
concepts of AdS;/CFT, we present here is a combination of the discussions of the
subject provided in [106,/109,/110]. Further introductions to AdSs;/CFT, can be
found in [116-119).

2.2.1 Three Forms of AdS;/CFT,

Strongest Form. We begin by presenting the explicit statement of AdS;/CFT,
in its strongest form.

The N = 4 Super Yang-Mills (SYM) SU(N) gauge theory ({2.40)) is
dynamically equivalent (2.69)

to type IIB string theory (ST) on AdS; x S® with N units of Fi5) flux on S°.

J

In this proposed duality the coupling constant gy, of the SYM theory is related
to the string coupling g,, the string length I, = v/o/ and the AdS radius L via

4

Gy = 2mgs and  2g3,, N = R (2.70)
As pointed out in Section N =4 SYM is a conformal field theory. Therefore
we see that the AdS/CFT correspondence states that a certain quantum string
theory on AdSs x S° may be understood as a conformal QFT.

Though very intriguing, this statement is hard to test since very little is known
about the full quantum version of string theory on curved space-time backgrounds.
Therefore, two further forms of AdS/CFT with more accessible gravity duals may
be considered. These two forms — which are implications of the strongest form
(2.69) — are referred to as strong and weak form of AdS/CFT.

Strong Form. In its strong form, AdS/CFT states that holds in the
so-called 't Hooft or large N limit, where we take N — oo for fixed 't Hooft
coupling Ay = ¢g2,,N. In this limit /' =4 SYM becomes an effective theory with
coupling constant Ay [124]E| By considering the relation (2.70)) we see that in this

8We do not discuss the large N limit in detail here as this is unnecessary for the content of
this thesis. Reviews of this subject may be found in e.g. [106}109,{110l{116]. We note however that
this limit may also be taken in other SU(NN) Yang-Mills theories. For the versions of AdS/CFT
studied in this thesis, the corresponding CFT is always considered in the large N limit.
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Form of CFT side: AdS side:
AdS;/CFTy | N =4 SYM SU(N) gauge theory | IIB theory on AdSs x S°
Quantum ST
Strongest any N and \g for any g, and o/ /L2
Classical ST
Strong N — oo for fixed Ay with g, — 0 for o/ /L2 > 0
Weak N — oo for large Ay Classical SUGRA

with g, — 0 and o/ /L* — 0

Table 2.1: The three forms of AdS;/CFT,. Depending on the choice of N and
Mg = g3y N, AdS;/CFT, proposes a duality between N = 4 SYM and a IIB
theory on AdSs x S°. The free parameters on the AdS side are related to the ones

on the CFT side via (2.70)).

limit the string coupling gs becomes very small and L*/a? stays finite. In partic-
ular, the quantum string theory on AdSs x S° reduces to a classical string theory.
Consequently, the strong form of AdS/CFT states a duality between a conformal
field theory and a classical string theory.

Weak Form. If we — in addition to the 't Hooft limit of the strong form —
consider Ay to be large, we recover the weak form of AdS/CFT. In this form
we find the string length I, = V&' to be very small compared to the AdS radius
L, as can be seen from . Consequently, the strings are approximated to be
point particles. This means that the type 1IB string theory is reduced to classical
type IIB supergravity. Therefore, the weak form of AdS/CFT states that a certain
conformal field theory with strong 't Hooft coupling is dual to a classical theory
of supergravity.

We list the strongest, strong and weak form of AdS/CFT discussed above in
Table 2.1} In this thesis we focus on the weak form of AdS/CFT, for which we
present a motivation in Section [2.2.3]

2.2.2 Dp-Branes

The motivation for AdS;/CFT} is based on superstring theory, where a certain low
energy limit is considered for a stack of N D3-branes. This limit allows to derive
both the AdS side and the CFT side from the dynamics of this setup. In order to
make the motivation of AdS;/CFT, more accessible, we now discuss the concept of
Dp—branesﬂ They are non-perturbative extended objects of dimension p+ 1 which
interact with strings. For low energies, depending on the strength of the string
coupling, a stack of N branes may be viewed from two different perspectives, the
open (weak coupling) and the closed string picture (strong coupling).

The open string picture considers Dp-branes to be (p+1)-dimensional Lorentzian
hypersurfaces on which open strings end while in the closed string picture they are

9The following introduction to Dp-branes is based on |106/{112].
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interpreted as very massive objects that curve the ten-dimensional space-time in
which they are embedded.

In the Maldacena argument (Section the open string picture motivates
the CFT side, while the closed string picture gives the AdS side of AdS/CFT.

Dp-Branes as Hypersurfaces (Open String Picture)

We now discuss the open string picture, where Dp-branes are seen as hypersurfaces
on which open strings end.

Consider an open string XM (r,0) (M = 0,...,9) in ten-dimensional space-
time, parametrized by the worldsheet coordinates 7 and o, where 7 refers to the
time and o to the space direction. Since a string is an extended object, we may
impose boundary conditions for the endpoints 0 = 0,7 of the string for every
direction, i.e. every M. We distinguish between Neumann

aUX“(T, 0-)|O':0 = ag-X'u(’T’ O—)|o_:ﬂ_ _= 07 (271)
for p =0,...,p, and Dirichlet boundary conditions,
X(1,0) = X(1,7) =0, (2.72)

fori=p+1,...,9. The conditions and imply that the endpoints of
the string can move freely in the z# directions but are fixed along the 2* coordinates
of space-time. As we depict on the Lh.s. of Figure [2.3] this suggests that the string
is attached to a Dp-brane, i.e. a (p+1)-dimensional hypersurface, located at z° = 0
and expanding along the directions z*.

A more detailed analysis (see e.g. [106,107,111,[112]) reveals that Dp-branes are
not just a mathematical construction to impose boundary conditions but actual
physical objects with energy and charge. In particular, Dp-branes are dynamical
and interact with closed strings. In this picture, the excitations of the Dp-branes
are given by the dynamics of the attached open strings (see Figure . These
excitations include fluctuations of the brane in the 2! directions, i.e. transverse
to the brane. To examine these deformations of the brane we use the worldsheet
coordinates £* to parametrize the brane via

(& s€) o (°(69), 2 (6), @7 (€1, @ (€")) (2.73)

The 9 — p functions ®° correspond to the transverse fluctuations, as we depict on
the r.h.s. of Figure [2.3] The low energy effective action for one Dp-brane is given

by

Sopen = —Tp / dp“fe*d’\/ —det (Plg] + P[B] + 21'F) + Swz, (2.74)

where the first term is known as the Dirac-Born-Infeld (DBI) action Spp; and
Swz is the Wess-Zumino action

Sy =2 / } PlClgr1)) A ePBl+2m F (2.75)
s
q
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€T T
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Figure 2.3: Dp-branes in the open string picture. By imposing Neumann and
Dirichlet boundary conditions for open strings we introduce a Dp-brane on
which open strings end (1.h.s.). These Dp-branes are dynamical objects themselves.
The excitations of the branes may be viewed as the dynamics of the attached
strings. These excitations include deformations of the shape of the brane (r.h.s.),

which may be parametrized by ®, i = p+1,...,9 (see (2.73)).

In (2.74) 7, is given by
7, = (2m) o/~ PTD/2 (2.76)

and

01?01 N 0’ 0x° N 0z 0®7 N 00’ 097
= 85“ afl/g)\a 85“ aéygw 85“ 85” gxj 88‘ 85” Gij

Pyl (2.77)

is the pull-back of the ten-dimensional metric gy of the surrounding space-time
to the brane. The pull-back P[B],, of the Kalb-Ramond field By, is defined in
an analogous way. Moreover, ¢ is the dilaton and F),, is the field strength of a U(1)
gauge field residing on the brane. In the Wess-Zumino action gs is the string
coupling, P[C(441)] is the pull-back of the Ramond-Ramond (R-R) (¢ + 1)-form
C(g+1) and the exponential of the two-form P[B] 4 2ma/F is defined via the wedge
product.

The action only contains massless fields, which is a consequence of the of
the fact that we only consider low energies. We note that the full action describing
the dynamics of a Dp-brane also contains a term for the fermionic excitations of
the brane. We do not discuss this term here, which is why we do not include it in
Sopen.-

To make the DBI action more accessible we consider the special case e? = g, =
const., F =0and B =0,

SDBI = —%/dp-i_lf\/ —det (P[g]) . (278)
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7 7

Figure 2.4: A stack of N coincident Dp-branes. When we consider N branes
instead of just one, open strings can be attached to two different branes. Here we
depict a string stretching from the r-th to the s-th brane. Such a string is labeled
by a Chan-Paton factor \.;. We need to emphasize that the Dp-branes in this
graphic coincide, i.e. they all lie on top of each other. The spatial distance of
the branes is only introduced here to facilitate the graphical representation of the
setup.

We see that in this simple situation the DBI action reduces to the area of the
Dp-brane. Consequently, the corresponding equations of motion imply that Dp-
branes are minimal surfaces. The prefactor 7,/g, in (2.78) may be interpreted as
the tension of the brane.

Since the field F' in Sypep, can be interpreted as a U(1) gauge field, Sypen
describes a U(1) gauge theory that is defined on the Dp-brane. It is possible to
extend this concept to introduce U(N) gauge theories for generic N by considering
a stack of N coincident Dp-branes instead of just one. As we depict in Figure [2.4
a stack of N branes introduces an additional pair of indices r,s = 1,..., N to
open strings in a natural way: the indices refer to the branes the two endpoints of
the string are attached to. In practice, these indices appear in form of so-called
Chan-Paton factors \.s which label an oriented string stretching from the r-th to
the s-th Dp-brane. The N x N matrix with entries A, is an element of the Lie
algebra u(N). This is how the gauge group U(NN) emerges for a stack of NV branes.
The fields on the branes then carry representations of U(N), i.e.

Ol = PUTT, A, = AT, (2.79)

where A, is the gauge field corresponding to Fj,, and T“ are the generators of
U(N). Consequently, " and A, are fields in the adjoint representation of U(N).
The action Spe, for the stack of Dp-branes is an adapted version of . For
instance, it includes traces to ensure gauge invariance. By taking the appropriate
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limits, the field theory described by S,pe, for a stack of D3 branes motivates the
CFT side of AdS;/CFTy, as we explain in Section [2.2.3]

In addition to the effective action (2.74]), we need to include the action S.pseq
of closed strings propagating through space-time. This is necessary in order to
obtain a complete description of Dp-branes as dynamical objects embedded in a
ten-dimensional space-time. The closed string action is given by

1 _
Sclosed = W leZE\/ — det(g) (6 2¢R + .. ) , (280)

where the dots refer to terms including fields like the dilaton or the Kalb-Ramond
field. Note that these fields, as well as the metric gy, also appear in S,pep .
Therefore, the Dp-branes and closed strings interact with each other. The action
describing both branes and closed strings is given by

S = Sopen + Sclosed . (281)

Dp-Branes as Massive Objects (Closed String Picture)

In the previous section we pointed out that closed strings couple to Dp-branes.
When this coupling becomes very strong, Dp-branes may be interpreted as very
massive objects that curve the surrounding space-time, so-called extremal p-branes.

This perspective is referred to as closed string picturem In the Maldacena
argument the closed string picture provides the AdS side of AdS/CFT. p-branes
are very massive (p + 1)-dimensional objects which usually come with a curvature
singularity and a horizon. If the position of the horizon and the singularity coincide,
the branes are referred to as extremal, which is the situation we consider here.
Since it is not known how a full quantum field theory describing this setup can
be constructed, it is common to restrict further discussions to the classical limit,
i.e. Dp-branes are introduced as classical solutions of type II supergravity. This
provides the weak form of AdS/CFT (see Table [2.1)).

The solutions of type II SUGRA associated with Dp-branes are of the form
[125H127]

ds%p = gppundr™dr™ = Nudatda” + ) Hy(r)d;dy'dy’ (2.82)

1
v Hy(r)

e® = g H,(r)®—»/*, (2.83)

Cips1y = (Hp(r)™' = 1)da® A - A da?, (2.84)

Buyn =0, (2.85)
where LT

—p 2

H,(r)=1+ (7[)) and %= Z (v')". (2.86)

The Greek indices u, v run over 0, ..., p and denote the coordinates parallel to the

brane. Moreover, we have i = p + 1,...,9 and the coordinates 3' correspond to

the directions transverse to the brane.

10The following introduction to the closed string picture is based on [109,/110].
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The extremal p-brane solutions of supergravity are a special case of a
certain class of geometries with a curvature singularity surrounded by a horizon.
They correspond to the situation when the positions of the singularity and the
horizon coincide. In the coordinates chosen in the horizon/singularity is
located at » = 0, as may be deduced from the behavior of the Ricci scalar

_ (p =723 —=p)(1+p)
A2\ /(L + (L/r)™=P)(1 + (r/L)7P)?

in the limit r — 0. Note that for p = 3 the geometry is well behaved at r = 0.
We discuss this case in greater detail in Section [2.2.3]

Rop

(2.87)

Starting from the explicit form - of the supergravity solution, we
may now discuss when this is a valid approximation for string theory. One very
intuitive criterion is that the string length needs to be very small compared to
a typical length of space-time. Since the only length scale in is L,, this
implies Vo < L,. In addition, the space-time curvature is required to be very
small compared to the string scale. In (2.87)) we see that for p # 3 there is a
singularity at » = 0, so in these cases the supergravity solution is only valid in a
region sufficiently far away from r = 0. Moreover, the effective string coupling e®
needs to be small for the supergravity approximation since string loop corrections
may not be ignored otherwise. From (2.83) we see that e? diverges at r = 0
for p < 3 which gives further support to the statement that the supergravity
approximation is not valid for p < 3 at r = 0.

For p = 3 the Ricci scalar vanishes and ¢? = g, is constant (see and
(2.83)). So we find the supergravity approximation to be valid at any point for
p = 3 if we choose g, < 1 and va/ < Ls. We further discuss the p = 3 case in
Section where we use it to recover the AdS side of AdS/CFT from the closed

string picture.

We may associate the supergravity solution (2.82)) — (2.86) in the closed string
picture with a stack of N Dp-branes in the open string picture via the relation

L;—p - (47T)(5—p)/2p (%) g Na/7—P)/2 (2.88)

between L, (2.86) and N. This relation is obtained as follows (see e.g. [109]).

Consider the R-R charge (), which — in terms of N — is given by
N

(27 )PP tD)/2g

In the supergravity solution (2.82)) — (2.86)), @ may be computed via the R-R flux

through the (8 — p)-sphere surrounding the singularity at r = 0, as we visualize in

Figure 2.5 i.e.

Q=

(2.89)

1
Q= W%O . *F(p+2) , (290)
where
(7T—p)LP

F(p+2) = dC(p+1) = dr Ndz® A+ A dx? | (2.91)

T8 PH2(r)
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Tmu

Figure 2.5: The R-R charge of the Dp-brane geometry. The Dp-brane metric is
given by . In analogy to the electric charge of a point particle, the R-R
charge of the Dp-brane may be determined by the flux through the (8 — p)-sphere
around r = 0.

and 23, = (2m)"a/*g?. The Hodge dual of Fi,o) is given by

(7= p)Ly™ \/— det(gny)
rSPHR(r) (8 —p)!

rN1 ONag PNpt2 My
X gDp gDp e gDp EMl"'M87pN1"'Np+2dx ARRENAN dl’

=(7—p)L] Pwgs—»
where wgs—» is the standard volume form of S®~P. By comparing (2.89) with ([2.90)

we obtain (2.88]). So we see that a stack of N Dp-branes in the open string picture
may be interpreted in the closed string picture as a supergravity solution of the

form (2.82)) — (2.86) with L, given by ([2.88).

*Flpyo) =

Mg,

2.2.3 The Maldacena Argument

We now review Maldacena’s original motivation [22] for the weak form of AdS;/CFT,
(see Table . B The basis of Maldacena’s argument are the two pictures for
a stack of N D3-branes discussed in Section 2.2.21 When we only consider low
energies and reduce the strings to point particles, i.e. o’ — 0, we obtain the CFT
side from the open and the AdS side from the closed string picture. Since both
pictures describe the same physical object, we conclude that the AdS side and the
CFT side describe the same physics and therefore recover AdS;/CFTy.

We begin our review of this motivation for AdS;/CFT, by presenting the exact
limits we consider. First, we only work with low energies, i.e. E < 1/v/a’ to avoid
any stringy excitations. Second, we take the point-particle limit

o — 0, for fixed L/ ) (2.93)
«

where r is any length scale. This limit is known as the Maldacena limit. By
keeping r /o’ fixed we ensure that the expectation values of the theory stay fixed
for o/ — 0, as we show below.

"This section is based on [106,/109,/110].
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By applying these two limits we recover the CFT side from the open string
picture and the AdS side from the closed string picture.

Open String Picture (CFT Side)

We first consider the stack of N D3-branes in the open string picture. As already
pointed out at the beginning of Section [2.2.2] this picture is only reliable if the
coupling between open and closed strings is weak. For a stack of N D3-branes
this coupling is effectively given by gsN. So we implicitly assume g;N < 1 in
this section. We mentioned in Section that for low energies the action for
the fields in the open string picture is a sum of two terms . A term Sypen,
describing a U(N) gauge theory on the branes and a term Sgoseq
corresponding to the closed string modes propagating through ten-dimensional
space-time. By construction of S, the excitations of the branes couple to the
closed strings.
To obtain the CFT side from this setup we consider the rescalings

e? = gse"‘mé, O =21’ d" . gun = Nun + Kohun (2.94)

where 2x%, = (27)7a’g?, which ensure the canonical normalization of the fields.
Note that the redefinition of the metric gj;n implies that we only consider small
excitations of space-time, which is in agreement with the low energy limit.

By taking the Maldacena limit we ensure that the expectation values of
the theory are fixed for @/ — 0. To see this we consider the following example:
we add an additional D3-brane parallel to the stack of N branes at #? = r. In the
low energy limit — where only massless modes are considered — this implies that
the corresponding gauge group U(N + 1) is broken to U(N) x U(1) and ¢° has the
vacuum expectation value (¢°) = r/(2ra’). In the Maldacena limit o/ — 0 for
r/a/ fixed, this vacuum expectation value does not change.

We now apply the Maldacena limit to Sypen, . Since a detailed discussion
for a stack of N D3-branes for generic N would exceed the requirements for this
thesis, we restrict our discussion to the bosonic part of just one D3-brane with
vanishing Kalb-Ramond field. Moreover, we ignore the contribution of the Wess-
Zumino action Sy z. Considering these simplifications, Sy, takes the form

Sopen = _W /d xre \/— det (P[g] + 27TO/F) . (295)
Here we used ([2.76|) for p = 3 and chose the z* space-time coordinates as worldsheet
coordinates, i.e. x = ¢*. By applying (2.94) to (2.95) and expanding in o/, we
find

1 1 v 1 v % j
Sopn =~ [ e (FEub™ + 518,0,60,6 +O@)).  (290)
So we recover the typical terms expected in the action of a U(1) gauge theory. It
is possible to generalize this discussion to a stack of N D3-branes. By doing so
we find that in the limit o/ — 0, S,pen, becomes the action of N'= 4 SYM with
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gauge group SU(N) (see ([2:40)), i.e. the CFT side[™ In particular, the coupling
constant gy s turns out to be

Gy = 2, (2.97)

Having established the derivation of the CFT side from S,pe,, we now discuss
the remaining part Sjoseq 0f the action (2.81)). By applying (2.94)) to the expression

" for Sclosed we obtain
1 10 2
Selosed = =5 [ d w((ah) +---+O(/-€10)>. (2.98)

Here (Oh)? refers to the leading order contribution of \/— det(g)R in 1. It turns
out to be the action describing free gravitons in ten-dimensional Minkowski space.
The dots in (2.98) refer to the leading order contributions of the other terms in
(2.80). They correspond to fields defined on ten-dimensional Minkowski space as
well. In total, Supseq turns out to be the action for type IIB supergravity on R%!.

Summing up the results of this section, we find that the action for the
open string picture contains the action Sy—4 of N' =4 SYM SU(N) and the action
Sip of type IIB SUGRA. The coupling terms between Sy—s and Sy — provided
by Sopen — turn out to be of order o’? and may therefore be ignored in the
limit o/ — 0. Consequently, the resulting action describes a N' = 4 SYM theory
and a theory of supergravity which completely decouple from each other,

Sopen + Sclosed — SN:4 + SIIB . (299)

Closed String Picture (AdS Side)

The AdS side may be obtained from the closed string picture of a stack of N
D3-branes in the following way. In contrast to the open string picture, we first
consider the Maldacena limit here and afterwards take the low energy limit.
By performing the limit o/ — 0 we in particular impose va/ < Ls. In this
situation the classical supergravity limit is a good approximation if we in addition

choose g; < 1, as discussed in Section [2.2.2] From ([2.82) — (2.86]) we obtain

1

dshy = \/ﬁnwdx“dx” + / Hs(r)(dr? + r2dSs) (2.100)

3\r
e? = gy = const. (2.101)
Cuy = (Hs(r)™ = 1)dz" A+ N da®, (2.102)
Bun =0, (2.103)

where Lo

Ha(r) =1+ (73) . (2.104)

12Note that in Section we stated that a stack of N Dp-branes provides a U(N) gauge
theory. The reason why we only consider a SU(N) gauge symmetry here is due to the fact that
the U(N) gauge theory contains decoupling U(1) degrees of freedom. In AdS/CFT only the
remaining SU(N) degrees of freedom are considered. For more details we refer to [110].
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Figure 2.6: The geometry induced by a stack of N D3-branes. (This figure is
inspired by a similar graphic in [106].) By considering the metric (2.100)) it is easy
to see that the radius of the S® sphere surrounding r = 0 asymptotes to Ls > 0 in
the limit » — 0. So the geometry may be interpreted as a throat.

Note that we have used spherical coordinates for the directions transverse to the
brane. These transverse coordinates form the geometry of a throat, since the S°
sphere surrounding the horizon at » = 0 has a finite radius L3, as depicted in
Figure [2.6]

The deeper an object is located in the throat, the more it is red-shifted, as we
now discuss. For an observer at infinity an object with energy E, located at a
finite r has a red-shifted energy

E = H; '*(r\E, . (2.105)

So the energy E measured at r = oo decreases the closer the object is moved to
the horizon at » = 0. We may consider objects at r = 0 with arbitrary energy F
— which is the energy measured in the field theory — by keeping vo'E, fixed while
taking the Maldacena limit, i.e. @/ — 0 for r/a’ fixed. This is easy to be seen by
approximating

Hi(r) ~ = (2.106)
for r < L3 and inserting (2.88)) for p = 3 into (2.105)).

The next essential step is to take the low energy limit. We may distinguish
two different types of excitations that have low energy for an observer at infinity:
massless modes with very large wave-lengths propagating through space-time far
away from the throat, and excitations located very close to r = 0 which have low
energy due to the red-shift . We depict these two types in Figure .

By taking the low energy limit, these two types of low energy excitations are
decoupled from each other. This may be seen as follows: We choose the wave-
lengths of the massless excitations far away from the horizon to be much larger
than the radius Lj of the S® sphere surrounding it. Consequently, the length scale
L3 of the horizon cannot be approached by the considered low-energy particles.
Moreover, the horizon has an infinite radial distance from any other point on the
geometry. Therefore, the excitations very close to r = 0 are trapped inside the
throat.
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Figure 2.7: The two types of low energies in the brane geometry . We
can distinguish two types of excitations that have low energy E for an observer
at infinity. Excitations with long wave-lengths far away from the throat (A) and
excitations that are trapped inside the throat (B). The latter are red-shifted for
an observer at infinity. In the low energy limit these two types decouple.

In this decoupling limit, the massless large-wave-length modes form IIB su-
pergravity on flat ten-dimensional Minkowski space, since the metric (2.100) is
asymptotically flat for r > Lj. For the excitations near r = 0 we may apply
(2.106]). This allows us to recover the metric of AdS; x S° from by identi-
fying L3 with the AdS radius L (see for the AdS part of the metric),

2 L2
dsT)s ~ %nﬂydx“dx” + ﬁdr2 + L2dQ3 . (2.107)

So we find the near horizon excitations to describe a theory of supergravity on
AdS;s x S°, which is the AdS side of AdS/CFT (2.69).

Furthermore, we recover a relation between the AdS radius and the parameters
N, gs and o' by setting Lz = L in ([2.88)) for p = 3,

L4
drgsN = ok (2.108)
This relation implies that the limit o/ — 0 — which is necessary for the classical
supergravity approximation to be reliable — is consistent only when g, N > 1. This
is in agreement with the statement made at the beginning of Section 2.2.2} the
coupling between open and closed strings (which is given by gs/N) has to be strong
in order for the interpretation of branes as massive objects to be trusted.

As a final comment we mention that since the radius of the S° sphere in ([2.107))
is equal to the AdS radius L, we find the Ricci scalar of the sphere to be
20
Rgs = T2 —Radss » (2.109)
where the second equality is a consequence of (2.46)). So we find the Ricci scalar
of (2.107)) to vanish, which is in agreement with (2.87) for p = 3. Therefore, the
divergence of the metric (2.107) at » = 0 is merely due to a coordinate singularity.
We can avoid this singularity by using global coordinates — e.g. ([2.57)) — for the
AdS part of the metric instead of Poincaré patch coordinates ([2.61)).
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Stack of N D3-branes

Maldacena limit low energy limit
gsN <1 gsN > 1
Type IIB SUGRA Type IIB SUGRA
on R%! on R%!

+ +
N =4 SU(N) Type IIB SUGRA

SYM on AdS; x S°

Figure 2.8: A visualization of the Maldacena argument. We start with a stack of
N D3-branes. By taking the low energy and the Maldacena limit we recover in the
open string picture (g, N < 1) type IIB supergravity on R%! and the N' =4 SYM
theory with gauge group SU(N). In the closed string picture (gsN > 1) we obtain
type IIB supergravity on R%! and type IIB supergravity on AdSs x S°. Since in
both pictures a type IIB supergravity on R%! is present that decouples from the
rest of the theory we may conclude that the N' = 4 SYM theory is dynamically
equivalent to type IIB supergravity on AdSs; x S°.

Combining the Open and Closed String Picture

Combining the CFT and AdS side derived from the open and closed string picture
respectively, we may now to motivate AdS;/CFTy. In the open string picture we
saw that by considering the low energy and Maldacena limits, the action for
D3-branes decouples into the action of N' =4 SU(N) SYM and the action
for type IIB supergravity on R%!. In the closed string picture on the other hand,
we found that in the low energy and Maldacena limits the theory describes two
different types of excitations that decouple from each other, type IIB supergravity
modes on AdS; x S® and R%!.

So we see that in both the open and the closed string picture the theory of
type IIB supergravity on R%! is present and decouples from the rest the theory.
Since both pictures describe the same physical situation, we may conclude that the
remaining parts, i.e. N =4 SU(N) SYM and type IIB supergravity on AdSs x S°,
describe the same physics as well — which is the statement of AdS;/CFT4. We
depict this train of thought in Figure 2.8 In particular, by combining the formula
for the coupling constant gy s with the relation between the string coupling
gs and the AdS radius , we recover the relation between the free
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parameters of the AdS and CFT side.

A point to note is that the open string picture is only reliable for g, N < 1,
while the closed string picture requires gs N > 1, as we discuss in the corresponding
sections. The above conclusion that A = 4 SU(N) SYM is dual to type IIB on
AdSs x S® does not consider this subtlety and is therefore just a motivation for
AdS5;/CFTy, not a formal proof.

2.3 AdS;3/CFT,; Correspondence

In this section we review the AdS3;/CFTy correspondence, which is of particular
importance for this thesis as most of our results concern this setup.

Similar to AdS;/CFTy (see Section [2.2), the AdS;/CFT, correspondence may
be motivated by a particular configuration of D-branes. However, unlike in the
AdS;/CFTy case, these branes are not embedded in ten-dimensional Minkowski
space R%! but in

R x S x T*, (2.110)

where T* is the four-torus. The following motivation of AdSs;/CFT, is taken from
[109]. Further reviews can be found in [22,|110,]128-130]. The brane configuration
we consider here consists of N; D1-branes wrapping the S* in and N5 D5-
branes wrapping S' x T%¢. We depict this setup together with the coordinates we
use in Table 2.2
Geometry R*1 St T

Coordinates | 2V | o' | 2% |23 [ 2% | 2° | 2% | 2" | 28 | 2°
D1
D5 X | - . . . X | X | x| x| X

X
X

Table 2.2: Embedding of the D1 and D5 branes. The brane configuration moti-
vating AdS3/CFTy considers N; D1-branes wrapping the S! in z° direction and

N5 D5-branes wrapping the S' x T% along °, ..., 2°.

The low energy dynamics of this configuration — which provides the CFT side
— is located at the (1 + 1)-dimensional intersection of the D1 and D5-branes. Note
that we assume the characteristic length scales of T* to be small compared to S*. In
order to motivate the corresponding gravity dual, we consider the IIB supergravity
solution of the D1/D5 system — analogous to the derivation of AdSs x S° in
AdS;5/CFTy (see Section2.2). The metric of this solution — in Euclidean signature
— is given by

1 o Hy(r)
— ((dz")? + (dz®)?) + / H,(r)H5 ()6, :dx dx? + 1—d824, 2.111
e () R D b, (21)
where i,j =1,...,4, ds7, is the metric of the four-torus 7* and

Hy(r)=1+ % Hs(r) =1+ =" with r*= Z(xi)2. (2.112)
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Moreover, we have
(2m)tg,Nia'
Vi

where V} is the volume of T%. Just as for AdS;/CFT, (see Section we take
the Maldacena limit o — 0 for r/a/ fixed. We obtain the geometry

Q1 = and Q5 = gNso, (2.113)

r’ 0\2 5\2 L, 2 Q1 , 5
ﬁ((dx) + (dz°)?) + —dr® + L?dQs + @dsﬂ (2.114)

of AdS3x S§®xT* (in Euclidean signature) on which the gravity dual of the CFT is
defined. Note that we chose spherical coordinates for the directions 2%, i = 1,. .., 4.
The AdS radius L is given by

L' = QQ;. (2.115)
The metric (2.114) contains the Poincaré patch of AdS; (2.61]), which may be
extended to global AdS;3 (2.57)), H

dsids = - <1 + %)dt? + H—Edfz + f2d¢2 , (2.116)
L2

where ¢ ~ ¢+ 2mw. The CFT is defined on the conformal boundary of AdS3, whose
constant time slice is given by a circle (see (2.67)) for d = 2). Moreover, the central
charge ¢ of the CFT is related to Newton’s constant (G3 in 3 dimensions and the

AdS radius via the formula 3l

2G;”
which was derived by Brown and Henneaux |132].

= (2.117)

2.4 Dictionary

In order to make practical use of AdAS/CFT, a one-to-one correspondence between
field theory and gravity quantities is required. To be more precise, we need to know
how a given field theory quantity is represented on the gravity side, i.e. what is
its gravitational dual. This one-to-one correspondence between field theory and
gravity quantities is referred to as the dictionary.

The dictionary allows to perform field theory calculations on the gravity side
and therefore provides many non-trivial tests of AdS/CFT. As an explicit example
for an entry of the dictionary, we mention the duality between chiral primary
operators (CFT side) and certain fluctuations of the metric and the R-R five form
(AdS side) in AdS;/CFT, [23]. A further entry of the dictionary is the Ryu-
Takayanagi formula, which relates entanglement entropies (CET side) to minimal
surfaces (AdS side) [82]. We discuss the Ryu-Takayanagi formula in Section [3.1.6]

13We note that the z° direction in (2.114]) parametrizes S! (see Table . The corresponding

direction for the Poincaré patch (2.61) however, is non-compact. Therefore, following the con-
struction presented in this section, we may obtain (2.116)) only locally. As pointed out in [129], in
order to obtain (2.116)) globally, a rotating version of the D1-D5 brane configuration is required
(see e.g. [131]).
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2.4.1 Field-Operator Map

A very concrete realization of the dictionary is the field-operator map |133}[134]. Tt
relates bulk fields with boundary operators via the asymptotic behavior of the bulk
fields at the conformal boundary of AdS;,;. In particular, the field operator map
makes the statement that the considered field theory is defined on the boundary
of the respective AdSy,1 space, more explicit. Moreover, the field-operator map
provides an explicit expression for n-point functions of boundary operators in terms
of bulk quantities.

Kaluza-Klein Reduction

The field operator map associates fields on AdS, 1 with operators on the CFT side.
However, in AdS/CFT we usually consider a theory of gravity on AdS;.; x M
— where M is a compact manifold — to be dual to a conformal field theory. For
instance, the additional manifold M is S in AdS;/CFT, (see Section and
S3 x T* in AdS3/CFT, (see Section . In order to understand the field operator
map, we first need to examine how the fields on the gravity side, which are defined
on AdSy11 X M, are related to the AdS,.; fields dual to CFT operators.

The fields on AdS;; are obtained by considering a mode expansion in the
harmonic functions on M, i.e. a Kaluza-Klein reduction [135]. By this procedure,
from each field on AdS;.; x M an infinite tower of fields on AdS,,; is obtained.
Each of these fields corresponds to one mode on M. Since M is compact, the
spectrum of these modes is discrete.

To see how the Kaluza-Klein reduction works in practice, we perfom it for a
massless scalar field ®(z™,0%) on AdS; x S°. [ Here, we use 2™, M =0,...,5
and €, i = 1,...,5 to parametrize AdS; and S° respectively. The equation of
motion for @ is given by the Klein-Gordon equation on AdSs x S®,

Vidssxss @@, 0) =0, (2.118)

where V3 d8sxgs 18 the d’Alembert operator of AdSs x S5. Tt is easy to see that the
d’Alembert operator on AdSs x S? is given by the sum of the respective operators

on AdS; and S%,
Vids5><55 = VidS;, + Vs . (2.119)

Therefore, (2.118]) may be solved by the mode expansion

ngl Myy'l(g?) (2.120)

where the ¢;, | € Ny, are scalar fields on AdS; and the Y' are the spherical
harmonics on S® satisfying the equation

11+ 4)

V%5Yl = — L2

Yt (2.121)

14The following discussion is based on [116].
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Here the L? in the denominator comes from the fact that the S° sphere in AdSs x S®
has radius L (see (2.107))). By inserting the mode expansion (2.120)) together with

(2.119)) and (2.121)) into (2.118)), we find the equation of motion for each ¢,

Viass o1 —mior =0, (2.122)
where l([ )
+4

m; = 73 (2.123)

The equation ([2.122)) is the Klein-Gordon equation for a scalar field of mass m; on
AdS;.

So we see that the Kaluza-Klein reduction of a single scalar field ® on AdSs x S°
provides an entire tower of massive scalar fields ¢; on AdSs;. Each of these fields
may now be associated with a particular operator on the CFT side. As we show
below, the mass my governs the asymptotic behavior of ¢; at the conformal
boundary and is related to the conformal dimension of the dual CFT operator.
Note that m; is completely determined by the eigenvalues of V?gg, . Following
the above arguments for the derivation of the mass spectrum m;, it is easy to see
that the same procedure may be performed in the general case of AdS;,; x M.
Evidently, the mass spectrum of the resulting scalar fields on AdSy,; is determined
by the eigenvalues of V3,. Since the masses of the bulk fields determine the
conformal dimension of the dual operators, we see that the operator spectrum on
the CFT side is encoded in the shape of M on the gravity side.

A Toy Model: Scalar Fields Dual to Primary Operators

In order to explain the basic concept of the field-operator map, we consider the
following toy model['"] which is taken from [109]. [ Consider a scalar field ¢
of mass m in AdS;,; — obtained by a Kaluza-Klein reduction — with a primary
operator O as CFT,; dual. The conformal dimension of O is denoted as A. The
action on AdSg,; for ¢ is given by

C
Saasle] = ) / dzd®z+/det(gpp) (gpp OnrpOng +mPp?), (2.124)

where gpp is the AdS;,; metric in Poincaré patch coordinates (2.61) and C' is a
constant proportional to N2. Note that we work in Euclidean signature here, i.e.

we replace 1, by 6,, in (2.61).

We now present how the asymptotic behavior (i.e. z — 0) of the solutions
of the equation of motion corresponding to is related to the conformal
dimension A of O via the field operator map. The equation of motion for ¢ is
given by

220%p — (d — 1)20,p + 226" 0,0, — m*L*p =0, (2.125)

15For more explicit examples, we refer to [23].
6Note that this example is also discussed in [110[116], where more details are provided.
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which follows from (2.124)) and is in agreement with (2.122)). By making the plane
wave ansatz p(z,z) = exp(ip,2*)p,(2), we find

2020, — (d —1)20.0, — (2" + m*L?)p, = 0, (2.126)

where p* = 6*p,p,. The two independent solutions of (2.126) have a near bound-
ary behavior of the form

pp ~ 20, (2.127)
where
d d?
Ay =—+4/— +m2L2, (2.128)
2 4
i.e.
AL (AL —d) = m?L2 (2.129)

Thus, we find that ¢(z,z) has the asymptotic behavior
p(z,2) ~ @) ()25 + o ()25 + - (2.130)
near the conformal boundary at z = 0.

If the conformal dimension A of the operator O dual to ¢ satisfies A > d/2,
the relation between m and A is given by A = A, via . The corresponding
prefactor ¢(;)(x) in the series of ¢ is then associated with the vacuum
expectation value of @. Moreover, implies

A_=d—A. (2.131)

The prefactor ¢ corresponding to A_ in (2.130)) is interpreted as a source of O.
We note that the above procedure may also be performed for primary operators
with conformal dimension d/2 —1 < A < d/2 if the interpretation of ¢y and ¢4

as vacuum expectation value and source is interchanged. For more details we refer
to [109].

This example shows nicely that it is appropriate to consider the CFT to be
defined on the conformal boundary: the asymptotic behavior of fields in the bulk
encode properties of the corresponding operator duals in the CFT.

2.4.2 Generating Functionals

The field-operator map allows to construct a bulk expression for the generating
functional of connected Green’s functions for a given operator O [133}/134]. This
very powerful property of AdS/CFT provides a method for computing generic
n-point functions of O from the gravity side.

To see how this construction of the gravity dual of the generating functional
works, we consider once more the toy model of a scalar field ¢ in AdS;y; corre-
sponding to a primary CFT, operator O with conformal dimension A (see Section
2.4.1). The following discussion is taken from [109]. The generating functional
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Wp(] for connected Green’s functions of O may be introduced by adding a
source term to the action Scpr describing the dynamics of the CF'T,

SCFT — Sé]FT = SCFT — /ddazgo(o) ({B)O(Jf) s (2.132)

where @) is the source of O. The partition function Z[y(g)] for S¢pp in euclidean
signature is then given by

Zlpwo)] = e~ Wlewol = <exp (/ddxgo(o)(x)O(x))> : (2.133)

CFT

which in particular defines the generating functional for connected Green’s func-
tions Wip()).

The relation between Wip] and the gravity dual ¢ of O is introduced as
follows. We associate the source ¢ in (2.132)) with the prefactor of the 244
term in the series expansion of the field ¢ (2.130)), i.e.

oo (x) = hH(l) o(z, )27, (2.134)
2

With this identification, the bulk formulation of W{p] is given by [133}|134]

Wlp©)] = Saasl¥] : (2.135)

lim, 0 ¢(2,2) 22~ d=p o) (z)

i.e. the generating functional Wy )] corresponds to the bulk action ([2.124)
evaluated at the solution ¢ of the respective equation of motion . Therefore,
connected correlation functions (O(z1)O(z3) - - - O(x,,)) may be obtained by a bulk
calculation via

oW
590(0)(%)590(0) (l’z) T 5@(0) (xn)
and the identification (2.135)) of Wp)] with the on-shell action (2.124)) on the
gravity side.
This approach for one operator O may be straightforwardly generalized to more

complicated setups, such as several operators O; ¢+ = 1,2,... . The action Sags
on the gravity side then describes the dynamics of the duals ¢! of the operators O;.

