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Abstract—The High Field Magnet (HFM) R&D programme at
CERN aims to find technological solutions for the construction
of accelerator magnets to be installed in future post-LHC
colliders. The Italian Institute for Nuclear Physics (INFN) and
CERN are collaborating to design and fabricate a new four-layer
cos-theta dipole able to achieve a bore field of 14T with at least 20%
margin on the load-line. Two design options are under evaluation:
a four-layer dipole entirely made of Nb3Sn, and a hybrid configu-
ration combining inner NbzSn layers with outer NbTi layers. Both
options are being assessed for feasibility as short models, with
scalable design choices for longer magnet prototypes suitable for
accelerator integration. This paper presents a comparative study
of the performance of the two design options. The results provide
insights into the trade-offs between performance, complexity, and
protection constraints in the development of next-generation high-
field dipole magnets. The Full-Nb3sSn solution satisfies the HFM
requirements, but the Hybrid solution is a promising, cost-effective
alternative that can be considered for next-generation colliders.
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1. INTRODUCTION

HE continuous push for higher energy frontiers in particle

physics necessitates the development of next-generation
accelerator magnets capable of producing magnetic fields sig-
nificantly stronger than those currently achieved at the Large
Hadron Collider (LHC) [1]. While the cos-theta layout has
proven to be a reliable and well-established architecture for
generating high-quality accelerator fields, the community is ac-
tively exploring alternative coil configurations—such as block-
coil [2], common-coil [3], [4], canted cosine-theta [5] and stress-
management cosine-theta [6] designs—to address the increas-
ing mechanical and manufacturing challenges associated with
high-field magnet technologies. In the context of the High Field
Magnet (HFM) programme [7], [8], the primary objective is to
validate a magnet design capable of reaching a nominal bore
field of 14 T within a 50 mm aperture, while maintaining a
minimum 20% operating margin on the load-line. This paper
presents and compares two distinct magnet designs developed
within the HFM framework: a four-layer Full-Nb3Sn config-
uration and a four-layer Hybrid Nb3Sn/NbTi configuration.
Both designs were developed starting from the selection of
the superconducting cable, which significantly influences not
only the electromagnetic performance but also the mechani-
cal and thermal behaviour of the final magnet. In contrast to
the previous design [9], the strand diameter has been reduced
from 1.1 mm to 0.85 mm while maintaining the same number
of strands. This reduction in strand diameter is intended to
facilitate the winding process, as experience from FALCON
Dipole [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21] indicate that winding a 1 mm diameter strand with
40 strands around a 50 mm aperture is challenging. Moreover,
the increased copper fraction helps with the magnet quench
protection, and the finer filaments contribute to improve flux
jump stability. It’s crucial to note that these Nb3Sn strands have
already been extensively tested and validated in the context
of the High-Luminosity LHC programme [22], thus providing
a strong basis for reliability. Both designs aim to satisfy the
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Fig. 1. Field distribution in one quadrant of each cross-section evaluated with the ROXIE software.

TABLE I
COMPARISON OF THE TWO DESIGNS

Full Nb3Sn Hybrid Nb3Sn/NbTi

HF 19K | HF 42K | LF 19K LF 4.2K HF 19K LF 19K
Achieved bore field [T] 14 14
Current [A] 9800 13330
Peak field [T] 14.21 11.28 14.47 8.44
Current density [A/ mm?] 280 400 380 260
Supercond. current density [A/mm?] 950 1400 1300 973
Copper current density [A/mm?] 792 1167 1080 608
Loadline fraction [%] 80 87.5 73 80 86.5 78
Temperature margin [K] 44 22 5.6 33 3.28 2.28
Enthalpy margin [mJ/cm?] 12.4 8.9 19.3 16 6.6 2.5
b3 / bs / by / by at nominal [unit] 0.47/-5.81/3.57/133 -0.98 /-0.93 / 4.29 / 2.94
Equivalent width [mm] 554 59
N° of turns (per pole) 39 69 39 39
N° blocks (per pole) 7 3 6 2
Aperture [mm] 50 50
Maximum azimuthal stress [MPa] 83 116
Maximum radial stress [MPa] 97 138

requirements set by the HFM programme, but with different
trade-offs.

