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The aim of this paper is to discuss some characteristic features of the
infrared divergence phenomena such as the soft photon contribution to the
radiative corrections in the domain of very high energies. The discussion
will procede as follows: a typical electrodynamic process such as the
electron-positron annihilation into photons will be considered and the results
of a complete perturbation calculation of order o3 will be discussed briefly.
Then an attempt will be made to generalize the rather interesting suggestions
deriving from that calculation to every order of a.

" ERIKSSON, in his lecture [5] , has explained what is meant by infrared
divergence and how the soft photon contribution works in its elimination.
Let us briefly recall and apply those considerations to the annihilation process.

Let us try to calculate the higher order corrections in o to the Born
approximation represented by the simple graph in Fig, 1.
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Fig.1

* As is well known, the relevant corrections are obtained by inserting
one internal photon line into the above skeleton graph in all possible ways.
This situation is shown in Fig,2 in terms of Feynmann's diagrams. {Ob-
viously there are as many as graphs deriving from the exchange of the two
final photons kj«—ky.)

All these terms diverge when we integrate over the energy of the virtual
photon down to the limit zero and we find something like this:

dw/fw.
Jaw/
In order to avoid this divergence we regularize the above integrals by as-

cribing a fictious, non-zero mass A to the photon so that we finally get the
A-dependent (but Lorentz-invariant) result:

do, ) = dog®) {1 + (a/7) [Fly) In (&/m) + 1§ (v, 0)]} (1)
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where do,(®) is the differential cross-section for the annihilation process
corrected by virtual photons and dog(®? is the corresponding quantity calcu-
lated in Born approximation + =e,/m, and 6 is the scattering angle. Note

O

Fig. 2

the isotropic coefficient F(y) of the A dependent part. This fact can be
easily understood by direct inspection of the Feynmann's graphs but we will
not go into the details here.

Equation (1) is not a physically meaningful result owing to the A de-
pendence. In order to remove it, the consideration is made that a scattering
process (in a broad sense) can be never considered as purely elastic. In
our case, for instance, we cannot ensure experimentally that the annihi-
lation of the pair leads to a final state with two photons only. In fact there
is always an inelastic contribution because of the emission of some supple-
mentary real photons. They are not detected if their total energy is less
than an upper limit AE which can be taken as the resolving power of the
experiment. However, although not experimentally distinguishable from the
fundamental process, this sort of background effect cannot be omitted, So
we have to add the cross-section for the emission of one additive photon
(to @3 order), with an energy under the threshold of detection AE, to
Eq. (1). It is possible to eliminate the infrared divergence, taking into
account that the emission probability of soft photons diverges in the limit
w=0. Usually the procedure followed in the calculation is to consider the
inelastic contribution from real soft photons whose energy is less than a
given quantity A « m, in a particular reference frame.

In this way we get the cross-section for annihilation into three photons,
one of which with energy sA«m

do,of2 = do,(® (@/7) [Fly) In(22/A)+9(y)]
= doy®® (a/7) [Fly) ln(a/vA) +9()]. (2)

In order to calculate Eq. (2) we have taken into account only the infra-
red part of the above cross-section that corresponds to the soft photon
emission from external electron lines only. This causes the appearing of
a contribution only v dependent.

In the C.M.S. system we get

¢ (v) =2 In?(2y) - 1%/3,
(3)
F(y)=2[21In(2y)-1].

By combination of Egs. (1) and (2) we get the A independent result
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A
do, &7 = dy {1 +%[<P(7)+F(7).ln ot (v,O)J}- 4)

While the introduction of soft photons only is sufficient to cancel out the
infrared divergence it is not entirely realistic. In fact at high energies the
actual resolving power AE of the experimental device does not fulfill the
condition AE « m and generally has an angular dependence. So in order

to compare the theoretical calculations with the experimental results one
ought also to take into account the photons (not detected) in the range A-AE.
They are usually called hard photons. If we want a result independent of AE
we can go to the limit of no resolving power by allowing the energy of the
additive photon to reach the maximum value given by the conservation laws.
In so doing the total correction is the sum of the virtual plus the inelastic
part and we might call it a radiative correction in a broader sense.

Going back to our particular process this pattern of thought gives as a
final result the cross-section for annihilation of a pair into two and three
photons up to @® order.

The cross-section for annihilation of a pair into three hard photons
{with energies larger than A) is

doy & = dogla /M) [Gly) In (v /D) + g, (v, 6)] . | (5)

It is verified that G(y) = F{y) so the combination of Egs. (5) and (4)
gives

do @ = doy{1+(a/7) [ (v)+11(v,0)+g (v, 0]}

=dog{1+6(y,0)}. . (6)

In Eq. (6) 9, g, f; represent the soft photon, the virtual photon and
the hard photon contribution to the total correction 6, respectively. (Really
this division is rather arbitrary and not unique depending on the used
regularization procedure and not invariant owing to the not covariant defi-
nition of soft photons. )

For computational reasons it is simpler to discuss the integrated cor-

rection &(y)= [dQ26(v,0), or the total cross-section for annihilation into
photons up to a3 order.

o =ag{l + (@/7) [o(7) + £(y) + g(¥)]} = apl1 + §(7)}. (7

In this case it is possible to write the final result in the extreme
~ relativistic case

0g = (mrf /2v?) (2 1n(27) - 1], (8)

6(y) =(a/127) [81112(27)- 21n(2y) +47% - 13+ﬁ%%”_2—1], (9)

¥»1 {(C.M.S. energy).
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Fig. 3

The relevant point in Eq. (9) is the 1n (2y) behaviour of the total cor-
rection, If in order to understand its origin we perform the usual division
between virtual soft and hard photon contribution, we find in the C.M.S.:

Oyun =00 fl+ (@/127) [81n*(27) + 22In(27) + ... + F(¥)1n(A/mY)]}
Opad =00(@/127) [ - 241n(27) + ... F(y)ln(my/A)],

so that we can ascribe the 1n2(2y) contribution to the virtual plus soft photon
part. Hard photons do not contribute to the dominant behaviour in the very
high energy case, so that, from this point of view, we can forget their ex-
istence, To get a further insight into the In2(2v) derivation, let us go back
to the differential cross-section of Eq. (4):

dGV+S = doo{l + 6v+s' (73 6: A)} .