(O(21)O0(x2) - -- O(n)) =

(2.136)

#(0)=0

The association of the generating functional W of connected Green’s functions
with the on-shell action Saqs is a central result of AAS/CFT. It offers a precise
formulation of the AdS/CFT correspondence for operators and provides a clear
procedure for how to apply AdS/CFT for computing correlation functions.

2.5 Generalizations of AdS/CFT

We conclude our introduction to AdS/CFT by reviewing how CFT states may
be treated on the gravity side. So far we have restricted our discussion to the
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situation where the bulk geometry is pure AdS;.;. This geometry is associated
with the vacuum state of the CFT. Considering the statements made in Section
this is evident. Bulk geometries different from pure AdS;,; may be used as
gravity duals for other CFT statesﬂ The considered geometries are asymptotic
AdS4y1 spaces (AAdSy 1), i.e. a geometries which asymptote to AdSy; when —
for instance — a suitable radial coordinate is taken to infinity. This emergence

of AdS4.; is necessary in order to ensure the existence of a conformal boundary,
where the CFT is defined on.

2.5.1 Thermal States in AdS/CFT

Black holes in AdS;,; are an example for asymptotic AdS;,; spaces that has
been studied extensively in the literature [61},/136-138]. These geometries are the
holographic duals of thermal states on the field theory side [136]. The study of
thermal CFT states in AdS/CFT is a very vast field that requires some discussion
of thermal states in field theories in order to work with it properly. For instance,
we need to distinguish between the case of Lorentzian and Euclidean signature of
the metric. In the latter, the time direction is compactified to a circle, i.e. made
periodic. The circumference of this circle is then associated with the temperature
of the field theory side. The introduction of this additional length scale, i.e. the
circumference, leads to non-trivial effects in the bulk, such as the Hawking-Page
phase transition [136}139]. As we do not require a detailed knowledge of the aspects
of thermal states in AdS/CFT for this thesis, we do not present an extended review
of the subject here but refer to |[109]. Instead, we restrict ourselves to discussing
the black D3-brane geometry in the context of AdS;/CFT, in order to give a
motivation for the association of thermal states on the boundary with black holes
in the bulk[™

The Metric of Black D3-Branes

Black D3-branes [127,[140] are a generalization of the extremal D3-branes consid-
ered in the motivation of the gravity side of AdS;/CFTy (see Section 2.2). Em-
ploying the same near horizon limit to the black D3-brane geometry as in Section
2.2] for the extremal D3-branes leads to the metric

7"2

2
—( — (1 — rfL/T4)dt2 —|—df§> + L

r2 1 — ri/r

dspp = dr® + L?dQ:,  (2.137)

where r, < r and d7% corresponds to the three spatial directions along which
the black brane expands. The final term in corresponds to a five-sphere of
radius L, just as for the vacuum case (see (2.107))). The remaining terms in ([2.137)
form the metric of an asymptotic AdSs space in Poincaré patch coordinates ,
as may be easily seen by considering the limit r > 7, and comparing with
. Therefore, the bulk geometry corresponds to a CFTy state defined

on (3+ 1)-dimensional Minkowski space, as this is the conformal boundary for the

1"For a discussion of this subject, we refer to [118].
18The following discussion is motivated by [109]. See also [110].
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Poincaré patch (2.68)). In the following discussion we focus on the AAdS; part of
(2.137)),

r? N\ L1
dsiAdS = ﬁ( — (1 — rﬁ/r4)dt2 + dl’%) + ﬁTWChﬂ s (2138)

as the fields defined on the geometry (2.137)) may be reduced to fields on ([2.138))
via a Kaluza-Klein reduction (see Section [2.4.1)). We see that has an event
horizon at r = r,. Thus we may interpret as an extended version of a black
hole, expanding along the three spatial directions corresponding to dz3.

Thermal States Dual to Black D3-Branes

We now present a simple argument that motivates the identification of the black
D3-brane geometry in the bulk with a thermal state on the boundary. For
this we consider for imaginary times, i.e. t = itg, in order to establish
Euclidean signature for (2.138)),

L2 1
dsinas = 2 (1= /=) dt + 7 + T‘W‘sz) . (2.139)
h

Here we have performed the coordinate transformation r = L?/z, which brings the
conformal boundary to z = 0 and the horizon to z = 2, = L?/r},.

The strategy for motivating the association of the black brane with a thermal
CFT state goes as follows. We show that the time direction ¢g has to be periodic
in order to guarantee that the metric is regular at the horizon. This pe-
riodicity in the bulk is then also present at the boundary. Consequently, we find
that in Euclidean signature the CFT has a periodic time direction. Since such
periodic times are associated with thermal states in field theories, this completes
our motivation for the interpretation of the black D3-brane geometry as gravity
dual of a thermal state.

The motivation for the periodicity of tg in (2.139)) goes as follows. By perform-
ing the coordinate transformation

0
2= (1 - ﬁ) , (2.140)
where 0 < o < L, we obtain
21— (1- /12" 21
dsiads =—5 dth, + = ———-d;
AAdS Z}zl (1 - QQ/LQ)Q E ZfZL (1 _ QZ/LQ) 3 (2 141)
40%) L2 '
0 / dQQ

_.|_
(1—e2/L2)°(1 = (1= ¢*/1%))
from . Close to the horizon, i.e. p < L, asymptotes to

40*  , L2

d7; + do” . (2.142)
“h
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From this result we may now deduce that the coordinate tz is required to be
periodic in order to avoid a conical singularity at the horizon, ¢ = 0. By considering
the coordinate transformation

tg = 2,0/2, (2.143)
we find that the metric on the pv-plane of (2.142) is given by

do® + 0*dv? . (2.144)

Evidently, this is the metric of R? in polar coordinates. Consequently, we have to
make ¥ 2m-periodic in order to avoid a conical singularity at o = 0. Using ([2.143))
we obtain the wanted periodicity of tg,

This periodicity of the time coordinate tg allows us to conclude that the dual
CFT state is thermal, as we now show. The relation (2.145]) in the bulk implies
that the CFT side has the same periodicity. This is an evident conclusion, as the
CFT is defined on the conformal boundary of the bulk. It is a well known fact
that in field theories periodic times in Euclidean signature may be used to describe
thermal states. A periodicity of the form

ty ~tp+ (2.146)

is associated with a thermal state of temperature 7' = 1/3, where we have set
the Boltzmann constant to one, kg = 1. This completes our justification of the

association of (2.137)) with a thermal CFT state. Comparing ([2.145)) with (2.146))

shows that the inverse temperature $ on the CFT side is given by

B=mz. (2.147)

We note that the above argumentation for the association of thermal states
with black brane geometries may be generalized to further examples of black holes.
This justifies the interpretation of other types of black holes as thermal states. For
a review of this generalization we refer to [116].

2.5.2 Excited States in AdS3;/CFT,

In this section we introduce two types of asymptotic AdS; geometries which we
use extensively in this thesis. These geometries are the Banados-Teitelboim-Zanelli
(BTZ) black hole [141],/142] and the conical defect [143,/144].

BTZ Black Hole

The BTZ black hole is the asymptotic AdS black hole in 2 + 1 dimensions. Its
metric is given by [141]

~2_

=2 2
T Ty 1o
TP

di* + #d¢? (2.148)

d82 = —
BTZ =2 =2
re—=r,
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Figure 2.9: A constant time slice of the BTZ black hole. The metric of the BTZ
black hole in terms of the coordinates 7, ¢ and £ is given by . The geometry
has an horizon at 7 = 7. The conformal boundary — on which the dual CFT is
defined — is located at 7 = oo.

where £ € R, 0 < 7, < 7 and ¢ ~ ¢ + 27. Moreover, 7, is the horizon of the black
hole. It is related to the mass of the black hole via |141]

= /8GsML. (2.149)

In Figure we depict a visualization of a constant time slice of the BTZ black
hole which we use extensively in this thesis. By considering 7 > 7, we find

dstpy ~ —f—Qdi? + L—Zdﬁ + 72 d e (2.150)
BTZ 12 72 ) .

which agrees with the AdS; metric for # > L. Thus, the BTZ black
hole is an asymptotic AdS space, which allows us to consider it in the context of
AdS/CFT.

We note that the coordinates may also be considered for 7 < 7. By
doing so, we see that the BTZ black hole does not have a metric singularity at
7 = 0, unlike other types of black holes. However, 7 = 0 is still a region in the
geometry that is not well behaved, since the Hausdorff manifold structure vanishes
there. We do not require these aspects of the BTZ black hole, as our analysis will
focus on the exterior of the black hole, i.e. 7 > 7. Therefore we do not discuss
them here and refer to [142] instead.

The BTZ black hole may be constructed as a quotient of the Poincaré patch
[142]. We present the quotienting procedure providing the BTZ black hole
in Section [5.4.2] as an intermediate step in the construction of the kinematic space
of the BTZ black hole.

In the context of AdS/CFT, the BTZ black hole corresponds to a thermal
state of the CFT. As the conformal boundary of the BTZ geometry is a cylinder,
the constant time slices of the CF'T are circles. The relation between the inverse
temperature 5 on the field theory side and the horizon radius is given by [137]

fh 27T€CFT

L g

(2.151)
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where {cpr is the radius of the circle corresponding to a constant time slice on the
CFT side.

Conical Defects

The conical defect is a further asymptotic AdS3 space of particular importance for
this thesis. In the context of AdS/CFT conical defects are associated with primary
excitations on the field theory side [131}[145][°] The corresponding metric is given
by (see e.g. [145])

f2

dsip = — <ﬁ + N—2>di? + i + F2d¢? (2.152)

|11
[§)

s+ N2

~

where f € R, ¢ ~ ¢+ 2m, 7> 0and 1 < N < co. In analogy to we see that
asymptotes to global AdS; for 7#2/L? > 1/N?. The name “conical
defect” originates from the fact that the metric (2.152)) may be obtained from a
slice of global AdSs with angular size 27/N (see e.g. [146]). By identifying the
edges of the slice with each other, the geometry is exposed to have a coni-
cal singularity at 7 = 0. We discuss this construction in greater detail in Section
[5.4.1] where we use it to construct the kinematic space of the conical defect. Since
there is no horizon surrounding it, the singularity of the conical defect is naked.
We note however that by taking quantum corrections into account, the geometry
develops a horizon surrounding the conical singularity in the semiclassical approx-
imation [149].

From the physical point of view, the conical defect may be interpreted as a
static particle of mass

A

_N-1
AG3N
This is due to the fact the (2.152]) is not a solution of the vacuum Einstein equations

but comes with a point-like source at 7 = 0 [144] (see also |150]).
Furthermore, we note that conical defects may be seen as extension of the BTZ

metric (2.148) to negative masses M (2.149) via the identification [141]
- 1
N? = .
8G3| M|

Mcp (2.153)

(2.154)

This observation plays a crucial role in Section [£.2.2], where we study the behavior
of topological complexity as a function of 8G3M € [—1, 00).

9Reviews of the conical defect in the context of AdS/CFT can be found in [146-148].



Chapter 3

Quantum Information in

AdS/CFT

One aspect of AdS/CFT that was studied intensively in recent years is its relation
to quantum information. The field of quantum information focuses on the ques-
tion how the structure of a quantum system encodes the information about its
specific state. For an introduction to quantum information we refer to [27-29,9§].
Many quantities, such as entanglement entropy, (conditional) mutual information,
relative entropy and complexity were defined in order to make the concept of the
information of a system more accessible.

In discrete quantum systems, such as spin-chains, these quantities are mostly
well understood. However, their generalization to quantum field theories has
proven to be a challenging task as the corresponding calculations are in general
very involved. The AdS/CFT correspondence allows to study the quantum infor-
mation aspects of the boundary field theory from the gravity side. The conclusions
drawn from this approach suggest a close relation between the geometry of the bulk
and quantum information on the boundary.

The most prominent example for this relation is the seminal Ryu-Takayanagi
(RT) proposal [82] which relates entanglement entropy to the area of extremal
surfaces in the bulk. The RT proposal was the starting point for further approaches
relating quantum information and geometry. For instance, in [89] it was shown
that entanglement entropy may be used to derive Einstein’s field equations to linear
order. Furthermore, complexity was suggested to be related to bulk volumes or
the action corresponding to a certain bulk region [57-59,/63] (see Section [3.2.3]
for more details). Other concepts of quantum information that were studied in
the context of AdS/CFT are entanglement of purification [151}152], quantum
error correcting codes [90], the Fisher information metric [40}|153] and fidelity
susceptibility [154H156].

In this thesis we make extensive use of entanglement entropy, which is why we
review this concept in Section [3.1], including its formulation in field theories and
AdS/CFT. In particular, we require the RT formula for entanglement entropy for
formulating our results for complexity, which we present in the following chapters.
We provide an introduction to complexity and the bulk quantities proposed to
be holographic duals for it in Section Furthermore, we review the modular

23
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Hamiltonian, which is essentially the logarithm of a given density matrix, in Section
3.3l This object is further studied in Chapter [6]

3.1 Entanglement Entropy

Entanglement describes non-classical correlations between two subsystems A and
B belonging to the same total system 3. D The pure states of such a system
are considered to be the normalized vectors in a Hilbert space that is the tensor
product of the Hilbert spaces corresponding to the subsystems A and B,

Hy =Ha®Hp. (3.1)

Formally, a pure state | V), € Hy, is referred to as entangled if it does not factorize,
i.e. if it is not possible to write it in the form

|\Ij>2 = WI>A ® W2>B ) (3.2)

where |¢1), € Ha and |¢3) 5 € Hp. In practice, this definition implies that the
results of independent measurements on both subsystems of an entangled state are
correlated. To be more precise, there are observables of the form o ® % whose
expectation values do not factorize,

(A @By # (A )4 (PB)p - (3.3)

This is easy to see since a factorization of the expectation value for all observables
of the form & ® % obviously requires |¥)y, to be of the form (3.2).

The definition of entanglement may be generalized to mixed states p* in the
following way. A mixed state is referred to as entangled when it is not a classical
ensemble of factorizing states, i.e. when it is not of the form

pm=> piptepl. (3.4)

where 0 < p; <1 with ). p; =1 and pf’B are states on A and B respectively.

Entanglement is of fundamental importance for many physical concepts. As
an example for a very well known system, where entanglement is present, we may
consider the hydrogen atom. An electron which is bounded to a proton to form a
hydrogen atom is quantum-mechanically described as a state where it is most likely
to observe the electron very close to the proton. This means that the expected
positions of the proton and the electron are correlated. So the state describing the
hydrogen atom is an entangled state for the two subsystems corresponding to the
electron and the proton.

'For reviews regarding entanglement we refer to [27-29,132].
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3.1.1 Definition of Entanglement Entropy

Entanglement entropy is a quantity introduced to quantify the amount of entan-
glement between the subsystems A and B. | From the definition of entanglement
for pure states in the paragraph of it is easy to see that the reduced state
corresponding to the subsystem A

pt =t (19) (U]y) (3.5)

is not pure, i.e. mixed, iff |¥)y, is entangled. Here trp refers to the partial trace
over the subsystem B. The idea behind entanglement entropy is to quantify how
mixed pA is. To be more precise, entanglement entropy measures the amount
of information required to describe p#. The von Neumann entropy is known to
be a measure for the information contained in a state. Thus it is reasonable to
define the entanglement entropy S(A) of a state w.r.t. the subsystem A as the von
Neumann entropy of the reduced state p4,

S(A) = — try <pA log (pA)> . (3.6)

In particular, we see that for a disentangled pure state the entanglement en-
tropy vanishes, which is a reasonable property a measure for entanglement should
have. This definition also applies to mixed states p*. However, we need to stress
that for mixed states the entanglement entropy does not only measure the entan-
glement of the state but also takes the mixedness of p* into account. For instance,
a disentangled state of the form

PP = pi ) ($ila @ |0) (il (3.7)
where 0 < p;, <1, > . p; =1 and (3] %)A’B = ¢;;, has the entanglement entropy

S<A) = _Zpi log p; , (3-8>

which is the von Neumann entropy of p*. So even though the state p* corresponds
to a classical ensemble of disentangled states |1;) ,®|1);) g, its entanglement entropy
is not zero.

3.1.2 Properties of Entanglement Entropy

We list some of the most important properties of entanglement entropy which are
particularly relevant for this thesis.

Non-Negativity. Entanglement entropy is known to be a non-negative quan-
tity,
5(A) =0, (3.9)

2Reviews of entanglement entropy are [27-30,32,33].
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where S(A) = 0 holds iff the reduced state p? is pure.

Araki-Lieb Inequality. [113] For any state on a Hilbert space Hy, = HaQ@Hp
the Araki-Lieb inequality,

S(X) > |S(A) - S(B)], (3.10)

holds ]
Symmetry for Pure States. Consider a pure state |¥),, on the Hilbert space
Hs, = Ha® Hp. Then the entanglement entropies of the subsystems A and B are

equal, i.e.
S(A) = S(B). (3.11)
This is an immediate consequence of the Araki-Lieb inequality (3.10]) and the fact

that the entanglement entropy is zero for pure states.

(Strong) Subadditivity. [158,159] For three independent subsystems A, B, C
of a quantum system, the strong subadditivity of entanglement entropy states

S(AC) + S(BC) > S(ABC) + S(C). (3.12)
In particular, we recover the subadditivity of entanglement entropy,
S(A)+ S(B) > S(AB), (3.13)

from (3.12)) by setting C' = (). Moreover, if the state on AB factorizes, i.e. pZ =
p? ® pP, we find the above inequality to be saturated,

S(AB) = S(A) + S(B), (3.14)

as may be easily deduced from the definition of entanglement entropy (3.6)).

3.1.3 (Conditional) Mutual Information

Entanglement entropy is the starting point for many other quantum information
quantities. In particular, it may be used to introduce two new measures for informa-
tion shared by different subsystems, the mutual information (see e.g. [27-29]) and
its generalization, the conditional mutual information (see e.g. |28]). We require
the concept of conditional mutual information in Chapter [5| in order to provide
a physical interpretation for the volume form of kinematic space. Therefore, we
review (conditional) mutual information here.

Mutual Information

Given two subsystems A, B of a quantum system, the mutual information between
these two systems is given by

I(A: B) = S(A) + S(B) — S(AB). (3.15)

3In [157] a proof of the Araki-Lieb inequality in the context of AdS/CFT was presented.
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ormation in B

Information in C

Figure 3.1: Interpretation of (conditional) mutual information. On the lLh.s. we
depict the interpretation of mutual information (3.15[). Given two subsystems A, B,
I(A : B) is a measure for the information that is stored in both A and B. For
the conditional mutual information we introduce an additional subsystem
C. I(A : B|C) gives the amount of information that is contained in both A and
B, but not in C' (r.h.s.).

Due to the subadditivity of the entanglement entropy (3.13]), the mutual infor-
mation is non-negative,

I(A:B)>0. (3.16)

The mutual information may be interpreted as the ammount of information shared
by A and B or the correlations between A and B (see e.g. [27,[28]). This can be
motivated as follows. In Section [3.1.1] we established that entanglement entropy
S(A) quantifies the information contained in A. We may identify two classes of
information contained in A: information that is contained in A and not in B and
information that is contained in A and B. In an analogous way we find that S(B)
describes the information contained exclusively in B and the information contained
in A and B. Moreover, S(AB) gives the information contained exclusively in A
and B, respectively and the information contained in both A and B. Applying this
interpretation of S(A), S(B) and S(AB) as sums of amounts of information, it is
easy to see that gives the information contained in A and B. We present a
visualization of this interpretation in Figure (3.1}

Evidently, the information shared by A and B corresponds to correlations be-
tween the two subsystems. As a consistency check of this interpretation, we note
that the mutual information of a state of the form p® p? vanishes. Since there are
no correlations between A and B in such a state, this agrees with the interpretation
of I(A : B) as measure for correlations.

Furthermore, we note that for a pure state I(A : B) is given by

I(A: B) = S(A) + S(B) = 25(A), (3.17)

as can be easily seen by applying the properties of entanglement entropy presented
in Section [3.1.2] For pure states the correlations between A and B come from en-
tanglement. Therefore, the fact that (A : B) essentially reduces to entanglement
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entropy for pure states provides further support for the interpretation of I(A : B)
as measure for correlations between A and B.

Conditional Mutual Information

The mutual information quantifies the information shared by two subsystems A
and B. It can be straightforwardly generalized to the conditional mutual informa-
tion,

I(A: B|C) = S(AC) + S(BC) — S(ABC) — S(C), (3.18)

where C' is a further subsystem. In particular, we find
I(A:B|C=0)=1(A:B). (3.19)

Moreover, the strong subadditivity of entanglement entropy (3.12)) implies I(A :
B|C') to be non-negative,
I(A: B|C) > 0. (3.20)

Conditional mutual information is a measure for the information shared by A
and B but not C' (see e.g. [28])[] We visualize this in Figure 3.1 The motivation
for this interpretation of works in an analogous way as the motivation of
the interpretation of mutual information presented below (3.15). In particular,
the conditional mutual information quantifies the correlations between A and B
that are not related to correlations with C. In order to justify this statement,
we compute the conditional mutual information for the following example. We
consider A and B to split into two parts A, Ay and By, B, respectively, i.e. the
Hilbert space for ABC' is of the form

Hapc =HAQHER He,

(3.21)
where Ha=Ha, @ Ha,, Hp=Hp @Hp,.

The state on ABC' we work with in this example is given by

piPC = phPr @ ph PO with pMPC =N T iayipyic) (iaisic] . (3.22)

)

Here we choose the states |ia, p, c) to be orthonormal in H 4, g, ¢, respectively and
set p; > 0 with Y, p; = 1. The state p*B¢ is constructed in such a way that the
correlations between A and B are separated into two parts: correlations between
Ay and By, which are independent of C, and correlations between A; and By. The
latter are inseparable from correlations with C'. This is easy to be seen by

S(A2ByC) = S(A2Bs) = S(A:C) = S(B:C) = S(A42) = S(B2) = S(C), (3.23)

i.e. the entanglement entropy of all subsystems of A BoC'is the same. By interpret-
ing entanglement entropy as the amount of information contained in a subsystem

4We note that this interpretation of conditional mutual information is based on classical
considerations. An operational interpretation for quantum systems is given in [160].



3.1. ENTANGLEMENT ENTROPY 99

Figure 3.2: A constant time slice for a quantum field theory. We split the constant
time slice into two entangling regions A and B. The entanglement entropy S(A)
is the von Neumann entropy of the reduced density matrix p*, which encodes the
expectation values of observables located in A.

(see Section , we see that all subsystems contain the same amount of in-
formation. Consequently, there are no correlations between A, and By that are
independent from correlations with C'.

So we see that the only correlations between A and B that are not related
to correlations with C' come from A; and Bj. If the interpretation of conditional
mutual information as measure for these correlations is correct, we should find

[(A: B|C) = I(A, : By), (3.24)

since the mutual information I(A; : By) (3.15) measures the correlations between
A; and By. By applying (3.23)) to (3.18) we can indeed verify (3.24) and thus
justify the interpretation of conditional mutual information presented above.

3.1.4 Entanglement Entropy for Quantum Field Theories

For systems X consisting of a discrete set of subsystems Ay, ..., A,, i.e. for Hilbert
spaces of the form
He =Ha, @ -Q@Ha,, (3.25)

the definition of the entanglement entropy is easily applied to any subsystem
A=A, --- A, . The state of interest is traced over the complement A° = B to
obtain the reduced density matrix p* which allows to compute S(A) via (3.6).
However, for continuous systems, such as quantum field theories, the computation
of entanglement entropies is in general very involved and was performed only in a
few cases (see e.g. [161])F] In quantum field theories the subsystems A and B are
identified with complementary regions on a constant time slice of the space-time
the field theory is defined on (see Figure . These regions are referred to as
entangling regions. This approach may be interpreted as a continuum limit of the
discrete setup.

The most straightforward approach for calculating entanglement entropies for
field theories is to discretize the system by putting it on a lattice and send the
lattice spacing to zero after directly computing the entanglement entropy via (3.6)).

SReviews for entanglement entropy in quantum field theories are \ 164].
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For instance, this strategy has been pursued in [165] to determine the entanglement
entropy of the ground state of a massless scalar field for a region outside a sphere.

A further method for determining entanglement entropies which is particularly
successful for CFTs is the so-called replica trick |[1614|162,/166]. Here an n-sheeted
Riemann surface is used to compute

tra ((01)") (3.26)

for the quantum theory on the lattice. The result is then analytically continued
to complex n, which allows to determine S(A) via

S(A4) = — lim (%m ((pA)") . (3.27)
For reviews regarding the replica trick we refer to [33,/163,[164]. In field theories
the entanglement is in general UV divergent but expected to contain universal
terms, i.e. terms that are independent of the chosen UV cut-off scheme. To clarify
this statement, we consider the entanglement entropy regarding the vacuum state
of a quantum field theory with d spatial dimensions. S(A) is assumed to be of the
form [164]

S(A) = ga-1(0A) 4. 9:1(0A)

cd—1 + = + go(0A) log(€) + So(A) , (3.28)

where € is the UV cut-off. The term Sy(A) is finite in the UV and the g;(0A)
are extensive functions on the boundary 0A. The coefficient gy in front of the
logarithmical divergent term is considered to be universal. A simple motivation
for this is the fact that gy does not change under rescalings of the UV cut-off
€ —> ae, i.e.

gdl(fjl)l/ ™! et w + go(9A) log(e)

+ go(0A) log(a) + So(A) .

SA) — (3.29)

Moreover, (3.29) shows that the g; for i > 0 are not universal.

3.1.5 Entanglement Entropy for Gauge Theories

In gauge theories the definition of entanglement entropy is somewhat ambiguous
due to the fact that a factorization of the form (3.1)) of the Hilbert space of physical
states Hy is not possible. We justify this subtlety following the arguments made
in [167]. Gauge theories come with constraints the physical states have to satisfy.
For instance, in quantum electrodynamics physical states have to obey Gauss’ law

V-E=0. (3.30)

By splitting Hsy, into two parts for A and B we generate two subsystems separated
by a boundary. However, the boundary electrical field on the A side may not be
chosen independently from the boundary electrical field on the B side. They have
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Figure 3.3: Issues with the definition of entanglement entropy in lattice gauge the-
ories. In order to compute the entanglement entropy in a gauge theory, the system
is discretized to a gauge theory on a lattice. The gauge field is not associated
with the lattice sites but with the edges. Physical excitations of the gauge field
correspond to loops on the lattice (green). When introducing the subregions A
and B, the loops crossing the boundary between A and B are separated into a
part lying in A and a part lying in B. Neither of them is gauge invariant. Only
their combination has this property. This argument shows that it is not possible
to find a factorization of the form H 4 ® Hpg of the Hilbert space of physical states.

to be chosen in such a way that Gauss’ law holds on the boundary. Thus, the
degrees of freedom in A and B are not completely independent from each other,
as required for a factorization of the form for Hsy.

The issues caused by the introduction of two composite regions A and B may
also be seen when considering the lattice gauge approach. As we depict in Figure
[3-3] the gauge field is defined on the edges of the lattice, not on the lattice sites as
it is the case for other fields (see Section . Physical excitations of the gauge
field are not associated with its value on single edges but with closed loops of the
edges. The boundary between A and B cuts the edges linking these two regions.
Thus, loops crossing the boundary are split into two parts, one lying in A and
one lying in B. Taken separately these two parts are not invariant under gauge
transformations. Only together they are gauge invariant.

Without a factorization of Hy, it is not clear how to expand the concept
of entanglement entropy to gauge theories. This is a topic of current research
for which no unique solution was found so far. In the following we present the
approach pursued in [167-169)[f] For an alternative approach, see e.g. [170].

In the lattice gauge approach, the Hilbert space Hy, of physical states is given by
the states satisfying the constraints imposed by the gauge group. It is considered
to be a subspace of the space H4 ® Hp including gauge dependent, unphysical
states,

Hy CHa®Hp. (3.31)

6For the setup considered in \I this procedure leads to the same result as the replica trick.
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Figure 3.4: Introducing additional degrees of freedom. The Hilbert space of phy-
sical states is embedded into a space of the form H4 ® Hp that also contains
states that are not invariant under gauge transformations. The edges crossing the
boundary between the regions A and B are cut into two pieces, one belonging to
A and one belonging to B. On the boundary, where they meet, new degrees of
freedom are introduced (white). These correspond to surface charges located at
the boundary between A and B.

For H4 ® Hp it is known how to define entanglement entropy (see Section
. The edges crossing the boundary between A and B are split into two parts,
one belonging to A and one belonging to B. At the boundary, where these two
parts meet, new degrees of freedom are introduced. These may be interpreted as
surface charges attached to the boundary. This setup is depicted in Figure

The entanglement entropy of physical states is defined to be the entanglement
entropy of the states when interpreted as elements of the expanded Hilbert space
described above.

3.1.6 The Ryu-Takayanagi Formula

Even though it is possible to formally define entanglement entropy for gauge theo-
ries, its calculation for explicit examples is mathematically very challenging. How-
ever, in AdSy,1/CFT, the entanglement entropy of a CFT state with a classical
gravitational dual has a very elegant and easy to calculate representation in the
bulk. We restrict ourselves to static bulk geometries in this thesis. For a general-
ization of the bulk representation of entanglement entropy to a broader variety of
geometries, we refer to [84]. A review of entanglement entropy in AdS/CFT can
be found in [33].

The Gravity Dual of Entanglement Entropy

For an entangling region A on a constant time slice of the CFT side, Ryu and
Takayanagi proposed that in the large N limit the entanglement entropy of a state
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Boundary

Bulk

Figure 3.5: A Ryu-Takayanagi (RT) surface. For a given entangling region A of
the CFT defined on the conformal boundary the RT formula states that the
entanglement entropy S(A) is given by the area of the minimal (d —1)-dimensional
bulk surface v, that is attached to the boundary of A and is homologous to A.
This surface is referred to as RT surface. Due to the hyperbolic structure of the
bulk geometry, v4 stretches into the bulk.

with classical and static gravitational dual is given by [82,|171]

B area(ya)
S(A4) = 4Gap1

(3.32)
which is known as the Ryu-Takayanagi (RT) formula. Here Ggyq is Newton’s
constant for the bulk (i.e. Newton’s constant in d + 1 dimensions for AdS,, ;) and
74 is the static minimal (d — 1)-dimensional bulk surface attached to the boundary
0A and homologous to A. Note that we see A as part of the conformal boundary
in this construction. The surface v, is referred to as Ryu-Takayanagi (RT) surface.
We depict a typical example for a RT surface in Figure [3.5]

We emphasize that the RT formula is proposed to hold in the large N limit.
For finite N bulk quantum effects will lead to 1/N corrections to (3.32)) (see e.g.
[172]). In this thesis we restrict our discussions to the large N limit, where these
corrections are suppressed.

The RT formula states that the computation of entanglement entropies, which
is very challenging on the field theory side, reduces to determining the area of a
minimal surface on the gravity side. Being a proposal which has been confirmed
for several examples [82] at first, the RT formula was later verified in [86,/173]
by extending the replica trick for the boundary to the bulk. We note that the
RT formula implies additional properties for entanglement entropy which do not
hold for generic quantum systems. As an example, we mention the monogamy of
mutual information [85]. Moreover, we refer to [157] for various implications of
the RT formula.

Since the RT surface is a bulk surface that stretches out to the conformal
boundary of the considered asymptotic AdS space, its area is divergent. This di-
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> T

Figure 3.6: A constant time slice of the (24 1)-dimensional Poincaré patch (3.33).
We consider the vacuum state of a CFTy defined on the real axis with the Poincaré
patch as gravity dual. For an entangling interval A = [—0, 0] on the conformal
boundary of the geometry, the RT surface v4 is the geodesic connecting the two
endpoints of A. This geodesic lies in the same constant time slice as A. The
entanglement entropy of A is given by area(v4) (3.32), i.e. the length of 4. Since
this length is divergent we introduce a radial cut-off at z = €. The resulting

entanglement entropy is given by ((3.39)).

vergence requires the introduction of a radial cut-off which is identified with the
UV cut-off of the entanglement entropy on the field theory side.

We note that in most of the examples studied in this thesis we consider d = 2,
i.e. AdS;/CFT,. Here the RT surface has dimension one and is therefore not an
actual surface but a curve. Nevertheless, we refer to this curve as RT “surface”
and to its length as “area” in order to maintain a consistent notation throughout
this thesis.

A Simple Example: Entangling Intervals for the Poincaré Patch

As a simple example to show how the RT formula (3.32)) is applied, we consider
the vacuum state of a CFT defined on the real axis in AdS;/CFT,. The dual
geometry is the Poincaré patch (2.61]),

L2
dspp = ?( — dt® + da” + dz?) (3.33)

in 2 + 1 dimensions. The conformal boundary, on which the CFT is defined, is
located at z = 0. As entangling region A we consider the interval [—o, o] — where
o >0 — on a constant time slice ¢ = const. on the conformal boundary. Since the
bulk is (2 + 1)-dimensional, the RT surface 4 is simply the geodesic connecting
the two endpoints of the boundary interval A. We depict this setup in Figure [3.6]

The following computation of S(A) via (3.32) is taken from [82]. For symmetry
reasons we assume 4 to lie in the same constant time slice as A. We choose a
parametrization of the form

Ya(s) = (t = const.,x = —o cos(s), z(s)), where s€ (0,7, (3.34)
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for the RT surface. The area of 4, i.e. the length of the geodesic (3.34)), is given
by

2s
area(y4) = ds V() + 0% sin’(s) , (3.35)
0 z
where the ' refers to a derivative w.r.t. s. This integral is minimized by the solution

of the Euler-Lagrange equation

/

a z V()2 + o2sin?(s) B
dS(z\/(z’)Q +0.2 Sin2(8)> + 52 =0. (336)

It is easy to verify that
z(s) = osin(s) (3.37)

is the solution of ([3.36) that starts and ends on the conformal boundary, i.e. sat-
isfies z(0) = z(m) = 0. Since the length of 7,4 is divergent we need to introduce a
radial cut-off z = € (see Figure [3.6). We obtain

area(y4) = L/Tr_6 ds— Lo 2log (cot(e/2)) = 2log (2 ) +0(€%), (3.38)

sin(s)

where £ = arcsin(e/o) is the value of s where v4(s) approaches the radial cut-off

at z = e. By inserting ([3.38]) into the RT formula ({3.32)) and applying ¢ = 3L/2G3
(2.117]), we find

S(A) = 310g<20> (3.39)

which is the well known formula for the entanglement entropy of an entangling
interval in CFTy [174].

3.1.7 Phase Transitions of the Ryu-Takayanagi Surface

In many cases there are several competing candidates for RT surfaces with different
topologies. Which one is realized depends on the scales of the entangling region
A. By changing these it is possible for the minimality condition to cause a phase
transition of the RT surface v,4 from one candidate to another (see e.g. [83}[114}/115,
175,176]). This transition was studied from the field theory side in e.g. |[177,[178].

Two Entangling Intervals for the Poincaré Patch

To see this for a concrete example, we consider the entangling region A to be the
union of two entangling intervals (see e.g. [176]),

A= A4, (3.40)
where A! = [—a, —0] and A% = [0,0a] for 0 < 0 < a, for a CFT defined on the
real axis. The dual geometry is the Poincaré patch (3.33). The interval between
Al and A? is denoted by B, i.e. B = [—0,0]. There are two candidates for v,

which we depict in Figure 3.7, yap U vp and y41 U y42. Both these candidates
are homologous to A. The RT surface v, is the surface with the minimal area.
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Figure 3.7: The two competing candidates for RT surfaces of two intervals A A2
We consider the vacuum state of a two-dimensional CF'T on the real axis with
the Poincaré patch as gravity dual. For an entangling interval A = A!'A?
consisting of two intervals A = [—a, —c| and A? = [a, 0| there are two competing
candidates for the RT surface v4: y41 U~y42 and yap U vp, where B = [—0, 0] is
the interval between A! and A2%. Both these candidates are homologous to A; the
surface with the minimal area is v4. For o sufficiently large we find v4 = v41 U2
whereas for o sufficiently small v4 = y45 U7yp holds. So we see that v4 undergoes
a phase transition when o decreases.

Therefore, the entanglement entropy is given by

S(A) min{area(yap Uyp),area(yar Uya2)}, (3.41)

T 4G,

via the RT formula (3.32)). Which one of the surfaces v41 U v42 and yap U vp
has the minimal area changes with the value of ¢ as we now show. By using the
formula (3.39)) for the entanglement entropy of one interval, we find

c 2a c 20
area(yap Uvyp) = 3 log (?> + 3 log <?> (3.42)
and . a
—0
area(y 1 Uyq2) = 2§ log ( ) : (3.43)
€
By examining the behavior of
area(yap Uyp) — area(ya Uya2) “lo ( As > (3.44)
r —ar = — )
YAB YB YAl YAz 3 g (1 N 8)2

in w.r.t. s =0/a, it is easy to verify that
area(yap U7g) < area(yn Uya2) for o < (3—2v2)a (3.45)

and
area(yap U7g) > area(yn Uya2) for o> (3 —2v2)a (3.46)

hold. Consequently, 74 undergoes a phase transition when o becomes smaller
than (3 — 2v/2)a, i.e. it changes from 41 U 42 to y45 Uvs. The corresponding
entanglement entropy is thus given by

5 log <2?“> + 3 log (%") for o< (3—2v2)a,

S4) = 2¢ log (%) else 7

(3.47)
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BTZ Black Hole Conical Defect

20 20

Figure 3.8: Two candidates for the RT surface of an interval in BTZ black hole
and conical defect geometry. Given an entangling interval A (red)
on the boundary of a constant time slice of a BTZ black hole (L.h.s.), there are two
competing candidates for the RT surface 74. One is the geodesic 7, (blue) lying
on the same side of the black hole as A connecting the two endpoints of A. The
other is the union =, (orange) of the black hole horizon and the geodesic lying on
the other side of the black hole and connecting the endpoints of A. Which one of
v. and 7, is the RT surface of A depends on the angular size 20 of A. We make an
analogous observation for the conical defect (r.h.s.). Here one of the two competing
candidates for v, is given by the geodesic ¥ (blue) lying on the same side of the
conical defect as A and connecting the endpoints of A. The other ~, (orange) is
the union of the geodesic lying on the opposite side of the defect connecting the
endpoints of A and an infinitesimal circle surrounding the defect. If 20 < 7w, we
have y4 = 7 and v4 = 7. otherwise.

where we have used (3.42)) and (3.43). We note that S(A), written as in (3.47)

and interpreted as a function of ¢, has an non-analytic point at o = (3 — 2v/2)a.
This non-analyticity is a large N effect: The RT formula (3.32)) only applies in the
limit of large N. For finite N, S(A) will become smooth at o = (3 — 2v/2)a.