II. FULL-NB3SN DIPOLE

The first design option under consideration is a four-layer
dipole made entirely of Nb3Sn superconductor. As illustrated in
Fig. 1(a), the coil is structured into two High-Field (HF) inner
layers and two Low-Field (LF) outer layers. To optimize the use
of the superconductor and manage costs, a “grading” approach
has been implemented [23], [24]. This technique involves using
different cables for each region, depending on the local magnetic
field condition. The bare cable details are listed in Table II.
Regarding the critical current density fit for the Nb3Sn, the one
provided by the HFM programme was selected to enable com-
parison with results reported in the scientific literature [25]. Then
for the iron yoke, the outer radius is set to 350 mm with a squared
central window suitable for bladder and key technology, requir-
ing pads with a minimum thickness of 25 mm. In particular, for
the non-linear computations the soft iron ARMCO BH-curve
has been used. The electromagnetic design and performance

calculations for both configurations were carried out using the
ROXIE [26], [27] software from CERN. The overall results of
this design are summarized in Table I, and will be discussed later
in Section IV-A.

III. HYBRID NB3SN/NBTI DIPOLE

The second design, inspired by [3], [28], explores a Hybrid
solution that represents the best compromise found between
performance and cost. This design is based on a “material
grading” strategy: since NbTi is only effective at lower magnetic
field strengths, its use is restricted to the two outer Low-Field
layers of the magnet (strand details can be found in [29]),
while the two inner High-Field layers are wound with NbsSn.
This configuration (Fig. 1(b) seeks to maximize performance
where it is most needed while limiting expenses. The bare cable
specifications are listed in Table II. The same characteristics of
the iron yoke of the Full-Nb3Sn design were adopted. Regarding
the critical current densities, the same fit used for the Full-Nb3Sn
was applied to the Nb3Sn layers, while for NbTi the LHC inner
cable fit was adopted [30]. The resulting performance of this
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TABLE II
BARE CABLE PROPERTIES
Full Nb3Sn Hybrid Nb3Sn/NbTi
HF LF HF LF
Material NbsSn NbsSn NbsSn NbTi
N° strands 40 40 40 40
Strand diameter [mm] 0.85 0.7 0.85 1.065
Cu/non-Cu 1.2 1.2 1.2 1.6
Cable inner thickness [mm] 1.53 1.228 1.53 1.736
Cable outer thickness [mm)] 1.658 1.437 1.658 2.222
Cable width [mm)] 18.36 14.85 18.36 22.365
Insulation thickness [mm)] 0.145 0.145 0.145 0.145
Quench integral [MAZs] 30 15 30 93
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Fig. 2. Load-line margins evaluated with the ROXIE software.

Hybrid magnet is detailed in Table I and it shows a tradeoff
between margin and achieved bore field that will be discussed
in Section IV-A.

IV. DESIGN COMPARISON
A. Electromagnetic Margins

As shown in Fig. 2(a), at 1.9 K the Full-NbsSn design meets
the 20% load-line margin requirement across the entire coil. In
contrast, for the Hybrid configuration, two operating scenarios
must be considered. When targeting a bore field of 14 T, the
Hybrid design satisfies the 20% margin only in the NbTi outer
layers, while the inner Nb3Sn layers become limiting, reduc-
ing the overall margin to 13.5%. Despite this reduction, the
configuration remains attractive due to advantages in cost and
potentially also in fabrication complexity. Alternatively, if the
Hybrid is operated at 13 T at 1.9 K, it satisfies the 20% load-line
margin requirement with margin still governed by the Nb3Sn
layers, as the NbTi remains well within its operating limits. In
the FCC-hh case, this field reduction decreases the c.0.m. energy
by 7%. At 4.2 K (Fig. 2(b)), the Full-Nb3Sn design retains a
margin of 12%, enabling operation at 14 T under relaxed cool-
ing requirements. However, the Hybrid design cannot sustain
14 T at this temperature, as the NbTi outer layers exceed their
short-sample performance limit. In this case, a reduced current
must be used, limiting the bore field to 13 T, with a resulting
load-line margin of only 7%, now dictated by the NbTi. This
highlights the stronger temperature dependence of the Hybrid
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design and the need to carefully balance field, temperature, and
stability constraints when considering this configuration.