Some general previsions can be made on the high energy behaviour of 6., .
A quite general theorem by ERIKSSON and PETERMANN [2] states that
for large values of the momentum t{ransfer (in the C.M.S.), @» m2, §,,
behaves at most like (a/7)In(q2/m2) to order o, More precisely, the first
correction can be written in the form ‘

byss = (a/7) [cyIn(q?/m?)In(A/E) + ¢3In{g2/m2) + c31n(A/E) + c,].

The validity of the Petermann theorem can also be verified in our case. This
means that, being the soft photon part isotropic and always = Iln%(2y), the
contribution of the virtual photon for large momenwum transfer is such as

to compensate those In2(2y) terms. Letuslookat another boundary condition,
the region of small momentum transfer, where

a2 =(p1-k)2=-m?+2m2y2(1-Bcos@)~ m2y20

or @<m?, 651/

In this situation we find that the virtual photon contribution is small (no 1n2
(2 v) terms) so that there is no more compensation and the In2 (2 vy) from
the soft part is still present and dominant. The subsequent integration and
the addition of thé hard photons do not cancel the In2? (2 v). ]
Obviously these are considerations whose validity is limited to the ex-
plicit @3 calculation, Let us try to generalize those results: let us consider,
for instance, the an situation (cross-section to a"*2 order). The correction
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is the result of n virtual photons, n - 1 virtual+one soft, .... n soft photons.
We can make the following assumption based on the ideas of our previous
calculation: if we limit ourselves to the small momentum transfer region
(in'S. C. M. ) the virtual photon contribution is small, i.e. not of the @ In%®
(2 v) type but at most of an In2n-1 (2 ¥) type. So the relevant term in the
asymptotic limit comes practically from the graph with n soft photons. In
this way the result is obtained at one and looks like

do ™2 > goa /m) (1/m))[P (v)+F (v) In (A/m7)]" (10)

corresponding to the graph in Fig. 3.
If we sum up, using Eq. (3):

do ~ do Z (@/r)0 (1/at) [0 (v)4F (7) In (& /m7) )"
0 n

= dop e gtp(y) e(a/n) F(y)ln A/my

= do e £ w22y @/my (da/m 2y (11)

This is only s rough evaluation but it can give an idea of the philosophy
we shall follow. Obviously a more rigorous derivation is possible.

To this purpose we will use in a slightly modified form the general
result by ERIKSSON [3 1. That is

_er A N\ BrA/mcp 12
PO Targ ey © (&) Ml (12)

where the symbols are those of Eriksson except A which is defined as

; N
_a 2
A= w{_){-;Q" + 2i<EjRe\/0ﬂ glx(p;e; + pjg) - ejpj]dx}

(for a full understanding of the notations see [3].

M ]2 is the squared matrix element corrected by allthe virtual photons.
It is infrared divergent but we can regularize it with the fictitious photon
mass A.. Furthermore, the general theory of infrared divergences allows
us to say that the dependence of A cancel out with (m/A)¢ ., Eq.(12) is a
correct result, though a not covariant one, owing to the presence of A .
Let us consider the annihilation case where an explicit calculation gives:
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A = (2a/ 1) 1n?(2v),
B = (4a/7)1n (2v), (13)
C = (4a/7)1n (27).

Note again the characteristic isotropy of the soft photon part for the
annihilation process. Thus the angular dependence is contained in IMI2 I
we assume the validity of the Eriksson and Petermann theorem for q2» m?
(6~7/z), [M|? has to behave like e"2/ 102 in order to compensate the
soft photon part. What happens for g2~ 0 ? If we put

(m/A) M = Mo X (i, ki),

our assumption is that for q2.4 0,X (pi, ki) goes to a constant or, more

Fig. 5

generally, it behaves in a simple logarithmic and not a (log)? manner. In
this way, neglecting all the logarithmic terms, the result is

do ~ doy e (2a/n) In? (2y) (A/my) (4a/m) In(2p)

which is Eq. (11). So our general conclusion is that it is possible in forward
annihilation to discriminate in a very clear out way between the virtual

and soft photon contribution. Really this result may seem a rather academic
one owing to the A term. So our perturbative result could lead us toanother
hypothesis, i.e. that the hard photons do not contribute 1n? (2 v) terms,
Consequently we eliminate the A dependence by adding the hard photons
while the dominant behaviour remains still

4o ~ dog 2%/ n? (29) (14)

with do forward (or nearly forward) cross-section for annihilation into
photons.

It is necessary to find out if our hypotheses are verified. The problem
is not difficult for the virtual photon contribution. We all know that there
are two classes of diagrams which contribute to M. They can be represented
by the reducible graphs typified by Fig. 4 and the irreducible ones typified
by Fig.5. Though many photons exchange, as in Fig. 6.
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Fig, 6

As long as we confine ourselves to the logarithmic terms, it is possible
to show by direct inspection(*) of the matrix elements to every order of «,
that our first hypothesis works very well for both classes, that is

M (/) 2 [Mol”.

So Eq. (11) is correct.

The hard photon part is more complicated to hand. The problem is
under study and we hope to be able to prove that Eq. (14) is also true soon.
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