One Entangling Interval for the BTZ Black Hole

As a further example for a phase transition in the RT surface, we consider one
entangling interval for a thermal CF'Ty state of inverse temperature § dual to
the BTZ black hole (2.148). [] This example is of particular importance for the
Chapters [4] 5] and [6] Given an entangling interval A of angular size 20, there are
two candidates for the RT surface v4 (see Figure : the geodesic 7, connecting
the two endpoints of A which lies on the same side of the BTZ black hole as A and
the union of the respective geodesic lying on the opposite side of the black hole
and the black hole horizon, v, [175]. Note that it is necessary to include the black
hole horizon in 73 to ensure that it is homologous to A.

For sufficiently small angular size 20 of A, the RT surface is given by ~,, which

"The phase transition of the RT surface in this setup was discussed e.g. in [83,/114,/115,/175].
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0 1 2 3 4 5 M

Figure 3.9: The transition angle o, in terms of M = 8G3M. Here M is the
mass of the black hole. It is easy to verify that o, grows monotonically with A
and 7/2 < o, < 7 holds. For a given entangling interval A with angular size 20,
the corresponding RT surface is given by 7, if 0 < 0, and 7 if o > o, (see Figure

55).
leads to the entanglement entropy [82]
_c B 2nlcpro

via the RT formula . Here, (o is the radius of the circle the CFT is defined
on and € is a UV cut-off. However, if A is very large, the length of v, turns out to
be smaller than the length of ~,, i.e. 74 undergoes a phase transition from ~, to
. After that transition, the entanglement entropy is given by [175]

S(A) =

e 2 lopr 2lepr(m — a))) (3.49)

§T+§log (%sinh( 5
The first term in corresponds to the circumference of the horizon, whereas
the second is associated with the length of ~, for the complement of A (see Figure
53).

The transition of the RT surface takes place for the o = o, where 7, and ~,
have equal length. Applying the RT formula , we find that for o = o, (3.48))
and are equal. This leads to [114]

B exp (47T2€CFT/5) +1
log ( 2 ) ‘

It is easy to verify that o, > 7/2 holds. Therefore, the transition from 7, to v,
may only occur for A with angular size 26 > 7. In preparation for our discussion
of topological complexity in Chapterlwe plot a* in terms of M = 8G5M in Figure
| where M is the mass of the black hole (2.149)), (2.151).

(3.50)

0' g
* 47T€CFT

One Entangling Interval for the Conical Defect

We conclude our discussion of phase transitions of the RT surface by presenting
a further example for such a transition occurring for an entangling interval A of
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a state dual to a conical defect geometry . Similar to the case of the BTZ
black hole discussed above, the RT surface of A undergoes a phase transition if
the angular size 20 of A is sufficiently large (see e.g. |146]). Again we have two
competing candidates for RT surfaces. One is the geodesic 7 connecting the two
endpoints of A which lies on the same side of the conical singularity as A. The other
7. is the union of an infinitesimally small circle surrounding the conical singularity
and the geodesic lying on the opposite side of the singularity, connecting the two
endpoints of A. We depict 7} and ~, in Figure 3.8

Note that the infinitesimal circle in v, does not contribute to the length of
v. and may therefore be ignored when computing the entanglement entropy of A.
However, it is necessary to make 7. homologous to A and in particular plays a
crucial role for topological complexity, as we discuss in Section [4.2.2]

Due to the symmetry of the setup, it is evident that v is the minimal geodesic
if A has angular size 20 < 7 and 7. is minimal otherwise. Therefore, the entan-
glement entropy of A is given by the length of v via the RT formula (3.32)) (see
e.g. [146]),

S(A) = glog (%sm(a/m) , (3.51)

if 20 < . For 20 > 7, the entanglement entropy is given by the length of ~.,

¢ og <% sin ((m — a)/N)) . (3.52)

3.2 Complexity

Complexity (see e.g. [37]) is a quantity that was originally introduced in computer
science to determine the minimal number of operations required to perform a given
task. For instance, such a task could be to transform a set of n bits from an initial
state, such as (0,0,...,0), to another configuration, e.g. (1,1,1,0,0,0,1,0,...).
For performing this task we are only allowed to apply certain fundamental opera-
tions to the initial state. These allowed operations are referred to as gates. Com-
plexity is the minimal number of gates that are necessary to transform (0,0, ...,0)
into (1,1,1,0,0,0,1,0,...).

This concept of mapping an initial configuration to a target configuration can
be formulated for quantum systems as Wellﬂ Here the task is to map a reference
state [¢,) to a target state |i;) by applying unitary operators to |¢,.). The unitary
operators that are allowed to be applied are the (unitary) gates.

3.2.1 Complexity for Q-Bits

We now review the concept of complexity for a system consisting of a chain of
n q—bitsﬂ In this setup complexity is best understood — which is why we use
it here to introduce the basic idea of the concept. As we show in the following,

8For a review of complexity for quantum systems we refer to [38].
9The following introduction to the concept of complexity for g-bits is motivated by [27], [38]
and [179).
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complexity essentially requires three ingredients: a set of gates, a reference state
and a tolerance. The complexity of a given target state is the minimal number
of gates required to transform the reference state into the target state, up to the
tolerance.

Complexity for Pure States

First we focus on the complexity for a pure target state |¢;). For a set of n g-bits
the reference state is usually taken to be

|¢r) =100---0) . (3.53)

This reference state is very simple in the sense that it does not have any correlations
between the g-bits. To be more precise, no subset of g-bits is entangled with the
rest of the system as [1,) is a product state.

In preparation of our analysis of holographic subregion complexity in Section
m we now discuss the implications of this choice for [¢,). If we choose a target
state with a lot of correlations between the q-bits, the gates transforming |¢,) into
|t;) necessarily have to build up all these correlations. Consequently, the choice
of a product state as [¢,) implies that the correlations between subsystems of [;)
play an important role for complexity. However, we need to stress that the corre-
lations between subsystems is not the only thing complexity captures, as there are
also product states to be expected that require many gates to generate, i.e. have
a high complexity.

One possible choice for the set of unitary gates consists of the following four
fundamental operations which act on one and two g-bits of the chain of n g-bits,
respectively.

Hadamard Gate. This gate acts on a single g-bit of the n g-bit chain and is

given by the matrix
1 /1 1

where we use the standard column vector representation of |0) and |1), i.e.

m=(g). m=(7)- (3.55)

In particular, we find that H maps |0) to |+) = (|0) + [1))/v/2 and |1) to |—) =
(10) = [1))/v2.

Phase Gate. As the Hadamard gate, the Phase gate S acts on a single g-bit.
It introduces a relative complex phase between the |0) and |1) part of the g-bit,

S — (3 3) , (3.56)

where we again use (3.55)).
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/8 Gate. Also the /8 gate T acts on a single g-bit. As the phase gate, it
introduces a relative complex phase between |0) and |1),

1 0

Controlled-NOT Gate. Unlike the Hadamard, Phase and 7/8 gate, the
controlled-NOT gate CNOT acts on two g-bits of the chain of n g-bits,

1 0 00
01 00
CNOT = 000 1| (3.58)
0010
where we use
Qoo
! a
. 01
Z a;;lij) = " : (3.59)
byt 10
a1

The gates H, S, T, CNOT may be applied to any g-bits of the considered chain
of n g-bits. As an example we consider the target state

1
E

In order to transform |1,) into |1);) we need to apply the Hadamard gate to the
first g-bit and the CNOT gate to the first two g-bits:

i) = —=(]000...0) + [110...0) ). (3.60)

00...0) —(CNOT ®1,_) (H®1,1) [00...0)
1

V2

This application of gates is visualized in Figure [3.10

(1000...0) +]110...0)) . (3.61)

The set of gates {H,S, T, CNOTY} is universal, which means that it is possible
to approximate any target state arbitrarily well by applying these gates to the ref-
erence state.ﬂ This universality is a necessary condition a set of gates is required
to have. Otherwise, there would be states that cannot be reached from the target
state by applying the gates and thus complexity could not be defined for these
states.

It is not possible to map [¢,) to any target state by applying only a finite
number of gates. This is evident since the number of states that can be generated
by acting with a finite number of gates on |1} is countable but the number of

10A proof for this can be found [27].
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0)—{ H I
0) CNOTi
0)
o M)
0)
)

Figure 3.10: Hadamard and CNOT gate applied to the reference state |¢,) =
|00 ---0). When applying the Hadamard (3.54) and CNOT (3.58)) gate to the first

two g-bits as depicted above, we obtain the target state [i;) given in (3.60]).

all states is of course uncountable. It is only possible to approximate any state
arbitrarily well with a finite set of gates. So in order to define the complexity of
a state [1;) as the minimal number of gates that need to be applied to |¢,), a
tolerance € is required. To be more precise, we define the complexity Cz(|¢y)) as
the minimal number of gates that need to be applied to |¢,) in order to generate
a state |¢f) sufficiently close to |¢;) in trace norm, i.e.

[ 4be) (el = |05) (5| [ < €. (3.62)

This number of gates is ﬁniteﬂ So we see that the definition of complexity for
g-bits requires three ingredients: the reference state [1,.), a set of universal unitary
gates, e.g. {H,S,T,CNOT}, and a tolerance é. In (3.62) we have defined the
tolerance to refer to the trace-norm-induced distance between the target state |1;)
and the state generated by the gates. In principle other concepts of tolerance, such
as the difference between expectation values of certain operators, are possible, as
pointed out in [179).

Complexity for Mixed States

So far we have only considered the complexity for pure states. It is a non-trivial
problem to generalize this concept to mixed states. This is due to the fact that
it is not possible to generate any mixed state from the reference state [i,) (3.53))
by applying unitary gates to it[? In [179] several generalizations of complexity to
mixed states were discussed, which we now review.

We note that in the definition of complexity via additional ancilla g-bits may be
considered (see e.g. [38]). In our discussion of complexity for mixed states (see below) we discuss
this concept in more detail.

12We note that there exist formulations of complexity that involve non-unitary gates that
resolve this issue [180]. However, in this thesis we only consider unitary gates.
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Purification Complexity. This generalization of complexity to mixed states
adds additional g-bits to the chain of n g-bits. These additional g-bits are referred
to as ancilla g-bits. The reference state of the resulting extended Hilbert space is

(W) = [4r) ©100- - 0) ggitia - (3.63)

i.e. the ancilla g-bits are all set to |0), just as the g-bits in [¢,). The number of
ancilla g-bits is kept arbitrary. The purification complexity Cp of a mixed state
p: on the n g-bits of interest is defined as the minimal number of gates required
to transform |¥,) — up to a tolerance — into a purification |¥;) of p, for some
number of ancilla g-bits. To ensure that this concept of complexity reduces to the
complexity for pure states discussed above if p; is pure, the gates are only allowed
to act on ancilla g-bits if these are entangled with the n g-bits in |¥;). Note that
the purification |¥,) of a target state |1;) that is already pure is always of the form

|\Ilt> = |’l/}t> ® ’¢>ancilla ’ (364)

where |@) . ... is some state on the ancilla g-bits. States like this obviously de-
scribe no entanglement between the n g-bits and the ancilla g-bits. Therefore the
restriction stated above ensures that only the original n g-bits are allowed to be
used when applying the gates to the reference state. Consequently, we recover the
concept of pure state complexity discussed above if p; is pure.E

Spectrum and Basis Complexity. The concepts of spectrum and basis com-
plexity are results of the so-called spectrum approach [179]. This approach pursues
the idea to separate the effort it takes to generate a state with the same spectrum
pr as the target state p; from the effort to transform the basis of eigenstates of g,
into the one of p;. We consider the same setup as for purification complexity: We
add an arbitrary amount of ancilla g-bits to the system of n g-bits. The spectrum
complexity Cg is defined to be the minimal number of gates that are required to
transform the reference state |¥,.) — up to tolerance — into a purification of a state
pr with the same spectrum as p;. Analogous to the definition of purification com-
plexity, the gates may only act on the ancilla g-bits if they are entangled with the
n g-bits in the purification of p;. It is easy to see that the spectrum complexity is
in general smaller than the purification complexity, i.e.

Cs < Cp, (3.65)

as the purifications of p; considered for Cp are included in the set of purifications
of all states with the same spectrum as p;, which is required for Cg. The spectrum
complexity may be interpreted as the effort it takes to generate the spectrum of
Pt

Having generated a state p, with the correct spectrum, we now need to trans-
form the eigenvectors of p; into the corresponding ones of p; in order to map p; to

13We note that the original formulation of purification complexity in [179] slightly differs from
the one we present here. In this paper the gates are also allowed to act on the ancilla if these
are entangled with the n q-bits in the approximation of |¥;) they generate. This may cause the
purification complexity of pure states to differ from the pure state complexity discussed above.
I brought this subtlety to the attention of the authors of [179].
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pi. The effort it takes to perform this task is referred to as basis complexity. The
easiest way to define this quantity is via

Cp =Cp—Cs. (3.66)

The inequality guaranties that Cp is always non-negative. We note that this
definition of basis complexity suggests that the purification complexity splits into
two independent pieces: the effort it takes to generate the spectrum of p; (Cs) and
the effort to generate the correct basis (Cp),

Cp=Cs+Cp. (367)

Whether these two tasks may really be considered to be independent from each
other in Cp is not clear, as already pointed out in [179].

An alternative definition Cp of basis complexity is the number of unitary gates
that need to be applied to p; in order to transform it into p; — up to tolerance.
Since p; has per definicionem the same spectrum as p;, there exists a unitary
transformation that maps p; to p;. Thus this procedure is well defined.

It is easy to see that both Cp and Cp are equal to Cp if p, is pure. Moreover,
Cs is zero for pure py, since the reference state |1),.) (1| has the same spectrum as
a pure target state [1) (¢y]. So we see that the spectrum approach to complexity
reduces to the pure state complexity discussed above for pure target states. In the
spectrum approach we see that new ingredient for the complexity of mixed states
is the effort it takes to generate the spectrum.

The concepts of complexity for mixed states are particularly interesting in
view of the complexity of reduced states, the so-called subregion complezity. If we
consider a pure entangled state of a system X consisting of two subsystems A, B,
the results of Section imply that the reduced state on A is mixed. So, a concept
of complexity that measures the effort it takes to generate the reduced state on A
necessarily needs to be applicable to mixed states. Here it is important to mention
that the purification, spectrum and basis complexity do not take into account if
a state is reduced, i.e. part of a bigger system. It is not clear whether a concept
of complexity for reduced states should ignore this propertyE In particular, in
my discussion about holographic subregion complexity in Section 5.5 I argue that
there is evidence for the bulk quantity, which is suggested to be related to the
complexity of reduced CFT states, to take the fact that the state is part of a
larger system into account.

3.2.2 Complexity for Quantum Field Theories

For a quantum system that is described by a finite dimensional Hilbert space —
such as g-bits — the concept of complexity is easily defined (see Section .
However, for a system on an infinite dimensional Hilbert space, such as quantum
field theories, it is a highly non-trivial task to introduce a notion of complexity.
According to [48] there are four main challenges that need to be addressed for a

14This has already been pointed out in [179).
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definition of complexity in field theories:

Choice of the Reference State. In order to follow the motivation for com-
plexity as a measure for the correlations of a state (see Section , we require
the reference state to be the field theory analogue of a product state in position
space, i.e. there should be no spatial correlations present in the reference state,
as it was the case for g-bits . For generic quantum field theories there is no
clear or natural choice for such a state. We emphasize that the vacuum state is in
general highly entangled as can be seen from the entanglement entropy for
a CFTy vacuum state, for instance. Thus the vacuum state is not a good choice
for the reference state.

Set of Gates. It is not clear at all how to choose a suitable set of unitary
gates for field theories. A discrete set of gates — as in the case of g-bits — is not
expected to be able to generate all possible states. Approaches for field theory
complexities usually consider a continuum of gates (see e.g. [48,49]).

Measure for Gates. In the ¢-bit system discussed in Section [3.2.1] complexity
simply counted the number of gates required to map the reference state |¢,) to
the target state |¢;). For field theories we expect the number of gates required to
approximate a generic [¢;) to be divergent. So we need to introduce a measure
function to the set of gates and a concept of minimality for the gates. A very
popular approach for this problem was given in [181}/182], where a Finsler metric
was on the set of all unitary operators was considered.

UV Divergencies. In Section we saw that the entanglement entropy is
UV divergent in field theories. We expect a similar effect for complexity. So we
require a concept of regulating these UV divergencies.

Even though the concept of complexity has been studied intensively for field
theories in recent years and some progress has been made (see e.g. [48-51}(183]),
a rigorous and formal definition for complexity in field theories is still subject of
current research.

3.2.3 Complexity in AdS/CFT

The AdS/CFT correspondence allows us to approach complexity for field theories
from a new perspective. Since a formal definition of complexity is not known
in field theories, we may ask if it is possible to find a proper definition in the
bulk. To be more precise, the aim of this approach is to introduce bulk quantities
that appear to be good candidates for encoding a concept of complexity of the
boundary state. This allows us to work with the complexity of the boundary state
on the gravity side. We need to stress that — since a field theory formulation for
complexity is not available — this method does not introduce a gravity dual of a
known boundary quantity, as it is the case for the RT formula (see Section .
It may rather be seen as a strategy for defining complexity via the bulk. The main
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Horizon

Figure 3.11: The Penrose diagram of the two sided eternal AdS black hole. (This
graphic is inspired by a similar visualization in [49].) This geometry is dual to
the thermofield double state (3.68|) which describes two copies of the same CF'T
state on the asymptotic boundaries of the two sides of the black hole. We denote
these two states by pr and pgr. The two sides of the black hole are connected
via an Einstein-Rosen bridge. There are two proposals for the bulk dual of the
complexity of the boundary state. The CV conjecture considers the maximal
codimension one bulk surface B stretching from the left boundary at time ¢, to the
right at time tg (L.h.s.). The complexity at times ¢, tg is proposed to be given by
the volume of B. The CA conjecture evaluates the gravitational action over
the Wheeler-DeWitt (WDW) patch to compute complexity at times t7,tg. The
WDW patch is defined as the union of all spatial slices connecting the conformal
boundaries on the two sides of the black hole at times t7,tr (r.h.s.).

challenge in this approach is to test whether a given bulk quantity actually is a
suitable bulk dual for complexity.

Complexity Equals Volume and Complexity Equals Action

Susskind was the first who pursued an holographic approach to complexity [56-59,
184 185]E] Together with his collaborators, he introduced two new bulk quantities
— proposed to correspond to complexity — for the thermofield double state,

TFD(t1,tr)) = PR i) i) (3.68)

T

This state describes an entangled state between two copies of the same CFT at
times t7, and tg on the two copies. The holographic dual of [TFD(ty,tg)) is the
two sided eternal AdS black hole [60,/61]. The two copies of the CFT defined on
the asymptotic boundaries of the two sides of the black hole are connected by an
Einstein-Rosen bridge. We depict this geometry in Figure [3.11] Susskind and his
collaborators made the following two proposals for a bulk dual of complexity on
the field theory side:

15We also mention |186] here for related work.
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Complexity Equals Volume (CV). [57,/58] We consider the maximal codi-
mension one bulk surface B connecting the constant time slices at ¢, and tp of
the two CE'T copies on the asymptotic boundaries of the two-sided black hole (see
Lh.s. of Figure [3.11). The complexity = volume (CV) conjecture proposes the
complexity of the boundary state to be proportional to the volume of B,

o — vol(B)
v Gay1s 7

(3.69)

where s is a characteristic length scale in the bulk geometry, e.g. it may chosen to
be the AdS radius or the radius of the black hole.

Complexity Equals Action (CA). [59,/187] Alternatively to CV, the com-
plexity = action (CA) conjecture proposes complexity to be given by the gravita-
tional action evaluated over the Wheeler-DeWitt patch,

_ Swpw
Ca= "2 (3.70)

The Wheeler-DeWitt patch is given by the union of all spatial slices connecting
the constant time slices at ¢;, and tr on the conformal boundaries of the black hole

(see r.h.s. of Figure [3.11)).

The motivation for these two proposals for complexity goes as followsE] The
boundary reaches thermal equilibrium very fast in time, i.e. in t; + tg, but both
Cy and C4 keep growing in t; + tp even after this thermalization [57,59,/187].
So Cy and Cy4 capture aspects of the field theory state that continue to evolve
after thermal equilibrium has been reached. These aspects were associated with
complexity in [57] and [59]. Moreover, Cy and C4 turn out to grow linearly in t;+tg
for large t;, + tg [57,/59/187]. This property is to be expected from complexity, as
argued in [57],58].

Holographic Subregion Complexity (HSRC)

Inspired by the CV proposal, Alishahiha introduced a bulk quantity known as
holographic subregion complexity (HSRC) for reduced states on entangling regions
A on the CFT side [63]. We only consider static bulk geometries, where the RT
surface 4 lies in the same constant time slice as A. A generalization of HSRC
to non-static space-times can be found in [52]. For a given entangling region A
on the CFT side, the HSRC for static bulk geometries is given by the volume of
the codimension one bulk region B4 bounded by v4 and A on the constant time
slice [63],
VOI(B A)

CHSRC(A) - m, (371)

where L is the AdS radius. We depict this construction in Figure[3.12] HSRC was
studied in various papers, e.g. [53,/54,/188-191].

16T his motivation is based on [49,/57].
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Boundary A

Figure 3.12: Alishahiha’s proposal for holographic subregion complexity (HSRC)
[63]. Given an entangling region A on a constant time slice, HSRC is given by the
volume of the codimension one bulk region B4 on that time slice, bounded by A
and the corresponding RT surface v4 . Here A is interpreted as a region on
the conformal boundary of the bulk.

One possible motivation for this proposal goes as follows [52]. The AdS/CFT
correspondence implies that it is possible to reconstruct the whole bulk space-time
from the dual CFT state on the conformal boundary of the considered geometry.
This fact raises the question what bulk region is encoded in the reduced density
matrix p? corresponding to an entangling region A on the CFT side, i.e. which
bulk region can be reconstructed from pA? In [192,[193] it was argued that the
bulk region associated with p is the so-called entanglement wedge W,.

Given an entangling region A and the corresponding RT surface 4, Wy is
defined to be the domain of dependence of B4. So W, is the set of all bulk
points p for which any inextensible causal curve that passes through p necessarily
intersects B4. We depict the typical form of W, in Figure[3.13

Following the above discussion, it is reasonable for the bulk dual of the subre-
gion complexity of p# to be related to W,4. Combining this observation with the
CV conjecture, which essentially states that complexity is related to volumes of
codimension one bulk surfaces, motivates the proposal for HSRC.

As a simple example we compute Cysrc(A) for A = [—0, 0|, where we consider
a CFTy on the real axis with the Poincaré patch (3.33)) as holographic dualm As
pointed out in Section the RT surface for A is given by

va = (t = const.,x = —o cos(s),z = osin(s)), where se€[0,7]. (3.72)

Thus we find the volume of the bulk region B4 enclosed by A and =4 to be given
by

Voi-at 12 952
/ Ao =227 1, (3.73)

22 €

VOI(BA):/ dx

where we have introduced a cut-off at z = €, analogous to the computation of the
entanglement entropy (3.38). We find

€

co C
CHSRC(A) - @ - E 5 (374)

1"The HSRC for this setup was computed in [63].
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Bulk Boundary
%

A

v‘ t = const.

Figure 3.13: The entanglement wedge W,. For an entangling region A on a
constant time slice of the conformal boundary of the bulk space-time, W4 (blue)
is given by the domain of dependence of B4 (green). Here B, is the codimension
one bulk region lying in the same constant time slice as A and bounded by A and
the corresponding RT surface v4. The domain of dependence of B4 is the set of all
bulk points p for which any inextensible causal curve intersecting p passes through

Ba.

where we have applied G5 = 3L/2c in (3.71). In (3.74) we see that the second
term, i.e. -¢/12, does not change under rescalings of the cut-off. In [63] it was
suggested that this term is universal, i.e. independent of the cut-off scheme.

3.3 Modular Hamiltonian

A further object in quantum information that we study in this thesis (see Chapter
[6) is the modular Hamiltonian [73]. Given a subregion A on a constant time slice
of a quantum field theory, the modular Hamiltonian K(A) of a reduced state p*

on A is defined via
o~ K (A)
A

- tra(e K@) (375)

The hermiticity and positive-definiteness of p# imply that K is hermitian as well.
The modular Hamiltonian is an important ingredient for quantum information
measures such as the relative entropyH which we introduce in Section (3.3.3). It
has been studied intensively in recent years ,. However, the explicit form
of K is only known for a few cases, some of which we present in Section |3.3.2

1Bsee e.g. for a review and [194-196] for work involving the relative entropy.
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3.3.1 Aspects of Modular Hamiltonians

We begin our review of the modular Hamiltonian K by presenting some
properies of this object. The modular Hamiltonian has been studied in great detail
and many non-trivial results have been obtained for it. For instance, in [197,[198] a
quantum version of the Bekenstein bound involving K has been derived. Moreover,
in [66] the authors presented a method for determining the matrix elements of K
for excited CFT states in terms of correlation functions. In |65,{194] bulk duals of
the modular Hamiltonian were studied in the context of AdS/CFT.

Here we present two aspects of modular Hamiltonians we consider particu-
larly interesting: a symmetry which is naturally induced by the modular Hamil-
tonian and a general statement about the form of modular Hamiltonians for two-
dimensional CFTs.

A Symmetry Induced by the Modular Hamiltonian

The modular Hamiltonian provides a particular symmetry which leaves the expec-
tation values of operators O located in the region A invariant[] The transfor-
mation associated with this symmetry is induced by the one-parameter family of
unitary operators

Uk(s) = (pA)iS = K (3.76)

where s € R. Considering the definition of K ([3.75)), it is evident that the expec-
tation value of an operator located in A does not change under Uy,

tr (p*0(s)) = tr (p*0), (3.77)

where O(s) = Uk (s)OUk(—s). Moreover, we note that Uk (s) maps the operator
algebra of the domain of dependence © 4 of A into itselfF_U] Therefore, the Uk (s)
form a one-parameter group of transformations for the operator algebra of D 4,
the so-called modular group [73]. We need to emphasize that the modular flow,
i.e. the flow generated by Ugk(s) on @ 4, is usually not local. This is due to the
fact that K is usually not a local operator. Only in a few cases K turns out to be
local and therefore provides a local modular flow. We present some of these cases

in Section B.3.2

Modular Hamiltonians for Two-Dimensional CFTs

In [200] a topological criterion for a local modular Hamiltonian in two-dimensional
CF'Ts was introduced. In particular, when fulfilled, this criterion provides a modu-
lar Hamiltonian which is a local integral over the energy momentum tensor. The
basic statement of [200] goes as follows. Consider a state in a two-dimensional CFT
in Euclidean signature and an entangling region A on a constant time slice. Re-
move a small circle around every boundary point of A from the space-time region.
If the resulting space-time 901 is conformally equivalent to an annulus, then K is a
local integral over the energy momentum tensor. In topological terms this means

9The following discussion of the symmetry is based on [199].
20The domain of dependence © 4 is defined analogously to W, in Section
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that the prerequisites of the above statement are fulfilled if 9t may be mapped to
a sphere with two holes in such a way that A becomes a simple curve connecting
these two holes.

In a couple of simple cases, the integral over the energy momentum tensor
providing the modular Hamiltonian is given by

K(A)= | dx%Too(x) . (3.78)

Here z — w = f(%) is the conformal transformation that maps 9t to an annulus
in form of a rectangle with 27 periodic Im(w). The term f'(x) in is the first
derivative of the (real) restriction of f(z) to the constant time slice. For instance,
the expression holds for a CF'T defined on flat space, where the considered
state is either thermal or the vacuum and A is a single interval. Moreover,
is also true for the vacuum and an interval A when the spatial direction is taken
to be a circle. For more complicated configurations, such as quantum quenches,
where K has a different form than (3.78)), we refer to [200].

We emphasize that even though the result of [200] applies for the ground state
of a CF'T defined on a circle, it is not applicable to a thermal state on the circle.
As already pointed out in [200], the space-time of such a state has the shape of
a torus in Euclidean signature, since both the spatial and the time direction are
periodic. Therefore, the resulting 91 for an interval A is not conformally equivalent
to an annulus and thus the prerequisites of the statement are not fulfilled. In the
context of AdS/CFT, the BTZ black hole (see Section is the gravity dual of
such a thermal state on the circle. We discuss the modular Hamiltonian for this
setup in more detail in Section [6.4.3]

3.3.2 Explicit Examples for Modular Hamiltonians

An explicit expression for the modular Hamiltonian was only derived in a few cases.
Here we present two prominent examples. Further examples are given in Chapter

[6] and [74478].

Half Space in d Dimensions. Consider the ground state of a generic quan-
tum field theory in d-dimensional Minkowski space R?~*!. The modular Hamilto-
nian of the half-space

H = {z' e RHa2! >0} (3.79)

of a constant time slice is given by the boost generator in z!' direction [201}202]
(see also [115]),

K(#) =2r /jf A ea Too () . (3.80)

We note that in [67] the behavior of the modular Hamiltonian under variations of
the half space was studied.

Sphere in d Dimensions. For the vacuum of a CFT on d-dimensional
Minkowski space the modular Hamiltonian for a ball shaped region By of radius
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R on a constant time slice takes the form [199,203]

R? — 2
K (Bp) = / a7t (). (3.81)
Br

where r = Zf;ll (332)2 The center of the ball is set to the origin. The expression

(3.81]) for K(Bgr) may be derived from the modular Hamiltonian (3.80)) of half
space (3.79) via a conformal transformation (see e.g. [199]).

3.3.3 Relative Entropy

Studying the modular Hamiltonian directly is in general a very challenging task.
A very popular approach for obtaining results for the modular Hamiltonian is
to work with quantities that are better understood and for which the modular
Hamiltonian plays a non-trivial role. One such quantity is the relative emﬁmpyﬂ
which has been studied extensively in the context of modular Hamiltonians [41,67,
68,[115,]197,/198,,204].

Given two reduced states pi', pi' on an entangling region A, the relative entropy
of them is defined via

Sre(A) = tra(pi log pi') — tra(pi log py) = A (Ko) (A) = AS(4),  (3.82)
where Kj(A) is the modular Hamiltonian of pj and
A (Ko) (A) = tra(pi Ko(A)) — tra(pg Ko(A)) . (3.83)

Moreover, AS(A) denotes the difference of the entanglement entropies of pi' and
pio. The second equality in is an immediate consequence of the definition
of the modular Hamiltonian (3.75)). The presence of the modular Hamiltonian
in allows us to use S, as a tool to obtain non-trivial results for K,. For
instance, Sy has been used to derive the first law of entanglement [115] (see
Section and a quantum version of the Beckenstein bound [197,/198] for K.

Relative Entropy in Terms of Surprise

The relative entropy allows us to compare the two states pj' and p{! with each other.
To provide some intuition for the physical meaning of relative entropy, we review
the interpretation of S, in terms of surprise as presented in [31]. For simplicity
we restrict our discussion to the classical case, where the relative entropy of two
discrete probability distributions {p;}:, {¢:}: is given by

Srel = sz'(log(pz‘) — log(q:)) - (3.84)

Evidently, this corresponds to the quantum case, where both density matrices p'
and p{' are diagonal.

21For an introduction to the concept of relative entropy we refer to [31]. The mathematical
rigorous definition of relative entropy for quantum field theories is reviewed e.g. in [34}/35].
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The concept of surprise, mentioned above, pursues the idea of quantifying how
unexpected a given event is. Consider an event that may happen with probability
p. As pointed out in |31], the quantity — log(p) is a good measure for the amount
of surprise the event would cause. We may use this concept of surprise for mo-
tivating relative entropy as follows. We consider a system which we mistakenly
assume to come with a probability distribution {g;}; whereas the actual probabil-
ity distribution is {p;};. The average amount of surprise we would obtain from a
measurement is therefore given by

—-j{jzulog(qo. (3.85)

The relative entropy (3.84) thus is the difference between the average of surprise
we experience due to our false assumption and the actual average of surprise,

—memx (3.86)

provided by the correct probability distribution. So in a sense, S, measures
how much our assumed probability distribution {g;}; deviates from the actual
probability distribution {p;}; of the system. We note that this motivation of
Sy via the average of surprise can be made mathematically more concrete. For
this we refer to e.g. [31,(98]. For quantum systems the above interpretation may
be straightforwardly adopted: given an quantum system in a state p7' which is
mistakenly assumed to be pj', the relative entropy measures the deviation of pi
from pi'.

Properties of Relative Entropy

We conclude our introduction to relative entropy (3.82) by presenting two proper-
ties of S, which are of particular importance for our results presented in Chapter
0l

Non-Negativity. The relative entropy of two states pi', pft is non-negative
341,
Spa(A) > 0. (3.87)

In particular, S,.(A) is zero if and only if pj = pi'.
Monotonicity. The relative entropy is monotonous, i.e.
Srel<A) < S’r’el(A/)7 (388)

for two entangling regions A, A" with A C A’ |34,205].
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Chapter 4

Topological Complexity

In this chapter we present the results of |1], where my collaborators and I intro-
duced the concept of topological complezity for AdS3/CFT,. This is a further
proposal for a gravity dual of the subregion complexity corresponding to an en-
tangling region A, next to Alishahiha’s proposal [63] presented in Section m
Alishahiha considers the subregion complexity of A for a CFT state with static
gravitational dual to be proportional to the volume of the codimension one bulk
region B4 enclosed by the boundary interval A and the corresponding RT surface
Y4 (see Figure [3.12)). This proposal — as Susskind’s volume proposal ~ re-
quires to introduce the length scale L in by hand in order for the complexity
to be dimensionless. Our concept of topological complexity avoids this subtlety:
for a CFT state with static gravitational dual we define the topological complexity
of an entangling region A to be

CT(A) = —5 - Rctda, (41)
A

where R.; is the Ricci scalar of the induced metric on the constant time slice in
the bulk and da is the corresponding area element. By construction, Cr is dimen-
sionless and therefore no additional scale needs to be introduced. The prefactor
—1/2 ensures the non-negativity of Cr as R is negative for the examples consid-
ered here. As we show in the following section, the topology of B4 and A is of
significant importance for Cr(A), which justifies the term “topological complexity”.
In particular, if the topology of B4 changes due to a phase transition in v4 (see
Section [3.1.7), we find that Cr changes by a discrete, finite jumpE] Moreover, we
see that our concept of complexity allows us to interpret R, in a natural
way as a complexity density in the bulk.

Note that we only consider geometries with constant R;. In these cases, Cr(A)
is obviously proportional to vol(B4) and thus agrees with Alishahiha’s proposal
(3.71) up to a multiplicative prefactor.E] However, interpreting vol(B4) in the
context of topological complexity reveals a clear relation between the terms in

1'We refer to [188| for related work.

2We note that in [188] some of the examples we discuss in this chapter have been studied in
the context of holographic subregion complexity. Since topological complexity and holographic
subregion complexity differ only by a constant prefactor in these examples, the results we present
in (4.11)), (4.13), (4.21), (4.23) effectively have already been computed in [188]. However, the

85
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Alishahiha’s holographic subregion complexity and the topology of B4 and A, as
we discuss below. Therefore, our topological approach to complexity provides new
insight to the interpretation of the terms appearing in Alishahiha’s formula (3.71]).
Moreover, our topological approach allows us to formulate a general expression for
the complexityﬂ of an arbitrary entangling region A for CFTy states with static
gravity dual.

We present our results regarding topological complexity in the following way.
In Section we show how to express topological complexity in terms of the
geodesic curvature and the Euler characteristic using the Gauss-Bonnet theorem.
In particular, we show how this result may be used to determine the form of topo-
logical complexity for static asymptotic AdSs spaces. We apply the expression for
topological complexity obtained in Section to CFTs states dual to global AdSs,
BTZ black holes and conical defects in Section £.2] In particular, we present an
explicit expression for the topological complexity of an arbitrary entangling region
for the CFTy vacuum state — which is dual to global AdS;. Moreover, we show
how the topological complexity changes with the mass of BTZ black holes and con-
tinue this analysis to conical defects by allowing the mass of the BTZ black hole
to become negative (see Section . We conclude this chapter by discussing
the obtained results in Section [£.3]

Note that [1] not only considers the study of topological complexity via the
Gauss-Bonnet theorem. Also subregion complexity for tensor networks and a field
theory expression for subregion complexity are discussed. The latter is presented
in Chapter [5] Since I did not participate in the study of subregion complexity for
tensor networks, I do not include it in this thesis.

4.1 Topological Complexity from the
Gauss-Bonnet Theorem

The topological complexity may be reformulated in terms of the geodesic
curvature of B4 and the Euler characteristic of B4 via the Gauss-Bonnet theorem.
This observation allows us to conclude that for static asymptotic AdS; space-times
many aspects of topological complexity are determined by the topology of the
considered entangling region A and the topology of B4.

approach we present in the following sections provides a topological interpretation of the results.
Moreover, we find that they all may be obtained from the same, general expression .

3The term complexity may refer to both our topological and Alishahiha’s holographic sub-
region complexity as they only differ by a multiplicative prefactor in the examples we consider
here.
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4.1.1 Application of the Gauss-Bonnet Theorem to Topo-
logical Complexity

Using the Gauss-Bonnet theorem (see e.g. [103]), we find that the topological
complexity (4.1)) of an entangling region A can be rewritten asﬁ

CﬂA%:ABkﬂ&—%Xw@, (4.2)

where x(Ba) is the Euler characteristic of By, k, the geodesic curvature (see e.g.
[103]) of dB4 on the constant time slice and ds the corresponding line element [

For a given curve =, the geodesic curvature may be interpreted as a measure
for the deviation of v from a geodesic. In particular, k, vanishes if +y is a geodesic.
Moreover, if «y is only piecewise differentiable, the integral over k, along v includes
angular contributions from the points where v is not differentiable.

4.1.2 Topological Complexity for Asymptotic AdS;

We now discuss topological complexity (4.2)) for static asymptotic AdS; geometries.
In particular, we focus on asymptotic AdS3 geometries of the form

1
f(7)
where 0 < 7, t € R, ¢ ~ ¢ + 27 and f is a positive function with f(7) — 72/L?
for 7 — oo. Considering ([2.116), it is easy to see that such geometries in fact
asymptote to AdSs for large 7. For geometries of the form (4.3) we may use

(4.2) to construct a general expression for the topological complexity of a generic
entangling region, as we now show. We introduce a radial cut-off at

dsipas, = —f(F)dt® + di? 4+ 72 de? | (4.3)

7o 5, = Lot : (4.4)
€

where {cpr is the radius of the circle the CFT is defined on. In order to determine
the topological complexity for a given boundary region A, we replace the region
Ba in (£.2) by the subset B4 lying above the cut-off (see Figure [4.1]),

Cr(A) = /336 kyds — 2mx(Ba) . (4.5)

Here we assume e to be sufficiently small for the topologies of BY and Ba to
agree. Note that RT surfaces for (2 + 1)-dimensional bulk geometries are mostly

4We note that the Gauss-Bonnet theorem was also used in [155] in the context of holographic
subregion complexity. The authors applied it to hyperbolic polygons corresponding to the differ-
ence of the holographic subregion complexities of certain boundary intervals. Our formula
may be used to reproduce their findings as a special case.