B. Persistent Current Losses

The strand magnetization was calculated using the semi-
analytical scalar model within the ROXIE code [31] and neglect-
ing Inter-Filament (IFCC) and Inter-Strand (ISCC) Coupling
Currents contribution. Losses were determined for a single
current cycle, ramping from 5% to 100% of the nominal current
and back down. The resulting persistent current loss for this cycle
was found to be 8.5 kJ/m and 4.7 kJ/m for the Full Nb3Sn and
the Hybrid design respectively. This corresponds to a significant
reduction of approximately 45% in persistent current losses for
the Hybrid design relative to the Full Nb3Sn design.

C. Quench Protection

In this study, a preliminary quench protection analysis was
approached using a conservative adiabatic approximation to
estimate the maximum allowable quench integral (MIITs) for
the superconducting cables in the different magnet regions [33],
[34]. A maximum hot-spot temperature of 300K has been con-
sidered. For the HF region both designs employ the same super-
conducting cable, and due to the relatively small variation in the
material properties at peak magnetic field, the budget remains
similar (approximately 30 MAZs). These values were obtained
under the assumption that the entire HF and LF winding operates
under their peak field conditions, making this a deliberately



4000305

conservative scenario. For the LF region, the MIITs budgets
differ significantly due to the use of different cable technologies
and geometries. The Full-NbsSn design employs a smaller
Nb3Sn cable to that of the HF region, resulting in a budget
of approximately 15 MA?s. In contrast, the Hybrid configu-
ration utilizes a NbTi cable with inherently better thermal and
electrical properties, and a significantly larger cross-sectional
area—nearly 50% greater than the Nb3Sn cable used in the
LF region of the Full design. These factors combine to yield
a substantially higher budget of approximately 93 MA?s for the
Hybrid working at 14 T, highlighting a distinct advantage in
terms of protection margin. For a short demonstrator (=21 m), a
preliminary evaluation of the current discharge during a quench
event has also been performed. Assuming a protection scheme
employing an external dump resistor sized to limit the maximum
voltage across the terminals to 500 V, the discharge MIITs
were calculated using the total stored magnetic energy of the
coils. The stored energy is 1.21 MJ/m for the Full-Nb3Sn case
and 1.08 MJ/m for the Hybrid case. Under these conditions,
24 MA?sand 29 MA%s respectively are needed for the discharge.
If the maximum voltage constraint is relaxed to 1000 V, these
MIITs values are effectively halved, providing greater flexibility
in the protection scheme. These preliminary findings show that
for a short demonstrator the Full-NbsSn design with a 1000 V
maximum voltage has a time margin of 31 ms (3 MAZ2s), whereas
the Hybrid configuration has a time margin of 87 ms (14 MAZs).
Nonetheless, further dedicated studies to refine and optimize the
quench protection system are planned.

D. Conductor Cost

The conductor is one of the cost drivers in the manufacturing
of a magnet. Using updated procurement costs of 330 € /kg for
NbTi and 2274 € /kg for NbsSn [35], [36], the material cost
advantage of the Hybrid design becomes evident. Specifically
for these two designs, the saving in Nb3Sn mass is in the order
of 43%, which results in a total conductor cost of approximately
82 k€/m for the Hybrid configuration, compared to 163 k€/m
for the Full-Nb3Sn option. However, it should be noted that the
Hybrid design has a reduced margin in load-line with respect
to the Full-Nbs Sn and therefore, the reported 43% can be
considered the cost needed to satisfy the 20% load-line margin
requirement with 14T bore field.