®Note that the Gauss-Bonnet theorem is usually formulated in terms of the Gaussian curva-
ture, not the Ricci scalar. However, in two dimensions the Ricci scalar is given by the Gaussian
curvature times two (see e.g. |[103]). This allows us to apply the Gauss-Bonnet theorem to

to obtain (4.2)).
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angular contribution

Figure 4.1: Visualization of the terms appearing in the expression for topolo-
gical complexity. We may compute topological complexity for an entangling region
A (red) via the Gauss-Bonnet theorem. The resulting formula is (4.2)). In order to
obtain a finite result we need to introduce a cut-off 7. (4.4)) (dashed circle). The in-
tegral in then goes in direction of the arrows along the boundary of the green
region B enclosed by the cut-off and the RT surface y4. This region is by con-
struction the part of B4 lying above the cut-off. Note that the angles between the
RT surface and the cut-off contribute additively to the integral in . Evidently,
there are as many angular contributions as endpoints of A. Since the RT surfaces
are geodesics, they do not contribute to the integral over the geodesic curvature in
(4.2). These considerations result in the formula for topological complexity,
where the total angular size 20 is the sum of the angular sizes of all segments of
0B¢ on the cut-off (in the depicted example we have 20 = 2(0§ + 0§ + 0%)).

geodesicsﬁ Consequently, they do not contribute to the integral over the geodesic
curvature in . This allows us to conclude that in the integral over the geodesic
curvature in only the part of B¢ lying on the cut-off circle 7 = 7. and the
intersection angles between v, and this circle contribute. Consequently, we find
the topological complexity of A to be given by

Cr(A) = 2+/f(7c)o% — 2nx(Ba) + angular contributions . (4.6)
Here 20¢ is the total angular size of the part of 9B¢ on the cut-off and the
angular contributions are given by the angles between the RT surface y4 and

the cut-off (see Figure 4.1). Moreover, we have used the fact that along the cut-
off, i.e. the circle of radius 7, the geodesic curvature is given by

k, = , (4.7)

which is easy to verify.

6We use the term “mostly” here since this statement is not correct for conical defects (2.152).
These geometries have a naked singularity, which leads to RT surfaces that not only consist of
geodesics. We discuss this situation in Section 2.2}
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4.2 Examples for Topological Complexity

In this section we compute topological complexity for explicit examples. We con-
sider the geometries of global AdSs , the BTZ black hole and the
conical defect . All these geometries can be written in the form , how-
ever only for global AdS3; and the BTZ geometry may be applied for the
computation of topological complexity. The reason for that is the naked singular-
ity of the conical defect geometry. As we discuss in Section [3.1.7] this causes the
RT surface for sufficiently large entangling intervals to include an infinitesimally
small circle around the singularity. This circle happens to be no geodesic. Since
the derivation of included the assumption that the RT surface is a geodesic,
we conclude that it is not applicable for conical defects. We discuss topological
complexity for conical defects in Section [4.2.2]

Before we present the explicit calculations, we simplify for global AdS;
and the BTZ black hole by sending € to zero and only considering the constant
and divergent part of Cy. Since the remaining parts of Cr are of order ¢, they may
be neglected. We pursue as follows. It is easy to verify that \/ f(7.) behaves as

f(7) = ECGFT +0(e), (4.8)

for the considered geometries (see (2.116)) and (2.148))). Moreover, the angles under
which the RT surface intersects the cut-off at 7 = 7. asymptote to /2, as this is
the angle under which geodesics asymptote to the conformal boundary in global
AdS; (see e.g. |33]). Since the RT surface is attached to the endpoints of the
entangling region A, there are as many angular contributions to Cr as endpoints
of A (see Figure . By denoting the number of endpoints as n, we find

20
Cr(A) = CF%"A + gn — 2y (Ba) + O(e), (4.9)

where 04 is the total angular size of A. |Z| We also note that an entangling region
A for a (1 + 1)-dimensional CFT is always the disjoint union of a given number
q € N of intervals A;, © = 1,...,q. By setting the angular size of A; to 20;, we
conclude?]

20¢

€

Cr(A) =

q
TN o+ gn — 21y (Ba) + O(e). (4.10)
=1

Here we see that the constant — i.e. € — term of topological complexity is com-
pletely determined by topological quantities. This term is assumed to be universal
(see Section [3.2.3)). For any configuration of entangling intervals it is fixed by the
total number of endpoints of the intervals and the Euler characteristic of B4.

"We note that in we used 0§ = g4 + O(€?). Given the previously mentioned fact that
~v4 approaches the conformal boundary under the angle /2, this is easy to verify.

8We note that in [1] we have set n = 2¢, since every interval A; has two boundary points.
However, this is not applicable to the case when A is the complete circle providing the constant
time slice, since this may be seen as one interval with no boundary points.
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4.2.1 Topological Complexity for Global AdS;

We now apply our formula for topological complexity to entangling regions
for the CFT, vacuum state, which is dual to global AdS; (2.116]). We particularly
focus on the behavior of topological complexity under phase transitions of the RT
surface (see Section . As we show below, these phase transitions lead to a
finite jump in complexity which is caused only by the change of the topology of
Ba.

Topological Complexity for One Interval

As a first simple application of we consider A to be a single interval of
angular size 204 in global AdSs;. The bulk region B4 is of the form depicted in
Figure which implies x(B4) = 1. Moreover, the number n of endpoints for
one interval is two. Consequently, we find

_ 2lcproa

Cr 7+ O(e). (4.11)

Furthermore, we may also consider the special case when the considered en-
tangling region is the whole constant time slice, i.e. the circle of radius fcpr. In
this situation, C; may be computed analogously to the situation with one interval
discussed above. However, since the considered entangling region does not have
any endpoints, we need to set n = 0 in (4.10) which leads to

Cr= T o o). (4.12)
€

Topological Complexity for Two Intervals

For an entangling region A consisting of two intervals A; and A,, we need to
consider two different phases of the RT surface. As for the analogous setup in
the Poincaré patch, discussed in Section and depicted in Figure 3.7, the RT
surface v,4 is given by 74, U 74, if the distance between A; and A, is sufficiently
large. We denote this phase of the RT surface as Phase I. Moreover, if A; and A,
are close to each other, v4 is given by v45 U vp, where B is the interval between
Aq and A,. We refer to this phase as Phase I1.

By denoting the angular size of A; as 20;, i = 1,2, we find via that the

topological complexity of two intervals is given by

Herrlontor) _ o 4 O(e) Phase |
Cr(AiAy) = {M +O(e) Phase 11 ' (419)

€

Here we have used the fact that two intervals have n = 4 endpoints and the
additivity of the Euler characteristic, which implies x(B4) = 2 in Phase I. Since
the contributions of order ¢ may be ignored, we find that the complexity
changes by a discrete value of 27 at the transition from Phase I to Phase II. In
particular, this jump only concerns the finite, i.e. € part of complexity, which is

proposed to be universal (see Section [3.2.3) [

9We note that this jump has already been determined in [188] in the context of holographic
subregion complexity.
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Figure 4.2: Different phases of the RT surface of several intervals. Given an
entangling region A (red) being the union of ¢ disjoint entangling intervals (here
we visualize ¢ = 3) of angular size 20y,...,20,, we see that the RT surface v,
has different phases, depending on the position of the entangling intervals relative
to each other. When the RT surface changes its phase, the topology of the bulk
region B, enclosed by v4 and A changes as well. This causes a discrete jump in
the topological complexity Cr(A) as the number & of disjoint pieces of B4
changes. We depict the part of B4 above the cut-off (dashed circle) in green.

Topological Complexity for an Arbitrary Number of Intervals

Our result for the topological complexity of two intervals may be straight-
forwardly generalized to an entangling region A consisting of an arbitrary number
of intervals A;,...A,, ¢ € N. We denote the angular size of A; by 20;. When
we neglect the special case where the considered entangling region is the whole
constant time slice (4.12]), we find that the number of endpoints is the given by

n=2q. (4.14)

The RT surface of ¢ intervals has several different phases depending on the position
of the intervals relative to each other (see Figure . Depending on the phase, we
find different values for the Euler characteristic x(B4). The quantity determining
X(Ba) is the number of disjoint regions B4 consists of: consider B4 to consist of £
disjoint regions, each of which is assumed to be connected (see Figure . Then
X(B4) is given by the sum of all Euler characteristics of these regions. As we
visualize in Figure [£.2] none of these regions has any holes for any configuration
of entangling intervals. Consequently, their Euler characteristic is always one.
Therefore, we find

X(Ba) = €. (4.15)

In particular, we note
xX(Ba) <q, (4.16)

which is an immediate consequence of the above discussion.

Inserting (4.14)) and (4.15)) into (4.10) we find

Cr(A) = Horr i o +7m(qg—2E) + Ofe) . (4.17)

€ -
=1
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So we see that the different phases of v4 correspond to different integer values
of £. Consequently, we find that at the transition point between two phases, the
topological complexity jumps by a multiple of 2.

4.2.2 Topological Complexity for BTZ Black Holes and
Conical Defects

The behavior of the topological complexity of an arbitrary number of entangling
intervals discussed above also applies for CFT states dual to BTZ black holes and
conical defects. The results presented in Section regarding the discrete jump
of topological complexity when the RT surface undergoes a phase transition in
global AdS; evidently may also be found for the geometries discussed here. In
addition to these aspects of topological complexity, there is a further kind of phase
transition for the RT surface that may occur here and is not present for global
AdSs: as discussed in Section the RT surface for a single interval wraps
around the black hole horizon (or conical defect) if the interval is sufficiently large.
In this section we focus on this type of phase transition.

Topological Complexity for BTZ Black Holes

We now discuss the behavior of topological complexity under the phase transition
of the RT surface mentioned above for thermal CFT states dual BTZ black holes.
For this purpose we write the BTZ metric (2.148)) in terms of the black hole mass
(2.149)
_ T
C8G3L2T
which may be identified with the square of the temperature T" on the field theory

side via (2.151))

(4.18)

262
LM = %FTCT? , (4.19)

where ¢ = 3L/2G3 (2.117)) is the central charge of the CFT. Using the mass M,
the BTZ metric (2.148)) may be written as

=2

1
dsdry = _<7"_ _ M)d? A (4.20)

2
L 2

where M = 8G3M

In order to discuss the behavior of topological complexity under the phase tran-
sition, we consider the following setup. We set the angular size of the boundary
entangling interval A to a fixed value 204 > 7 and vary M. Following the discus-
sion in Section m we find that for sufficiently large M the corresponding RT
surface v, is given by the geodesic lying in the same constant time slice and on
the same side of the black hole as A (see Figure . We refer to this type of RT
surface as Phase a. The corresponding topological complexity is given by

Cr(A,Phase a) = Zorroa _ 7+ Ofe) . (4.21)

€
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Phase a Phase b
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Figure 4.3: Change of topology in B4 for BTZ black holes. Consider an entangling
interval A (red) with angular size larger than 7 for a state dual to a BTZ black
hole. If the mass of the black hole is sufficiently large, the RT surface v, lies
on the same side of the BTZ black hole as A (Phase a). The topology of B4 is
then trivial (we depict the part B of Ba lying above the cut-off in green). If
the mass of the black hole becomes too small, the RT surface undergoes a phase
transition and then consists of the geodesic lying on the other side of the black
hole and the black hole horizon (Phase b). In this situation, B4 has the topology
of an annulus. Consequently, its Euler characteristic is zero. This change of the
Euler characteristic leads to a discrete jump in topological complexity by 27 (4.21)),
(4.23)).

By decreasing M, Cr does not change until the RT surface undergoes the phase
transition turning it into the union of the black hole horizon and the geodesic
connecting the two endpoints of A and lying on the other side of the black hole
(see Figure [4.3). We refer to this kind of RT surface as Phase b. Evidently, the
bulk region B4 enclosed by the RT surface and A now has a different topology
than in Phase a: it surrounds the horizon and consequently has a hole, as depicted
in Figure [4.3] Thus its Euler characteristic is given by

X(BA) =0. (4.22)
Therefore, the topological complexity in Phase b is given by (4.10) H
20cproa

Cr(A, Phase b) = +7+O(e) . (4.23)

So we see once more that the change of topological complexity at the point of the
transition from Phase a to Phase b may be explained purely in topological terms:
at the transition point the topology and therefore the Euler characteristic of By
changes. This leads to a discrete jump by 27 in Cr. E

We note that from the above analysis we find that topological complexity is
mostly independent of the temperature of the thermal state dual to the BTZ black
hole. ['3| This is evident since the temperature is essentially given by M and

10For the sake of completeness we note that the black hole horizon — which is part of the
boundary of B4, is a geodesic. Therefore its contribution to the integral over the geodesic
curvature kg in vanishes. Consequently may be applied in order to compute Cr.

1This jump has already been observed in [188] by computing the holographic subregion com-
plexity via a direct integration in the bulk.

12This was also pointed out in [188] in the context of holographic subregion complexity.
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(4.21) and (4.23) are independent of M. Only at the transition point of the RT
surface, i.e. at M = M,, Wit

oA

1 exp(2my/M,) + 1
= log ( ) , (4.24)
2v/ M, 2
the temperature dependence is present due to the discrete jump in Cr.

Topological Complexity for the Conical Defect

As a final example, we now consider topological complexity for conical defects
. Just as for the BTZ black hole, the RT surface of a single entangling in-
terval A undergoes a phase transition for sufficiently large A (see Section . It
the angular size of A is larger than «, i.e. 204 > m, the RT surface consists of two
parts: a geodesic connecting the two endpoints of A and lying on the other side of
the defect and an infinitesimally small circle circumventing the conical defect (see
Section . We refer to this configuration of the RT surface as Phase c. Note
that the circle around the defect is usually ignored since its circumference is zero
and therefore does not contribute to the entanglement entropy when computed
via the RT formula . However, formally the circle is necessary for ensuring
that the RT surface is homologous to A (see Section for more details). The
circle also plays a crucial role for topological complexity, as we demonstrate in this
section.

The BTZ metric in the form (4.20) may be used for conical defects as
well by considering M € [—1,0). Here, M is associated with N via . In order
to compute the topological complexity for Phase ¢, we need to determine the
geodesic curvature of the infinitesimal circle surrounding the conical defect. We
do that by considering a circle of finite radius 7 = 7, and taking the limit 7, — 0,

- _
?{ kyds = 24/ % -M —27vV-M for 7, —0. (4.25)

Moreover — in analogy to the computation of Cr in Phase b for the BTZ black hole
— we find the Euler characteristic of the bulk region B4 to be zero,

X(BA) =0. (426)
By inserting (4.25]) and (4.26]) together with the value of the geodesic curvature at
the cut-off (4.7) and the angular contribution 7 into (4.2)), we find
20 ~
Cr(A, Phase ¢) = =194 | o/ M + O(e). (4.27)
€

Note that the contribution (4.25]) of the infinitesimal circle around the defect ap-
pears with a minus sign in (4.27)) since the circle needs to be integrated over in
mathematically negative direction in order to obtain the correct term for Cr (see

Figure .

13This is a consequence of ([3.50)).
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For M = —1, which corresponds to global AdS; (2.116), we find that (4.27)
agrees with the value of C; we obtained in Section [£.2.] for a single interval in

global AdS; (&.11).

Behavior of the Universal Part of Topological Complexity

We conclude our analysis of topological complexity for BTZ black holes and conical
defects by discussing the behavior of the term ¢ in Cz constant in € as a function of
M. This term is proposed to be universal (see Section and [63]). For the BTZ
black hole, we find that ¢} is completely determined by topological quantities, i.e.
the number of endpoints of the considered entangling region A and the topology
of the codimension one bulk region B4. E As long as these topological aspects
do not change, ¢ is constant in M. For one entangling interval of angular size
204 > 21 we see that the value of ¢% jumps by 27 when the corresponding RT
surface changes its phase from Phase a to Phase b (see and (4.23)). By
taking M to negative values and therefore considering conical defects, we find that
& is now no longer strictly topological, as its value depends on M, i.e. the
geometry we consider. We depict the behavior of ¢ as a function of M in Figure

44

4.3 Discussion

The focus of this chapter was the topological complexity Cr for CFTy states
with static asymptotic AdSs spaces as gravity duals. Topological complexity is a
quantity my collaborators and I introduced in [1] as a candidate for a holographic
dual of subregion complexity. We studied topological complexity for entangling
regions of CFT, states dual to global AdSs;, BTZ black holes and conical defects.
For these static bulk geometries Cr agrees with Alishahiha’s holographic subregion
complexity — up to a proportionality factor. The reason for this is the
scalar curvature on the constant time slice, which is constant for the considered
geometries. The advantage of our topological approach is the fact that it allows us
to apply the Gauss-Bonnet theorem straightforwardly to compute the topological
complexity. In particular, this provided us with an universal expression for
Cr for global AdS; and BTZ black holes. This expression is valid for any entangling
region on the CFT side. Remarkably, our expression for Cr reveals that the
term ¢ which is of order zero in the cut-off expansion of Cr is solely determined
by topological quantities. These quantities are the number of endpoints of the
considered entangling region A and the Euler characteristic of the bulk region B4
bounded by the RT surface 74 and A on the conformal boundary of the bulk. This
result allowed us to systematically study the behavior of topological complexity
during phase transitions of the RT surface (see Sections [4.2.1f and [4.2.2)). If the
RT surface undergoes a phase transition, the topology and therefore the Euler
characteristic of B4 changes. This led us to the conclusion that ¢} performs a
discrete jump by multiples of 27 at the transition point of the RT surface. Such

14We have recovered this behavior for one entangling interval above (see (4.21)) and (4.23)). It
is easy to see that it is also valid for an arbitrary set of entangling intervals.
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Figure 4.4: Plot of the cut-off independent part of topological complexity for BTZ
black holes, conical defects and global AdSs. We depict the term ¢ of topological
complexity independent of the cut-off for M > —1. The cut-off corresponds to the
dashed circle in the depicted constant time slices. Since the Ricci scalar is constant
for all M, topological complexity is proportional to the volume of the region B
(green) enclosed by the considered boundary entangling interval A (red) and the
corresponding RT surface. We assume the angular size of A to be larger than 7.
For sufficiently large M, B, lies on the same side of the BTZ black hole as A
(Phase a) and has trivial topology, which leads to ¢} = —7 . If M becomes
smaller than M, , B4 wraps around the BTZ black hole and assumes the
topology of an annulus. This causes ¢ to jump to 7 . When M becomes
negative, the considered geometry corresponds to a conical defect (Phase c¢). Here

B still has the topology of an annulus. Moreover, ¢ is now no longer constant

but depends on M via ¢ = m — 2m\/—M ([@27). For M = —1 the geometry
becomes global AdS; (red dot).

phase transitions occur when A consists of multiple entangling intervals as the
phase of the RT surface depends on the position of these intervals relative to each
other. Moreover, for thermal states dual to BTZ black holes 74 also undergoes
a phase transition if A consists of only one interval. When the angular size of A
becomes sufficiently large, v4 changes from a geodesic lying on the same side of the
black hole as A to the union of the respective geodesic on the other side and the
horizon (see Figure . In Section we concluded that the only temperature
dependence of ¢ is given by the discrete jump occurring at this transition of the
RT surface.

Furthermore, we studied the topological complexity of CFT states dual to con-
ical defects for large entangling intervals A (see Section . In this case the
RT surface consists of a geodesic connecting the endpoints of A and an infinitesi-
mally small circle circumventing the conical singularity. We found that the circle
wrapping around the singularity is of great importance for the calculation of Cr.
In particular, it provides a contribution to ¢ which is not purely topological but
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depends on the specific conical defect under consideration. This fact distinguishes
the topological complexity of the conical defect from the one of global AdS; and
BTZ black holes.

The results presented in this chapter are easily understood from the bulk per-
spective. However, they raise several non-trivial questions for the interpretation of
topological Complexityﬁ on the field theory side. In the following we assume that
the proposal that topological complexity corresponds to subregion complexity on
the field theory side is true. In this context, we consider the following aspects of
our results of particular interest for future projects. We find that the subregion
complexity jumps by multiples of 27 when the RT surface undergoes a phase tran-
sition. It is a non-trivial question whether this discrete jump actually occurs on
the field theory side. It might well be that it is a large N effect that is replaced
by a rapid change in subregion complexity for finite N. H Moreover, even if the
discrete jump turns out to be a large N effect, why this rapid change in subregion
complexity happens is not clear at all and requires further investigation. Also
the fact that the subregion complexity always seems to jump by multiples of 27
is an intriguing property that should be studied in detail. Furthermore, we only
computed topological complexity for static situations so far. In order to develop
a better understanding for Cr and in particular to decide whether it is actually
suitable to describe subregion complexity, time-dependent systems need to be con-
sidered. In particular, this is important in order to investigate the differences
between topological complexity and holographic subregion complexity . In
the cases we studied so far, these two concepts differed only by a proportionality
factor.

5Note that these questions also play a role for Alishahiha’s holographic subregion complexity
(3.71)). This is due to the fact that for the examples we considered here topological complexity
only deviates from holographic subregion complexity by a multiplicative factor.

16 An analogous behavior for holographic subregion complexity has been suggested in [188)].
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Chapter 5

Holographic Subregion
Complexity from Kinematic
Space

This chapter is devoted to the results about holographic subregion complexity
(HSRC) I found together with my collaborators. These results were pub-
lished in [1] and [2]. We developed a method for expressing the volume of codi-
mension one bulk regions lying in constant time slices of AdS3 in terms of CFT,
quantities, namely entanglement entropies.

The concept of kinematic space |96], which is the space of all boundary anchored
geodesics in a constant time slice of AdSs, allowed us to express the volumes of
codimension one bulk regions in terms of lengths of geodesics starting and ending
on the conformal boundary. We refer to this expression as the volume formula.
Since the lengths of boundary anchored geodesics on a constant time slice may be
interpreted as entanglement entropies via the RT formula in AdS;/CF Ty,
the volume formula can be rewritten in terms of entanglement entropies, leading
to an expression for bulk volumes in terms of entanglement entropies. We may
interpret this result as a new entry to the dictionary as it offers a way to calculate
volumes in the bulk on the CFT side.

This is a particularly exciting result in the context of holographic subregion
complexity (HSRC), i.e. the bulk volume enclosed by an entangling interval on
the boundary and the respective RT surface: we are able to convert the defining
formula of HSRC into a field theory expression. To be more explicit, we
managed to find a field theory dual for the HSRC of vacuum states (i.e. states
dual to global AdS; or the (2 + 1)-dimensional Poincaré patch). This is of signif-
icant importance for testing the proposal that HSRC is related to the complexity
of reduced CFT states. Since we now have a field theory expression for HSRC we
may examine whether it has properties which are to be expected from complexity.
We study HSRC in this context in Section where we compare it with the pro-
posals for mixed state complexity of [179] (see Section [3.2.1)). Moreover, if HSRC
actually turns out to be a good measure for the complexity of reduced states, our
results provide an explicit field theory expression for this quantity, which does not
require the bulk for constructing it. In particular, it may therefore be generalized
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to field theories with no gravity dual.

This chapter is structured as follows. In Section we review the aspects of
kinematic space required for the construction of the volume formula, which we dis-
cuss and prove in Section [5.2| for global AdS3 and the (2+ 1)-dimensional Poincaré
patch. Section focuses on the expression of bulk volumes in terms of entan-
glement entropy resulting from the volume formula. We apply this expression to
several examples for bulk regions associated with HSRC. We generalize the volume
formula to quotient spaces of AdSs such as conical defects and BTZ black holes
in Section and discuss the resulting relation between entanglement entropies
and HSRC for these geometries. In Section [5.5| we study our expression for HSRC
obtained from the volume formula under the assumption that HSRC is in fact a
measure for the complexity of reduced CFT states and provide an outlook and
concluding remarks in Section [5.6

5.1 Kinematic Space

In this section we introduce the concept of kinematic space I as presented in [96].
We note that there are alternative formulations of kinematic space [206{{208] which
we do not discuss here. Moreover, we refer to [94,95] for early developments
regarding kinematic space and [97] for a discussion of the subject in the context
of tensor networks.

Consider a CFT, state whose dual geometry is a static asymptotic AdS; space,
i.e. a static space-time that behaves as global AdS3 (2.116]),

2 Pom Lo

dsipgs; ~ —ﬁdt + f_er + mdo” (5.1)
for 7 — oo. Here ¢ € [0,2n] is 2m-periodic. Moreover, we assume that for
two boundary points u, v on a constant time slice there is a unique bulk geodesic
running from v to v. In this setup there are two different ways to introduce IC. It
can be seen as the space of all oriented boundary anchored geodesics on a constant
time slice but also as the space of all entangling intervals on the boundary of the
constant time slice [96,97]. These two interpretations are referred to as the bulk and
the boundary perspective, respectively. The existence of these two ways to see K is
due to our above assumption that the geodesic running from one boundary point u
to another boundary point v is unique. This implies a one-to-one correspondence
between the geodesic in the bulk and the entangling interval [u,v] lying between
the two endpoints of the geodesic, as we depict in Figure [5.1]

So we see that K has an interpretation that is easy to grasp both on the gravity
and the field theory side, making it a valuable tool for expressing bulk objects in
terms of field theory quantities (see e.g. [95,206]). In particular, it was shown
in [95] that IC comes with a volume form wy that is naturally constructed in the
bulk perspective. It consists only of derivatives of lengths of boundary anchored
geodesics. Since these lengths may be interpreted as entanglement entropies via
the RT formula , wyx can also be understood from the boundary perspective.
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Kinematic Space K

(9.+ T, — Q)

o 0o CFT

Figure 5.1: Coordinates for kinematic space K. Kinematic space is the space of
all boundary anchored geodesics on a constant time slice of the bulk. We can use
the boundary points u, v as coordinates for a geodesic. Alternatively, the position
6 of the center of the corresponding boundary interval [u, v] and the opening angle
« of [u,v] may be used as coordinates . Each bulk geodesic appears twice in
KC, namely with two different orientations, as visualized by the arrows on the L.h.s.
By interpreting IC as the space of all entangling intervals on the boundary CFT,
we see that the two orientations of a geodesic correspond to an entangling interval
and its complement (red and blue). Taking the opening angle « to zero shows that
the lower boundary of K corresponds to the points on the conformal boundary of
the bulk.

In [95-97] the authors demonstrated how properties of the bulk geometry may
be computed in K. In particular, the length of an arbitrary bulk curve can be
expressed as an integral over wy, where each bulk geodesic, i.e. each point in IC, is
weighted with the number of its intersections with the curve. The interpretation
of wi in the boundary perspective then allows us to interpret the integral over
wi determining the length of the curve as an integral over entanglement entropies.
Thus IC offers a way to compute the lengths of arbitrary bulk curves from the field
theory side. This approach is closely related to the concept of differential entropy
(see e.g. [94,95,1209,1210]).

5.1.1 Kinematic Space from the Bulk Perspective

We now review the bulk perspective of kinematic space K. E| Here K is defined as
the space of all oriented boundary anchored geodesics. We may use the endpoints
¢ = u,v of the geodesic as natural coordinates on K, i.e. the point (u,v) € K
is associated with the geodesic starting at the boundary point v and ending at
the boundary point v (see Figure . As IC is the space of “oriented” geodesics
we may distinguish between the geodesic starting at © and ending at v and the
geodesic starting at v and ending at w, i.e. (u,v) # (v,u). A further very useful
set of coordinates — which we frequently use in this chapter — is given by (0, «) €

!This review is based on [96].
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Bulk Kinematic Space K

AN F -

Figure 5.2: Bulk points in kinematic space. A point p in the bulk constant time
slice is identified with the set of all geodesics intersecting p (Lh.s.). This set is a
curve in kinematic space which is referred to as point curve (r.h.s.).

[0, 27] x [0, 7], where
u=0—a and v=~0+a. (5.2)

As depicted in Figure f may be interpreted as the midpoint of the boundary
interval [u,v] and « as its opening angle. Evidently, the angle 6 is 27-periodic.
The geodesic with the opposite orientation as (0, «) is given by (0 + m, 7 — «).
Moreover, using the coordinates 6, «v it is easy to see that the line a = 0 in I may
be interpreted as the conformal boundary of the bulk [96,97]: when we consider a
geodesic (0, ) in the bulk and send « to zero, this geodesic moves closer and closer
to the conformal boundary at 7 = oo (see Figure . When « reaches zero, the
geodesic is reduced to a point at 7 = oo, i.e. a point on the conformal boundary.
Thus we see that the points (0,0) € K correspond to the points on the conformal
boundary of the bulk.

Furthermore, there is a very natural way to describe a bulk point p in K. We
identify p with the set of all geodesics that intersect it (see Figure . This set
turns out to be a curve in I — which is referred to as point curve [95,96).

Since we aim at using kinematic space as an auxiliary space to associate geo-
metric aspects of the bulk with quantities on the boundary, we require to encode
the bulk geometry in K. This is achieved by defining a volume form wyg for K
that allows us to compute the length ¢ of an arbitrary bulk curve v — lying on
the constant time slice — as an integral over K. More specifically, we demand the

following equation to hold,
ly) 1
S 5.3

4G3 4 [chnv, ( )
where we have introduced Newton’s constant G ((2 4 1)-dimensional) as it will
simplify the expressions discussed in the rest of this chapter. Here n.,(u,v) is

the number of intersections the geodesic (u,v) has with 7. So (5.3)) essentially
states that the length of a bulk curve ~ is given by the integral over all geodesics
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Bulk Kinematic Space K

/ App,

Figure 5.3: Lenghts of bulk curves in the constant time slice from kinematic space.
In order to compute the length of a generic bulk curve 7 in I, we consider the set
of all geodesics intersecting v (Lh.s.). The length of « is given by an integral over
this set in kinematic space, where each geodesic is weighted with the number of
its intersections with . If v is a geodesic between two bulk points p, p/, the
number of intersections of each boundary anchored geodesic with  is either zero
or one. Therefore reduces to an integral over the set A, of all geodesics
intersecting ~y (r.h.s.). This set is bounded by the point curves of p and p'.

intersecting v weighted with the number of intersections. We visualize this concept

in Figure 5.3 It was shown in [96] that the condition (5.3)) leads to

1
4G,

1

WK 3G,

0y O0ul(u,v)du A dv = (07 — 02)(0,a)db A dex (5.4)

where f(u,v) is the length of the geodesic (u,v). The volume form wy given in
is referred to as Crofton form.

A special case of that plays an important role in the following sections
is the integral expression in K for the geodesic distance d(p,p’) between two bulk

points p, p’ |96],

d(p,p’) 1/

S 5.9
4G5 4 Ja WK (5:5)

pp’

where A,, C K is the set of all boundary anchored geodesics intersecting the
geodesic 7,y starting at p and ending at p’. Equation ([5.5)) is a simple consequence
of the fact that any boundary anchored geodesic intersects v,,, at most once, since
Ypp 18 & geodesic itself. We depict A, in Figure 5.3] It turns out to be the set
bounded by the point curves of p and p'.

5.1.2 Kinematic Space from the Boundary Perspective

In the boundary perspective, K is interpreted as the space of all entangling intervals
on a constant time slice of the CFTP| A point (u,v) € K which corresponds to a

2This review is based on [96].
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geodesic stretching from u to v in the bulk perspective is now interpreted as the
entangling interval [u,v]. Using the coordinates 6, « it is easy to see that the
point (6 + 7,7 — «) in K — which refers to the same geodesic as (6, «) but with
opposite orientation in the bulk perspective — corresponds to the complement of
the entangling interval (0, «) in the boundary perspective.

The RT formula allows us to interpret the Crofton form wy in
terms of quantum information [95,96]. It relates the length ¢(u,v) of the geodesic
starting at v and ending at v to the entanglement entropy S(u,v) of the interval
[u,v]. This allows us to express wy in terms of entanglement entropy,

wi = 0,0,Sdu N\ dv = %(83 —9%)Sdo A da. (5.6)

In this form, wx may be interpreted as an infinitesimal version of conditional

mutual information [96]. By considering the intervals A = [u — du, u],

B = [v,v + dv], C' = [u,v] and expanding I(A : B|C) to leading order in du and
dv, we find

I(A: B|C) ~ 0,0,Sdudv , (5.7)

which coincides with wi. So in the boundary perspective wx measures quantum
information aspects of the CFT. Since wx was originally constructed to encode
aspects of the bulk geometry in K (see Section this indicates a close relation-
ship between quantum information on the CFT side and geometry on the AdS side.

Furthermore, we can define a metric dsf for K in a very natural way [95]96].
This is done by demanding the causal structure induced by the metric to encode
the partially ordered structure of the set of all entangling intervals. To be more
precise, (u1,v;1) is supposed to lie in the past of (ug,ve) if [uy,v1] C [ug, o] and
in the future of (us,vs) if [us,vs] C [ug,v1]. A point (u4,v4) € K is considered
spatially separated from (uy,vy) if [ug, v1] & [ug,v4] and [uy, v4] & [ug,v1]. These
considerations in particular imply that intervals of the form [u;,vs| and [us,v1]
correspond to points in I that are light-like separated from (uy,v;), as they lie
in the future/past of (u1,v;) according to the above definition but a slight shift is
sufficient to spatially separate them from (u;,v;). A metric that is supposed to
carry the above causal structure necessarily has to be of the form

dsz o< dudv . (5.8)

By demanding the volume form induced by ds% to be the Crofton form (5.6]), we
may fix the prefactor in (5.8)) to 20,0,S5,

dsy = 20,0,Sdudv = %(ag —02)S( —da® + db?) . (5.9)

We see that it is possible to introduce the geometry of kinematic space from
the boundary perspective without any reference to the interpretation of I as space
of geodesics in the bulk or the bulk in general. The Crofton form has an im-
mediate interpretation as infinitesimal conditional mutual information and
the metric is motivated by the partially ordered structure of the set of all
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intervals and the Crofton form. The fact that the geometry of K can be defined
directly from the field theory side without referencing the bulk plays an important
role for the construction of a field theory dual of holographic subregion complexity
which we perform in the sections below.

In this chapter we focus on bulk geometries that are invariant under rotations,
i.e. constant shifts of ¢ (5.1). In these situations the entanglement entropy S(u, v)
only depends on the length v — u = 2« of the corresponding interval [u, v], not its
position, as is easy to see via the RT formula . Thus ds% and wy simplify in
the following way,

dsy = —5825( — da”® + db?) (5.10)
1
wi = —§8i5d0 Nda. (5.11)

We note that the prefactor —92.5/2 is always non-negative [96]. This is an immedi-
ate consequence of the non-negativity of the conditional mutual information (3.20))
and the interpretation of wyg as infinitesimal version of the conditional mutual in-

formation (5.7)).

Point curves have a very natural interpretation in the context of the metric
(5.10) when the bulk is chosen to be global AdS; (2.116)). In [95] it was shown
that in this case point curves are space-like geodesics w.r.t. the metric . ﬂ
When we consider a bulk point p, in the limit where it approaches the conformal
boundary, the respective point curve asymptotes to light rays emitted from a point
on the a = 0 slice of K. This point in K corresponds to p, when the a = 0 slice is
associated with the conformal boundary of the bulk (see Figure . Considering
the causal structure of K introduced above, these conclusions are easy to see.

5.2 Bulk Volumes from Kinematic Space:
the Volume Formula

In [1] my collaborators and I introduced an integral in K computing the volume
of an arbitrary codimension one bulk region Q on a constant time slice,

VOI(Q) L /}CWK/\Q, (512)

4G5  on

which we refer to as volume formulaﬁ Here A\g(#, ) is the length of the segment
of the geodesic (6, a) that lies inside of Q (see Figure [5.4). We refer to \g as
the chord length. The volume formula may be interpreted as an adaptation of the
integral expression of the length of a bulk curve in K (5.3)): to obtain the length
of a bulk curve, we need to integrate over kinematic space, where we weight each

3 Analogous results were found for conical defects and BTZ black holes [95].
4We note that formulae of the form ([5.12]) are well established in integral geometry (see
e.g. [211]).
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Figure 5.4: Volumes of codimension one bulk regions from kinematic space. In
order to obtain the volume of an arbitrary bulk region Q (green) in the constant
time slice by a kinematic space computation, we consider the set of all geodesics
intersecting Q. The volume of Q may then be computed by an integral over K
(5.12)) where each bulk geodesic (0, ) is weighted with the length Ag(«, 0) of the
segment it shares with Q (red).

geodesic, i.e. each point in K, with the number of its intersections with the curve.
Analogously, the volume of a bulk region is given by an integral over K where
each geodesic is weighted with the length of the segment that intersects the region
(5.12)).

The remainder of this chapter is based on [2], where my collaborators and I
studied the volume formula in great detail.

5.2.1 Proof of the Volume Formula for Global AdS;

Expressions like the volume formula are known in integral geometry [211]
but not very well established in the AdS/CFT community. Here we present a
simple proof of the volume formula that I constructed for the special case of global
AdS3. This geometry is dual to the CFT vacuum state. We use the coordinates

(2.116|) for AdSs,

ds2 s = —(1 + T—)df? s

L2

I3 di* + 72 dg? . (5.13)

The entanglement entropy of an interval with opening angle « is given by [82,/161]

20

S(a) = §10g< crr sin(a)) , (5.14)
€

where fcpr is the radius of the circle the CFT is defined on and ¢ is a UV cut-

off. Moreover, ¢ = 3L/2Gj5 is the central charge (2.117). The metric (5.10) and

Crofton form ((5.11]) on K corresponding to ([5.14)) are [96]

c 1

c 1
6 sin?(«)

(—do®+d#*) and we=— do N do, (5.15)

ds =
°K 6 sin?(«)

where we have used the coordinates 0, a ((5.2) for K.
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By defining
2G;
1% Ao =— [ dod 5.16
(@ =22 [ g = - [ avaa2Ss. (5.16)
the volume formula (5.12)) may be written as
vol(Q) = V(Q). (5.17)

We prove as follows. First we show the validity of for a disc Dg
with radius R lying in the constant time slice of AdS; and centered around 7 = 0.
We do this via a direct computation. Second we verify certain properties of V(Q),
such as additivity and non-negativity, which are characteristic for volumes. These
properties together with the validity of for discs allow us in the third step
to verify for annular arcs. These annular arcs can be used to construct
Riemann sums that approximate the volume of a generic bulk region arbitrarily
well. This completes the proof of the volume formula.

Discs in AdS;

We now show that (5.17)) holds for Q@ = Dpg, where Dp is a disc with radius R
in the constant time slice of AdS3 centered around 7 = 0. By pulling the metric
ds? s (5.13)) back to the constant time slice, it is easy to verify that

R

vol(Dg) = 2rL =2rL(VL?*+ R?>— L) (5.18)

f
AT ——

holds. We now compute V(Dg) to see that it gives the same result. The chord
length Ap, (a, 8) associated with the geodesic (0, «) is given by [82]

Larcosh(1 + 2];—; sin(ag)), ifa, <a<m—a,

_ (5.19)
0, otherwise.

)\DR (9, Oé) = {

The angle ag is the opening angle of the geodesic (6, «) on the boundary of Dg
(see Figure [5.5). It is given by (see e.g. [96])

R
NI cos(ag) = cos(a) . (5.20)

Moreover, the angle a = av, corresponds to ag = 0 and refers to a geodesic that is
tangent to Dg (see Figure [5.5))

R

cos(ay) = (5.21)

By inserting (5.19)) into ([5.16)) we find

21 T— s
/ do / ADR _L / do / dov Ouhp,, cot(a), (5.22)
Sln 0 s
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Figure 5.5: The volume formula for discs and annular arcs. The first step in the
proof of the volume formula is to verify it for a disc Dy centered at 7 = 0
(Lh.s.). The opening angle of a geodesic (0, ) at the boundary of the disc is
denoted by agr. With (6, a,) we refer to geodesics tangent to the boundary of Dg.
From the validity of the volume formula for discs we can conclude that it is also
valid for a segment Sp . of an annulus Ag, g, with inner radius R; and outer
radius R, (r.h.s.). The opening angle of Sp . is given by (5.33).

where we have used 1/sin?(a) = —d, cot(a) to perform a partial integration in
order to obtain the second equality. Performing the coordinate transformation
a = a(agr) and using the fact that Ap, (5.19) does not depend on 6, we find

i 2L2R? cos?*(ag)
Dgr) = d =2nL(VL? 2L 5.23
V(D) /0 R R sin?(ag) T ( i > ’ (5.23)

which is equal to vol(Dg) (5.18). [| Thus (5.17) holds for discs.

Properties of V(Q) Associated with Volumes
The next step leading to the proof of ((5.17)) is to verify certain properties of V(Q)
(5.16]) which are known to hold for volumes.
Non-Negativity. The integral V(Q) (5.16) obeys
V(Q) >0 (5.24)

for any region Q, where equality only holds for @ = (). This property is an imme-
diate implication of the fact that the integrand in is non-negative and only
vanishes if @ = (). Note that we define @ to be a codimension one bulk region.
Therefore, we do not consider the cases where Q is a curve, etc. for which V' (Q)
would vanish as well.

Additivity. Given two regions Q, @ on the constant time slice of AdSs, V
satisfies the additivity relation

VQuUQ)=V(Q) +V(Q)-V(QnQ), (5.25)

5The integration in ([5.23]) was performed via Mathematica.
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which follows from the evident additivity of the chord length Ag,
Aougr = Ag + Agr — Aonor - (526)
Monotonicity. Given two regions Q, Q' with @ C Q', we find
V(Q) <V(Q). (5.27)

The verification of this monotonicity is a simple application of the non-negativity
and additivity of V.

Rotational Invariance. The value of V(Q) for any region Q in the constant
time slice of AdSs does not change under rotations of @ around 7 = 0. This is an
immediate consequence of the invariance of ds} 44 (5.13)) under such rotations.

Construction of Riemann Sums

The properties of V' listed above can now be used to verify the validity of (5.17)
first for annuli and then for annular arcs. An arbitrary bulk region @ may then
be approximated arbitrarily well by annular arcs which completes the proof of the

volume formula (5.12]).

Consider an annulus Ag, g, of inner radius R; and outer radius R, lying in the
constant time slice of AdS; and centered around 7 = 0. Evidently, Ag, g, is given
by the difference of the two discs Dg, and Dp,,

Agr,r, = Dr,\Dkg, - (5.28)
Consequently, the volume of Ag, g, is given by
vol(Ag, r,) = vol(Dg,) — vol(Dg,) . (5.29)

We now show that V(Ag,r,) gives the same result, verifying (5.17)) of annuli. The
additivity of V ([5.25) implies

V<DR2) - V(DRI) + V(ARle) ) (530)
via ([5.28). Since (5.17)) is known to be true for discs (5.23), (5.18)), we therefore
conclude

V(Ag,r,) = vol(Dg,) — vol(Dg,) . (5.31)
Using ((5.29) we find
V(Ag,r,) = vol(Ag,r,) , (5.32)

i.e. the validity of ([5.17) for annuli.
We can conclude the validity of ([5.17)) for annular arcs from ([5.32)). Consider

a segment Sp p of the annulus Ag, g, with opening angle

2
2, = X neN, (5.33)
n
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Figure 5.6: Approximation of an arbitrary codimension one bulk region Q in the
constant time slice. We use disjoint unions of annular arcs Ag, A% to approximate
Q. Here we assume .Alg C QC .,429. By taking the limit where Alg and AQQ
converge to Q, we can prove the volume formula for an arbitrary Q.

as depicted in Figure [5.5] The rotational invariance and additivity of V', together

with (5.32)) imply
1 1
V(8£1R2> - EV(ARlRQ) - EVO]'(ARlRQ) - V01(8g1R2> ° (534)

To conclude the proof of we now consider an arbitrary codimension one
bulk region Q lying in the constant time slice of AdS;. We can approximate Q
by disjoint unions of annular arcs, as depicted in Figure We choose two such
approximations A, A% satisfying

A CQC Ay (5.35)
The monotonicity of V' ((5.27) implies
V(Ag) S V(Q) S V(AY), (5.36)

which leads to
vol(Ag) < V(Q) < vol(A3), (5.37)
via the additivity of V/ and the validity of for annular arcs. By taking
the limit where Alg and AQQ converge to Q, leads to
vol(Q) < V(Q) <vol(Q) & wvol(Q)=V(Q), (5.38)

which completes the proof of (5.17) and thus shows the validity of the volume
formula (5.12)) for arbitrary Q.

5.2.2 The Volume Formula for the Poincaré Patch

In addition to the proof of the volume formula for global AdS3 discussed in Section
my collaborators and T also presented a proof for the Poincaré patch in |2,
which we now review.
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Kinematic Space for the Poincaré Patch

The kinematic space K for the Poincaré patch [212] is constructed in an analogous
way as for asymptotic global AdS; spaces (see Section . The geodesics may
again be parametrized by their endpoints © = u, v on the boundary, where we use
the coordinates x and z for the constant time slice of the Poincaré patch.
In analogy to we introduce the coordinates x € R and o € R corresponding
to the center and radius of the boundary interval [u, v] via

u=yxy—o, v=x-+o. (5.39)

The geodesic with opposite orientation as (, o) is then given by (x, —o). Using
(5.11) — where o takes the role of a — and ({3.39)), we find

C

W = 6

1
;dx A do (5.40)
for the Crofton form.

Proof of the Volume Formula for the Poincaré Patch

In analogy to the case of global AdS; (see Section , we introduce

L Ao
=— [ dxydo— 41
V(@) = 5 [ xS, (5.41)
in order to prove the volume formula (5.12) by showing
vol(Q) = V(Q) (5.42)

for a codimension one bulk region Q lying in the constant time slice of the Poincaré
patch.

As in the case of global AdSs, discussed in Section , V is additive ,
monotonous and non-negative . Moreover, it is invariant under trans-
lations in x direction, i.e. the value of V for a region Q does not change when Q
is shifted in z-direction. This is an easily verified consequence of the invariance of

ds%p (3.33) under shifts in z-direction.

For proving ([5.42)) we pursue the following strategy. First we show that (5.42))
holds for an generic infinitesimal rectangular strip S7°,_ at x = xy with width dx

and stretching from z = z; to 2 = z,. We then prove1 for an arbitrary bulk
region Q by approximating it by a disjoint union of such strips, as depicted in
Figure . The properties of V' mentioned above then imply that holds for
Q. This follows analogously to the case of global AdS; in Section [5.2.1], where Q

was approximated with annular arcs instead of rectangular strips.

Since 877, has infinitesimal width, we may only distinguish between geodesics
that enter §7° on the L.h.s. and exit it on the r.h.s. and geodesics that do not
intersect 870 (see Figure . The latter do not contribute to V', as their chord

2122
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Figure 5.7: The strategy for proving the volume formula for the Poincaré
patch. We approximate a generic codimension one bulk region Q in the constant
time slice of the Poincaré patch by a disjoint union of rectangular strips with
infinitesimal width éx (Lh.s.). We verify the volume formula for a generic strip
82, of this kind, located a x = xy and stretching from z = z; to z = 2, (r.h.s.). For
the integral appearing in the volume formula we only distinguish between
geodesics entering at one side and exiting at the other side of §7°, and geodesics
that do not intersect S7°, , since the strip has infinitesimal width. The validity of
the volume formula for a generic §7°, then implies that the volume formula holds

for any O.

length is zero. As may be easily deduced from (3.72)), the geodesic (x, o) obeys

the equation
2 =0~ (z—x)?. (5.43)

So only geodesics which satisfy

21 < 0% — (20— x)* < 2 (5.44)

2129

contribute to V(S2°, ). By setting 015 = \/ziQ + (zo — x)? we obtairﬁ

o2
Vs, =2 2 / dy / Yo, (5.45)
from (5.41). Using (3.33)) and (5.43)) we find for the contributing geodesics in the

infinitesimal limit
L Loz
Aszo, (x,0) = dspp = ;\/5;52 + 622 = \/22 (20 — )2
Lo

"~ o?— (w —X)25x’

(5.46)

and thus conclude

L%z [ o2 1 1 1
V(8™ )= d d == —=)6x. (547
( 21z2 T /_oo X/Ul 00.(02 _ ($0 _ X)2) (Zl Zz) Z ( )

SNote that since we assume o1 2 > 0, we only consider one orientation of the geodesic. We
compensate this by the multiplicative factor 2 in (5.45)).
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It is easy to verify that the volume of S7°, is also given by

vol(S%, ) = L2(l - i)ém. (5.48)

Z122 Zl 22

Therefore we find that is true for Q = Sflon.

We can use this result to show that holds for any Q. By approximating Q
with a disjoint union of infinitesimal strips we come to this conclusion analogously
to the case of global AdS3, where we used annular arcs instead of infinitesimal
strips (see Section . This completes the proof of the volume formula

for the Poincaré patch.

5.3 Holographic Subregion Complexity for
Vacuum States

The holographic subregion complexity (HSRC) (see Section of an entangling
interval A is given — up to a proportionality factor — by the volume of the codimen-
sion one bulk region B4 enclosed by A and the corresponding RT surface y4 .
As we discussed in [1] and [2], the volume formula can be used to construct
a field theory expression for HSRC for the CFT states dual to the global AdS;
geometry and the (2 4 1)-dimensional Poincaré patch (3.33). These states
are the vacuum states for a CFT defined on a circle and the real axis, respectively.
In the following we use the kinematic space notation for entangling intervals in-
troduced in Section In particular, we refer to A as (04, a4). Moreover, we
choose the proportionality factor that relates vol(B4) to HSRC to be 1/L* and
not (8mLG5)~! as in (3.71). We make this choice in order stay consistent with
our definition of topological complexity . For the geometries we consider here,
the Ricci scalar R.; appearing in the formula for topological complexity takes the
constant value —2/L%. Therefore, the topological complexity is given by vol(By4)
multiplied with the same proportionality factor we choose here. So the concept of
complexity we are using in the following is given by

VOl(BA)

C(@A,CVA) = L2

(5.49)

Note that we still refer to C as HSRC and not topological complexity. This is due to
the fact that the results we present in this chapter are based on the proportionality
of C to vol(B,4) and are therefore closer related to HSRC (3.71)) than to topological

complexity ({4.1]).

5.3.1 Holographic Subregion Complexity in Terms of
Entanglement Entropies
We now construct an integral expression for HSRC ([5.49)) that only contains entan-

glement entropies by applying the volume formula (5.12)) to B4. Since entangle-
ment entropy is a CF'T quantity, this integral expression provides a CFT formula
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for HSRC. The volume formula leads to

vol 1
04((?3A) =0 /}C WiAs, - (5.50)
Note that wy only depends on entanglement entropies. Thus, in order to
derive a field theory expression for HSRC from , we only need to find a field
theory expression for Az,. The chord length Az, (6, a) of a geodesic (0, «) is the
length of the segment of (6, ) lying inside of B4. By construction, B4 is a convex
set, i.e. any geodesic (6, «) has either no or two intersection points p, p’ with the
boundary of B,4. If there are no intersection points, the geodesic does not intersect
B4 and the corresponding chord length is zero. If there are two intersection points,
the chord length A\s, (6, «) is simply the geodesic distance between p and p’ (see
Figure . In we presented an expression for the geodesic distance between
two bulk points as an integral in K. Applying this expression to the present

situation yields
A, (0 1
BA( 7Oé> — _/ Wi, (551)
A4(0,a)

4G 4
where A (0, @) C K is the region in kinematic space bounded by the point curves
corresponding to p and p’ (see Figure [5.9). If p and p’ do not exist, i.e. if (6, )
does not intersect B4, we find A4(6, ) to be empty, which implies Az, (0, a) =0
via . Since wi only contains entanglement entropies, is a field theory
expression for A\g,.

We can now insert (5.51)) into ([5.50)),
vol(B4) 1 / ( / )
= — [ wx Wi
4G§ 21 J Au(0,0)

1
- / dfdo / df'da’ 925 (a)0% S (),
81 Jx Aa(0,0)

where we have used ([5.11]) for wi. This provides us with the desired expression of
HSRC in terms of entanglement entropy,

J / 40 da / A0 A/ RS ()R S().  (5.53)
K Au(0,0)

8mc?

(5.52)

C(QA,()&A) =

By considering the boundary perspective for kinematic space (see Section
we see that HSRC is given by a double integral over entangling intervals containing
only entanglement entropies. The formula ([5.53) is one of the main results of this
chapter. In the following sections we will review the detailed discussion of
which my collaborators and I provided in |2].

We emphasize that it is possible to generalize to an integral expression
in terms of entanglement entropies for an arbitrary codimension one bulk region
Q on the constant time slice. This expression can be derived analogously to
. Therefore the volume formula provides a field theory interpretation for any
vol(Q) in terms of entanglement entropies. This observation may be seen as an
extension of the expression of the lengths of bulk curves in terms of entanglement
entropies via [96] and the closely related concept of differential entropy (see
e.g. [04,05/[209.210]).
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Figure 5.8: Three different types of geodesics in a constant time slice. When
computing the volume of By (green) by an integral over kinematic space ,
we may distinguish three types of geodesics. Type (a) geodesics do not intersect
with B4 and therefore do not contribute. Geodesics of type (b) lie completely
inside of B4 and type (c) geodesics lie only partially inside of B4. For type (b)
and (c) geodesics (0, «), the chord length A, is given by the geodesic distance
between the two intersection points p, p’ of (0, ) with 0By,.

5.3.2 Regions of Integration in the CFT Formula for
Holographic Subregion Complexity

Even though the expression for subregion complexity only contains entan-
glement entropies, it still relies implicitly on the bulk since we require the interpre-
tation of (A, ) as geodesic in order to construct the region of integration A 4(6, «).
We now present a procedure that allows us to construct A4 (6, ) directly from the
field theory side. This construction requires extensive use of the geometry
imposed on K. Since this geometry can be motivated from the CFT side (see
Section [5.1.2)), we effectively only require knowledge about the field theory side
in order to perform this construction. This fact justifies the statement that the
following procedure is a field theory construction of A (6, a).

We begin by noting that the region of integration A4(6, ) is always bounded
by the point curves corresponding to the intersection points of (0, ) with the
boundary of B4, as pointed out below (5.51)). So if we can find a procedure for
constructing these point curves from the boundary perspective, we accomplish the
same for A4(0, ). As pointed out in Section , point curves are geodesics in
IC. So there is a straightforward way for constructing them from the geometry of
kinematic space and thus from the CFT side. Therefore, the only thing left to
do is to find a way for identifying the specific point curves required for A (6, a).
In order to develop such a procedure, we first study these point curves from the
bulk perspective and then interpret our results from the boundary perspective.
This procedure was developed by me and published in [2]. We present it for the
kinematic space of global AdS;. It can be formulated in an analogous way for the
Poincaré patch.
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We note that in [95] it has only been shown for the kinematic space of global
AdS; that point curves are geodesics in K. [| This can also be verified for the
kinematic space of the Poincaré patch via a direct calculation. The computation
is easily done by noting that the point curve of a bulk point (z,z) is given by
. Since we are only considering the kinematic spaces of global AdS3; and
the Poincaré patch in this section, the assumption that point curves are geodesics
in IC is legitimate. We are unaware of the existence of an argument that proves
this statement for arbitrary asymptotic AdSs spaces. However, we note that in
the appendix of [96] a procedure for constructing point curves from the boundary
perspective for generic bulk geometries was discussed.

A, from the Bulk Perspective

For studying the shape of A4(6, ), we introduce the following three types of bulk
geodesics (0, «) (see Figure [5.8).

Type (a) Bulk Geodesics. We refer to a geodesic (0, ) as type (a) if it
does not intersect B4 at all. Consequently, the chord length vanishes for type (a)
geodesics, i.e. A\g,(#,«) = 0, which leads to A4(6,a) = 0.

Type (b) Bulk Geodesics. If a geodesic (0, a) lies completely inside of B4,
we denote it to be of type (b). As depicted in Figure , the intersection points
of type (b) geodesics with the boundary of By lie on the conformal boundary of
the constant time slice of the bulk. They are the endpoints of the entangling in-
terval corresponding to (6, ) on the CFT side. As pointed out in Section [5.1.1]
the constant time slice of the CFT may be identified with the lower boundary of
kinematic space, i.e. the points in C with a = 0. The point curves in K associated
with the intersection points of (6, «) and 0B, are therefore light rays in K emit-
ted from the points on the boundary of K corresponding to the endpoints of the
entangling interval belonging to (6, ) (see Section [5.1.2). As we depict in Figure
, these point curves bound a A 4(6, «) that is the union of causal diamonds in .

Type (c) Bulk Geodesics. A bulk geodesic (0, «) that has one intersection
point with B4 located on the conformal boundary of the constant time slice and
one on the RT surface 7,4 is referred to as type (c¢). As we depict in Figure ,
these geodesics lie only partially in B4. In analogy to the discussion of type (b)
geodesics presented above, the intersection point of (6, a) on the conformal bound-
ary may be identified with one endpoint of the corresponding entangling interval
on the CFT side. The point curve in K associated with this endpoint again con-
sists of light rays in K emitted form the corresponding boundary point of K. The
intersection point of (6, o) with 4 evidently is the bulk point where the geodesics
(0, ) and (04, 4) intersect. The point curve in K associated with this intersection
point is therefore the space-like geodesic in K running through the kinematic space

"In |95] analogous properties have also been shown for the conical defect and the BTZ black
hole. However, as we discuss in Section [5.4] the geodesic connecting two boundary points is not
unique in these geometries. Here however, we assume uniqueness of this geodesic. Therefore the
following discussion does not apply to the conical defect and the BTZ black hole.
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Type (b) Type (c)

0 o’ 27

Figure 5.9: The region of integration A (6, «) for bulk geodesics of type (b) and
(c). L.h.s.: We depict the region of integration A4 (6, a) (blue) appearing in
for (6, a) of type (b). It is given by the causal diamonds in K bounded by the
light rays emitted from the points on the lower boundary of IC which correspond to
the endpoints of the geodesic (entangling interval) associated with (6, ). R.h.s.:
We depict Ay(6, ) for (0, a) of type (¢). One boundary of A,(f,«) consists
of light rays in K. These light rays are emitted from the kinematic space point
corresponding to the endpoint of the geodesic (entangling interval) (0, «) lying
inside of the interval associated with (64, 4). The other boundary of A(f, «) is
the geodesic in IC connecting (64, a4) and (6, ) (see discussion in the introduction

of Section .

points (0, ) and (04, s). So we see that A4 (6, ) is bounded by a light-like and
a space-like geodesic in K. In Figure we depict the typical form of A, (6, a)
for a bulk geodesic of type (c).

The three types of bulk geodesics presented above only consider geodesics that
intersect the RT surface part of 934 once (type (c)) or not at all (types (a) and (b)).
For completeness we note that there are no geodesics intersecting the RT surface
~v4 twice. This is due to the fact that v, is a geodesic itself. Therefore, a geodesic
intersecting 4 twice would correspond to a situation where two geodesics intersect
twice, which is not possible in the geometries we consider. Thus, the types (a) —
(c) are sufficient to classify all possible ways a geodesic (0, a) may intersect Ba.

A, from the Boundary Perspective

We now interpret the three types of bulk geodesics from the boundary perspective
of kinematic space, i.e. we see the points (#, ) in K as the entangling intervals on
the constant time slice of the CFT (see Section [5.1.2)). So the three types of bulk
geodesics give rise to three types of boundary intervals. We note that in the discus-
sion of the different types of geodesics, we constructed the corresponding regions
of integration A, solely by using the geometry of . This allows us to translate
the construction of A, to the boundary perspective. The resulting method for
defining A4 goes as follows.

Type (a) Boundary Intervals. The boundary intervals (6, «) associated
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Bulk Kinematic Space IC
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Figure 5.10: Three different types of boundary intervals on a constant time slice.
L.h.s.: The bulk geodesics of type (a), (b) and (c) depicted in Figure may
be associated with boundary intervals of type (a), (b) and (c) in the boundary
perspective of kinematic space. By doing so we conclude that type (a) intervals
have none of their endpoints lying in the interval (64, a4), whereas for type (b)
intervals both endpoints lie inside of (64, a4). Moreover, an interval is of type (c)
if only one of its endpoints lies in (04, a4). R.h.s: In kinematic space, type (a)
intervals either lie in the future light cone of the interval (64, a4) or in the past
light cone of the complementary interval, (64 + 7,7 — cq). Intervals of type (b)
lie in the past of (04, 4) or the future of (64 + m,m — as). Type (c) intervals
are causally disconnected from (64, a4) and (04 + 7, m — a4). The set of type (c)
intervals is referred to as causal wings.

with type (a) bulk geodesics are referred to as type (a) as well. It is easy to see
that the defining property of type (a) intervals is the fact that both of its boundary
points do not lie inside of the interval (64, a4) (see Figure [5.10). The region of
integration A (6, ) is the empty set in this situation.

Type (b) Boundary Intervals. A bulk geodesic of type (b) corresponds to
a boundary interval (0, o) with both endpoints located in the interval (04, 4) (see
Figure . These boundary intervals are called type (b). The two endpoints of
(0, o) may be interpreted as points on the lower boundary of K, as pointed out in
Section |5.1.1] The region of integration A4 (0, «) is given by the subset of K that
is bounded by the light rays starting at these points (see Figure .

Type (c) Boundary Intervals. As depicted in Figure , bulk geodesics
of type (c) correspond to boundary intervals (6, «) that only partially lie inside of
(04,4). We refer to them as type (c) as well. We find that one endpoint of type
(c) intervals lies inside of (04, @4) and the other lies outside of (64, «4). The corre-
sponding region of integration A (6, «) is bounded by the light rays in C starting
at the boundary point of K associated with the endpoint of (6, «v) inside of (04, cva)
and the space-like geodesic in K that intersects (6, @) and (64, a4) (see Figure[5.9).
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The construction rule of A 4(6, «) for the three types of entangling intervals only
requires knowledge of the position of the endpoints of (0, «) relative to (64, a4)
and the geometry of kinematic space. Both these aspects are well under-
stood from the boundary perspective (see Section and do not require any
reference to the bulk. Thus we see that A 4(6, «) can be constructed from the CFT
side, which justifies the statement that is a field theory expression for HSRC.

As a side remark we note that only entangling intervals with at least one
endpoint inside of (64, a4) contribute to the double integral over IC giving
subregion complexity. For the outer integral over 6 and « this is evident since
A (0, ) is empty for all intervals with both endpoints outside of (04, a4), i.e.
type (a) intervals.

In order to see this for the inner integral over 6’ and o’ we interpret the points in
K as bulk geodesics. In this picture, the inner integral over A 4(6, «) computes the
length of the chord of (6, «) lying inside of B. Therefore, A4 (6, «) only contains
geodesics that intersect this chord (see Section [5.1.1)). If there would be such a
geodesic with both endpoints lying outside of B4 , it would evidently intersect the
geodesic (04, a4) twice, which is not possible for the bulk geometries we consider.
Consequently, any geodesic contained in A 4 (6, «) is of type (b) or (c) and therefore
corresponds to a boundary interval of the same type. Per definicionem, boundary
intervals of type (b) and (c¢) have at least one endpoint lying inside of the boundary
interval (04, a4).

Position of the Three Types of Boundary Intervals in Kinematic Space

We conclude our discussion of the regions of integration A4 appearing in our CFT
expression for HSRC ([5.53)) by discussing the location of the three types of entan-
gling intervals in kinematic space. As we depict in Figure the causal structure

of IC (5.10) allows us to identify the intervals of types (a), (b) and (c) in a very
straightforward way in C.

Location of Type (a) Intervals. An interval of type (a) has both its
endpoints lying outside of (64, a4). Consequently, it either completely contains
(04, q) or is completely contained in the complement of (64, a4). Using the inter-
pretation of the causal structure of I in terms of the partial ordered structure of
entangling intervals presented in Section [5.1.2] we therefore find that type (a) inter-
vals either lie in the future of (04, @4) or the past of its complement, (04+7, T—4)

(see Figure [5.10)).

Location of Type (b) Intervals. Intervals of type (b) have both endpoints
contained in (64,4) (see Figure [5.10). Consequently, they are either intervals
completely contained in (64, 4) or the complement of such intervals. Just as
for type (a) intervals, the interpretation of the causal structure of K in terms of
entangling intervals allows us to associate a certain region in K with type (b) in-
tervals: they either lie in the past of (64,a4) or the future of its complement,
(04 +m,m—a).
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Location of Type (c) Intervals. The remaining intervals are of type (c).
They are characterized by the fact that they have one endpoint lying in (64, a4)
and one in its complement (§4 + 7,7 — a4) (see Figure [5.10)). Therefore, they are
causally disconnected from (64, 4) and (04 + 7,7 — acq), as we may conclude by
interpreting once more the causal structure of K in terms of entangling intervals.
The region in K containing points with this property is bounded by the light
rays emitted from the points on the lower boundary of I that correspond to the
endpoints of (04,a4). It takes the form of two causal diamonds attached to the
past light cone of (04, 4) (see Figure. These squares are referred to as causal
wings |97].

5.3.3 Holographic Subregion Complexity for Global AdS;

We now demonstrate how to apply our CFT formula for HSRC to explicit
examples. The CFT state we consider is the vacuum state dual to global AdSs.
First we calculate the HSRC for the whole circle forming the constant time slice
of the CF'T and then for half of that circle.

Cut-Off in Kinematic Space

Since our formula for the HSRC of an entangling interval (64, a4) is con-
structed to give the volume of a bulk region B4 expanding to the conformal bound-
ary, it is easy to see that is divergent and a cut-off procedure is required.
When computing HSRC by determining vol(B4) directly in the bulk, usually a
radial cut-off at 7 = Llcpr/€ is introduced, where we use the coordinates
for global AdS3 and lcpr is the radius of the circle the CFT is defined on (see
Sections , . Here however, we aim at computing HSRC from the field
theory side. Therefore, the use of a radial cut-off would be counter intuitive. In-
stead we introduce a cut-off procedure that is natural for calculations in kinematic
space. By using the coordinates 6 and « for IC, we may introduce a horizon-
tal cut-off at @ = ¢ and o = m — &, where £ < 1 (see Figure [5.11)). Since bulk
geodesics with small opening angle o asymptote to the conformal boundary of the
bulk (see Section , it is easy to see that the integrand in diverges for
a — 0. This justifies the cut-off at a = £. Moreover, the geodesics with opening
angle « — 7 also asymptote to the conformal boundary, which is evident by
considering Figure [5.1] Therefore, a further cut-off is required at « = 7 — &. In
the boundary perspective of kinematic space this cut-off procedure implies that we
only consider entangling intervals with an opening angle larger than £ and whose
complement also have an opening angle larger than &.

We note that this cut-off scheme may not be associated with a radial cut-off
in the bulk. To be more precise, we cannot find a radial cut-off 7 = Llcpr/€e such
that the kinematic space formula with cut-off at « = £ and a = 7 — &
computes the volume of the part B¢ of the bulk region B4 above the radial cut-
off for any entangling interval (04, a4). We can see this by making the following
consideration. Our formula is an application of the volume formula
to B4. In order for the kinematic space cut-off £ to correspond to a radial cut-
off ¢ we would require the cut-off version of the kinematic space integral
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Bulk Kinematic Space K

(0a+m,7m—aa)

0 0 o

Figure 5.11: Comparing the kinematic space cut-off (r.h.s.) with the radial cut-
off in the bulk (Lh.s.). R.h.s.: when working with our field theory expression for
HSRC , which is based on integrals over kinematic space, it is natural to
introduce a cut-off at & = £ and a = m — £ in kinematic space. The resulting
region in K contributing to the integrals in (5.53)), i.e. type (b) and (c) geodesics
(intervals) are depicted in blue. L.h.s.: Considering a kinematic space cut-off £
is not the same as working with a radial cut-off in the bulk (dashed circle). For
instance, the geodesic (6., ) does not contribute to the volume of B (green),
which is the volume providing HSRC in the radial cut-off scheme . The
reason for that is the fact that (6., a.) does not intersect B and therefore does
not contribute to the kinematic space integral providing vol(B9). However,
(04, o) does contribute in the kinematic space cut-off scheme, since it is contained
in the blue region in K (r.h.s.).

to correspond to the volume formula applied to BY. However, as follows from
our discussion of the volume formula in Section [5.2] this would imply that only
geodesics (6, ) intersecting B9 contribute to the cut-off version of the kinematic
space integral , which is not the case, as we show in Figure m

Subregion Complexity for the Whole Constant Time Slice

In order to apply our CET formula (5.53)) to the circle which is the whole constant
time slice of the field theory, we introduce the cut-off at o, ¢’ = £ and a, o/ = w—&,
as explained above,

C(circle) = ) / dfda / df'da’ 925 (a)9%, S ()
K Aa(0,0)

82

0 (5.54)

2 T—&
— d@/ da 925 (« / do'da’ 92,5 (),
=g 5 @ [ (@)

where A (8, ) is the part of A4(6, @) containing only points (8, ') in K for which
¢ <o’ <m—¢holds (see Figure 5.12)). Since (A4, 4) is the whole CFT constant
time slice, all entangling intervals (6,a) are of type (b) (see Section [5.3.2). We
first determine the integral over ¢’ and o/ in . By using the expression
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Type (b)

Figure 5.12: The region of integration A% (6, a) for a type (b) geodesics (intervals).
By introducing the kinematic space cut-off at o/ = £ and o/ = 7 — &, the region of

integration A4(60, ) (see Figure in (5.53) is replaced by A% (6, @) (blue).

for the entanglement entropy, it is easy to verify that

/Ai(e,a) d0'do/ 92,5 () = —%(log <Ssllrrll((§))) + 5c0t(§)> (5.55)

holds. Now we insert this result into (5.54]), which leads to

) = g —w+OE).  (550)
In the limit & — 0 this result for HSRC can be matched to the expression
obtained in Section from the Gauss-Bonnet theorem by setting & =
4e/mlcpr. Note that even though the cut-off scheme for kinematic space does not
correspond to a radial cut-off scheme in the bulk, it is still possible to recover the
same divergent behavior and the same £° term, i.e. —27, from both schemes. In
particular, this supports the idea that the constant term in HSRC is universal (see

Section [3.2.3]).

C(circle) = 4<§ cot?(&) + cot (&) + & — g

Subregion Complexity for Half of the Constant Time Slice

We now apply our CFT formula for HSRC to the semicircle corresponding
to half of the constant time slice of the CFT, i.e. we set (04,a4) = (0,7/2). As
for the computation of the HSRC for the whole circle (5.54)), we introduce cut-offs
at a,d’ = £ and o,/ = 7 — £ in K. This leads to the following expression for

HSRC,

9 2 T—&
2) = A > :
C0.7/2) = £ /0 d /g da Ae(8,0)025(a), (5.57)
where
Ae(0, @) :/ df'da’ 92,5 (a) . (5.58)
A% (6,0)

When computing the HSRC for the whole constant time slice, all contributing
entangling intervals (0, a) were of type (b). Here however, also intervals of type
(c) are present. The location of type (b) and (¢) boundary intervals in kinematic
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Figure 5.13: Location of type (b) and (c) intervals for (64, a4) = (0,7/2). If we
consider the complexity for half of the full constant time slice, i.e. a semicircle,
we find the corresponding type (b) and (c) intervals located in the blue region
in kinematic space. Regions I and II contain type (b) intervals, whereas type (c)
intervals are located in III - VI. The symmetry of the Crofton form implies
that the region I contributes in the same way to the integrals in HSRC as
IT. Moreover, the contributions of regions III - VI are also the same. This allows

us to write (5.57) as an integral over I and III (5.59)).

space is depicted in Figure Intervals of type (b) are contained in the regions
I and II, while type (c) intervals can be found in regions III — VI. By using the
symmetry of the Crofton form , it is easy to verify that the regions I and II
give the same contribution to C(0,7/2). The same statement holds for the regions
III — VI. Therefore, we can rewrite in terms of integrals over the regions I
and ITI,

T/2—«
C(0,7/2) = WQ / da/ 48 Ae(8, )25 (1)

—7/2

/24«
+2/ da/ d0 Ae(0,0)32S(a ))

/2—«a

(5.59)

Here, the first term corresponds to region I and computes the contributions of type
(b) intervals, while the second corresponds to region III and is therefore associated
with the type (c) intervals. We already determined A¢(6, ) for type (b) intervals
(0,) in (5.55)). Inserting the corresponding result into yields

47(;2 / do /a ﬂ/j/: ( (Zﬁig ) +5cot(5)) 925(a)

/24«
+2/ da/ d Ae(0, )25 (o )]

/2—a

C(0,7/2) =

(5.60)

Computing A¢(6, o) for (6, a) of type (c) turns out to be a challenging task. In
this case A4(6, «) is not just bounded by light rays — as it is the case for type (b)
intervals — but also by generic point curves. In particular, these point curves cross
the cut-off at @« = £ and a = m — £ in some cases (see Figure . This would
require to distinguish several special cases for the shape of the region of integration
Ai(ﬁ, «) when determining A¢(6, ) via the integral given in (5.58)).
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Figure 5.14: The region of integration Ai for type (c¢) intervals. When computing
the HSRC of the semicircle, i.e. half of the constant time slice, via (5.53|) we
need to distinguish two different cases for the region of integration Ai for type
(c) intervals: The space like geodesic bounding Ai may lie completely above the
kinematic space cut-off i.e. the dashed line, (Lh.s.) or partially below it (r.h.s.).
The fact that we need to take both these cases into account makes the computation
of HSRC via ([5.53) particularly involved.

However, we can avoid this rather technical computation in the special case of
the semicircle by making use of the symmetry of this setup, as we now explain. In
the following we effectively only use symmetries of the Crofton form and the
region of integration in K, i.e. Ai(&, «), but since discussing these symmetries is
most easily done in the bulk perspective of kinematic space, we now treat points
(0, ) in K as bulk geodesics.

Following the derivation of our CFT formula for HSRC , we see that
A¢(0, ) computes, up to a multiplicative factor and differences in the cut-off
scheme, the length of the chord of (, @) lying inside of the bulk region B4 (5.51).
Having a type (c) bulk geodesic (6, ) in region III (see Figure [5.13), it is easy
to see that region III also contains a geodesic (QN, «) whose chord length is given
by the length of the segment of (6, ) lying outside of B4. We depict this setup
in Figure 5.15] So we find that the sum of these two chord lengths give the total
length of (0, «). Moreover, since the cut-off in kinematic space is independent of
0, it is easy to see that this statement also holds in the kinematic space cut-off
scheme, i.e.

~ 8¢ sin(«)
Ae(0, ) + Ac (B, :——(1 ( ) ¢ ) 5.61
((0.0) + Ac(f.0) = = oz (S8 + € con(©) (5.61)
where the r.h.s. of this equality gives, up to a multiplicative factor, the full length
of (6, «) when computed by using the kinematic space cut-off scheme, i.e. (5.55).
Thus we can replace the remaining A¢(6, o) for type (c) in (5.60)) by (5.61) when
we multiply the corresponding term by 1/2. This leads to

C(0.7/2) =~ :/2 da / if 0o (log (?;((g) + gm(g)) 25(a)

= 26 cot?(€) +2cot(§) + 26 — 7 = g — 7T+ 0(&).

(5.62)

Just as for the HSRC of the whole constant time slice ((5.56)), we see that in the
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Figure 5.15: Visualization of the symmetry argument used to compute HSRC for
the semicircle. Consider a geodesic (0, «) in the constant time slice of the bulk
which we w.l.o.g. assume to correspond to a point in region III in kinematic space
(see Figure [5.13)). Using the symmetry of the bulk region B4 (green) we may find
a bulk geodesic (é, a) corresponding to a point in region III such that the sum of
the chord lengths of (6,a) and (A, ) (blue) gives the total length of (6, ). This
observation allows us to simplify the integral expression for the HSRC of
the semicircle to (5.62)).

limit £ — 0, we can match this result for HSRC obtained by a computation in
kinematic space with the one presented in derived by a computation in the
bulk. This matching is obtained by setting £ = 4¢/mlcpr. Once more we see that
both the kinematic space cut-off scheme as well as the radial cut-off scheme in the
bulk provide the same constant term, i.e. —m, for complexity. This gives
further support to the statement that this term is universal (see Section .

5.3.4 Holographic Subregion Complexity for the Poincaré
Patch

Our CFT formula for HSRC provides us with a way to compute the HSRC
for a generic entangling interval (xa,04) for the Poincaré patch in field
theory. We work with the kinematic space coordinates (x, o) defined in ([5.39).
Here we only consider the ¢ > 0, i.e. we do not distinguish between different
orientations of bulk geodesics. Evidently, the two orientations of a bulk geodesic
contribute in the same way to the volume formula. Therefore, restricting to one
orientation just requires us to adapt the integrals over K in the volume formula
(5.50) and the chord length by a multiplicative factor of two. We therefore
find, by adapting our formula for HSRC accordingly,

9

27 c?

Clyn,on) = /_ iy /g " doA(x, 0)32S (o), (5.63)

where

Ae(x,0) = / dx'do’9%,S(c") . (5.64)
A% (x0)
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Here, the entanglement entropy S(o) is given by . Moreover, analogously to
our discussion of HSRC for global AdS3, we have introduced the cut-off ¢ for the
o and ¢’ coordinate. The region of integration Ai is again the part of A4 lying
above the cut-off. As discussed in Section [5.3.2] we need to distinguish between
entangling intervals (y, o) of type (a), (b) and (c) for the construction of A4(x, o).
The region of integration A4(x, o) is only non-vanishing if (y, o) is of type (b) or
(c).
If (x,0) is of type (b), Aa(x, o) is bounded by the light rays

(X,0+(X)), where G.(X)=|x+o—x|. (5.65)

In this case, A¢(x, o) is given by

AP (o) = —%(log (0/€) + 1) . (5.66)

For type (c) intervals (y, o), Aa(x, o) is bounded by the point curve in K inter-
secting (x, o) and (xa,04) and the light rays in IC corresponding to the boundary
point of the interval (x, o) lying inside of (x,04). The latter is of the form (5.65)),
where the — (+) corresponds to the case where the left (right) endpoint of (x, o)
lies inside of (xa,04).

The point curve intersecting (x, o) and (xa,04) may be constructed as follows.
We consider the bulk perspective of K, i.e. we interpret the elements of K as
geodesics in the bulk. By considering the equation for a generic bulk geodesic
on the constant time slice of the Poincaré patch, it is easy to see that the point
curve (X, (X)), associated with an arbitrary bulk point (x, z) in the constant time
slice, is given by

o(%) =V (@—x)?+2% (5.67)
By imposing that this point curve crosses (x, o) and (xa,04), i.e. d(x) = o and

a(xa) = oa, we find

o —oi = X"+ X4
x = and z=+/02— (z—x)2%. 5.68
2(x — xa) @=x) (568)

Therefore, the point curve (x,a(x)) bounding A4(x, o) is given by
5(X) = V(& = x)? + 02— (z = x)?, (5.69)
where z is given by (/5.68]).

For an interval (x,o) of type (c) we find A¢(x,0) (5.64) to be

¢ 1 =
APE(x0) = 580 (0) +EF(x.0). (5.70)

where z and Aéb)(a) are given by ([5.68]) and (5.66)) respectively and

=*(x,0) = —< log (M) (5.71)

oF (x—)
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Figure 5.16: The five regions of integration in K appearing in . The region
i (i =1,...,5) is integrated over in the ith term in (5.72). By identifying the
x axis of I with the constant time slice of the CFT (see Section we may
identify the lower edges of the regions of integration with the endpoints w4, v4 of
the considered entangling interval A.

holds. Here, = (=) refers to the situation where the right (left) endpoint of the

interval (x, o) lies inside of (xa,04). Note that in the computation of Aéc)’i we
assumed that the point curve (5.69) stays above the cut-off. The error for C that is
caused by this assumption is of order £ and therefore irrelevant in the & — 0 limit.