E. Efficiency and Equivalent Coil Width

The equivalent coil width is a useful parameter for comparing
different coil layouts [37]. It represents the width of a 60° sector
coil that has the same cross-sectional area as the design under
evaluation. This geometrical normalization provides a simple
yet effective metric for assessing layout compactness. From
the equivalent coil width, we derive the layout efficiency by
calculating the bore field produced by the coil alone, removing
both grading and iron contributions [37]. This approach provides
a clearer understanding of the conductor performance and its
utilization within the magnet design. Our benchmark value for
the coil efficiency is 6.63 X 10~* Tmm/A, result that comes from
the efficiency of a 60° sector coil, without iron and grading [37].
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Using this reference, the Full-Nb3Sn layout achieves 98% of
the benchmark, while the Hybrid Nb3Sn/NbTi configuration
reaches 97.1%. These values indicate that both coil layouts are
highly efficient in terms of conductor utilization, with only a
marginal difference between them. The Hybrid NbsSn/NbTi
configuration, despite incorporating a lower-performance ma-
terial in the LF region, achieves over 97% of the benchmark
efficiency. This observation suggests that there may be room
for further optimization of the Hybrid layout. In particular, a
reduction in the number of strands in the NbTi cable could be
explored as a strategy to decrease the total cable cross-sectional
area and, consequently, the equivalent coil width. Such an ad-
justment would have the potential to improve the normalized
layout efficiency, while offering additional benefits in terms of
material cost reduction. Given the significantly higher MIITs
budget available in the LF region of the Hybrid design a slight
reduction in the copper volume would likely not compromise
quench protection. Instead, it may allow a more cost-effective
and compact implementation, especially relevant for large-scale
magnet production. Future iterations of the Hybrid concept
could investigate this trade-off more quantitatively, balancing
layout efficiency, protection margin, and economic considera-
tions.

F. Conductor Stress

For high-field accelerator magnets with a bore field of 14T,
the conductor stress could approach the 150MPa HFM thresh-
old. This makes a detailed structural design crucial for project
feasibility. We initiated this work by estimating the peak accu-
mulation of azimuthal stress in the mid-plane and radial stress
using the analytical model proposed in [38]. The agreement
between this model and the FEM analysis for the peak azimuthal
and radial stresses in D20, a relatively similar design, is within
20% [38]. The results for our designs, reported in Table I,
are comparable to those of similar existing magnets such as
MDPCT1 and D20. This comparison strengthens our confidence
in the feasibility of the magnet mechanical structure. However,
these results must be validated through FEM analysis, which
will be carried out in collaboration with INFN Genova.

V. CONCLUSION

This study presented a comparative analysis of two design
options for a four-layer high-field dipole magnet: a Full-NbsSn
configuration and a Hybrid Nb3Sn/NbTi layout. While only the
Full-NbsSn magnet is capable of reaching the target bore field
of 14 T with 20% load-line margin, the Hybrid configuration
shows promising characteristics in terms of cost reduction, splice
complexity and persistent current losses. These trade-offs make
it a viable alternative for further exploration, especially in ap-
plications where slightly reduced performances are acceptable.
However, the Full-NbsSn design is selected for the fabrication
of a short model at the upcoming IRIS facility [39], [40], [41],
[42], [43] located at the Laboratory of Accelerators and Ap-
plied Superconductivity in INFN Milan in the next years. This
will serve as a technological demonstrator for future high-field
magnets intended for post-LHC collider applications. The next
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steps in the project will include a detailed quench protection
and structural analysis, which is essential to ensure operational
safety and reliability. These activities will be key to validating
the design and preparing for future scaling toward a full-length
prototype suitable for accelerator integration.
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