Separating the type (b) and (c) intervals in (5.63)) from each other and inserting

(3.39), we obtain

vA—O d va+o d
Clxa, 04 / da/ XA / da/ XA
27TC usto va
vA+ad oA uA+0'
+/ da/ XA / do/ (5.72)
oA ua+o
00 vpA—0O d
+/ da/ A0
TA uUpA—0o a

where uy = x4 — 04 and v4 = x4 + 04 are the endpoints of the interval (ya,04).
The five integrals in (5.72)) correspond to the five regions in I depicted in Figure

5.16, By using the expression ([5.70]) for A(C)’i, we can bring (5.72)) into the form

o 2 vato d vato d
C(xa,04) 22—30[/ dcrﬂA / da/ X”_ / / X”‘
us+o
uA+U VA—O
/ da/ XHJF—%—/ da/ dx_+ .

The first integral in ([5.73)) provides the divergent part of C(xa,04),

(5.73)

Y Y

2me Je o? 7T§

(5.74)
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The remaining integrals stay finite in the limit £ — 0 and can be brought into
the form

2

& 2
/ da—Z[aA log i
0 To o4 —

A
2 _ 2
Combining (5.74)) and ([5.75]), we obtain

Clxa,04) = 87%‘ 40, (5.76)
We can match the divergent part of C to the one obtained in , where the
radial bulk cut-off z = € was used, by setting £ = 4¢/m and adapting the convention
for the prefactor of HSRC (see beginning of Section . As for the HSRC for
global AdS;3 (see Section , we find that the constant term, i.e. —m, in C
obtained by the kinematic space cut-off scheme agrees with the constant term
in obtained from the radial cut-off scheme in the bulk. This supports the
proposal stating that this term is universal (see Section [3.2.3)).

op — O

+ o log

|+o©) =-r+06). 6

op+ 0

5.3.5 Holographic Subregion Complexity in Terms of
Mutual Information for the Poincaré Patch

As a side remark we present an alternative formulation of our expression (|5.50))
for the volume vol(B,4) associated with HSRC for the Poincaré patch. This
reformulation may be more accessible for physical interpretation than our CFT
expression for HSRC . It is based on the bulk perspective of kinematic
space, i.e. points (x, ) in K will be interpreted as geodesics in the bulk. Just as
in Section [5.3.4] we are only working with one orientation of the geodesics, i.e. we
only consider ¢ > 0. Therefore, we again adapt the volume formula by a
multiplicative factor of two,

vol(Ba) 1
4G3 ﬂ_/a>0(,uic Ba s (577)

where wy is given by . Following the discussion of Section we may
distinguish geodesics lying completely inside of B4 (type (b)) and geodesics lying
only partially inside of B4 (type (c)). For geodesics of type (b) the chord length
A, is the total length of the geodesic. The RT formula implies that this
chord length may be interpreted as the entanglement entropy of the corresponding
entangling interval. These considerations allow us to rewrite as follows,

1 2 1
vol(Ba) _ 2Gs / dydoS2S — _/ dxdo g, 025, (5.78)
4EC7Y3 ™ type (b) 2 type (c)

where the regions of integration of the two integrals are the geodesics of type (b)
and (c) respectively. Before we continue with our discussion, we need to stress
that the entanglement entropy S, chord length Ag, and the integrals over them
are divergent in (5.78). Thus, a proper cut-off scheme is necessary for applying

(5.78) to explicit examples.
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Figure 5.17: Associating points on a geodesic in the constant time slice of the
Poincaré patch with boundary points. The mapping may be used to identify
points (Z;, 2;), @ = 1,2 on the bulk geodesic (x, o) with points z; on the conformal
boundary at z = 0. The points z; lie in the interval [u,v] (red) associated with
(x,0). Assuming (x; — u)(v — x3) to be sufficiently small, the RT surface of
[x1, 2] Uu, v]° is given by the dotted curves. This allows us to express the geodesic
distance between (7, z1) and (Z, 22) (length of the blue curve) i.t.o. the mutual

information I([z1,xs] : [u, v]) (see (5 and (5.84)).

In we see that we can interpret the contribution of type (b) geodesics in
terms of entanglement entropy. In the rest of this section we present an expression
for the remaining integral over type (c) geodesics in terms of mutual information
. This expression is based on the interpretation of geodesic distances in the
bulk in terms of mutual information introduced in [213]. We first review this in-
terpretation and then apply it to the chord lengths of type (c) geodesics.

Consider two bulk points p; = (:i’l, z1) and py = (Z2, Z3) on the constant time
slice lying on the same geodesic (x,0). [| In [213] the bulk modular flow was
used to assign boundary points x1, xo to p1 and po respectively which lie inside the
entangling interval associated with (x, o),

_ 4 _
POl Vil e O Sy =12 (5.79)
xz_X

We depict this procedure in Figure[5.17] Assuming w.l.o.g. 21 < x9, the length of
the geodesic segment between p; and ps is given by [213]

20(xy — x1)

(1 —u)(v — 22)

d(p1, ps) = Llog ( " 1) — Llogn, (5.80)

where u, v are the boundary points of the entangling interval associated with (x, o)

(5.39) and 7 is the conformal cross-ratio

(v —21) (T2 — 00)
= (v —x2)(1 — )

(5.81)

8We use the coordinates (3.33) for the Poincaré patch.
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By using the formula (3.39)) for entanglement entropy, we may express 7 in terms
of entanglement entropies, \
n=e"+1, (5.82)

where

k= S([x1,x2]) + S([u,v]) — S([z2,v]) — S([u, z1]) - (5.83)

For sufficiently small (x; —u)(v — z3) the RT surface of [z, 22] U [u, v]¢ is given by
V1] U Vizs,w]> 88 visualized in Figure |5.17, ﬂ In this case, the RT formula ([3.32))
implies that « is equal to the mutual information (3.15)) of [z, 23] and [u, v]°,

k= 1([x1, 2] : [u,v]%). (5.84)

Therefore, we see that we may express the geodesic distance ((5.80)) of the two bulk
points p; and ps in terms of mutual information.

We may now apply this result to the chord length Ag, (x, o) of type (c) geodesics
in order to formulate the corresponding integral in in terms of mutual infor-
mation. By doing so, we obtain the alternative expression for subregion complexity
mentioned at the beginning of this section. Evidently, Az, (x, o) is the geodesic
distance between the endpoint of (y, o) lying inside of B4 and the point where

(x,0) and (xa,04) meetm Therefore, combining ((5.80)) and (5.82]), we find
A, (x,0) = Llog (e%” + 1> : (5.85)

By sending p; or py to one endpoint of the geodesic (x, o) — as required for A\g,
— 1 or xo asymptotes to u or v respectively. This is easy to see from (5.79)).
Consequently, we find (21 — u)(v — x2) — 0. Therefore, the interpretation of x

as mutual information is valid for (5.87]). We find

k= 1(u,z]: [u,v]), (5.86)
if the endpoint u of (x, o) lies inside of B4 and

k=1([Z,v] : [u,v]), (5.87)

if v lies inside of B4. Here & denotes the boundary point associated with the bulk
point where (y, o) and (xa,04) meet (see Figure and (5.79))).

By inserting ([5.85]) into ([5.78)) we obtain the following expression for subregion
complexity,

C(XA,O'A) = — i dXdO'S@?,S

2
type (b)
3 . ; (5.88)
- — dxdo log <ec + 1>00.S,

2m¢ Jiype ()

where we used ([5.49)) and (2.117)).

9This may be easily verified by considering our discussion of phase transitions of the RT
surface in Section
10We note again that this distance is divergent. Thus a proper cut-off procedure is required.
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Z A

Figure 5.18: Identification of the intersection point of the bulk geodesics (xa,04)
and (x,o0). By associating the intersection point of (x4,04) and (x,o) with a
boundary point Z on the entangling interval corresponding to (x, o) (red), we may
express the chord length of (x,0) (length of the blue curve) in terms of mutual

information (see ([5.85)) and (/5.86]))

We see that the expression for HSRC is a single integral over kinematic
space not a double integral as (5.53]). However, the derivation of (5.88|) heavily
relies on the bulk since the bulk modular flow is required to identify & in and
(5.87). Thus is strictly speaking no CF'T expression for HSRC. We never-
theless consider it a valuable result for HSRC which may provide some inspiration
for field theory expressions for HSRC in the future.

5.4 Holographic Subregion Complexity for
Excited States

Until now we have discussed HSRC only for vacuum states. Applying the volume
formula (5.12) we were able to derive a field theory expression for HSRC only
containing entanglement entropies. We now generalize this approach to two types
of geometries that are quotients of pure AdSs: conical defects and BTZ black holes.
These geometries are dual to primary excitations and thermal states of the CF'T,
respectively (see Section .

The main difference between the gravity duals of these excited states and the
vacuum states is the fact that the geodesics anchored at the boundary of a constant
time slice are no longer uniquely determined by their endpoints. To be more pre-
cise, given two points on the constant time slice of the conformal boundary, there
are several geodesics running between them. Consequently, the one-to-one corre-
spondence between entangling intervals on the CFT side and boundary anchored
geodesics on the gravity side no longer exists. This one-to-one correspondence al-
lowed us to interpret the kinematic space for the vacuum from both the bulk and
the boundary perspective and thus offered a very natural way to associate bulk
volumes with CFT integrals (see Section . For excited states this strategy for
constructing CFT expressions for bulk volumes is no longer possible.
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The kinematic space for the geometries we consider here is again defined as the
space of all boundary anchored geodesics on a constant time slice. Both the conical
defect and the BTZ black hole may be defined as a quotient of AdS3. As discussed
below, we may apply the quotienting procedure providing these geometries to
construct their kinematic space as a quotient of the kinematic space of the vacuum
state. This construction makes it evident that the volume formula (5.12)) may also
be applied to the quotient geometries, when inheriting the volume form wy from
the vacuum kinematic space.

Since there are several geodesics attached to the same pair of boundary points,
only the geodesic with minimal length corresponds to a RT surface providing
entanglement entropy. The CFT interpretation of the lengths of the other — so-
called — long geodesics is a subject of current research. There is evidence that
they are related to the entanglement of inner degrees of freedom which are not
spatially organized [146]. This interpretation is referred to as entwinement [146].
Entwinement has been discussed in e.g. [95/97,[214] and made more concrete in
[215,216]. We note that in quotient geometries there are regions that cannot be
reached by minimal geodesics but only by non-minimal ones (see Figure for
the conical defect geometry). Since these regions are — by construction — not
intersected by RT surfaces, they are called entanglement shadows [146,217]. The
existence of entanglement shadows makes it clear that a kinematic space which
is supposed to provide a volume formula of the form necessarily needs to
include non-minimal geodesics. If it would only contain minimal geodesics, a bulk
region Q lying completely inside of the entanglement shadow could not be reached
by the geodesics associated with such a kinematic space and thus vol(Q) could not
be computed via the volume formula.

Due to the presence of non-minimal geodesics in kinematic space, we may no
longer interpret the volume form wyg in terms of entanglement entropies. This
interpretation only applies to the geodesics of minimal length. Consequently, our
expression for HSRC as an integral over kinematic space no longer consists only
of entanglement entropies, as for the vacuum state , but also includes en-
twinement. We present a formulation of HSRC as an integral over the space of
entangling intervals below. This expression includes length contributions from
non-minimal geodesics and may be seen as a first approach towards finding a CFT
formula for HSRC.

Furthermore, we find that for thermal states (BTZ black holes) — besides the
minimal and non-minimal geodesics connecting boundary points — there is a third
type of geodesic: these geodesics run between the boundary and the horizon of the
black hole. Consequently, they only have one endpoint at the conformal boundary
and may thus not be associated with any boundary interval. We consider the
contribution of these geodesics to HSRC as related to the fact that the dual CFT
state is thermal.

5.4.1 Conical Defects

In this section we discuss kinematic space and HSRC for conical defects (see Section
2.5.2)). We start by reviewing the construction of the conical defect geometry by
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quotienting AdSs;. The same procedure may be used to derive the corresponding
kinematic space. The conical defect geometry CDy is obtained from global AdSs
(5.13) by considering the identification

¢p~¢+2r/N, NeN (5.89)

for the angular coordinate of global AdS; (5.13)) (see e.g. [146, 147])B Therefore,
CDy is given by the quotient

AdS
CDgy = —. (5.90)
L

By introducing the coordinates ¢ = Ni, 7 = f/N and ngS = N¢, we obtain the
metric of the conical defect (2.152) (see e.g. [146])[7]

A9 R 1 .
dsip = — (% n N—2>df2 o =T (5.91)

L2

where the dual field theory is defined on the circle ngﬁ ~ ngﬁ—i- 2m at 7 = 00. As
we depict in Figure , the quotienting procedure results in a geometry
where the geodesic on a constant time slice connecting two points on the confor-
mal boundary at 7 = oo is not unique. The RT formula states that the
entanglement entropy of a boundary interval is then given by the length of the
minimal geodesic connecting the two endpoints of the interval.

Kinematic Space for Conical Defects

In the following we work with the kinematic space Kcp for CD g, introduced in [147],
which is the space of all boundary anchored geodesics on a constant time slice of
CDy, including the non-minimal ones.ﬂ

As pointed out in [147], the kinematic space of the conical defect is most easily
obtained from the kinematic space of global AdS; ([5.15)). Due to the identification
(5.89) in the ¢ coordinate of global AdS; required for the construction of CD, we
need to introduce the same identification in the 6 coordinate for the kinematic
space of global AdS3 to obtain K¢p,

2
0~ 0+ . (5.92)
N

A point (0, a) in AdS;3 kinematic space refers to a geodesic corresponding to a
boundary interval centered around ¢ = 6 with opening angle a (5.2)). Therefore,
(5.92) is an immediate consequence of the identification ((5.89)) in the ¢ coordinate

IFor simplicity we assume N € N here. In principle it is possible to consider conical defects
for non-integer N as well.

2Note that in we use £, 7 and ¢ to refer to ¢, # and <£

13We mention [95] for related work. For an alternative formulation of kinematic space for
conical defects we refer to |212].
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Figure 5.19: Constant time slice (L.h.s.) and kinematic space (r.h.s.) for the conical
defect. We consider a constant time slice for the conical defect with N = 3 (15.89).
As depicted on the L.h.s. the geodesic connecting two points u, v on the conformal
boundary at 7 — oo is not unique. Besides the geodesic of minimal length there
are further geodesics winding around the conical defect at # = 0. Moreover, there
is a region (grey) surrounding the conical defect that may not be accessed by
the geodesics providing the minimal distance between two boundary points but
only by non-minimal geodesics. This region is called entanglement shadow. The
kinematic space for the conical defect (r.h.s.) — i.e. the space of all boundary
anchored geodesics — is given by a quotient of the kinematic space of global AdS;
. We depict the corresponding fundamental domain in yellow. The geodesics
in Kcp come with an orientation (4) and a winding number n = 0, 1, 2 indicating
how often a geodesic winds around the defect. A geodesic with winding number n

and orientation 4 has a € W¥ (5.93)).

of global AdS3;. The opening angle « still runs from 0 to 7 in Kep. The elements
in Kop with o € WE, where

i = (Ln, R DE] -y [@NonoUr ONmny gy
2N 2N 2N 2N
refer to bulk geodesics winding n = 0, . .. ,N — 1 times around the conical defect

at 7 = 0 [147] (see Figure [5.19). Here the £ correspond to the two different ori-
entations of each geodesic. In particular, WSE contain the minimal geodesics, i.e.
the RT surfaces[™]

The metric and volume form of K¢p are given by
2 I 2 2 1
dsiep, = — o~ 0 ((—do® + d6?), wKCD:_S_Gg

20d0 A d 94
8G3 (6% aa /\ O{, (5 )

l(a) = 2L log <2£CFT

€

mn@m) (5.95)

4Note that, strictly speaking, some RT surfaces also include an infinitesimal circle around the
conical defect (see Section |3.1.7)). Since we are only interested in the length of the RT surface
here, we neglect this circle.
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is the length of the geodesic associated with (¢, «) [147]. [)] Note that ¢ does not
depend on 6 due to the symmetry of the geometry. We note that ¢(«) may only
be associated with entanglement entropy for a € WSE, since only these points in
Kcp correspond to geodesics with minimal length.

Volume Formula for Conical Defects

Since CDy is a quotient of global AdS;3 ([5.90)), it is easy to see that the volume
formula (5.12)) also holds here,

VOl(Q) B 1 B 1 2w /N T )
G, 2 /’CCD WiepAQ = _167TG3/0 d9/0 dadg(8,)050(c), (5.96)

where Q is an arbitrary codimension one bulk region in the constant time slice
of CDg. The chord length A\g(#, @) is the length of the segment of the geodesic
associated with (6, «) lying in Q.

Holographic Subregion Complexity for Conical Defects

In analogy to (5.53) we may use the kinematic space integral determining
the distance between two bulk points to derive a double integral expression over
Kcp from for the volume of the region B4 associated with HSRC . We
obtain the following expression for HSRC,

27r/N
2
32’/TL2/ d@/ da/AAea) do'do/ n(ea)(e )6 0,0, (5.97)

where A4 (6, ) C Kep corresponds to the geodesics intersecting the chord of the
geodesic (#,«) lying inside of B4. We use the coordinates (9,4,0[,4) to refer to

C(QA,(J&A)

an entangling interval on the CFT side with endpoints ¢ = 04 — G4 and ¢ =
04+ Qg By construction, not only includes minimal geodesics connecting
two boundary points but also non—minimal ones. Since non-minimal geodesics may
intersect the chord of (6, «) more than once we need to weight each (¢, ') with
the number n(Ae?a)(G’ ,a’) of its intersections (5.3).

Due to the contribution of non-minimal geodesics to , a field theory in-
terpretation of HSRC not only includes entanglement entropy — as it was the case
for global AdS3 — but also entwinement.

As a first step towards a field theory interpretation of (5.97) we conclude our
discussion of HSRC for conical defects by reformulating as an integral over
the space of entangling intervals. This reformulation was constructed by me and
published in [2] with less details than presented here. Since K¢p is the space of
all boundary anchored geodesics, the one-to-one correspondence between points in
Kep and entangling intervals on the boundary which we had for global AdSs is not

5Here € is a radial cut-off and ¢cpr the radius of the circle the CFT is defined on. We have
chosen the factor in front of sin(«) to be 2¢cpr/€ in order to get in touch with the entanglement
entropy (5.14) of global AdSs.
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present here. Nevertheless, we may interpret as an integral over entangling
intervals.

We begin by making the following observation. Consider an integral over kine-
matic space of the form

/ d@dozf(@, Oz)aiﬁ, (5.98)
Kep

where f is an arbitrary function on Kcp. When using 6 € [0,27] and & € [0, 7
to parametrize the entangling intervals on the circle corresponding to the CFT
constant time slicem it is easy to see that ([5.98) can be reformulated as

)920 = (0, 3)820, (4 .
/’CCDdOdafHa ( /d@/ daZf Q)02 (d), (5.99)

where f,(f, &) is the value of f at the point in K¢p corresponding to the geodesic
winding n times around the defect and ending at the endpoints of the interval
(é Q). Analogously, l,(&) is the length of the geodesic with winding number n
attached to (A,a) (see Figure |5 - Applying the reformulation (5.99) to
we find that HSRC can be written as an integral over the space of entanghng
intervals,

C(fa,a4) = / déda(FgD(é, a) +G§D<é,@)). (5.100)

Here F§P(0, &) refers to all contributions of geodesics with winding number n = 0
to the double integral and GSD(é, &) corresponds to the contribution of
geodesics of higher winding, i.e. n > 0. The RT formula implies that
the integral over F{P in can be expressed solely in terms of entanglement
entropies, since geodesics with n = 0 are RT surfaces. In particular, if we set N =1,
we find that G§P vanishes and becomes the integral over entanglement
entropies giving HSRC for global AdS; . This is easy to be seen, since
CDg_, = AdS;. For N > 1 HSRC not only consists of entanglement entropies
but additional contributions containing the length of non-minimal geodesics are
present, i.e. GGP # 0. As pointed out in the introduction to this section, the
length of non-minimal geodesics are considered to correspond to inner correlations
of the corresponding CF'T state which are referred to as entwinement.

Since F§P and GSP essentially consist of volume integrals over regions in Kcp
(see ), it is easy to see that they are non-negative. So we find that the integral
over F§P provides a lower bound for HSRC,

/déd& FSP(0,8) < C(04,64). (5.101)

Consequently, HSRC for conical defects is bounded from below by a term only
depending on entanglement entropies.

>
I
>
+
jo3

16(9, &) corresponds to an entangling interval with endpoints ¢ = 6 — & and
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5.4.2 BTZ Black Holes

We now discuss the kinematic space Kgryz for the non-rotating BTZ black hole

geometry ([2.148)|)

=2 =2 2

dt” +
L? 72— 2

dsppy = — di? + 7 dp*? (5.102)

and the resulting expression for subregion complexity.

BTZ Geometry

Similar as for the conical defect (see Section , the quotienting procedure for
AdS3 providing the BTZ geometry leads to a method for obtaining Kgry
from the vacuum kinematic space. We therefore briefly review the quotienting
procedure that allows us to construct the BTZ black hole from the Poincaré
patch [141}/142]. Considering the coordinates ¢, z and x (3.33)) for the Poincaré
patch, we may perform the coordinate transformation x4 = x £+ ¢, leading to

L? L?
dstp = ;( — dt* + da* + dz?) = ﬁ(dmrdx_ +dz?). (5.103)
By defining 7, ¢, ¢ via
~92 ~
Ty = L(l — T—g)l/ze’:h(‘bﬂ/mm, z= LrThe’:h"b/L, (5.104)
T r

and imposing the periodicity ¢ ~ ¢ 4 27, we obtain the identification
/Lt 2, 2), (5.105)

which turns the Poincaré patch into the BTZ black hole (5.102). In particular,
the constant time slice ¢ = 0 of the Poincaré patch is transformed into the BTZ
constant time slice f = 0. The identification imposed on the constant time slice
resulting from this transformation is

(t,x,z) ~e

(z,2) ~ ¥ /(g 7). (5.106)

More precisely, the quotient space resulting from the identification (5.106)) is glob-
ally equivalent to the constant time slice of the two-sided BTZ black hole, as we
depict in Figure [5.20] [/] In the following we work with this constant time slice of
the BTZ black hole. The identification ([5.106f) offers the region

L? < 2?4 22 < L2t/ (5.107)

as fundamental domain of the BTZ constant time slice (see Figure [5.20)). The ver-
tical line x = 0 corresponds to the horizon of the black hole, whose circumference

is given by
Lexp(2n7y /L) dz
I / E o, (5.108)
L z

as may be easily deduced from ([5.103)) and (}5.107)).

"The emergence of the two-sided BTZ black hole is related to the fact that the identification

(5.105)) generates an extended version of the BTZ geometry presented in (5.102)). To be more
5.105))

precise, the coordinates 7, £, ¢ only cover a part of the space generated by (5. . This is
evident, since ([5.104]) is only defined for x4 > 0.
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Horizon

T
L L exp(2n7y, /L)

Figure 5.20: Fundamental domain of the constant time slice of the two-sided BTZ
black hole. We depict the constant time slice ¢ = 0 of the Poincaré patch (L.h.s.)
which may be transformed into the constant time slice f = 0 of the two sided
BTZ black hole via . The z axis separates the corresponding fundamental
domain (red) into two regions R each providing one side of the BTZ black hole.
Considering one side of the black hole (r.h.s.), there are infinitely many geodesics
(blue) connecting any pair of boundary points u, v. Moreover, there are also
geodesics v, passing through the horizon to the other side of the black hole.

Kinematic Space of the BTZ Black Hole

We consider Kgry to be the space of all boundary anchored geodesics on the con-
stant time slice ¢ = 0 of the BTZ geometry . This definition of gty is
considered in ,. |T_8| As for the conical defect (see Section, the geodesic
connecting two boundary points is not unique. In fact, for any pair of boundary
points ¢ = u, v there are infinitely many geodesics running from u to v (see Figure
5.20)). Moreover, as we show in Figure , there are also geodesics starting at a
boundary point ¢ and passing through the horizon to the other side of the black
hole. These geodesics are included in gty as well.

We may define Kgrz as a quotient of the Poincaré patch kinematic space in the
following WayEl Using the kinematic space coordinates (x, o - ) to parametrize
a geodesic in the constant time slice of the Poincaré patch with endpoints upp =

x — o and vpp = x + ¢ on the boundary, we find that the identification (5.106))
leads to

(x,0) ~ e/ (y,0), (5.109)

which turns the Poincaré kinematic space into grz. The metric and volume form
of Kpryz are inherited from the Poincaré kinematic space,

sk, = —8—(;36%( —do® +dx*),  wipry = —S—Gga%clx ANdo,  (5.110)

18We mention for related work. Note that there are also alternative definitions of KgTy
as the space of geodesms with minimal length [212].
9Quotient constructions (for the BTZ kinematic space) of the type presented here were also

considered in .-
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Figure 5.21: Kinematic space Kgrz constructed as a quotient of the kinematic
space of the Poincaré patch via (5.109). The fundamental domain (red) may be
separated into six regions by the y axis and the light rays emitted from the origin
(dashed lines). As may be seen by associating the x axis with the constant time
slice of the field theory, the regions I, ITI. correspond to the geodesics lying
completely on one side of the BTZ black hole, where the sign + refers to their
orientation. Moreover, the geodesics represented by II. have one endpoint on
each side of the BTZ black hole.

where
2
((o) = 2Llog (—”) (5.111)
€
is the length of the geodesic associated with (x, o) (3.38). Here, € corresponds to
a cut-off. Due to the symmetry of the system, ¢ is independent of y. Using the
coordinates upp = x — 0 and vpp = Y + ¢ in the covering space of Kpgrz, i.e. the
Poincaré patch kinematic space, we may distinguish the following six sectors of
Kgrz.

Sector I.. Geodesics with 0 < upp < vpp all have the same orientation and
are restricted to the r.h.s. of the two sided BTZ black hole (see Figure[5.21)). Both
their endpoints are attached to the conformal boundary of the BTZ geometry at
7 = 00.

Sector II,. The sector with upp < 0 < wpp corresponds to geodesics which
pass from one side of the black hole to the other, as depicted in Figure [5.21] More-
over, they all have the same orientation.

Sector ITI,. Complementary to sector I, sector III, contains geodesics with

upp < vpp < 0. They all share the same orientation and all lie on the 1.h.s. of the
black hole (see Figure |5.21]).

Sectors I_, II_, ITI . By exchanging upp and vpp in the above definitions of
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sectors I, 11, III,, we obtain the sectors I_, IT_, ITI_, respectively. They share
the same properties as their counterparts but have opposite orientation (see Figure
5.21)).

We may parametrize the geodesics corresponding to the points in sector I, by
their endpoints ¢ = 0 — a and ¢ = 6 + « on the conformal boundary of the BTZ

geometry (5.21)) by setting

upp = Le™0=/L  ypp = Le™0F)/ L where 0~ 0421, acR. (5.112)

Y

This allows us to identify the geodesics in sector I, winding n times around the
horizon. They are given by a € V,,, where

V,=[mn,m(n+1)), neNg. (5.113)

Analogous parametrizations can be found for the geodesics in sectors I_ and III,.
Moreover, (5.112) — together with (2.117)) — provides us with the expression

~2
c (4

6 L2 sinh?(7a/L)

df A de (5.114)

WKpTz =

for the volume form (5.110]) in sector 1. By considering the formula (3.48)) for the
entanglement entropy for BTZ black holes, we see that (5.114)) is of the form

1
WKy = —5825(04)619 A do (5.115)

for

L
0<a< -—log (5.116)

627ﬂ’h/L+1
s ()

2

since the corresponding geodesics are the RT surfaces of the associated entangling
intervals 9]

Volume Formula for BTZ Black Holes

The BTZ black hole is a quotient of the Poincaré patch . Consequently,
the volume formula also holds here, i.e. we may compute the volume of an
arbitrary codimension one bulk region Q lying in the constant time slice of the
BTZ black hole via

vol(Q) 1 1 2
= Ao = — dxdo\ 0)0:L(0). 5.117
4G3 5 /}CBTZ W’CBTZ Q 16 G3 /]CBTZ X Q(X? ) o ( ) ( )

Here Ag(x, o) is the length of the chord lying inside of Q of the geodesic associated
with (y,0).

20For larger  the RT surface undergoes a phase transition (see Section .
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Holographic Subregion Complexity for BTZ Black Holes

Just as for the conical defect (see Section , we may apply the expression for
the geodesic distance between two bulk points (5.5) to derive a double integral
expression over Kpgry for the HSRC,

Aoy 1 1 A2 2 p(
C(Oa,b0) = 392 /’CBTZ dxdo /AA(XJ) dx’ danxa)(x 0 )0(0)05.(a") .

(5.118)
Here, we denote the considered entangling interval with endpoints ¢ = 64—a, and
o= 0,4+ G4 as (éA, @4). Moreover, A4(x, o) is the region in Kpry corresponding
to the bulk geodesics which intersect the chord of the geodesic associated with
(x,0) lying in B4. The bulk region B, is — as usual — the codimension one re-
gion enclosed by the boundary interval (é 4, @4) and the corresponding RT surface.
Since geodesics (x’, ') of higher winding may intersect the chord of (x, o) more
than once, we need to weight them with their number of intersections n&’o) (', ).
The integrals in ([5.118]) obviously not only consider the bulk geodesics which
are RT surfaces but all geodesics in the constant time slice of the BTZ geome-
try. Consequently, an interpretation of solely in terms of entanglement
entropies is not possible.

We now introduce a reformulation of similar to for the conical
defect in order to provide a first step towards a field theory interpretation of .
I contributed this reformulation to [2], where I discussed it with less details than
here. For this reformulation we need to analyze the contribution of the different
sectors (I, IIy, III;) of kinematic space to (5.118). Without loss of generality,
we consider the boundary interval (éA, é4) to be located on the r.h.s. of the two
sided BTZ black hole (see Figure [5.20). Since the bulk region B, therefore lies on
the r.h.s. as well, it is easy to see that the geodesics lying completely on the L.h.s.
(sectors I111) do not contribute to HSRC. So only the sectors I and II. need to
be considered. The geodesics in sector I+ have both their endpoints attached to
the conformal boundary on the r.h.s. of the BTZ black hole. Therefore, in analogy
to (5.99), we can reformulate the integral of a function f over I, as an integral
over the space of all entangling intervals,

/ dxdo f(x,o (926_/ de/ daan§d82 (&) . (5.119)
I+UI_

Here f,(f,&) and £, (&) are the functions f and ¢ evaluated at the point in I,
corresponding to the geodesic with endpoints ¢ = 6+ & and winding number n
(see paragraph of ) We note that these geodesics are considered with two
different orientations — as usual. This guarantees that we may interpret
as an integral over all entangling intervals. We may now apply the reformulation

(5.119) to subregion complexity ((5.118)), which leads to

C(04,a4) = /déd@ <FE’TZ(0A,OQ)+G3TZ(§, @)) +thermal contributions . (5.120)
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As for the conical defect (5.100), the function F3# refers to all contributions to
the double integral only containing entanglement entropies. The function
GBTZ contains all contributions from geodesics in I that are no RT surfaces. The
remaining thermal contributions in refer to contributions involving the
sectors II.. The geodesics corresponding to these sectors cannot be associated with
entangling intervals on the conformal boundary of one side of the black hole, since
they have one endpoint on each side of the black hole. So by only considering one
side of the black hole, they run between the conformal boundary and the horizon.
Since contributions like this may only occur in geometries with an horizon, we refer
to them as thermal. We see that subregion complexity for BTZ black holes not only
consists of entanglement entropies (F51%) but also has thermal contributions as
well as contributions from non-minimal geodesics connecting two boundary points
(GB™%). The latter are proposed to correspond to inner correlations of the dual
CF'T state called entwinement, as mentioned at the beginning of this section.
Regarding the contribution of entanglement entropies to subregion complexity,
i.e. F¥T we note that only the RT surfaces for entangling intervals with opening
angle
R L e2mn/L 4 q
& < 5-log <T> (5.121)
are contained in Kgtz. The reason for that is the fact that the RT surface under-
goes a phase transition for larger & and is no longer just a geodesic attached to
the considered boundary interval but also includes the horizon of the black hole
(see Section [3.1.7). However, there are still terms included in F™ which may be
associated with the entanglement entropy of large entangling intervals, as we now

show. The length of a geodesic corresponding to a RT surface for large & is given

by G19),

0(&) = 277, + 2L log <2LfCFT sinh (4 (7 — &) /L)) , (5.122)
h€

where {opr is the radius of the circle the CFT is defined on and € is a UV cut-off ]
The first term in is the circumference of the horizon, while the second
gives the length /,,;, of the minimal geodesic connecting the two endpoints of the
interval (é, &). The length of this minimal geodesic is present in the integral over
sector I_ contributing to subregion complexity . To be more precise, £,,in
appears in the integral in form of its second derivative with respect to the opening
angle. The circumference of the horizon appearing in (5.122)) is independent of the
opening angle and thus the second derivatives of /(&) and /,,;, are identical. This
allows us to interpret the contributions of ¢,,;, to subregion complexity as con-
tributions of the RT surfaces of large entangling intervals. Consequently, we find
that the entanglement entropy of boundary intervals of any size is present in F$1%.

Since FE'% GBT% as well as the thermal contributions in (5.120)) essentially
encode integrals of positive functions over certain regions in gtz (see (5.118))), we
find that they are all non-negative. Consequently, we find subregion complexity

21'We have defined the cut-off € in such a way that {cpr is present in (5.122)) in order to get in
touch with the entanglement entropy (3.49) of the CFT state dual to the BTZ geometry.
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to be always greater than the integral over F¥TZ,
/ dida FB(0,a) < C(0a, ). (5.123)

Since F}' is an expression only depending on entanglement entropies, we may
therefore interpret (5.123)) as a lower bound for subregion complexity only contain-
ing entanglement entropies.

5.5 Interpretation of Holographic Subregion
Complexity as Complexity for Reduced States

Given our results for HSRC for vacuum states, conical defects and BTZ black holes
(5.53), (5.100)), (5.120)), we may now study the implications of these results for the
complexity of CFT states. In the following we assume that the volume enclosed
by an entangling region and the corresponding RT surface is indeed a measure for
the complexity of the corresponding reduced CF'T state. We examine our formulae
for HSRC obtained from kinematic space in that context. By doing so I made the
following observations.

HSRC Takes Correlations Between Subsystems Into Account. We
find that in our formulae (5.53)), (5.100)), (5.120)) for HSRC the correlations be-
tween subsystems play an important role. To see this we first consider the pure
states dual to AdSs or the conical defect on the whole constant time slice. In
(6-53), we see that our formulae for HSRC are bounded from below by an
integral over entanglement entropies. The entanglement entropy of every possi-
ble entangling interval contributes to this integral. Entanglement entropy for pure
states captures the correlations between an entangling interval and its complement
(see Section . Therefore, the integral over entanglement entropies, appearing
in our expressions for complexity ((5.53)), and bounding them from below,
seems to summarize the correlations between all entangling intervals and their
complements for the considered state. The appearance of such an integral term
measuring correlations as a lower bound for complexity in field theory is consistent
with our discussion of complexity for g-bits in Section [3.2.1] In this discussion we
state that the gates required to map the reference state to the target state [i;)
necessarily need to build up the correlations between the subsystems present in
|¢). Therefore, these correlations should contribute to complexity.

When we combine the fact that the HSRC of global AdS3 only contains
contributions involving entanglement entropies and the interpretation of these con-
tributions as lower bound for complexity we conclude: the CFT vacuum satisfies
a minimality condition regarding complexity. This is easy to see since the HSRC
of global AdSs saturates the corresponding lower bound.

For reduced states — including states dual to BTZ black holes — on an entan-
gling interval A we make analogous observations. We note that for these states
entanglement entropy not only captures correlations between subsystems but also
takes into account that the states are mixed (see Section [3.1.1)). However, corre-
lations still contribute to entanglement entropy and consequently play a role for
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HRSC as well. We note that for reduced states the integral over entanglement
entropies in , and not only contain entanglement entropies
corresponding to subintervals of A but also entanglement entropies corresponding
to intervals that only partially lie in A, as depicted in Figure [5.10] Despite these
additional contributions, there are contributions of all subintervals of A present in
the integral under consideration. It is easy to see these contributions, which again
may be interpreted in terms of correlations between subintervals of A and their
complements, provide a positive lower bound for complexity.

Further evidence for the importance of correlations for HSRC may be obtained
from the interpretation of the volume form of kinematic space in terms of con-
ditional mutual information (see Section [5.1.2). In Section we argued that
conditional mutual information captures certain correlations between subsystems.
However, the argument leading to this conclusion was based on classical consider-
ations. Therefore a more careful analysis is required in order to make the relation
between correlations and HSRC more concrete.

HSRC Takes Correlations with the Complement of the Considered
Entangling Interval Into Account. In the previous paragraph we noted that
in our formulae , and for the complexity of a reduced state
on an entangling interval A, there are contributions of entanglement entropies
corresponding to intervals that partially lie in A and partially in its complement.
This fact gives strong evidence that a concept of complexity for reduced CF'T
states based on HSRC takes into account that the considered state is part of a
larger system. To be more precise, a reduced state is not just interpreted as a
generic mixed state which needs to be generated from a reference state. The fact
that this mixed state is obtained by reducing a state from a larger system to A
plays a role for complexity.

In particular, this result shows that the concept of complexity for mixed states
introduced in [179] and discussed in Section cannot be straightforwardly ap-
plied to reduced states in order to construct a CFT dual of HSRC. This is due to
the fact that this concept does not consider the subtlety that a given mixed state
might be a reduced state.

The Reference State has the Properties of a Product State. In Section
we used the product state [¢,.) = [00---0) (3.53) as reference state for g-bits.
This state does not carry any correlations between its subsystems. Our results for
HSRC are in agreement with a CFT reference state that has the same property,
i.e. no interval [u,v] is entangled with its complement [u,v]® in the reference
state. This may be seen as follows. In the previous paragraphs we argued that
our formulae for complexity (5.53]), (5.100)), (5.120) for the states we considered
always contain an integral term over entanglement entropies that functions as
a lower bound for complexity. Moreover, it is easy to see that any state with
a classical, static space-time as gravitational dual has such an integral term as
lower bound for HSRC.H This is an immediate consequence of the construction

22For the sake of this paragraph we assume that the volume formula (5.12) holds for these
geometries, even though we have only proven it for global AdSs and the Poincaré patch (see
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of kinematic space and the RT formula . We take this observation as a
motivation for the hypothesis that the complexity of any state is bounded from
below by such an integral over entanglement entropies. Given this assumption we
expect that in the reference state no interval is entangled with its complement:
when we consider a state on the whole constant time slice, we find the integral
discussed above to include the entanglement entropies of all possible intervals on
the constant time slice. The complexity of the reference state is per definicionem
zero. Therefore, the integral including entanglement entropies has to be zero, since
it is a lower bound for complexity. This condition is satisfied if the entanglement
entropy of any entangling interval is zero. A state for which the entanglement
entropy vanishes for each entangling interval by construction has no correlations
between any interval and its complement. States with this property may be seen
as the CFT analogue of the factorizing reference state [¢,) = [00---0) (3.53)
introduced for g-bits in Section [3.2.1

Given our discussion of entanglement in QFTs in Section [I.1] this is an intrigu-
ing result, as we stated that states in QFTs are usually entangled. So the reference
state is expected to be a very exotic state of the CF'T. We consider the vanishing
of all entanglement entropies for the reference state to be a large N effect. For
finite N corrections to HSRC may allow the reference state have non-vanishing
entanglement entropies. Nevertheless, our observations allow us to conclude that
the entanglement entropies of the reference state are suppressed in the large N
limit. So we see that the reference state is weakly entangled compared to more
common states in the CF'T, such as the vacuum.

HSRC Encodes More than Just Spatial Correlations. In our formu-
lae and for the complexity of conical defect and BTZ black hole
geometries we see that not only entanglement entropy for entangling intervals is
considered. There are also additional contributions associated with entwinement,
which correspond to contributions of non-minimal geodesics to the volume enclosed
by an entangling region and the corresponding RT surface. As stated in the intro-
duction of Section [5.4] entwinement is proposed to be related to the entanglement
of inner degrees of freedom which are not spatially organized. The presence of
these additional contributions is in agreement with the statement that correlation
play an important role for complexity (see Section . In the previous para-
graphs we argued that correlations between spatial regions contribute to HSRC.
In an analogous way we may argue that the contribution of entwinement to HSRC
indicates that correlations between inner degrees of freedom are also present in
complexity.

Moreover, we note that for the BTZ black hole also thermal contributions are
present in HSRC . We see them as a consequence of the fact that the dual
CF'T state is mixed. However, a clear interpretation of these contributions is yet
to be found. A careful analysis of them might provide a strategy for constructing
a formulation of complexity for mixed states which may be compared with the
formulations presented in Section [3.2]

Section .
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5.6 Discussion

The subject of this chapter was the results regarding a field theory expression
for HSRC my collaborators and I presented in [1] and [2]. We constructed an
expression for the HSRC of states dual to global AdS3; and the Poincaré patch only
containing entanglement entropies (see Section . Since entanglement entropies
are CFT quantities, this expression may be seen as a field theory formulation for
HSRC.

We obtained this result by making use of the concept of kinematic space, which
we reviewed in Section[5.1} The kinematic space K for asymptotic AdS; is the space
of all boundary anchored geodesics on a constant time slice. For the considered
vacuum states the one-to-one correspondence between such geodesics in the bulk
and entangling intervals on the boundary allows to interpret K in the field theory
perspective as the space of all entangling intervals (see Section . The fact
that IC has a very intuitive interpretation both from the bulk and the boundary
point of view makes it a very powerful tool for systematically constructing CFT
duals for given bulk quantities (see e.g. [95,1206]).

In Section [5.2| we presented and proved the volume formula, which provides a
way for computing volumes on the constant time slice in the bulk as an integral
over lengths of geodesics. The RT formula allowed us to interpret these
lengths appearing in the volume formula as entanglement entropies. We used this
procedure to express the bulk volume vol(B,4) associated with HSRC in terms of
entanglement entropies in Section [5.3.1 Consequently, we obtained a formula for
HSRC (5.53|) which only depends on entanglement entropies. We see this formula
as the field theory dual of HSRC for vacuum states. In particular, we developed a
strategy for constructing this formula directly from the field theory side in Section
5.3.2 This procedure only requires the geometry imposed on kinematic
space, which can be motivated directly from the CFT side without any reference

to the bulk.

Furthermore, we generalized our field theory expression for HSRC of vacuum
states to excited states dual to conical defects and BTZ black holes in Section [5.4]
For these geometries the geodesic attached to two points on the conformal bound-
ary is not unique. Consequently, the CFT interpretation of kinematic space as the
space of all entangling intervals is no longer possible. Therefore, the field theory
interpretation of our formulae and for the HSRC of excited states is
more involved than for the vacuum states corresponding to global AdS; and the
Poincaré patch. Similar to the HSRC of vacuum states , the corresponding
expressions for excited states , contain terms that can be associated
with entanglement entropy. However, they also include contributions for which
this association is not possible. These contributions originate from the presence
of additional (non-minimal) geodesics connecting two boundary points. Moreover,
our expression for the HSRC of states dual to BTZ black holes also contains
terms originating from bulk geodesics running from the conformal boundary to the
black hole horizon. These geodesics have only one endpoint attached to the bound-
ary and therefore cannot be associated with entangling intervals. The additional
contributions from non-minimal geodesics appearing in our HSRC formulae for ex-
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cited states may be associated with a quantity called entwinement [146] which is
seen as the field theory dual of the lengths of non-minimal geodesics (see beginning

of Section .

As a first step towards a field theory interpretation of our formulae ,
for HSRC of excited states, we rearranged the terms appearing in them
in such a way that and may be written as integrals in the space
of entangling intervals (5.100), (5.120). This procedure allowed us to separate
the contributions of entanglement entropies from the additional contributions that
cannot be associated with entanglement entropies. For the conical defect the
resulting expression for HSRC consists of an integral only containing entanglement
entropies and an integral containing contributions from entwinement.

For BTZ black holes we came to a similar conclusion but in addition found
contributions that cannot be written as an integral over the space of entangling
intervals. These contributions originate from the presence of geodesics in the bulk
running from the boundary to the horizon. Due to their relation to the horizon
we refer to them as thermal contributions.

HSRC is conjectured to be a measure for the complexity of subregions on the
CFT side (see Section . Whether this conjecture is true is subject of current
research. Since a satisfactory definition for subregion complexity has not yet been
formulated, this conjecture is difficult to test. The results we presented in this
chapter provide some valuable insights that may help to establish a field theory
interpretation for HSRC. We saw that in all the considered cases (global AdSs,
Poincaré patch, conical defects and BTZ black holes) HSRC contains terms deter-
mined solely by entanglement entropies , and . For excited
states further terms are present , . The terms completely determined
by entanglement entropy work as a lower bound for HSRC which is saturated for
vacuum states, i.e. global AdSs and the Poincaré patch. In Section [5.5] we studied
the above observations under the assumption that HSRC is indeed a reasonable
measure for subregion complexity on the CFT side. We concluded that in this case,
the reference state may be understood as a field theory analogue of a product state.
Moreover, we found that HSRC seems to take correlations between the considered
subsystem and its complement into account. This led us to the conclusion that
HSRC may not be interpreted as the type of complexity for mixed states discussed
in [179] (see Section[3.2.1]), since the corresponding correlations are not considered
there.

Even though the role of HSRC on the field theory side is still under debate, our
observations show that the correlations present in the state under consideration
play a crucial role for HSRC (see Section . Following our introduction to com-
plexity in Section [3.2] this is a property that is also associated with complexity.
However, to come to a rigorous field theory interpretation of HSRC further inves-
tigations are required. For instance, a generalization of our expressions for HSRC
towards states with non-static gravity dual is required in order to see whether our
interpretation of HSRC in terms of entanglement entropies and entwinement also
holds for these situations. Moreover, the presence of entwinement in our expres-
sion suggest that this quantity and its role on the field theory side should also
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be further examined. Furthermore, we restricted our study of HSRC to (2 4 1)-
dimensional bulk geometries. It is an open question whether our results also apply
for higher dimensional cases.



Chapter 6

Modular Hamiltonians on
Entanglement Plateaux

In [3] T examined the inner structure of modular Hamiltonians by using the
relative entropy . Here we review the corresponding results. We consider a
one-parameter family of states p¥ on a region 3. The parameter A may correspond
to the energy density or the temperature of the system, for instance. For this one-
parameter family we study the A-dependence of

A (Ko) (A, \) = tTA(PfKo(A)) - tFA(PfOKo(A)) ) (6.1)

where A is a subregion of ¥ and K((A) is the modular Hamiltonian of a reduced
reference state pfo. In particular, we focus on the situation where A and B =
Y\A form an entanglement plateal] that is stable under variations of the size
of A. My result for this setup provides a relation between the \-dependence of
A (Kp) (A, \) and the second derivative w.r.t. A of the entanglement entropies
S(A,\) and S(B,\) corresponding to py and p?. respectively. In simple terms,
my result states that if both A (Kp) (A, ) and A (Kp) (B, \) are linear in A — A
for a given A and variations of it, then 935 (A, \) and 935 (B, \) are constant under
variations of the size of A. We present the exact statement of this result in Section
0.0.11

This observation for the behavior of A (Kj) (A, \) and A (Kjy) (B, \) may be
derived from the monotonicity of the relative entropy. The relative entropy
is known to be a valuable quantity for the study of modular Hamiltonians and
has been used to obtain many non-trivial results for these (see Section [3.3.3). My
result offers a further application of the relative entropy to modular Hamiltonians
providing deeper insight into their dependence on the parameter A. It employs
a non-trivial relation between the A-dependence of modular Hamiltonians and
entanglement entropies for one-parameter families of states. We note that the first
law of entanglement [115], which we discuss in Section , provides such a relation
as well. However, the first law of entanglement focuses on the linear term in the
series expansion of A (Kj) (A, \) in terms of A\ — )¢, whereas my result is subject
to higher order contributions in A — Aq.

!The term entanglement plateau is explained and discussed in Section in detail. For the
sake of this introduction we state that A and B form an entanglement plateau if they saturate

the Araki-Lieb inequality (3.10)).
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In AdS/CFT entangling regions forming an entanglement plateau are very com-
mon. This allows to apply my result to several setups in AdS/CFT. However, we
need to stress that it is not only valid for holographic setups but holds in any
quantum system.

Moreover, my result is of particular interest in the context of [200], where a
topological condition was presented under which the modular Hamiltonian may be
written as a local integral over the energy momentum tensor in two-dimensional
CFTs (see Section . By choosing the parameter A to be the energy density,
my result offers a strategy for deciding when such an integral expression is not
possible.

This chapter has the following structure. In Section [6.1| we review the concept
of entanglement plateaux. This allows us to present the overall setup for my result
in Section [6.2l We proof the result in Section [6.3]and apply it to several examples
in Section [6.4] including states dual to black strings, black branes and BTZ black
holes. We conclude with a discussion and final remarks in Section [6.5]

6.1 Entanglement Plateaux

As already mentioned at the beginning of this chapter my result is about the
modular Hamiltonians for entangling regions forming entanglement plateaux. In
this section we introduce the concept of entanglement plateaux and discuss some
of their properties we require for my result.

6.1.1 Definition of Entanglement Plateaux

The term “entanglement plateau” was introduced in [114] and refers to a pair of
entangling regions A, B for which

S(X) =15(4) - S(B)| (6.2)
holds. Here X is the union of A and B, i.e.
Y =AB, (6.3)

and S(A) is the entanglement entropy corresponding to the reduced state p of the
region A. S(B) and S(X) are defined in an analogous way. The defining equation
may be seen as the extremal case where the Araki-Lieb inequality is
saturated P

There are many examples for entanglement plateaux. The most prominent is
the situation of a pure state p* on . In this case we find

S(A) = 8(B) and S(X)=0, (6.4)

2We note that holographic situations where the Araki-Lieb inequality is saturated were also
discussed in [157].
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Bulk

Figure 6.1: A typical example for an entanglement plateau in AdS/CFT. We
consider two entangling regions A (red) and B (blue) on a constant time slice of
the CF'T on the conformal boundary of the bulk geometry. Here B is taken to be
completely surrounded by A. Moreover, we assume the RT surfaces 75 and vg of
> = AB and B not to intersect. In this situation we find that the union of 75, and
~vp is homologous to A. If B is sufficiently small, we expect v U ~vg to be the RT
surface of A.

so (6.2)) trivially holds. Another entanglement plateau that is easily constructed
is a state p* of the form

pm=pt@p”, (6.5)

where p? is assumed to be pure, i.e. S(B) = 0. Due to the additivity of the
entanglement entropy for product states (3.14]), we find

S(X)=S(A)+S(B)=S(A) =|S(A) — S(B)| (6.6)

for this setup, i.e. (6.2).

6.1.2 Holographic Examples for Entanglement Plateaux

In AdS/CFT entanglement plateaux are very common due to the Ryu-Takayanagi
(RT) formula as we now explain. The RT formula — which we discuss
in Section — states that in the AdS/CFT correspondence the entanglement
entropy of a region X is given by the area of the minimal surface 5 in the bulk
homologous to > — the RT surface. We restrict our discussion to static space-times,
where the RT surface lies in the same constant time slice as the entangling region
A at the conformal boundary. If we choose B C ¥ in such a way that it has no
boundary points in common with ¥ and v N~z = () holds, we find that the surface
s U vp is homologous to A = ¥\ B, as depicted in Figure . This may be seen
as follows: by construction v U B and ~s U X enclose bulk regions Rp and Ry,
respectively. Since s, and g do not intersect we conclude that Ry \Rp is a region
that is enclosed by v U~vp and ¥X\B = A, i.e. 75 U g is homologous to A.

So we see that s U yp is a very natural candidate for the RT surface v4. If
~vs U yp turns out to be the RT surface of A it is easy to see that

S(A) = S(E)+S(B) & S(X)=S(A) - S(B) (6.7)
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Figure 6.2: An entanglement plateau in black string geometry. The graphic shows
a constant time slice of the black string geometry . The CFT, state dual to
this geometry is thermal and defined on the real axis. An entangling region A that
is the union of two sufficiently close intervals A! and A? forms an entanglement
plateau with the interval B between A! and A?, since v4 = vxUvp, where 3 = AB.

holds, i.e. A and B form an entanglement plateau. We need to emphasize that
there is no guarantee for v Uy = y4 to hold since there are explicit counterex-
amples, such as two intervals on the Poincaré patch that are sufficiently far apart
from each other (see Section . However, for a sufficiently small B we expect
it to be true, since in the limit of vanishing B 74 should asymptote to s [157]

(see Figure [6.1)).

We now present explicit holographic examples for entanglement plateaux.

Two Intervals in Black String Geometry

We consider a thermal state on the real axis in AdS;/CFTy dual to the geometry
of a black string

12 2 .2 2
dstg = ;( - B T dﬁ) , (6.8)

22 22 — 22
where 0 < z < z, and z,¢t € R. | The conformal boundary of this geometry
is located at z = 0 and the horizon of the black string corresponds to z = zj.
The entangling region A is defined to be the union of two intervals A' and AZ2.
Moreover, B is given by the interval between A! and A2, i.e. we choose B in such
a way that ¥ = AB is an interval. We present this setup in Figure [6.2]

If A' and A? are sufficiently close, i.e. if B is sufficiently small, the RT surface
74 is given by s U~yp as depicted in Figure[6.2] This may be seen in an analogous
way as for the corresponding setup for the Poincaré patch geometry presented in
Section Following the discussion above (6.7)), we conclude that A and B
form an entanglement plateau

3This geometry is a planar AdSs black hole. It may be seen as the 3-dimensional analogue of
the metric (2.139) obtained from black D3-branes (see e.g. [219]).
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Yh =V

Figure 6.3: An entanglement plateau for a thermal state dual to a BT Z black
hole. We depict a constant time slice of the BTZ black hole (6.9)). This geometry
is dual to a thermal CFT, state on a circle. If we choose the entangling region
A to be sufficiently large the corresponding RT surface is given by v4 = v, U 75,
where 7y, is the horizon of the black hole and B = A°. This choice of B implies
that ¥ = AB is the whole circle. Therefore, v, = 75 holds and consequently A
and B form an entanglement plateau.

One Interval in the BTZ Black Hole Geometry

The BTZ black hole is an asymptotic AdS; geometry that resembles the gravity
dual of a thermal CFT; state on a circle (see Section [2.5.2). The corresponding

metric is given by ([2.148))

7 -7
5 hde—|—~2 —
L T — T

2

dshry = — di* + 2d¢? | (6.9)
where t € R, 0 < 7, < 7 and ¢ ~ ¢ + 2m. The black hole horizon is located at
7 = 7, and the conformal boundary corresponds to 7 — oo. If we choose A to
be an interval in ¢ that is sufficiently large, the RT surface v, is the union of e
and the horizon v, (see Section [3.1.7)), as we depict in Figure The length of
the curve ; circumventing the horizon corresponds to the thermal entropy of the
state. Thus, if we choose B = A€, i.e. if we set ¥ to be the whole circle the CFT
is defined on, we find 7, = 75 and in particular . Therefore we see that A
and B form an entanglement plateau [

6.1.3 One-Parameter Families of Entanglement Plateaux

We now introduce a continuous parameter ¢ to the entangling regions A and B
forming an entanglement plateau, i.e.

A— A,, B— B,. (6.10)

This parameter is essential for the formulation of my result for modular Hamilto-
nians presented in Section [6.3] It allows us to continuously vary the size of A,

4The BTZ black hole is the original example for an entanglement plateau that was discussed
in [114].
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Figure 6.4: One-parameter families of entangling regions. We consider two one-
parameter families of entangling regions A, and B,. The dependence of these
regions on the parameter o is chosen in such a way that ¥ = A, B, is constant in
o and A,, C A,, for oy < 0y. These two properties imply B,, C B,,.

and B, in a systematic way. The parameter dependency of A, and B, is chosen
in such a way that the following properties hold,

A,, CA, for o1 <oy (6.11)
Y = const. forall o, (6.12)

i.e. o varies the size of A, while keeping > = A,B, fixed. In particular, this
implies

B, C B,, for o1 <os. (6.13)
We depict this setup in Figure Moreover, we assume A, and B, to form an
entanglement plateau for all o. This is a restriction to the amount A, is allowed to
vary. To see this, we consider A = [—a, —o]U|o, a] to be the union of two intervals
for a CFT state with the Poincaré patch as holographic dual (see Section . If
o is too small, the RT surface v4, undergoes a phase transition which causes the
defining property for entanglement plateaux to no longer hold in this setup
. So we see that in general the variation of A, has to be sufficiently small.

The defining equation (6.2 for entanglement plateaux implies
S(S) = £(S(As) — S(B,)) (6.14)

where the + is chosen if S(A,) — S(B,) > 0 and the — if S(A,) — S(B,) < 0. We
now show that the sign of S(A4,) — S(B,) does not change in o, i.e. the sign on
the r.h.s. of is the same for all . This plays an important role for proving
my result for modular Hamiltonians (see Section[6.3.2). First we consider the case
S(X) = 0. Here the o-independence of the sign is obvious. Second we discuss the
situation S(X) > 0. If there were values o and o_ for o such that

S(As,) —S(B,.) >0 and S(A,_)—S(B,_)<0 (6.15)
hold, we would find a value oy between o, and ¢_ with
S(Ayy) —S(By,) =0, (6.16)

due to the continuity of . However, this contradicts (6.14)) since S(X) is assumed
to be strictly positive. Therefore, either o, or o_ cannot exist. This completes
the proof that the sign of S(A,) — S(B,) is constant in o.
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6.2 Setup and Motivation

In order to discuss my result for modular Hamiltonians in Section [6.3] we now
introduce the setup necessary for formulating it as well as a motivation. In [3] I
was considering the object

A (Ko) (A, A) = tra(ps Ko(A)) — tra(py, Ko(4)) (6.17)

for a family of states p, that depend on a parameter A. Here Ky(A) is the modular
Hamiltonian of the reference state p), reduced to an entangling region A, i.e.

e~ Ko(4)

A _ A
Pro = trr (e oY where  py, = trac(py,) - (6.18)
As can be seen in (3.82) A (Kj) (A, \) plays a crucial role for the relative entropy
of the reduced states p3' and py ,

Sret(A,N) = A (Ko) (A, N) — AS(A,N), (6.19)
where AS(A, ) is given by
S(A,N) — S(A, o) (6.20)

and S(A, \) denotes the entanglement entropy of p5. In AdS/CFT a systematic
approach is known for determining AS since the entanglement entropies it con-
sist of are given by the RT formula ([3.32)). However, for A (Kj) there is no such
procedure. Thus, when computing the relative entropy of two states, calculating
A (Kj) is the most challenging part. There are only a view cases where A (Kj)
known explicitlyﬁ The importance of A (Kj) for S,.; as well as the fact that very
little is known about it motivated me to study A (Kj) in [3].

Even though there are many things about A (Kj) that are yet to be understood,
the first order contribution in A = X — A ﬁ is known to be I\AS(A, A)|axzag\ [115],
Le.

A (Kp) (A, N) = OAS(A, M) rea X + O(N?), (6.21)

or equivalently
MWA (Ko) (A, M) azrg = OAS(A, N |azn, - (6.22)

The relation ((6.22)) is referred to as the first law of entanglement. It is a simple
consequence of the non-negativity of the relative entropy (13.87)), as we now show.|Z|
From (6.19) it is easy to see that S, (A, Ag) = 0 holds. Since S, is always
non-negative we conclude that S,. has a minimum at A = Ag. Consequently, we
find
O\Sret(A, A)xzr, = Oa (A (Ko) (A, \) — AS(A, )\))|,\:)\O =0 (6.23)

°For instance, in the cases where Ky is known (see e.g. , ) may be
determined as well.

6Since A (Ko) (A, \g) = 0, it is reasonable to treat A (K;) as a function of A rather than \.

"The following argument is taken from [115].
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and therefore (|6.22]).

So we see that if A (K)) is linear in )\, its explicit form is completely determined
by entanglement entropy. We present an explicit example for such a situation in
(6.35). However, in general A (Kj) cannot be expected to be linear in .

In 3] T was examining how A (K;) (A, ) depends on \ for entangling regions
that form an entanglement plateau. To be more precise, I investigated when we
can be sure that A (Ky) (A, \) or A (K) (B, \) is not linear in A if A and B form
an entanglement plateau that is stable under variations of the size of A and B for
all states p).

6.3 Non-Linearities of One-Parameter Families
of Modular Hamiltonians

We now formulate the exact statement of the result for one-parameter families of
states on entanglement plateaux I published in |3]. Moreover, we present a proof
for it in this section.

6.3.1 A Result for Modular Hamiltonians on Entanglement
Plateaux

My result considers two entangling regions A and B that form an entanglement
plateau for a family of states py. The plateau is considered to be stable under
variations of the size of A and B that keep AB fixed, i.e. if the sizes of A and B are
varied in this way, the resulting regions are assumed to still form an entanglement
plateau for all p,. For this setup I was able to show that the only way how both
A (Ko) (A, \) and A (Kp) (B, \) may be linear in A is if 03S(A,\) and 93S(B, \)
are constant under the considered variations of A and B [3].

This result can be used to check whether an entangling region A is expected
to lead to higher order contributions of X in A (K;) (A, \): If we can find an en-
tangling region B in such a way that A and B form an entanglement plateau
stable under small variations of the size of A and B that keep AB invariant, it
suffices to examine 93S(A, \) and 92S(B, ). If one of them is not constant under
variations of the respective entangling region, we can conclude that A (Kj) (A, \),
A (Ky) (B, \) or both are non-linear in A\. We demonstrate this method on several
examples in Section Furthermore, we emphasize that this result is true for
any quantum system, i.e. it is not restricted to holographic situations.

We conclude this section with presenting the explicit statement of my result in
the form we prove it in Section [6.3.2]
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Let p) be a one-parameter family of states and A, and B, two families
of entangling regions depending on a continuous parameter . We assume
A,, C A, for o1 < 09 and ¥ = A, B, to be constant in . Moreover, A,
and B, are considered to form entanglement plateaux for all o and all states

P, 1.€.
S(S,) = [S(A,, \) — S(B,, \)| Vo, \. (6.24)

Also, S(As, A), S(Bs, A) and S(X, \) are taken to be differentiable in A for
all o and the reference parameter )\, is assumed to be no boundary point of
the domain of \.

If there is an interval [§, 7] such that A (Kj) (Ay, ) and A (Ky) (B,, A) are
linear in A = X\ — )\ for all o € [£, 7], then both 835(A,, \) and 93S(B,, \)
are constant in o on [£,n] for all .

6.3.2 Proof of the Result for Modular Hamiltonians

The proof of the result presented in Section [6.3.1] is based on properties of the
relative entropy S, . This quantity is known to be a very powerful tool for
studying modular Hamiltonians (see Section . For instance, the derivation
of the first law of entanglement presented in Section is an application
of the non-negativity of S,.. For my result we require the monotonicity of S,

(3.88),
Srel(A> S Srel<Al)7 (625)

where A and A’ are two entangling regions with A C A’

Proof for Black Strings

Before we present the proof for generic entanglement plateaux in Section |6.3.2
we first consider a special case to demonstrate the basic idea and to make the
statement of the result (see Section |6.3.1)) more accessible.

For the one-parameter family of states p) we take thermal CFT, states on the
real axis that are dual to the geometry of black strings . The parameter A\ is
chosen to be the energy density (see e.g. [115,1219]),

L e

A= 167Gy~ 6 (6.26)
Here ¢ = 3L/2G5 is the central charge of the CFT and S is the inverse
temperature of the state py. In Section [6.1.2] we pointed out that an entangling
region A = A'A? that is the union of two sufficiently close disjoint intervals forms
an entanglement plateau with the interval B lying between A! and A?. We use this
setup to construct one-parameter families A, and B, of entanglement plateaux:
consider two real numbers a; < 0 < as as well as a parameter o satisfying a; < —o
and o < as. We now define

Al =[ay,—0], A2=|[0,as), A,=ALA%2 and B, =|-0,0], (6.27)
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Figure 6.5: A family entangling regions forming entanglement plateaux. We con-
sider an entangling interval B, = [—o,0] and the union A, of two entangling
intervals AL = [a1, —o] and A2 = [0, ay] for states dual to black strings (6.8)). The
union of ¥ = A, B, is constant in . If ¢ is sufficiently small, A, and B, form an
entanglement plateau, i.e. the RT surface of 74, is the union of vz, and ,, which

implies (6.2)).

where the range of o is restricted in such a way that A, and B, form an entangle-
ment plateau for all A that we consider. We depict this setup in Figure[6.5] Note
that the maximal distance, i.e. the maximal value of o, Al and A2 are allowed
to have so that A, and B, form an entanglement plateau depends on A\. To be
more precise, if we choose ¢ too large for a given A, the RT surface 7,4, undergoes
a phase transition and A, and B, no longer form an entanglement plateauf| The
critical value of o where the phase transition occurs depends on A. So the devi-
ation of A from a given reference value \y and the range of allowed o has to be
chosen in such a way that 7,4, does not undergo the phase transition for all A\ and
o,ie. A, and B, have to form an entanglement plateau for all A and o.

In this setup we now demonstrate how the monotonicity of the relative entropy
(6.25) may be used to show that A (Kg) (A,, ) is not linear in X for all o except
possibly one. We argue that under the assumption that A (Ky) (A,, ) is linear for
more than one particular value of o the monotonicity of S,.; would be violated.

So we now assume A (K;) (A,,A) to be linear in A and compute Sye(Aqy, ).
For S,e(As, A) we need to determine A (Ky) (A,, A) and AS(A,, \) . Since
A, and B, form an entanglement plateau, the latter is given by

AS(Ay,A) = AS(S,A) + AS(B,, \) = AS(S, ) + glog (£ ZEEEZ: Z ; gz)) |

(6.28)
where ¥ = A, B, = [a1,as] and Sy = [(N\g) is the inverse temperature (6.26]) of
the reference state. In the second equality we used [824/161]

S(By, ) = glog (% sinh (27?70>> ) (6.29)

8This phase transition is analogous to the situation for the Poincaré patch discussed in Section

EL%




6.3. NON-LINEARITIES OF MODULAR HAMILTONIANS 159

b=3
b=2
b=1

10 q

Figure 6.6: Plot of D, (Bs, ) for a = 2mo /By € [0,10] and b = 5y/8 =
0,1,...,7. The global multiplicative factor ¢/3 is set to 1. We see that for fixed b
D, grows monotonically with a. Consequently, D,.; grows monotonically with o
for fixed § and fy. For b =1 we find D,..; = 0. This is an immediate consequence
of the fact that b = 1 corresponds to A = \g .

where € is a UV cut-off. .
Since we assume A (Kp) (A, A) to be linear in A we may determine it via the
first law of entanglement ((6.22)), i.e.

A (Ko) (Ay, \) = AS'(Ay, Ao) A, (6.30)

where the ’ refers to a derivative w.r.t. A, i.e. 0 \S(Ay, A)|a=n,- Combining this

result with (6.28]) we obtain
Sret(Ag, ) = AS (S, M)A — AS(Z, ) 4+ Dyet( By, ), (6.31)
where

Dre(By, A) =AS'(B,, o)A — AS(B,, A)
sinh(a) )) | (6.32)

25(1(1 — *)(1 — acoth(a)) + log (bsmh(b a)

3\2

with a = 27a /By and b = By /5.

From (6.31)) we see that S, (A,, A) depends on o only via D,q(By,A). In
Figure we show that D, (By, A) grows monotonically with a for fixed b and
consequently D, (By, A) grows with o for fixed A and Ag.

If we now assume that there are two values &, 7 of o, where we w.l.o.g. assume
¢ < n, for which A (Kj) (Ag, A) is linear in X, we conclude

Srel<A§a )\) < Srel(Am )\) . (633)

However, this is a contradiction to the monotonicity of S,.; (6.25) since A, C Ae.
Thus we conclude that there is at most one value for o such that A (Kj) (4,, A) is
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linear in .

We see that in the example presented above the monotonicity of the relative
entropy allows us to argue that A (Ky) (A,, \) cannot be linear in A except for
possibly one particular o. This conclusion relies heavily on the fact that an explicit
expression for S(B,, A) is known. This allowed us to compute D,..(B,, A) (6.32))
and conclude that the monotonicity of S, would be violated if A (Ky) (Ay, \) were
linear in \ for more than one value of o. If we want to expand the discussion of this
section to generic entanglement plateaux we do not have an explicit expression for
Dyei(Bs, A). We now demonstrate how to conclude that there is a conflict between
the linearity of A (Ky) (Ay, A) and the monotonicity of S,.; without knowing the
explicit form of D,.;(B,, ). The corresponding argument is based on the fact that
D,ei(By, ) is the relative entropy Sy (Bs, A) as we now show.

The modular Hamiltonian of the reduced reference state py’ on B, is given
by [220,221]

- 2oy 22
/ . 5ocosh( 5 ) — cosh()

KO(BO') - . pp
o smh(zﬁ—o)

TOQ(I) N (634)

where T, is the energy momentum tensor of the CEFT. The expectation value of
Too is the energy density, i.e. the parameter A (6.26]). Thus we find

A (Ko) (By, ) = fo (20 coth (2;—") - @)A — AS'(By, Ao)A. (6.35)

0 e

The second equality is an implication of the first law of entanglement (6.22)) but
can also be derived directly using (6.29). So by considering ((6.32)) we find

Dyei(Byy, N) = Srei(Bo, A) . (6.36)
This observation allows us to rewrite (6.31)) as
Sret(Ag, ) = AS' (S, M)A — AS(Z,A) 4 Sre(By, ). (6.37)

Here we see now that the monotonicity of S, is in conflict with the linearity
of A(Kp) (As, A): If Sper(Bs, A) grows with o as it should since B,, C B,, for
o1 < 02, Spei(Ay, A) does the same. But since A,, C A,, this contradicts the
monotonicity of S,.;.

Proof for Generic Entanglement Plateaux

We now present the proof of my result as formulated in Section [6.3.1] In the fol-
lowing we assume that both A (Kg) (4,,\) and A (Kg) (B,, \) are linear in \ for
o € [£,n] and show that, given the prerequisites from Section , 93S(A,, A\) and
935(B,, \) are constant on [¢,n]. This result is a consequence of the monotonicity
of Srel-

From ([6.24)) it is easy to see that
S(As,A) = S(Bs, ) £S5(2,N) (6.38)
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holds, where for S(A,, \) > S(B,, A\) we have + and — otherwise. In Section
we show that this sign is independent of o, i.e. only A determines whether + or —
appears in (6.38)). By assuming w.l.o.g. S(A,, A\o) > S(B,, \g) we find

AS'(Ay, M) = AS'(By, Ao) + AS'(2, o) (6.39)

where the ' corresponds to a derivative w.r.t. A, as we now show. We need to
distinguish the situations S(X, Ag) > 0 and S(3, \g) = 0. First consider S(X, \g) >
0. This inequality also holds in a small neighborhood of Ag. Thus ([6.38]) reduces
to

S(As, \) = S(Bs, ) + S(X, N, (6.40)

for A sufficiently close to A\g. This implies .

In the second case, S(X, A\g) = 0, the non-negativity of the entanglement en-
tropy implies that S(X, A) is minimal for A = A¢. By assumption S(3, ) is differ-
entiable in A and Aq is not a boundary point of the domain of A. So we conclude
S’(%, Xo) = 0 which implies via (/6.24))

0= 5'(%2) = 5IS(Ap, ) = S(By, NI = o/ (S(As, ) — S(B,, V)’

A=o A=Xo
= (54 )= 5 V) G s
(6.41)
and therefore (6.39),
AS'(Ay, No) = AS'(By, Ao) = AS'(By, M) + AS'(E, Ao) (6.42)

where in the second equality we applied AS'(X, \g) = 0.
The relation ((6.39)) allows us to express Sye;(A,, A) in terms of ﬁrel(Bg, A): since

both A (Ky) (A,, A) and A (Ky) (B,, A) are considered linear in A, (6.39)) together
with the first law of entanglement (6.22)) gives

A (Ko) (Ay, \) = <AS’(BJ, o) + AS'(D, /\0))5\ = A (Ko) (Byy A) + AS'(Z, M)A

By applying to AS(A,, \) we conclude 04
Sret(Ag, ) = AS (S, X)X F AS(S, ) + Spet(By, A) . (6.44)
The monotonicity of the relative entropy implies
Sret(Be, A) < Spea(By, A) (6.45)
and
Sret(Aes A) > Spea(Ay, N, (6.46)

since A,, C A¢ and By C B,,. However, (6.44) together with (6.45) also implies

Sret(Ag, A) < Sra(Ay, A) (6.47)
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and consequently we find
Sret(Ag, A) = Sra(Ay, ). (6.48)

The monotonicity of S, then allows us to conclude that S, (A,, A) is constant in
o for all o € [£,n]. Since the only o-dependent term in (6.44) is Sye(Bo, A), this
implies that S,¢(B,, A) is constant in o on [£,n] as well.

So we see that the monotonicity of the relative entropy leads us to the conclu-
sion that both
Sret(Agy A) = A (Kp) (A, A) — AS(Ag, ) (6.49)

and
Sret(Bou A) = A (Ko) (By, A) — AS(B,. \) (6.50)

are constant in o on [¢,7] if A (Ky) (Ay, A) and A (Ky) (B,, \) are linear in .
By taking two derivatives w.r.t. A and considering once more the linearity of

A (Kp) (Ay, A) and A (Ky) (By, M), we find that
— 03S,e(As, A) = 055(A,,\) and  — 03S,q(Bs, A) = 055(B,, \)  (6.51)

are constant in o on [{,n]. This completes the proof of my result as stated in
Section [6.3.11

6.3.3 Discussion of the Proof for Generic Entanglement
Plateaux

We now comment on various aspects of the result of Section including its
prerequisites and possible generalizations.

Continuity of o

The continuity of the parameter o controlling the size of the entangling regions
A, and B, is required in order to guarantee that the sign in only depends
on A but not on ¢. The argument leading to the o-independence of the sign is
presented in Section [6.1.3] We may formulate a version of my result that also
applies to discrete ¢ when we assume the sign of to be constant in o from
the start. The proof of this version can be formulated in an analogously to the
one presented Section [6.3.2]

A Stronger Statement

We note that in the proof presented in Section [6.3.2| we show the validity of a state-
ment that is stronger than the one presented in Section [6.3.1] as an intermediate
step. In the paragraph above (6.49) we conclude that given the prerequisites for
my result the relative entropies Sy (Ay, A) and S, (Bs, A) are constant in o on
(€,n] if A(Ko) (Ay, A) and A (Ky) (B,, \) are linear in \. Taking two derivatives
of Spe1(As, A) and Syei(By, ) w.r.t. A then leads to the conclusion that 93S(A,, \)
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and 93S5(B,, \) are constant in o on [£,7]. So we see that the fact that 935 is con-
stant in o for A, and B, is a consequence of the stronger result that the respective
relative entropies are constant in o.

In Section we present the weaker version with 935 for practical reasons.
We aim at applying my result for deciding when A (Kj) contains higher order
contributions in A. Determining the relative entropy is in general more complicated
than determining the entanglement entropy. In particular for holographic setups,
where the relative entropy is given via the RT formula, this is evident. So, a result
that only requires the examination of entanglement entropies is easier to apply
than one where relative entropies need to be computed.

Reverse Direction

The statement of the result presented in Section is that a necessary condition
for both A (K;) (Ay, A) and A (Kg) (B,, A) to be linear in A for all o € [€, 7] is that
93S(A,, \) and 93S(B,, ) are constant in o on [¢,n]. We now demonstrate at an
example that the reverse direction of this statement does not hold, i.e. 93S(A,, )
and 935 (B,, \) being constant in ¢ is necessary but not sufficient for the linearity
of A <K0> (AU, )\) and A <K0> (BJ, )\)

Consider the CFTy of a free massless bosonic field ® on a circle with radius
lcpr. We define the following one-parameter family |\) of states with conformal
dimension (A, 0),

A) = eV2P0) | (6.52)

where [0) is the vacuum state] This setup was discussed in [66]. The entangling
regions A, and B, are chosen to be an interval of angular size 2(m — o) and its
compliment — which is of angular size 20 — respectively. This choice of entangling
regions implies that ¥ = A,B, is the whole circle the CFT is defined on and
therefore invariant under changes of . Moreover, we note that A, and B, form
an entanglement plateau for all o and A as the states |\) are pure. The reference
state may correspond to any value \g > 0 of \.

According to [66] the entanglement entropies S(A,, A\) and S(B,,\) are inde-
pendent of A\. Thus we find

03S(Ay, N) = 03S(Bs, \) =0 (6.53)

to be constant in o on any interval ¢, n]. However, A (Ko) (Ay, A) and A (Ky) (B, A)
are not linear in A: as discussed in [66], the relative entropies of A, and B, are
given by
2
Svet(Ay, A) = (1 + (7 — o) cot(a)) (\/m - \/mo) , (6.54)

Sva(Bo. X) = (1= o cot(0) (VA - \/ﬁ)Q | (6.55)

9Note that we assume in this section that the parameter X\ is continuous. This is neces-
sary in order to discuss this example in view of the result presented in Section [6.3.1] since the
differentiability of the entanglent entropies implicitly assumes A to be a continuous parameter.
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Since S(A,, A) and S(B,, \) are constant in A we find
AS(Ay, A) = AS(B,,\) =0 (6.56)

and therefore conclude, by considering (6.19)),

A (Ko} (A0, ) = (1+ (7 — o) cot(0)) (VIR — V2N (6.57)
A (KoY (By, A) = (1 — o cot(0)) (m - \/ﬁ)Q. (6.58)

Evidently, the A (K;) of A, and B, are not linear in A for any . So we see that
the example we just discussed provides 935(A,, ) and 93S(B,, \) constant in o
but no A (Kp) linear in A. Therefore we conclude that 93S(A,, A) and 92S(B,, \)
being constant in o is not sufficient for A (Ky) (A,, A) and A (Ky) (B,, A) to be
linear in .

Choice of the Reference State

In Section [6.3.1| we state that the parameter value A = )y of the reference state
is not allowed to be a boundary point of the domain of A. In other words, g is
assumed to be in the interior of the domain of \. We use this property in the
following two ways.

First when considering the special case S(X, \g) = 0 below (6.40). We conclude
S’(%, Ao) = 0 to hold since S(X, \) is minimal for A = A¢. However, the vanishing
of the first derivative at the minimum requires it to lie in the interior of the domain.

Second when using the first law of entanglement to express A (Kj) in
terms of entanglement entropies . The first law of entanglement is a conse-
quence of the minimality of S,..; at the reference parameter as we argue in Section
[6.2l Since S, is minimal at Ay the derivative of S, w.r.t. A vanishes at \g which
implies the first law of entanglement. Just as for S(X,\), the vanishing of the
derivative may only be concluded if )\ is in the interior of the domain of \.

If A\g is a boundary point, we have no guarantee for the first law of entangle-
ment to hold, as we now show at an explicit example. We consider the setup of
excited states |\) for the CFT; of a free boson on the circle discussed above in the
paragraph about the reverse direction of my result. From it is easy to see
that A > 0 holds. If we choose \g = 0 as reference parameter value we find via
(16.54])

Srei(Agy A) =2(1 + (7 — ) cot(o))A. (6.59)

We see that 0)S,e1(As, A)|r=», 18 not zero. Therefore, the first law of entanglement
does not apply here.

As a final remark regarding this example we note that even though the first law
of entanglement does not hold here, the system behaves just as we would expect

considering the result of Section[6.3.1} both A (Kj) (As, A) and A (Ko) (B, A) are
linear in \ (see and for Ay = 0) and 93S(A,,\) = 93S(B,,\) = 0
are constant in 0. However, the prerequisites for my result are not satisfied here
since )\g is a boundary point and therefore we cannot apply it. In particular, from
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(6.59) we see that S, (As, A) is not constant in o. Thus, the stronger version of
my result we discuss above does not hold here.

Generalization to Multi-Parameter Families of States

The result of Section is formulated for a family of states p, that only depends
on one-parameter A. It can be generalized to a n-parameter family of states pj,
where A = (A},...,\"), in a straightforward way. The result for an n-parameter
family of states may be formulated as follows.

If both A (Kj) (As, A) and A (Ky) (B,, A) are linear in A — A for all o € [¢, 7],

then 9 9 9 5
i S An ) and oo

are constant in o on [£,n]. Here Ay corresponds to the reference state.

S(B,,A) (6.60)

The proof of this statement is analogous to the proof presented in Section [6.3.2
for the case of a one-parameter family of states. The n-parameter version of the
first law of entanglement required for the proof is

0 0
WA (Ko) (Ag, A)|a=n, = WAS(Am A)fa=n, »
) ) (6.61)

A <K0> (Bm A)‘A=A0 = AS(Boa A)|A:Ao .

ONi O\

6.4 Applications

We now demonstrate on a series of examples how the result presented in Section
can be applied to show that A (Ky) (A,, A) for given one-parameter families
of states p) and entangling regions A, is not linear in A = XA — ). The strategy we
pursue goes as follows: for a given A, we construct a family of entangling regions
B, such that ¥ = A, B, does not change with ¢ and A, forms an entanglement
plateau with B, for all ¢ and \. If 835(A,, \) or 93S(B,, \) are not constant in
o on any interval, my result (see Section implies that there are only single
values of o where both A (K;) (A, \) and A (K;) (B,, \) are linear in X, i.e. there
is no interval [¢, 7] such that the A (K;) are linear in X for all o € [€, 7).

As can be seen from the above discussion, my result does in general not al-
low us to decide whether A (Kjy) (A, A), A (Kp) (Bs, A) or both are non-linear in
X. However, in many cases we are able to make the stronger observation that
A (K) (Ay, A) is non-linear in X for all o with possibly one exception. We come
to this conclusion by studying

D,e(By, A) = AS'(By, M)A — AS(B,, \), (6.62)

as we did in Section for the black string geometry. By assuming that
A (Kp) (Ay, A) is linear in A we can use the same arguments as presented in the
proof of my result in Section to obtain

Spar(Ag, N) = AS (2, M)A F AS(E,A) + Dyt(By, ), (6.63)
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instead of . H If Dyey(By, A) grows strictly monotonically with o we can
use the same arguments as for the black string geometry (see paragraph of )
to conclude that there is at most one value of ¢ where A (Kjy) (A,, A) is linear
in \. Otherwise the monotonicity of S, would be violated. Note that in
(6.63]) we implicitly assume S(A,, A\g) > S(Bs, Ao), as we do in Section m The
examples we present below all have this property. For S(A,, A\g) < S(B,, A\o) a
relation similar to (6.63) can be derived in an analogous way.

6.4.1 Multiple Intervals in Black String Geometries

My result may be used to study A (Kjy) (A, A) for thermal CFTy states with
the black string geometry as holographic dual. We first confirm the results
presented in Section[6.3.2]for the case where A, is the union of two disjoint intervals
and then generalize it to generic configurations of entangling intervals. Moreover,
we study the corresponding results in the context of [200] (see Section for a
review.)

Non-Linearity of A (Kj)

We apply the strategy presented at the beginning of this section to confirm the
results for the black string geometry obtained in Section m The corre-
sponding setup is shown in Figure [6.5} we consider A, to be the union of the two
intervals [a1, —o] and [0, as], where o is chosen sufficiently small so that the RT
surface 4, has the form depicted in Figure for all considered energy densities
A. To show that A (Kg) (A,, \) is in general not linear in A we define B, = [—0, o).
By construction A, and B, form an entanglement plateau and ¥ = A, B, = [a4, as]
is constant in . Since 935(B,,A) is not constant in o (see (6.29)) we find that
there are only single values of o where A (Kj) is linear in A for both A, and B,.
Furthermore, A (Ky) (By, \) (6.35) is known to be linear in X for all & which brings
us to the conclusion that A (Kg) (A, \) is linear in A only for single values of o.
By studying D, (B,,A) (6.62) we can narrow the number of these points down
to one: as pointed out in Section [6.3.2] Dy« (B,, A) is given by and grows
strictly monotonically with ¢. Thus, considering the discussion at the beginning
of this section we conclude that A (Kj) (A, \) is non-linear in X for all o with pos-
sibly one exception. We can identify this exception with the asymptotic situation
o =0, i.e. when B, vanishes and A, becomes a single interval, for which A (Kj)
is known to be linear in .

The above analysis for A, being the union of two intervals can be straightfor-
wardly generalized to a setup where A, is the union of an arbitrary number of
intervals. For this we require two neighboring intervals Al A% belonging to A, to
be sufficiently close so that the RT surface 74, is of the form depicted in Figure
6.7 We then can choose B, to be the interval between Al and A2 and define

the o dependence of A, in such a way that it varies the size of B, while keeping

107f A (Ky) (By, A) is considered to be linear in A we find Dy.¢;(By, A) = Syei(Bgy, A) due to the
first law of entanglement. This assumption led to (6.44)).
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Figure 6.7: An entangling region consisting of multiple intervals. We consider
a family of entangling regions A, consisting of intervals for states dual to black
string geometries (6.8)). If we choose two neighboring intervals A%, A% belonging
to A, to be sufficiently close, the RT surface v,4, includes the RT surface vp,
corresponding to the interval B, between Al and A2. In this setup A, and B,
form an entanglement plateau. When the parameter o is defined to vary the size
of B, we may apply my result presented in Section to this configuration.

¥ = A, B, fixed. As discussed above, 935S (B,, \) is not constant in ¢ and further-
more D, (Bs, A) grows strictly monotonically with o. Consequently, we conclude
that there is at most one value of o where A (Kj) (A,, A) is linear in A.

Observation Regarding Integral Expressions for K

The above result, stating that A (K;) (Ay, A) is not linear in X for the considered
interval configurations A,, provides further insight related to the results of [200].
Here the authors introduced a criterion for two-dimensional CFTs under which
the modular Hamiltonian can be written as a local integral over the energy mo-
mentum tensor. We review this criterion in Section [3.3.1] In particular, in [200]
the corresponding result was used to derive the expression for the modular
Hamiltonian of one entangling interval. However, for an arbitrary number of in-
tervals the result of |200] cannot be applied as its prerequisites are not satisfied.
Considering our review in Section this is easy to see. The fact that [200]
cannot be used for an arbitrary set of intervals may be taken as a hint that it is
not possible to write Ky(A,) as a local integral over the energy momentum tensor
in this case. However, it is certainly no formal proof for that. My result may be
used to construct such a proof, as we now show['"| To be more precise, we present
an argument which implies that Ky(A,) is not of the form

Ko(A,) = /A dh(z)Too (2), (6.64)

"' Note that in this proof we restrict ourselves to the situation where the thermal CFT, state
on the real axis has the black string geometry as holographic dual. The result of [200]
however, is not just valid in AdS/CFT but applies to any CFTs.
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for the configurations A, of entangling intervals considered above — except for
possibly one particular value of o. H Here h is a local scaling function and 7},
is the energy momentum tensor. For this purpose we assume that Ky(A,) is of
the form . Since we consider the parameter A to be the energy density, we
conclude that A (K;) (Ag, A) is linear in X in this case,

A (K (A, 2) = & / dwh(z). (6.65)

Ao

However, as pointed out above, A (Kq) (A,, A) is not linear in A except for possibly
one particular value of o. Thus, Ky(A,) cannot be of the form (6.64)) for any but
possibly one particular value of o.

6.4.2 Annuli in Black Brane Geometries

The discussion of two intervals for states dual to black string geometries can be
generalized to states dual to black branes, i.e. the (d+ 1)-dimensional analogue of

black strings, [7]

— e, M%ﬂﬁ) (6.66)
24 24— 2d =1 '

2 d
dshp = L_2< -
z
Just as for black strings, the radial coordinate z runs from z = 0, where the
conformal boundary is located, to z,, which is the position of the black brane
horizon. Moreover, t € R and & € R%! with the corresponding Euclidean met-
ric d#%_,. These geometries are the duals of thermal states on d-dimensional

Minkowski space.
We use the energy density (see e.g. [219])

d—1
= % : (6.67)
167 GdJr]_ Zn
to parametrize these states and choose A, to be an annulus of inner radius o and
outer radius R. The parameter o is assumed to be sufficiently small so that for all
A we consider, the RT surface 7,4, is the union of the RT surface of the inner ball
with radius ¢ and the outer ball with radius R. E We depict this setup in Figure
6.8l The reference state is taken to be the vacuum, i.e. Ay = 0.
We can show that A (K;) (A,, \) is in general not linear in A in the following
way. We choose B, to be the ball of radius o circumvented by A, (see Figure
. By construction A, and B, form an entanglement plateau and > = A, B, is

12We emphasize that the observation that the modular Hamiltonian for multiple intervals is
not given by a local integral is not a new result (see e.g. [74}76] for related work). The purpose
of the discussion we present here is only to demonstrate how my result for modular Hamiltonians
may be applied to show this.

13The black brane geometry we present here is a planar AdSy,; black hole. It may be seen as
a generalization of the geometry for d = 4 derived from black D3-branes (see e.g. [219]).

14This setup was also studied in [115].
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Black Brane

Figure 6.8: A family of annulus-shaped entangling regions A, for states dual to
black brane geometries . We depict a constant time slice of a black brane
geometry. The black brane horizon is located at z = z;(\). The conformal bound-
ary — on which the dual CFT is defined — sits at z = 0. We consider the entangling
region A, to be an annulus of outer radius R and inner radius o. If we choose
o to be sufficiently small, the RT surface v4_ is the union of v5, and 7y, where
> = A,B, and B, is the ball of radius ¢ surrounded by A,.

invariant under changes of 0. The entanglement entropy S(B,, A) is given by the
area of the RT surface [115],

d—1 o d—2 2.,d
S(B(j,)\):L—Q‘i_?/ dp P \/14_% (6.68)
0

4G (o)™

where the function z(p) minimizes the integral on the r.h.s. of (6.68). We are
not aware of the existence of an analytic, integral free expression for S(B,, A) for
generic d. However, the following expansion in a o) for AS(B,,\) is presented

in (113

AS(B,,\) =

d—1 d 3 2_2d\2
QZ_GQL (2do;a A @YED(d - D)a%e*) + Offary®).
d+1 (@ —1) 24+4(d + 1)F(d + %)

(6.69)
where a = 167G g1 L'~ /d and Q4_o = 27@V/2/T((d —1)/2) is the volume of the
unit (d — 2)-sphere[™]

Since BAS = 935, we deduce from that 93S(By, ) is not constant in
0. Moreover, A (Kj) (B, A) is known to be linear in A for all o |115],

27TQd_2
d>—1

15Tn [196] it was pointed out that there appears to be a typo in equation (3.55) of [115]: The
term L' /¢4=1 needs to be replaced by its inverse.

A (Ky) (B, \) = o). (6.70)
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So we conclude, in an analogous way as for the black string geometries, that
A (Ko (Ag, A) is linear in X only for single values of . [\ Moreover, just as in the
black string case, we are able to show that there is only one such value of . Since
A (Ky) (By, A) is linear in X we conclude Dyet(Byy, N) = Spe(By, A) from the first
law of entanglement . By inserting and into it is easy to
see that S,¢(By, A) is not constant in ¢ on any interval. The monotonicity of the
relative entropy then implies that S,..(B,, A) — or equivalently D, (B, \)
— grows strictly monotonically with ¢. The discussion at the beginning of this
section then allows us to conclude that A (K;) (A,, ) is non-linear in X for all o
except possibly one. As in the case of the black strings we find this special value
of o to be 0, i.e. the situation when B, vanishes and A, becomes a ball of radius

R, for which A (Kj) is known to be linear in A (6.70).

6.4.3 Large Intervals on BTZ Geometries

A further application of the strategy presented at the beginning of this section are
sufficiently large entangling intervals for thermal states dual to BTZ black holes
. As parametrization for these states we use the square of their temperature

A=T2, (6.71)

which is proportional to the mass M of the black hole (2.149) (2.151)),
252
LM = %ﬁ, (6.72)
and related to the horizon via (2.151))

= 2nLloprV . (6.73)

Here ¢ = 3L/2G3 is the central charge and {¢pr the radius of the circle the
CFT is defined on. The reference state corresponds to an arbitrary value \g of the
parameter X\. We define A, to be an entangling interval of angular size 2(m — o).
As pointed out in Section [6.1.2] if A, is sufficiently large, i.e. if o is sufficiently
small, the RT surface 4, is the union of the RT surface of A¢ and the horizon,
leading to (|3.49))

S(Ay,\) = §27T2\/X£CFT + - sinh (QWECFT\/_J)> (6.74)

tog <ﬂfe

where € is a UV cut—off.ﬂ The first term corresponds to the horizon and gives the
thermal entropy of the state. The second term gives the entanglement entropy of

16This conclusion is based on my result as presented in Section By applying it we
implicitly assume that the first law of entanglent holds for A, and B,. Since the reference
state corresponds to a boundary value of the parameter A, i.e. A\g = 0, we have no guarantee for
that, as already pointed out in [115] and Section In order to proof the first law we would
need to consider negative values for A — which is unphysical. In this section we assume the first
law to hold for A,. For B, it can be explicitly verified from and .

1"Note that in we consider an entangling interval of angular size 20, while in this section
A, has the angular size 2(7 — o).
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A¢. We depict this setup in Figure [6.3] By setting B, = A¢ we find that A, and
B, form an entanglement plateau.

In this setup neither A (Kp) (A, A) nor A (Kjy) (B,, A) are known. However,
it is still possible to apply my result presented in Section to conclude that
there are only singular values of o where both A (Kjy) (A,, A) and A (Ky) (B, )
are linear in )\, since 03S(A,, \) is not constant in o on any interval. This is easy
to verify from . Moreover, we find

Dyt(By, \) = g(%u — B)(1 — dcoth(a)) + log (b%)) , (6.75)

where @ = 2mlcprv/ Ao and b= /A /Ao We have used the fact that the second
term in (6.74) is S(B,, A) in order to derive (6.75). We see that the structure of
Dyei(Bg, A) is identical to the one of the corresponding quantity for a single
interval in the black string geometry. In an analogous way as for the black string
setup we conclude that D,..;(B,, \) grows strictly monotonically with o. Therefore
— following the arguments made at the beginning of this section — we conclude that
there is at most one value for o where A (Kg) (A,, \) is linear in \.

6.4.4 Families of Pure States: Primary Excitations in CFTs

Consider an arbitrary family of pure states |\) and an arbitrary family of entangling
regions A, with A,, C A,, for o1 < 0y. In this setup

S(A,, \) = S(AS,\) (6.76)

and S(A,A%, \) = 0 hold. Therefore we find that A, and B, = AS form an entan-
glement plateau for which ¥ = A, B, is independent of . My result presented in
Section allows us to conclude that if 93S(A,, \) is not constant in o on any

interval, there are only isolated values of o where A (Kj) is linear in A for both
A, and B,.

As an explicit example we discuss the following family of pure statesm We
consider a two-dimensional CFT with large central charge ¢ defined on a circle
with radius ¢cpr and choose |\) to be a spinless primary excitation with conformal
dimension

cA c)\) | (6.77)

(7 1) = (24’ 24
where we have introduced the factor ¢/24 to simplify the formulae in this paragraph.
The parameter A is assumed to be smaller than one, A < 1 and the corresponding
state |\) is considered to correspond to a heavy operator, i.e. Ay = hy+hy = O(c).
Moreover, the spectrum of light operators, i.e. operators with A = h+ h < ¢, is
taken to be sparse.

The reference value )¢ can be chosen arbitrarily. The entangling region A, is
defined to be an interval with angular size 2(m — o) > 7 and B, is chosen to be

18This family of pure states was studied in [222].
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the complementary interval of size 20 < m. Consequently, ¥ is the whole circle.
The entanglement entropy of B, is given by [222]

S(B,,\) = glog (% sin (VI — A 0)> — S(A,,N), (6.78)

where € is a UV cut-off. The second equality follows from the fact that |\) is
pureH Evidently, 835(B,, \) is not constant in o on any interval and therefore
we conclude that there are only single values of o where both A (Kj) (A,, A) and
A (Ko) (B,, \) are linear in \.
The quantity D, (B,, \) is given by
Dyat(Bo, \) = g(%u ~5?)(1 — acot(a)) + log (13 sin(d) )) , (6.79)

sin(b @)

where a = /1 — A9 0 and b= V1 —=X/v/1T—=Xg. Analogous to the case of black
strings discussed in Section we find that D,.(B,, \) grows strictly monoton-
ically with o and therefore conclude that there is at most one value for o where
A (Ko) (A, A) is linear in \.

6.4.5 Ground States for CFTs on a Circle

As a comment to my result presented in Section [6.3.1] we discuss it for conformal
field theories defined on a circle with radius ¢cpr. We present a situation where
both A (Ky) (As, ) and A (Ky) (B,, \) are linear in A. So one might be tempted
to use my result to conclude that 93S(A,,A) and 93S5(A,,\) are constant in o.
However, the prerequisites of my result turn out not to be satisfied and thus this
conclusion cannot be made.

We consider the same setup as in Section [6.4.4f A, is an interval with an-
gular size 2(m — o) and B, its complement. The family of primary states |\) is
parametrized by the conformal dimension (6.77). However, unlike as in Section
[6.4.4] we do not impose any restrictions regarding the spectrum or the central
charge. Moreover, the size of the interval A, may be chosen arbitrarily. The
reference state is set to be the vacuum, i.e. \g = 0.

For this setup both A (Ky) (A, A) and A (Ky) (B,, A) are known to be linear
in \ as we now show. The modular Hamiltonian Ko([—¢,¢]) for an interval [—¢, <]
of angular size 2¢ has the form [64}/115]

¢ cos(¢) — cos(s)
L )

Kol[—s.<]) = 2762 / T (6.80)

in any CFT defined on a circle. By applying the CFT resul@

A

(A Too [A) = (0] Too [0) = -—5—,
247T€%FT

(6.81)

9Note that the expression for the entanglement entropy presented in is not invariant
under 0 — 7 — o as the purity of |\) seems to suggest. This is a consequence of the fact that
in the derivation of 20 < 7 was explicitly used [222].

20This formula has been adopted from [195].



6.5. DISCUSSION 173

to we find
A (Ko) (Ag, \) = g(1 + (1 — o) cot(o—))x (6.82)
and c .
A (Ko) (B, A) = ¢ (1 - acot(0)>)\ (6.83)

to be linear in \.

Applying my result from Section to this setup requires caution since the
reference parameter value \g = 0 is a boundary point of the domain of A\, but
my result requires A\g to be in the interior of the domain. As explained in Section
this property serves two purposes in the proof of my result: It ensures
for S(X, Ao) = 0 and the validity of the first law of entanglement. In this specific
setup may be verified directlyﬂ so this part of the proof also works here.
However, it is not possible for the first law of entanglement to hold for both A,
and B,. This is easily concluded from the fact that |\) is a family of pure states:
from S(A,, \) = S(B,,\) we conclude

NAS(Ay, Naerg = OAS(By, N aes, - (6.84)

If the first law of entanglement would hold for A, and B, we would conclude from

622 and (539
VA (K0) (Ags N aerg = A (Ko) (Boy \aer, - (6.85)

However, this is obviously not true as can be seen from (6.82)) and (6.83)). Therefore
we see that the first law of entanglement does not hold at least for one of the regions
A, and B,. Consequently my result cannot be applied to this setup.

6.5 Discussion

In this chapter, which is based on [3]|, we presented a result I derived for the
behavior of A (Kj) on entanglement plateaux (see Section [6.1)). We considered a
one-parameter family of states p, reduced to two entangling regions A, B which
form an entanglement plateau. This entanglement plateau was assumed to be
stable under variations of the size of A for fixed ¥ = AB. In order to present a
precise mathematical formulation for my result, we introduced a parameter o for
the entangling regions A and B, i.e. A — A,, B — B,. This parameter allowed
us to manipulate the size of the entangling regions in a systematic way. We chose
the parameter dependence of A, in such a way that A,, C A,, for o; < g5 holds.
This implies B,, C B,,, since X = A, B, is considered to be constant in o. In
this setup we studied how A (Ko) (A,, A) and A (Kg) (B,, \) (see (6.1))) depend on
A=)\— Ao, where )\ corresponds to a reference state p),.

My result (see Section[6.3.1]) states that A (Ko) (As, A) and A (Ko) (B,, A) can
only both be linear in A for all ¢ in a given interval [¢,7)], if 03S(A,,\) and

211t is an immediate consequence of S(A,, ) = S(By, A) and S(X,\) =0 for all A and o.
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93S(B,, \) are constant in o on [£,n]. The proof of this statement was presented
in Section [6.3.2] first for the special case of thermal states dual to black string
geometries and subsequently for generic entanglement plateaux. The proof is a
simple application of the first law of entanglement and the monotonicity of
the relative entropy S,¢ .

Since A (Kj) plays a major role in the relative entropy , my result pro-
vides valuable insight to the behavior of S,. on entanglement plateaux. In par-
ticular, it implies that it is in general to be expected that either S, (A, ),
Sve1(By, M) or both contain higher order contributions of X from A (Kj) (Ag, \)
or A (Kp) (B,, ), respectively. In situations where these contributions are not
present, the first law of entanglement implies that A (Kjy) and therefore S,
are completely determined by entanglement entropies. My result shows that
on entanglement plateaux stable under variations of o such a simple form of S,
cannot be expected at least for one of the two regions A,, B,.

In AdS/CFT entanglement plateaux are a very common phenomenon due to
the RT formula (see Section . Therefore, AdS/CFT provides us with
many examples where my result from Section may be applied. We studied
several of them in Section [6.4] For instance, we considered A, to be the union of
two sufficiently close intervals for thermal states dual to black strings in Section
6.4.1, By defining A to be the energy density of the states, we concluded that
A (K) (As, A) is not linear in A for all o with possibly one exception. We later
generalized this result to an arbitrary number of entangling intervals.

Furthermore, we also considered thermal states dual to black branes (see Sec-
tion . Here we showed a result analogous to the one for black strings for
annuli A, with sufficiently small inner radius o. Here the reference state was
taken to be the ground state.

As a final holographic example we studied thermal CFTy states on a circle
which are dual to BTZ black holes in Section [6.4.3] The entangling region A,
was taken to be an entangling interval with sufficiently large angular size. The
parameter A\ was chosen to be the square of the temperature. By choosing B, to
be the complement of A, we managed to show that A (K) (Ay, \) is linear in A
for at most one particular value of o.

We need to emphasize that in the holographic examples studied in Section
[6.4] the appearing entanglement plateaux are a large N effect. We used the RT
formula to establish that the Araki-Lieb inequality is saturated in the
corresponding setups. This implies by definition that the considered entangling
regions form entanglement plateaux. However, the RT formula only applies in
the large N limit. For finite N bulk quantum effects lead to corrections of the
RT formula which cause the Araki-Lieb inequality to be no longer saturated [172].
Thus, my result only shows that the corresponding A (K;) are non-linear in A for
the considered holographic examples in the large N limit. We expect however, by
continuity, that the non-linearity is also true for finite N.

We stress that even though the examples presented above all are based on
AdS/CFT, my result of Section applies to any quantum system, not just
AdS/CFT. In Section we also apply my result to primary excitations for a
two-dimensional CFT. In this setup we do not require a holographic dual.
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One intriguing observation that is provided by my result of Section [6.3.1]is the
fact that the non-linearity of A (K;) in \ found in the examples in Section h has
the same origin for all of them. All these examples consider states on entanglement
plateaux. This property allowed us to apply my result and show the non-linearity
of the respective A (Ky). We emphasize that it is remarkable that even though
all the considered examples are very different form each other and very little is
known about the respective modular Hamiltonians, it is still possible to deduce
the non-linearity of A (Kj) for all of them from the same principle.

Furthermore, we demonstrated how my result of Section [6.3.1] may be used to
show that the modular Hamiltonian for certain configurations A, of entangling
intervals is not a local integral over the energy momentum tensor, when the con-
sidered states are dual to black strings (see Section . This relates my result
to [200], where a topological condition was presented under which the modular
Hamiltonian of a suitable reduced CFT, state is such a local integral (see Section
3.3.1)).

As we discussed in Section [3.3.3] the relative entropy is a powerful tool for
studying modular Hamiltonians that provided many non-trivial results for them.
My result is a further such application of S,.;. It establishes a relation between
higher order terms of A (Kj) in A and entanglement entropies. Possible future
projects could focus on making this relation more concrete. My result as stated in
Section only considers the existence of higher order contributions in A It is
worth investigating whether entanglement entropies may be used to determine the
explicit expression of these higher order terms. This could be seen as an extension
of the first law of entanglement, which associates the first order term in A of
A (Kp) with entanglement entropy. Studying these aspects of A (Kj) suggested by
my result may provide a better understanding of modular Hamiltonians in general
quantum field theories.
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Chapter 7

Conclusion

In this thesis we studied the quantum information aspects of complexity and modu-
lar Hamitonians in the context of AdS/CFT. As we discussed in the introduction,
quantum information in quantum field theories is currently a subject of extensive
research, in particular in the AdS/CFT community. The reason for this is the
close relation between quantum information on the CFT side and geometry on
the AdS side (see e.g. [87-89]). On the one hand, this relation makes the bulk ge-
ometry a valuable tool for explicit computations regarding quantum information
(see e.g. [82]), on the other hand, it provides an elegant way for constructing quan-
tum information quantities via bulk objects. The main focus of this thesis was
one such quantity: complexity. Even though a rigorous definition for complexity
in field theories is not known, there are several geometric constructions in the
bulk which are proposed to be the holographic dual of complexity [56/:59,63]. In
Chapter [4] we discussed such a proposal, which my collaborators and I presented
in [1], topological complexity. Moreover, we derived a field theory expression for
holographic subregion complexity [63] in Chapter 5| which was published in [1}2]
by my collaborators and me.

Furthermore, we analyzed the behavior of modular Hamiltonians for one-parame-
ter families of states on regions which form entanglement plateaux [114] in Chapter
6l The corresponding results were published in [3]. Even though these results are
not restricted to field theories with holographic duals, AdS/CFT provides many
examples where they can be applied.

7.1 Summary and Discussion

In preparation of the presentation and discussion of our findings, we reviewed the
AdS/CFT correspondence in Chapter 2| and the aspects of quantum information
relevant for this thesis in Chapter [3

Chapter 4| was devoted to the concept of topological complexity my collabora-
tors and I introduced in [1]. For a given entangling region A on a constant time
slice of the CFT, topological complexity is given by the integral over the
Ricci scalar over the bulk region B4 enclosed by A and the respective RT surface.
We focused on AdS3/CFT, for our examination of topological complexity. The
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Gauss-Bonnet theorem allowed us in Section [4.1] to derive very general expressions
for topological complexity, which we applied to examples involving global AdSs,
BTZ black holes and conical defects in Section .2l Our computations of topo-
logical complexity for states dual to global AdS; (vacuum) and BTZ black holes
(thermal) show that the part ¢ of topological complexity independent of the con-
sidered radial cut-off is completely determined by the topology of B4 and
A. This led us to the conclusion that ¢} performs a discrete jump when the RT
surface undergoes a phase transition. In particular, the temperature dependence
of topological complexity for thermal states manifests itself only by such a discrete
jumpﬂ For primary states dual to conical defect geometries ¢ no longer only de-
pends on topological aspects of the setup but also the particular type of excitation.
We visualized these findings for vacuum, thermal and primary excited states in
Figure [£.4]

For the examples we considered, topological complexity agrees with HSRC up
to a constant proportionality factor. Therefore, the observations we made for to-
pological complexity also apply to HSRC. In particular, we saw a clear relation
between the topologies of B4 and A and the cut-off independent part of HSRC.
As this part is proposed to be universal [63], this is of particular interest for the
field theory interpretation of HSRC. We summarized and discussed our findings in

Section [4.3]

In Chapter [5| we presented the main result of this thesis, which was published
in [1] and [2]. We constructed an explicit field theory expression for the HSRC
of an entangling interval A for CFTy vacuum states dual to global AdS3; and the
(2 + 1)-dimensional Poincaré patch. This construction was based the concept of
Kinematic space K [9596], which is the space of all boundary anchored bulk
geodesics on a constant time slice. We reviewed kinematic space in Section [5.1]
In Section [5.2] we presented and proved a formula which expresses the volume
of an arbitrary codimension one bulk region QO on a constant time slice as an
integral over K. This “volume formula” in combination with the RT formula
allows to express the volume of any Q as an integral over entanglement entropies.
It may therefore be seen as a natural extension of the formalisms discussed in
[94-96,209,210] which provide similar expressions for the lengths of bulk curves.
We applied the volume formula to B4 in Section [5.3] which provided us with an
expression for HSRC in terms of entanglement entropies. As this expression can
be derived from the CFT side, it may be seen as the field theory dual of HSRC. We
introduced a cut-off scheme for our formula for HSRC and applied it to compute
HSRC for several explicit examples. In Section we extended our formula to
BTZ black holes and conical defect geometries. In these situations we found that
HSRC is no longer only determined by entanglement entropy but also contributions
related to entwinement [146] are present. Entwinement corresponds to the length
of non-minimal bulk geodesics and is proposed to encode the entanglement of
inner degrees of freedom on the field theory side [146]. Moreover, for BTZ black
holes we found a further type of contribution to HSRC which is related to bulk
geodesics running from the conformal boundary to the black hole horizon. We

!This was also observed in [188].
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denoted them as thermal contributions due to their relation to the horizon. The
appearance of additional contributions to HSRC which cannot be interpreted in
terms of entanglement entropies may be seen as a motivation to further study the
field theory interpretation of the corresponding bulk geodesics.

In Section [5.5] we studied our results regarding HSRC under the assumption
that HSRC is indeed a bulk description of subregion complexity. We found that in
this context the reference state may be seen as a field theory version of a product
state. Moreover, our formulae for HSRC indicate that a concept of complexity
for reduced states based on HSRC takes into account that the considered reduced
state is part of a larger system. This separates HSRC from the complexity con-
structions for mixed states presented in [179] (see Section [3.2.1)), which ignore this
fact. Our results for HSRC together with their implications for possible future
projects were discussed in Section [5.6]

The focus of Chapter [6] were the results regarding modular Hamiltonians pub-
lished in [3]. Given a family of states p, depending on a continuous parameter A,
we studied the dependence of A (Ky) (A, \) (6.1) on A. Here Ky(A) is the modular
Hamiltonian of a reduced reference state pfo on the entangling region A. The
object A (Kj) is of great importance for the computation of the relative entropy
(6.19), which was the reason for our investigations. Given two entangling regions
A and B, forming an entanglement plateau, we examined when A (Kj) (A4, \) or
A (Kp) (B, \) are not linear in A — Ag. The result we obtained goes as follows.
Consider an entanglement plateau stable under variations of the size of A and B
that keep AB invariant. Then A (Kj) may only be linear in A — )¢ for A, B and
variations of their size if 935 is constant under variations of the size of A and B.
Here S is the entanglement entropy. We reviewed the concept of entanglement
plateaux in Section [6.1] and explained the setup and motivation for our studies in
Section [6.2] In Section [6.3] we presented the exact mathematical statement of our
result which we subsequently proved by a simple argument based on the first law of
entanglement and the monotonicity of the relative entropy . Moreover,
we discussed various aspects of our result, including the role of the prerequisites
in its proof and its generalization to n-parameter families of states.

We applied our result of Section [6.3] to several examples in Section [6.4 As
we pointed out in Section [6.1, entanglement plateaux are easily constructed in
AdS/CFT. This allowed us to study several holographic examples, including
unions of disconnected intervals for thermal CFT, states dual to black string ge-
ometries. For this case, our result provided a way to show that the modular Hamil-
tonian may not be written as a local integral over the energy momentum tensor.
This observation reveals the importance of our result in the context of [200]. Here
a topological condition was constructed under which the modular Hamiltonian
may be written as a local integral over the energy momentum tensor. The above
example demonstrates that our result may be used to show when such an integral
form does not exist. Furthermore, we applied our result to states dual to black
brane geometries and BTZ black holes.

We emphasize that even though most of the examples we considered in this
chapter are based on AdS/CFT, our result not only applies to field theories with
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holographic duals but to any QFT. It reveals a non-trivial relation between entan-
glement entropy and higher order contributions in A — Ag to A (Ky). Therefore, it
may be seen as an extension of the first law of entanglement, which provides such
a relation for the first order terms in A — A\g. We concluded Chapter [ with some
final remarks and discussions in Section [6.5]

The results of this thesis further clarify the close relation between bulk geom-
etry and quantum information on the boundary (see Section . For instance,
in Chapter [4] we saw that the cut-off independent term of topological complexity
performs discrete jumps when the phase of the corresponding RT surface changes.
Under which circumstances such transitions occur is encoded in the bulk geometry.
Moreover, in Chapter |5l we demonstrated how volumes of codimension one bulk re-
gions on a constant time slice may be expressed in terms of entanglement entropies
for global AdS3 and the Poincaré patch. For BTZ black holes and conical defects
we observed additional contributions related to entwinement and the thermality
of the states dual to BTZ black holes. In addition, the examples we studied in
Chapter @ reveal a connection between geometry and A (K). We argued that for a
one-parameter family of states on a stable entanglement plateau A (Kj) is usually
expected to contain second and higher order contributions in the parameter.ﬂ For
the holographic examples we applied this statement to, a particular phase of the
RT surface is required in order to provide an entanglement plateau (see Section
. The phases of the RT surface are determined by the bulk geometry. There-
fore, we see that the bulk geometry has a non-trivial influence on the behavior of

A (Ko). [

7.2 Outlook

Future projects may further investigate and develop our findings. In addition to
the possible projects we discussed in Sections [4.3] and we consider the
comparison of our results for topological complexity (see Chapter [4)) with the field
theory expression for HSRC we presented in Chapter [f| of particular interest. We
note that for the examples we considered in this thesis, topological complexity dif-
fers from HSRC only by a constant prefactor. Therefore, our results regarding the
discrete jumps of topological complexity also hold for HSRC. These jumps may be
studied in the context of our field theory expression for HSRC. For instance, it is
easy to see that the expression we derived for one entangling interval on the
boundary of global AdS; can be generalized to an arbitrary number of entangling
intervals. For this setup, the results of Chapter [4imply that HSRC jumps by multi-
ples of 27 when the position of the intervals relative to each other is changed. The
study of the contributions to our field theory expression corresponding to these
jumps may provide a physical interpretation for this phenomenon. The physical
interpretation of these jumps may also improve our understanding of the behavior
of A (Kj) on entanglement plateaux. In AdS/CFT these plateaux are usually re-

2For the exact formulation of this result we refer to Section
3The behavior of the modular Hamiltonian under phase transitions of the RT surface was also
discussed in e.g. [115]. We refer to [157] for related work.
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lated to a particular phase of the RT surface (see Section . Since transitions of
this phase cause the jumps in HSRC (see Section , an interpretation of them
in the context of HSRC may provide deeper insight into the behavior of A (Kjy)
on entanglement plateaux.

The above discussion shows that the three projects presented in Chapters [4]
and [0 are related by a common theme: the phases of the RT surface. We
see that these phases may be studied from several very different perspectives,
providing further insight into the close relation between quantum information on
the field theory side and geometry on the gravity side. The results we presented
in this thesis may be seen as a starting point for future projects expanding our
understanding of the role of the bulk geometry in quantum information on the
boundary.
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Appendix A

Notation and Conventions

Throughout this thesis we use the following notations and conventions.

Synonyms for the AdS Side. In AdS/CFT we refer to the theory of gravity
on AdS as AdS side, AdS, gravity side, gravity dual, gravitational dual, bulk (dual)
or holographic (dual). Moreover, we use analogous terms for objects in the bulk,

in particular when we consider them in the context of their dual description on
the CFT side.

Synonyms for the CFT Side. We use the terms field theory side, field
theory dual, CFT (side), CFT dual or boundary for references regarding the con-
formal field theory in AdS/CFT. Moreover, we use analogous terms to refer to

objects on the CFT side. In particular when we discuss them in the context of
their duals on the AdS side.

Ryu-Takayanagi Surface for AdS;/CFT,. In AdS,;.;/CFT; the Ryu-
Takayanagi (RT) surface is a (d — 1)-dimensional hypersurface in the bulk (see
Section . Most of the examples discussed in this thesis consider AdS3;/CFTs.
Here the RT surface is one-dimensional, i.e. a curve. In order to maintain a consis-
tent notation throughout this thesis we still refer to this curve as the RT “surface”
and to its length as “area”.

Static Space-Times. In all the examples we consider in this thesis, we work
with static asymptotic AdS spaces. The feature of these spaces that we frequently
use is location of the RT surface on the same constant time slice as the correspond-
ing entangling region on the boundary.

Signature of the Metric. For the space-time metrics we consider in this
thesis we use the signature (—+ +---+).

Einstein’s Sum Convention. We make use of Einstein’s sum convention, i.e.
indices appearing twice in a given term are summed over.
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Natural Units. We use units where the speed of light, the reduced Planck
constant and the Boltzmann constant are set to one.

Abbreviation for Symmetric Tensor Products. Throughout this thesis
we discuss several metric tensors. In order to avoid cluttering we use

1
dxdy = 5 (dx ®dy + dy ® d:}:) (A.1)
as an abbreviation for the symmetric tensor product of two one-forms dz, dy.
Abbreviation for Entangling Regions. For two entangling regions (or

subsystems) A, B we use
AB=AUB, (A.2)

as an abbreviation.

Newton’s Constant. We refer to Newton’s constant in (d+ 1) dimensions as
Gt

Gamma Function. The Gamma function is denoted by I'.
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